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Chapter 435 

Multidimensional Scaling 

Introduction 
Multidimensional scaling (MDS) is a technique that creates a map displaying the relative positions of a 
number of objects, given only a table of the distances between them. The map may consist of one, two, 
three, or even more dimensions. The program calculates either the metric or the non-metric solution. The 
table of distances is known as the proximity matrix. It arises either directly from experiments or indirectly as a 
correlation matrix.  

To understand how the proximity matrix may be observed directly, consider the following marketing research 
example. Suppose ten subjects rate the similarities of six automobiles. That is, each subject rates the similarity 
of each of the fifteen possible pairs. The ratings are on a scale from 1 to 10, with “1” meaning that the cars are 
identical in every way and “10” meaning that the cars are as different as possible. The ratings are averaged 
across subjects, forming a similarity matrix. MDS provides the marketing researcher with a map (scatter plot) of 
the six cars that summarizes the results visually. This map shows the perceived differences between the cars. 

The program offers two general methods for solving the MDS problem. The first is called Metric, or Classical, 
Multidimensional Scaling (CMDS) because it tries to reproduce the original metric or distances. The second 
method, called Non-Metric Multidimensional Scaling (NMMDS), assumes that only the ranks of the distances are 
known. Hence, this method produces a map which tries to reproduce these ranks. The distances themselves 
are not reproduced.  

Discussion 
The following example will help explain what MDS does. Consider the following set of data. 

Original Data Matrix 

Label X Y 
A 1 5 
B 1 4 
C 1 1 
D 3 3 
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A scatter plot of these data appears as follows: 

 
Notice that the scatter plot lets us visually assess the distance between each pair of points. We can see that A is 
near B, but far from C and D.  We can also see that C and D each seem to be by themselves. The actual distance 
between two points i and j may be computed numerically using the Euclidean distance formula:  

𝑑𝑑𝑖𝑖𝑖𝑖 = ���𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖�
2

𝑝𝑝

𝑖𝑖=1

 

where p is the number of dimensions (which is 2 in our example), dij is the distance, and xik is the data value of 
the ith row and kth column. This formula is a simple extension of the famous Pythagorean Theorem. Note that 
this formula allows for an unlimited number of dimensions. That is, although we are only plotting the points in 
two-dimensional space, the formula computes the distance in p-dimensional space, where p can be greater 
than two. 

For example, the distance from A to D is calculated as follows: 

�(1 − 3)2 + (5 − 3)2 = 2.82843   

These distances are arranged in matrix format as follows:  

Computed Distance Matrix 

 A B C D 
A 0.00000 1.00000 4.00000 2.82843 
B 1.00000 0.00000 3.00000 2.23607 
C 4.00000 3.00000 0.00000 2.82843 
D 2.82843 2.23607 2.82843 0.00000 

Note that since the distance from A to D is the same as the distance from D to A, the distance matrix is 
symmetric. We only need to consider half of the matrix. In the program, we only require the upper half. The 
final distance matrix will be: 
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Upper-Triangular Distance Matrix 

 A B C D 
A 0.00000 1.00000 4.00000 2.82843 
B  0.00000 3.00000 2.23607 
C   0.00000 2.82843 
D    0.00000 

The task attempted by MDS is that given only a distance matrix, find the original data so that a map (scatter 
plot) of the data may be drawn. 

Some of the difficulties facing MDS may be seen even in this simple example. First, as the number of objects 
increases, the possible number of dimensions increases as well. If you have three objects, these will at most 
define a two-dimensional plane. With four objects, you will usually find a three-dimensional space. And so on, 
with each new object adding one more possible dimension. 

Also, notice that if the data are shifted in such a way that their positions relative to each other are maintained 
(rotated, translated, or transposed), the computed distance matrix will be the same. Hence, the distance matrix 
could have come from numerous sets of data. 

A third challenge comes when the distances themselves are not actually known. You might only be given 
knowledge of their relative size. 

MDS techniques have proved useful because circumstances often occur where the actual coordinates of the 
objects are not known, but some type of distance matrix is available. This is especially the case in psychology 
where people cannot draw an overall picture of a group of objects, but they can express how different 
individual pairs of objects are. From these pair-wise differences MDS often can provide a useful picture. 

