Chapter 400

Canonical Correlation

Introduction

Canonical correlation analysis is the study of the linear relations between two sets of variables. It is the multivariate extension of correlation analysis. Although we will present a brief introduction to the subject here, you will probably need a text that covers the subject in depth such as Tabachnick (1989).

Suppose you have given a group of students two tests of ten questions each and wish to determine the overall correlation between these two tests. Canonical correlation finds a weighted average of the questions from the first test and correlates this with a weighted average of the questions from the second test. The weights are constructed to maximize the correlation between these two averages. This correlation is called the first canonical correlation coefficient.

You can create another set of weighted averages unrelated to the first and calculate their correlation. This correlation is the second canonical correlation coefficient. This process continues until the number of canonical correlations equals the number of variables in the smallest group.

Discriminant analysis, MANOVA, and multiple regression are all special cases of canonical correlation. It provides the most general multivariate framework. Because of this generality, it is probably the least used of the multivariate procedures. Researchers would rather use the specific procedure designed for their data. However, there are instances when canonical correlation techniques are useful.

Variates and Variables

Canonical correlation terminology makes an important distinction between the words variables and variates. The term variables is reserved for referring to the original variables being analyzed. The term variates is used to refer to variables that are constructed as weighted averages of the original variables. Thus a set of Y variates is constructed from the original Y variables. Likewise, a set of X variates is constructed from the original X variables.

Basic Issues

Some of the issues that must be dealt with during a canonical correlation analysis are:

1. Determining the number of canonical variate pairs to use. The number of pairs possible is equal to the smaller of the number of variables in each set.

2. The canonical variates themselves often need to be interpreted. As in factor analysis, you are dealing with mathematically constructed variates that are usually difficult to interpret. However, in this case, you must relate two constructed variates to each other.

3. The importance of each variate must be evaluated from two points of view. You have to determine the strength of the relationship between the variate and the variables from which it was created. You also need to study the strength of the relationship between the corresponding X and Y variates.

4. Do you have a large enough sample size? In social science work you will often need a minimum of ten cases per variable. In fields with more reliable data, you can get by with a little less.
Canonical Correlation Checklist

Tabachnick (1989) provides the following checklist for conducting a canonical correlation analysis. We suggest that you consider these issues and guidelines carefully.

Missing Data

You should begin by screening your data for outliers. Pay particular attention to patterns of missing values. The program ignores rows with missing values. If it appears that most of the missing values occur in one or two variables, you might want to leave these out of the analysis in order to obtain more data on the remaining variables.

Multivariate Normality and Outliers

Canonical correlation analysis does not make strong normality assumptions. However, as with all least squares procedures, outliers can cause severe problems. You should screen your data carefully for outliers using the various univariate normality tests and plots.

Linearity

Canonical correlation analysis assumes linear relations among the variables. You should study scatter plots of each pair of variables, watching carefully for curvilinear patterns and for outliers. The occurrence of curvilinear relationship will reduce the effectiveness of the analysis.

Multicollinearity and Singularity

Multicollinearity occurs when one variable is almost a weighted average of the others. Singularity occurs when this relationship is exact. Since inverse matrices are needed during the analysis, you must check for this. Try running a principal components analysis on each set of variables, separately. If you have eigenvalues at or near zero, you have multicollinearity problems. You must omit the offending variables.

Technical Details

As the name suggests, canonical correlation analysis is based on the correlations between two sets of variables which we call Y and X.

The correlation matrix of all the variables is divided into four parts:

1. \(R_{xx} \) : The correlations among the X variables.
2. \(R_{yy} \) : The correlations among the Y variables.
3. \(R_{xy} \) : The correlations between the X and Y variables.
4. \(R_{yx} \) : The correlations between the Y and X variables.

Canonical correlation analysis may be defined using the singular value decomposition of a matrix \(C \) where:

\[
C = R_{yy}^{1/2} R_{xy} R_{xx}^{1/2} R_{yx}
\]

Define the singular value decomposition of \(C \) as:

\[
C = U \Lambda \hat{B}
\]
Canonical Correlation

The diagonal matrix Λ of the singular values of C is made up of the eigenvalues of C. The i^{th} eigenvalue λ_i of the matrix C is equal to the square of the i^{th} canonical correlation which is called r_{ci}^2. Hence, the i^{th} canonical correlation is the square root of the i^{th} eigenvalue of C.

