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Chapter 565 

Cox Regression 

Introduction 
This procedure performs Cox (proportional hazards) regression analysis, which models the relationship 
between a set of one or more covariates and the hazard rate. Covariates may be discrete or continuous. Cox’s 
proportional hazards regression model is solved using the method of marginal likelihood outlined in 
Kalbfleisch (1980). 

This routine can be used to study the impact of various factors on survival. You may be interested in the 
impact of diet, age, amount of exercise, and amount of sleep on the survival time after an individual has 
been diagnosed with a certain disease such as cancer. Under normal conditions, the obvious statistical tool 
to study the relationship between a response variable (survival time) and several explanatory variables 
would be multiple regression. Unfortunately, because of the special nature of survival data, multiple 
regression is not appropriate. Survival data usually contain censored data, and the distribution of survival 
times is often highly skewed. These two problems invalidate the use of multiple regression. Many alternative 
regression methods have been suggested. The most popular method is the proportional hazard regression 
method developed by Cox (1972). Another method, Weibull regression, is available in NCSS in the 
Distribution Regression procedure.  

Further Reading 
Several books provide in depth coverage of Cox regression. These books assume a familiarity with basic 
statistical theory, especially with regression analysis. Collett (1994) provides a comprehensive introduction 
to the subject. Hosmer and Lemeshow (1999) is almost completely devoted to this subject. Therneau and 
Grambsch (2000) provide a complete and up-to-date discussion of this subject. We found their discussion of 
residual analysis very useful. Klein and Moeschberger (1997) provides a very readable account of survival 
analysis in general and includes a lucid account of Cox regression. 

The Cox Regression Model 
Survival analysis refers to the analysis of elapsed time. The response variable is the time between a time 
origin and an end point. The end point is either the occurrence of the event of interest, referred to as a death 
or failure, or the end of the subject’s participation in the study. These elapsed times have two properties that 
invalidate standard statistical techniques, such as t-tests, analysis of variance, and multiple regression. First 
of all, the time values are often positively skewed. Standard statistical techniques require that the data be 
normally distributed. Although this skewness could be corrected with a transformation, it is easier to adopt 
a more realistic data distribution.  

The second problem with survival data is that part of the data are censored. An observation is censored 
when the end point has not been reached when the subject is removed from study. This may be because 
the study ended before the subject’s response occurred, or because the subject withdrew from active 
participation. This may be because the subject died for another reason, because the subject moved, or 
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because the subject quit following the study protocol. All that is known is that the response of interest did 
not occur while the subject was being studied. 

When analyzing survival data, two functions are of fundamental interest—the survivor function and the 
hazard function. Let T be the survival time. That is, T is the elapsed time from the beginning point, such as 
diagnosis of cancer, and death due to that disease. The values of T can be thought of as having a probability 
distribution. Suppose the probability density function of the random variable T is given by 𝑓𝑓(𝑇𝑇). The probability 
distribution function of T is then given by 

𝐹𝐹(𝑇𝑇) = Pr(𝑡𝑡 < 𝑇𝑇) 

= �𝑓𝑓(𝑡𝑡)
𝑇𝑇

0

𝑑𝑑𝑡𝑡 

The survivor function, 𝑆𝑆(𝑇𝑇), is the probability that an individual survives past T. This leads to 

𝑆𝑆(𝑇𝑇) = Pr(𝑇𝑇 ≥ 𝑡𝑡) 

= 1 − 𝐹𝐹(𝑇𝑇) 

The hazard function is the probability that a subject experiences the event of interest (death, relapse, etc.) 
during a short time interval given that the individual has survived up to the beginning of that interval. The 
mathematical expression for the hazard function is 

ℎ(𝑇𝑇) = lim
∆𝑇𝑇→0

Pr(𝑇𝑇 ≤ 𝑡𝑡 < (𝑇𝑇 + ∆𝑇𝑇)|𝑇𝑇 ≤ 𝑡𝑡)
∆𝑇𝑇

 

= lim
∆𝑇𝑇→0

𝐹𝐹(𝑇𝑇 + ∆𝑇𝑇) − 𝐹𝐹(𝑇𝑇)
∆𝑇𝑇

 

=
𝑓𝑓(𝑇𝑇)
𝑆𝑆(𝑇𝑇) 

The cumulative hazard function 𝐻𝐻(𝑇𝑇) is the sum of the individual hazard rates from time zero to time T. The 
formula for the cumulative hazard function is 

𝐻𝐻(𝑇𝑇) = �ℎ(𝑢𝑢)𝑑𝑑𝑢𝑢
𝑇𝑇

0

 

Thus, the hazard function is the derivative, or slope, of the cumulative hazard function. The cumulative 
hazard function is related to the cumulative survival function by the expression 

𝑆𝑆(𝑇𝑇) = 𝑒𝑒−𝐻𝐻(𝑇𝑇) 

or 

𝐻𝐻(𝑇𝑇) = −ln�𝑆𝑆(𝑇𝑇)� 
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We see that the distribution function, the hazard function, and the survival function are mathematically 
related. As a matter of convenience and practicality, the hazard function is used in the basic regression model.  

Cox (1972) expressed the relationship between the hazard rate and a set of covariates using the model 

ln[ℎ(𝑇𝑇)] = ln[ℎ0(𝑇𝑇)] +�𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

 

or 

ℎ(𝑇𝑇) = ℎ0(𝑇𝑇)𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1  

where 𝑥𝑥1,𝑥𝑥2,⋅⋅⋅,𝑥𝑥𝑝𝑝 are covariates, 𝛽𝛽1,𝛽𝛽2,⋅⋅⋅,𝛽𝛽𝑝𝑝 are regression coefficients to be estimated, T is the elapsed 
time, and ℎ0(𝑇𝑇) is the baseline hazard rate when all covariates are equal to zero. Thus, the linear form of the 
regression model is  

ln �
ℎ(𝑇𝑇)
ℎ0(𝑇𝑇)� = �𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

 

Taking the exponential of both sides of the above equation, we see that this is the ratio between the actual 
hazard rate and the baseline hazard rate, sometimes called the relative risk. This can be rearranged to give the 
model 

ℎ(𝑇𝑇)
ℎ0(𝑇𝑇) = exp��𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

� 

= 𝑒𝑒𝑥𝑥1𝛽𝛽1𝑒𝑒𝑥𝑥2𝛽𝛽2 ⋅⋅⋅ 𝑒𝑒𝑥𝑥𝑝𝑝𝛽𝛽𝑝𝑝 

The regression coefficients can thus be interpreted as the relative risk when the value of the covariate is 
increased by one unit.  

Note that unlike most regression models, this model does not include an intercept term. This is because if an 
intercept term were included, it would become part of ℎ0(𝑇𝑇). 

Also note that the above model does not include T on the right-hand side. That is, the relative risk is constant 
for all time values. This is why the method is called proportional hazards. 

An interesting attribute of this model is that you only need to use the ranks of the failure times to estimate the 
regression coefficients. The actual failure times are not used except to generate the ranks. Thus, you will 
achieve the same regression coefficient estimates regardless of whether you enter the time values in days, 
months, or years. 
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Cumulative Hazard 
Under the proportional hazards regression model, the cumulative hazard is 

𝐻𝐻(𝑇𝑇,𝑋𝑋) = �ℎ(𝑢𝑢,𝑋𝑋)𝑑𝑑𝑢𝑢
𝑇𝑇

0

 

= �ℎ0(𝑢𝑢)𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1 𝑑𝑑𝑢𝑢

𝑇𝑇

0

 

= 𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1 � ℎ0(𝑢𝑢)𝑑𝑑𝑢𝑢

𝑇𝑇

0

 

= 𝐻𝐻0(𝑇𝑇)𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1  

Note that the survival time T is present in 𝐻𝐻0(𝑇𝑇), but not in 𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1 . Hence, the cumulative hazard up to time 

T is represented in this model by a baseline cumulative hazard 𝐻𝐻0(𝑇𝑇) which is adjusted by the covariates by 

multiplying by the factor 𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1 . 

Cumulative Survival 
Under the proportional hazards regression model, the cumulative survival is 

𝑆𝑆(𝑇𝑇,𝑋𝑋) = exp�−𝐻𝐻(𝑇𝑇,𝑋𝑋)� 

= exp �−𝐻𝐻0(𝑇𝑇)𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1 � 

= �𝑒𝑒−𝐻𝐻0(𝑇𝑇)�
𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝
𝑖𝑖=1

 

= 𝑆𝑆0(𝑇𝑇)𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1  

Note that the survival time T is present in 𝑆𝑆0(𝑇𝑇), but not in 𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1 .  
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A Note On Using e 
The discussion that follows uses the terms exp(x) and 𝑒𝑒𝑥𝑥. These terms are identical. That is 

exp(𝑥𝑥) = 𝑒𝑒𝑥𝑥 

= (2.71828182846)𝑥𝑥 

The decision as to which form to use depends on the context. The preferred form is 𝑒𝑒𝑥𝑥. But often, the 
expression used for x becomes so small that it cannot be printed. In these situations, the exp(x) form will be 
used.  

One other point needs to be made while we are on this subject. People often wonder why we use the number 
e. After all, e is an unfamiliar number that cannot be expressed exactly. Why not use a more common number 
like 2, 3, or 10? The answer is that it does matter because the choice of the base is arbitrary in that you can 
easily switch from one base to another. That is, it is easy to find constants a, b, and c so that 

𝑒𝑒 = 2𝑎𝑎 = 3𝑏𝑏 = 10𝑐𝑐 

In fact, a is 1/ln(2) = 1.4427, b is 1/ln(3)=0.9102, and c is 1/ln(10) = 0.4343. Using these constants, it is easy to 
switch from one base to another. For example, suppose a calculate only computes 10𝑥𝑥 and we need the value 
of 𝑒𝑒3. This can be computed as follows 

𝑒𝑒3 = (100.4343)3 

= 103(0.4343) 

= 101.3029 

= 20.0855 

The point is, it is simple to change from base e to base 3 to base 10. The number e is used for mathematical 
convenience.  

Maximum Likelihood Estimation 
Let 𝑡𝑡 = 1,⋯ ,𝑀𝑀 index the M unique failure times 𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑀𝑀. Note that M does not include duplicate times or 
censored observations. The set of all failures (deaths) that occur at time 𝑇𝑇𝑡𝑡 is referred to as 𝐷𝐷𝑡𝑡. Let 𝑐𝑐 and  
𝑑𝑑 = 1,⋯ ,𝑚𝑚𝑡𝑡 index the members of 𝐷𝐷𝑡𝑡. The set of all individuals that are at risk immediately before time 𝑇𝑇𝑡𝑡 is 
referred to as 𝑅𝑅𝑡𝑡. This set, often called the risk set, includes all individuals that fail at time 𝑇𝑇𝑡𝑡 as well as those 
that are censored or fail at a time later than 𝑇𝑇𝑡𝑡. Let 𝑟𝑟 = 1,⋯ ,𝑛𝑛𝑡𝑡 index the members of 𝑅𝑅𝑡𝑡. Let X refer to a set 
of p covariates. These covariates are indexed by the subscripts i, j, or k. The values of the covariates at a 
particular failure time 𝑇𝑇𝑑𝑑 are written 𝑥𝑥1𝑑𝑑 ,𝑥𝑥2𝑑𝑑 ,⋯ , 𝑥𝑥𝑝𝑝𝑑𝑑 or 𝑥𝑥𝑖𝑖𝑑𝑑 in general. The regression coefficients to be 
estimated are 𝛽𝛽1,𝛽𝛽2,⋯ ,𝛽𝛽𝑝𝑝.  
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The Log-Likelihood 

When there are no ties among the failure times, the log-likelihood is given by Kalbfleisch and Prentice (1980) 
as 

𝐿𝐿𝐿𝐿(𝛽𝛽) = ����𝑥𝑥𝑖𝑖𝑡𝑡𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

� − ln�� exp��𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

�
𝑖𝑖∈𝑅𝑅𝑡𝑡

��
𝑀𝑀

𝑡𝑡=1

 

= ���𝑥𝑥𝑖𝑖𝑡𝑡𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

− ln�𝐺𝐺𝑅𝑅𝑡𝑡��
𝑀𝑀

𝑡𝑡=1

 

where 

𝐺𝐺𝑅𝑅 = � exp��𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

�
𝑖𝑖∈𝑅𝑅

 

The following notation for the first-order and second-order partial derivatives will be useful in the derivations 
in this section. 

𝐻𝐻𝑗𝑗𝑅𝑅 =
𝜕𝜕𝐺𝐺𝑅𝑅
𝜕𝜕𝛽𝛽𝑗𝑗

 

= �𝑥𝑥𝑗𝑗𝑖𝑖
𝑖𝑖∈𝑅𝑅

exp��𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

� 

𝐴𝐴𝑗𝑗𝑗𝑗𝑅𝑅 =
𝜕𝜕2𝐺𝐺𝑅𝑅
𝜕𝜕𝛽𝛽𝑗𝑗𝜕𝜕𝛽𝛽𝑗𝑗

 

=
𝜕𝜕𝐻𝐻𝑗𝑗𝑅𝑅
𝜕𝜕𝛽𝛽𝑗𝑗

 

= �𝑥𝑥𝑗𝑗𝑖𝑖𝑥𝑥𝑗𝑗𝑖𝑖
𝑖𝑖∈𝑅𝑅

exp��𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

� 

  

http://www.ncss.com/


NCSS Statistical Software NCSS.com 

Cox Regression 

565-7 
 © NCSS, LLC. All Rights Reserved. 