Goodness-of-Fit 
As in any data analysis problem, an expression is needed to express how well a particular set of data are 
represented by the model that the analysis imposes. In the case of MDS, you are trying to model the distances. 
Hence, the most obvious choice for a goodness-of-fit statistic is one based on the differences between the 
actual distances and their predicted values. Such a measure is called stress and is calculated as values: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �
∑�𝑑𝑑𝑖𝑖𝑖𝑖 − �̂�𝑑𝑖𝑖𝑖𝑖�

2

∑𝑑𝑑𝑖𝑖𝑖𝑖2
 

Here �̂�𝑑𝑖𝑖𝑖𝑖  is predicted distance based on the MDS model. Note that this predicted value depends on the number 
of dimensions kept and the algorithm that you used (metric versus non-metric). 

As you can see from this equation, MDS fits with stress values near zero are the best. 
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In his original paper on MDS, Kruskal (1964) gave following advice about stress values based on his experience: 

Stress Goodness-of-fit 
0.200 poor 
0.100 fair 
0.050 good 
0.025 excellent 
0.000 perfect 
    
More recent articles caution against using a table like this since acceptable values of stress depends on the 
quality of the distance matrix and the number of objects in that matrix. 

Number of Dimensions 
One of the main tasks the analyst has is determining the number of dimensions in the MDS model. Each 
dimension represents a different underlying factor. One of the goals of the MDS analysis is to keep the number 
of dimensions as small as possible. Usually, the analyst will anticipate select two or, at most, three dimensions. 
If more are required, you may decide that MDS is not appropriate for your data. 

The usual technique is to solve the MDS problem for a number of dimension values and adopt the smallest 
number of dimensions that achieves a reasonably small value of stress. The program displays a simple bar 
chart of the stress values to aid in the selection of the number of dimensions. 

Some researchers also consider the relative size of the eigenvalues that are generated during the solution 
process. These eigenvalues are then used to determine the number of dimensions just as they are used in 
factor analysis to determine the number of factors.  

Proximity Measures 
Proximity measures quantify how “close” two objects are. The program accepts three forms of proximity values: 
dissimilarities, similarities, and correlations. 

Dissimilarities represent the distance between two objects. They may be measured directly, as in the distance 
between two towns, or approximated, as in “Bill is five points different from Joe on a ten-point scale.” MDS 
algorithms use the dissimilarities directly. A dissimilarity matrix is symmetrical. 

Similarities represent how close (in some sense) two objects are. The program lets you enter a similarity 
measure for each pair of objects. Similarities must obey the rule: similarityij <= similarityii and similarityjj for all i 
and j. Similarity matrices are symmetrical. 

Similarities are converted to dissimilarities using the formula: 

𝑑𝑑𝑖𝑖𝑖𝑖 = �𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖 − 2𝑠𝑠𝑖𝑖𝑖𝑖  

where 𝑑𝑑𝑖𝑖𝑖𝑖  represents a dissimilarity and 𝑠𝑠𝑖𝑖𝑖𝑖  represents a similarity. 

When your data consists of standard measures rather than dissimilarities or similarities, you can create a 
dissimilarity matrix by first creating the correlation matrix and then using the above formula to convert the 
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correlations to dissimilarities. The program automatically calculates pair-wise correlations for the variable you 
specify. 

Comparison of Metric and Non-Metric MDS 
Although the computations are simpler for the metric method than for the non-metric method, both seem to 
yield similar results when applied to well-known examples. When you have true distance data, the classical 
method yields a solution that can be used directly. When you only have dissimilarities, the non-metric approach 
is somewhat more appealing. 

 

Metric MDS 
Classical MDS procedures stem back to Torgerson (1952), who was one of the pioneers of the technique. His 
algorithm is explained next. 

Suppose a distance matrix D approximates the inter-point distances of a configuration of points X in a space of 
low dimensionality p (usually p = 1, 2, or 3). That is, the elements of D, denoted 𝑑𝑑𝑖𝑖𝑖𝑖 , may be calculated from X 
using the following formula: 

𝑑𝑑𝑖𝑖𝑖𝑖 = ���𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖�
2

𝑝𝑝

𝑖𝑖=1

 

The steps in the classical MDS algorithm are as follows: 

1. From 𝐃𝐃 calculate 𝐀𝐀 = �− 1
2
𝑑𝑑𝑖𝑖𝑖𝑖2 �. 

2. From 𝐀𝐀 calculate 𝐁𝐁 = �𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑖𝑖. − 𝑎𝑎.𝑖𝑖 − 𝑎𝑎..�, where 𝑎𝑎𝑖𝑖. is the average of all 𝑎𝑎𝑖𝑖𝑖𝑖  across j. 

