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Chapter 335 

Ridge Regression 

Introduction  
Ridge Regression is a technique for analyzing multiple regression data that suffer from multicollinearity. 
When multicollinearity occurs, least squares estimates are unbiased, but their variances are large so they 
may be far from the true value. By adding a degree of bias to the regression estimates, ridge regression 
reduces the standard errors. It is hoped that the net effect will be to give estimates that are more reliable. 
Another biased regression technique, principal components regression, is also available in NCSS. Ridge 
regression is the more popular of the two methods. 

Multicollinearity 
Multicollinearity, or collinearity, is the existence of near-linear relationships among the independent 
variables. For example, suppose that the three ingredients of a mixture are studied by including their 
percentages of the total. These variables will have the (perfect) linear relationship: P1 + P2 + P3 = 100. 
During regression calculations, this relationship causes a division by zero which in turn causes the 
calculations to be aborted. When the relationship is not exact, the division by zero does not occur and the 
calculations are not aborted. However, the division by a very small quantity still distorts the results. Hence, 
one of the first steps in a regression analysis is to determine if multicollinearity is a problem. 

Effects of Multicollinearity 
Multicollinearity can create inaccurate estimates of the regression coefficients, inflate the standard errors of 
the regression coefficients, deflate the partial t-tests for the regression coefficients, give false, 
nonsignificant, p-values, and degrade the predictability of the model (and that’s just for starters). 

Sources of Multicollinearity 
To deal with multicollinearity, you must be able to identify its source. The source of the multicollinearity 
impacts the analysis, the corrections, and the interpretation of the linear model. There are five sources (see 
Montgomery [1982] for details): 

1.  Data collection. In this case, the data have been collected from a narrow subspace of the 
independent variables. The multicollinearity has been created by the sampling methodology—it 
does not exist in the population. Obtaining more data on an expanded range would cure this 
multicollinearity problem. The extreme example of this is when you try to fit a line to a single point. 

2.  Physical constraints of the linear model or population. This source of multicollinearity will exist no 
matter what sampling technique is used. Many manufacturing or service processes have constraints 
on independent variables (as to their range), either physically, politically, or legally, which will create 
multicollinearity. 
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3.  Over-defined model. Here, there are more variables than observations. This situation should be 
avoided. 

4.  Model choice or specification. This source of multicollinearity comes from using independent 
variables that are powers or interactions of an original set of variables. It should be noted that if the 
sampling subspace of independent variables is narrow, then any combination of those variables will 
increase the multicollinearity problem even further. 

5.  Outliers. Extreme values or outliers in the X-space can cause multicollinearity as well as hide it. We 
call this outlier-induced multicollinearity. This should be corrected by removing the outliers before 
ridge regression is applied. 

Detection of Multicollinearity 
There are several methods of detecting multicollinearity. We mention a few. 

1. Begin by studying pairwise scatter plots of pairs of independent variables, looking for near-perfect 
relationships. Also glance at the correlation matrix for high correlations. Unfortunately, 
multicollinearity does not always show up when considering the variables two at a time.  

2. Consider the variance inflation factors (VIF). VIFs over 10 indicate collinear variables.  

3. Eigenvalues of the correlation matrix of the independent variables near zero indicate 
multicollinearity. Instead of looking at the numerical size of the eigenvalue, use the condition 
number. Large condition numbers indicate multicollinearity. 

4. Investigate the signs of the regression coefficients. Variables whose regression coefficients are 
opposite in sign from what you would expect may indicate multicollinearity. 

Correction for Multicollinearity 
Depending on what the source of multicollinearity is, the solutions will vary. If the multicollinearity has been 
created by the data collection, collect additional data over a wider X-subspace. If the choice of the linear 
model has increased the multicollinearity, simplify the model by using variable selection techniques. If an 
observation or two has induced the multicollinearity, remove those observations. Above all, use care in 
selecting the variables at the outset. 

When these steps are not possible, you might try ridge regression. 
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Ridge Regression Models 
Following the usual notation, suppose our regression equation is written in matrix form as 

𝐘𝐘 = 𝐗𝐗𝐁𝐁 + 𝐞𝐞 

where Y is the dependent variable, X represents the independent variables, B is the regression coefficients 
to be estimated, and e represents the errors are residuals.  

Standardization 
In ridge regression, the first step is to standardize the variables (both dependent and independent) by 
subtracting their means and dividing by their standard deviations. This causes a challenge in notation, since 
we must somehow indicate whether the variables in a particular formula are standardized or not. To keep 
the presentation simple, we will make the following general statement and then forget about 
standardization and its confusing notation.  

As far as standardization is concerned, all ridge regression calculations are based on standardized variables. 
When the final regression coefficients are displayed, they are adjusted back into their original scale. 
However, the ridge trace is in a standardized scale. 

Ridge Regression Basics 
In ordinary least squares, the regression coefficients are estimated using the formula 

𝐁𝐁� = (𝐗𝐗′𝐗𝐗)−𝟏𝟏𝐗𝐗′𝐘𝐘 

Note that since the variables are standardized, X’X = R, where R is the correlation matrix of independent 
variables. These estimates are unbiased so that the expected value of the estimates are the population 
values. That is, 

𝐸𝐸�𝐁𝐁�� = 𝐁𝐁 

The variance-covariance matrix of the estimates is 

𝑉𝑉�𝐁𝐁�� = 𝜎𝜎2𝐑𝐑−1 

and since we are assuming that the y’s are standardized, 𝜎𝜎2 = 1. 

