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Chapter 309 

Multiple Regression (Old Version) 

Introduction  
Multiple Regression Analysis refers to a set of techniques for studying the straight-line relationships among 
two or more variables. Multiple regression estimates the β’s in the equation 

𝑦𝑦𝑗𝑗 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1𝑗𝑗 + 𝛽𝛽2𝑥𝑥2𝑗𝑗 +⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝𝑗𝑗 + 𝜀𝜀𝑗𝑗 

The X’s are the independent variables (IV’s). Y is the dependent variable. The subscript j represents the 
observation (row) number. The β’s are the unknown regression coefficients. Their estimates are represented 
by b’s. Each β represents the original unknown (population) parameter, while b is an estimate of this β. The εj 
is the error (residual) of observation j. 

Although the regression problem may be solved by a number of techniques, the most-used method is least 
squares. In least squares regression analysis, the b’s are selected so as to minimize the sum of the squared 
residuals. This set of b’s is not necessarily the set you want, since they may be distorted by outliers--points 
that are not representative of the data. Robust regression, an alternative to least squares, seeks to reduce 
the influence of outliers. 

Multiple regression analysis studies the relationship between a dependent (response) variable and p 
independent variables (predictors, regressors, IV’s). The sample multiple regression equation is 

𝑦𝑦�𝑗𝑗 = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥1𝑗𝑗 + 𝑏𝑏2𝑥𝑥2𝑗𝑗 +⋯+ 𝑏𝑏𝑝𝑝𝑥𝑥𝑝𝑝𝑗𝑗 

If p = 1, the model is called simple linear regression.  

The intercept, b0, is the point at which the regression plane intersects the Y axis. The bi are the slopes of the 
regression plane in the direction of xi. These coefficients are called the partial-regression coefficients. Each 
partial regression coefficient represents the net effect the ith variable has on the dependent variable, holding 
the remaining X’s in the equation constant. 

A large part of a regression analysis consists of analyzing the sample residuals, ej, defined as 

𝑒𝑒𝑗𝑗 = 𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑗𝑗  

Once the β’s have been estimated, various indices are studied to determine the reliability of these estimates. 
One of the most popular of these reliability indices is the correlation coefficient. The correlation coefficient, 
or simply the correlation, is an index that ranges from -1 to 1. When the value is near zero, there is no linear 
relationship. As the correlation gets closer to plus or minus one, the relationship is stronger. A value of one 
(or negative one) indicates a perfect linear relationship between two variables. 

The regression equation is only capable of measuring linear, or straight-line, relationships. If the data form a 
circle, for example, regression analysis would not detect a relationship. For this reason, it is always advisable 
to plot each independent variable with the dependent variable, watching for curves, outlying points, 
changes in the amount of variability, and various other anomalies that may occur. 
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If the data are a random sample from a larger population and the εj’s are independent and normally 
distributed, a set of statistical tests may be applied to the b’s and the correlation coefficient. These t-tests 
and F-tests are valid only if the above assumptions are met. 

Regression Models 
In order to make good use of multiple regression, you must have a basic understanding of the regression 
model. The basic regression model is 

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝 + 𝜀𝜀𝑗𝑗  

This expression represents the relationship between the dependent variable (DV) and the independent 
variables (IV’s) as a weighted average in which the regression coefficients (β’s) are the weights. Unlike the 
usual weights in a weighted average, it is possible for the regression coefficients to be negative.  

A fundamental assumption in this model is that the effect of each IV is additive. Now, no one really believes 
that the true relationship is actually additive. Rather, they believe that this model is a reasonable first 
approximation to the true model. To add validity to this approximation, you might consider this additive 
model to be a Taylor-series expansion of the true model. However, this appeal to the Taylor-series 
expansion usually ignores the ‘local-neighborhood’ assumption. 

Another assumption is that the relationship of the DV with each IV is linear (straight-line). Here again, no one 
really believes that the relationship is a straight line. However, this is a reasonable first approximation. 

In order obtain better approximations, methods have been developed to allow regression models to 
approximate curvilinear relationships as well as non-additivity. Although nonlinear regression models can 
be used in these situations, they add a higher level of complexity to the modeling process. An experienced 
user of multiple regression knows how to include curvilinear components in a regression model when it is 
needed. 

Another issue is how to add categorical variables into the model. Unlike regular numeric variables, 
categorical variables may be alphabetic. Examples of categorical variables are gender, producer, and 
location. In order to effectively use multiple regression, you must know how to include categorical IV’s in 
your regression model.  

This section shows how NCSS may be used to specify and estimate advanced regression models that 
include curvilinearity, interaction, and categorical variables. 
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Representing a Curvilinear Relationship 
A curvilinear relationship between a DV and one or more IV’s is often modeled by adding new IV’s which are 
created from the original IV by squaring, and occasionally cubing, them. For example, the regression model  

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 

might be expanded to 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + 𝛽𝛽3𝑋𝑋12 + 𝛽𝛽4𝑋𝑋22 + 𝛽𝛽5𝑋𝑋1𝑋𝑋2 

= 𝛽𝛽0 + 𝛽𝛽1𝑍𝑍1 + 𝛽𝛽2𝑍𝑍2 + 𝛽𝛽3𝑍𝑍3 + 𝛽𝛽4𝑍𝑍4 + 𝛽𝛽5𝑍𝑍5 

Note that this model is still additive in terms of the new IV’s.  

One way to adopt such a new model is to create the new IV’s using the transformations of existing variables. 
However, the same effect can be achieved using the Custom Model statement. The details of writing a 
Custom Model will be presented later, but we note in passing that the above model would be written as 

𝑋𝑋1     𝑋𝑋2     𝑋𝑋1 ∗ 𝑋𝑋1     𝑋𝑋1 ∗ 𝑋𝑋2     𝑋𝑋2 ∗ 𝑋𝑋2 

Representing Categorical Variables 
Categorical variables take on only a few unique values. For example, suppose a therapy variable has three 
possible values: A, B, and C. One question is how to include this variable in the regression model. At first 
glance, we can convert the letters to numbers by recoding A to 1, B to 2, and C to 3. Now we have numbers. 
Unfortunately, we will obtain completely different results if we recode A to 2, B to 3, and C to 1. Thus, a 
direct recode of letters to numbers will not work.  

To convert a categorical variable to a form usable in regression analysis, we have to create a new set of 
numeric variables. If a categorical variable has k values, k - 1 new variables must be generated. 

There are many ways in which these new variables may be generated. We will present a few examples here. 

Indicator Variables 

Indicator (dummy or binary) variables are a popular type of generated variables. They are created as 
follows. A reference value is selected. Usually, the most common value is selected as the reference value. 
Next, a variable is generated for each of the values other than the reference value. For example, suppose 
that C is selected as the reference value. An indicator variable is generated for each of the remaining values: 
A and B. The value of the indicator variable is one if the value of the original variable is equal to the value of 
interest, or zero otherwise. Here is how the original variable T and the two new indicator variables TA and 
TB look in a short example.  

T TA TB 
A 1 0 
A 1 0 
B 0 1 
B 0 1 
C 0 0 
C 0 0 

The generated IV’s, TA and TB, would be used in the regression model. 
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Contrast Variables 

Contrast variables are another popular type of generated variables. Several types of contrast variables can 
be generated. We will present a few here. One method is to contrast each value with the reference value. 
The value of interest receives a one. The reference value receives a negative one. All other values receive a 
zero.  

Continuing with our example, one set of contrast variables is 

T CA CB 
A 1 0 
A 1 0 
B 0 1 
B 0 1 
C -1 -1 
C -1 -1 

The generated IV’s, CA and CB, would be used in the regression model. 

Another set of contrast variables that is commonly used is to compare each value with those remaining. For 
this example, we will suppose that T takes on four values: A, B, C, and D. The generate variables are 

T C1 C2 C3 
A -3 0 0 
A -3 0 0 
B 1 -2 0 
B 1 -2 0 
C 1 1 -1 
C 1 1 -1 
D 1 1 1 
D 1 1 1 

Many other methods have been developed to provide meaningful numeric variables that represent 
categorical variable. We have presented these because they may be generated automatically by NCSS. 

Representing Interactions of Numeric Variables 
The interaction between two variables is represented in the regression model by creating a new variable 
that is the product of the variables that are interacting. Suppose you have two variables X1 and X2 for which 
an interaction term is necessary. A new variable is generated by multiplying the values of X1 and X2 
together.  

X1 X2 Int 
1 1 1 
2 1 2 
3 2 6 
2 2 4 
0 4 0 
5 -2 -10 

The new variable, Int, is added to the regression equation and treated like any other variable during the 
analysis. With Int in the regression model, the interaction between X1 and X2 may be investigated. 
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Representing Interactions of Numeric and Categorical Variables 
When the interaction between a numeric IV and a categorical IV is to be included in the model, all proceeds 
as above, except that an interaction variable must be generated for each categorical variable. This can be 
accomplished automatically in NCSS using an appropriate Model statement. 

In the following example, the interaction between the categorical variable T and the numeric variable X is 
created.  

T CA CB X XCA XCB 
A 1 0 1.2 1.2 0 
A 1 0 1.4 1.4 0 
B 0 1 2.3 0 2.3 
B 0 1 4.7 0 4.7 
C -1 -1 3.5 -3.5 -3.5 
C -1 -1 1.8 -1.8 -1.8 

When the variables XCA and XCB are added to the regression model, they will account for the interaction 
between T and X. 

Representing Interactions Two or More Categorical Variables 
When the interaction between two categorical variables is included in the model, an interaction variable 
must be generated for each combination of the variables generated for each categorical variable. This can 
be accomplished automatically in NCSS using an appropriate Model statement. 

In the following example, the interaction between the categorical variables T and S are generated. Try to 
determine the reference value used for variable S. 

T CA CB S S1 S2 CAS1 CAS2 CBS1 CBS2 
A 1 0 D 1 0 1 0 0 0 
A 1 0 E 0 1 0 1 0 0 
B 0 1 F 0 0 0 0 0 0 
B 0 1 D 1 0 0 0 1 0 
C -1 -1 E 0 1 0 -1 0 -1 
C -1 -1 F 0 0 0 0 0 0 

When the variables, CAS1, CAS2, CBS1, and CBS2 are added to the regression model, they will account for the 
interaction between T and S. 

Possible Uses of Regression Analysis 
Montgomery (1982) outlines the following five purposes for running a regression analysis. 

Description 
The analyst is seeking to find an equation that describes or summarizes the relationships in a set of data. 
This purpose makes the fewest assumptions. 
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Coefficient Estimation  
This is a popular reason for doing regression analysis. The analyst may have a theoretical relationship in 
mind, and the regression analysis will confirm this theory. Most likely, there is specific interest in the 
magnitudes and signs of the coefficients. Frequently, this purpose for regression overlaps with others.  

Prediction 
The prime concern here is to predict some response variable, such as sales, delivery time, efficiency, 
occupancy rate in a hospital, reaction yield in some chemical process, or strength of some metal. These 
predictions may be very crucial in planning, monitoring, or evaluating some process or system. There are 
many assumptions and qualifications that must be made in this case. For instance, you must not extrapolate 
beyond the range of the data. Also, interval estimates require special, so-called normality, assumptions to 
hold. 

Control 
Regression models may be used for monitoring and controlling a system. For example, you might want to 
calibrate a measurement system or keep a response variable within certain guidelines. When a regression 
model is used for control purposes, the independent variables must be related to the dependent in a causal 
way. Furthermore, this functional relationship must continue over time. If it does not, continual modification 
of the model must occur. 

Variable Selection or Screening 
In this case, a search is conducted for those independent variables that explain a significant amount of the 
variation in the dependent variable. In most applications, this is not a one-time process but a continual 
model-building process. This purpose is manifested in other ways, such as using historical data to identify 
factors for future experimentation. 

Assumptions 
The following assumptions must be considered when using multiple regression analysis.  

Linearity 
Multiple regression models the linear (straight-line) relationship between Y and the X’s. Any curvilinear 
relationship is ignored. This is most easily evaluated by scatter plots early on in your analysis. Nonlinear 
patterns can show up in residual plots. 

  

http://www.ncss.com/


NCSS Statistical Software NCSS.com   

Multiple Regression (Old Version) 

309-7 
 © NCSS, LLC. All Rights Reserved. 

Constant Variance 
The variance of the 𝜀𝜀′𝑠𝑠 is constant for all values of the X’s. This can be detected by residual plots of ej versus 
𝑦𝑦�𝑗𝑗  or the X’s. If these residual plots show a rectangular shape, we can assume constant variance. On the 
other hand, if a residual plot shows an increasing or decreasing wedge or bowtie shape, non-constant 
variance exists and must be corrected.  

Special Causes 
We assume that all special causes, outliers due to one-time situations, have been removed from the data. If 
not, they may cause non-constant variance, non-normality, or other problems with the regression model. 

Normality 
We assume the 𝜀𝜀′𝑠𝑠 are normally distributed when hypothesis tests and confidence limits are to be used. 

Independence 
The 𝜀𝜀′𝑠𝑠 are assumed to be uncorrelated with one another, which implies that the Y’s are also uncorrelated. 
This assumption can be violated in two ways: model misspecification or time-sequenced data. 

1.  Model misspecification. If an important independent variable is omitted or if an incorrect functional 
form is used, the residuals may not be independent. The solution to this dilemma is to find the 
proper functional form or to include the proper independent variables. 

2.  Time-sequenced data. Whenever regression analysis is performed on data taken over time 
(frequently called time series data), the residuals are often correlated. This correlation among 
residuals is called serial correlation or autocorrelation. Positive autocorrelation means that the 
residual in time period j tends to have the same sign as the residual in time period (j-k), where k is 
the lag in time periods. On the other hand, negative autocorrelation means that the residual in time 
period j tends to have the opposite sign as the residual in time period (j-k). 

The presence of autocorrelation among the residuals has several negative impacts: 

1.  The regression coefficients are unbiased but no longer efficient, i.e., minimum variance estimates. 

2.  With positive serial correlation, the mean square error may be seriously underestimated. The impact 
of this is that the standard errors are underestimated, the partial t-tests are inflated (show 
significance when there is none), and the confidence intervals are shorter than they should be. 

3.  Any hypothesis tests or confidence limits that required the use of the t or F distribution would be 
invalid. 

You could try to identify these serial correlation patterns informally, with the residual plots versus time. A 
better analytical way would be to compute the serial or autocorrelation coefficient for different time lags 
and compare it to a critical value. 
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Multicollinearity 
Collinearity, or multicollinearity, is the existence of near-linear relationships among the set of independent 
variables. The presence of multicollinearity causes all kinds of problems with regression analysis, so you 
could say that we assume the data do not exhibit it. 

Effects of Multicollinearity 

Multicollinearity can create inaccurate estimates of the regression coefficients, inflate the standard errors of 
the regression coefficients, deflate the partial t-tests for the regression coefficients, give false nonsignificant 
p-values, and degrade the predictability of the model. 

Sources of Multicollinearity 

To deal with collinearity, you must be able to identify its source. The source of the collinearity impacts the 
analysis, the corrections, and the interpretation of the linear model. There are five sources (see 
Montgomery [1982] for details): 

1.  Data collection. In this case, the data has been collected from a narrow subspace of the independent 
variables. The collinearity has been created by the sampling methodology. Obtaining more data on 
an expanded range would cure this collinearity problem. 

2.  Physical constraints of the linear model or population. This source of collinearity will exist no matter 
what sampling technique is used. Many manufacturing or service processes have constraints on 
independent variables (as to their range), either physically, politically, or legally, which will create 
collinearity. 

3.  Over-defined model. Here, there are more variables than observations. This situation should be 
avoided. 

4.  Model choice or specification. This source of collinearity comes from using independent variables that 
are higher powers or interactions of an original set of variables. It should be noted that if sampling 
subspace of Xj is narrow, then any combination of variables with xj will increase the collinearity 
problem even further. 

5.  Outliers. Extreme values or outliers in the X-space can cause collinearity as well as hide it.  

Detection of Collinearity 

The following steps for detecting collinearity proceed from simple to complex. 

1. Begin by studying pairwise scatter plots of pairs of independent variables, looking for near-perfect 
relationships. Also glance at the correlation matrix for high correlations. Unfortunately, 
multicollinearity does not always show up when considering the variables two at a time.  

2. Next, consider the variance inflation factors (VIF). Large VIF’s flag collinear variables.  

3. Finally, focus on small eigenvalues of the correlation matrix of the independent variables. An 
eigenvalue of zero or close to zero indicates that an exact linear dependence exists. Instead of 
looking at the numerical size of the eigenvalue, use the condition number. Large condition numbers 
indicate collinearity. 
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Correction of Collinearity 

Depending on what the source of collinearity is, the solutions will vary. If the collinearity has been created by 
the data collection, then collect additional data over a wider X-subspace. If the choice of the linear model 
has accented the collinearity, simplify the model by variable selection techniques. If an observation or two 
has induced the collinearity, remove those observations and proceed accordingly. Above all, use care in 
selecting the variables at the outset. 

Centering and Scaling Issues in Collinearity 

When the variables in regression are centered (by subtracting their mean) and scaled (by dividing by their 
standard deviation), the resulting X'X matrix is in correlation form. The centering of each independent 
variable has removed the constant term from the collinearity diagnostics. Scaling and centering permit the 
computation of the collinearity diagnostics on standardized variables. On the other hand, there are many 
regression applications where the intercept is a vital part of the linear model. The collinearity diagnostics on 
the uncentered data may provide a more realistic picture of the collinearity structure in these cases. 

Multiple Regression Checklist 
This checklist, prepared by a professional statistician, is a flowchart of the steps you should complete to 
conduct a valid multiple regression analysis. Several of these steps should be performed prior to this phase 
of the regression analysis, but they are briefly listed here again as a reminder. You should complete these 
tasks in order. 

Step 1 – Data Preparation 
Scan your data for anomalies, keypunch errors, typos, and so on. You should have a minimum of five 
observations for each variable in the analysis, including the dependent variable. This discussion assumes 
that the pattern of missing values is random. All data preparation should be done prior to the use of one of 
the variable selection strategies. 

Special attention must be paid to categorical IV’s to make certain that you have chosen a reasonable 
method of converting them to numeric values. 

Also, you must decide how complicated of a model to use. Do you want to include powers of variables and 
interactions between terms? 

One the best ways to accomplish this data preparation is to run your data through the Data Screening 
procedure, since it provides reports about missing value patterns, discrete and continuous variables, and so 
on. 
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Step 2 – Variable Selection 
Variable selection seeks to reduce the number of IV’s to a manageable few. There are several variable 
selection methods in regression: Stepwise Regression, All Possible Regressions, or Multivariate Variable 
Selection. Each of these variable selection methods has advantages and disadvantages. We suggest that you 
begin with the Hierarchical Stepwise procedure included in this procedure since it allows you to look at 
interactions, powers, and categorical variables. Use this to narrow your search down to fifteen or fewer IV’s. 
Next, apply All Possible Regressions to those fifteen variables to find the best four or five variables. 

It is extremely important that you complete Step 1 before beginning this step, since variable selection can 
be greatly distorted by outliers. Every effort should be taken to find outliers before beginning this step. 

Step 3 – Setup and Run the Regression 

Introduction 

Now comes the fun part: running the program. NCSS is designed to be simple to operate, but it can still 
seem complicated. When you go to run a procedure such as this for the first time, take a few minutes to 
read through the chapter again and familiarize yourself with the issues involved. 

Enter Variables 

The NCSS panels are set with ready-to-run defaults, but you have to select the appropriate variables 
(columns of data). There should be only one dependent variable and one or more independent variables 
enumerated. In addition, if a weight variable is available from a previous analysis, it needs to be specified. 

Choose Report Options 

In multiple linear regression, there is a wide assortment of report options available. As a minimum, you are 
interested in the coefficients for the regression equation, the analysis of variance report, normality testing, 
serial correlation (for time-sequenced data), regression diagnostics (looking for outliers), and 
multicollinearity insights. 

Specify Alpha 

Most beginners at statistics forget this important step and let the alpha value default to the standard 0.05. 
You should make a conscious decision as to what value of alpha is appropriate for your study. The 0.05 
default came about during the dark ages when people had to rely on printed probability tables and there 
were only two values available: 0.05 or 0.01. Now you can set the value to whatever is appropriate.  