3. Find the p largest eigenvalues 𝜆𝜆1 > 𝜆𝜆2 > ⋯ > 𝜆𝜆𝑝𝑝 of 𝐁𝐁  and corresponding eigenvectors 
 𝐿𝐿 = �𝐿𝐿(1),𝐿𝐿(2), … , 𝐿𝐿(𝑝𝑝)� which are normalized so that 𝐿𝐿(𝑖𝑖)

′ 𝐿𝐿(𝑖𝑖) = 𝜆𝜆𝑖𝑖. (We are assuming that p is selected 
so that the eigenvalues are all relatively large and positive.) 

4. The coordinates of the objects are the rows of 𝐿𝐿. 

The classical solution is optimal in the least-squares sense. That is, when a direct solution is possible (i.e., when 
𝐃𝐃 is truly a Euclidean distance matrix), the solution, 𝐿𝐿, minimizes the sum of squared differences between the 
actual 𝑑𝑑𝑖𝑖𝑖𝑖 ’s (elements of 𝐃𝐃) and the �̂�𝑑𝑖𝑖𝑖𝑖 ’s based on 𝐿𝐿. Another way of saving this is that it minimizes the value of 
stress, where stress was defined above. 
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Non-Metric MDS 
Implicit in the above is the assumption that there is a true configuration in p dimensions, i.e., that D is a distance 
matrix. Often, however, it is more realistic to assume a less stringent relationship between the observed 
distances (or dissimilarities) 𝑑𝑑𝑖𝑖𝑖𝑖  and the true distances, denoted 𝛿𝛿𝑖𝑖𝑖𝑖. That is, suppose we assume that 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑓𝑓�𝛿𝛿𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖� 

where 𝑠𝑠𝑖𝑖𝑖𝑖  represents errors of measurements, distortions, etc. Also, we assume that f(x) is an unknown, 
monotonically increasing function.  

For this model, the only information we can use is the rank order of the 𝑑𝑑𝑖𝑖𝑖𝑖. Usually, this approach is used when 
𝐃𝐃 is simply a dissimilarity matrix rather than a true distance matrix. This assumption is often more plausible in 
practical situations. 

An algorithm to produce a solution based only on the rank order information was provided by Kruskal (1964). It 
is involved, so we will not reproduce it here. We note that Kruskal’s algorithm minimizes stress.  

Kruskal’s algorithm uses steepest descent to find a local minimum from a given starting configuration. The 
choice of the starting configuration is important to finding the global rather than a local minimum. Many 
authors recommend using the solution of the metric MDS as the starting configuration. This is the default 
starting configuration in this program. You may also select several random starting configurations and compare 
the resulting stress values. 

Data Structure 
The data may be entered in three formats. The first format is the standard row-column format from which 
the correlations have be calculated. The MDS conducted on the correlations in an attempt to determine 
which of the variables are similar. The second format is the upper-triangular portion of a distance matrix. 
The third format is the upper-triangular portion of a similarity matrix. 

An example of an upper-triangular distance matrix is contained in the MDS2 database. We suggest that you 
open this database now so that you can follow along with the example. 

MDS2 Dataset 

Sport Hockey Football Basketball Tennis Golf Croquet 
Hockey 0 2 3 4 5 5 
Football  0 3 5 6 5 
Basketball   0 5 4 6 
Tennis    0 4 3 
Golf     0 2 
Croquet      0 

 

  

http://www.ncss.com/


NCSS Statistical Software NCSS.com   

Multidimensional Scaling 

435-7 
 © NCSS, LLC. All Rights Reserved. 

Example 1 – Metric Multidimensional Scaling 
This section presents an example of how to run an analysis of the data contained in the MDS2 dataset.  