Two sets of canonical coefficients (like regression coefficients) are used for each canonical correlation: one for the X variables and another for the Y variables. These coefficients are defined as follows:

$$B_y = R_{yy}^{1/2} \hat{B}$$

$$B_x = \Lambda R_{xx}^{1/2} R_{xy} B_y$$

The canonical scores for X and Y (denoted \hat{X} and \hat{Y}) are calculated by multiplying the standardized data (subtract the mean and divide by the standard deviation) by these coefficient matrices. Thus we have:

$$\hat{X} = Z_x B_x$$

and

$$\hat{Y} = Z_y B_y$$

where Z_x and Z_y represent the standardized versions of X and Y.

To aid in the interpretation of the canonical variates, loading matrices are computed. These are the correlations between the original variables and the constructed variates. They are computed as follows:

$$A_x = R_{xx} B_x$$

$$A_y = R_{yy} B_y$$

The average squared loadings are given by

$$pv_{xc} = 100 \sum_{i=1}^{k_x} \frac{a_{xc}^2}{k_x}$$

$$pv_{yc} = 100 \sum_{i=1}^{k_y} \frac{a_{yc}^2}{k_y}$$

The redundancy indices are given by:

$$rd = (pv)(r_{ci}^2)$$

Data Structure

The data are entered in the standard columnar format in which each column represents a single variable.

Missing Values

Rows with missing values in any of the variables used in the analysis are ignored.
Procedure Options

This section describes the options available in this procedure.

Variables Tab

This panel specifies the variables used in the analysis.

Data Variables

Y Variables
Specify the first set of one or more variables to be correlated with the second set of variables. Although we call these the Y variables, they are not dependent variables. Canonical correlation does not assume a dependent versus independent relationship between the two sets of variables. Rather, it analyzes their association. The results would be the same if the X and Y variables were reversed.

X Variables
Specify the second set of one or more variables to be correlated with the first set of variables.

Partial Variables
An optional set of variables whose influence on the X and Y variables is removed using partial correlation techniques.

The linear influence of these variables is removed from the X and Y variables using a statistical adjustment mechanism called partial correlation. This operation involves running a multiple regression using each of the X and Y variables as the dependent variable and the partial variables as the independent variables. The residuals from each of these multiple regressions are used to calculate a partial correlation matrix.

Partial correlation analysis has some serious limitations. First, partial correlation techniques only remove linear (straight-line) patterns. Curvilinear patterns are ignored. Second, like all algorithms based on least squares, the results may be severely distorted by the data outliers.

Labels

Y Variate Label
This is a label that will be associated with the Y variates (constructed as weighted averages from the Y variables).

X Variate Label
This is a label that will be associated with the X variates (constructed as weighted averages from the X variables).

Options

Zero Exponent
This is the exponent of the value used as zero by the least squares algorithm. To remove the effects of rounding error, values lower than this value are reset to zero. If unexpected results are obtained, try using a smaller value, such as 1E-16. Note that 1E-5 is an abbreviation for the number 0.00001.

You enter the exponent only. For example, if you wanted to use 1E-16, you enter 16 here.
Reports Tab

The following options control which reports and plots are displayed.

Select Reports

Descriptive Statistics ... Scores Reports

Specify whether to display the indicated reports.

Report Options

Number of Correlations

This option specifies the number of canonical correlations that are reported on. One of the major attractions to canonical correlation analysis is the reduction in variable count, so this value is usually set to two or three. You would approach the selection of this number in much the same way as selecting the number of factors in factor analysis.

Precision

Specify the precision of numbers in the report. Single precision will display seven-place accuracy, while double precision will display thirteen-place accuracy.

Variable Names

This option lets you select whether to display variable names, variable labels, or both.

Scores Plot Tab

These options control the attributes of the scores plots.