From the above, we find that  

𝑉𝑉�𝑏𝑏�𝑗𝑗� = 𝑟𝑟𝑗𝑗𝑗𝑗 =
1

1 − 𝑅𝑅𝑗𝑗2
 

where 𝑅𝑅𝑗𝑗2 is the R-squared value obtained from regression Xj on the other independent variables. In this 
case, this variance is the VIF. We see that as the R-squared in the denominator gets closer and closer to one, 
the variance (and thus VIF) will get larger and larger. The rule of thumb cut-off value for VIF is 10. Solving 
backwards, this translates into an R-squared value of 0.90. Hence, whenever the R-squared value between 
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one independent variable and the rest is greater than or equal to 0.90, you will have to face 
multicollinearity. 

Now, ridge regression proceeds by adding a small value, k, to the diagonal elements of the correlation 
matrix. (This is where ridge regression gets its name since the diagonal of ones in the correlation matrix may 
be thought of as a ridge.) That is, 

𝐁𝐁� = (𝐑𝐑 + 𝑘𝑘𝐈𝐈)−𝟏𝟏𝐗𝐗′𝐘𝐘 

k is a positive quantity less than one (usually less than 0.3).  

The amount of bias in this estimator is given by 

𝐸𝐸�𝐁𝐁� − 𝐁𝐁� = �(𝐗𝐗′𝐗𝐗+ 𝑘𝑘𝐈𝐈)−𝟏𝟏𝐗𝐗′𝐗𝐗 − 𝐈𝐈�𝐁𝐁 

and the covariance matrix is given by 

𝑉𝑉�𝐁𝐁�� = (𝐗𝐗′𝐗𝐗+ 𝑘𝑘𝐈𝐈)−𝟏𝟏𝐗𝐗′𝐗𝐗(𝐗𝐗′𝐗𝐗+ 𝑘𝑘𝐈𝐈)−𝟏𝟏 

It can be shown that there exists a value of k for which the mean squared error (the variance plus the bias 
squared) of the ridge estimator is less than that of the least squares estimator. Unfortunately, the 
appropriate value of k depends on knowing the true regression coefficients (which are being estimated) and 
an analytic solution has not been found that guarantees the optimality of the ridge solution. We will discuss 
more about determining k later. 

Alternative Interpretations of Ridge Regression 
1. Ridge regression may be given a Bayesian interpretation. If we assume that each regression coefficient 

has expectation zero and variance 1/k, then ridge regression can be shown to be the Bayesian solution. 

2. Another viewpoint is referred to by detractors as the “phoney data” viewpoint. It can be shown that the 
ridge regression solution is achieved by adding rows of data to the original data matrix. These rows are 
constructed using 0 for the dependent variables and the square root of k or zero for the independent 
variables. One extra row is added for each independent variable. The idea that manufacturing data 
yields the ridge regression results has caused a lot of concern and has increased the controversy in its 
use and interpretation. 
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Choosing k 

Ridge Trace 

One of the main obstacles in using ridge regression is in choosing an appropriate value of k. Hoerl and 
Kennard (1970), the inventors of ridge regression, suggested using a graphic which they called the ridge 
trace. This plot shows the ridge regression coefficients as a function of k. When viewing the ridge trace, the 
analyst picks a value for k for which the regression coefficients have stabilized. Often, the regression 
coefficients will vary widely for small values of k and then stabilize. Choose the smallest value of k possible 
(which introduces the smallest bias) after which the regression coefficients have seem to remain constant. 
Note that increasing k will eventually drive the regression coefficients to zero. Following is an example of a 
ridge trace. 

 

In this example, the values of k are shown on a logarithmic scale. We have drawn a vertical line at the 
selected value of k which is 0.006. A few notes are in order here. 

First of all, the vertical axis contains the points for the least squares solution. These are labeled as 0.000001. 
This was done so that these coefficients may be seen. In actual fact, the logarithm of zero is minus infinity, 
so the least squares values cannot be displayed when the horizontal axis is put in a log scale. 

We have displayed a large range of values. We see that adding k has little impact until k is about 0.0001. The 
action seems to stop somewhere near 0.006. 
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Analytic k 

Hoerl and Kinnard (1976) proposed an iterative method for selecting k. This method is based on the formula 

𝑘𝑘 =
𝑝𝑝𝑠𝑠2

𝐁𝐁�′𝐁𝐁�
 

To obtain the first value of k, we use the least squares coefficients. This produces a value of k. Using this new 
k, a new set of coefficients is found, and so on. Unfortunately, this procedure does not necessarily converge. 
In NCSS, we have modified this routine so that if the resulting k is greater than one, the new value of k is 
equal to the last value of k divided by two.  

This calculated value of k is often used because humans tend to pick a k from the ridge trace that is too 
large. 

Assumptions 
The assumptions are the same as those used in regular multiple regression: linearity, constant variance (no 
outliers), and independence. Since ridge regression does not provide confidence limits, normality need not 
be assumed. 

What the Professionals Say 
Ridge regression remains controversial. In this section we will present the comments made in several books 
on regression analysis. 