Setup 
To run this example, complete the following steps: 

1 Open the MDS2 example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select MDS2 and click OK. 

2 Specify the Multidimensional Scaling procedure options 
• Find and open the Multidimensional Scaling procedure using the menus or the Procedure 

Navigator.  
• The settings for this example are listed below and are stored in the Example 1 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables Tab 


Input Variables ................................................. Hockey-Croquet 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 

Eigenvalues 
 
Eigenvalues 
──────────────────────────────────────────────────────────────────────── 
  Percent  
Dimension  ──────────────────  
Number Eigenvalue Individual Cumulative Bar Chart 
─────────────────────────────────────────────────────────────────────────────────────────────── 

1 30.73 54.28 54.28 |IIIIIIIIIIIIIIIIIIIIIIIIIII 
2 (Used) 12.85 22.69 76.97 |IIIIIIIIIII 
3 6.38 11.27 88.24 |IIIIII 
4 1.68 2.97 91.21 |I 
5 0.00 0.00 91.21 | 
6 -4.98 8.79 100.00 |IIII 
Total 56.62    
──────────────────────────────────────────────────────────────────────── 
 

This report is produced by CMDS.  

In this example, the first two dimensions account for 77% of the variation while the first three dimensions 
account for 88%. We would probably use two or perhaps three dimensions. 
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Eigenvalues 

These are the eigenvalues found during CMDS. The eigenvalues are helpful in determining the number of 
dimensions that are necessary to represent the dissimilarity matrix accurately. As in factor analysis, the task 
is to select enough dimensions to approximate the data, but few enough to keep the interpretation simple. 
The eigenvalue report allows you to quickly determine the impact of each new dimension. 

In MDS, some of the eigenvalues can be negative. Do not keep these dimensions. The basic rule is to find 
the number of relatively large, positive eigenvalues. This report provides a bar graph and percentages to 
help you determine the number of dimensions. 

Individual and Cumulative Percents  

The first column gives the percentage of the total of the absolute value of the eigenvalues accounted for by 
this dimension. The second column is the cumulative total of the percentage. 

Bar Chart 

This is a rough bar plot of the eigenvalues. It enables you to quickly note the relative size of each eigenvalue. 
Many authors recommend it as a method of determining how many dimensions to retain.  

Fit Summary 
 
Fit Summary 
──────────────────────────────────────────────────────────────────────── 
Number of Squared  Pseudo 
Dimensions Differences Stress R-Squared 
───────────────────────────────────────────────────────────────────── 

1 37.105982 0.364035 0.00 
2 6.947666 0.157522 70.73 
3 2.413305 0.092838 89.83 
4 2.468686 0.093897 89.60 
───────────────────────────────────────────────────────────────────── 

 
Dissimilarities 
───────────────────────────────────────────────────────────────────── 

Number of Dissimilarities 15 
Mean of Dissimilarities 4.133333 
Sum of Squared Dissimilarities 280 
Mean Corrected Sum of Squared Dissimilarities 23.733333 
───────────────────────────────────────────────────────────────────── 

──────────────────────────────────────────────────────────────────────── 
 

This report provides information useful in determining the number of dimensions that are necessary and 
assessing the goodness-of-fit of the CMDS model. 

Number of Dimensions 

The number of dimensions used in calculating this row of statistics. 

Squared Differences 

The sum of the squared differences between the actual dissimilarity values and those predicted by the 
solution. 
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Stress 

This is the value of the stress goodness-of-fit statistic. It is equal to the square root of the Squared 
Differences divided by the square root of the Sum of the Squared Dissimilarities. It is one of the most 
popular measures of accuracy of the fit. A value below 0.05 is acceptable. A value below 0.01 is considered 
good. 

Pseudo R-Squared 

This is an index, similar to the R-squared value in regression analysis, which indicates what percentage of 
the sum of squared dissimilarities (corrected for the mean) is accounted for by this number of dimensions. 
A value above 80% is hoped for. 

Number of Dissimilarities 

This is the number of dissimilarity values. 

Mean of Dissimilarities 

This is the mean of the dissimilarity values 

Sum of Squared Dissimilarities 

This is the sum of the squared dissimilarities. It is the denominator of the stress statistic. 

Mean Corrected Sum of Squared Dissimilarities 

This is the sum of the squared dissimilarities about their mean. It is the denominator of the Pseudo R-
Squared statistic. 