Select Plots

Scores Plot

Specify whether to display the scores plot. Click the plot format button to change the plot settings.

Plot Options

Plot Size

This option controls the size of the plots that are displayed. You can select *small, medium, or large*. *Medium* and *large* are displayed one per line, while *small* are displayed two per line.

Storage Tab

The constructed variates may be stored on the current database for further analysis. This group of options lets you designate which variates (if any) should be stored and which variables should receive these variates. The data are automatically stored while the program is executing.

Note that existing data is replaced. Be careful that you do not specify variables that contain important data.
Data Storage Variables

Y Variates
Store the values of the Y Variates in these variables.

X Variates
Store the values of the X Variates in these variables.

Example 1 – Canonical Correlation Analysis

This section presents an example of how to run a canonical correlation analysis using data contained on the Tests dataset. As an example, we will correlate variables Test1, Test2, and Test3 with variables Test4, Test5, and IQ.

You may follow along here by making the appropriate entries or load the completed template Example 1 by clicking on Open Example Template from the File menu of the Canonical Correlation window.

1 Open the Tests dataset.
 • From the File menu of the NCSS Data window, select Open Example Data.
 • Click on the file Tests.NCSS.
 • Click Open.

2 Open the Canonical Correlation window.
 • Using the Analysis menu or the Procedure Navigator, find and select the Canonical Correlation procedure.
 • On the menus, select File, then New Template. This will fill the procedure with the default template.

3 Specify the variables.
 • On the Canonical Correlation window, select the Variables tab.
 • Double-click in the Y Variables text box. This will bring up the variable selection window.
 • Select Test4, Test5, IQ from the list of variables and then click Ok. “Test4-IQ” will appear in the Y Variables box.
 • Double-click in the X Variables text box. This will bring up the variable selection window.
 • Select Test1, Test2, Test3 from the list of variables and then click Ok. “Test1-Test3” will appear in the X Variables box.

4 Specify the reports.
 • Select the Reports tab.
 • Enter 3 in the Number of Correlations box.
 • Check all reports and plots. Normally you would only view a few of these reports, but we are selecting them all so that we can document them.

5 Run the procedure.
 • From the Run menu, select Run Procedure. Alternatively, just click the green Run button.
Canonical Correlation

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Type</th>
<th>Variable</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Non-Missing Rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Test4</td>
<td>65.53333</td>
<td>13.95332</td>
<td>15</td>
</tr>
<tr>
<td>Y</td>
<td>Test5</td>
<td>69.93333</td>
<td>16.15314</td>
<td>15</td>
</tr>
<tr>
<td>Y</td>
<td>IQ</td>
<td>104.3333</td>
<td>11.0173</td>
<td>15</td>
</tr>
<tr>
<td>X</td>
<td>Test1</td>
<td>67.93333</td>
<td>17.39239</td>
<td>15</td>
</tr>
<tr>
<td>X</td>
<td>Test2</td>
<td>61.4</td>
<td>19.39735</td>
<td>15</td>
</tr>
<tr>
<td>X</td>
<td>Test3</td>
<td>72.33334</td>
<td>14.73415</td>
<td>15</td>
</tr>
</tbody>
</table>

This report displays the descriptive statistics for each variable. You should check that the mean is reasonable and that the number of nonmissing rows is accurate.

Correlation Section

<table>
<thead>
<tr>
<th>Test4</th>
<th>Test5</th>
<th>IQ</th>
<th>Test1</th>
<th>Test2</th>
<th>Test3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000000</td>
<td>-0.172864</td>
<td>0.371404</td>
<td>0.753937</td>
<td>0.719623</td>
<td>-0.140941</td>
</tr>
<tr>
<td>0.371404</td>
<td>1.000000</td>
<td>-0.058064</td>
<td>0.013967</td>
<td>-0.281449</td>
<td>0.347335</td>
</tr>
<tr>
<td>0.371404</td>
<td>-0.058064</td>
<td>1.000000</td>
<td>0.225648</td>
<td>0.240651</td>
<td>0.074070</td>
</tr>
<tr>
<td>0.719623</td>
<td>0.753937</td>
<td>0.225648</td>
<td>1.000000</td>
<td>0.100018</td>
<td>-0.260801</td>
</tr>
<tr>
<td>-0.140941</td>
<td>-0.281449</td>
<td>0.240651</td>
<td>0.100018</td>
<td>1.000000</td>
<td>0.057232</td>
</tr>
</tbody>
</table>

This report presents the simple correlations among all variables specified.