Select All Plots 

As a rule, select all residual plots. They add a great deal to your analysis of the data. 
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Step 4 – Check Model Adequacy 

Introduction 

Once the regression output is displayed, you will be tempted to go directly to the probability of the F-test 
from the regression analysis of variance table to see if you have a significant result. However, it is very 
important that you proceed through the output in an orderly fashion. The main conditions to check for 
relate to linearity, normality, constant variance, independence, outliers, multicollinearity, and predictability. 
Return to the statistical sections and plot descriptions for more detailed discussions. 

Check 1. Linearity 

• Look at the Residual vs. Predicted plot. A curving pattern here indicates nonlinearity. 

• Look at the Residual vs. Predictor plots. A curving pattern here indicates nonlinearity. 

• Look at the Y versus X plots. For simple linear regression, a linear relationship between Y and X in a 
scatter plot indicates that the linearity assumption is appropriate. The same holds if the dependent 
variable is plotted against each independent variable in a scatter plot. 

• If linearity does not exist, take the appropriate action and return to Step 2. Appropriate action might be 
to add power terms (such as Log(X), X squared, or X cubed) or to use an appropriate nonlinear model. 

Check 2. Normality 

• Look at the Normal Probability Plot. If all of the residuals fall within the confidence bands for the Normal 
Probability Plot, the normality assumption is likely met. One or two residuals outside the confidence 
bands may be an indicator of outliers, not nonnormality. 

• Look at the Normal Assumptions Section. The formal normal goodness of fit tests are given in the Normal 
Assumptions Section. If the decision is accepted for the Normality (Omnibus) test, there is no evidence that 
the residuals are not normal. 

• If normality does not exist, take the appropriate action and return to Step 2. Appropriate action includes 
removing outliers and/or using the logarithm of the dependent variable. 

Check 3. Nonconstant Variance 

• Look at the Residual vs. Predicted plot. If the Residual vs. Predicted plot shows a rectangular shape 
instead of an increasing or decreasing wedge or a bowtie, the variance is constant. 

• Look at the Residual vs. Predictor plots. If the Residual vs. Predictor plots show a rectangular shape, 
instead of an increasing or decreasing wedge or a bowtie, the variance is constant. 

• If nonconstant variance does not exist, take the appropriate action and return to Step 2. Appropriate 
action includes taking the logarithm of the dependent variable or using weighted regression. 
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Check 4. Independence or Serial Correlation 

• If you have time series data, look at the Serial-Correlations Section. If none of the serial correlations in 
the Serial-Correlations Section are greater than the critical value that is provided, independence may be 
assumed. 

• Look at the Residual vs. Row plot. A visualization of what the Serial-Correlations Section shows will be 
exhibited by adjacent residuals being similar (a roller coaster trend) or dissimilar (a quick oscillation). 

• If independence does not exist, use a first difference model and return to Step 2. More complicated 
choices require time series models. 

Check 5. Outliers 

• Look at the Regression Diagnostics Section. Any observations with an asterisk by the diagnostics 
RStudent, Hat Diagonal, DFFITS, or the CovRatio, are potential outliers. Observations with a Cook’s D 
greater than 1.00 are also potentially influential. 

• Look at the Dfbetas Section. Any Dfbetas beyond the cutoff of ±2/√𝑁𝑁 indicate influential observations. 

• Look at the Rstudent vs. Hat Diagonal plot. This plot will flag an observation that may be jointly 
influential by both diagnostics. 

• If outliers do exist in the model, go to robust regression and run one of the options there to confirm 
these outliers. If the outliers are to be deleted or down weighted, return to Step 2. 

Check 6. Multicollinearity 

• Look at the Multicollinearity Section. If any variable has a variance inflation factor greater than 10, 
collinearity could be a problem. 

• Look at the Eigenvalues of Centered Correlations Section. Condition numbers greater than 1000 indicate 
severe collinearity. Condition numbers between 100 and 1000 imply moderate to strong collinearity. 

• Look at the Correlation Matrix Section. Strong pairwise correlation here may give some insight as to the 
variables causing the collinearity. 

• If multicollinearity does exist in the model, it could be due to an outlier (return to Check 5 and then Step 
2) or due to strong interdependencies between independent variables. In the latter case, return to Step 
2 and try a different variable selection procedure. 

Check 7. Predictability 

• Look at the PRESS Section. If the Press R2 is almost as large as the R2, you have done as well as could be 
expected. It is not unusual in practice for the Press R2 to be half of the R2. If R2 is 0.50, a Press R2 of 
0.25 would be unacceptable.  

• Look at the Predicted Values with Confidence Limits for Means and Individuals. If the confidence limits 
are too wide to be practical, you may need to add new variables or reassess the outlier and collinearity 
possibilities. 

• Look at the Residual Report. Any observation that has percent error grossly deviant from the values of 
most observations is an indication that this observation may be impacting predictability. 

• Any changes in the model due to poor predictability require a return to Step 2. 
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Step 5 – Record Your Results 
Since multiple regression can be quite involved, it is best make notes of why you did what you did at 
different steps of the analysis. Jot down what decisions you made and what you have found. Explain what 
you did, why you did it, what conclusions you reached, which outliers you deleted, areas for further 
investigation, and so on. Be sure to examine the following sections closely and in the indicated order: 

1. Analysis of Variance Section. Check for the overall significance of the model. 

2. Regression Equation and Coefficient Sections. Significant individual variables are noted here. 

Regression analysis is a complicated statistical tool that frequently demands revisions of the model. Your 
notes of the analysis process as well as of the interpretation will be worth their weight in gold when you 
come back to an analysis a few days later! 

Multiple Regression Technical Details  
This section presents the technical details of least squares regression analysis using a mixture of summation 
and matrix notation. Because this module also calculates weighted multiple regression, the formulas will 
include the weights, 𝑤𝑤𝑗𝑗. When weights are not used, the 𝑤𝑤𝑗𝑗 are set to one. 

Define the following vectors and matrices: 

𝐘𝐘 =

⎣
⎢
⎢
⎢
⎡
𝑦𝑦1
⋮
𝑦𝑦𝑗𝑗
⋮
𝑦𝑦𝑁𝑁⎦
⎥
⎥
⎥
⎤
,   𝐗𝐗 =

⎣
⎢
⎢
⎢
⎡
1 𝑥𝑥11 ⋯ 𝑥𝑥1𝑝𝑝
⋮    
1 𝑥𝑥1𝑗𝑗 ⋯ 𝑥𝑥𝑝𝑝𝑗𝑗
⋮    
1 𝑥𝑥1𝑁𝑁 ⋯ 𝑥𝑥𝑝𝑝𝑁𝑁⎦

⎥
⎥
⎥
⎤

,   𝐞𝐞 =

⎣
⎢
⎢
⎢
⎡
𝑒𝑒1
⋮
𝑒𝑒𝑗𝑗
⋮
𝑒𝑒𝑁𝑁⎦
⎥
⎥
⎥
⎤
,   𝟏𝟏 =

⎣
⎢
⎢
⎢
⎡
1
⋮
1
⋮
1⎦
⎥
⎥
⎥
⎤
,   𝐛𝐛 = �

𝑏𝑏0
𝑏𝑏1
⋮
𝑏𝑏𝑝𝑝

� 

𝐖𝐖 =

⎣
⎢
⎢
⎢
⎡
𝑤𝑤1 0 0 ⋯ 0
0 ⋱ 0 0 ⋮
0 0 𝑤𝑤𝑗𝑗 0 0
⋮ 0 0 ⋱ 0
0 ⋯ 0 0 𝑤𝑤𝑁𝑁⎦

⎥
⎥
⎥
⎤

 

Least Squares  
Using this notation, the least squares estimates are found using the equation. 

𝐛𝐛 = (𝐗𝐗′𝐖𝐖𝐗𝐗)−𝟏𝟏𝐗𝐗′𝐖𝐖𝐘𝐘 

Note that when the weights are not used, this reduces to 

𝐛𝐛 = (𝐗𝐗′𝐗𝐗)−𝟏𝟏𝐗𝐗′𝐘𝐘 

The predicted values of the dependent variable are given by 

𝐘𝐘� = 𝐛𝐛′𝐗𝐗 

http://www.ncss.com/


NCSS Statistical Software NCSS.com   

Multiple Regression (Old Version) 

309-14 
 © NCSS, LLC. All Rights Reserved. 

The residuals are calculated using 

𝐞𝐞 = 𝐘𝐘 − 𝐘𝐘� 

Estimated Variances  
An estimate of the variance of the residuals is computed using 

𝑠𝑠2 =
𝐞𝐞′𝐖𝐖𝐞𝐞

𝑁𝑁 − 𝑝𝑝 − 1
 

An estimate of the variance of the regression coefficients is calculated using 

V�

𝑏𝑏0
𝑏𝑏1
⋮
𝑏𝑏𝑝𝑝

� = 𝑠𝑠2(𝐗𝐗′𝐖𝐖𝐗𝐗)−1 

An estimate of the variance of the predicted mean of Y at a specific value of X, say 𝑋𝑋0, is given by 

𝑠𝑠𝑌𝑌𝑚𝑚|𝑋𝑋0
2 = 𝑠𝑠2(1,𝑋𝑋0)(𝐗𝐗′𝐖𝐖𝐗𝐗)−1 � 1

𝑋𝑋0
� 

An estimate of the variance of the predicted value of Y for an individual for a specific value of X, say 𝑋𝑋0, is 
given by 

𝑠𝑠𝑌𝑌𝐼𝐼|𝑋𝑋0
2 = 𝑠𝑠2 + 𝑠𝑠𝑌𝑌𝑚𝑚|𝑋𝑋0

2  

Hypothesis Tests of the Intercept and Slopes 
Using these variance estimates and assuming the residuals are normally distributed, hypothesis tests may 
be constructed using the Student’s t distribution with N - p - 1 degrees of freedom using 

𝑡𝑡𝑏𝑏𝑖𝑖 =
𝑏𝑏𝑖𝑖 − 𝐵𝐵𝑖𝑖
𝑠𝑠𝑏𝑏𝑖𝑖

 

Usually, the hypothesized value of 𝐵𝐵𝑖𝑖  is zero, but this does not have to be the case. 

Confidence Intervals of the Intercept and Slope 
A 100(1 − 𝛼𝛼)% confidence interval for the true regression coefficient, βi, is given by 

𝑏𝑏𝑖𝑖 ± �𝑡𝑡1−𝛼𝛼/2,𝑁𝑁−𝑝𝑝−1�𝑠𝑠𝑏𝑏𝑖𝑖 
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Confidence Interval of Y for Given X 
A 100(1 − 𝛼𝛼)% confidence interval for the mean of Y at a specific value of X, say 𝑋𝑋0, is given by 

𝑏𝑏′𝑋𝑋0 ± �𝑡𝑡1−𝛼𝛼/2,𝑁𝑁−𝑝𝑝−1�𝑠𝑠𝑌𝑌𝑚𝑚|𝑋𝑋0 

A 100(1 − 𝛼𝛼)% prediction interval for the value of Y for an individual at a specific value of X, say 𝑋𝑋0, is given 
by 

𝑏𝑏′𝑋𝑋0 ± �𝑡𝑡1−𝛼𝛼/2,𝑁𝑁−𝑝𝑝−1�𝑠𝑠𝑌𝑌𝐼𝐼|𝑋𝑋0 

R2 (Percent of Variation Explained) 
Several measures of the goodness-of-fit of the regression model to the data have been proposed, but by far 
the most popular is R2. R2 is the square of the correlation coefficient between Y and 𝑌𝑌�. It is the proportion of 
the variation in Y that is accounted by the variation in the independent variables. R2 varies between zero (no 
linear relationship) and one (perfect linear relationship). 

R2, officially known as the coefficient of determination, is defined as the sum of squares due to the regression 
divided by the adjusted total sum of squares of Y. The formula for R2 is 

𝑅𝑅2 = 1 − �
𝐞𝐞′𝐖𝐖𝐞𝐞

𝐘𝐘′𝐖𝐖𝐘𝐘− (𝟏𝟏′𝐖𝐖𝐘𝐘)2
𝟏𝟏′𝐖𝐖𝟏𝟏

� 

=
𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑆𝑆𝑆𝑆𝑇𝑇𝑀𝑀𝑇𝑇𝑇𝑇𝑀𝑀

 

R2 is probably the most popular measure of how well a regression model fits the data. R2 may be defined 
either as a ratio or a percentage. Since we use the ratio form, its values range from zero to one. A value of R2 
near zero indicates no linear relationship, while a value near one indicates a perfect linear fit. Although  
popular, R2 should not be used indiscriminately or interpreted without scatter plot support. Following are 
some qualifications on its interpretation:  

1. Additional independent variables. It is possible to increase R2 by adding more independent variables, 
but the additional independent variables may actually cause an increase in the mean square error, 
an unfavorable situation. This usually happens when the sample size is small. 

2. Range of the independent variables. R2 is influenced by the range of the independent variables. R2 
increases as the range of the X’s increases and decreases as the range of the X’s decreases.  

3. Slope magnitudes. R2 does not measure the magnitude of the slopes.  

4. Linearity. R2 does not measure the appropriateness of a linear model. It measures the strength of the 
linear component of the model. Suppose the relationship between X and Y was a perfect sphere. 
Although there is a perfect relationship between the variables, the R2 value would be zero. 

5. Predictability. A large R2 does not necessarily mean high predictability, nor does a low R2 necessarily 
mean poor predictability.  

  

http://www.ncss.com/


NCSS Statistical Software NCSS.com   

Multiple Regression (Old Version) 

309-16 
 © NCSS, LLC. All Rights Reserved. 

6. No-intercept model. The definition of R2 assumes that there is an intercept in the regression model. 
When the intercept is left out of the model, the definition of R2 changes dramatically. The fact that 
your R2 value increases when you remove the intercept from the regression model does not reflect 
an increase in the goodness of fit. Rather, it reflects a change in the underlying definition of R2. 

7. Sample size. R2 is highly sensitive to the number of observations. The smaller the sample size, the 
larger its value. 

Rbar2 (Adjusted R2) 
R2 varies directly with N, the sample size. In fact, when N = p, R2= 1. Because R2 is so closely tied to the 
sample size, an adjusted R2 value, called 𝑅𝑅�2, has been developed. 𝑅𝑅�2 was developed to minimize the impact 
of sample size. The formula for 𝑅𝑅�2 is 

𝑅𝑅�2 = 1 −
(𝑁𝑁 − 1)(1 − 𝑅𝑅2)

𝑁𝑁 − 𝑝𝑝 − 1
 

Testing Assumptions Using Residual Diagnostics 
Evaluating the amount of departure in your data from each assumption is necessary to see if remedial 
action is necessary before the fitted results can be used. First, the types of plots and statistical analyses the 
are used to evaluate each assumption will be given. Second, each of the diagnostic values will be defined. 

Notation – Use of (j) and p 
Several of these residual diagnostic statistics are based on the concept of studying what happens to various 
aspects of the regression analysis when each row is removed from the analysis. In what follows, we use the 
notation (j) to mean that observation j has been omitted from the analysis. Thus, b(j) means the value of b 
calculated without using observation j. 
Some of the formulas depend on whether the intercept is fitted or not. We use p to indicate the number of 
regression parameters.  When the intercept is fit, p will include the intercept. 

1 – No Outliers 
Outliers are observations that are poorly fit by the regression model. If outliers are influential, they will 
cause serious distortions in the regression calculations. Once an observation has been determined to be an 
outlier, it must be checked to see if it resulted from a mistake. If so, it must be corrected or omitted. 
However, if no mistake can be found, the outlier should not be discarded just because it is an outlier. Many 
scientific discoveries have been made because outliers, data points that were different from the norm, were 
studied more closely. Besides being caused by simple data-entry mistakes, outliers often suggest the 
presence of an important independent variable that has been ignored. 

Outliers are easy to spot on scatter plots of the residuals and RStudent. RStudent is the preferred statistic 
for finding outliers because each observation is omitted from the calculation making it less likely that the 
outlier can mask its presence. Scatter plots of the residuals and RStudent against the X variables are also 
helpful because they may show other problems as well.  
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2 – Linear Regression Function - No Curvature 
The relationship between Y and each X is assumed to be linear (straight-line). No mechanism for curvature is 
included in the model. Although scatter plots of Y versus each X can show curvature in the relationship, the 
best diagnostic tool is the scatter plot of the residual versus each X. If curvature is detected, the model must 
be modified to account for the curvature. This may mean adding a quadratic term, taking logarithms of Y or 
X, or some other appropriate transformation. 

3 – Constant Variance 
The errors are assumed to have constant variance across all values of X. If there are a lot of data (N > 100), 
non-constant variance can be detected on the scatter plots of the residuals versus each X. However, the 
most direct diagnostic tool to evaluate this assumption is a scatter plot of the absolute values of the 
residuals versus each X. Often, the assumption is violated because the variance increases with X. This will 
show up as a ‘megaphone’ pattern on the scatter plot. 

When non-constant variance is detected, a variance-stabilizing transformation such as the square-root or 
logarithm may be used. However, the best solution is probably to use weighted regression, with weights 
inversely proportional to the magnitude of the residuals. 

4 – Independent Errors 
The Y’s, and thus the errors, are assumed to be independent. This assumption is usually ignored unless 
there is a reason to think that it has been violated, such as when the observations were taken across time. 
An easy way to evaluate this assumption is a scatter plot of the residuals versus their sequence number 
(assuming that the data are arranged in time sequence order). This plot should show a relative random 
pattern.  

The Durbin-Watson statistic is used as a formal test for the presence of first-order serial correlation. A more 
comprehensive method of evaluation is to look at the autocorrelations of the residuals at various lags. Large 
autocorrelations are found by testing each using Fisher’s z transformation. Although Fisher’s z 
transformation is only approximate in the case of autocorrelations, it does provide a reasonable measuring 
stick with which to judge the size of the autocorrelations.  

If independence is violated, confidence intervals and hypothesis tests are erroneous. Some remedial 
method that accounts for the lack of independence must be adopted, such as using first differences or the 
Cochrane-Orcutt procedure. 
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Durbin-Watson Test 

The Durbin-Watson test is often used to test for positive or negative, first-order, serial correlation. It is 
calculated as follows 

𝐷𝐷𝐷𝐷 =
∑ �𝑒𝑒𝑗𝑗 − 𝑒𝑒𝑗𝑗−1�

2𝑁𝑁
𝑗𝑗=2

∑ 𝑒𝑒𝑗𝑗2𝑁𝑁
𝑗𝑗=1

 

The distribution of this test is difficult because it involves the X values. Originally, Durbin-Watson (1950, 
1951) gave a pair of bounds to be used. However, there is a large range of ‘inclusion’ found when using 
these bounds. Instead of using these bounds, we calculate the exact probability using the beta distribution 
approximation suggested by Durbin-Watson (1951). This approximation has been shown to be accurate to 
three decimal places in most cases which is all that are needed for practical work. 

5 – Normality of Residuals 
The residuals are assumed to follow the normal probability distribution with zero mean and constant 
variance. This can be evaluated using a normal probability plot of the residuals. Also, normality tests are 
used to evaluate this assumption. The most popular of the five normality tests provided is the Shapiro-Wilk 
test.  

Unfortunately, a breakdown in any of the other assumptions results in a departure from this assumption as 
well. Hence, you should investigate the other assumptions first, leaving this assumption until last. 

Influential Observations 
Part of the evaluation of the assumptions includes an analysis to determine if any of the observations have 
an extra-large influence on the estimated regression coefficients, on the fit of the model, or on the value of 
Cook’s distance. By looking at how much removing an observation changes the results, an observation’s 
influence can be determined. 

Five statistics are used to investigate influence. These are Hat diagonal, DFFITS, DFBETAS, Cook’s D, and 
COVARATIO. 

Definitions Used in Residual Diagnostics 

Residual 

The residual is the difference between the actual Y value and the Y value predicted by the estimated 
regression model. It is also called the error, the deviate, or the discrepancy. 