Solution 
 
Solution 
──────────────────────────────────────────────────────────────────────── 
Variables Dimension1 Dimension2 Dimension3 Dimension4 
─────────────────────────────────────────────────────────────────────────────────────────── 

Hockey 1.9301 -0.6756 0.3818 1.0441 
Football 2.6179 -1.1281 -1.1303 -0.4680 
Basketball 2.1119 2.0914 0.4168 -0.4032 
Tennis -1.4786 -1.3608 1.8070 -0.3940 
Golf -2.3836 2.0059 -0.2743 0.2351 
Croquet -2.7976 -0.9328 -1.2011 -0.0140 
──────────────────────────────────────────────────────────────────────── 
 

This report presents the solution of the MDS procedure. These are the data that are plotted in the MDS 
map. They have been scaled so that the sum of squares for each column is equal to the eigenvalue for that 
dimension. 

Note that these data were constructed so that the distance between two rows is close to the original 
dissimilarity value. 

Although some interpretation of these numbers may be made directly, usually the data are displayed on 
scatter plots. 
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Dissimilarities 
 
Dissimilarities 
──────────────────────────────────────────────────────────────────────── 
  Dissimilarity Difference 
  ────────────── ─────────────── 
Row Column Actual Predicted Value Percent 
─────────────────────────────────────────────────────────────────────────────────────────────── 

1 Hockey 2 Football 2 0.823324 1.176676 58.83 
5 Golf 6 Croquet 2 2.967759 -0.967759 -48.39 
1 Hockey 3 Basketball 3 2.772988 0.227012 7.57 
2 Football 3 Basketball 3 3.259039 -0.259039 -8.63 
4 Tennis 6 Croquet 3 1.386718 1.613282 53.78 
1 Hockey 4 Tennis 4 3.476854 0.523146 13.08 
3 Basketball 5 Golf 4 4.496329 -0.496329 -12.41 
4 Tennis 5 Golf 4 3.486229 0.513771 12.84 
1 Hockey 5 Golf 5 5.079231 -0.079231 -1.58 
1 Hockey 6 Croquet 5 4.734691 0.265309 5.31 
2 Football 4 Tennis 5 4.103106 0.896894 17.94 
2 Football 6 Croquet 5 5.419049 -0.419049 -8.38 
3 Basketball 4 Tennis 5 4.980893 0.019107 0.38 
2 Football 5 Golf 6 5.902321 0.097679 1.63 
3 Basketball 6 Croquet 6 5.766223 0.233777 3.90 
─────────────────────────────────────────────────────────────────────────────────────────────── 

 
Model Goodness-of-Fit Statistics 
──────────────────────────────────────────────────── 

Dimensions 2 
Sum of Squared Dissimilarities 280 
Sum of Squared Differences 6.947666 
Stress 0.157522 
Pseudo R-Squared 70.726127 
──────────────────────────────────────────────────── 

──────────────────────────────────────────────────────────────────────── 
 

You might think of this as a residual analysis report since it highlights the differences between the actual 
and the predicted dissimilarities. It will let you focus on those dissimilarities that are not fit well by the 
model.  

Row 

The variable associated with this row of the dissimilarity matrix. 

Column 

The variable associated with this column of the dissimilarity matrix. 

Actual Dissimilarity 

The value from the input (or calculated) dissimilarity matrix for this row and column. 

Predicted Dissimilarity 

The predicted dissimilarity value based on the number of dimensions that you have selected. 

Difference Value 

The Actual Dissimilarity minus the Predicted Dissimilarity. This value shows the size of the error in predicting 
this element of the dissimilarity matrix. 

http://www.ncss.com/


NCSS Statistical Software NCSS.com   

Multidimensional Scaling 

435-11 
 © NCSS, LLC. All Rights Reserved. 

Percent Difference 

The percentage of the Actual Difference is of the Actual Dissimilarity. This value highlights the outliers--those 
dissimilarities that are not fit well by the MDS model. 

Dimensions 

The number of dimensions used in calculating the statistics. 

Sum of Squared Dissimilarities 

This is the sum of the squared dissimilarities. It is the denominator of the stress statistic. 

Sum of Squared Differences 

This is the sum of the squared differences. It is the numerator of the stress statistic. 

Stress 

This is the value of the stress goodness-of-fit statistic. It is equal to the Squared Differences divided by the 
Sum of the Squared Dissimilarities. It is one of the most popular measures of accuracy of the fit. A value 
below 0.05 is acceptable. A value below 0.01 is considered good. 