The maximum likelihood solution is found by the Newton-Raphson method. This method requires the first 
and second order partial derivatives. The first order partial derivatives are 

𝑈𝑈𝑗𝑗 =
𝜕𝜕𝐿𝐿𝐿𝐿(𝛽𝛽)
𝜕𝜕𝛽𝛽𝑗𝑗

 

= ��𝑥𝑥𝑗𝑗𝑡𝑡 −
𝐻𝐻𝑗𝑗𝑅𝑅𝑡𝑡
𝐺𝐺𝑅𝑅𝑡𝑡

�
𝑀𝑀

𝑡𝑡=1

 

The second order partial derivatives, which are the information matrix, are  

𝐼𝐼𝑗𝑗𝑗𝑗 = �
1
𝐺𝐺𝑅𝑅𝑡𝑡

�𝐴𝐴𝑗𝑗𝑗𝑗𝑅𝑅𝑡𝑡 −
𝐻𝐻𝑗𝑗𝑅𝑅𝑡𝑡𝐻𝐻𝑗𝑗𝑅𝑅𝑡𝑡
𝐺𝐺𝑅𝑅𝑡𝑡

�
𝑀𝑀

𝑡𝑡=1

 

When there are failure time ties (note that censor ties are not a problem), the exact likelihood is very 
cumbersome. NCSS allows you to select either the approximation proposed by Breslow (1974) or the 
approximation given by Efron (1977). Breslow’s approximation was used by the first Cox regression programs, 
but Efron’s approximation provides results that are usually closer to the results given by the exact algorithm, 
and it is now the preferred approximation (see for example Homer and Lemeshow (1999). We have included 
Breslow’s method because of its popularity. For example, Breslow’s method is the default method used in SAS.  

Breslow’s Approximation to the Log-Likelihood 

The log-likelihood of Breslow’s approximation is given by Kalbfleisch and Prentice (1980) as 

𝐿𝐿𝐿𝐿(𝛽𝛽) = ���� �𝑥𝑥𝑖𝑖𝑑𝑑𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1𝑑𝑑∈𝐷𝐷𝑡𝑡

� −𝑚𝑚𝑡𝑡 ln �� exp��𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

�
𝑖𝑖∈𝑅𝑅𝑡𝑡

��
𝑀𝑀

𝑡𝑡=1

 

= ��� �𝑥𝑥𝑖𝑖𝑑𝑑𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1𝑑𝑑∈𝐷𝐷𝑡𝑡

− 𝑚𝑚𝑡𝑡 ln�𝐺𝐺𝑅𝑅𝑡𝑡��
𝑀𝑀

𝑡𝑡=1

 

where 

𝐺𝐺𝑅𝑅 = � exp��𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

�
𝑖𝑖∈𝑅𝑅
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The maximum likelihood solution is found by the Newton-Raphson method. This method requires the first-
order and second-order partial derivatives. The first order partial derivatives are 

𝑈𝑈𝑗𝑗 =
𝜕𝜕𝐿𝐿𝐿𝐿(𝛽𝛽)
𝜕𝜕𝛽𝛽𝑗𝑗

 

= ���� 𝑥𝑥𝑗𝑗𝑑𝑑
𝑑𝑑∈𝐷𝐷𝑡𝑡

� − �𝑚𝑚𝑡𝑡
𝐻𝐻𝑗𝑗𝑅𝑅𝑡𝑡
𝐺𝐺𝑅𝑅𝑡𝑡

��
𝑀𝑀

𝑡𝑡=1

 

The negative of the second-order partial derivatives, which form the information matrix, are  

𝐼𝐼𝑗𝑗𝑗𝑗 = �
𝑚𝑚𝑡𝑡

𝐺𝐺𝑅𝑅𝑡𝑡

𝑀𝑀

𝑡𝑡=1

�𝐴𝐴𝑗𝑗𝑗𝑗𝑅𝑅𝑡𝑡 −
𝐻𝐻𝑗𝑗𝑅𝑅𝑡𝑡𝐻𝐻𝑗𝑗𝑅𝑅𝑡𝑡
𝐺𝐺𝑅𝑅𝑡𝑡

� 

Efron’s Approximation to the Log Likelihood 

The log-likelihood of Efron’s approximation is given by Kalbfleisch and Prentice (1980) as 

𝐿𝐿𝐿𝐿(𝛽𝛽) = ��� �𝑥𝑥𝑖𝑖𝑑𝑑𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1𝑑𝑑∈𝐷𝐷𝑡𝑡

− � ln �� exp��𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

�
𝑖𝑖∈𝑅𝑅𝑡𝑡

−
𝑑𝑑 − 1
𝑚𝑚𝑡𝑡

� exp��𝑥𝑥𝑖𝑖𝑐𝑐𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

�
𝑐𝑐∈𝐷𝐷𝑡𝑡

�
𝑑𝑑∈𝐷𝐷𝑡𝑡

�
𝑀𝑀

𝑡𝑡=1

 

= ��� �𝑥𝑥𝑖𝑖𝑑𝑑𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1𝑑𝑑∈𝐷𝐷𝑡𝑡

− � ln �𝐺𝐺𝑅𝑅𝑡𝑡 −
𝑑𝑑 − 1
𝑚𝑚𝑡𝑡

𝐺𝐺𝐷𝐷𝑡𝑡�
𝑑𝑑∈𝐷𝐷𝑡𝑡

�
𝑀𝑀

𝑡𝑡=1

 

The maximum likelihood solution is found by the Newton-Raphson method. This method requires the first 
and second order partial derivatives. The first partial derivatives are  

𝑈𝑈𝑗𝑗 =
𝜕𝜕𝐿𝐿𝐿𝐿(𝛽𝛽)
𝜕𝜕𝛽𝛽𝑗𝑗

 

= � � �𝑥𝑥𝑗𝑗𝑑𝑑 −
𝐻𝐻𝑗𝑗𝑅𝑅𝑡𝑡 − �𝑑𝑑 − 1

𝑚𝑚𝑡𝑡
�𝐻𝐻𝑗𝑗𝐷𝐷𝑡𝑡

𝐺𝐺𝑅𝑅𝑡𝑡 − �𝑑𝑑 − 1
𝑚𝑚𝑡𝑡

�𝐺𝐺𝐷𝐷𝑡𝑡
�

𝑑𝑑∈𝐷𝐷𝑡𝑡

𝑀𝑀

𝑡𝑡=1

 

= � � 𝑥𝑥𝑗𝑗𝑑𝑑
𝑑𝑑∈𝐷𝐷𝑡𝑡

𝑀𝑀

𝑡𝑡=1

−���
𝐻𝐻𝑗𝑗𝑅𝑅𝑡𝑡 − �𝑑𝑑 − 1

𝑚𝑚𝑡𝑡
�𝐻𝐻𝑗𝑗𝐷𝐷𝑡𝑡

𝐺𝐺𝑅𝑅𝑡𝑡 − �𝑑𝑑 − 1
𝑚𝑚𝑡𝑡

�𝐺𝐺𝐷𝐷𝑡𝑡
�

𝑚𝑚𝑡𝑡

𝑑𝑑=1

𝑀𝑀

𝑡𝑡=1
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The second partial derivatives provide the information matrix which estimates the covariance matrix of the 
estimated regression coefficients. The negative of the second partial derivatives are 

𝐼𝐼𝑗𝑗𝑗𝑗 = −
𝜕𝜕2𝐿𝐿𝐿𝐿(𝛽𝛽)
𝜕𝜕𝛽𝛽𝑗𝑗𝜕𝜕𝛽𝛽𝑗𝑗

 

= ��
�𝐺𝐺𝑅𝑅𝑡𝑡 − �𝑑𝑑 − 1

𝑚𝑚𝑡𝑡
�𝐺𝐺𝐷𝐷𝑡𝑡� �𝐴𝐴𝑗𝑗𝑗𝑗𝑅𝑅𝑡𝑡 − �𝑑𝑑 − 1

𝑚𝑚𝑡𝑡
�𝐴𝐴𝑗𝑗𝑗𝑗𝐷𝐷𝑡𝑡� − �𝐻𝐻𝑗𝑗𝑅𝑅𝑡𝑡 − �𝑑𝑑 − 1

𝑚𝑚𝑡𝑡
�𝐻𝐻𝑗𝑗𝐷𝐷𝑡𝑡� �𝐻𝐻𝑗𝑗𝑅𝑅𝑡𝑡 − �𝑑𝑑 − 1

𝑚𝑚𝑡𝑡
�𝐻𝐻𝑗𝑗𝐷𝐷𝑡𝑡�

�𝐺𝐺𝑅𝑅𝑡𝑡 − �𝑑𝑑 − 1
𝑚𝑚𝑡𝑡

�𝐺𝐺𝐷𝐷𝑡𝑡�
2

𝑚𝑚𝑡𝑡

𝑑𝑑=1

𝑀𝑀

𝑡𝑡=1

 

Estimation of the Survival Function 
Once the maximum likelihood estimates have been obtained, it may be of interest to estimate the survival 
probability of a new or existing individual with specific covariate settings at a particular point in time. The 
methods proposed by Kalbfleisch and Prentice (1980) are used to estimate the survival probabilities.  

Cumulative Survival 

This estimates the cumulative survival of an individual with a set of covariates all equal to zero. The survival for 
an individual with covariate values of 𝑋𝑋0 is 

𝑆𝑆(𝑇𝑇|𝑋𝑋0) = exp�𝐻𝐻(𝑇𝑇|𝑋𝑋0)� 

= exp�𝐻𝐻0(𝑇𝑇|𝑋𝑋0) exp�𝑥𝑥𝑖𝑖0𝛽𝛽
𝑝𝑝

𝑖𝑖=1

� 

= [𝑆𝑆0(𝑇𝑇)]exp∑ 𝑥𝑥𝑖𝑖0𝛽𝛽
𝑝𝑝
𝑖𝑖=1  

The estimate of the baseline survival function 𝑆𝑆0(𝑇𝑇) is calculated from the cumulated hazard function using  

𝑆𝑆0(𝑇𝑇0) = � 𝛼𝛼𝑡𝑡
𝑇𝑇𝑡𝑡≤𝑇𝑇0

 

where 

𝛼𝛼𝑡𝑡 =
𝑆𝑆(𝑇𝑇𝑡𝑡)
𝑆𝑆(𝑇𝑇𝑡𝑡−1) 

= �
𝑆𝑆0(𝑇𝑇𝑡𝑡)
𝑆𝑆0(𝑇𝑇𝑡𝑡−1)�

exp�∑ 𝑥𝑥𝑖𝑖𝑡𝑡𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1 �

 

= �
𝑆𝑆0(𝑇𝑇𝑡𝑡)
𝑆𝑆0(𝑇𝑇𝑡𝑡−1)�

𝜃𝜃𝑡𝑡
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and 

𝜃𝜃𝑖𝑖 = exp��𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

� 

The value of 𝛼𝛼𝑡𝑡, the conditional baseline survival probability at time T, is the solution to the conditional 
likelihood equation 

�
𝜃𝜃𝑑𝑑

1 − 𝛼𝛼𝑡𝑡
𝜃𝜃𝑑𝑑

=
𝑑𝑑∈𝐷𝐷𝑡𝑡

� 𝜃𝜃𝑖𝑖
𝑖𝑖∈𝑅𝑅𝑡𝑡

 

When there are no ties at a particular time point, 𝐷𝐷𝑡𝑡 contains one individual and the above equation can be 
solved directly, resulting in the solution  

𝛼𝛼�𝑡𝑡 = �1 −
𝜃𝜃�𝑡𝑡

∑ 𝜃𝜃�𝑖𝑖𝑖𝑖∈𝑅𝑅𝑡𝑡
�
𝜃𝜃�𝑡𝑡−1

 

When there are ties, the equation must be solved iteratively. The starting value of this iterative process is  

𝛼𝛼�𝑡𝑡 = exp�
−𝑚𝑚𝑡𝑡

∑ 𝜃𝜃�𝑖𝑖𝑖𝑖∈𝑅𝑅𝑡𝑡
� 

Baseline Hazard Rate 

Hosmer and Lemeshow (1999) estimate the baseline hazard rate ℎ0(𝑇𝑇𝑡𝑡) as follows 

ℎ0(𝑇𝑇𝑡𝑡) = 1 − 𝛼𝛼𝑡𝑡 

They mention that this estimator will typically be too unstable to be of much use. To overcome this, you might 
smooth these quantities using lowess function of the Scatter Plot program. 

Cumulative Hazard 

An estimate of the cumulative hazard function 𝐻𝐻0(𝑇𝑇) derived from relationship between the cumulative 
hazard and the cumulative survival. The estimated baseline survival is 

𝐻𝐻�0(𝑇𝑇) = − ln ��̂�𝑆0(𝑇𝑇)� 

This leads to the estimated cumulative hazard function is 

𝐻𝐻�(𝑇𝑇) = − exp��𝑥𝑥𝑖𝑖�̂�𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

� ln ��̂�𝑆0(𝑇𝑇)� 
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Cumulative Survival 

The estimate of the cumulative survival of an individual with a set of covariates values of 𝑋𝑋0 is 

�̂�𝑆(𝑇𝑇|𝑋𝑋0) = �̂�𝑆0(𝑇𝑇)exp∑ 𝑥𝑥𝑖𝑖0𝛽𝛽�𝑖𝑖
𝑝𝑝
𝑖𝑖=1  

Statistical Tests and Confidence Intervals 
Inferences about one or more regression coefficients are all of interest. These inference procedures can be 
treated by considering hypothesis tests and/or confidence intervals. The inference procedures in Cox 
regression rely on large sample sizes for accuracy.  