Canonical Correlations Section

<table>
<thead>
<tr>
<th>Variate Number</th>
<th>Canonical Correlation</th>
<th>R-Squared</th>
<th>F-Value</th>
<th>Num DF</th>
<th>Den DF</th>
<th>Prob Level</th>
<th>Wilks' Lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.995600</td>
<td>0.991219</td>
<td>16.58</td>
<td>9</td>
<td>22</td>
<td>0.000000</td>
<td>0.006819</td>
</tr>
<tr>
<td>2</td>
<td>0.467461</td>
<td>0.218519</td>
<td>0.67</td>
<td>4</td>
<td>20</td>
<td>0.617695</td>
<td>0.776503</td>
</tr>
<tr>
<td>3</td>
<td>0.079801</td>
<td>0.006370</td>
<td>0.07</td>
<td>1</td>
<td>11</td>
<td>0.795498</td>
<td>0.993630</td>
</tr>
</tbody>
</table>

F-value tests whether this canonical correlation and those following are zero.

This report presents the canonical correlations plus supporting material to aid in their interpretation.

Variate Number

This is the sequence number of the canonical correlation. Remember that the first correlation will be the largest, the second will be the next to largest, and so on.

Canonical Correlation

The value of the canonical correlation coefficient. This coefficient has the same properties as any other correlation: it ranges between minus one and one, a value near zero indicates low correlation, and an absolute value near one indicates near perfect correlation.

R-Squared

The square of the canonical correlation coefficient. This gives the R-squared value of fitting the Y canonical variate to the corresponding X canonical variate.
F-Value

The value of the F approximation for testing the significance of the Wilks’ lambda corresponding to this row and those below it. In this example, the first F-Value tests the significance of the first, second, and third canonical correlations while the second F-value tests the significance of only the second and third.

Num DF

The numerator degrees of freedom of the above F-ratio.

Den DF

The denominator degrees of freedom of the above F-ratio.

Prob Level

This is the probability value for the above F statistic. A value near zero indicates a significant canonical correlation. A cutoff value of 0.05 or 0.01 is often used to determine significance.

Wilks’ Lambda

The Wilks’ lambda value for the canonical correlation on this report row. Wilks’ lambda is the multivariate generalization of R-Squared. The Wilks’ lambda statistic is interpreted just the opposite of R-Squared: a value near zero indicates high correlation while a value near one indicates low correlation.

Variance Explained Section

<table>
<thead>
<tr>
<th>Canonical Variate Number</th>
<th>Variation in these Variables</th>
<th>Explained by these Variates</th>
<th>Individual Percent Explained</th>
<th>Cumulative Percent Explained</th>
<th>Canonical Correlation Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>Y</td>
<td>37.6</td>
<td>37.6</td>
<td>0.9912</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>Y</td>
<td>32.1</td>
<td>69.7</td>
<td>0.2185</td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
<td>Y</td>
<td>30.3</td>
<td>100.0</td>
<td>0.0064</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>X</td>
<td>37.2</td>
<td>37.2</td>
<td>0.9912</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>X</td>
<td>7.0</td>
<td>44.3</td>
<td>0.2185</td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
<td>X</td>
<td>0.2</td>
<td>44.5</td>
<td>0.0064</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>Y</td>
<td>37.1</td>
<td>37.1</td>
<td>0.9912</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>Y</td>
<td>5.4</td>
<td>42.5</td>
<td>0.2185</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>Y</td>
<td>0.2</td>
<td>42.8</td>
<td>0.0064</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>37.8</td>
<td>37.4</td>
<td>0.9912</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td>24.8</td>
<td>62.2</td>
<td>0.2185</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td>37.8</td>
<td>100.0</td>
<td>0.0064</td>
</tr>
</tbody>
</table>

This report displays the percent of the variation in each set of variables explained by other sets of variables.