Pseudo R-Squared  

This is an index, similar to the R-squared value in regression analysis, which indicates what percentage of 
the sum of squared dissimilarities (corrected for the mean) is accounted for by this number of dimensions. 
A value above 80% is hoped for. 
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MDS Map 
 
MDS Map 
───────────────────────────────────────────────────────────────────────── 

 
 

This plot is the chief objective of an MDS analysis. It is often referred to as the MDS map. It allows you to 
interpret the dissimilarity matrix on a two-dimensional scatter plot. 

There is no real orientation to this map. You could legitimately rotate the values around the plot’s center. 
The main characteristics of interest are the relative positions of the points and any clusters that are 
apparent.  

In this example, we see that the respondents considered hockey and football to be similar. They also 
considered croquet and tennis to be quite similar. Football appears quite different from golf. And so on. 
Notice how easy it is to draw conclusions about the similarities among the sports. 

A second task of the MDS analyst is to find the underlying factors that respondents used when they created 
these dissimilarities. For example, a vertical line down the center of the plot would divide team sports on the 
right from individual sports on the left. We would hypothesize this as one interpretation of the Dim1 
(horizontal) axis. 
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Example 2 – Non-Metric Multidimensional Scaling 
This section presents an example of how to run an analysis of the data contained in the MDS2 dataset using 
NMMDS.  

Setup 
To run this example, complete the following steps: 

1 Open the MDS2 example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select MDS2 and click OK. 

2 Specify the Multidimensional Scaling procedure options 
• Find and open the Multidimensional Scaling procedure using the menus or the Procedure 

Navigator.  
• The settings for this example are listed below and are stored in the Example 2 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables Tab 


Input Variables ................................................. Hockey to Croquet  
Solution Type ................................................... Non-Metric 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 

Eigenvalues 
 
Eigenvalues 
──────────────────────────────────────────────────────────────────────── 
  Percent  
Dimension  ──────────────────  
Number Eigenvalue Individual Cumulative Bar Chart 
─────────────────────────────────────────────────────────────────────────────────────────────── 

1 30.73 54.28 54.28 |IIIIIIIIIIIIIIIIIIIIIIIIIII 
2 (Used) 12.85 22.69 76.97 |IIIIIIIIIII 
3 6.38 11.27 88.24 |IIIIII 
4 1.68 2.97 91.21 |I 
5 0.00 0.00 91.21 | 
6 -4.98 8.79 100.00 |IIII 
Total 56.62    
──────────────────────────────────────────────────────────────────────── 
 

This report is produced by CMDS which was used as the starting configuration. Its definitions were given 
above and will not be repeated here. 
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Non-Metric Iteration Summary 
 
Non-Metric Iteration Summary 
──────────────────────────────────────────────────────────────────────── 
Number of Percent Rank  Why Bar Chart 
Dimensions Maintained Stress Terminated? of Stress 
─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

1 50.00 0.212628 Stress Change |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII<<I 
2 42.86 0.052276 Stress Change |IIIIIIIIIIIIIIIIIIIIIIIIII 
3 64.29 0.000315 Stress Change | 
4 78.57 0.000006 Min Stress | 
──────────────────────────────────────────────────────────────────────── 
 

This report provides information about the number of dimensions that are necessary and the goodness-of-
fit of the solution. 

Number of Dimensions 

The number of dimensions used in calculating this row of statistics. 

Percent Rank Maintained 

The non-metric solution tries to maintain the rank ordering of the dissimilarities. This is the percentage of 
the dissimilarities whose rank order was maintained. The higher this value is, the better the quality of the 
solution. 

Stress 

Defined earlier, this is one of the most popular measures of accuracy of the fit. A value below 0.05 is 
acceptable. A value below 0.01 is considered good. 

Why Terminated? 

This field explains which stopping rule caused the iterative procedure to stop. This is important to watch 
since the solution is not optimal if the maximum iterations were reached before the algorithm converged. 
When this happens, you should change some of the iteration control parameters, especially the number of 
iterations. 

Bar Chart of Stress 

This column graphically portrays the stress values. You want to choose the fewest number of dimensions 
that give you a small stress value. 
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Solution 
 
Solution 
──────────────────────────────────────────────────────────────────────── 
Variables Dimension1 Dimension2 
──────────────────────────────────────────────────── 

Hockey 0.3306 -0.1495 
Football 0.4234 -0.0227 
Basketball 0.2674 0.2837 
Tennis -0.2542 -0.3538 
Golf -0.3473 0.2227 
Croquet -0.4199 0.0196 
──────────────────────────────────────────────────────────────────────── 
 

This report presents the final configuration of the NMMDS procedure. These are the data that are plotted in 
the MDS map. 