Neter, Wasserman, and Kutner (1983) state:  

“Ridge regression estimates tend to be stable in the sense that they are usually little affected by small 
changes in the data on which the fitted regression is based. In contrast, ordinary least squares estimates 
may be highly unstable under these conditions when the independent variables are highly multicollinear. 
Also, the ridge estimated regression function at times will provide good estimates of mean responses or 
predictions of new observations for levels of the independent variables outside the region of the 
observations on which the regression function is based. In contrast, the estimated regression function 
based on ordinary least squares may perform quite poorly in such instances. Of course, any estimation or 
prediction well outside the region of the observations should always be made with great caution. 

“A major limitation of ridge regression is that ordinary inference procedures are not applicable and exact 
distributional properties are not known. Another limitation is that the choice of the biasing constant k is a 
judgmental one. While formal methods have been developed fo making this choice, these methods have 
their own limitations.”  
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John O. Rawlings (1988) states: 

“While multicollinearity does not affect the precision of the estimated responses (and predictions) at the 
observed points in the X-space, it does cause variance inflation of estimated responses at other points. Park 
shows that the restrictions on the parameter estimates implicit in principal component regression are also 
optimal in MSE sense for estimation of responses over certain regions of the X-space. This suggests that 
biased regression methods may be beneficial in certain cases for estimation of responses also. The biased 
regression methods do not seem to have much to offer when the objective is to assign some measure of 
“relative importance” to the independent variables involved in a multicollinearity… Ridge regression attacks 
the multicollinearity by reducing the apparent magnitude of the correlations.” 

Raymond H. Myers (1990) states: 

“Ridge regression is one of the more popular, albeit controversial, estimation procedures for combating 
multicollinearity. The procedures discussed in this and subsequent sections fall into the category of biased 
estimation techniques. They are based on this notion: though ordinary least squares gives unbiased 
estimates and indeed enjoy the minimum variance of all linear unbiased estimators, there is no upper 
bound on the variance of the estimators and the presence of multicollinearity may produce large variances. 
As a result, one can visualize that, under the condition of multicollinearity, a huge price is paid for the 
unbiasedness property that one achieves by using ordinary least squares. Biased estimation is used to 
attain a substantial reduction in variance with an accompanied increase in stability of the regression 
coefficients. The coefficients become biased and, simply put, if one is successful, the reduction in variance is 
of greater magnitude than the bias induced in the estimators… 

“Although, clearly, ridge regression should not be used to solve all model-fitting problems involving 
multicollinearity, enough positive evidence about ridge regression exists to suggest that it should be a part 
of any model builder’s arsenal of techniques.” 

Draper and Smith (1981) state: 

“From this discussion, we can see that the use of ridge regression is perfectly sensible in circumstances in 
which it is believed that large beta-values are unrealistic from a practical point of view. However, it must be 
realized that the choice of k is essentially equivalent to an expression of how big one believes those betas to 
be. In circumstances where one cannot accept the idea of restrictions on the betas, ridge regression would 
be completely inappropriate.” 

“Overall, however, we would advise against the indiscriminate use of ridge regression unless its limitations 
are fully appreciated.” 

Thomas Ryan (1997) states: 

“The reader should note that, for all practical purposes, the ordinary least squares (OLS) estimator will also 
generally be biased because we can be certain that it is unbiased only when the model that is being used is 
the correct model. Since we cannot expect this to be true, we similarly cannot expect the OLS estimator to 
be unbiased. Therefore, although the choice between OLS and a ridge estimator is often portrayed as a 
choice between a biased estimator and an unbiased estimator, that really isn’t the case.” 

“Ridge regression permits the use of a set of regressors that might be deemed inappropriate if least squares 
were used. Specifically, highly correlated variables can be used together, with ridge regression used to 
reduce the multicollinearity. If, however, the multicollinearity were extreme, such as when regressors are 
almost perfectly correlated, we would probably prefer to delete one or more regressors before using the 
ridge approach.” 
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Data Structure 
The data are entered as three or more variables. One variable represents the dependent variable. The other 
variables represent the independent variables. An example of data appropriate for this procedure is shown 
below. These data were concocted to have a high degree of multicollinearity as follows. We put a sequence 
of numbers in X1. Next, we put another series of numbers in X3 that were selected to be unrelated to X1. 
We created X2 by adding X1 and X3. We made a few changes in X2 so that there was not perfect correlation. 
Finally, we added all three variables and some random error to form Y. 

The data are contained in the RidgeReg dataset. We suggest that you open this dataset now so that you can 
follow along with the example. 

RidgeReg Dataset (Subset) 

X1 X2 X3 Y 
1 2 1 3 
2 4 2 9 
3 6 4 11 
4 7 3 15 
5 7 2 13 
6 7 1 13 
7 8 1 17 
8 10 2 21 
9 12 4 25 
10 13 3 27 

Missing Values 
Rows with missing values in the variables being analyzed are ignored. If data are present on a row for all but 
the dependent variable, a predicted value is generated for that row. 
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Example 1 – Ridge Regression Analysis 
This section presents an example of how to run a ridge regression analysis of the data presented earlier in 
this chapter. The data are in the RidgeReg dataset. In this example, we will run a regression of Y on X1 - X3.  