𝑒𝑒𝑗𝑗 = 𝑦𝑦𝑗𝑗−𝑦𝑦�𝑗𝑗 

Although the true errors, εj, are assumed to be independent, the computed residuals, ej, are not. Although 
the lack of independence among the residuals is a concern in developing theoretical tests, it is not a concern 
on the plots and graphs. 
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By assumption, the variance of the εj  is σ2. However, the variance of the ej is not σ2. In vector notation, the 
covariance matrix of e is given by 

𝐕𝐕(𝐞𝐞) = 𝜎𝜎2 �𝐈𝐈 −𝐖𝐖
1
2𝐗𝐗(𝐗𝐗′𝐖𝐖𝐗𝐗)−𝟏𝟏𝐗𝐗′𝐖𝐖

1
2� 

= 𝜎𝜎𝟐𝟐(𝐈𝐈 − 𝐇𝐇) 

The matrix H is called the hat matrix since it puts the ‘hat’ on y as is shown in the unweighted case. 

𝑌𝑌� = 𝐗𝐗𝐛𝐛 

= 𝐗𝐗(𝐗𝐗′𝐗𝐗)−𝟏𝟏𝐗𝐗′𝐘𝐘 

= 𝐇𝐇𝐘𝐘 

Hence, the variance of ej is given by 

𝑉𝑉�𝑒𝑒𝑗𝑗� = 𝜎𝜎2�1 − ℎ𝑗𝑗𝑗𝑗� 

where hjj is the jth diagonal element of H. This variance is estimated using 

𝑉𝑉��𝑒𝑒𝑗𝑗� = 𝑠𝑠2�1 − ℎ𝑗𝑗𝑗𝑗� 

Hat Diagonal 

The hat diagonal, hjj, is the jth diagonal element of the hat matrix, H where  

𝐇𝐇 = 𝐖𝐖
1
2𝐗𝐗(𝐗𝐗′𝐖𝐖𝐗𝐗)−𝟏𝟏𝐗𝐗′𝐖𝐖

1
2 

H captures an observation’s remoteness in the X-space. Some authors refer to the hat diagonal as a 
measure of leverage in the X-space. As a rule of thumb, hat diagonals greater than 4/N are considered 
influential and are called high-leverage observations. 

Note that a high-leverage observation is not a bad observation. Rather, high-leverage observations exert 
extra influence on the final results, so care should be taken to ensure that they are correct. You should not 
delete an observation just because it has a high-influence. However, when you interpret the regression 
equation, you should bear in mind that the results may be due to a few, high-leverage observations. 

Standardized Residual 

As shown above, the variance of the observed residuals is not constant. This makes comparisons among the 
residuals difficult. One solution is to standardize the residuals by dividing by their standard deviations. This 
will give a set of residuals with constant variance. 

The formula for this residual is 

𝑟𝑟𝑗𝑗 =
𝑒𝑒𝑗𝑗

𝑠𝑠�1 − ℎ𝑗𝑗𝑗𝑗
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s(j) or MSEi 

This is the value of the mean squared error calculated without observation j. The formula for s(j) is given by 

𝑠𝑠(𝑗𝑗)2 =
1

𝑁𝑁 − 𝑝𝑝 − 1
� 𝑤𝑤𝑖𝑖�𝑦𝑦𝑖𝑖 − 𝐱𝐱𝑖𝑖′𝐛𝐛(𝑗𝑗)�
𝑁𝑁

𝑖𝑖=1,𝑖𝑖≠𝑗𝑗

 

=
(𝑁𝑁 − 𝑝𝑝)𝑠𝑠2 −

𝑤𝑤𝑗𝑗𝑒𝑒𝑗𝑗2

1 − ℎ𝑗𝑗𝑗𝑗
𝑁𝑁 − 𝑝𝑝 − 1

 

RStudent 

Rstudent is similar to the studentized residual. The difference is the s(j) is used rather than s in the 
denominator. The quantity s(j) is calculated using the same formula as s, except that observation j is 
omitted. The hope is that be excluding this observation, a better estimate of 𝜎𝜎2 will be obtained. Some 
statisticians refer to these as the studentized deleted residuals. 

𝑡𝑡𝑗𝑗 =
𝑒𝑒𝑗𝑗

𝑠𝑠(𝑗𝑗)�1 − ℎ𝑗𝑗𝑗𝑗
 

If the regression assumptions of normality are valid, a single value of the RStudent has a t distribution with 
N - 2 degrees of freedom. It is reasonable to consider |RStudent| > 2 as outliers. 

DFFITS 

DFFITS is the standardized difference between the predicted value with and without that observation. The 
formula for DFFITS is 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑗𝑗 =
𝑦𝑦�𝑗𝑗 − 𝑦𝑦�𝑗𝑗(𝑗𝑗)
𝑠𝑠(𝑗𝑗)�ℎ𝑗𝑗𝑗𝑗

 

= 𝑡𝑡𝑗𝑗�
ℎ𝑗𝑗𝑗𝑗

1 − ℎ𝑗𝑗𝑗𝑗
 

The values of 𝑦𝑦�𝑗𝑗(𝑗𝑗) and 𝑠𝑠2(𝑗𝑗) are found by removing observation j before the doing the calculations. It 
represents the number of estimated standard errors that the fitted value changes if the jth observation is 
omitted from the data set. If |DFFITS| > 1, the observation should be considered to be influential with 
regards to prediction. 
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Cook’s D 

The DFFITS statistic attempts to measure the influence of a single observation on its fitted value. Cook’s 
distance (Cook’s D) attempts to measure the influence each observation on all N fitted values. The formula 
for Cook’s D is 

𝐷𝐷𝑗𝑗 =
∑ 𝑤𝑤𝑗𝑗�𝑦𝑦�𝑗𝑗 − 𝑦𝑦�𝑗𝑗(𝑖𝑖)�2𝑁𝑁
𝑖𝑖=1

𝑝𝑝𝑠𝑠2
 

The  𝑦𝑦�𝑗𝑗(𝑖𝑖) are found by removing observation i before the calculations. Rather than go to all the time of 
recalculating the regression coefficients N times, we use the following approximation 

𝐷𝐷𝑗𝑗 =
𝑤𝑤𝑗𝑗𝑒𝑒𝑗𝑗2ℎ𝑗𝑗𝑗𝑗

𝑝𝑝𝑠𝑠2�1 − ℎ𝑗𝑗𝑗𝑗�
2 

This approximation is exact when no weight variable is used.  

A Cook’s D value greater than one indicates an observation that has large influence. Some statisticians have 
suggested that a better cutoff value is 4 / (N - 2). 

CovRatio 

This diagnostic flags observations that have a major impact on the generalized variance of the regression 
coefficients. A value exceeding 1.0 implies that the ith observation provides an improvement, i.e., a reduction 
in the generalized variance of the coefficients. A value of CovRatio less than 1.0 flags an observation that 
increases the estimated generalized variance. This is not a favorable condition.  

The general formula for the CovRatio is 

𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶𝑡𝑡𝑖𝑖𝐶𝐶𝑗𝑗 =
det �𝑠𝑠(𝑗𝑗)2�𝐗𝐗(𝑗𝑗)′𝐖𝐖𝐗𝐗(𝑗𝑗)�−1�

det[𝑠𝑠2(𝐗𝐗′𝐖𝐖𝐗𝐗)−1]  

=
1

1 − ℎ𝑗𝑗𝑗𝑗
�
𝑠𝑠(𝑗𝑗)2

𝑠𝑠2
�
𝑝𝑝

 

Belsley, Kuh, and Welsch (1980) give the following guidelines for the CovRatio. 

If CovRatio > 1 + 3p / N then omitting this observation significantly damages the precision of at least some of 
the regression estimates. 

If CovRatio < 1 - 3p / N then omitting this observation significantly improves the precision of at least some of 
the regression estimates. 
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DFBETAS 

The DFBETAS criterion measures the standardized change in a regression coefficient when an observation is 
omitted. The formula for this criterion is 

𝐷𝐷𝐷𝐷𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑘𝑘𝑗𝑗 =
𝑏𝑏𝑘𝑘 − 𝑏𝑏𝑘𝑘(𝑗𝑗)
𝑠𝑠(𝑗𝑗)�𝑐𝑐𝑘𝑘𝑘𝑘

 

where 𝑐𝑐𝑘𝑘𝑘𝑘 is a diagonal element of the inverse matrix (𝐗𝐗′𝐖𝐖𝐗𝐗)−1. 

Belsley, Kuh, and Welsch (1980) recommend using a cutoff of 2 / √𝑁𝑁 when N is greater than 100. When N is 
less than 100, others have suggested using a cutoff of 1.0 or 2.0 for the absolute value of DFBETAS. 

Press Value 

PRESS is an acronym for prediction sum of squares. It was developed for use in variable selection  to validate 
a regression model. To calculate PRESS, each observation is individually omitted. The remaining N - 1 
observations are used to calculate a regression and estimate the value of the omitted observation. This is 
done N times, once for each observation. The difference between the actual Y value and the predicted Y with 
the observation deleted is called the prediction error or PRESS residual. The sum of the squared prediction 
errors is the PRESS value. The smaller PRESS is, the better the predictability of the model.  

The formula for PRESS is 

𝑃𝑃𝑅𝑅𝐷𝐷𝑆𝑆𝑆𝑆 = �𝑤𝑤𝑗𝑗�𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑗𝑗(𝑗𝑗)�2
𝑁𝑁

𝑗𝑗=1

 

Press R-Squared 

The PRESS value above can be used to compute an R2-like statistic, called R2Predict, which reflects the 
prediction ability of the model. This is a good way to validate the prediction of a regression model without 
selecting another sample or splitting your data. It is very possible to have a high R2 and a very low R2Predict. 
When this occurs, it implies that the fitted model is data dependent. This R2Predict ranges from below zero 
to above one. When outside the range of zero to one, it is truncated to stay within this range.  

𝑅𝑅𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀𝑖𝑖𝑝𝑝𝑇𝑇2 = 1 −
𝑃𝑃𝑅𝑅𝐷𝐷𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑇𝑇𝑀𝑀𝑇𝑇

 

Sum |Press residuals| 

This is the sum of the absolute value of the PRESS residuals or prediction errors. If a large value for the PRESS 
is due to one or a few large PRESS residuals, this statistic may be a more accurate way to evaluate 
predictability. This quantity is computed as 

�|𝑃𝑃𝑅𝑅𝐷𝐷𝑆𝑆𝑆𝑆| = �𝑤𝑤𝑗𝑗�𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑗𝑗(𝑗𝑗)�
𝑁𝑁

𝑗𝑗=1
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Bootstrapping 
Bootstrapping was developed to provide standard errors and confidence intervals for regression coefficients 
and predicted values in situations in which the standard assumptions are not valid. In these nonstandard 
situations, bootstrapping is a viable alternative to the corrective action suggested earlier. The method is 
simple in concept, but it requires extensive computation time. 

The bootstrap is simple to describe. You assume that your sample is actually the population, and you draw B 
samples (B is over 1000) of size N from your original sample with replacement. With replacement means 
that each observation may be selected more than once. For each bootstrap sample, the regression results 
are computed and stored.  

Suppose that you want the standard error and a confidence interval of the slope. The bootstrap sampling 
process has provided B estimates of the slope. The standard deviation of these B estimates of the slope is 
the bootstrap estimate of the standard error of the slope. The bootstrap confidence interval is found the 
arranging the B values in sorted order and selecting the appropriate percentiles from the list. For example, a 
90% bootstrap confidence interval for the slope is given by fifth and ninety-fifth percentiles of the bootstrap 
slope values. The bootstrap method can be applied to many of the statistics that are computed in 
regression analysis.  

The main assumption made when using the bootstrap method is that your sample approximates the 
population fairly well. Because of this assumption, bootstrapping does not work well for small samples in 
which there is little likelihood that the sample is representative of the population. Bootstrapping should only 
be used in medium to large samples. 

When applied to linear regression, there are two types of bootstrapping that can be used. 

Modified Residuals 
Davison and Hinkley (1999) page 279 recommend the use of a special rescaling of the residuals when 
bootstrapping to keep results unbiased. These modified residuals are calculated using 

𝑒𝑒𝑗𝑗∗ =
𝑒𝑒𝑗𝑗

�
1 − ℎ𝑗𝑗𝑗𝑗
𝑤𝑤𝑗𝑗

− �̅�𝑒∗ 

where 

�̅�𝑒∗ =
∑ 𝑤𝑤𝑗𝑗𝑁𝑁
𝑗𝑗=1 𝑒𝑒𝑗𝑗∗

∑ 𝑤𝑤𝑗𝑗𝑁𝑁
𝑗𝑗=1
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Bootstrap the Observations 
The bootstrap samples are selected from the original sample. This method is appropriate for data in which 
both X and Y have been selected at random. That is, the X values were not predetermined, but came in as 
measurements just as the Y values.  

An example of this situation would be if a population of individuals is sampled and both Y and X are 
measured on those individuals only after the sample is selected. That is, the value of X was not used in the 
selection of the sample. 

Bootstrap Prediction Intervals 
Bootstrap confidence intervals for the mean of Y given X are generated from the bootstrap sample in the 
usual way. To calculate prediction intervals for the predicted value (not the mean) of Y given X requires a 
modification to the predicted value of Y  to be made to account for the variation of Y about its mean. This 
modification of the predicted Y values in the bootstrap sample, suggested by Davison and Hinkley, is as 
follows. 

𝑦𝑦�+ = 𝑦𝑦� −�𝑥𝑥𝑖𝑖(𝑏𝑏𝑖𝑖∗ − 𝑏𝑏𝑖𝑖) + 𝑒𝑒+∗  

where 𝑒𝑒+∗  is a randomly selected modified residual. By adding the randomly sample residual we have added 
an appropriate amount of variation to represent the variance of individual Y’s about their mean value. 

Subset Selection 
Subset selection refers to the task of finding a small subset of the available independent variables that does 
a good job of predicting the dependent variable. Exhaustive searches are possible for regressions with up to 
15 IV’s. However, when more than 15 IV’s are available, algorithms that add or remove a variable at each 
step must be used. Two such searching algorithms are available in this module: forward selection and 
forward selection with switching.  

An issue that comes up because of categorical IV’s is what to do with the individual-degree of freedom 
variables that are generated for a categorical independent variable. If such a variable has six categories, five 
binary variables are generated. You can see that with two or three categorical variables, a large number of 
binary variables may result, which greatly increases the total number of variables that must be searched. To 
avoid this problem, the algorithms search on model terms rather than on the individual binary variables. 
Thus, the whole set of generated variables associated with a given term are considered together for 
inclusion in, or deletion from, the model. It’s all or none. Because of the time consuming nature of the 
algorithm, this is the only feasible way to deal with categorical variables. If you want the subset algorithm to 
deal with them individually, you can save the generated set of variables in the first run and designate them 
as Numeric Variables. 
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Hierarchical Models 
Another issue is what to do with interactions. Usually, an interaction is not entered in the model unless the 
individual terms that make up that interaction are also in the model. For example, the interaction term 
A*B*C is not included unless the terms A, B, C, A*B, A*C, and B*C are already in the model. Such models are 
said to be hierarchical. You have the option during the search to force the algorithm to consider only 
hierarchical models during its search. Thus, if C is not in the model, interactions involving C are not even 
considered. Even though the option for non-hierarchical models is available, we recommend that you only 
consider hierarchical models. 

Forward Selection 

The method of forward selection proceeds as follows.  

1.  Begin with no terms in the model. 

2.  Find the term that, when added to the model, achieves the largest value of R-Squared. Enter this 
term into the model. 

3.  Continue adding terms until a target value for R-Squared is achieved or until a preset limit on the 
maximum number of terms in the model is reached. Note that these terms can be limited to those 
keeping the model hierarchical. 

This method is comparatively fast, but it does not guarantee that the best model is found except for the first 
step when it finds the best single term. You might use it when you have a large number of observations and 
terms so that other, more time consuming, methods are not feasible. 

Forward Selection with Switching 

This method is similar to the method of Forward Selection discussed above. However, at each step when a 
term is added, all terms in the model are switched one at a time with all candidate terms not in the model to 
determine if they increase the value of R-Squared. If a switch can be found, it is made and the pool of terms 
is again searched to determine if another switch can be made. Note that this switching can be limited to 
those keeping the model hierarchical.  

When the search for possible switches does not yield a candidate, the subset size is increased by one and a 
new search is begun. The algorithm is terminated when a target subset size is reached or all terms are 
included in the model. 

Discussion 

These algorithms usually require two runs. In the first run, you set the maximum subset size to a large value 
such as 10. By studying the Subset Selection reports from this run, you can quickly determine the optimum 
number of terms. You reset the maximum subset size to this number and make the second run. This two-
step procedure works better than relying on some F-to-enter and F-to-remove tests whose properties are 
not well understood to begin with. 
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Robust Regression 
Regular multiple regression is optimum when all of its assumptions are valid. When some of these assumptions 
are invalid, least squares regression can perform poorly. Thorough residual analysis can point to these 
assumption breakdowns and allow you to work around these limitations. However, this residual analysis is time 
consuming and requires a great deal of training.  

Robust regression provides an alternative to least squares regression that works with less restrictive 
assumptions. Specifically, it provides much better regression coefficient estimates when outliers are present in 
the data. Outliers violate the assumption of normally distributed residuals in least squares regression. They 
tend to pull the least squares fit too much in their direction by receiving much more “weight” than they deserve. 
Typically, you would expect that the weight attached to each observation would be about 1/N in a dataset with 
N observations. However, these outlying observations may receive a weight of 10, 20, or even 50 %. This leads 
to serious distortions in the estimated regression coefficients. 

Because of this distortion, these outliers are difficult to identify since their residuals are much smaller than they 
should be. When only one or two independent variables are used, these outlying points may be visually 
detected in various scatter plots. However, the complexity added by additional independent variables hides the 
outliers from view in these scatter plots. Robust regression down-weights the influence of outliers. This makes 
their residuals larger and easier to spot. Robust regression techniques are iterative procedures that seek to 
identify these outliers and minimize their impact on the coefficient estimates.  

The amount of weighting assigned to each observation in robust regression is controlled by a special curve 
called an influence function. There are three influence functions available in NCSS. 

Although robust regression can particularly benefit untrained users, careful consideration should be given to 
the results. Essentially, robust regression conducts its own residual analysis and down-weights or completely 
removes various observations. You should study the weights that are assigned to each observation, determine 
which have been largely eliminated, and decide if you want these observations in your analysis. 

M-Estimators 
Several families of robust estimators have been developed. The robust methods found in NCSS fall into the 
family of M-estimators. This estimator minimizes the sum of a function ρ(·) of the residuals. That is, these 
estimators are defined as the β’s that minimize 

min
𝛽𝛽

�𝜌𝜌�𝑦𝑦𝑗𝑗 − 𝑥𝑥𝑗𝑗′𝛽𝛽�
𝑛𝑛

𝑗𝑗=1

= min
𝛽𝛽

�𝜌𝜌�𝑒𝑒𝑗𝑗�
𝑁𝑁

𝑗𝑗=1

 

M in M-estimators stands for maximum likelihood since the function ρ(·)  is related to the likelihood function 
for a suitable choice of the distribution of the residuals. In fact, when the residuals follow the normal 
distribution, setting 𝜌𝜌(𝑢𝑢) = 1

2
𝑢𝑢2 results in the usual method of least squares.  

Unfortunately, M-estimators are not necessarily scale invariant. That is, these estimators may be influenced 
by the scale of the residuals. A scale-invariant estimator is found by solving 

min
𝛽𝛽

�𝜌𝜌�
𝑦𝑦𝑗𝑗 − 𝑥𝑥𝑗𝑗′𝛽𝛽

𝑠𝑠 �
𝑁𝑁

𝑗𝑗=1

= min
𝛽𝛽

�𝜌𝜌 �
𝑒𝑒𝑗𝑗
𝑠𝑠
�

𝑁𝑁

𝑗𝑗=1

= min
𝛽𝛽

�𝜌𝜌�𝑢𝑢𝑗𝑗�
𝑁𝑁

𝑗𝑗=1
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where s is a robust estimate of scale. The estimate of s is used in NCSS is 

𝑠𝑠 =
𝑚𝑚𝑒𝑒𝑚𝑚𝑖𝑖𝐶𝐶𝑚𝑚�𝑒𝑒𝑗𝑗 − 𝑚𝑚𝑒𝑒𝑚𝑚𝑖𝑖𝐶𝐶𝑚𝑚�𝑒𝑒𝑗𝑗��

0.6745
 

This estimate of s yields an approximately unbiased estimator of the standard deviation of the residuals 
when N is large, and the error distribution is normal. 

