PASS Sample Size Software NCSS.com

Chapter 121

Tests for Vaccine Efficacy with Composite Efficacy Measure using the Ratio of Two Means

Introduction

This module provides power analysis and sample size calculation for inequality tests of vaccine efficacy (VE) when one is interested in both the incidence and severity of an infection. The burden-of-illness (BOI) score allows investigation of both disease incidence rates and disease severity and duration. See Chang et al. (1994) and Callegaro et al. (2020) for more details.

The BOI method requires that a severity-of-illness score X > 0 be assigned to individuals who develop the disease and a severity score of 0 be assigned to those not infected. Thus, a binary incidence variable and a continuous severity variable are combined to form a single burden-of-illness measurement.

Technical Details

This routine is based on Callegaro et al. (2020).

In the discussion that follows, the subscripts 1 and 2 refer to the new vaccine group and the control (or placebo) group, respectively. Let N_1 and N_2 be the sample sizes of the two groups.

A post-infection variable *X* records a BOI score. If a subject is not infected, their BOI score is 0. The BOI score measures various attributes of the infection such as amount of pain, duration, etc. Often, *X* is an ordinal variable taking on values from 1 to 7 or 1 to 10.

Test Statistics

A reasonable composite index of is the following vaccine efficacy statistic

$$\widehat{VE}_{BOI} = 1 - \frac{\overline{X}_1}{\overline{X}_2}$$

where \bar{X}_1 and \bar{X}_2 are the group means of X.

PASS Sample Size Software NCSS.com

Tests for Vaccine Efficacy with Composite Efficacy Measure using the Ratio of Two Means

In a fixed-time design, which is terminated after a preset elapsed time, the following results are obtained.

$$E(\bar{X}_j) = P_j \mu_j, \qquad j = 1,2$$

$$V(\bar{X}_i) = P_i \{ \sigma_i^2 + (1 - P_i) \mu_i^2 \} / N_i$$

where P_j is the probability of infection, μ_j is the expectation of X of those infected in group j, σ_j is the standard deviation of X for those infected in group j.

It follows from the delta method that

$$Var\left(\frac{\bar{X}_{1}}{\bar{X}_{2}}\right) = \left(\frac{P_{1}\mu_{1}}{P_{2}\mu_{2}}\right)^{2} \left(\frac{P_{1}\{\sigma_{1}^{2} + (1 - P_{1})\mu_{1}^{2}\}}{N_{1}(P_{1}\mu_{1})^{2}} + \frac{P_{2}\{\sigma_{2}^{2} + (1 - P_{2})\mu_{2}^{2}\}}{N_{2}(P_{2}\mu_{2})^{2}}\right)$$

Using this result, a test statistic Z is developed as follows

$$Z = \frac{\log(\widehat{RR})}{\sqrt{\widehat{\text{Var}}\left(\log(\widehat{RR})\right)}}$$

where $\widehat{RR}=\left(\frac{\overline{X}_1}{\overline{X}_2}\right)$. Note that $VE_{BOI}=1-RR$, with $RR=\left(\frac{P_1\mu_1}{P_2\mu_2}\right)$.

This leads to

$$E(Z) = \frac{\log(RR)}{\sqrt{\frac{P_1\{\sigma_1^2 + (1 - P_1)\mu_1^2\}}{N_1(P_1\mu_1)^2} + \frac{P_2\{\sigma_2^2 + (1 - P_2)\mu_2^2\}}{N_2(P_2\mu_2)^2}}}$$

Power Calculation

The asymptotic power of this test statistic for a two-sided inequality test is given by

$$Power = \Phi(E(Z) - z_{1-\alpha/2})$$

Sample Size Calculation

Sample size is found using a binary search with this power formula.

Tests for Vaccine Efficacy with Composite Efficacy Measure using the Ratio of Two Means

Example 1 – Finding Sample Size

A two-arm parallel study is being planned to substantiate that a new vaccine controls a certain disease better than a control. The disease rate in the control group is 0.003. The disease rate in the treatment group is anticipated to be between 0.001 and 0.0015. The significance level of the test is 0.05.

Previous trials have obtained an average BOI score in the control group of 11.9 and standard deviation of 1.87. Three BOI scores in the vaccine group will be considered: 9, 10, and 11. Their standard deviation will be set to 1.7.