Setup 
To run this example, complete the following steps: 

1 Open the RidgeReg example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select RidgeReg and click OK. 

2 Specify the Ridge Regression procedure options 
• Find and open the Ridge Regression procedure using the menus or the Procedure Navigator.  
• The settings for this example are listed below and are stored in the Example 1 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables Tab 


Y: Dependent Variable ..................................... Y 
X's: Independent Variables .............................. X1-X3 
Final K (On Reports) ........................................ Optimum (This will cause the optimum value found in the  
                   search procedure to be used in all of the reports.) 
0.0001 to 0.0009 .............................................. Checked (to include these values of k.) 
K Search .......................................................... Checked (so that the optimal value of k will be found.) 
 

Reports Tab 


All Reports and Plots ....................................... Checked (All are selected so they can be documented here.) 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 

Descriptive Statistics 
 
Descriptive Statistics 
──────────────────────────────────────────────────────────────────────── 
   Standard   
Variable Count Mean Deviation Minimum Maximum 
─────────────────────────────────────────────────────────────────────────────────────────── 

X1 18 9.5 5.338539 1 18 
X2 18 11.5 5.404247 2 19 
X3 18 2.166667 1.098127 1 4 
Y 18 23.11111 10.87841 3 39 
──────────────────────────────────────────────────────────────────────── 
 

For each variable, the descriptive statistics of the nonmissing values are computed. This report is particularly 
useful for checking that the correct variables were selected. 
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Correlation Matrix 
 
Correlation Matrix 
──────────────────────────────────────────────────────────────────────── 
 X1 X2 X3 Y 
────────────────────────────────────────────────────────────────────── 

X1 1.000000 0.987841 -0.015051 0.985544 
X2 0.987841 1.000000 0.133813 0.995574 
X3 -0.015051 0.133813 1.000000 0.116539 
Y 0.985544 0.995574 0.116539 1.000000 
──────────────────────────────────────────────────────────────────────── 
 

Pearson correlations are given for all variables. Outliers, nonnormality, nonconstant variance, and 
nonlinearities can all impact these correlations. Note that these correlations may differ from pair-wise 
correlations generated by the correlation matrix program because of the different ways the two programs 
treat rows with missing values. The method used here is row-wise deletion. 

These correlation coefficients show which independent variables are highly correlated with the dependent 
variable and with each other. Independent variables that are highly correlated with one another may cause 
multicollinearity problems. 

Least Squares Multicollinearity 
 
Least Squares Multicollinearity 
──────────────────────────────────────────────────────────────────────── 
 Variance   
Independent Inflation R-Squared  
Variable Factor (VIF) vs. Other X's Tolerance 
───────────────────────────────────────────────────────────────────────── 

X1 477.2665 0.9979 0.0021 
X2 485.8581 0.9979 0.0021 
X3 11.7455 0.9149 0.0851 
───────────────────────────────────────────────────────────────────────── 

 
Since some VIF's are greater than 10, multicollinearity is a problem. 
──────────────────────────────────────────────────────────────────────── 
 

This report provides information useful in assessing the amount of multicollinearity in your data. 

Variance Inflation Factor (VIF) 

The variance inflation factor (VIF) is a measure of multicollinearity. It is the reciprocal of 1-Rx
2, where Rx

2 is 
the R2 obtained when this variable is regressed on the remaining independent variables. A VIF of 10 or more 
for large data sets indicates a multicollinearity problem since the Rx

2 with the remaining X’s is 90 percent. For 
small data sets, even VIF’s of 5 or more can signify multicollinearity.  

𝑉𝑉𝑉𝑉𝐹𝐹𝑗𝑗 =
1

1 − 𝑅𝑅𝑗𝑗2
 

R-Squared vs. Other X’s 

Rx
2 is the R2 obtained when this variable is regressed on the remaining independent variables. A high Rx

2 
indicates a lot of overlap in explaining the variation among the remaining independent variables. 
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Tolerance 

Tolerance is 1- Rx
2, the denominator of the variance inflation factor. 

Eigenvalues of Correlations  
 
Eigenvalues of Correlations 
──────────────────────────────────────────────────────────────────────── 
  Percent  
  ─────────────────── Condition 
Number Eigenvalue Incremental Cumulative Number 
───────────────────────────────────────────────────────────────────────────────────── 

1 1.994969 66.50 66.50 1.00 
2 1.004003 33.47 99.97 1.99 
3 0.001027 0.03 100.00 1941.85 
───────────────────────────────────────────────────────────────────────────────────── 

 
Some Condition Numbers greater than 1000. Multicollinearity is a SEVERE problem. 
──────────────────────────────────────────────────────────────────────── 
 

This section gives an eigenvalue analysis of the independent variables after they have been centered and 
scaled. Notice that in this example, the third eigenvalue is very small.  

Eigenvalue 

The eigenvalues of the correlation matrix. The sum of the eigenvalues is equal to the number of 
independent variables. Eigenvalues near zero indicate a multicollinearity problem in your data. 

Incremental Percent  

Incremental percent is the percent this eigenvalue is of the total. In an ideal situation, these percentages 
would be equal. Percents near zero indicate a multicollinearity problem in your data. 

Cumulative Percent 

This is the running total of the Incremental Percent. 