Note that these data were not constructed so that the distance between two rows is close to the original 
dissimilarity value. Instead, the non-metric solution attempts to maintain the same rank ordering of the 
calculated distances as occur in the original dissimilarity matrix. Although some interpretation of these 
numbers may be made directly, usually the data are displayed on scatter plots. 

Dissimilarities 
 
Dissimilarities 
──────────────────────────────────────────────────────────────────────── 
  Dissimilarity 
  ────────────── 
Row Column Actual Predicted 
──────────────────────────────────────────────────────────────── 

1 Hockey 2 Football 2 0.157123 
5 Golf 6 Croquet 2 0.215646 
1 Hockey 3 Basketball 3 0.437798 
2 Football 3 Basketball 3 0.343893 
4 Tennis 6 Croquet 3 0.408445 
1 Hockey 4 Tennis 4 0.619391 
3 Basketball 5 Golf 4 0.617695 
4 Tennis 5 Golf 4 0.583869 
1 Hockey 5 Golf 5 0.773283 
1 Hockey 6 Croquet 5 0.769237 
2 Football 4 Tennis 5 0.754122 
2 Football 6 Croquet 5 0.844336 
3 Basketball 4 Tennis 5 0.823650 
2 Football 5 Golf 6 0.808819 
3 Basketball 6 Croquet 6 0.736258 
──────────────────────────────────────────────────────────────────────── 
 

You might think of this as a residual analysis report since it highlights the differences between the actual 
and the predicted dissimilarities. It will let you focus on those dissimilarities that are not fit well by the 
model. 

This report presents the details of how well the rank ordering of the dissimilarity values is preserved in the 
final configuration. Note that the predicted values are quite different from the actual values since all the 
algorithm was attempting to do was maintain the ordering.  
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Row 

The variable associated with this row of the dissimilarity matrix. 

Column 

The variable associated with this column of the dissimilarity matrix. 

Actual Dissimilarity 

The value from the input (or calculated) dissimilarity matrix for this row and column. 

Predicted Dissimilarity 

The predicted dissimilarity value based on the number of dimensions that you have selected. Note that this 
is not predicting the actual dissimilarity value, but some unknown function of the dissimilarity value. It is 
not usually necessary to determine the function. We are mainly interested in how well the ordering of the 
actual values is maintained by these predicted values. 

MDS Map 
 
MDS Map 
───────────────────────────────────────────────────────────────────────── 

 
 

This plot is the chief objective of an MDS analysis. It is often referred to as the MDS map. It allows you to 
interpret the dissimilarity matrix on a two-dimensional scatter plot. 

There is no real orientation to this map. You could legitimately rotate the values around the plot’s center. 
The main characteristics of interest are the relative positions of the points and any clusters that are 
apparent.  

In this example, we see that the respondents considered hockey and football to be similar. They also 
considered croquet and golf to be similar. Football appears quite different from croquet. And so on. Notice 
how easy it is to draw conclusions about the similarities among the sports. 
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A second task of the MDS analyst is to find the underlying factors that respondents used when they created 
these dissimilarities. For example, a vertical line down the center of the plot would divide team sports on the 
right from individual sports on the left. We might hypothesize this as one interpretation of the Dim1 
(horizontal) axis. 

It is interesting to compare this map with the map produced by the metric solution. The main difference 
appears to be that golf and croquet are now much closer together (as they were rated in the original data). 
Again, football and basketball appear to be closer together in this plot as we might expect from the original 
data. In this case, the NMMDS map appears to be more accurate than the CMDS map. This is as we might 
expect since the NMMDS procedure refined the CMDS map.  

Dissimilarity Fit Plot 
 
Dissimilarity Fit Plot 
───────────────────────────────────────────────────────────────────────── 

 
 

This graph plots the dissimilarity values on the vertical axis against the predicted dissimilarity values on the 
horizontal axis. The caliber of the solution depends upon this plot showing an upward-sloping trend. If the 
solution was perfect, then as you move across the plot from left to right, you would never go down from one 
point to the next. 

We notice in this case that the solution confuses the large distances. This may be due to the large number of 
ties in this area (look at the Dissimilarity Section to see all the 5’s and 6’s). 
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