The sample sizes will be equal in each arm. The current analysis is to determine the required sample size to achieve a power of 0.80 when using a two-sided test.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Sample Size
Alternative Hypothesis	Two-Sided
Power	0.8
Alpha	0.05
Group Allocation	Equal (N1 = N2)
P1 (Vaccine Event Prob H1)	0.001 0.0015
P2 (Control Event Probability)	0.003
μ1 (Mean of Vaccine Group)	9 10 11
μ2 (Mean of Control Group)	11.9
Std Dev Input Type	Unequal
σ1 (Std Dev of Vaccine Group)	1.7
σ2 (Std Dev of Control Group)	1.87

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Numeric Results

Solve For: Sample Size Test Statistic: Z-Test

Groups: 1 = Vaccine, 2 = Control

Hypothesis: Two-Sided

							Burden-	of-Illness (B	OI) Scores		Vassi	ao Efficacy	
	0.	1- 0		Event Pr	obability	Mean	Infected	A -1:41	Standard	Deviation		ne Efficacy	
		ample S		Vaccine	Control	Vaccine	Control	Adjusted Ratio	Vaccine	Control	Scores	Event Probability	
Power	N1	N2	N	P1	P2	μ1	μ2	RR	σ1	σ2	VЕвоі	VE	Alpha
0.8001	5686	5686	11372	0.0010	0.003	9	11.9	0.252	1.7	1.87	0.748	0.667	0.05
0.8000	6633	6633	13266	0.0010	0.003	10	11.9	0.280	1.7	1.87	0.720	0.667	0.05
0.8000	7722	7722	15444	0.0010	0.003	11	11.9	0.308	1.7	1.87	0.692	0.667	0.05
0.8000	8549	8549	17098	0.0015	0.003	9	11.9	0.378	1.7	1.87	0.622	0.500	0.05
0.8000	10706	10706	21412	0.0015	0.003	10	11.9	0.420	1.7	1.87	0.580	0.500	0.05
0.8000	13469	13469	26938	0.0015	0.003	11	11.9	0.462	1.7	1.87	0.538	0.500	0.05

Power The probability of rejecting a false null hypothesis when the alternative hypothesis is true.

N1 and N2 The sample sizes of the vaccine group and the control group, respectively.

N The total sample size. N = N1 + N2.

P1 The event probability of the vaccine group assumed by H1. P2 The event probability (attack rate) of the control group. μ 1 The mean BOI score of those infected in the vaccine group. μ 2 The mean BOI score of those infected in the control group.
RR The ratio of the adjusted BOI means. RR = $(P1 \times \mu 1) / (P2 \times \mu 2)$.

The standard deviation of the BOI scores of those infected in the vaccine group.
 The standard deviation of the BOI scores of those infected in the control group.

VEB0I The BOI score vaccine efficacy assumed by the alternative hypothesis, H1. VEB0I = 1 - (P1 \times μ 1) / (P2 \times μ 2) = 1

- RR.

VE The vaccine efficacy assumed by the alternative hypothesis, H1. VE = 1 - P1 / P2.

The probability of rejecting a true pull hypothesis

Alpha The probability of rejecting a true null hypothesis.

Summary Statements

A parallel two-group design will be used to test vaccine efficacy with a composite efficacy measure. The comparison will be made using a two-sided Z-test based on the ratio of the means, with a Type I error rate (α) of 0.05. The means of the vaccine and control groups are assumed to be 9 and 11.9, respectively. The standard deviations of the vaccine and control groups are assumed to be 1.7 and 1.87, respectively. The event probabilities of the vaccine and control groups are assumed to be 0.001 and 0.003, respectively. To detect a burden-of-illness (BOI) vaccine efficacy of 0.748 with 80% power, the number of subjects needed will be 5686 in the vaccine group, and 5686 in the control group.

PASS Sample Size Software NCSS.com

Tests for Vaccine Efficacy with Composite Efficacy Measure using the Ratio of Two Means