Condition Number 

The condition number is the largest eigenvalue divided by each corresponding eigenvalue. Since the 
eigenvalues are really variances, the condition number is a ratio of variances. Condition numbers greater 
than 1000 indicate a severe multicollinearity problem while condition numbers between 100 and 1000 
indicate a mild multicollinearity problem. 
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Eigenvectors of Correlations  
 
Eigenvectors of Correlations 
──────────────────────────────────────────────────────────────────────── 
Number Eigenvalue X1 X2 X3 
─────────────────────────────────────────────────────────────────────────────── 

1 1.994969 0.701391 0.707741 0.084573 
2 1.004003 -0.134162 0.014553 0.990853 
3 0.001027 0.700036 -0.706322 0.105159 
──────────────────────────────────────────────────────────────────────── 
 

This report displays the eigenvectors associated with each eigenvalue. The notion behind eigenvalue 
analysis is that the axes are rotated from the ones defined by the variables to a new set defined by the 
variances of the variables. Rotating is accomplished by taking weighted averages of the original variables. 
Thus, the first new axis could be the average of X1 and X2. The first new variable is constructed to account 
for the largest amount of variance possible from a single axis. 

Number 

The number of the eigenvalue. 

Eigenvalue 

The eigenvalues of the correlation matrix. The sum of the eigenvalues is equal to the number of 
independent variables. Eigenvalues near zero mean that there is multicollinearity in your data. The 
eigenvalues represent the spread (variance) in the direction defined by this new axis. Hence, small 
eigenvalues indicate directions in which there is no spread. Since regression analysis seeks to find trends 
across values, when there is not a spread, the trends cannot be computed. 

Table Values 

The table values give the eigenvectors. The eigenvectors give the weights that are used to create the new 
axis. By studying the weights, you can gain an understanding of what is happening in the data. 

In the example above, we can see that the first factor (new variable associated with the first eigenvalue) is 
constructed by adding X1 and X2. Note that the weights are almost equal. X3 has a small weight, indicating 
that it does not play a role in this factor. 

Factor 2 seems to be created complete from X3. X1 and X2 play only a small role in its construction. 

Factor 3 seems to be the difference between X1 and X2. Again, X3 plays only a small role. Hence, the 
interpretation of these eigenvectors leads to the following statements: 

1.  Most of the variation in X1, X2, and X3 can be accounted for by considering only two variables: Z = 
X1+X2 and X3. 

2.  The third dimension, calculated as X1-X2, is almost negligible and might be ignored.  
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Ridge Trace Plot 
 
Ridge Trace Plot 
───────────────────────────────────────────────────────────────────────── 

 
 

This is the famous ridge trace that is the signature of this technique. The plot is really very straight forward 
to read. It presents the standardized regression coefficients on the vertical axis and various values of k along 
the horizontal axis. Since the values of k span several orders of magnitude, we adopt a logarithmic scale 
along this axis. 

The points on the left vertical axis (the left ends of the lines) are the ordinary least squares regression 
values. These occur for k equal zero. As k is increased, the values of the regression estimates change, often 
wildly at first. At some point, the coefficients seem to settle down and then gradually drift towards zero. 

The task of the ridge regression analyst is to determine at what value of k these coefficients are at their 
stable values. A vertical line is drawn at the value selected for reporting purposes. It is anticipated that you 
would run the program several times until an appropriate value of k is determined. In this example, our 
search would be between 0.0001 and 0.1. The value selected on this graph happens to be 0.066237, the 
value obtained from the analytic search. We might be inclined to use an even smaller value of k such as 
0.01. Remember, the smaller the value of k, the smaller the amount of bias that is included in the estimates. 
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Variance Inflation Factor Plot 
 
Variance Inflation Factor Plot 
───────────────────────────────────────────────────────────────────────── 

 
 

This is a plot that we have added that shows the impact of k on the variance inflation factors. Since the 
major goal of ridge regression is to remove the impact of multicollinearity, it is important to know at what 
point multicollinearity has been dealt with. This plot shows this.  

The currently selected value of k is shown by a vertical line. 

Since the rule-of-thumb is that multicollinearity is not a problem once all VIFs are less than 10, we inspect 
the graph for this point. In this example, it appears that all VIFs are small enough once k is greater than 
0.007. Hence, this is the value of k that this plot would indicate we use. 

Since this plot indicates k = 0.007 and the ridge trace indicates a value near 0.01, we would select 0.007 as 
our final result. The rest of the reports are generated for this value of k. 

  

http://www.ncss.com/


NCSS Statistical Software NCSS.com 

Ridge Regression 

335-15 
 © NCSS, LLC. All Rights Reserved. 

Standardized Ridge Regression Coefficients 
 
Standardized Ridge Regression Coefficients 
──────────────────────────────────────────────────────────────────────── 
k X1 X2 X3 
───────────────────────────────────────────────────── 

0.000000 -0.2034 1.2029 -0.0475 
0.000100 -0.1415 1.1404 -0.0382 
0.000200 -0.0897 1.0881 -0.0304 
0.000300 -0.0457 1.0436 -0.0238 
0.000400 -0.0079 1.0054 -0.0181 
0.000500 0.0249 0.9722 -0.0132 
. . . . 
. . . . 
. . . . 
0.050000 0.4684 0.5006 0.0539 
0.060000 0.4683 0.4960 0.0540 
0.066237 0.4680 0.4934 0.0540 
0.070000 0.4677 0.4919 0.0540 
0.080000 0.4666 0.4884 0.0539 
. . . . 
. . . . 
. . . . 
──────────────────────────────────────────────────────────────────────── 
 

This report gives the values that are plotted on the ridge trace. Note that the value found by the analytic 
search (0.066237) sticks out as you glance down the first column because it does not end in zeros. 