The function 

�𝜌𝜌�
𝑦𝑦𝑗𝑗 − 𝑥𝑥𝑗𝑗′𝛽𝛽

𝑠𝑠 �
𝑁𝑁

𝑗𝑗=1

 

is minimized by setting the first partial derivatives of ρ(·) with respect to each 𝛽𝛽𝑖𝑖 to zero which forms a set of  
p + 1 nonlinear equations 

�𝑥𝑥𝑖𝑖𝑗𝑗

𝑁𝑁

𝑗𝑗=1

𝜓𝜓 �
𝑦𝑦𝑗𝑗 − 𝑥𝑥𝑗𝑗′𝛽𝛽

𝑠𝑠 � = 0,    𝑖𝑖 = 0, 1, … ,𝑝𝑝 

where 𝜓𝜓(𝑢𝑢) = 𝜌𝜌′(𝑢𝑢) is the influence function. 

These equations are solved iteratively using an approximate technique called iteratively reweighted least 
squares (IRLS). At each step, new estimates of the regression coefficients are found using the matrix 
equation 

𝛽𝛽𝑇𝑇+1 = (𝐗𝐗′𝐖𝐖𝑇𝑇𝐗𝐗)−𝟏𝟏𝐗𝐗′𝐖𝐖𝑇𝑇𝐘𝐘 

where 𝐖𝐖𝑇𝑇 is an N-by-N diagonal matrix of weights 𝑤𝑤1𝑇𝑇,𝑤𝑤2𝑇𝑇, … ,𝑤𝑤𝑁𝑁𝑇𝑇 defined as 

𝑤𝑤𝑗𝑗𝑇𝑇 =

⎩
⎨

⎧𝜓𝜓��𝑦𝑦𝑗𝑗 − 𝑥𝑥′𝛽𝛽𝑗𝑗𝑇𝑇�/𝑠𝑠𝑇𝑇�
�𝑦𝑦𝑗𝑗 − 𝑥𝑥′𝛽𝛽𝑗𝑗𝑇𝑇�/𝑠𝑠𝑇𝑇

if 𝑦𝑦𝑗𝑗 ≠ 𝑥𝑥′𝛽𝛽𝑗𝑗𝑇𝑇

1 if 𝑦𝑦𝑗𝑗 = 𝑥𝑥′𝛽𝛽𝑗𝑗𝑇𝑇

 

The ordinary least squares regression coefficients are used at the first iteration to begin the iteration 
process. Iterations are continued until there is little or no change in the regression coefficients from one 
iteration to the next. Because of the masking nature of outliers, it is a good idea to run through at least five 
iterations to allow the outliers to be found. 

Three functions are available in NCSS. These are Andrew’s Sine, Huber’s method, and Tukey’s biweight. 
Huber’s method is currently the most frequently recommended in the regression texts that we have seen. 
The specifics for each of these functions are as follows. 
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Andrew’s Sine 

𝜌𝜌(𝑢𝑢) = �
𝑐𝑐[1 − 𝑐𝑐𝐶𝐶𝑠𝑠(𝑢𝑢/𝑐𝑐)] if |𝑢𝑢| < 𝜋𝜋𝑐𝑐

 2𝑐𝑐 if |𝑢𝑢| ≥ 𝜋𝜋𝑐𝑐
 

𝜓𝜓(𝑢𝑢) = �
sin(𝑢𝑢/𝑐𝑐) if |𝑢𝑢| < 𝜋𝜋𝑐𝑐

0 if |𝑢𝑢| ≥ 𝜋𝜋𝑐𝑐
 

𝑤𝑤(𝑢𝑢) = �
 
sin(𝑢𝑢/𝑐𝑐)
𝑢𝑢/𝑐𝑐

if |𝑢𝑢| < 𝜋𝜋𝑐𝑐

0 if |𝑢𝑢| ≥ 𝜋𝜋𝑐𝑐
 

𝑐𝑐 = 1.339 

Huber’s Method 

𝜌𝜌(𝑢𝑢) = �
 𝑢𝑢2 if |𝑢𝑢| < 𝑐𝑐

|2𝑢𝑢|𝑐𝑐 − 𝑐𝑐2 if |𝑢𝑢| ≥ 𝑐𝑐
 

𝜓𝜓(𝑢𝑢) = �
 𝑢𝑢 if |𝑢𝑢| < 𝑐𝑐

𝑐𝑐 sign(𝑢𝑢) if |𝑢𝑢| ≥ 𝑐𝑐
 

𝑤𝑤(𝑢𝑢) = �
 1 if |𝑢𝑢| < 𝑐𝑐

𝑐𝑐 |𝑢𝑢|⁄ if |𝑢𝑢| ≥ 𝑐𝑐
 

𝑐𝑐 = 1.345 

Tukey’s Biweight 

𝜌𝜌(𝑢𝑢) = �
 
𝑐𝑐2

3 �1− �1 − �
𝑢𝑢
𝑐𝑐
�
2
�
3

� if |𝑢𝑢| < 𝑐𝑐

2𝑐𝑐 if |𝑢𝑢| ≥ 𝑐𝑐
 

𝜓𝜓(𝑢𝑢) = �
 𝑢𝑢 �1− �

𝑢𝑢
𝑐𝑐
�
2
�
2

if |𝑢𝑢| < 𝑐𝑐

0 if |𝑢𝑢| ≥ 𝑐𝑐
 

𝑤𝑤(𝑢𝑢) = �
�1 − �

𝑢𝑢
𝑐𝑐
�
2
�
2

if |𝑢𝑢| < 𝑐𝑐

0 if |𝑢𝑢| ≥ 𝑐𝑐
 

𝑐𝑐 = 4.685 
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This gives you a sketch of what robust regression is about. If you find yourself using the technique often, we 
suggest that you study one of the modern texts on regression analysis. All of these texts have chapters on 
robust regression. A good introductory discussion of robust regression is found in Hamilton (1991). A more 
thorough discussion is found in Montgomery and Peck (1992). 

Data Structure 
The data are entered in two or more columns. An example of data appropriate for this procedure is shown 
below. These data are from a study of the relationship of several variables with a person’s I.Q. Fifteen 
people were studied. Each person’s IQ was recorded along with scores on five different personality tests. 
The data are contained in the IQ dataset. We suggest that you open this database now so that you can 
follow along with the example.  

IQ Dataset 

Test1 Test2 Test3 Test4 Test5 IQ 
83 34 65 63 64 106 
73 19 73 48 82 92 
54 81 82 65 73 102 
96 72 91 88 94 121 
84 53 72 68 82 102 
86 72 63 79 57 105 
76 62 64 69 64 97 
54 49 43 52 84 92 
37 43 92 39 72 94 
42 54 96 48 83 112 
71 63 52 69 42 130 
63 74 74 71 91 115 
69 81 82 75 54 98 
81 89 64 85 62 96 
50 75 72 64 45 103 

Missing Values 
Rows with missing values in the variables being analyzed are ignored. If data are present on a row for all but 
the dependent variable, a predicted value and confidence limits are generated for that row. 
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Example 1 – Multiple Regression (All Reports) 
This section presents an example of how to run a multiple regression analysis of the data presented earlier 
in this chapter. The data are in the IQ dataset. This example will run a regression of IQ on Test1 through 
Test5. This regression program outputs over thirty different reports and plots, many of which contain 
duplicate information. For the purposes of annotating the output, all output is displayed. Normally, you 
would only select a few these reports.  

Setup 
To run this example, complete the following steps: 

1 Open the IQ example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select IQ and click OK. 

2 Specify the Multiple Regression (Old Version) procedure options 
• Find and open the Multiple Regression (Old Version) procedure using the menus or the Procedure 

Navigator.  
• The settings for this example are listed below and are stored in the Example 1 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables Tab 


Y Dependent Variable(s) ................................. IQ 
X's Numeric Independent Variables ................. Test1-Test5 
 

Reports Tab 


Select a Group of Reports and Plots ............... Display ALL reports & plots 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 
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Run Summary Section 
 
Run Summary Section 
───────────────────────────────────────────────────────────────────────── 
Parameter Value Parameter Value 
──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Dependent Variable IQ Rows Processed 17 
Number Ind. Variables 5 Rows Filtered Out 0 
Weight Variable None Rows with X's Missing 0 
R2 0.3991 Rows with Weight Missing 0 
Adj R2 0.0652 Rows with Y Missing 2 
Coefficient of Variation 0.1021 Rows Used in Estimation 15 
Mean Square Error 113.4648 Sum of Weights 15.000 
Square Root of MSE 10.65198 Completion Status Normal Completion 
Ave Abs Pct Error 6.218   
───────────────────────────────────────────────────────────────────────── 
 

This report summarizes the multiple regression results. It presents the variables used, the number of rows 
used, and the basic results.  

R-Squared 

R2, officially known as the coefficient of determination, is defined as 

𝑅𝑅2 =
𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑆𝑆𝑆𝑆𝑇𝑇𝑀𝑀𝑇𝑇𝑇𝑇𝑀𝑀(𝐴𝐴𝑀𝑀𝑗𝑗𝐴𝐴𝐴𝐴𝑇𝑇𝑀𝑀𝑀𝑀)
 

R2 is probably the most popular statistical measure of how well the regression model fits the data. R2 may be 
defined either as a ratio or a percentage. Since we use the ratio form, its values range from zero to one. A 
value of R2 near zero indicates no linear relationship between the Y and the X’s, while a value near one 
indicates a perfect linear fit. Although popular, R2 should not be used indiscriminately or interpreted without 
scatter plot support. Following are some qualifications on its interpretation:  

1. Additional independent variables. It is possible to increase R2 by adding more independent variables, 
but the additional independent variables may actually cause an increase in the mean square error, 
an unfavorable situation. This case happens when your sample size is small. 

2. Range of the independent variables. R2 is influenced by the range of each independent variable. R2 
increases as the range of the X’s increases and decreases as the range of the X’s decreases.  

3. Slope magnitudes. R2 does not measure the magnitude of the slopes.  

4. Linearity. R2 does not measure the appropriateness of a linear model. It measures the strength of the 
linear component of the model. Suppose the relationship between x and Y was a perfect circle. The 
R2 value of this relationship would be zero. 

5. Predictability. A large R2 does not necessarily mean high predictability, nor does a low R2 necessarily 
mean poor predictability.  

6. No-intercept model. The definition of R2 assumes that there is an intercept in the regression model. 
When the intercept is left out of the model, the definition of R2 changes dramatically. The fact that 
your R2 value increases when you remove the intercept from the regression model does not reflect 
an increase in the goodness of fit. Rather, it reflects a change in the underlying meaning of R2. 

7. Sample size. R2 is highly sensitive to the number of observations. The smaller the sample size, the 
larger its value. 
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Adjusted R-Squared 

This is an adjusted version of R2. The adjustment seeks to remove the distortion due to a small sample size. 

Coefficient of Variation 

The coefficient of variation is a relative measure of dispersion, computed by dividing root mean square 
error by the mean of the dependent variable. By itself, it has little value, but it can be useful in comparative 
studies.  

𝐶𝐶𝑉𝑉 =
√𝑀𝑀𝑆𝑆𝐷𝐷
𝑦𝑦�

 

Ave Abs Pct Error 

This is the average of the absolute percent errors. It is another measure of the goodness of fit of the 
regression model to the data. It is calculated using the formula  

𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷 =
100∑ �

𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑗𝑗
𝑦𝑦𝑗𝑗

�𝑁𝑁
𝑗𝑗=1

𝑁𝑁
 

Note that when the dependent variable is zero, its predicted value is used in the denominator. 

Descriptive Statistics Section 
 
Descriptive Statistics Section 
───────────────────────────────────────────────────────────────────────── 
   Standard   
Variable Count Mean Deviation Minimum Maximum 
────────────────────────────────────────────────────────────────────────────────────────────── 

Test1 15 67.93333 17.39239 37 96 
Test2 15 61.4 19.39735 19 89 
Test3 15 72.33334 14.73415 43 96 
Test4 15 65.53333 13.95332 39 88 
Test5 15 69.93333 16.15314 42 94 
IQ 15 104.3333 11.0173 92 130 
───────────────────────────────────────────────────────────────────────── 
 

For each variable, the count, arithmetic mean, standard deviation, minimum, and maximum are computed. 
This report is particularly useful for checking that the correct variables were selected.  
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Correlation Matrix Section 
 
Correlation Matrix Section 
───────────────────────────────────────────────────────────────────────── 
 Test1 Test2 Test3 Test4 Test5 IQ 
──────────────────────────────────────────────────────────────────────────────────────────────── 

Test1 1.0000 0.1000 -0.2608 0.7539 0.0140 0.2256 
Test2 0.1000 1.0000 0.0572 0.7196 -0.2814 0.2407 
Test3 -0.2608 0.0572 1.0000 -0.1409 0.3473 0.0741 
Test4 0.7539 0.7196 -0.1409 1.0000 -0.1729 0.3714 
Test5 0.0140 -0.2814 0.3473 -0.1729 1.0000 -0.0581 
IQ 0.2256 0.2407 0.0741 0.3714 -0.0581 1.0000 
───────────────────────────────────────────────────────────────────────── 
 

Pearson correlations are given for all variables. Outliers, nonnormality, nonconstant variance, and 
nonlinearities can all impact these correlations. Note that these correlations may differ from pair-wise 
correlations generated by the correlation matrix program because of the different ways the two programs 
treat rows with missing values. The method used here is row-wise deletion. 

These correlation coefficients show which independent variables are highly correlated with the dependent 
variable and with each other. Independent variables that are highly correlated with one another may cause 
collinearity problems.  

Regression Coefficient T-Tests Section 
 
Regression Coefficient T-Tests Section 
───────────────────────────────────────────────────────────────────────── 
 Regression Standard T-Value  Reject Power 
Independent Coefficient Error to test Prob H0 at of Test 
Variable b(i) Sb(i) H0: β(i)=0 Level 5%? at 5% 
───────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Intercept 85.2404 23.6951 3.597 0.0058 Yes 0.8915 
Test1 -1.9336 1.0291 -1.879 0.0930 No 0.3896 
Test2 -1.6599 0.8729 -1.902 0.0897 No 0.3974 
Test3 0.1050 0.2199 0.477 0.6445 No 0.0713 
Test4 3.7784 1.8345 2.060 0.0695 No 0.4522 
Test5 -0.0406 0.2012 -0.202 0.8447 No 0.0538 
───────────────────────────────────────────────────────────────────────── 
 
 
Estimated Model 
───────────────────────────────────────────────────────────────────────── 
85.2403846967439-1.93357123818932*Test1-1.65988116961152*Test2+0.104954325385776*Test3+3.77837667 
941384*Test4-0.0405775409260279*Test5 
───────────────────────────────────────────────────────────────────────── 
 

This section reports the values and significance tests of the regression coefficients. Before using this report, 
check that the assumptions are reasonable. For instance, collinearity can cause the t-tests to give false 
results and the regression coefficients to be of the wrong magnitude or sign.  

Independent Variable 

The names of the independent variables are listed here. The intercept is the value of the Y intercept. 

Note that the name may become very long, especially for interaction terms. These long names may misalign 
the report. You can force the rest of the items to be printed on the next line by using the Skip Line After 
option in the Format tab. This should create a better-looking report when the names are extra-long. 

http://www.ncss.com/


NCSS Statistical Software NCSS.com   

Multiple Regression (Old Version) 

309-34 
 © NCSS, LLC. All Rights Reserved. 

Regression Coefficient 

The regression coefficients are the least squares estimates of the parameters. The value indicates how 
much change in Y occurs for a one-unit change in that particular X when the remaining X’s are held constant. 
These coefficients are often called partial-regression coefficients since the effect of the other X’s is removed. 
These coefficients are the values of 𝑏𝑏0,𝑏𝑏1, … , 𝑏𝑏𝑝𝑝.  

Standard Error 

The standard error of the regression coefficient, 𝑠𝑠𝑏𝑏𝑗𝑗 , is the standard deviation of the estimate. It is used in 
hypothesis tests or confidence limits. 

T-Value to test Ho: B(i)=0  

This is the t-test value for testing the hypothesis that 𝛽𝛽𝑗𝑗 = 0 versus the alternative that 𝛽𝛽𝑗𝑗 ≠ 0 after 
removing the influence of all other X’s. This t-value has n-p-1 degrees of freedom. 

To test for a value other than zero, use the formula below. There is an easier way to test hypothesized 
values using confidence limits. See the discussion below under Confidence Limits. The formula for the t-test 
is 

𝑡𝑡𝑗𝑗 =
𝑏𝑏𝑗𝑗 − 𝛽𝛽𝑗𝑗∗

𝑠𝑠𝑏𝑏𝑗𝑗
 

Prob Level 

This is the p-value for the significance test of the regression coefficient. The p-value is the probability that 
this t-statistic will take on a value at least as extreme as the actually observed value, assuming that the null 
hypothesis is true (i.e., the regression estimate is equal to zero). If the p-value is less than alpha, say 0.05, 
the null hypothesis of equality is rejected. This p-value is for a two-tail test. 

Reject H0 at 5%? 

This is the conclusion reached about the null hypothesis. It will be either reject H0 at the 5% level of 
significance or not.  

Note that the level of significance is specified in the Alpha of C.I.’s and Tests box on the Format tab panel. 

Power (5%) 

Power is the probability of rejecting the null hypothesis that 𝛽𝛽𝑗𝑗 = 0 when 𝛽𝛽𝑗𝑗 = 𝛽𝛽𝑗𝑗∗ ≠ 0. The power is 
calculated for the case when 𝛽𝛽𝑗𝑗∗ = 𝑏𝑏𝑗𝑗, 𝜎𝜎2 = 𝑠𝑠2, and alpha is as specified in the Alpha of C.I.’s and Tests 
option. 

High power is desirable. High power means that there is a high probability of rejecting the null hypothesis 
that the regression coefficient is zero when this is false. This is a critical measure of sensitivity in hypothesis 
testing. This estimate of power is based upon the assumption that the residuals are normally distributed.  
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Estimated Model 

This is the least squares regression line presented in double precision. Besides showing the regression 
model in long form, it may be used as a transformation by copying and pasting it into the Transformation 
portion of the spreadsheet. 

Note that a transformation must be less than 255 characters. Since these formulas are often greater than 
255 characters in length, you must use the FILE(filename) transformation. To do so, copy the formula to a 
text file using Notepad, Windows Write, or Word to receive the model text. Be sure to save the file as an 
unformatted text (ASCII) file. The transformation is FILE(filename) where filename is the name of the text file, 
including directory information. When the transformation is executed, it will load the file and use the 
transformation stored there. 

Regression Coefficient Confidence Intervals Section 
 
Regression Coefficient Confidence Intervals Section 
───────────────────────────────────────────────────────────────────────── 
 Regression Standard Lower 95% Upper95%  
Independent Coefficient Error Conf. Limit Conf. Limit Standardized 
Variable b(i) Sb(i) of β(i) of β(i) Coefficient 
─────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Intercept 85.2404 23.6951 31.6383 138.8425 0.0000 
Test1 -1.9336 1.0291 -4.2615 0.3944 -3.0524 
Test2 -1.6599 0.8729 -3.6345 0.3147 -2.9224 
Test3 0.1050 0.2199 -0.3925 0.6024 0.1404 
Test4 3.7784 1.8345 -0.3715 7.9283 4.7853 
Test5 -0.0406 0.2012 -0.4958 0.4146 -0.0595 
───────────────────────────────────────────────────────────────────────── 
Note: The T-Value used to calculate these confidence limits was 2.262. 
 

Independent Variable 

The names of the independent variables are listed here. The intercept is the value of the Y intercept.  

Note that the name may become very long, especially for interaction terms. These long names may misalign 
the report. You can force the rest of the items to be printed on the next line by using the Skip Line After 
option in the Format tab. This should create a better-looking report when the names are extra-long. 

Regression Coefficient 

The regression coefficients are the least squares estimates of the parameters. The value indicates how 
much change in Y occurs for a one-unit change in x when the remaining X’s are held constant. These 
coefficients are often called partial-regression coefficients since the effect of the other X’s is removed. These 
coefficients are the values of 𝑏𝑏0,𝑏𝑏1, … , 𝑏𝑏𝑝𝑝. 

Standard Error 

The standard error of the regression coefficient, 𝑠𝑠𝑏𝑏𝑗𝑗 , is the standard deviation of the estimate. It is used in 
hypothesis tests and confidence limits. 
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Lower - Upper 95% C.L.  