Canonical Variate Number

This is the sequence number of the canonical variable being reported on. Remember that the maximum number of variates is the minimum of the number of variables in each set.

Variation in these Variables

Each row of the report presents the results of how well a set of variables is explained by a particular canonical variate. This column designates which set of variables is being reported on.

Explained by these Variates

Each row of the report presents the results of how well a set of variables is explained by a particular canonical variate. This column designates which set of canonical variates is being reported on.
Individual Percent Explained
This column indicates the percentage of the variation in the designated set of variables that is explained by this canonical variate.

Cumulative Percent Explained
This column indicates the cumulative percentage of the variation in the designated set of variables that is explained by this canonical variate and those listed above it.

Canonical Correlation Squared
The square of the canonical correlation coefficient. This is repeated from an earlier report.

Standardized Canonical Coefficients Section

<table>
<thead>
<tr>
<th>Standardized Y Canonical Coefficients Section</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>Y2</td>
<td>Y3</td>
<td></td>
</tr>
<tr>
<td>Test4</td>
<td>1.021375</td>
<td>0.104989</td>
<td>0.370860</td>
</tr>
<tr>
<td>Test5</td>
<td>-0.055995</td>
<td>0.990267</td>
<td>0.224017</td>
</tr>
<tr>
<td>IQ</td>
<td>-0.065398</td>
<td>0.229775</td>
<td>-1.050237</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standardized X Canonical Coefficients Section</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>X2</td>
<td>X3</td>
<td></td>
</tr>
<tr>
<td>Test1</td>
<td>0.690657</td>
<td>0.592485</td>
<td>0.510311</td>
</tr>
<tr>
<td>Test2</td>
<td>0.655584</td>
<td>-0.428196</td>
<td>-0.636097</td>
</tr>
<tr>
<td>Test3</td>
<td>-0.008941</td>
<td>0.919574</td>
<td>-0.485199</td>
</tr>
</tbody>
</table>

These coefficients are used to estimate the standardized scores for the X and Y variates. They aid the interpretation of the variates by showing the weight given each variable in the construction of the variate. They are analogous to standardized beta coefficients in multiple regression.

Variable - Variate Correlations Section

<table>
<thead>
<tr>
<th>Variable - Variate Correlations Section</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>Y2</td>
<td>Y3</td>
<td>X1</td>
<td>X2</td>
</tr>
<tr>
<td>Test4</td>
<td>0.998137</td>
<td>0.019146</td>
<td>-0.057927</td>
<td>0.993745</td>
</tr>
<tr>
<td>Test5</td>
<td>-0.178759</td>
<td>0.958777</td>
<td>0.220890</td>
<td>-0.177972</td>
</tr>
<tr>
<td>IQ</td>
<td>0.314333</td>
<td>0.211270</td>
<td>-0.925505</td>
<td>0.312950</td>
</tr>
<tr>
<td>Test1</td>
<td>0.755221</td>
<td>0.144834</td>
<td>0.045750</td>
<td>0.758959</td>
</tr>
<tr>
<td>Test2</td>
<td>0.720964</td>
<td>-0.147861</td>
<td>-0.048910</td>
<td>0.724151</td>
</tr>
<tr>
<td>Test3</td>
<td>-0.150877</td>
<td>0.346177</td>
<td>-0.052251</td>
<td>-0.151544</td>
</tr>
</tbody>
</table>

This report shows the correlations between the variables and the variates. By determining which variables are highly correlated with a particular variate, it is hoped that you can determine its interpretation. For example, you can see that variate Y1 is highly correlated with Test4. Hence, we assume that Y1 has the same interpretation as Test4.
Scores Section

This report provides the canonical scores of each set of variates for each row of non-missing data. These are the values that are plotted in the score plots shown next.

Scores Plots

These reports show the relationship between each pair of canonical variates. The correlation coefficient of the data in the first plot (Y1 versus X1) is the first canonical correlation coefficient.