Variance Inflation Factors 
 
Variance Inflation Factors 
──────────────────────────────────────────────────────────────────────── 
k X1 X2 X3 
────────────────────────────────────────────────────────── 

0.000000 477.2665 485.8581 11.7455 
0.000100 396.3965 403.5292 9.9204 
0.000200 334.4756 340.4914 8.5229 
0.000300 286.0151 291.1566 7.4291 
0.000400 247.3784 251.8230 6.5570 
0.000500 216.0793 219.9592 5.8505 
. . . . 
. . . . 
. . . . 
0.050000 0.4443 0.4360 0.8951 
0.060000 0.3835 0.3744 0.8771 
0.066237 0.3581 0.3487 0.8664 
0.070000 0.3456 0.3361 0.8602 
0.080000 0.3200 0.3103 0.8439 
. . . . 
. . . . 
. . . . 
──────────────────────────────────────────────────────────────────────── 
 

This report gives the values that are plotted on the variance inflation factor plot. Note how easy it is to 
determine when all three VIFs are less than 10. 
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K Analysis 
 
K Analysis 
──────────────────────────────────────────────────────────────────────── 
    Variance Inflation Factor (VIF) 
    ───────────────────── 
k R-Squared Sigma B'B Average Maximum 
───────────────────────────────────────────────────────────────────────────────────────────────── 

0.000000 0.9915 1.1028 1.4905 324.9567 485.8581 
0.000100 0.9914 1.1119 1.3219 269.9487 403.5292 
0.000200 0.9913 1.1199 1.1929 227.8300 340.4914 
0.000300 0.9912 1.1272 1.0918 194.8669 291.1566 
0.000400 0.9911 1.1339 1.0113 168.5862 251.8230 
0.000500 0.9910 1.1401 0.9460 147.2964 219.9592 
. . . . . . 
. . . . . . 
. . . . . . 
0.050000 0.9663 2.2000 0.4729 0.5918 0.8951 
0.060000 0.9616 2.3487 0.4682 0.5450 0.8771 
0.066237 0.9587 2.4361 0.4653 0.5244 0.8664 
0.070000 0.9570 2.4871 0.4636 0.5140 0.8602 
0.080000 0.9523 2.6170 0.4591 0.4914 0.8439 
. . . . . . 
. . . . . . 
. . . . . . 
──────────────────────────────────────────────────────────────────────── 
 

This report provides a quick summary of the various statistics that might go into the choice of k. 

k 

This is the actual value of k. Note that the value found by the analytic search (0.066237) sticks out as you 
glance down this column because it does not end in zeros. 

R-Squared 

This is the value of R-squared. Since the least squares solution maximizes R-squared, the largest value of R-
squared occurs when k is zero. We want to select a value of k that does not stray very much from this value. 

Sigma 

This is the square root of the mean squared error. Least squares minimizes this value, so we want to select 
a value of k that does not stray very much from the least squares value. 

B’B 

This is the sum of the squared standardized regression coefficients. Ridge regression assumes that this 
value is too large and so the method tries to reduce this. We want to find a value for k at which this value 
has stabilized. 

Average Variance Inflation Factor (VIF) 

This is the average of the variance inflation factors.  

Maximum Variance Inflation Factor (VIF) 

This is the maximum variance inflation factor. Since we are looking for that value of k which results in all VIFs 
being less than 10, this value is very helpful in your selection of k. 
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Ridge vs. Least Squares Regression Comparison 
 
Ridge vs. Least Squares Regression Comparison for k = 0.066237 
──────────────────────────────────────────────────────────────────────── 
 Regular Coefficients Standardized Coefficients Standard Error 
 ───────────────── ────────────────── ────────────────── 
Independent  Least  Least  Least 
Variable Ridge Squares Ridge Squares Ridge Squares 
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Intercept 1.471949 0.2230599     
X1 0.9535758 -0.4144863 0.4680 -0.2034 0.06622486 1.094502 
X2 0.9931737 2.421286 0.4934 1.2029 0.06455679 1.090883 
X3 0.5347818 -0.4703622 0.0540 -0.0475 0.5008289 0.8347205 
 
R-Squared 0.9587 0.9915     
Sigma 2.4361 1.1028     
──────────────────────────────────────────────────────────────────────── 
 

This report provides a detailed comparison between the ridge regression solution and the ordinary least 
squares solution to the estimation of the regression coefficients. 

Independent Variable 

The names of the independent variables are listed here. The intercept is the value of b0. 

Regular Ridge and Least Squares Coefficients 

These are the estimated values of the regression coefficients b0, b1, ..., bp. The first column gives the values 
for ridge regression and the second column gives the values for regular least squares regression. 