These are the lower and upper values of a 100(1 − 𝛼𝛼)% interval estimate for 𝛽𝛽𝑗𝑗 based on a t-distribution 
with n-p-1 degrees of freedom. This interval estimate assumes that the residuals for the regression model 
are normally distributed.  

These confidence limits may be used for significance testing values of 𝛽𝛽𝑗𝑗 other than zero. If a specific value 
is not within this interval, it is significantly different from that value. Note that these confidence limits are set 
up as if you are interested in each regression coefficient separately. 

The formulas for the lower and upper confidence limits are: 

𝑏𝑏𝑗𝑗 ± 𝑡𝑡1−𝛼𝛼/2,𝑛𝑛−𝑝𝑝−1𝑠𝑠𝑏𝑏𝑗𝑗 

Standardized Coefficient 

Standardized regression coefficients are the coefficients that would be obtained if you standardized the 
independent variables and the dependent variable. Here standardizing is defined as subtracting the mean 
and dividing by the standard deviation of a variable. A regression analysis on these standardized variables 
would yield these standardized coefficients.  

When the independent variables have vastly different scales of measurement, this value provides a way of 
making comparisons among variables. The formula for the standardized regression coefficient is: 

𝑏𝑏𝑗𝑗,𝐴𝐴𝑇𝑇𝑀𝑀 = 𝑏𝑏𝑗𝑗 �
𝑠𝑠𝑋𝑋𝑗𝑗
𝑠𝑠𝑌𝑌
� 

where 𝑠𝑠𝑌𝑌 and 𝑠𝑠𝑋𝑋𝑗𝑗  are the standard deviations for the dependent variable and the jth independent variable. 

Note: The T-Value … 

This is the value of 𝑡𝑡1−𝛼𝛼/2,𝑛𝑛−𝑝𝑝−1  used to construct the confidence limits.  

Analysis of Variance Section 
 
Analysis of Variance Section 
───────────────────────────────────────────────────────────────────────── 
   Sum of Mean  Prob Power 
Source DF R2 Squares Square F-Ratio Level (5%) 
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Intercept 1  163281.7 163281.7    
Model 5 0.3991 678.1504 135.6301 1.195 0.3835 0.2565 
Error 9 0.6009 1021.183 113.4648    
Total(Adjusted) 14 1.0000 1699.333 121.381    
───────────────────────────────────────────────────────────────────────── 
 

An analysis of variance (ANOVA) table summarizes the information related to the variation in data.  

Source 

This represents a partition of the variation in Y. 

R2 

This is the overall R2 of this the regression model. 
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DF 

The degrees of freedom are the number of dimensions associated with this term. Note that each 
observation can be interpreted as a dimension in n-dimensional space. The degrees of freedom for the 
intercept, model, error, and adjusted total are 1, p, n-p-1, and n-1, respectively. 

Sum of Squares 

These are the sums of squares associated with the corresponding sources of variation. Note that these 
values are in terms of the dependent variable. The formulas for each are 

𝑆𝑆𝑆𝑆𝐼𝐼𝑛𝑛𝑇𝑇𝑀𝑀𝑝𝑝𝑝𝑝𝑀𝑀𝑝𝑝𝑇𝑇 = 𝑚𝑚𝑦𝑦�2 

𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ��𝑦𝑦�𝑗𝑗 − 𝑦𝑦��2 

𝑆𝑆𝑆𝑆𝐸𝐸𝑝𝑝𝑝𝑝𝑀𝑀𝑝𝑝 = ��𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑗𝑗�
2
 

𝑆𝑆𝑆𝑆𝑇𝑇𝑀𝑀𝑇𝑇𝑇𝑇𝑀𝑀 = ��𝑦𝑦𝑗𝑗 − 𝑦𝑦��2 

Mean Square 

The mean square is the sum of squares divided by the degrees of freedom. This mean square is an 
estimated variance. For example, the mean square error is the estimated variance of the residuals. 

F-Ratio 

This is the F-statistic for testing the null hypothesis that all 𝛽𝛽𝑗𝑗 = 0. This F-statistic has p degrees of freedom 
for the numerator variance and n-p-1 degrees of freedom for the denominator variance. 

Prob Level 

This is the p-value for the above F-test. The p-value is the probability that the test statistic will take on a value 
at least as extreme as the observed value, assuming that the null hypothesis is true. If the p-value is less 
than 𝛼𝛼, say 0.05, the null hypothesis is rejected. If the p-value is greater than 𝛼𝛼, then the null hypothesis is 
accepted.  

Power(5%) 

Power is the probability of rejecting the null hypothesis that all the regression coefficients are zero when at 
least one is not. 
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Analysis of Variance Detail Section 
 
Analysis of Variance Detail Section 
───────────────────────────────────────────────────────────────────────── 
Model   Sum of Mean  Prob Power 
Term DF R2 Squares Square F-Ratio Level (5%) 
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Intercept 1  163281.7 163281.7    
Model 5 0.3991 678.1504 135.6301 1.195 0.3835 0.2565 
Test1 1 0.2357 400.562 400.562 3.530 0.0930 0.3896 
Test2 1 0.2414 410.2892 410.2892 3.616 0.0897 0.3974 
Test3 1 0.0152 25.8466 25.8466 0.228 0.6445 0.0713 
Test4 1 0.2832 481.3241 481.3241 4.242 0.0695 0.4522 
Test5 1 0.0027 4.614109 4.614109 0.041 0.8447 0.0538 
Error 9 0.6009 1021.183 113.4648    
Total(Adjusted) 14 1.0000 1699.333 121.381    
───────────────────────────────────────────────────────────────────────── 
 

This analysis of variance table provides a line for each term in the model. It is especially useful when you 
have categorical independent variables.  

Model Term 

This is the term from the design model.  

Note that the name may become very long, especially for interaction terms. These long names may misalign 
the report. You can force the rest of the items to be printed on the next line by using the Skip Line After 
option in the Format tab. This should create a better-looking report when the names are extra-long. 

DF 

This is the number of degrees of freedom that the model is degrees of freedom is reduced when this term is 
removed from the model. This is the numerator degrees of freedom of the F-test. 

R2 

This is the amount that R2 is reduced when this term is removed from the regression model. 

Sum of Squares 

This is the amount that the model sum of squares that are reduced when this term is removed from the 
model.  

Mean Square 

The mean square is the sum of squares divided by the degrees of freedom. 

F-Ratio 

This is the F-statistic for testing the null hypothesis that all 𝛽𝛽𝑗𝑗 associated with this term are zero. This F-
statistic has DF and n-p-1 degrees of freedom. 
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Prob Level 

This is the p-value for the above F-test. The p-value is the probability that the test statistic will take on a value 
at least as extreme as the observed value, assuming that the null hypothesis is true. If the p-value is less 
than 𝛼𝛼, say 0.05, the null hypothesis is rejected. If the p-value is greater than 𝛼𝛼, then the null hypothesis is 
accepted.  

Power(5%) 

Power is the probability of rejecting the null hypothesis that all the regression coefficients associated with 
this term are zero, assuming that the estimated values of these coefficients are their true values. 

PRESS Section 
 
PRESS Section 
───────────────────────────────────────────────────────────────────────── 
 From From 
 PRESS Regular 
Parameter Residuals Residuals 
───────────────────────────────────────────────────────────────────── 

Sum of Squared Residuals 2839.941 1021.183 
Sum of |Residuals| 169.6438 99.12155 
R2 0.0000 0.3991 
───────────────────────────────────────────────────────────────────────── 
 

This section reports on the PRESS statistics. The regular statistics, computed on all of the data, are provided 
to the side to make comparison between corresponding values easier. 

Sum of Squared Residuals 

PRESS is an acronym for prediction sum of squares. It was developed for use in variable selection to validate 
a regression model. To calculate PRESS, each observation is individually omitted. The remaining N - 1 
observations are used to calculate a regression and estimate the value of the omitted observation. This is 
done N times, once for each observation. The difference between the actual Y value and the predicted Y with 
the observation deleted is called the prediction error or PRESS residual. The sum of the squared prediction 
errors is the PRESS value. The smaller PRESS is, the better the predictability of the model.  

��𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑗𝑗,−𝑗𝑗�
2 

Sum of |Press residuals| 

This is the sum of the absolute value of the PRESS residuals or prediction errors. If a large value for the PRESS 
is due to one or a few large PRESS residuals, this statistic may be a more accurate way to evaluate 
predictability.  

��𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑗𝑗,−𝑗𝑗� 
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Press R2 

The PRESS value above can be used to compute an R2 -like statistic, called R2Predict, which reflects the 
prediction ability of the model. This is a good way to validate the prediction of a regression model without 
selecting another sample or splitting your data. It is very possible to have a high R2 and a very low R2Predict. 
When this occurs, it implies that the fitted model is data dependent. This R2Predict ranges from below zero 
to above one. When outside the range of zero to one, it is truncated to stay within this range.  

𝑅𝑅𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃2 = 1 −
𝑃𝑃𝑅𝑅𝐷𝐷𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑇𝑇𝑀𝑀𝑇𝑇𝑇𝑇𝑀𝑀

 

Normality Tests Section 
 
Normality Tests Section 
───────────────────────────────────────────────────────────────────────── 
Test Test Prob Reject H0 
Name Value Level At Alpha = 20%? 
───────────────────────────────────────────────────────────────────────────────────── 

Shapiro Wilk 0.9076 0.124280 Yes 
Anderson Darling 0.4581 0.263931 No 
D'Agostino Skewness 2.0329 0.042064 Yes 
D'Agostino Kurtosis 1.5798 0.114144 Yes 
D'Agostino Omnibus 6.6285 0.036361 Yes 
───────────────────────────────────────────────────────────────────────── 
 

This report gives the results of applying several normality tests to the residuals. The Shapiro-Wilk test is 
probably the most popular, so it is given first. These tests are discussed in detail in the Normality Test 
section of the Descriptive Statistics procedure.  

Serial-Correlation and Durbin-Watson Test 
 
Serial Correlation of Residuals Section 
───────────────────────────────────────────────────────────────────────── 
 Serial  Serial  Serial 
Lag Correlation Lag Correlation Lag Correlation 
────────────────────────────────────────────────────────────────────────────────────── 

1 0.4529 9 -0.2769 17 0.0000 
2 -0.2507 10 -0.2287 18 0.0000 
3 -0.5518 11 -0.0197 19 0.0000 
4 -0.3999 12 0.0669 20 0.0000 
5 0.0780 13 0.0000 21 0.0000 
6 0.2956 14 0.0000 22 0.0000 
7 0.1985 15 0.0000 23 0.0000 
8 -0.0016 16 0.0000 24 0.0000 
────────────────────────────────────────────────────────────────────────────────────── 

 
Above serial correlations are significant if their absolute values are greater than 0.516398. 
───────────────────────────────────────────────────────────────────────── 
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Durbin-Watson Test For Serial Correlation 
───────────────────────────────────────────────────────────────────────── 
  Did the Test Reject 
Parameter Value H0: Rho(1) = 0? 
──────────────────────────────────────────────────────────────────────────────────────────── 

Durbin-Watson Value 1.0010  
Prob. Level: Positive Serial Correlation 0.0072 Yes 
Prob. Level: Negative Serial Correlation 0.9549 No 
───────────────────────────────────────────────────────────────────────── 
 

This section reports the autocorrelation structure of the residuals. Of course, this report is only useful if the 
data represent a time series. 

Lag and Correlation 

The lag, k, is the number of periods (rows) back. The correlation here is the sample autocorrelation 
coefficient of lag k. It is computed as: 

𝑟𝑟𝑘𝑘 =
∑𝑒𝑒𝑖𝑖−𝑘𝑘𝑒𝑒𝑖𝑖
∑ 𝑒𝑒𝑖𝑖2

   for 𝑘𝑘 = 1, 2, … , 24 

To test the null hypothesis that 𝜌𝜌𝑘𝑘 = 0 at a 5% level of significance with a large-sample normal 
approximation, reject when the absolute value of the autocorrelation coefficient, |𝑟𝑟𝑘𝑘|, is greater than two 
over the square root of N. 

Durbin-Watson Value 

The Durbin-Watson test is often used to test for positive or negative, first-order, serial correlation. It is 
calculated as follows 

𝑟𝑟𝑘𝑘 =
∑𝑒𝑒𝑖𝑖−𝑘𝑘𝑒𝑒𝑖𝑖
∑ 𝑒𝑒𝑖𝑖2

   for 𝑘𝑘 = 1, 2, … , 24 

The distribution of this test is mathematically difficult because it involves the X values. Originally, Durbin-
Watson (1950, 1951) gave a pair of bounds to be used. However, there is a large range of indecision that can 
be found when using these bounds. Instead of using these bounds, NCSS calculates the exact probability 
using the beta distribution approximation suggested by Durbin-Watson (1951). This approximation has been 
shown to be accurate to three decimal places in most cases. 

  

http://www.ncss.com/


NCSS Statistical Software NCSS.com   

Multiple Regression (Old Version) 

309-42 
 © NCSS, LLC. All Rights Reserved. 

R-Squared Section 
 
R-Squared Section 
───────────────────────────────────────────────────────────────────────── 
  R2 Increase R2 Decrease R2 When Partial R2 
 Total R2 for When This When This This I.V. Adjusted 
Independent This I.V. And I.V. Added To I.V. Is Is Fit For All 
Variable Those Above Those Above Removed Alone Other I.V.'s 
─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Test1 0.0509 0.0509 0.2357 0.0509 0.2817 
Test2 0.0990 0.0480 0.2414 0.0579 0.2866 
Test3 0.1131 0.0142 0.0152 0.0055 0.0247 
Test4 0.3964 0.2832 0.2832 0.1379 0.3203 
Test5 0.3991 0.0027 0.0027 0.0034 0.0045 
───────────────────────────────────────────────────────────────────────── 
 

R2 reflects the percent of variation in Y explained by the independent variables in the model. A value of R2 
near zero indicates a complete lack of fit between Y and the Xs, while a value near one indicates a perfect fit. 

In this section, various types of R2 values are given to provide insight into the variation in the dependent 
variable explained either by the independent variables added in order (i.e., sequential) or by the 
independent variables added last. This information is valuable in an analysis of which variables are most 
important. 

Independent Variable 

This is the name of the independent variable reported on in this row. 

Total R2 for This I.V. and Those Above 

This is the R2 value that would result from fitting a regression with this independent variable and those listed 
above it. The IV’s below it are ignored. 

R2 Increase When This IV Added to Those Above 

This is the amount that this IV adds to R2 when it is added to a regression model that includes those IV’s 
listed above it in the report. 

R2 Decrease When This IV is Removed 

This is the amount that R2 would be reduced if this IV were removed from the model. Large values here 
indicate important independent variables, while small values indicate insignificant variables. 

One of the main problems in interpreting these values is that each assumes all other variables are already in 
the equation. This means that if two variables both represent the same underlying information, they will 
each seem to be insignificant after considering the other. If you remove both, you will lose the information 
that either one could have brought to the model. 

R2 When This IV Is Fit Alone 

This is the R2 that would be obtained if the dependent variable were only regressed against this one 
independent variable. Of course, a large R2 value here indicates an important independent variable that can 
stand alone. 
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Partial R2 Adjusted For All Other IV’s  

The is the square of the partial correlation coefficient. The partial R2 reflects the percent of variation in the 
dependent variable explained by one independent variable controlling for the effects of the rest of the 
independent variables. Large values for this partial R2 indicate important independent variables. 

Variable Omission Section 
 
Variable Omission Section 
───────────────────────────────────────────────────────────────────────── 
     R2 Of 
 R2 MSE Mallow's Cp H0: B=0 Regress. Of 
Independent When I.V. When I.V. When I.V. Prob This I.V. On 
Variable Omitted Omitted Omitted Level Other I.V.'s 
──────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Full Model 0.3991 113.4648    
Test1 0.1634 142.1745 7.5303 0.0930 0.9747 
Test2 0.1576 143.1472 7.6160 0.0897 0.9717 
Test3 0.3839 104.703 4.2278 0.6445 0.2280 
Test4 0.1158 150.2507 8.2421 0.0695 0.9876 
Test5 0.3964 102.5797 4.0407 0.8447 0.2329 
───────────────────────────────────────────────────────────────────────── 
 

One way of assessing the importance of an independent variable is to examine the impact on various 
goodness-of-fit statistics of removing it from the model. This section provides this.  

Independent Variable 

This is the name of the predictor variable reported on in this row. Note that the Full Model row gives the 
statistics when no variables are omitted. 

R2 When IV Omitted 

This is the R2 for the multiple regression model when this independent variable is omitted, and the 
remaining independent variables are retained. If this R2 is close to the R2 for the full model, this variable is 
not very important. On the other hand, if this R2 is much smaller than that of the full model, this 
independent variable is important. 

MSE When IV Omitted 

This is the mean square error for the multiple regression model when this IV is omitted and the remaining 
IV’s are retained. If this MSE is close to the MSE for the full model, this variable may not be very important. 
On the other hand, if this MSE is much larger than that of the full model, this IV is important. 
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Mallow's Cp When IV Omitted 

Another criterion for variable selection and importance is Mallow’s Cp statistic. The optimum model will 
have a Cp value close to p+1, where p is the number of independent variables. A Cp greater than (p+1) 
indicates that the regression model is over specified (contains too many variables and stands a chance of 
having collinearity problems). On the other hand, a model with a Cp less than (p+1) indicates that the 
regression model is underspecified (at least one important independent variable has been omitted). The 
formula for the Cp statistic is as follows, where k is the maximum number of independent variables available 

𝐶𝐶𝑝𝑝 = (𝑚𝑚 − 𝑝𝑝 − 1) �
𝑀𝑀𝑆𝑆𝐷𝐷𝑝𝑝
𝑀𝑀𝑆𝑆𝐷𝐷𝑘𝑘

� − [𝑚𝑚 − 2(𝑝𝑝 + 1)] 

H0: B=0 Prob Level 

This is the two-tail p-value for testing the significance of the regression coefficient. Most likely, you would 
deem IV’s with small p-values as important. However, you must be careful here. Collinearity can cause extra-
large p-values, so you must check for its presence. 

R2 Of Regress. Of This IV Other X’s 

This is the R2 value that would result if this independent variable were regressed on the remaining 
independent variables. A high value indicates a redundancy between this IV and the other IV’s. IV’s with a 
high value here (above 0.90) are candidates for omission from the model. 

Sum of Squares and Correlation Section 
 
Sum of Squares and Correlation Section 
───────────────────────────────────────────────────────────────────────── 
 Sequential Incremental Last   
Independent Sum of Sum of Sum of Simple Partial 
Variable Squares Squares Squares Correlation Correlation 
──────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Test1 86.5252 86.5252 400.562 0.2256 -0.5308 
Test2 168.1614 81.6362 410.2892 0.2407 -0.5354 
Test3 192.2748 24.11342 25.8466 0.0741 0.1571 
Test4 673.5363 481.2615 481.3241 0.3714 0.5660 
Test5 678.1504 4.614109 4.614109 -0.0581 -0.0671 
───────────────────────────────────────────────────────────────────────── 
 

This section provides the sum of squares and correlations equivalent to the R-Squared Section.  

Independent Variable 

This is the name of the IV reported on in this row. 

Sequential Sum Squares 

The is the sum of squares value that would result from fitting a regression with this independent variable 
and those above it. The IV’s below it are ignored. 

Incremental Sum Squares 

This is the amount that this predictor adds to the sum of squares value when it is added to a regression 
model that includes those predictors listed above it. 
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Last Sum Squares 

This is the amount that the model sum of squares would be reduced if this variable were removed from the 
model. 

Simple Correlation 

This is the Pearson correlation coefficient between the dependent variable and the specified independent 
variable. 

Partial Correlation 

The partial correlation coefficient is a measure of the strength of the linear relationship between Y and Xj 
after adjusting for the remaining (p-1) variables.  

Sequential Models Section 
 
Sequential Models Section 
───────────────────────────────────────────────────────────────────────── 
Independent Included Omitted Included Included Omitted Omitted 
Variable R2 R2 F-Ratio Prob>F F-Ratio Prob>F 
───────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Test1 0.0509 0.3482 0.697 0.4187 1.304 0.3390 
Test2 0.0990 0.3001 0.659 0.5351 1.498 0.2801 
Test3 0.1131 0.2859 0.468 0.7107 2.141 0.1735 
Test4 0.3964 0.0027 1.641 0.2390 0.041 0.8447 
Test5 0.3991 0.0000 1.195 0.3835   
───────────────────────────────────────────────────────────────────────── 
Notes 
1. INCLUDED variables are those listed from current row up (includes current row). 
2. OMITTED variables are those listed below (but not including) this row. 
 