Two tests are available for testing the significance of one or more independent variables in a regression: the 
likelihood ratio test and the Wald test. Simulation studies usually show that the likelihood ratio test 
performs better than the Wald test. However, the Wald test is still used to test the significance of individual 
regression coefficients because of its ease of calculation.  

These two testing procedures will be described next. 

Likelihood Ratio and Deviance 

The Likelihood Ratio test statistic is -2 times the difference between the log-likelihoods of two models, one of 
which is a subset of the other. The distribution of the LR statistic is closely approximated by the chi-square 
distribution for large sample sizes. The degrees of freedom (DF) of the approximating chi-square 
distribution is equal to the difference in the number of regression coefficients in the two models. The test is 
named as a ratio rather than a difference since the difference between two log-likelihoods is equal to the log 
of the ratio of the two likelihoods. That is, if 𝐿𝐿full is the log-likelihood of the full model and 𝐿𝐿subset is the log-
likelihood of a subset of the full model, the likelihood ratio is defined as  

𝐿𝐿𝑅𝑅 = −2[𝐿𝐿subset − 𝐿𝐿full] 

= −2 �ln �
𝑙𝑙subset

𝑙𝑙full
�� 

Note that the -2 adjusts LR so the chi-square distribution can be used to approximate its distribution.  

The likelihood ratio test is the test of choice in Cox regression. Various simulation studies have shown that it 
is more accurate than the Wald test in situations with small to moderate sample sizes. In large samples, it 
performs about the same. Unfortunately, the likelihood ratio test requires more calculations than the Wald 
test, since it requires the fitting of two maximum-likelihood models.  

Deviance 

When the full model in the likelihood ratio test statistic is the saturated model, LR is referred to as the 
deviance. A saturated model is one which includes all possible terms (including interactions) so that the 
predicted values from the model equal the original data. The formula for the deviance is 

𝐷𝐷 = −2[𝐿𝐿Reduced − 𝐿𝐿Saturated] 

The deviance in Cox regression is analogous to the residual sum of squares in multiple regression. In fact, 
when the deviance is calculated in multiple regression, it is equal to the sum of the squared residuals.  
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The change in deviance, Δ𝐷𝐷, due to excluding (or including) one or more variables is used in Cox regression 
just as the partial F test is used in multiple regression. Many texts use the letter G to represent ∆D Δ𝐷𝐷. 
Instead of using the F distribution, the distribution of the change in deviance is approximated by the chi-
square distribution. Note that since the log-likelihood for the saturated model is common to both deviance 
values, Δ𝐷𝐷 can be calculated without actually fitting the saturated model. This fact becomes very important 
during subset selection. The formula for Δ𝐷𝐷 for testing the significance of the regression coefficient(s) 
associated with the independent variable X1 is 

Δ𝐷𝐷𝑋𝑋1 = 𝐷𝐷without 𝑋𝑋1 − 𝐷𝐷with 𝑋𝑋1 

= −2[𝐿𝐿without 𝑋𝑋1 − 𝐿𝐿Saturated] + 2[𝐿𝐿with 𝑋𝑋1 − 𝐿𝐿Saturated] 

= −2[𝐿𝐿without 𝑋𝑋1 − 𝐿𝐿with 𝑋𝑋1] 

Note that this formula looks identical to the likelihood ratio statistic. Because of the similarity between the 
change in deviance test and the likelihood ratio test, their names are often used interchangeably.  

Wald Test 

The Wald test will be familiar to those who use multiple regression. In multiple regression, the common t-
test for testing the significance of a particular regression coefficient is a Wald test. In Cox regression, the 
Wald test is calculated in the same manner. The formula for the Wald statistic is 

𝑧𝑧𝑗𝑗 =
𝑏𝑏𝑗𝑗
𝑠𝑠𝑏𝑏𝑗𝑗

 

where 𝑠𝑠𝑏𝑏𝑗𝑗  is an estimate of the standard error of 𝑏𝑏𝑗𝑗 provided by the square root of the corresponding 

diagonal element of the covariance matrix, 𝑉𝑉��̂�𝛽� = 𝐼𝐼−1.  

With large sample sizes, the distribution of 𝑧𝑧𝑗𝑗 is closely approximated by the normal distribution. With small 
and moderate sample sizes, the normal approximation is described as “adequate.”  

The Wald test is used in NCSS to test the statistical significance of individual regression coefficients. 

Confidence Intervals 

Confidence intervals for the regression coefficients are based on the Wald statistics. The formula for the 
limits of a 100(1− 𝛼𝛼)% two-sided confidence interval is  

𝑏𝑏𝑗𝑗 ± �𝑧𝑧𝛼𝛼 2⁄ �𝑠𝑠𝑏𝑏𝑗𝑗  
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R2 

Hosmer and Lemeshow (1999) indicate that at the time of the writing of their book, there is no single, easy 
to interpret measure in Cox regression that is analogous to R2 in multiple regression. They indicate that if 
such a measure “must be calculated” they would use 

𝑅𝑅𝑝𝑝2 = 1 − exp �
2
𝑛𝑛 �
𝐿𝐿0 − 𝐿𝐿𝑝𝑝�� 

where 𝐿𝐿0 is the log-likelihood of the model with no covariates, n is the number of observations (censored or 
not), and 𝐿𝐿𝑝𝑝 is the log-likelihood of the model that includes the covariates.  

Subset Selection 
Subset selection refers to the task of finding a small subset of the available regressor variables that does a 
good job of predicting the dependent variable. Because Cox regression must be solved iteratively, the task 
of finding the best subset can be time consuming. Hence, techniques which look at all possible 
combinations of the regressor variables are not feasible. Instead, algorithms that add or remove a variable 
at each step must be used. Two such searching algorithms are available in this module: forward selection 
and forward selection with switching.  

Before discussing the details of these two algorithms, it is important to comment on a couple of issues that 
can come up. The first issue is what to do about the binary variables that are generated for a categorical 
independent variable. If such a variable has six categories, five binary variables are generated. You can see 
that with two or three categorical variables, a large number of binary variables may result, which greatly 
increases the total number of variables that must be searched. To avoid this problem, the algorithms used 
here search on model terms rather than on the individual variables. Thus, the whole set of binary variables 
associated with a given term are considered together for inclusion in, or deletion from, the model. It’s all or 
none. Because of the time-consuming nature of the algorithm, this is the only feasible way to deal with 
categorical variables. If you want the subset algorithm to deal with them individually, you can generate the 
set of binary variables manually and designate them as Numeric Variables. 

Hierarchical Models 

A second issue is what to do with interactions. Usually, an interaction is not entered in the model unless the 
individual terms that make up that interaction are also in the model. For example, the interaction term 
A*B*C is not included unless the terms A, B, C, A*B, A*C, and B*C are already in the model. Such models are 
said to be hierarchical. You have the option during the search to force the algorithm to only consider 
hierarchical models during its search. Thus, if C is not in the model, interactions involving C are not even 
considered. Even though the option for non-hierarchical models is available, we recommend that you only 
consider hierarchical models. 
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Forward Selection 

The method of forward selection proceeds as follows.  

1.  Begin with no terms in the model. 

2.  Find the term that, when added to the model, achieves the largest value of R-squared. Enter this 
term into the model. 

3.  Continue adding terms until a preset limit on the maximum number of terms in the model is 
reached. 

This method is comparatively fast, but it does not guarantee that the best model is found except for the first 
step when it finds the best single term. You might use it when you have a large number of observations so 
that other, more time-consuming methods, are not feasible, or when you have far too many possible 
regressor variables and you want to reduce the number of terms in the selection pool. 

Forward Selection with Switching 

This method is similar to the method of Forward Selection discussed above. However, at each step when a 
term is added, all terms in the model are switched one at a time with all candidate terms not in the model to 
determine if they increase the value of R-squared. If a switch can be found, it is made, and the candidate 
terms are again searched to determine if another switch can be made.  

When the search for possible switches does not yield a candidate, the subset size is increased by one and a 
new search is begun. The algorithm is terminated when a target subset size is reached, or all terms are 
included in the model. 

Discussion 

These algorithms usually require two runs. In the first run, you set the maximum subset size to a large value 
such as 10. By studying the Subset Selection reports from this run, you can quickly determine the optimum 
number of terms. You reset the maximum subset size to this number and make the second run. This two-
step procedure works better than relying on some F-to-enter and F-to-remove tests whose properties are 
not well understood to begin with. 

Residuals 
The following presentation summarizes the discussion on residuals found in Klein and Moeschberger (1997) 
and Hosmer and Lemeshow (1999). For a more thorough treatment of this topic, we refer you to either of 
these books.  

In most settings in which residuals are studied, the dependent variable is predicted using a model based on 
the independent variables. In these cases, the residual is simply the difference between the actual value and 
the predicted value of the dependent variable. Unfortunately, in Cox regression there is no obvious analog 
this actual minus predicted. Realizing this, statisticians have looked at how residuals are used and then, 
based on those uses, developed quantities that meet those needs. They call these quantities residuals 
because they are used in place of residuals. However, you must remember that they are not equivalent to 
usual the residuals that you see in multiple regression, for example. 
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In the discussion that follows, the formulas will be simplified if we use the substitution 

𝜃𝜃𝑖𝑖 = exp��𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

� 

Cox-Snell Residuals 

The Cox-Snell residuals were used to assess the goodness-of-fit of the Cox regression. The Cox-Snell 
residuals are defined as  

𝑟𝑟𝑡𝑡 = 𝐻𝐻𝐵𝐵0(𝑇𝑇𝑡𝑡)𝜃𝜃𝑡𝑡 

where the b’s are the estimated regression coefficients and 𝐻𝐻0(𝑇𝑇𝑡𝑡) is Breslow’s estimate of the cumulative 
baseline hazard function. This value is defined as follows 

𝐻𝐻𝐵𝐵0(𝑇𝑇𝑡𝑡) = � �
𝑚𝑚𝑖𝑖

∑ 𝜃𝜃𝑗𝑗𝑗𝑗∈𝑅𝑅𝑇𝑇𝑖𝑖

�
𝑇𝑇𝑖𝑖≤𝑇𝑇𝑡𝑡

 

The Cox-Snell residuals were the first to be proposed in the literature. They have since been replaced by other 
types of residuals and are now only of historical interest. See, for example, the discussion of Marubini and 
Valsecchi (1996) who state that the use of these residuals on distributional grounds should be avoided. 

Martingale Residuals 

Martingale residuals cannot be used to assess goodness-of-fit as are the usual residuals in multiple 
regression. The best model need not have the smallest sum of squared martingale residuals. Martingale 
residuals follow the unit exponential distribution. Some authors suggested analyzing these residuals to 
determine how close they are to the exponential distribution, hoping that a lack of exponentiality indicated 
a lack of fit. Unfortunately, just the opposite is the case since in a model with no useful covariates, these 
residuals are exactly exponential in distribution. Another diagnostic tool used in regular multiple regression 
is a plot of the residuals versus the fitted values. Here again, the martingale residuals cannot be used for 
this purpose since they are negatively correlated with the fitted values.   

So, of what use are martingale residuals? They have two main uses. First, they can be used to find outliers—
individuals who are poorly fit by the model. Second, martingale residuals can be used to determine the 
functional form of each of the covariates in the model.  

Finding Outliers 

The martingale residuals are defined as 

𝑀𝑀𝑡𝑡 = 𝑐𝑐𝑡𝑡 − 𝑟𝑟𝑡𝑡 

where 𝑐𝑐𝑡𝑡 is one if there is a failure at time 𝑇𝑇𝑡𝑡 and zero otherwise. The martingale residual measures the 
difference between whether an individual experiences the event of interest and the expected number of 
events based on the model. The maximum value of the residual is one and the minimum possible value is 
negative infinity. Thus, the residual is highly skewed. A large negative martingale residual indicates a high-risk 
individual who still had a long survival time.  
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Finding the Function Form of Covariates 

Martingale residuals can be used to determine the functional form of a covariate. To do this, you generate the 
Martingale residuals from a model without the covariates. Next, you plot these residuals against the value of 
the covariate. For large datasets, this may be a time-consuming process. Therneau and Grambsch (2000) 
suggest that the martingale residuals from a model with no covariates be plotted against each of the 
covariates. These plots will reveal the appropriate functional form of the covariates in the model so long as the 
covariates are not highly correlated among themselves.  

Deviance Residuals 

Deviance residuals are used to search for outliers. The deviance residuals are defined as   

𝐷𝐷𝐷𝐷𝑉𝑉𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛(𝑀𝑀𝑡𝑡)�−2[𝑀𝑀𝑡𝑡 + 𝑐𝑐𝑡𝑡 ln(𝑐𝑐𝑡𝑡 − 𝑀𝑀𝑡𝑡)] 

or zero when 𝑀𝑀𝑡𝑡 is zero. These residuals are plotted against the risk scores given by 

exp��𝑥𝑥𝑖𝑖𝑡𝑡𝑏𝑏𝑖𝑖

𝑝𝑝

𝑖𝑖=1

� 

When there is slight to moderate censoring, large absolute values in these residuals point to potential outliers. 
When there is heavy censoring, there will be a large number of residuals near zero. However, large absolute 
values will still indicate outliers. 