The value indicates how much change in Y occurs for a one-unit change in x when the remaining X’s are held 
constant. These coefficients are also called partial-regression coefficients since the effect of the other X’s is 
removed. 

Standardized Ridge and Least Squares Coefficients 

These are the estimated values of the standardized regression coefficients. The first column gives the values 
for ridge regression and the second column gives the values for regular least squares regression. 

Standardized regression coefficients are the coefficients that would be obtained if you standardized each 
independent and dependent variable. Here standardizing is defined as subtracting the mean and dividing by 
the standard deviation of a variable. A regression analysis on these standardized variables would yield these 
standardized coefficients.  

When there are vastly different units involved for the variables, this is a way of making comparisons 
between variables. The formula for the standardized regression coefficient is: 

𝑏𝑏𝑗𝑗,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑏𝑏𝑗𝑗 �
𝑠𝑠𝑥𝑥𝑗𝑗
𝑠𝑠𝑦𝑦
� 

where 𝑠𝑠𝑦𝑦 and 𝑠𝑠𝑥𝑥𝑗𝑗  are the standard deviations for the dependent variable and the corresponding jth 
independent variable. 
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Ridge and Least Squares Standard Error 

These are the estimated standard errors (precision) of the regression coefficients. The first column gives the 
values for ridge regression and the second column gives the values for regular least squares regression. 

The standard error of the regression coefficient, 𝑠𝑠𝑏𝑏𝑗𝑗 , is the standard deviation of the estimate. Since one of 
the objects of ridge regression is to reduce this (make the estimates more precise), it is of interest to see 
how much reduction has taken place. 

R-Squared 

R-squared is the coefficient of determination. It represents the percent of variation in the dependent 
variable explained by the independent variables in the model. The R-squared values of both the ridge and 
regular regressions are shown. 

Sigma 

This is the square root of the mean square error. It provides a measure of the standard deviation of the 
residuals from the regression model. 

 It represents the percent of variation in the dependent variable explained by the independent variables in 
the model. The R-squared values of both the ridge and regular regressions are shown. 

Ridge Regression Coefficients  
 
Ridge Regression Coefficients for k = 0.066237 
──────────────────────────────────────────────────────────────────────── 
   Standardized  
Independent Regression Standard Regression  
Variable Coefficient Error Coefficient VIF 
──────────────────────────────────────────────────────────────────────────────────────── 

Intercept 1.471949    
X1 0.9535758 0.06622486 0.4680 0.3581 
X2 0.9931737 0.06455679 0.4934 0.3487 
X3 0.5347818 0.5008289 0.0540 0.8664 
──────────────────────────────────────────────────────────────────────────────────────── 

 
Model 
──────────────────────────────────────────────────────────────────── 

1.471949 + 0.9535758*X1 + 0.9931737*X2 + 0.5347818*X3 
──────────────────────────────────────────────────────────────────── 

──────────────────────────────────────────────────────────────────────── 
 

This report provides the details of the ridge regression solution. 

Independent Variable 

The names of the independent variables are listed here. The intercept is the value of b0. 

Regression Coefficient 

These are the estimated values of the regression coefficients b0, b1, ..., bp. The value indicates how much 
change in Y occurs for a one-unit change in x when the remaining X’s are held constant. These coefficients 
are also called partial-regression coefficients since the effect of the other X’s is removed. 
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Standard Error 

These are the estimated standard errors (precision) of the ridge regression coefficients. The standard error 
of the regression coefficient, 𝑠𝑠𝑏𝑏𝑗𝑗 , is the standard deviation of the estimate. In regular regression, we divide 
the coefficient by the standard error to obtain a t statistic. However, this is not possible here because of the 
bias in the estimates. 

Standardized Regression Coefficient 

These are the estimated values of the standardized regression coefficients. Standardized regression 
coefficients are the coefficients that would be obtained if you standardized each independent and 
dependent variable. Here standardizing is defined as subtracting the mean and dividing by the standard 
deviation of a variable. A regression analysis on these standardized variables would yield these standardized 
coefficients.  

When there are vastly different units involved for the variables, this is a way of making comparisons 
between variables. The formula for the standardized regression coefficient is  

𝑏𝑏𝑗𝑗,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑏𝑏𝑗𝑗 �
𝑠𝑠𝑥𝑥𝑗𝑗
𝑠𝑠𝑦𝑦
� 

where 𝑠𝑠𝑦𝑦 and 𝑠𝑠𝑥𝑥𝑗𝑗  are the standard deviations for the dependent variable and the corresponding jth 
independent variable. 

VIF 

These are the values of the variance inflation factors associated with the variables. When multicollinearity 
has been conquered, these values will all be less than 10. Details of VIF were given earlier. 

Analysis of Variance 
 
Analysis of Variance for k = 0.066237 
──────────────────────────────────────────────────────────────────────── 
  Sum of Mean   
Source DF Squares Square F-Ratio P-Value 
──────────────────────────────────────────────────────────────────────────────────────────── 

Intercept 1 9614.223 9614.223   
Model 3 1928.694 642.8979 108.3308 0.000000 
Error 14 83.08412 5.93458   
Total(Adjusted) 17 2011.778 118.3399   
──────────────────────────────────────────────────────────────────────────────────────────── 

 
Additional Model Information 
────────────────────────────────────────────────── 

Mean of Dependent Variable 23.11111 
Root Mean Square Error 2.436099 
R-Squared 0.9587 
Coefficient of Variation 0.1054081 
────────────────────────────────────────────────── 

──────────────────────────────────────────────────────────────────────── 
 

An analysis of variance (ANOVA) table summarizes the information related to the sources of variation in 
data.  
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Source 

This represents the partitions of the variation in y. There are four sources of variation listed: intercept, 
model, error, and total (adjusted for the mean).  