This section examines the step-by-step effect of adding variables to the regression model.  

Independent Variable 

This is the name of the predictor variable reported on in this row. 

Included R2 

This is the R2 that would be obtained if only those IV’s on this line and above were in the regression model.  

Omitted R2 

This is the R2 for the full model minus the Included R2. This is the amount of R2 explained by the independent 
variables listed below the current row. Large values indicate that there is much more to come with later 
independent variables. On the other hand, small values indicate that remaining independent variables 
contribute little to the regression model. 

Included F-ratio 

This is an F-ratio for testing the hypothesis that the regression coefficients (β’s) for the IV’s listed on this row 
and above are zero. 
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Included Prob>F 

This is the p-value for the above F-ratio. 

Omitted F-Ratio 

This is an F-ratio for testing the hypothesis that the regression coefficients (β’s) for the variables listed below 
this row are all zero. The alternative is that at least one coefficient is nonzero. 

Omitted Prob>F 

This is the p-value for the above F-ratio. 

Multicollinearity Section 
 
Multicollinearity Section 
───────────────────────────────────────────────────────────────────────── 
 Variance R2  Diagonal 
Independent Inflation Versus  of X'X 
Variable Factor Other I.V.'s Tolerance Inverse 
────────────────────────────────────────────────────────────────────────────────────────────── 

Test1 39.5273 0.9747 0.0253 0.009333631 
Test2 35.3734 0.9717 0.0283 0.006715277 
Test3 1.2953 0.2280 0.7720 0.0004261841 
Test4 80.8456 0.9876 0.0124 0.02966012 
Test5 1.3035 0.2329 0.7671 0.0003568483 
───────────────────────────────────────────────────────────────────────── 
 

This report provides information useful in assessing the amount of multicollinearity in your data.  

Variance Inflation 

The variance inflation factor (VIF) is a measure of multicollinearity. It is the reciprocal of 1 − 𝑅𝑅𝑋𝑋2, where 𝑅𝑅𝑋𝑋2 is 
the R2 obtained when this variable is regressed on the remaining IV’s. A VIF of 10 or more for large data sets 
indicates a collinearity problem since the 𝑅𝑅𝑋𝑋2 with the remaining IV’s is 90 percent. For small data sets, even 
VIF’s of 5 or more can signify collinearity. Variables with a high VIF are candidates for exclusion from the 
model. 

𝑉𝑉𝐷𝐷𝐷𝐷𝑗𝑗 =
1

1 − 𝑅𝑅𝑗𝑗2
 

R2 Versus Other IV’s 

𝑅𝑅𝑋𝑋2 is the R2 obtained when this variable is regressed on the remaining independent variables. A high 𝑅𝑅𝑋𝑋2 
indicates a lot of overlap in explaining the variation among the remaining independent variables. 

Tolerance 

Tolerance is just 1 − 𝑅𝑅𝑋𝑋2, the denominator of the variance inflation factor. 

Diagonal of X'X Inverse 

The X'X inverse is an important matrix in regression. This is the jth row and jth column element of this matrix. 
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Eigenvalues of Centered Correlations Section 
 
Eigenvalues of Centered Correlations 
───────────────────────────────────────────────────────────────────────── 
  Incremental Cumulative Condition 
No. Eigenvalue Percent Percent Number 
──────────────────────────────────────────────────────────────────────────────────── 

1 2.2150 44.299 44.299 1.000 
2 1.2277 24.554 68.853 1.804 
3 1.1062 22.124 90.978 2.002 
4 0.4446 8.892 99.870 4.982 
5 0.0065 0.130 100.000 340.939 
──────────────────────────────────────────────────────────────────────────────────── 

 
Some Condition Numbers greater than 100. Multicollinearity is a MILD problem. 
───────────────────────────────────────────────────────────────────────── 
 

This section gives an eigenvalue analysis of the independent variables when they have been centered and 
scaled.  

Eigenvalue 

The eigenvalues of the correlation matrix. The sum of the eigenvalues is equal to the number of IV’s. 
Eigenvalues near zero indicate a high degree of is collinearity in the data. 

Incremental Percent  

Incremental percent is the percent this eigenvalue is of the total. In an ideal situation, these percentages 
would be equal. Percents near zero indicate collinearity in the data. 

Cumulative Percent 

 This is the running total of the Incremental Percent. 

Condition Number 

 The condition number is the largest eigenvalue divided by each corresponding eigenvalue. Since the 
eigenvalues are really variances, the condition number is a ratio of variances. Condition numbers greater 
than 1000 indicate a severe collinearity problem while condition numbers between 100 and 1000 indicate a 
mild collinearity problem. 
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Eigenvector Percent of Regression-Coefficent-Variance using Centered 
Correlations Section 

 
Eigenvector Percent of Regression-Coefficent-Variance using Centered Correlations 
───────────────────────────────────────────────────────────────────────── 
No. Eigenvalue Test1 Test2 Test3 Test4 Test5 
───────────────────────────────────────────────────────────────────────────────────────────────────── 

1 2.2150 0.2705 0.2850 1.8773 0.2331 2.3798 
2 1.2277 0.0330 0.1208 31.1222 0.0579 23.6898 
3 1.1062 0.8089 0.8397 7.6430 0.0015 14.3442 
4 0.4446 0.8059 1.0889 59.3291 0.0002 59.5804 
5 0.0065 98.0817 97.6657 0.0284 99.7072 0.0058 
───────────────────────────────────────────────────────────────────────── 

  

This report displays how the eigenvectors associated with each eigenvalue are related to the independent 
variables.  

No. 

The number of the eigenvalue. 

Eigenvalue 

The eigenvalues of the correlation matrix. The sum of the eigenvalues is equal to the number of 
independent variables. Eigenvalues near zero mean that there is collinearity in your data. 

Values 

The rest of this report gives a breakdown of what percentage each eigenvector is of the total variation for 
the regression coefficient. Hence, the percentages sum to 100 down a column. 

A small eigenvalue (large condition number) along with a subset of two or more independent variables 
having high variance percentages indicates a dependency involving the independent variables in that 
subset. This dependency has damaged or contaminated the precision of the regression coefficients 
estimated in the subset. Two or more percentages of at least 50% for an eigenvector or eigenvalue suggest 
a problem. For certain, when there are two or more variance percentages greater than 90%, there is 
definitely a collinearity problem. 

Again, take the following steps when using this table. 

1. Find rows with condition numbers greater than 100 (find these in the Eigenvalues of Centered 
Correlations report). 

2. Scan across each row found in step 1 for two or more percentages greater than 50. If two such 
percentages are found, the corresponding variables are being influenced by collinearity problems. 
You should remove one and re-run your analysis. 
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Eigenvalues of Uncentered Correlations Section 
 
Eigenvalues of Uncentered Correlations 
───────────────────────────────────────────────────────────────────────── 
  Incremental Cumulative Condition 
No. Eigenvalue Percent Percent Number 
──────────────────────────────────────────────────────────────────────────────────── 

1 5.7963 96.606 96.606 1.000 
2 0.1041 1.735 98.340 55.686 
3 0.0670 1.116 99.457 86.532 
4 0.0214 0.357 99.814 270.830 
5 0.0109 0.181 99.995 533.756 
6 0.0003 0.005 100.000 17767.041 
──────────────────────────────────────────────────────────────────────────────────── 

 
Some Condition Numbers greater than 1000. Multicollinearity is a SEVERE problem. 
───────────────────────────────────────────────────────────────────────── 
 

This report gives an eigenvalue analysis of the independent variables when they have been scaled but not 
centered (the intercept is included in the collinearity analysis). The eigenvalues for this situation are 
generally not the same as those in the previous eigenvalue analysis. Also, the condition numbers are much 
higher.  

Eigenvalue 

The eigenvalues of the scaled, but not centered, matrix. The sum of the eigenvalues is equal to the number 
of independent variables. Eigenvalues near zero mean that there is collinearity in your data. 

Incremental Percent  

Incremental percent is the percent this eigenvalue is of the total. In an ideal situation, these percentages 
would be equal. Percents near zero mean that there is collinearity in your data. 

Cumulative Percent 

 This is the running total of the Incremental Percent. 

Condition Number 

 The condition number is the largest eigenvalue divided by each corresponding eigenvalue. Since the 
eigenvalues are really variances, the condition number is a ratio of variances. There has not been any 
formalization of rules on condition numbers for uncentered matrices. You might use the criteria mentioned 
earlier for mild collinearity and severe collinearity. Since the collinearity will always be worse with the 
intercept in the model, it is advisable to have more relaxed criteria for mild and severe collinearity, say 500 
and 5000, respectively. 
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Eigenvector Percent of Regression-Coefficent-Variance using Uncentered 
Correlations 

 
Eigenvector Percent of Regression-Coefficent-Variance using Uncentered Correlations 
───────────────────────────────────────────────────────────────────────── 
No. Eigenvalue Test1 Test2 Test3 Test4 Test5 Intercept 
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

1 5.7963 0.0042 0.0068 0.0826 0.0015 0.1033 0.0397 
2 0.1041 0.0308 0.8177 3.8156 0.0610 11.8930 0.2599 
3 0.0670 1.1375 0.9627 7.4272 0.0261 0.0897 0.0106 
4 0.0214 0.2675 0.9263 51.4298 0.0006 79.7835 1.6692 
5 0.0109 0.4157 0.0499 37.2046 0.0931 8.1292 97.0221 
6 0.0003 98.1444 97.2367 0.0402 99.8177 0.0013 0.9986 
───────────────────────────────────────────────────────────────────────── 
 

This report displays how the eigenvectors associated with each eigenvalue are related to the independent 
variables.  

No. 

The number of the eigenvalue. 

Eigenvalue 

The eigenvalues of the correlation matrix. The sum of the eigenvalues is equal to the number of 
independent variables. Eigenvalues near zero mean that there is collinearity in your data. 

Values 

The rest of this report gives a breakdown of what percentage each eigenvector is of the total variation for 
the regression coefficient. Hence, the percentages sum to 100 down a column. 

A small eigenvalue (large condition number) along with a subset of two or more independent variables 
having high variance percentages indicates a dependency involving the independent variables in that 
subset. This dependency has damaged or contaminated the precision of the regression coefficients 
estimated in the subset. Two or more percentages of at least 50% for an eigenvector or eigenvalue suggest 
a problem. For certain, when there are two or more variance percentages greater than 90%, there is 
definitely a collinearity problem. 
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Predicted Values with Confidence Limits of Means 
 
Predicted Values with Confidence Limits of Means 
───────────────────────────────────────────────────────────────────────── 
   Standard 95% Lower 95% Upper 
 Actual Predicted Error of Conf. Limit Conf. Limit 
Row IQ IQ Predicted of Mean of Mean 
──────────────────────────────────────────────────────────────────────────────────────────────── 

1 106.000 110.581 7.157 94.391 126.770 
2 92.000 98.248 7.076 82.242 114.255 
3 102.000 97.616 6.223 83.539 111.693 
4 121.000 118.340 8.687 98.689 137.990 
5 102.000 96.006 6.369 81.597 110.414 
6 105.000 102.233 5.433 89.942 114.523 
7 97.000 100.204 4.100 90.930 109.479 
8 92.000 97.073 9.099 76.490 117.657 
9 94.000 96.414 7.089 80.379 112.450 
10 112.000 102.467 6.352 88.098 116.835 
11 130.000 107.846 6.464 93.223 122.468 
12 115.000 112.933 7.331 96.349 129.517 
13 98.000 107.167 5.339 95.090 119.244 
14 96.000 106.255 5.532 93.741 118.769 
15 103.000 111.618 7.100 95.556 127.679 
16  97.705 7.031 81.800 113.611 
17  100.198 4.305 90.459 109.938 
───────────────────────────────────────────────────────────────────────── 
 

Confidence intervals for the mean response of Y given specific levels for the IV’s are provided here. It is 
important to note that violations of any regression assumptions will invalidate these interval estimates.  

Actual 

This is the actual value of Y. 

Predicted 

The predicted value of Y. It is predicted using the values of the IV’s for this row. If the input data had all IV 
values but no value for Y, the predicted value is still provided. 

Standard Error of Predicted 

This is the standard error of the mean response for the specified values of the IV’s. Note that this value is 
not constant for all IV’s values. In fact, it is a minimum at the average value of each IV. 

Lower 95% C.L. of Mean 

This is the lower limit of a 95% confidence interval estimate of the mean of Y for this observation. 

Upper 95% C.L. of Mean 

This is the upper limit of a 95% confidence interval estimate of the mean of Y for this observation. Note that 
you set the alpha level. 

  

http://www.ncss.com/


NCSS Statistical Software NCSS.com   

Multiple Regression (Old Version) 

309-52 
 © NCSS, LLC. All Rights Reserved. 

Predicted Values with Prediction Limits of Individuals 
 
Predicted Values with Prediction Limits of Individuals 
───────────────────────────────────────────────────────────────────────── 
   Standard 95% Lower 95% Upper 
 Actual Predicted Error of Pred. Limit Pred. Limit 
Row IQ IQ Predicted of Individual of Individual 
──────────────────────────────────────────────────────────────────────────────────────────────────── 

1 106.000 110.581 12.833 81.551 139.611 
2 92.000 98.248 12.788 69.320 127.177 
3 102.000 97.616 12.336 69.709 125.523 
4 121.000 118.340 13.745 87.247 149.433 
5 102.000 96.006 12.411 67.930 124.081 
6 105.000 102.233 11.958 75.183 129.283 
7 97.000 100.204 11.414 74.385 126.024 
8 92.000 97.073 14.009 65.383 128.764 
9 94.000 96.414 12.795 67.470 125.359 
10 112.000 102.467 12.402 74.411 130.522 
11 130.000 107.846 12.460 79.659 136.032 
12 115.000 112.933 12.931 83.681 142.185 
13 98.000 107.167 11.915 80.213 134.120 
14 96.000 106.255 12.003 79.103 133.407 
15 103.000 111.618 12.801 82.659 140.576 
16  97.705 12.763 68.833 126.578 
17  100.198 11.489 74.208 126.189 
───────────────────────────────────────────────────────────────────────── 
 

A prediction interval for the individual response of Y given specific values of the IV’s is provided here for 
each row.   

Actual 

This is the actual value of Y. 

Predicted 

The predicted value of Y. It is predicted using the levels of the IV’s for this row. If the input data had all values 
of the IV’s but no value for Y, a predicted value is provided. 

Standard Error of Predicted 

This is the standard deviation of the mean response for the specified levels of the IV’s. Note that this value is 
not constant for all IV’s. In fact, it is a minimum at the average value of each IV. 

Lower 95% Pred. Limit of Individual 

This is the lower limit of a 95% prediction interval of the individual value of Y for the values of the IV’s for this 
observation. 

Upper 95% Pred. Limit of Individual 

This is the upper limit of a 95% prediction interval of the individual value of Y for the values of the IV’s for 
this observation. Note that you set the alpha level. 
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Residual Report 
 
Residual Report 
───────────────────────────────────────────────────────────────────────── 
    Absolute Sqrt(MSE) 
 Actual Predicted  Percent Without 
Row IQ IQ Residual Error This Row 
──────────────────────────────────────────────────────────────────────────────────────────── 

1 106.000 110.581 -4.581 4.322 11.085 
2 92.000 98.248 -6.248 6.792 10.905 
3 102.000 97.616 4.384 4.298 11.136 
4 121.000 118.340 2.660 2.199 11.181 
5 102.000 96.006 5.994 5.877 10.984 
6 105.000 102.233 2.767 2.635 11.241 
7 97.000 100.204 -3.204 3.304 11.231 
8 92.000 97.073 -5.073 5.515 10.759 
9 94.000 96.414 -2.414 2.568 11.240 
10 112.000 102.467 9.533 8.512 10.489 
11 130.000 107.846 22.154 17.042 5.526 
12 115.000 112.933 2.067 1.797 11.253 
13 98.000 107.167 -9.167 9.354 10.659 
14 96.000 106.255 -10.255 10.682 10.471 
15 103.000 111.618 -8.618 8.367 10.533 
16  97.705    
17  100.198    
───────────────────────────────────────────────────────────────────────── 
 

This section reports on the sample residuals, or ei’s.  

Actual 

This is the actual value of Y. 

Predicted 

The predicted value of Y using the values of the IV’s given on this row. 

Residual 

This is the error in the predicted value. It is equal to the Actual minus the Predicted. 

Absolute Percent Error 

This is percentage that the absolute value of the Residual is of the Actual value. Scrutinize rows with the large 
percent errors. 

Sqrt(MSE) Without This Row 

This is the value of the square root of the mean square error that is obtained if this row is deleted. A perusal 
of this statistic for all observations will highlight observations that have an inflationary impact on mean 
square error and could be outliers. 
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Regression Diagnostics Section 
 
Regression Diagnostics Section 
───────────────────────────────────────────────────────────────────────── 
 Standardized  Hat    
Row Residual RStudent Diagonal Cook's D Dffits CovRatio 
──────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

1 -0.5806 -0.5579 0.4514 0.0462 -0.5061 2.9388 
2 -0.7847 -0.7665 0.4413 0.0811 -0.6812 2.3714 
3 0.5071 0.4851 0.3413 0.0222 0.3492 2.5863 
4 0.4315 0.4111 0.6650 0.0616 0.5792 5.3387 
5 0.7021 0.6808 0.3575 0.0457 0.5079 2.2506 
6 0.3020 0.2862 0.2601 0.0053 0.1697 2.5777 
7 -0.3259 -0.3091 0.1481 0.0031 -0.1289 2.2162 
8 -0.9161 -0.9070 0.7297 0.3775 -1.4901 4.1684 
9 -0.3037 -0.2878 0.4429 0.0122 -0.2566 3.4207 
10 1.1149 1.1322 0.3556 0.1143 0.8410 1.2896 
11 2.6167 5.0444 0.3683 0.6652 3.8514 0.0006 
12 0.2675 0.2532 0.4737 0.0107 0.2402 3.6717 
13 -0.9945 -0.9938 0.2512 0.0553 -0.5756 1.3465 
14 -1.1265 -1.1460 0.2697 0.0781 -0.6964 1.1151 
15 -1.0853 -1.0975 0.4443 0.1569 -0.9814 1.5725 
16   0.4357    
17   0.1634    
───────────────────────────────────────────────────────────────────────── 
 

This report presents various statistics known as regression diagnostics. They let you conduct an influence 
analysis of the observations. The interpretation of these values is explained in modern regression books. 
Belsley, Kuh, and Welsch (1980) devote an entire book to the study of regression diagnostics.  

These statistics flag observations that exert three types of influence on the regression. 

1.  Outliers in the residual space. The Studentized Residual, the RStudent, and the CovRatio will flag 
observations that are influential because of large residuals. 

2.  Outliers in the X-space. The Hat Diagonal flags observations that are influential because they are 
outliers in the X-space.  

3.  Parameter estimates and fit. The Dffits shows the influence on fitted values. It also measures the 
impact on the regression coefficients. Cook’s D measures the overall impact that a single observation 
has on the regression coefficient estimates. 

Standardized Residual 

The variances of the observed residuals are not equal, making comparisons among the residuals difficult. 
One solution is to standardize the residuals by dividing by their standard deviations. This will give a set of 
standardized residuals with constant variance. The formula for this residual is 

𝑟𝑟𝑗𝑗 =
𝑒𝑒𝑗𝑗

�𝑀𝑀𝑆𝑆𝐷𝐷�1 − ℎ𝑗𝑗𝑗𝑗�
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RStudent 

Rstudent is similar to the standardized residual. The difference is the MSE(j) is used rather than MSE in the 
denominator. The quantity MSE(j) is calculated using the same formula as MSE, except that observation j is 
omitted. The hope is that be excluding this observation, a better estimate of σ2 will be obtained. Some 
statisticians refer to these as the studentized deleted residuals. 

If the regression assumptions of normality are valid, a single value of the RStudent has a t distribution with 
n-p-1 degrees of freedom. 