Schoenfeld’s Residuals 

A set of p Schoenfeld residuals is defined for each noncensored individual. The residual is missing when the 
individual is censored.  The Schoenfeld residuals are defined as follows   

𝑟𝑟𝑖𝑖𝑡𝑡 = 𝑐𝑐𝑡𝑡 �𝑥𝑥𝑖𝑖𝑡𝑡 −
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑖𝑖∈𝑅𝑅𝑡𝑡
∑ 𝜃𝜃𝑖𝑖𝑖𝑖∈𝑅𝑅𝑡𝑡

� 

= 𝑐𝑐𝑡𝑡 �𝑥𝑥𝑖𝑖𝑡𝑡 − � 𝑥𝑥𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖
𝑖𝑖∈𝑅𝑅𝑡𝑡

� 

where 

𝑤𝑤𝑖𝑖 =
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑖𝑖∈𝑅𝑅𝑡𝑡
∑ 𝜃𝜃𝑖𝑖𝑖𝑖∈𝑅𝑅𝑡𝑡

 

Thus, this residual is the difference between the actual value of the covariate and a weighted average where 
the weights are determined from the risk scores. 

These residuals are used to estimate the influence of an observation on each of the regression coefficients. 
Plots of these quantities against the row number or against the corresponding covariate values are used to 
study these residuals. 
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Scaled Schoenfeld’s Residuals 

Hosmer and Lemeshow (1999) and Therneau and Grambsch (2000) suggest that scaling the Schoenfeld 
residuals by an estimate of their variance gives quantities with greater diagnostic ability. Hosmer and 
Lemeshow (1999) use the covariance matrix of the regression coefficients to perform the scaling. The scaled 
Schoenfeld residuals are defined as follows    

𝑟𝑟𝑗𝑗𝑡𝑡 ∗= 𝑚𝑚�𝑉𝑉𝑖𝑖𝑗𝑗𝑟𝑟𝑖𝑖𝑡𝑡

𝑝𝑝

𝑖𝑖=1

 

where m is the total number of deaths in the dataset and V is the estimated covariance matrix of the 
regression coefficients.  

These residuals are plotted against time to validate the proportional hazards assumption. If the proportional 
hazards assumption holds, the residuals will fall randomly around a horizontal line centered at zero. If the 
proportional hazards assumption does not hold, a trend will be apparent in the plot. 

Data Structure 
Survival data sets require up to three components for the survival time: the ending survival time, the 
beginning survival time during which the subject was not observed, and an indicator of whether the 
observation was censored or failed.  

Based on these three components, various types of data may be analyzed. Right censored data are specified 
using only the ending time variable and the censor variable. Left truncated and Interval data are entered 
using all three variables.  

The table below shows survival data ready for analysis. These data are from a lung cancer study reported in 
Kalbfleisch (1980), page 223. These data are in the LungCancer dataset. The variables are   

TIME Days of survival 
CENSOR Censor indicator 
STATUS Performance status 
MONTHS Months from diagnosis 
AGE Age in years 
THERAPY Prior therapy 
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LungCancer Dataset (Subset) 

TIME CENSOR STATUS MONTHS AGE THERAPY 
72 1 60 7 69 0 
411 1 70 5 64 10 
228 1 60 3 38 0 
126 1 60 9 63 10 
118 1 70 11 65 10 
10 1 20 5 49 0 
82 1 40 10 69 10 
110 1 80 29 68 0 
314 1 50 18 43 0 
100 0 70 6 70 0 
42 1 60 4 81 0 
8 1 40 58 63 10 
144 1 30 4 63 0 
25 0 80 9 52 10 
11 1 70 11 48 10 
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Example 1 – Cox Regression Analysis 
This section presents an example of how to run a Cox regression analysis. The data used are found in the 
LungCancer dataset. These data are an excerpt from a lung cancer study reported in Kalbfleisch (1980). The 
variables used in the analysis are  

TIME Days of survival 
CENSOR Censor indicator 
STATUS Karnofsky rating performance status 
MONTHS Months from diagnosis 
AGE Age in years 
THERAPY Prior therapy: 0 no, 10 yes 

The purpose of this analysis is to study the relationship between length of patient survival and the 
covariates.  

Setup 
To run this example, complete the following steps: 

1 Open the LungCancer example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select LungCancer and click OK. 

2 Specify the Cox Regression procedure options 
• Find and open the Cox Regression procedure using the menus or the Procedure Navigator.  
• The settings for this example are listed below and are stored in the Example 1 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables, Model Tab 


Time ................................................................. Time 
  Ties Method ................................................... Efron 
Censor ............................................................. Censor 
Numeric X's ..................................................... Status-Therapy 
 
Reports Tab 
 _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

All Available Reports ........................................ Checked (click the Check All button) 
 

Plots Tab 


All Available Plots ............................................ Checked (click the Check All button) 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 
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Run Summary  
 
Run Summary 
───────────────────────────────────────────────────────────────────────── 
Item Value Rows Value 
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Time Variable Time Rows Processed 15 
Censor Variable Censor Rows Used in Estimation 15 
Frequency Variable None Rows with X's Missing 0 
Independent Variables Available 4 Rows with Y Missing 0 
Number of X's in the Model 4 Rows Failed 13 
Final Log-Likelihood -20.1143 Rows Censored 2 
Number of Likelihood Iterations 7 of 20   
Convergence Criterion 1E-09   
Achieved Convergence 1.206491E-15   
Completion Status Normal completion   
Starting B's 0   
Subset Selection Method None 
───────────────────────────────────────────────────────────────────────── 
 

This report summarizes the characteristics of the dataset and provides useful information about the reports 
to follow. It should be studied to make sure that the data were read in properly and that the estimation 
algorithm terminated normally. We will only discuss those parameters that need special explanation.  

Final Log-Likelihood 

This is the log-likelihood of the model.  

Number of Likelihood Iterations 

This is the number of iterations used by the maximum likelihood procedure. This value should be compared 
against the value of the Maximum Iterations option to see if the iterative procedure terminated early. 

Achieved Convergence 

This is the maximum of the relative changes in the regression coefficients on the last iteration. If this value is 
less than the Convergence Criterion, the procedure converged normally. Otherwise, the specified 
convergence precision was not achieved. 

Rows Processed 

This is the number of rows processed during the run. Check this count to make certain it agrees with what 
you anticipated. 
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Regression Coefficients  
 
Regression Coefficients 
───────────────────────────────────────────────────────────────────────── 
 Regression  Risk     
Independent Coefficient Standard Ratio  Wald  Pseudo 
Variable (B) Error of B Exp(B) Mean Z-Value P-Value R² 
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

B1: Status -0.032415 0.020324 0.9681 57.33333 -1.5949 0.1107 0.2203 
B2: Months 0.064557 0.033056 1.0667 12.6 1.9530 0.0508 0.2975 
B3: Age 0.039805 0.035232 1.0406 60.33333 1.1298 0.2586 0.1241 
B4: Therapy 0.013967 0.068384 1.0141 4.666667 0.2042 0.8382 0.0046 
───────────────────────────────────────────────────────────────────────── 
 
 
Estimated Cox Regression Model 
───────────────────────────────────────────────────────────────────────── 
Exp( -0.0324152392634531*Status + 0.0645571159984993*Months + 0.0398048128120681*Age + 
0.0139668973406698*Therapy ) 
───────────────────────────────────────────────────────────────────────── 
Transformation Note: 
Regular transformations must be less the 255 characters. If this expression is longer the 255 characters, copy this expression 
and paste it into a text file, then use the transformation FILE(filename.txt) to access the text file. 
 

This report displays the results of the proportional hazards estimation. Following are the detailed 
definitions:  

Independent Variable 

This is the variable from the model that is displayed on this line. If the variable is continuous, it is displayed 
directly. If the variable is discrete, the binary variable is given. For example, suppose that a discrete 
independent GRADE variable has three values: A, B, and C. The name shown here would be something like 
GRADE=B. This refers to a binary variable that is one for those rows in which GRADE was B and zero 
otherwise. 

Note that the placement of the name is controlled by the Stagger label and output option of the Report 
Options tab. 

Regression Coefficient (B) 

This is the estimate of the regression coefficient, 𝛽𝛽𝑖𝑖. Remember that the basic regression equation is 

ln[ℎ(𝑇𝑇)] = ln[ℎ0(𝑇𝑇)] +�𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

 

Thus, the quantity 𝛽𝛽𝑖𝑖 is the amount that the log of the hazard rate changes when 𝑥𝑥𝑖𝑖 is increased by one unit. 
Note that a positive coefficient implies that as the value of the covariate is increased, the hazard increases, 
and the prognosis gets worse. A negative coefficient indicates that as the variable is increased, the hazard 
decreases, and the prognosis gets better.  

Standard Error of B 

This is 𝑠𝑠𝑏𝑏𝑗𝑗 , the large-sample estimate of the standard error of the regression coefficient. This is an estimate 
of the precision of the regression coefficient. It is provided by the square root of the corresponding diagonal 
element of the covariance matrix, 𝑉𝑉��̂�𝛽� = 𝐼𝐼−1. It is also used as the denominator of the Wald test. 
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Risk Ratio Exp(B) 

This the value of 𝑒𝑒𝛽𝛽𝑖𝑖. This value is often called the risk ratio since it is the ratio of two hazards whose only 
difference is that 𝑥𝑥𝑖𝑖 is increased by one unit. That is,  

ℎ(𝑇𝑇|𝑥𝑥𝑖𝑖 = 𝑎𝑎 + 1)
ℎ(𝑇𝑇|𝑥𝑥𝑖𝑖 = 𝑎𝑎) = 𝑒𝑒𝛽𝛽𝑖𝑖 

In this example, if Months is increased by one, the hazard rate is increased by 6.67%. If you want to calculate 
the effect of increasing Months by three, the hazard rate is increased by 1.06673 = 1.2137, or 21.37%. Note 
that is not equal to 3.0 times 6.67. 

Mean 

This is the average of this independent variable. The means are especially important in interpreting the 
baseline hazard rates. Unless you have opted otherwise, the independent variables have been centered by 
subtracting these mean values. Hence, the baseline hazard rate occurs when each independent variable is 
equal to its mean.  

Wald Z-Value 

This is the z value of the Wald test used for testing the hypothesis that 𝛽𝛽𝑖𝑖 = 0 against the alternative 𝛽𝛽𝑖𝑖 ≠ 0. 
The Wald test is calculated using the formula   

𝑧𝑧𝑖𝑖 =
𝑏𝑏𝑖𝑖𝑗𝑗
𝑠𝑠𝑏𝑏𝑖𝑖

 

The distribution of the Wald statistic is closely approximated by the normal distribution in large samples. 
However, in small samples, the normal approximation may be poor. For small samples, likelihood ratio tests 
perform better and are preferred. 

P-Value 

This is the two-sided probability level. This is the probability of obtaining a z-value larger in absolute value 
than the one obtained. If this probability is less than the specified significance level (say 0.05), the regression 
coefficient is significantly different from zero.  

Pseudo R2 

An index value, similar to R2 in regression, representing the relative influence of this variable. If C = z2, n = 
sample size, and p = number of variables, then R2 = C/(n-p+C).  

Estimated Cox Regression Model 

This section gives the Cox regression model in a regular text format that can be used as a transformation 
formula. The regression coefficients are displayed in double precision because a single-precision formula 
does not include the accuracy necessary to calculate the hazard rates. 

Note that transformation must be less than 255 characters. Since these formulas are often greater than 255 
characters in length, you must use the FILE(filename) transformation. To do so, copy the formula to a text 
file using Notepad, Windows Write, or Word to receive the model text. Be sure to save the file as an 
unformatted text (ASCII) file. The transformation is FILE(filename) where filename is the name of the text file, 
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including directory information. When the transformation is executed, it will load the file and use the 
transformation stored there. 

Confidence Interval Limits for Regression Coefficients 
 
Confidence Interval Limits for Regression Coefficients 
───────────────────────────────────────────────────────────────────────── 
  95% Confidence Interval  95% Confidence Interval 
 Regression Limits for B Risk Limits for Exp(B) 
Independent Coefficient ───────────────── Ratio ───────────────── 
Variable (B) Lower Upper Exp(B) Lower Upper 
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

B1: Status -0.032415 -0.072250 0.007420 0.9681 0.9303 1.0074 
B2: Months 0.064557 -0.000230 0.129345 1.0667 0.9998 1.1381 
B3: Age 0.039805 -0.029249 0.108859 1.0406 0.9712 1.1150 
B4: Therapy 0.013967 -0.120062 0.147996 1.0141 0.8869 1.1595 
───────────────────────────────────────────────────────────────────────── 
 

This report provides the confidence intervals for the regression coefficients and the risk ratios. The 
confidence coefficient, in this example 95%, was specified on the Format tab.  