DF 

The degrees of freedom are the number of dimensions associated with this term. Note that each 
observation can be interpreted as a dimension in n-dimensional space. The degrees of freedom for the 
intercept, model, error, and adjusted total are 1, p, n-p-1, and n-1, respectively. 

Sum of Squares 

These are the sums of squares associated with the corresponding sources of variation. Note that these 
values are in terms of the dependent variable, y. 

Mean Square 

The mean square is the sum of squares divided by the degrees of freedom. This mean square is an 
estimated variance. For example, the mean square error is the estimated variance of the residuals (the 
residuals are sometimes called the errors). 

F-Ratio 

This is the F statistic for testing the null hypothesis that all βj = 0. This F-statistic has p degrees of freedom for 
the numerator variance and n-p-1 degrees of freedom for the denominator variance. 

Since ridge regression produces biased estimates, this F-Ratio is not a valid test. It serves as an index, but it 
would not stand up under close scrutiny.  

P-Value 

This is the p-value for the above F test. The p-value is the probability that the test statistic will take on a 
value at least as extreme as the observed value, assuming that the null hypothesis is true. If the p-value is 
less than α, say 0.05, the null hypothesis is rejected. If the p-value is greater than α, then the null hypothesis 
is accepted.  

Mean of Dependent Variable 

This is the arithmetic mean of the dependent variable.  

Root Mean Square Error 

This is the square root of the mean square error. It is an estimate of σ, the standard deviation of the ei’s. 

R-Squared 

This is the coefficient of determination. It is defined in full in the Multiple Regression chapter. 
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Coefficient of Variation 

The coefficient of variation is a relative measure of dispersion, computed by dividing root mean square 
error by the mean of the dependent variable. By itself, it has little value, but it can be useful in comparative 
studies. 

𝐶𝐶𝐶𝐶 =
√𝑀𝑀𝑀𝑀𝑀𝑀
𝑦𝑦�

 

Predicted Values and Residuals 
 
Predicted Values and Residuals for k = 0.066237 
──────────────────────────────────────────────────────────────────────── 
 Y  
 ──────────────  
Row Actual Predicted Residual 
──────────────────────────────────────────────────────── 

1 3 4.946654 -1.946654 
2 9 8.421359 0.5786409 
3 11 12.43085 -1.430846 
4 15 13.84281 1.157186 
5 13 14.26161 -1.261608 
6 13 14.6804 -1.680402 
7 17 16.62715 0.3728486 
8 21 20.10186 0.8981435 
9 25 24.11134 0.8886567 
10 27 25.52331 1.476689 
11 25 25.9421 -0.9421052 
12 27 26.3609 0.6391008 
13 29 28.30765 0.6923512 
14 33 31.78235 1.217646 
15 35 35.79184 -0.7918407 
16 37 37.20381 -0.2038085 
17 37 37.6226 -0.6226026 
18 39 38.0414 0.9586034 
──────────────────────────────────────────────────────────────────────── 
 

This section reports the predicted values and the sample residuals, or ei’s. When you want to generate 
predicted values for individuals not in your sample, add their values to the bottom of your database, leaving 
the dependent variable blank. Their predicted values will be shown on this report. 

Actual Y 

This is the actual value of Y for the ith row. 

Predicted Y 

The predicted value of Y for the ith row. It is predicted using the levels of the X’s for this row. 

Residual 

This is the estimated value of ei. This is equal to the Actual minus the Predicted. 
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Histogram of Residuals 
The purpose of the histogram and density trace of the residuals is to display the distribution of the 
residuals. 

 
Distributional Plots of Residuals 
───────────────────────────────────────────────────────────────────────── 

     
 

The odd shape of this histogram occurs because of the way in which these particular data were 
manufactured. 

Probability Plot of Residuals 
 
Distributional Plots of Residuals 
───────────────────────────────────────────────────────────────────────── 

 
 

http://www.ncss.com/


NCSS Statistical Software NCSS.com 

Ridge Regression 

335-23 
 © NCSS, LLC. All Rights Reserved. 

Residuals vs. Yhat Plot 
This plot should always be examined. The preferred pattern to look for is a point cloud or a horizontal band. 
A wedge or bowtie pattern is an indicator of nonconstant variance, a violation of a critical regression 
assumption. A sloping or curved band signifies inadequate specification of the model. A sloping band with 
increasing or decreasing variability suggests nonconstant variance and inadequate specification of the 
model. 

 
Residuals vs. Yhat Plot 
───────────────────────────────────────────────────────────────────────── 
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Residuals vs. X’s Plots 
This is a scatter plot of the residuals versus each independent variable. Again, the preferred pattern is a 
rectangular shape or point cloud. Any other nonrandom pattern may require a redefining of the regression 
model. 

 
Residuals vs. X's Plots 
───────────────────────────────────────────────────────────────────────── 
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