𝑡𝑡𝑗𝑗 =
𝑒𝑒𝑗𝑗

�𝑀𝑀𝑆𝑆𝐷𝐷(𝑗𝑗)�1 − ℎ𝑗𝑗𝑗𝑗�
 

Hat Diagonal 

The hat diagonal, ℎ𝑗𝑗𝑗𝑗, captures an observation’s remoteness in the X-space. Some authors refer to the hat 
diagonal as a measure of leverage in the X-space. Hat diagonals greater than two times the number of 
coefficients in the model divided by the number of observations are said to have high leverage (i.e., hii > 
2p/n). 

Cook’s D 

Cook’s distance (Cook’s D) attempts to measure the influence each observation on all N fitted values. The 
approximate formula for Cook’s D is 

𝐷𝐷𝑗𝑗 =
∑ 𝑤𝑤𝑗𝑗�𝑦𝑦�𝑗𝑗 − 𝑦𝑦�𝑗𝑗(𝑖𝑖)�2𝑁𝑁
𝑖𝑖=1

𝑝𝑝𝑠𝑠2
 

The 𝑦𝑦�𝑗𝑗(𝑖𝑖) are found by removing observation i before the calculations. Rather than go to all the time of 
recalculating the regression coefficients N times, we use the following approximation 

𝐷𝐷𝑗𝑗 =
𝑤𝑤𝑗𝑗𝑒𝑒𝑗𝑗2ℎ𝑗𝑗𝑗𝑗

𝑝𝑝𝑠𝑠2�1 − ℎ𝑗𝑗𝑗𝑗�
2 

This approximation is exact when no weight variable is used.  

A Cook’s D value greater than one indicates an observation that has large influence. Some statisticians have 
suggested that a better cutoff value is 4 / (N - 2). 

DFFITS 

DFFITS is the standardized difference between the predicted value with and without that observation. The 
formula for DFFITS is 

𝐷𝐷𝑗𝑗 = �
𝑟𝑟𝑗𝑗2

𝑝𝑝 ��
ℎ𝑗𝑗𝑗𝑗

1− ℎ𝑗𝑗𝑗𝑗
� 
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The values of𝑦𝑦�(𝑗𝑗) and 𝑠𝑠2(𝑗𝑗) are found by removing observation j before the doing the calculations. It 
represents the number of estimated standard errors that the fitted value changes if the jth observation is 
omitted from the data set. If |DFFITS| > 1, the observation should be considered to be influential with 
regards to prediction. 

CovRatio 

This diagnostic flags observations that have a major impact on the generalized variance of the regression 
coefficients. A value exceeding 1.0 implies that the ith observation provides an improvement, i.e., a reduction 
in the generalized variance of the coefficients. A value of CovRatio less than 1.0 flags an observation that 
increases the estimated generalized variance. This is not a favorable condition. 

The general formula for the CovRatio is 

𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶𝑡𝑡𝑖𝑖𝐶𝐶𝑗𝑗 =
det �𝑠𝑠(𝑗𝑗)2�𝐗𝐗(𝑗𝑗)′𝐖𝐖𝐗𝐗(𝑗𝑗)�−1�

det[𝑠𝑠2(𝐗𝐗′𝐖𝐖𝐗𝐗)−1]  

=
1

1 − ℎ𝑗𝑗𝑗𝑗
�
𝑠𝑠(𝑗𝑗)2

𝑠𝑠2
�
𝑝𝑝

 

Belsley, Kuh, and Welsch (1980) give the following guidelines for the CovRatio. 

If CovRatio > 1 + 3p / N then omitting this observation significantly damages the precision of at least some of 
the regression estimates. 

If CovRatio < 1 - 3p / N then omitting this observation significantly improves the precision of at least some of 
the regression estimates. 

DFBETAS Section 
 
DFBETAS Section 
───────────────────────────────────────────────────────────────────────── 
Row Test1 Test2 Test3 Test4 Test5 Intercept 
───────────────────────────────────────────────────────────────────────────────────────────────── 

1 0.2160 0.3128 -0.0390 -0.2556 0.1723 -0.1466 
2 -0.1123 0.0190 -0.0830 0.0871 0.0045 -0.1311 
3 0.1822 0.2370 0.0291 -0.2075 0.0674 -0.0623 
4 -0.1792 -0.2157 0.2157 0.2393 0.1963 -0.4376 
5 0.3932 0.3443 0.0108 -0.3638 0.1240 -0.1485 
6 0.0969 0.0868 -0.0110 -0.0842 -0.0534 -0.0058 
7 -0.0771 -0.0707 0.0286 0.0728 0.0202 -0.0231 
8 0.1301 -0.0182 1.2984 -0.0051 -0.8487 -0.7366 
9 -0.0334 -0.0370 -0.1136 0.0561 0.0525 -0.0690 
10 -0.1257 -0.0712 0.3963 0.0570 0.1128 -0.0482 
11 -1.1326 -1.2189 -1.2510 1.1521 -2.2675 2.6301 
12 -0.1456 -0.1150 -0.0686 0.1379 0.1606 -0.0486 
13 -0.0758 -0.0896 -0.3057 0.0612 0.3288 0.0913 
14 -0.1772 -0.2373 0.1757 0.1532 -0.0325 0.1435 
15 0.5669 0.4799 -0.0701 -0.5124 0.5187 -0.4637 
16       
17       
───────────────────────────────────────────────────────────────────────── 
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DFBETAS 

The DFBETAS is an influence diagnostic which gives the number of standard errors that an estimated 
regression coefficient changes if the jth observation is deleted. If one has N observations and p independent 
variables, there are Np of these diagnostics. Sometimes, Cook’s D may not show any overall influence on the 
regression coefficients, but this diagnostic gives the analyst more insight into individual coefficients. The 
criteria of influence for this diagnostic are varied, but Belsley, Kuh, and Welsch (1980) recommend a cutoff 
of 2 / √𝑁𝑁. Other guidelines are ±1 or ±2. The formula for DFBETAS is 

𝐷𝐷𝐷𝐷𝐵𝐵𝑒𝑒𝑡𝑡𝐶𝐶𝑠𝑠𝑘𝑘 =
𝑏𝑏𝑘𝑘 − 𝑏𝑏𝑘𝑘,−𝑗𝑗

�𝑀𝑀𝑆𝑆𝐷𝐷𝑗𝑗𝑐𝑐𝑘𝑘𝑘𝑘
 

where 𝑐𝑐𝑘𝑘𝑘𝑘 is the kth row and kth column element of the inverse matrix (X'X)-1. 

Graphic Residual Analysis 
The residuals can be graphically analyzed in numerous ways. Three types of residuals are graphically 
analyzed here:  residuals, rstudent residuals, and partial residuals. For certain, the regression analyst should 
examine all of the basic residual graphs:  the histogram, the density trace, the normal probability plot, the 
serial correlation plots, the scatter plot of the residuals versus the sequence of the observations, the scatter 
plot of the residuals versus the predicted value of the dependent variable, and the scatter plot of the 
residuals versus each of the independent variables. 

For the basic scatter plots of residuals versus either the predicted values of Y or the independent variables, 
Hoaglin (1983) explains that there are several patterns to look for. You should note that these patterns are 
very difficult, if not impossible, to recognize for small data sets. 

Point Cloud 

 A point cloud, basically in the shape of a rectangle or a horizontal band, would indicate no relationship 
between the residuals and the variable plotted against them. This is the preferred condition. 

Wedge 

An increasing or decreasing wedge would be evidence that there is increasing or decreasing (nonconstant) 
variation. A transformation of Y may correct the problem, or weighted least squares may be needed. 

Bowtie 

This is similar to the wedge above in that the residual plot shows a decreasing wedge in one direction while 
simultaneously having an increasing wedge in the other direction. A transformation of Y may correct the 
problem, or weighted least squares may be needed. 

Sloping Band 

This kind of residual plot suggests adding a linear version of the independent variable to the model. 
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Curved Band 

 This kind of residual plot may be indicative of a nonlinear relationship between Y and the independent 
variables that was not accounted for. The solution might be to use a transformation on Y to create a linear 
relationship with the X’s. Another possibility might be to add quadratic or cubic terms of a particular 
independent variable. 

Curved Band with Increasing or Decreasing Variability 

This residual plot is really a combination of the wedge and the curved band. It too must be avoided. 

Histogram 
The purpose of the histogram and density trace of the residuals is to evaluate whether they are normally 
distributed. A dot plot is also given that highlights the distribution of points in each bin of the histogram. 
Unless you have a large sample size, it is best not to rely on the histogram for visually evaluating normality 
of the residuals. The better choice would be the normal probability plot.  

  
Plots Section 
───────────────────────────────────────────────────────────────────────── 
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Probability Plot of Residuals 
If the residuals are normally distributed, the data points of the normal probability plot will fall along a 
straight line through the origin with a slope of 1.0. Major deviations from this ideal picture reflect 
departures from normality. Stragglers at either end of the normal probability plot indicate outliers, 
curvature at both ends of the plot indicates long or short distributional tails, convex or concave curvature 
indicates a lack of symmetry, and gaps or plateaus or segmentation in the normal probability plot may 
require a closer examination of the data or model. Of course, use of this graphic tool with very small sample 
sizes is not recommended.  

If the residuals are not normally distributed, then the t-tests on regression coefficients, the F-tests, and any 
interval estimates are not valid. This is a critical assumption to check.  

 
Plots Section 
───────────────────────────────────────────────────────────────────────── 
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Plots of Y versus each IV 
Actually, a regression analysis should always begin with a plot of Y versus each IV. These plots often show 
outliers, curvilinear relationships, and other anomalies. 

  
Plots Section 
───────────────────────────────────────────────────────────────────────── 

     
 
(More plots follow) 
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Serial Correlation of Residuals Plot 
This plot is only useful if your data represent a time series. This is a scatter plot of the jth residual versus the 
jth-1 residual. The purpose of this plot is to check for first-order autocorrelation.  

You would like to see a random pattern of these plotted residuals, i.e., a rectangular or uniform distribution. 
A strong positive or negative trend would indicate a need to redefine the model with some type of 
autocorrelation component. Positive autocorrelation or serial correlation means that the residual in time 
period j tends to have the same sign as the residual in time period (j-1). On the other hand, a strong 
negative autocorrelation means that the residual in time period j tends to have the opposite sign as the 
residual in time period (j-1). Be sure to check the Durbin-Watson statistic.  

  
Plots Section 
───────────────────────────────────────────────────────────────────────── 
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Sequence Plot 
Sequence plots may be useful in finding variables that are not accounted for by the regression equation. 
They are especially useful if the data were taken over time.  

  
Plots Section 
───────────────────────────────────────────────────────────────────────── 
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RStudent vs Hat Diagonal Plot 
In light of the earlier discussion in the Regression Diagnostics Section, Rstudent is one of the best single-
case diagnostics for capturing large residuals, while the hat diagonal flags observations that are remote in 
the X-space. The purpose of this plot is to give a quick visual spotting of observations that are very different 
from the norm. It is best to rely on the actual regression diagnostics for any formal conclusions on influence. 
There are three influential realms you might be concerned with  

1. Observations that are extreme along the rstudent (vertical) axis are outliers that need closer 
attention. They may have a major impact on the predictability of the model. 

2. Observations that were extreme to the right (i.e., hii>2p/n) are outliers in the X-space. These kinds of 
observations could be data entry errors, so be sure the data is correct before proceeding.  

3. Observations that are extreme on both axes are the most influential of all. Double-check these 
values. 

  
Plots Section 
───────────────────────────────────────────────────────────────────────── 
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Residual vs Predicted Plot 
This plot should always be examined. The preferred pattern to look for is a point cloud or a horizontal band. 
A wedge or bowtie pattern is an indicator of nonconstant variance, a violation of a critical regression 
assumption. The sloping or curved band signifies inadequate specification of the model. The sloping band 
with increasing or decreasing variability suggests nonconstant variance and inadequate specification of the 
model. 

  
Plots Section 
───────────────────────────────────────────────────────────────────────── 
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Residual vs Predictor(s) Plot 
This is a scatter plot of the residuals versus each independent variable. Again, the preferred pattern is a 
rectangular shape or point cloud. Any other nonrandom pattern may require a redefining of the regression 
model.  

  
Plots Section 
───────────────────────────────────────────────────────────────────────── 

     
 
(More plots follow) 
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RStudent vs Predictor(s) 
This is a scatter plot of the RStudent residuals versus each independent variable. The preferred pattern is a 
rectangular shape or point cloud. These plots are very helpful in visually identifying any outliers and 
nonlinear patterns. 

 
Plots Section 
───────────────────────────────────────────────────────────────────────── 

     
 
(More plots follow) 
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Partial Residual Plots 
The scatter plot of the partial residuals against each independent variable allows you to examine the 
relationship between Y and each IV after the effects of the other IV’s have been removed. These plots can be 
used to assess the extent and direction of linearity for each independent variable. In addition, they provide 
insight as to the correct transformation to apply and information on influential observations. One would like 
to see a linear pattern between the partial residuals and the independent variable.  

  
Plots Section 
───────────────────────────────────────────────────────────────────────── 

     
 
(More plots follow) 
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Example 2 – Bootstrapping 
This section presents an example of how to generate bootstrap confidence intervals with a multiple 
regression analysis. The tutorial will use the data are in the IQ dataset. This example will run a regression of 
IQ on Test1, Test2, and Test4.   

Setup 
To run this example, complete the following steps: 

1 Open the IQ example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select IQ and click OK. 

2 Specify the Multiple Regression (Old Version) procedure options 
• Find and open the Multiple Regression (Old Version) procedure using the menus or the Procedure 

Navigator.  
• The settings for this example are listed below and are stored in the Example 2 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables Tab 


Y Dependent Variable(s) ................................. IQ 
X's Numeric Independent Variables ................. Test1-Test2,Test4 
Calculate Bootstrap C.I.'s ................................ Checked 
 

Reports Tab 


Select a Group of Reports and Plots ............... Display only those items that are CHECKED BELOW 
Regression Coefficients ................................... Checked 
 

Resampling Tab 


Samples (N) ..................................................... 3000 
Random Seed .................................................. 5768267 (for reproducibility) 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 
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Regression Coefficient Section 
 
Regression Coefficient Confidence Intervals Section 
───────────────────────────────────────────────────────────────────────── 
 Regression Standard Lower 95% Upper95%  
Independent Coefficient Error Conf. Limit Conf. Limit Standardized 
Variable b(i) Sb(i) of β(i) of β(i) Coefficient 
─────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Intercept 90.7327 12.8272 62.5003 118.9651 0.0000 
Test1 -1.9650 0.9406 -4.0353 0.1053 -3.1020 
Test2 -1.6485 0.7980 -3.4048 0.1078 -2.9024 
Test4 3.7890 1.6801 0.0912 7.4869 4.7988 
───────────────────────────────────────────────────────────────────────── 
Note: The T-Value used to calculate these confidence limits was 2.201. 
 

This report gives the confidence limits calculated under the assumption of normality. We have displayed it 
so that we can compare these to the bootstrap confidence intervals. 

Bootstrap Section 
 
Bootstrap Section 
───────────────────────────────────────────────────────────────────────── 
 Estimation Results  Bootstrap Confidence Limits 
───────────────────  ───────────────────────── 
Parameter Estimate | Conf. Level Lower Upper 
──────────────────────────────────────────────────────────────────────────────────────── 

 
Intercept 
Original Value 90.7327 | 0.9000 67.5586 109.8079 
Bootstrap Mean 92.1493 | 0.9500 60.9929 114.5635 
Bias (BM - OV) 1.4166 | 0.9900 47.5995 130.1956 
Bias Corrected 89.3161     
Standard Error 13.2971     
 
B(Test1) 
Original Value -1.9650 | 0.9000 -3.0029 -0.0550 
Bootstrap Mean -2.1345 | 0.9500 -3.2805 0.5906 
Bias (BM - OV) -0.1695 | 0.9900 -4.1577 1.8078 
Bias Corrected -1.7955     
Standard Error 0.9760     
 
B(Test2) 
Original Value -1.6485 | 0.9000 -2.5471 0.1086 
Bootstrap Mean -1.8259 | 0.9500 -2.7819 0.7748 
Bias (BM - OV) -0.1774 | 0.9900 -3.5368 2.0172 
Bias Corrected -1.4711     
Standard Error 0.8742     
 
B(Test4) 
Original Value 3.7890 | 0.9000 0.3325 5.7402 
Bootstrap Mean 4.1124 | 0.9500 -0.9312 6.3442 
Bias (BM - OV) 0.3234 | 0.9900 -3.1891 7.9426 
Bias Corrected 3.4656     
Standard Error 1.7864     
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Predicted Mean and Confidence Limits of IQ When Row = 16 
Original Value 99.509 | 0.9000 92.703 105.490 
Bootstrap Mean 99.749 | 0.9500 90.762 107.214 
Bias (BM - OV) 0.240 | 0.9900 86.011 113.245 
Bias Corrected 99.269     
Standard Error 4.078     
 
Predicted Mean and Confidence Limits of IQ When Row = 17 
Original Value 101.264 | 0.9000 96.439 105.725 
Bootstrap Mean 101.269 | 0.9500 95.552 106.861 
Bias (BM - OV) 0.005 | 0.9900 92.836 110.324 
Bias Corrected 101.259     
Standard Error 2.899     
 
Predicted Value and Prediction Limits of IQ When Row = 16 
Original Value 99.509 | 0.9000 69.008 122.502 
Bootstrap Mean 100.941 | 0.9500 63.042 128.629 
Bias (BM - OV) 1.432 | 0.9900 50.647 141.444 
Bias Corrected 98.077     
Standard Error 16.330     
 
Predicted Value and Prediction Limits of IQ When Row = 17 
Original Value 101.264 | 0.9000 71.654 124.119 
Bootstrap Mean 102.893 | 0.9500 66.029 129.958 
Bias (BM - OV) 1.629 | 0.9900 52.307 143.231 
Bias Corrected 99.635     
Standard Error 16.301     
───────────────────────────────────────────────────────────────────────── 
Sampling Method = Observation, Confidence Limit Type = Reflection, Number of Samples = 3000, 
User-Entered Random Seed = 5768267. 
 

This report provides bootstrap intervals of the regression coefficients and predicted values for rows 16 and 
17 which did not have an IQ (Y) value. Details of the bootstrap method were presented earlier in this 
chapter.  

It is interesting to compare these confidence intervals with those provided in the Regression Coefficient 
report. The most striking difference is that the lower limit of the 95% bootstrap confidence interval for 
B(Test4) is now negative. When the lower limit is negative and the upper limit is positive, we know that a 
hypothesis test would not find the parameter significantly different from zero. Thus, while the regular 
confidence interval of B(Test4) indicates statistical significance (since both limits are positive), the bootstrap 
confidence interval does not. 

Original Value 

This is the parameter estimate obtained from the complete sample without bootstrapping. 

Bootstrap Mean 

This is the average of the parameter estimates of the bootstrap samples. 

Bias (BM - OV) 

This is an estimate of the bias in the original estimate. It is computed by subtracting the original value from 
the bootstrap mean. 

Bias Corrected 

This is an estimated of the parameter that has been corrected for its bias. The correction is made by 
subtracting the estimated bias from the original parameter estimate. 
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Standard Error 

This is the bootstrap method’s estimate of the standard error of the parameter estimate. It is simply the 
standard deviation of the parameter estimate computed from the bootstrap estimates. 

Conf. Level 

This is the confidence coefficient of the bootstrap confidence interval given to the right. 

Bootstrap Confidence Limits - Lower and Upper 

These are the limits of the bootstrap confidence interval with the confidence coefficient given to the left. 
These limits are computed using the confidence interval method (percentile or reflection) designated on the 
Bootstrap panel. 

Note that to be accurate, these intervals must be based on over a thousand bootstrap samples and the 
original sample must be representative of the population. 

Bootstrap Histograms Section 
 
Bootstrap Histograms Section 
───────────────────────────────────────────────────────────────────────── 
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Each histogram shows the distribution of the corresponding parameter estimate.  

Note that the number of decimal places shown in the horizontal axis is controlled by which histogram style 
file is selected. In this example, we selected Bootstrap2, which was created to provide two decimal places. 

 

  

http://www.ncss.com/


NCSS Statistical Software NCSS.com   

Multiple Regression (Old Version) 

309-73 
 © NCSS, LLC. All Rights Reserved. 

Example 3 – Robust Regression 
This section presents an example of how to generate bootstrap confidence intervals with a multiple 
regression analysis. The tutorial will use the data are in the IQ database. This example will run a regression 
of IQ on Test1 through Test5.  