Independent Variable 

This is the independent variable that is displayed on this line. If the variable is continuous, it is displayed 
directly. If the variable is discrete, the definition of the binary variable that was generated is given. For 
example, suppose that a discrete independent GRADE variable has three values: A, B, and C. The name 
shown here would be something like GRADE=B. This refers to a binary variable that is one for those rows in 
which GRADE was B and zero otherwise. 

Note that the placement of the name is controlled by Stagger label and output option of the Report Options 
tab. 

Regression Coefficient (B or Beta) 

This is the estimate of the regression coefficient, 𝛽𝛽𝑖𝑖. Remember that the basic regression equation is 

ln[ℎ(𝑇𝑇)] = ln[ℎ0(𝑇𝑇)] +�𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

 

Thus, the quantity 𝛽𝛽𝑖𝑖 is the amount that the log of the hazard rate changes when 𝑥𝑥𝑖𝑖 is increased by one unit. 
Note that a positive coefficient implies that as the value of the covariate is increased, the hazard increases 
and the prognosis gets worse. A negative coefficient indicates that as the variable is increased, the hazard 
decreases and the prognosis gets better. 

95% Confidence Interval Limits for B (Lower and Upper) 

A 95% confidence interval for 𝛽𝛽𝑖𝑖 is given by an upper and lower limit. These limits are based on the Wald 
statistic using the formula  

𝑏𝑏𝑖𝑖 ± 𝑧𝑧1−𝛼𝛼/2𝑠𝑠𝑏𝑏𝑖𝑖  

Since they are based on the Wald test, they are only valid for large samples. 
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Risk Ratio Exp(B) 

This the value of 𝑒𝑒𝛽𝛽𝑖𝑖. This value is often called the risk ratio since it is the ratio of two hazards whose only 
difference is that 𝑥𝑥𝑖𝑖 is increased by one unit. That is,  

ℎ(𝑇𝑇|𝑥𝑥𝑖𝑖 = 𝑎𝑎 + 1)
ℎ(𝑇𝑇|𝑥𝑥𝑖𝑖 = 𝑎𝑎) = 𝑒𝑒𝛽𝛽𝑖𝑖 

In this example, if Months is increased by one, the hazard rate is increased by 6.67%. If you want to calculate 
the effect of increasing Months by three, the hazard rate is increased by 1.06673 = 1.2137, or 21.37%. Note 
that is not equal to 3.0 times 6.67. 

95% Confidence Interval Limits for Exp(B) (Lower and Upper) 

A 95% confidence interval for 𝑒𝑒𝛽𝛽𝑖𝑖 is given by an upper and lower limit. These limits are based on the Wald 
statistic using the formula  

exp�𝑏𝑏𝑖𝑖 ± 𝑧𝑧1−𝛼𝛼 2⁄ 𝑠𝑠𝑏𝑏𝑖𝑖� 

Since they are based on the Wald test, they are only valid for large samples. 

Analysis of Deviance  
 
Analysis of Deviance 
───────────────────────────────────────────────────────────────────────── 
   Increase  
   from Model  
Term(s)  -2 Log- Deviance  
Omitted DF Likelihood (Chi²) P-Value 
─────────────────────────────────────────────────────────────────────────────── 

All Terms 4 46.6698 6.4413 0.1685 
Status 1 42.7787 2.5501 0.1103 
Months 1 44.3928 4.1642 0.0413 
Age 1 41.5943 1.3657 0.2426 
Therapy 1 40.2704 0.0419 0.8379 
None(Model) 4 40.2286   
───────────────────────────────────────────────────────────────────────── 
The P-Value is for testing the significance of each term after adjusting for all other terms. 
 

This report is the Cox regression analog of the analysis of variance table. It displays the results of a chi-
square test used to test whether each of the individual terms in the regression are statistically significant 
after adjusting for all other terms in the model.  

This report is not produced during a subset selection run. 

Note that this report requires that a separate regression be run for each line. Thus, if the running time is too 
long, you might consider omitting this report. 

Term(s) Omitted 

This is the model term that is being tested. The test is formed by comparing the deviance statistic when the 
term is removed with the deviance of the complete model. Thus, the deviance when the term is left out of 
the model is shown. 
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The “All” line refers to a no-covariates model. The “None(Model)” refers to the complete model with no 
terms removed. 

Note that it is usually not advisable to include an interaction term in a model when one of the associated 
main effects is missing—which is what happens here. However, in this case, we believe this to be a useful 
test. 

Note also that the name may become very long, especially for interaction terms. These long names may 
misalign the report. You can force the rest of the items to be printed on the next line by using the Stagger 
label and output option of the Report Options tab. This should create a better looking report when the 
names are extra-long. 

DF 

This is the degrees of freedom of the chi-square test displayed on this line. DF is equal to the number of 
individual independent variables in the term. 

-2 Log-Likelihood 

This is the log-likelihood achieved by the model being described on this line of the report.  

Increase from Model Deviance (Chi2) 

This is the difference between the deviance for the model described on this line and the deviance of the 
complete model. This value follows the chi2 distribution in medium to large samples. This value can be 
thought of as the analog of the residual sum of squares in multiple regression. Thus, you can think of this 
value as the increase in the residual sum of squares that occurs when this term is removed from the model. 

Another way to interpret this test is as a redundancy test because it tests whether this term is redundant 
after considering all of the other terms in the model. 

P-Value 

This is the significance level of the chi2 test. This is the probability that a chi2 value with degrees of freedom 
DF is equal to this value or greater. If this value is less than 0.05 (or other appropriate value), the term is said 
to be statistically significant. 

Log-Likelihood and R2 Section 
 
Log-Likelihood and R² 
───────────────────────────────────────────────────────────────────────── 
   R² of Reduction 
Term(s)  Log- Remaining from 
Omitted DF Likelihood Term(s) Model R² 
───────────────────────────────────────────────────────────────────────────────── 

All Terms 4 -23.3349 0.0000 0.3491 
Status 1 -21.3893 0.2285 0.1206 
Months 1 -22.1964 0.1408 0.2083 
Age 1 -20.7971 0.2871 0.0620 
Therapy 1 -20.1352 0.3473 0.0018 
None(Model) 4 -20.1143 0.3491 0.0000 
───────────────────────────────────────────────────────────────────────── 
 

This report provides the log-likelihoods and R2 values of various models. This report is not produced during 
a subset selection run.  
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Note that this report requires that a separate Cox regression be run for each line. Thus, if the running time 
is too long, you might consider omitting this report. 

Term(s) Omitted 

This is the term that is omitted from the model. The “All” line refers to no-covariates model. The 
“None(Model)” refers to the complete model with no terms removed. The “None(Model)” refers to the 
complete model with no terms removed. 

Note that the name may become very long, especially for interaction terms. These long names may misalign 
the report. You can force the rest of the items to be printed on the next line by using the Stagger label and 
output option of the Report Options tab. This should create a better looking report when the names are 
extra-long. 

DF 

This is the degrees of freedom of the term displayed on this line.  

Log-Likelihood 

This is the log-likelihood of the model displayed on this line. Note that this is the log-likelihood of the logistic 
regression without the term listed. 

R2 of Remaining Term(s) 

This is the R2 of the model displayed on this line. Note that the model does not include the term listed at the 
beginning of the line. This R2  is analogous to the R2 in multiple regression, but it is not the same.  

Hosmer and Lemeshow (1999) indicate that at the time of the writing of their book, there is no single, easy 
to interpret measure in Cox regression that is analogous to R2 in multiple regression. They indicate that if 
such a measure “must be calculated” they would use 

𝑅𝑅𝑝𝑝2 = 1 − exp �
2
𝑛𝑛 �
𝐿𝐿0 − 𝐿𝐿𝑝𝑝�� 

where 𝐿𝐿0 is the log-likelihood of the model with no covariates, n is the number of observations (censored or 
not), and 𝐿𝐿𝑝𝑝 is the log-likelihood of the model that includes the covariates.  

Reduction from Model R2 

This is amount that R2  is reduced when the term is omitted from the regression model. This reduction is 
calculated from the R2 achieved by the full model. 

This quantity is used to determine if removing a term causes a large reduction in R2. If it does not, then the 
term can be safely removed from the model. 
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Baseline Hazard and Survival 
 
Baseline Hazard and Survival 
───────────────────────────────────────────────────────────────────────── 
 Centered Baseline  
 ──────────────────────────  
 Cumulative Cumulative Hazard  
Time Survival Hazard Rate Alpha 
────────────────────────────────────────────────────────────────────────── 

8 0.9654 0.0352 0.0346 0.9654 
10 0.8912 0.1152 0.0768 0.9232 
11 0.8183 0.2006 0.0819 0.9181 
42 0.7449 0.2945 0.0897 0.9103 
72 0.6717 0.3980 0.0983 0.9017 
82 0.5934 0.5220 0.1166 0.8834 
110 0.4942 0.7048 0.1671 0.8329 
118 0.3904 0.9407 0.2102 0.7898 
126 0.2911 1.2341 0.2543 0.7457 
144 0.1843 1.6915 0.3670 0.6330 
228 0.0922 2.3841 0.4997 0.5003 
314 0.0288 3.5461 0.6872 0.3128 
411 0.0288 3.5461 1.0000 0.0000 
───────────────────────────────────────────────────────────────────────── 
 

This report displays various estimated survival and hazard values. These are centered if the Centered X’s 
option is selected.  

Baseline Cumulative Survival 

This estimates the cumulative survival probability of an individual with all covariates equal to their means or to 
zero depending on whether the data are centered or not. It is the value of 𝑆𝑆0(𝑇𝑇) which is estimated using the 
formula    

𝑆𝑆0(𝑇𝑇) = �𝛼𝛼𝑡𝑡
𝑇𝑇𝑡𝑡≤𝑇𝑇

 

Baseline Cumulative Hazard 

This estimates the cumulative baseline hazard of an individual with a set of covariates all equal to zero. It is the 
value of 𝐻𝐻0(𝑇𝑇) which is calculated using the formula 

𝐻𝐻0(𝑇𝑇) = − ln�𝑆𝑆0(𝑇𝑇)� 

Baseline Hazard Rate 

This is the estimate of the baseline hazard rates ℎ0(𝑇𝑇𝑡𝑡) which are calculated as follows 

ℎ0(𝑇𝑇𝑡𝑡) = 1 − 𝛼𝛼𝑡𝑡 

Alpha 

This is the value of the conditional baseline survival probabilities at the times listed. These values are used to 
calculate 𝑆𝑆0(𝑇𝑇). 
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Residuals 
 
Residuals 
───────────────────────────────────────────────────────────────────────── 
  Cox-Snell  Martingale  Deviance  
Row Time Residual  Residual  Residual  
──────────────────────────────────────────────────────────────────────────────────────────────────────────── 

12 8 1.3862 ||||||......... -0.3862 ||............. -0.3454 ||............. 
6 10 0.1411 |.............. 0.8589 ||||||......... 1.4828 ||||||||||||... 
15 11 0.0791 |.............. 0.9209 ||||||......... 1.7978 ||||||||||||||| 
14+ 25 0.0590 |.............. -0.0590 |.............. -0.3434 ||............. 
11 42 0.3307 |.............. 0.6693 ||||........... 0.9352 |||||||........ 
1 72 0.3364 |.............. 0.6636 ||||........... 0.9229 |||||||........ 
7 82 1.1774 |||||.......... -0.1774 |.............. -0.1679 |.............. 
10+ 100 0.3112 |.............. -0.3112 |.............. -0.7890 ||||||......... 
8 110 1.2387 ||||||......... -0.2387 |.............. -0.2220 |.............. 
5 118 0.7300 |||............ 0.2700 |.............. 0.2991 |.............. 
4 126 1.0748 |||||.......... -0.0748 |.............. -0.0730 |.............. 
13 144 2.4532 ||||||||||||... -1.4532 ||||||||||..... -1.0543 ||||||||....... 
3 228 0.4531 ||............. 0.5469 |||............ 0.6996 |||||.......... 
9 314 2.9953 ||||||||||||||| -1.9953 ||||||||||||||| -1.3403 |||||||||||.... 
2 411 1.7951 ||||||||....... -0.7951 |||||.......... -0.6481 |||||.......... 
───────────────────────────────────────────────────────────────────────── 
 

The various residuals were discussed in detail earlier in this chapter. Only a brief definition will be given 
were.  

Row 

This is the row from the database that is displayed on this line. Rows with a plus sign were censored. 

Time 

This is the value of the elapsed time. 

Cox-Snell Residual 

Cox-Snell residuals were created to assess the goodness-of-fit of the Cox regression. They have since been 
replaced by other types of residuals and are now only of historical interest. See, for example, the discussion of 
Marubini and Valsecchi (1996) who state that the use of these residuals on distributional grounds should be 
avoided.  

Martingale Residual 

The martingale residuals are defined as  

𝑀𝑀𝑡𝑡 = 𝑐𝑐𝑡𝑡 − 𝑟𝑟𝑡𝑡 

where 𝑐𝑐𝑡𝑡 is one if there is a failure at time 𝑇𝑇𝑡𝑡 and zero otherwise. The martingale residual measures the 
difference between whether an individual experiences the event of interest and the expected number of 
events based on the model. The maximum value of the residual is one and the minimum possible value is 
negative infinity. Thus, the residual is highly skewed. A large negative martingale residual indicates a high-risk 
individual who still had a long survival time. 