Dropout-Inflated Sample Size

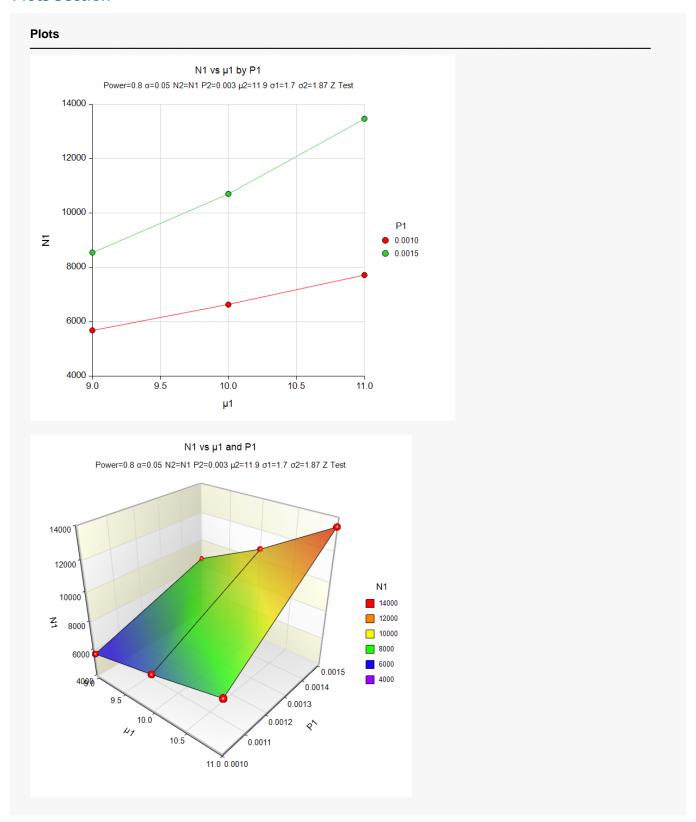
	s	Sample Siz	:e	I	ppout-Infla Enrollmer Sample Siz	nt	N	Expecte Number (Dropout	of
Dropout Rate	N1	N2	N	N1'	N2'	N'	D1	D2	D
20%	5686	5686	11372	7108	7108	14216	1422	1422	2844
20%	6633	6633	13266	8292	8292	16584	1659	1659	3318
20%	7722	7722	15444	9653	9653	19306	1931	1931	3862
20%	8549	8549	17098	10687	10687	21374	2138	2138	4276
20%	10706	10706	21412	13383	13383	26766	2677	2677	5354
20%	13469	13469	26938	16837	16837	33674	3368	3368	6736
Dropout Rate	The percentag			that are exped be collected (i					
N1, N2, and N	The evaluable	sample sized out of the	es at which p		uted (as en	tered by the ι	user). Íf N1 a	and N2 su	bjects
N1', N2', and N'	formulas N1	sed on the a ' = N1 / (1 -	assumed dro DR) and N2'	enrolled in the pout rate. N1' = N2 / (1 - DF S.C., Shao, J.,	and N2' are R), with N1'	e calculated b and N2' alwa	y inflating N ys rounded	1 and N2 up. (See J	using the Iulious,
D1, D2, and D	The expected							, , , , , ,	,

Dropout Summary Statements

Anticipating a 20% dropout rate, 7108 subjects should be enrolled in Group 1, and 7108 in Group 2, to obtain final group sample sizes of 5686 and 5686, respectively.

References

Callegaro, A., Curran, D., and Matthews, S. 2020. 'Burden-of-illness vaccine efficacy'. Pharmaceutical Statistics. Volume 19, Issue 5. Pages 636-645. https://doi.org/10.1002/pst.2020


Chang, M.N., Guess, H.A., and Heyse, J.F. 1994. 'Reduction in Burden of Illness: A New Efficacy Measure for Prevention Trials'. Statistics in Medicine. Vol 13. Pages 1807-1814. https://doi.org/10.1002/sim.4780131803 Chow, S.C., Shao, J., Wang, H., and Lokhnygina, Y. 2018. Sample Size Calculations in Clinical Research, Third Edition. Taylor & Francis/CRC. Boca Raton, Florida.

Nauta, Jozef. 2020. Statistics in Clinical and Observational Vaccine Studies, 2nd Edition. Springer. Cham, Switzerland.

This report shows the values of each of the parameters, one scenario per row.

Tests for Vaccine Efficacy with Composite Efficacy Measure using the Ratio of Two Means

Plots Section

The values from the table are displayed in the above chart. This chart gives a quick look at the sample sizes that are required for various values of $\mu 1$ and P1.

Tests for Vaccine Efficacy with Composite Efficacy Measure using the Ratio of Two Means

Example 2 - Validation using Callegaro et al. (2020)

Callegaro et al. (2020) Table 5 presents the results of an extensive simulation study. We will use the ninth row of this table to validate this procedure. Note that since this is a simulation study, our analytic results will not match those from the article exactly.

The settings for this example are N1 = N2 = 858, P1 = 0.105, P2 = 0.15, μ 1 = 3.7, μ 2 = 4.5, σ = 1.5, and α = 0.05 (two-sided). The resulting power is 0.980.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Power
Alternative Hypothesis	Two-Sided
Alpha	0.05
Group Allocation	Equal (N1 = N2)
Sample Size Per Group	858
P1 (Vaccine Event Prob H1)	0.105
P2 (Control Event Probability)	0.15
μ1 (Mean of Vaccine Group)	3.7
μ2 (Mean of Control Group)	4.5
Std Dev Input Type	Equal
σ (Std Dev of Both Groups)	1.5

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve F Test Sta Groups Hypothe	atistic:	1 = V	st	2 = Control									
				Event Dr	obability	Moon		of-Illness (B		Deviation	Vacci	ne Efficacy	
						wean	Infected		Standard	Deviation			
	S	ample	Size					Adjusted			BOI	Event	
Power	S	ample N2	Size N	Vaccine P1	Control P2	Vaccine µ1	Control µ2	Adjusted Ratio RR	Vaccine σ1	Control σ2	BOI Scores VEBOI	Event Probability VE	Alpha

PASS has calculated the power as 0.9785 which is close to the simulated value of 0.980. Thus, the procedure is validated.