Martingale residuals cannot be used to assess goodness-of-fit as are the usual residuals in multiple 
regression. They have two main uses. First, they can be used to find outliers—individuals who are poorly fit 
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by the model. Second, martingale residuals can be used to determine the functional form of each of the 
covariates in the model.  

Martingale residuals can be used to determine the functional form of a covariate. To do this, you generate the 
Martingale residuals from a model without the covariate. Next, you plot these residuals against the value of 
the covariate.  

Deviance Residual 

Deviance residuals are used to search for outliers. The deviance residuals are defined as  

𝐷𝐷𝐷𝐷𝑉𝑉𝑡𝑡 = sign(𝑀𝑀𝑡𝑡)�−2[𝑀𝑀𝑡𝑡 + 𝑐𝑐𝑡𝑡 ln(𝑐𝑐𝑡𝑡 − 𝑀𝑀𝑡𝑡)] 

or zero when 𝑀𝑀𝑡𝑡 is zero. These residuals are plotted against the risk scores given by 

exp��𝑥𝑥𝑖𝑖𝑡𝑡𝑏𝑏𝑖𝑖

𝑝𝑝

𝑖𝑖=1

� 

When there is slight to moderate censoring, large absolute values in these residuals point to potential outliers. 
When there is heavy censoring, there will be a large number of residuals near zero. However, large absolute 
values will still indicate outliers.  

Martingale Residuals  
 
Martingale Residuals 
───────────────────────────────────────────────────────────────────────── 
  Null    
  Martingale  Martingale  
Row Time Residual  Residual  
──────────────────────────────────────────────────────────────────────────────── 

12 8 0.9310 ||||||||....... -0.3862 ||............. 
6 10 0.8569 ||||||||....... 0.8589 ||||||......... 
15 11 0.7769 |||||||........ 0.9209 ||||||......... 
14+ 25 -0.2231 |.............. -0.0590 |.............. 
11 42 0.6815 ||||||......... 0.6693 ||||........... 
1 72 0.5762 |||||.......... 0.6636 ||||........... 
7 82 0.4584 |||............ -0.1774 |.............. 
10+ 100 -0.5416 ||||........... -0.3112 |.............. 
8 110 0.3043 ||............. -0.2387 |.............. 
5 118 0.1219 |.............. 0.2700 |.............. 
4 126 -0.1012 |.............. -0.0748 |.............. 
13 144 -0.3889 |||............ -1.4532 ||||||||||..... 
3 228 -0.7944 |||||||........ 0.5469 |||............ 
9 314 -1.4875 ||||||||||||||| -1.9953 ||||||||||||||| 
2 411 -1.4875 ||||||||||||||| -0.7951 |||||.......... 
───────────────────────────────────────────────────────────────────────── 
 

The various residuals were discussed in detail earlier in this chapter. Only a brief definition will be given 
here.  

Row 

This is the row from the database that is displayed on this line. Rows with a plus sign were censored. 
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Time 

This is the value of the elapsed time. 

Null Martingale Residual 

These are the null martingale residuals. They are computed from a null (no covariate) model. Therneau and 
Grambsch (2000) suggest that the null-model martingale residuals can show the ideal functional form of the 
covariates so long as the covariates are not highly correlated among themselves. To find the appropriate 
functional form, each covariate is plotted against these residuals.  

Martingale Residual 

The martingale residuals are repeated here. They were defined in the Residuals Section. 

Schoenfeld Residuals  
 
Schoenfeld Residuals 
───────────────────────────────────────────────────────────────────────── 
  Residual  Residual  Residual  
Row Time Status  Months  Age  
──────────────────────────────────────────────────────────────────────────────────────────────────────── 

12 8 -3.4327 |.............. 11.8140 ||||||||||||... -0.1121 |.............. 
6 10 -33.7298 ||||||||||||||| -5.7472 |||||.......... -14.4483 ||||||||||||... 
15 11 12.7982 |||||.......... -0.3388 |.............. -16.9356 ||||||||||||||| 
11 42 3.8458 |.............. -7.4120 |||||||........ 15.1299 |||||||||||||.. 
1 72 4.2736 |.............. -5.2365 |||||.......... 4.8130 ||||........... 
7 82 -15.3358 ||||||......... -2.7151 ||............. 5.2528 ||||........... 
8 110 20.6225 |||||||||...... 14.7012 ||||||||||||||| 6.6884 |||||.......... 
5 118 18.4375 ||||||||....... 2.2723 ||............. 6.2230 |||||.......... 
4 126 12.1419 |||||.......... 0.7288 |.............. 5.4733 ||||........... 
13 144 -14.3230 ||||||......... -4.0590 ||||........... 7.0669 ||||||......... 
3 228 2.1964 |.............. -8.8792 |||||||||...... -11.2819 |||||||||...... 
9 314 -7.4946 |||............ 4.8715 ||||........... -7.8693 ||||||......... 
2 411 0.0000 |.............. 0.0000 |.............. 0.0000 |.............. 
───────────────────────────────────────────────────────────────────────── 
 
Schoenfeld Residuals (Continued) 
───────────────────────────────────────────────────────────────────────── 
  Residual  
Row Time Therapy  
──────────────────────────────────────────────── 

12 8 1.5295 |||............ 
6 10 -3.8822 |||||||||...... 
15 11 5.7181 |||||||||||||.. 
11 42 -3.9309 |||||||||...... 
1 72 -4.3682 ||||||||||..... 
7 82 5.2326 ||||||||||||... 
8 110 -3.3664 |||||||........ 
5 118 5.3579 ||||||||||||... 
4 126 6.4343 ||||||||||||||| 
13 144 -1.6923 |||............ 
3 228 -3.2851 |||||||........ 
9 314 -3.7473 ||||||||....... 
2 411 0.0000 |.............. 
───────────────────────────────────────────────────────────────────────── 
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This report displays the Schoenfeld residuals for each non-censored individual. Note that most authors 
suggest using the scaled Schoenfeld residuals rather than these residuals. Since these residuals were 
discussed earlier in this chapter, only a brief definition will be given here. 

Row 

This is the row from the database that is displayed on this line. Rows with a plus sign were censored.  

Time 

This is the value of the elapsed time. 

Schoenfeld Residuals 

The Schoenfeld residuals are defined as follows 

𝑟𝑟𝑖𝑖𝑡𝑡 = 𝑐𝑐𝑡𝑡 �𝑥𝑥𝑖𝑖𝑡𝑡 − � 𝑥𝑥𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖
𝑖𝑖∈𝑅𝑅𝑡𝑡

� 

where 

𝑤𝑤𝑖𝑖 =
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑖𝑖∈𝑅𝑅𝑡𝑡
∑ 𝜃𝜃𝑖𝑖𝑖𝑖∈𝑅𝑅𝑡𝑡

 

Thus, this residual is the difference between the actual value of the covariate and a weighted average where 
the weights are determined from the risk scores. These residuals are used to estimate the influence of an 
observation on each of the regression coefficients. Plots of these quantities against the row number or against 
the corresponding covariate values are used to study these residuals. 

Scaled Schoenfeld Residuals  
 
Scaled Schoenfeld Residuals 
───────────────────────────────────────────────────────────────────────── 
  Residual  Residual  Residual  
Row Time Status  Months  Age  
──────────────────────────────────────────────────────────────────────────────────────────────────────── 

12 8 -0.0569 ||||||......... 0.1828 ||||||||||||||| 0.0276 |.............. 
6 10 -0.1280 ||||||||||||||| -0.0528 ||||........... -0.1660 |||||||........ 
15 11 0.0701 ||||||||....... -0.0731 |||||.......... -0.3476 ||||||||||||||| 
11 42 0.0355 ||||........... -0.0812 ||||||......... 0.2516 ||||||||||..... 
1 72 0.0487 |||||.......... -0.0873 |||||||........ 0.0959 ||||........... 
7 82 -0.1048 ||||||||||||... 0.0410 |||............ 0.0482 ||............. 
8 110 0.0753 ||||||||....... 0.1616 |||||||||||||.. 0.1586 ||||||......... 
5 118 0.0611 |||||||........ 0.0237 |.............. 0.0300 |.............. 
4 126 0.0280 |||............ 0.0206 |.............. 0.0116 |.............. 
13 144 -0.0690 ||||||||....... -0.0020 |.............. 0.1376 |||||.......... 
3 228 0.0663 |||||||........ -0.1822 ||||||||||||||. -0.1832 |||||||........ 
9 314 -0.0262 |||............ 0.0489 ||||........... -0.0642 ||............. 
2 411 0.0000 |.............. 0.0000 |.............. 0.0000 |.............. 
───────────────────────────────────────────────────────────────────────── 
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Scaled Schoenfeld Residuals (Continued) 
───────────────────────────────────────────────────────────────────────── 
  Residual  
Row Time Therapy  
──────────────────────────────────────────────── 

12 8 0.1550 |||||.......... 
6 10 0.0223 |.............. 
15 11 0.4537 ||||||||||||||| 
11 42 -0.4288 ||||||||||||||. 
1 72 -0.3501 |||||||||||.... 
7 82 0.3223 ||||||||||..... 
8 110 -0.2982 |||||||||...... 
5 118 0.1971 ||||||......... 
4 126 0.2903 |||||||||...... 
13 144 -0.1256 ||||........... 
3 228 -0.1361 ||||........... 
9 314 -0.1018 |||............ 
2 411 0.0000 |.............. 
───────────────────────────────────────────────────────────────────────── 
 

This report displays the scaled Schoenfeld residuals for each non-censored individual. These residuals are 
often used to find influential observations. Since these residuals were discussed earlier in this chapter, only 
a brief definition will be given here.  

Row 

This is the row from the database that is displayed on this line. Rows with a plus sign were censored. 

Time 

This is the value of the elapsed time. 

Scaled Schoenfeld Residuals 

The scaled Schoenfeld residuals are defined as follows 

𝑟𝑟𝑗𝑗𝑡𝑡 ∗= 𝑚𝑚�𝑉𝑉𝑖𝑖𝑗𝑗𝑟𝑟𝑖𝑖𝑡𝑡

𝑝𝑝

𝑖𝑖=1

 

where m is the total number of deaths in the dataset and V is the estimated covariance matrix of the 
regression coefficients. Hosmer and Lemeshow (1999) and Therneau and Grambsch (2000) suggest that 
scaling the Schoenfeld residuals by an estimate of their variance gives quantities with greater diagnostic 
ability. Hosmer and Lemeshow (1999) use the covariance matrix of the regression coefficients to perform 
the scaling.  

These residuals are plotted against time to validate the proportional hazards assumption. If the proportional 
hazards assumption holds, the residuals will fall randomly around a horizontal line centered at zero. If the 
proportional hazards assumption does not hold, a trend will be apparent in the plot. 

  

http://www.ncss.com/


NCSS Statistical Software NCSS.com 

Cox Regression 

565-33 
 © NCSS, LLC. All Rights Reserved. 

Predicted Values 
 
Predicted Values 
───────────────────────────────────────────────────────────────────────── 
  Cumulative Linear Relative Cumulative Cumulative 
  Baseline Predictor Risk Hazard Survival 
Row Time Hazard XB Exp(XB) H(T|X) S(T|X) 
───────────────────────────────────────────────────────────────────────────────────────────────────────────── 

12 8 0.0352 3.6734 39.3853 1.3862 0.2500 
6 10 0.1152 0.2032 1.2254 0.1411 0.8684 
15 11 0.2006 -0.9303 0.3944 0.0791 0.9239 
14+ 25 0.2006 -1.2244 0.2939 0.0590 0.9427 
11 42 0.2945 0.1158 1.1228 0.3307 0.7184 
1 72 0.3980 -0.1682 0.8452 0.3364 0.7143 
7 82 0.5220 0.8135 2.2557 1.1774 0.3081 
10+ 100 0.5220 -0.5171 0.5963 0.3112 0.7326 
8 110 0.7048 0.5640 1.7577 1.2387 0.2897 
5 118 0.9407 -0.2536 0.7760 0.7300 0.4819 
4 126 1.2341 -0.1382 0.8709 1.0748 0.3414 
13 144 1.6915 0.3718 1.4503 2.4532 0.0860 
3 228 2.3841 -1.6603 0.1901 0.4531 0.6356 
9 314 3.5461 -0.1688 0.8447 2.9953 0.0500 
2 411 3.5461 -0.6808 0.5062 1.7951 0.1661 
───────────────────────────────────────────────────────────────────────── 
 

This report displays various values estimated by the model. These are centered if the Centered X’s option is 
selected.  

Row 

This is the row from the database that is displayed on this line. Rows with a plus sign were censored. 

Time 

This is the value of the elapsed time. 

Baseline Cumulative Hazard 

This estimates the cumulative baseline hazard of this individual. The baseline hazard occurs when all 
covariates are equal to zero (or to their means if centering is used). It is the value of 𝐻𝐻0(𝑇𝑇) which is calculated 
using the formula 

𝐻𝐻0(𝑇𝑇) = − ln�𝑆𝑆0(𝑇𝑇)� 

Linear Predictor (XB) 

This is the value of the linear portion of the Cox regression model. It is the logarithm of the ratio of the hazard 
rate to the baseline hazard rate. That is, it is the logarithm of the hazard ratio (or relative risk). The formula for 
the linear predictor is  

ln �
ℎ(𝑇𝑇)
ℎ0(𝑇𝑇)� = �𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

 

This value is occasionally suggested for use in plotting.  
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Relative Risk Exp(XB) 

This is the ratio between the actual hazard rate and the baseline hazard rate, sometimes called the risk ratio or 
the relative risk. The formula for this quantity is 

ℎ(𝑇𝑇)
ℎ0(𝑇𝑇) = exp��𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

� 

= 𝑒𝑒𝑥𝑥1𝛽𝛽1𝑒𝑒𝑥𝑥2𝛽𝛽2 ⋯𝑒𝑒𝑥𝑥𝑝𝑝𝛽𝛽𝑝𝑝 

Cumulative Hazard H(T|X) 

Under the proportional hazards regression model, the cumulative hazard is the sum of the individual hazard 
rates from time zero to time T. 

𝐻𝐻(𝑇𝑇,𝑋𝑋) = �ℎ(𝑢𝑢,𝑋𝑋)𝑑𝑑𝑢𝑢
𝑇𝑇

0

 

= �ℎ0(𝑢𝑢)𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1 𝑑𝑑𝑢𝑢

𝑇𝑇

0

 

= 𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1 � ℎ0(𝑢𝑢)𝑑𝑑𝑢𝑢

𝑇𝑇

0

 

= 𝐻𝐻0(𝑇𝑇)𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1  

Note that the time survival time T is present in 𝐻𝐻0(𝑇𝑇), but not in 𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1 . Hence, the cumulative hazard up to 

time T is represented in this model by a baseline cumulative hazard 𝐻𝐻0(𝑇𝑇) which is adjusted for the covariates 

by multiplying by the factor 𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1 . 

Cumulative Survival S(T|X) 

Under the proportional hazards regression model, the cumulative survival is the probability that an individual 
survives past T. The formula for the cumulative survival is 

𝑆𝑆(𝑇𝑇,𝑋𝑋) = exp�−𝐻𝐻(𝑇𝑇,𝑋𝑋)� 

= exp �−𝐻𝐻0(𝑇𝑇)𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1 � 

= �𝑒𝑒−𝐻𝐻0(𝑇𝑇)�
𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝
𝑖𝑖=1

 

= 𝑆𝑆0(𝑇𝑇)𝑒𝑒
∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1  

Note that the time survival time T is present in 𝑆𝑆0(𝑇𝑇), but not in 𝑒𝑒∑ 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖
𝑝𝑝
𝑖𝑖=1 .  
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Schoenfeld Residuals vs Time Plot(s) 
 
Schoenfeld Residuals vs Time Plot(s) 
───────────────────────────────────────────────────────────────────────── 

     
 

     
 

The Schoenfeld residuals are plotted for two reasons. First of all, these plots are useful in assessing whether 
the proportional hazards assumption is met. If the least squares line is horizontal and the lowess curve 
seems to track the least squares line fairly well, the proportional hazard assumption is reasonable. 

Second, points that are very influential in determining the estimated regression coefficient for a covariate 
show up as outliers on these plots. When influential points are found, it is important to make sure that the 
data associated with these points are accurate. It is not advisable to remove these influential points unless a 
specific reason can be found for doing so. 

Many authors suggest that the scaled Schoenfeld residuals are more useful than these, unscaled, residuals. 
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Scaled Schoenfeld Residuals vs Time Plot(s) 
 
Scaled Schoenfeld Residuals vs Time Plot(s) 
───────────────────────────────────────────────────────────────────────── 

     
 

     
 

The scaled Schoenfeld residuals are plotted for two reasons. First of all, these plots are useful in assessing 
whether the proportional hazards assumption is met. If the least squares line is horizontal and the lowess 
curve seems to track the least squares line fairly well, the proportional hazard assumption is reasonable. 

Second, points that are very influential in determining the estimated regression coefficient for a covariate 
show up as outliers on these plots. When influential points are found, it is important to make sure that the 
data associated with these points are accurate. It is not advisable to remove these influential points unless a 
specific reason can be found for doing so. 
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Deviance Residuals vs Row Plot 
 
Deviance Residuals vs Row Plot 
───────────────────────────────────────────────────────────────────────── 

 
 

This plot allows you to find outliers. These outliers should be double-checked to be certain that the data are 
not in error. You should not routinely remove outliers unless you can find a good reason for doing so. Often, 
the greatest insight during an investigation comes while considering why these outliers are different. 

Deviance Residuals vs Time Plot 
 
Deviance Residuals vs Time Plot 
───────────────────────────────────────────────────────────────────────── 

 
 

This plot allows you to find outliers. These outliers should be double-checked to be certain that the data are 
not in error. You should not routinely remove outliers unless you can find a good reason for doing so. Often, 
the greatest insight during an investigation comes while considering why these outliers are different. 
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Null Martingale Residuals vs X Plots 
 
Null Martingale Residuals vs X Plot(s) 
───────────────────────────────────────────────────────────────────────── 

     
 

     
 

Each of the covariates are plotted against the null martingale residuals. If the covariates are not highly 
correlated, these plots will show the appropriate functional form of each covariate. A loess curve and a 
regular least squares line are added to the plot to aid the eye. Ideally, the loess curve will track along the 
least squares line. Be careful not to over interpret the ends of the loess curves which are based on only a 
few individuals.  

When curvature is present, you have to decide how the model should be modified to deal with it. You might 
need to add the square or the logarithm of the covariate to the model. 
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Martingale Residuals vs Row Plot 
 
Martingale Residuals vs Row Plot 
───────────────────────────────────────────────────────────────────────── 

 
 

This plot allows you to find outliers. These outliers should be double-checked to be certain that the data are 
not in error. You should not routinely remove outliers unless you can find a good reason for doing so. Often, 
the greatest insight during an investigation comes while considering why these outliers are different. 

Martingale Residuals vs Time Plot 
 
Martingale Residuals vs Time Plot 
───────────────────────────────────────────────────────────────────────── 

 
 

This plot allows you to find outliers. These outliers should be double-checked to be certain that the data are 
not in error. You should not routinely remove outliers unless you can find a good reason for doing so. Often, 
the greatest insight during an investigation comes while considering why these outliers are different. 
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Example 2 – Subset Selection 
This section presents an example of how to conduct a subset selection. We will again use the LungCancer 
dataset that was used in Example 1. In this run, we will be trying to find a subset of the covariates that 
should be kept in the regression model.  

Setup 
To run this example, complete the following steps: 

1 Open the LungCancer example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select LungCancer and click OK. 

2 Specify the Cox Regression procedure options 
• Find and open the Cox Regression procedure using the menus or the Procedure Navigator.  
• The settings for this example are listed below and are stored in the Example 2 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables, Model Tab 
 _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Time ................................................................. Time 
  Ties Method ................................................... Efron 
Censor ............................................................. Censor 
Numeric X's ..................................................... Status-Therapy 
Search Method ................................................ Hierarchical Forward with Switching 
 

Reports Tab 


Subset Summary ............................................. Checked 
Subset Detail ................................................... Checked 
All Other Reports ............................................. Unchecked 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 
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Subset Selection Summary 
 
Subset Selection Summary 
───────────────────────────────────────────────────────────────────────── 
Subset Selection Method = Hierarchical Forward with Switching 
───────────────────────────────────────────────────────────────────────── 
 Number of  R² 
────────── Log- ───────────── 
Terms X's Likelihood Value Change 
───────────────────────────────────────────────────────────────── 

0 0 -23.3349 0.0000 0.0000 
1 1 -21.8803 0.1763 0.1763 
2 2 -21.0354 0.2641 0.0878 
3 3 -20.1352 0.3473 0.0832 
4 4 -20.1143 0.3491 0.0018 
───────────────────────────────────────────────────────────────────────── 
 

This report shows the best log-likelihood value for each subset size. In this example, it appears that a model 
with three terms provides the best model. Note that adding the fourth variable does not increase the R-
squared value very much. 

Number of Terms 

The number of terms. 

Number of X’s  

The number of X’s that were included in the model. Note that in this case, the number of terms matches the 
number of X’s. This would not be the case if some of the terms were categorical variables. 

Log-Likelihood 

This is the value of the log-likelihood function evaluated at the maximum likelihood estimates. Our goal is to 
find a subset size above which little is gained by adding more variables. 

R2 Value 

This is the value of R2 calculated using the formula 

𝑅𝑅𝑗𝑗2 = 1 − exp �
2
𝑛𝑛

(𝐿𝐿0 − 𝐿𝐿𝑗𝑗)� 

as discussed in the introduction. We are looking for the subset size after which this value does not increase 
by a meaningful amount. 

R2 Change 

This is the increase in R2 that occurs when each new subset size is reached. Search for the subset size below 
which the R2 value does not increase by more than 0.02 for small samples or 0.01 for large samples.  

In this example, the optimum subset size appears to be three terms. 
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Subset Selection Detail 
 
Subset Selection Detail 
───────────────────────────────────────────────────────────────────────── 
Subset Selection Method = Hierarchical Forward with Switching 
───────────────────────────────────────────────────────────────────────── 
  Number of   Term 
  ────────── Log-  ─────────────── 
Step Action Terms X's Likelihood R² Entered Removed 
───────────────────────────────────────────────────────────────────────────────────────────────────────────── 

1 Begin 0 0 -23.3349 0.0000   
2 Add 1 1 -21.8803 0.1763 Months  
3 Add 2 2 -21.0354 0.2641 Status  
4 Add 3 3 -20.1352 0.3473 Age  
5 Add 4 4 -20.1143 0.3491 Therapy  
───────────────────────────────────────────────────────────────────────── 
 

This report shows the highest log-likelihood for each subset size. In this example, it appears that three 
terms provide the best model. Note that adding THERAPY does not increase the R-squared value very much.  

Action 

This item identifies the action that was taken at this step. A term was added, removed, or two were 
switched.  

Number of Terms 

The number of terms. 

Number of X’s  

The number of X’s that were included in the model. Note that in this case, the number of terms matches the 
number of X’s. This would not be the case if some of the terms were categorical variables. 

Log-Likelihood 

This is the value of the log-likelihood function after the completion of this step. Our goal is to find a subset 
size above which little is gained by adding more variables. 

R2 

This is the value of R2 calculated using the formula 

𝑅𝑅𝑗𝑗2 = 1 − exp �
2
𝑛𝑛

(𝐿𝐿0 − 𝐿𝐿𝑗𝑗)� 

as discussed in the introduction. We are looking for the subset size after which this value does not increase 
by a meaningful amount. 

Terms Entered and Removed 

These columns identify the terms added, removed, or switched. 
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Discussion of Example 2 
After considering these reports, it was decided to include AGE, MONTHS, and STATUS in the final regression 
model. Another run is performed using only these independent variables. A complete residual analysis 
would be necessary before the equation is finally adopted. 

 
Regression Coefficients 
───────────────────────────────────────────────────────────────────────── 
 Regression  Risk     
Independent Coefficient Standard Ratio  Wald  Pseudo 
Variable (B) Error of B Exp(B) Mean Z-Value P-Value R² 
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

B1: Status -0.031482 0.019680 0.9690 57.33333 -1.5997 0.1097 0.2037 
B2: Months 0.063724 0.032004 1.0658 12.6 1.9912 0.0465 0.2838 
B3: Age 0.041940 0.033413 1.0428 60.33333 1.2552 0.2094 0.1361 
───────────────────────────────────────────────────────────────────────── 
 

This report displays the results of the proportional hazards estimation. Note that the Wald tests indicate 
that only Months is statistically significant. Because of the small sample size of this example and because 
they add a great deal to the R-squared value, we have added Age and Status to the final model.  
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Example 3 – Cox Regression with Categorical Variables 
This example will demonstrate the analysis of categorical independent variables. A study was conducted to 
evaluate the influence on survival time of three variables: Age, Gender, and Treatment. The ages of the 
study participants were grouped into three age categories: 20, 40, and 60. The first age group (20) was 
selected as the reference group. The female group was selected as the reference group for Gender. The 
Treatment variable represented three groups: a control and two treatment groups. The control group was 
selected as the reference group for Treatment. The data for this study are contained in the CoxReg dataset.  

Setup 
To run this example, complete the following steps: 

1 Open the CoxReg example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select CoxReg and click OK. 

2 Specify the Cox Regression procedure options 
• Find and open the Cox Regression procedure using the menus or the Procedure Navigator.  
• The settings for this example are listed below and are stored in the Example 3 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables, Model Tab 


Time ................................................................. Time 
  Ties Method ................................................... Efron 
Censor ............................................................. Status 
Categorical X's ................................................. Treatment(B;C) Age(B;20) Gender(B;F) 
Frequencies ..................................................... Count 
Terms .............................................................. Up to 2-Way 
 

Reports Tab 


Run Summary .................................................. Checked 
Regression Coefficients ................................... Checked 
C.L. of Regression Coefficients ....................... Checked 
Analysis of Deviance ....................................... Checked 
Log-Likelihood and R² ...................................... Checked 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 
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Run Summary  
 
Run Summary 
───────────────────────────────────────────────────────────────────────── 
Item Value Rows Value 
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Time Variable Time Rows Processed 73 
Censor Variable Status Rows Used in Estimation 73 
Frequency Variable Count Rows with X's Missing 0 
Independent Variables Available 3 Rows with Y Missing 0 
Number of X's in the Model 13 Rows Failed 54 
Final Log-Likelihood -222.9573 Rows Censored 19 
Number of Likelihood Iterations 6 of 20 Sum of Frequencies 137 
Convergence Criterion 1E-09 Sum of Censored Frequencies 83 
Achieved Convergence 5.363288E-16 Sum of Failed Frequencies 54 
Completion Status Normal completion   
Starting B's 0   
Subset Selection Method None 
───────────────────────────────────────────────────────────────────────── 
 

This report summarizes the characteristics of the dataset. Note that 137 individuals were included in this 
study of which 83 were censored. 

Regression Coefficients  
 
Regression Coefficients 
───────────────────────────────────────────────────────────────────────── 
 Regression  Risk     
Independent Coefficient Standard Ratio  Wald  Pseudo 
Variable (B) Error of B Exp(B) Mean Z-Value P-Value R² 
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

B1: (Treatment="T1") 0.315769 0.707474 1.3713 0.3357664 0.4463 0.6554 0.0044 
B2: (Treatment="T2") 0.606087 0.674007 1.8332 0.3211679 0.8992 0.3685 0.0177 
B3: (Age=40) 0.178527 0.720145 1.1955 0.3065693 0.2479 0.8042 0.0014 
B4: (Age=60) 0.747377 0.652733 2.1115 0.3430657 1.1450 0.2522 0.0283 
B5: (Gender="M") 0.199655 0.629734 1.2210 0.5182482 0.3170 0.7512 0.0022 
B6: (Treatment="T1")*(Age=40) -0.228646 0.872282 0.7956 0.1094891 -0.2621 0.7932 0.0015 
B7: (Treatment="T1")*(Age=60) -0.124997 0.851308 0.8825 0.1021898 -0.1468 0.8833 0.0005 
B8: (Treatment="T2")*(Age=40) -0.442119 0.843234 0.6427 0.08759124 -0.5243 0.6001 0.0061 
B9: (Treatment="T2")*(Age=60) -1.726851 0.885161 0.1778 0.1167883 -1.9509 0.0511 0.0780 
B10: (Treatment="T1")*(Gender="M") -0.976831 0.714997 0.3765 0.1751825 -1.3662 0.1719 0.0398 
B11: (Treatment="T2")*(Gender="M") -0.553592 0.721736 0.5749 0.1605839 -0.7670 0.4431 0.0129 
B12: (Age=40)*(Gender="M") 0.420448 0.701899 1.5226 0.1678832 0.5990 0.5492 0.0079 
B13: (Age=60)*(Gender="M") 0.366048 0.709829 1.4420 0.1970803 0.5157 0.6061 0.0059 
───────────────────────────────────────────────────────────────────────── 
 

This report displays the results of the proportional hazards estimation. Note that the names of the 
interaction terms are too long to fit in the space allotted, so the rest of the information appears on the next 
line. 

Independent Variable 

It is important to understand the variable names of the interaction terms. For example, consider the term: 
(Treatment=“T2”)*(Gender=“M”). This variable was created by multiplying two indicator variables. The first 
indicator is “1” when the treatment is “T2” and “0” otherwise. The second indicator is “1” when the gender is 
“M” and “0” otherwise. This portion of the gender-by-treatment interaction is represented by the product of 
these two variables. 
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Confidence Interval Limits for Regression Coefficients 
 
Confidence Interval Limits for Regression Coefficients 
───────────────────────────────────────────────────────────────────────── 
  95% Confidence Interval  95% Confidence Interval 
 Regression Limits for B Risk Limits for Exp(B) 
Independent Coefficient ───────────────── Ratio ───────────────── 
Variable (B) Lower Upper Exp(B) Lower Upper 
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

B1: (Treatment="T1") 0.315769 -1.070855 1.702392 1.3713 0.3427 5.4871 
B2: (Treatment="T2") 0.606087 -0.714943 1.927116 1.8332 0.4892 6.8697 
B3: (Age=40) 0.178527 -1.232933 1.589986 1.1955 0.2914 4.9037 
B4: (Age=60) 0.747377 -0.531956 2.026709 2.1115 0.5875 7.5891 
B5: (Gender="M") 0.199655 -1.034602 1.433911 1.2210 0.3554 4.1951 
B6: (Treatment="T1")*(Age=40) -0.228646 -1.938287 1.480996 0.7956 0.1440 4.3973 
B7: (Treatment="T1")*(Age=60) -0.124997 -1.793530 1.543536 0.8825 0.1664 4.6811 
B8: (Treatment="T2")*(Age=40) -0.442119 -2.094827 1.210589 0.6427 0.1231 3.3555 
B9: (Treatment="T2")*(Age=60) -1.726851 -3.461735 0.008033 0.1778 0.0314 1.0081 
B10: (Treatment="T1")*(Gender="M") -0.976831 -2.378199 0.424538 0.3765 0.0927 1.5289 
B11: (Treatment="T2")*(Gender="M") -0.553592 -1.968169 0.860985 0.5749 0.1397 2.3655 
B12: (Age=40)*(Gender="M") 0.420448 -0.955248 1.796145 1.5226 0.3847 6.0264 
B13: (Age=60)*(Gender="M") 0.366048 -1.025192 1.757288 1.4420 0.3587 5.7967 
───────────────────────────────────────────────────────────────────────── 
 

This report provides the confidence intervals for the regression coefficients and the risk ratios. The 
confidence coefficient, in this example 95%, was specified on the Format tab. Note that the names of the 
interaction terms are too long to fit in the space allotted, so the rest of the information appears on the next 
line. 

Independent Variable 

It is important to understand the variable names of the interaction terms. For example, consider the term: 
(Treatment=“T2”)*(Gender=“M”). This variable was created by multiplying two indicator variables. The first 
indicator is “1” when the treatment is “T2” and “0” otherwise. The second indicator is “1” when the gender is 
“M” and “0” otherwise. This portion of the gender-by-treatment interaction is represented by the product of 
these two variables. 
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Analysis of Deviance 
 
Analysis of Deviance 
───────────────────────────────────────────────────────────────────────── 
   Increase  
   from Model  
Term(s)  -2 Log- Deviance  
Omitted DF Likelihood (Chi²) P-Value 
───────────────────────────────────────────────────────────────────────────────────── 

All Terms 13 454.5022 8.5876 0.8033 
Treatment 2 446.7191 0.8044 0.6688 
Age 2 447.2661 1.3515 0.5088 
Gender 1 446.0147 0.1001 0.7517 
Treatment*Age 4 451.1965 5.2819 0.2596 
Treatment*Gender 2 447.7827 1.8681 0.3930 
Age*Gender 2 446.3421 0.4275 0.8076 
None(Model) 13 445.9146   
───────────────────────────────────────────────────────────────────────── 
The P-Value is for testing the significance of each term after adjusting for all other terms. 
 

This report is the Cox regression analog of the analysis of variance table. It displays the results of a chi-
square test used to test whether each of the individual terms are statistically significant after adjusting for 
all other terms in the model.  

The DF (degrees of freedom) column indicates the number of binary variables needed to represent each 
term. The chi2  test is used to test the significance of all binary variables associated with a particular term. 

Log-Likelihood and R2 
 
Log-Likelihood and R² 
───────────────────────────────────────────────────────────────────────── 
   R² of Reduction 
Term(s)  Log- Remaining from 
Omitted DF Likelihood Term(s) Model R² 
─────────────────────────────────────────────────────────────────────────────────────── 

All Terms 13 -227.2511 0.0000 0.0608 
Treatment 2 -223.3595 0.0552 0.0055 
Age 2 -223.6331 0.0514 0.0093 
Gender 1 -223.0074 0.0601 0.0007 
Treatment*Age 4 -225.5982 0.0238 0.0369 
Treatment*Gender 2 -223.8914 0.0479 0.0129 
Age*Gender 2 -223.1711 0.0578 0.0029 
None(Model) 13 -222.9573 0.0608 0.0000 
───────────────────────────────────────────────────────────────────────── 
 

This report displays the Log Likelihood and R2 that is achieved when each term is omitted from the 
regression model. The DF (degrees of freedom) column indicates the number of binary variables needed to 
represent each term. The chi2 test is used to test the significance of all binary variables associated with a 
particular term. 
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Example 4 – Validation of Cox Regression using Collett 
(1994) 
Collett (1994), pages 156 and 157, present a dataset giving the results of a small study about kidney dialysis. 
This dataset contains two independent variables: Age and Sex. These data are contained in the NCSS 
dataset called Collett157. 

Collett (1994) gives the estimated regression coefficients as 0.030 for Age and -2.711 for Sex. The chi-square 
test for Sex is 6.445 and the chi-square test for Age is 1.320. The Cox-Snell residual for the first patient is 
0.3286. The martingale residual for this patient is 0.6714. The deviance residual for this patient is 0.9398. 
The Schoenfeld residuals for this patient are -1.0850 and -0.2416. 

Setup 
To run this example, complete the following steps: 

1 Open the Collett157 example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select Collett157 and click OK. 

2 Specify the Cox Regression procedure options 
• Find and open the Cox Regression procedure using the menus or the Procedure Navigator.  
• The settings for this example are listed below and are stored in the Example 4 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables, Model Tab 


Time ................................................................. Time 
  Ties Method ................................................... Efron 
Censor ............................................................. Status 
Numeric X's ..................................................... Age-Sex 
 

Reports Tab 


Regression Coefficients ................................... Checked 
Analysis of Deviance ....................................... Checked 
Residuals ......................................................... Checked 
Schoenfeld Residuals ...................................... Checked 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 
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Validation Report 
 
Regression Coefficients 
───────────────────────────────────────────────────────────────────────── 
 Regression  Risk     
Independent Coefficient Standard Ratio  Wald  Pseudo 
Variable (B) Error of B Exp(B) Mean Z-Value P-Value R² 
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

B1: Age 0.030371 0.026237 1.0308 31.46154 1.1576 0.2470 0.1181 
B2: Sex -2.710762 1.095898 0.0665 1.769231 -2.4736 0.0134 0.3795 
───────────────────────────────────────────────────────────────────────── 
 
 
Analysis of Deviance 
───────────────────────────────────────────────────────────────────────── 
   Increase  
   from Model  
Term(s)  -2 Log- Deviance  
Omitted DF Likelihood (Chi²) P-Value 
────────────────────────────────────────────────────────────────────────────── 

All Terms 2 40.9454 6.4779 0.0392 
Age 1 35.7880 1.3204 0.2505 
Sex 1 40.9132 6.4456 0.0111 
None(Model) 2 34.4676   
───────────────────────────────────────────────────────────────────────── 
The P-Value is for testing the significance of each term after adjusting for all other terms. 
 
 
Residuals 
───────────────────────────────────────────────────────────────────────── 
  Cox-Snell  Martingale  Deviance  
Row Time Residual  Residual  Residual  
──────────────────────────────────────────────────────────────────────────────────────────────────────────── 

1 8 0.3286 |.............. 0.6714 ||||........... 0.9398 |||||.......... 
2 15 0.0785 |.............. 0.9215 ||||||||....... 1.8020 ||||||||||||||| 
3 22 1.4331 ||||||||....... -0.4331 |.............. -0.3828 |.............. 
4 24 0.0939 |.............. 0.9061 ||||||||....... 1.7087 ||||||||||||||. 
5 30 1.7736 ||||||||||..... -0.7736 ||||||......... -0.6334 ||............. 
6+ 54 0.3117 |.............. -0.3117 |.............. -0.7895 ||||........... 
7 119 0.2655 |.............. 0.7345 |||||.......... 1.0877 |||||||........ 
8 141 0.5386 ||............. 0.4614 ||............. 0.5611 |.............. 
9 185 1.6523 ||||||||||..... -0.6523 ||||........... -0.5480 |.............. 
10 292 1.4234 ||||||||....... -0.4234 |.............. -0.3751 |.............. 
11 402 1.4207 ||||||||....... -0.4207 |.............. -0.3730 |.............. 
12 447 2.3927 ||||||||||||||| -1.3927 ||||||||||||||| -1.0201 ||||||......... 
13 536 1.5640 |||||||||...... -0.5640 |||............ -0.4832 |.............. 
───────────────────────────────────────────────────────────────────────── 
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Schoenfeld Residuals 
───────────────────────────────────────────────────────────────────────── 
  Residual  Residual  
Row Time Age  Sex  
──────────────────────────────────────────────────────────────────────────── 

1 8 -1.0850 |.............. -0.2416 |||||.......... 
2 15 14.4930 ||||||||||||... 0.6644 ||||||||||||||| 
3 22 3.1291 ||............. -0.3065 ||||||......... 
4 24 -10.2215 ||||||||....... 0.4341 |||||||||...... 
5 30 -16.5882 |||||||||||||.. -0.5504 ||||||||||||... 
7 119 -17.8286 ||||||||||||||| 0.0000 |.............. 
8 141 -7.6201 ||||||......... 0.0000 |.............. 
9 185 17.0910 ||||||||||||||. 0.0000 |.............. 
10 292 10.2390 ||||||||....... 0.0000 |.............. 
11 402 2.8575 ||............. 0.0000 |.............. 
12 447 5.5338 ||||........... 0.0000 |.............. 
13 536 0.0000 |.............. 0.0000 |.............. 
───────────────────────────────────────────────────────────────────────── 
 

You can verify that the results matched those of Collett (1994) within rounding. 
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