Setup 
To run this example, complete the following steps: 

1 Open the IQ example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select IQ and click OK. 

2 Specify the Multiple Regression (Old Version) procedure options 
• Find and open the Multiple Regression (Old Version) procedure using the menus or the Procedure 

Navigator.  
• The settings for this example are listed below and are stored in the Example 3 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables Tab 


Y Dependent Variable(s) ................................. IQ 
X's Numeric Independent Variables ................. Test1-Test5 
Perform Robust Regression............................. Checked 
 

Reports Tab 


Select a Group of Reports and Plots ............... Display only those items that are CHECKED BELOW 
Equation .......................................................... Checked 
Robust Coefficients .......................................... Checked 
Robust Percentiles ........................................... Checked 
Robust Residuals ............................................. Checked 
 
Robust Tab 


Robust Method ................................................ Huber's Method 
Minimum % Beta Change ................................ 1.0 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 
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Regression Equation Section 
 
Regression Coefficient T-Tests Section 
───────────────────────────────────────────────────────────────────────── 
 Regression Standard T-Value  Reject Power 
Independent Coefficient Error to test Prob H0 at of Test 
Variable b(i) Sb(i) H0: β(i)=0 Level 5%? at 5% 
───────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Intercept 60.7985 15.7492 3.860 0.0038 Yes 0.9285 
Test1 -1.4085 0.6364 -2.213 0.0542 No 0.5063 
Test2 -1.1785 0.5425 -2.173 0.0579 No 0.4919 
Test3 0.1926 0.1403 1.373 0.2031 No 0.2332 
Test4 2.8696 1.1329 2.533 0.0321 Yes 0.6173 
Test5 0.1162 0.1328 0.874 0.4046 No 0.1229 
───────────────────────────────────────────────────────────────────────── 
 

This report gives the robust regression coefficients as well as t-tests. Note that the statistical tests are 
approximate because we are using robust regression. You could generate bootstrap robust confidence 
intervals to supplement these results. 

Robust Regression Coefficient Section 
 
Robust Regression Coefficients Section 
───────────────────────────────────────────────────────────────────────── 
Robust Max % Change Robust Robust Robust Robust 
Iteration in any Beta B(0) B(1) B(2) B(3) 
──────────────────────────────────────────────────────────────────────────────────────────────── 

0  85.2404 -1.9336 -1.6599 0.1050 
1 244.726 71.6768 -1.6799 -1.4283 0.1648 
2 61.163 66.7707 -1.5881 -1.3446 0.1865 
3 23.552 62.3507 -1.4718 -1.2368 0.1951 
4 3.886 60.8935 -1.4180 -1.1887 0.1952 
5 1.493 60.8642 -1.4135 -1.1832 0.1933 
6 0.795 60.7985 -1.4085 -1.1785 0.1926 
───────────────────────────────────────────────────────────────────────── 
 

This report shows the largest percent change in any of the regression coefficients as well as the first four 
regression coefficients. The first iteration always shows the ordinary least squares estimates on the full 
dataset so that you can compare these value with those that occur after a few robust iterations.  

This report allows you to determine if enough iterations have been run for the coefficients to have 
stabilized. In this example, the coefficients have stabilized. If they had not, we would decrease the value of 
the Minimum % Beta Change and rerun the analysis. 
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Robust Percentiles of Residuals Section 
 
Robust Percentiles of Residuals Section 
───────────────────────────────────────────────────────────────────────── 
  Percentiles of Absolute Residuals 
Iter. Max % Change ───────────────────────── 
No. in any Beta 25th 50th 75th 100th 
─────────────────────────────────────────────────────────────────────────────────── 

0  2.767 5.073 9.167 22.154 
1 244.726 1.726 4.446 7.637 27.573 
2 61.163 1.573 3.093 7.084 29.533 
3 23.552 1.511 2.599 7.083 30.626 
4 3.886 1.564 2.285 7.296 30.714 
5 1.493 1.569 2.271 7.387 30.604 
6 0.795 1.581 2.252 7.440 30.553 
───────────────────────────────────────────────────────────────────────── 
 

The purpose of this report is to highlight the maximum percentage changes among the regression 
coefficients and to show the convergence of the absolute value of the residuals after a selected number of 
iterations. 

Iter. No. 

This is the robust iteration number. 

Max % Change in any Beta 

This is the maximum percentage change in any of the regression coefficients from one iteration to the next. 
This quantity can be used to determine if enough iterations have been run. Once this value is less than five 
percent, little is gained by further iterations.  

Percentiles of Absolute Residuals 

The absolute values of the residuals for this iteration are sorted and the percentiles are calculated. We want to 
terminate the iteration process when there is little change in median of the absolute residuals.  
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Robust Residuals and Weights Section 
 
Robust Residuals and Weights 
───────────────────────────────────────────────────────────────────────── 
    Absolute  
 Actual Predicted  Percent Robust 
Row IQ IQ Residual Error Weight 
──────────────────────────────────────────────────────────────────────────────────────── 

1 106.000 104.565 1.435 1.354 1.0000 
2 92.000 96.915 -4.915 5.343 1.0000 
3 102.000 100.078 1.922 1.884 1.0000 
4 121.000 121.703 -0.703 0.581 1.0000 
5 102.000 98.551 3.449 3.381 1.0000 
6 105.000 100.270 4.730 4.504 1.0000 
7 97.000 98.450 -1.450 1.495 1.0000 
8 92.000 94.252 -2.252 2.448 1.0000 
9 94.000 96.007 -2.007 2.135 1.0000 
10 112.000 103.875 8.125 7.255 0.6515 
11 130.000 99.447 30.553 23.502 0.1716 
12 115.000 113.419 1.581 1.375 1.0000 
13 98.000 105.440 -7.440 7.592 0.7108 
14 96.000 105.269 -9.269 9.655 0.5720 
15 103.000 104.735 -1.735 1.684 1.0000 
16  90.367   0.0000 
17  96.281   0.0000 
───────────────────────────────────────────────────────────────────────── 
 

The predicted values, the residuals, and the robust weights are reported for the last iteration. These robust 
weights can be saved for use in a weighted regression analysis, or they can be used as a filter to delete 
observations with a weight less than some number, say 0.20, in an ordinary least squares regression 
analysis.  

Note that in this analysis, row 11 appears to be an outlier. 

Row 

This is the number of the row. Rows whose weight is less than 0.1 are starred. 

Actual 

This is the actual value of the dependent variable. 

Predicted 

This is the predicted value of Y based on the robust regression equation from the final iteration. 

Residual 

The residual is the difference between the Actual and Predicted values of Y. 

Robust Weight 

Once the convergence criteria for the robust procedure have been met, these are the final weights for each 
observation.  

These weights will range from zero to one. Observations with a low weight make a minimal contribution to the 
determination of the regression coefficients. In fact, observations with a weight of zero have been deleted from 
the analysis. These weights can be saved and used again in a weighted least squares regression. 
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Example 4 – Variable Subset Selection 
This section presents an example of how to select a subset of the available IV’s that are the most useful in 
predicting Y. The tutorial will use the data are in the IQ database. In this example, we will select a subset 
from the five IV’s available.  

Setup 
To run this example, complete the following steps: 

1 Open the IQ example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select IQ and click OK. 

2 Specify the Multiple Regression (Old Version) procedure options 
• Find and open the Multiple Regression (Old Version) procedure using the menus or the Procedure 

Navigator.  
• The settings for this example are listed below and are stored in the Example 4 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables Tab 
 ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Y Dependent Variable(s) ................................. IQ 
X's Numeric Independent Variables ................. Test1-Test5 
 

Model Tab 


Subset Selection .............................................. Hierarchical Forward with Switching 
Max Terms in Subset ....................................... 6 
Which Model Terms ......................................... Up to 2-Way 
 

Reports Tab 


Select a Group of Reports and Plots ............... Display items appropriate for a STANDARD ANALYSIS 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 
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Subset Selection Summary Section 
 
Subset Selection Summary Section 
───────────────────────────────────────────────────────────────────────── 
No. No. R-Squared R-Squared 
Terms X's Value Change 
────────────────────────────────────────────────────────── 

1 1 0.1379 0.1379 
2 2 0.1542 0.0163 
3 3 0.2466 0.0924 
4 4 0.3587 0.1121 
5 5 0.5681 0.2094 
6 6 0.5877 0.0196 
───────────────────────────────────────────────────────────────────────── 
 

This report shows the number of terms, number of IV’s, and R-squared values for each subset size. This 
report is used to determine an appropriate subset size for a second run. You search the table for a subset 
size after which the R-squared increases only slightly as more variables are added.  

In this example, there appears to be two places where a break occurs: from 1 to 2 terms and from 5 to 6 
terms. Under normal circumstances, we would pick from a subset size of 5 for a second run. However, 
because the sample size in this example is only 15, we would not want to go above a subset size of 3 (our 
rule of thumb is N/#IV’s > 5). 

Subset Selection Detail Section 
 
Subset Selection Detail Section 
───────────────────────────────────────────────────────────────────────── 
  No. of No. of  Term Term 
Step Action Terms X's R2 Entered Removed 
─────────────────────────────────────────────────────────────────────────────────────────────────────── 

0 Add 0 0 0.0000 Intercept  
1 Add 1 1 0.1379 Test4  
2 Add 2 2 0.1542 Test3  
3 Add 3 3 0.2466 Test3*Test3  
4 Add 4 4 0.3587 Test4*Test4  
5 Add 5 5 0.4149 Test2  
6 Switch 5 5 0.4203 Test1 Test3*Test3 
7 Switch 5 5 0.5681 Test2*Test2 Test4*Test4 
8 Add 6 6 0.5877 Test1*Test1  
───────────────────────────────────────────────────────────────────────── 
 

This report shows the details of which variables were added or removed at each step in the search 
procedure. The final model for three IV’s would include Test4, Test3, and Test3*Test3. 

Because of the restrictions due to our use of hierarchical models, you might run an analysis using the 
Forward with Switching option as well as a search without 2-way interactions. Because of the small sample 
size, these options produce models with much larger R-squared values. However, it is our feeling that this 
larger R-squared values occur because the extra variables are actually fitting random error rather than a 
reproducible pattern. 
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Example 5 – Sales Price Prediction 
This section presents an example of using multiple regression to construct an equation that predicts the 
sales price of a home based on a few basic IV’s such as square footage, lot size, and so on. The Resale 
dataset contains several variables relating to the sales price of a house. These include year built, number of 
bedrooms, number of bathrooms, size of garage, number of fireplaces, overall quality rating, amount of 
building with brick, finished square footage, total square footage, and lot size.   

The Resale dataset contains data on 150 sales that took place recently. Our task is to develop a 
mathematical model that relates sales price to the IV’s listed about and then use this model to predict the 
eventual sales price for two additional properties. 

Step 1 – View Scatter Plots 
The starting point in such an analysis is to view individual scatter plots of sales price versus each of the 
potential IV’s looking for outliers, curvilinear patterns, and other anomalies. Although we could create these 
scatter plots in other procedures, we will use the Multiple Regression procedure to do so. 

Setup 

To run this example, complete the following steps: 

1 Open the Resale example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select Resale and click OK. 

2 Specify the Multiple Regression (Old Version) procedure options 
• Find and open the Multiple Regression (Old Version) procedure using the menus or the Procedure 

Navigator.  
• The settings for this example are listed below and are stored in the Example 5-1 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables Tab 


Y Dependent Variable(s) ................................. Price 
X's Numeric Independent Variables ................. Year-LotSize 
 

Reports Tab 


Select a Group of Reports and Plots ............... Display only those items that are CHECKED BELOW 
 
Plots Tab 


Y vs X .............................................................. Checked 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 
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Scatter Plot Output 
 
Plots Section 
───────────────────────────────────────────────────────────────────────── 
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Looking at these plots, we notice that Bathrooms, Quality, and Year appear to have the most direct 
relationship with price. We cannot spot any outliers, so we procedure to the next step.  

Step 2 – Use Robust Regression to Find Outliers 
Although we could not spot any outliers on the scatter plots, it is important to make sure that we have not 
missed any. To do this, we run a robust regression analysis and search the robust weights for values less 
that 0.20 (which we define as an outlier).  

This analysis assumes that you have just completed Example 5-1. You may follow along here by making the 
appropriate entries or load the completed settings file Example 5-2 by clicking on Open Example Settings 
File from the File menu of the Multiple Regression window. 
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Setup 

To run this example, complete the following steps: 

1 Open the Resale example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select Resale and click OK. 

2 Specify the Multiple Regression (Old Version) procedure options 
• Find and open the Multiple Regression (Old Version) procedure using the menus or the Procedure 

Navigator.  
• The settings for this example are listed below and are stored in the Example 5-2 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables Tab 


Perform Robust Regression............................. Checked 
 

Reports Tab 


Robust Coefficients .......................................... Checked 
Robust Residuals ............................................. Checked 
 
Robust Tab 


Minimum % Beta Change ................................ 0.1 
Cutoff for Weight Report .................................. 0.40 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 

Robust Regression Output 
 
Robust Regression Coefficients Section 
───────────────────────────────────────────────────────────────────────── 
Robust Max % Change Robust Robust Robust Robust 
Iteration in any Beta B(0) B(1) B(2) B(3) 
───────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

0  -6975033.8132 3466.1399 9068.0709 -377.5098 
1 146.222 -6907482.9980 3432.2573 8114.1221 174.4935 
2 43.791 -6898667.1571 3427.6793 8059.9605 250.9067 
3 6.395 -6896910.7470 3426.7382 8062.1699 266.9523 
4 1.712 -6896384.8015 3426.4524 8065.1218 271.5213 
5 0.608 -6896269.5148 3426.3862 8066.4706 273.0447 
6 0.369 -6896265.1890 3426.3806 8066.9712 273.6238 
7 0.206 -6896281.4591 3426.3874 8067.1474 273.8489 
8 0.109 -6896295.9868 3426.3940 8067.2078 273.9371 
9 0.056 -6896305.4524 3426.3985 8067.2279 273.9723 
───────────────────────────────────────────────────────────────────────── 
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Robust Residuals and Weights 
───────────────────────────────────────────────────────────────────────── 
    Absolute  
 Actual Predicted  Percent Robust 
Row Sales Price Sales Price Residual Error Weight 
────────────────────────────────────────────────────────────────────────────────────────────────── 

55 32900.000 -70171.619 103071.619 313.288 0.3426 
120 117800.000 210610.031 -92810.031 78.786 0.3805 
150 487200.000 373849.490 113350.510 23.266 0.3115 
───────────────────────────────────────────────────────────────────────── 
 

From a perusal of these reports, we learn that there are three potential outliers: rows 55, 120, and 150. 
However, their robust weights are much larger than the cutoff value of 0.200 which we set as an indicator of 
when an observation is an outlier. So, even though these three observations are predicted poorly, we decide 
to leave them in the dataset for the rest of the analysis. 

Step 3 – Variable Selection 
The next step is to search for the most useful subset of the IV’s. To do this, we made an initial search for 
each subset up to ten IV’s. We will study the R-squared values to determine a reasonable subset size. 

This analysis assumes that you have just completed Example 5-2. You may follow along here by making the 
appropriate entries or load the completed settings file Example 5-3 by clicking on Open Example Settings 
File from the File menu of the Multiple Regression window. 

Setup 

To run this example, complete the following steps: 

1 Open the Resale example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select Resale and click OK. 

2 Specify the Multiple Regression (Old Version) procedure options 
• Find and open the Multiple Regression (Old Version) procedure using the menus or the Procedure 

Navigator.  
• The settings for this example are listed below and are stored in the Example 5-3 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables Tab 


Perform Robust Regression............................. Unchecked 
 

Model Tab 


Subset Selection .............................................. Hierarchical Forward with Switching 
Max Terms in Subset ....................................... 10 
Which Model Terms ......................................... Up to 2-Way 
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Reports Tab 


Subset Summary ............................................. Checked 
Subset Detail ................................................... Checked 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 

Variable Selection Output 
 
Subset Selection Summary Section 
───────────────────────────────────────────────────────────────────────── 
No. No. R-Squared R-Squared 
Terms X's Value Change 
────────────────────────────────────────────────────────── 

1 1 0.5212 0.5212 
2 2 0.7676 0.2464 
3 3 0.8440 0.0764 
4 4 0.8929 0.0489 
5 5 0.8956 0.0027 
6 6 0.8969 0.0014 
7 7 0.9009 0.0039 
8 8 0.9020 0.0011 
9 9 0.9031 0.0011 
10 10 0.9037 0.0006 
───────────────────────────────────────────────────────────────────────── 
 
 
Subset Selection Detail Section 
───────────────────────────────────────────────────────────────────────── 
  No. of No. of  Term Term 
Step Action Terms X's R2 Entered Removed 
──────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

0 Add 0 0 0.0000 Intercept  
1 Add 1 1 0.5212 Quality Index  
2 Add 2 2 0.7676 Year Built  
3 Add 3 3 0.8440 Total Area (Sqft)  
4 Add 4 4 0.8929 Lot Size (Sqft)  
5 Add 5 5 0.8956 Bedrooms  
6 Add 6 6 0.8968 Brick Ratio  
7 Switch 6 6 0.8969 Brick Ratio*Brick Ratio Bedrooms 
8 Add 7 7 0.9009 Bedrooms  
9 Add 8 8 0.9020 Fireplaces  
10 Add 9 9 0.9031 Fireplaces*Fireplaces  
11 Add 10 10 0.9037 Fireplaces*Brick Ratio  
───────────────────────────────────────────────────────────────────────── 
 

Scanning down the R-squared values, it is easy to see that the appropriate subset size is four. With four IV’s, 
an R-squared of 0.8929 is achieved which is impressive for this type of data. From the Subset Selection 
Detail report, we learn that the four IV’s are Quality, Year, TotalSqrt, and LotSize. These seem to be a 
reasonable basis for sales price estimation. 
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Step 4 – Standard Regression 
The next step is to generate a standard regression analysis using the four IV’s that were selected in the last 
step. 

This analysis assumes that you have just completed Example 5-3. You may follow along here by making the 
appropriate entries or load the completed settings file Example 5-4 by clicking on Open Example Settings 
File from the File menu of the Multiple Regression window. 

Setup 

To run this example, complete the following steps: 

1 Open the Resale example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select Resale and click OK. 

2 Specify the Multiple Regression (Old Version) procedure options 
• Find and open the Multiple Regression (Old Version) procedure using the menus or the Procedure 

Navigator.  
• The settings for this example are listed below and are stored in the Example 5-4 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables Tab 


X's Numeric Independent Variables ................. Year,Quality,TotalSqft,LotSize 
 

Model Tab 


Subset Selection .............................................. None - No Search is Conducted 
Which Model Terms ......................................... Up to 1-Way 
 
Reports Tab 


Select a Group of Reports and Plots ............... Display items appropriate for a STANDARD ANALYSIS 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 
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Standard Regression Output 
 
Run Summary Section 
───────────────────────────────────────────────────────────────────────── 
Parameter Value Parameter Value 
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Dependent Variable Sales Price Rows Processed 150 
Number Ind. Variables 4 Rows Filtered Out 0 
Weight Variable None Rows with X's Missing 0 
R2 0.8929 Rows with Weight Missing 0 
Adj R2 0.8899 Rows with Y Missing 0 
Coefficient of Variation 0.1858 Rows Used in Estimation 150 
Mean Square Error 1.049649E+09 Sum of Weights 150.000 
Square Root of MSE 32398.29 Completion Status Normal Completion 
Ave Abs Pct Error 22.636   
───────────────────────────────────────────────────────────────────────── 
 

We have only included the Run Summary report here. You can look at the complete output when you run 
this example. We note that the final R-squared value is 0.8929, which is pretty good, but the average 
absolute percent error is 22.636%, which is disturbing. 

This completes this analysis. If you wanted to use these results to predict the sales price of additional 
properties, you would simple add the data to the bottom of the database, leaving the Price variable blank. 
The Predicted Individuals report will give the estimates and prediction limits for these additional properties. 
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Example 6 – Checking the Parallel Slopes Assumption in 
Analysis of Covariance 
An example of how to test the parallel slopes assumption is given in the General Linear Models chapter. 
Unfortunately, hand calculations and extensive data transformations are required to complete this test. This 
example will show you how to run this test without either transformations or hand calculations.  

The ANCOVA dataset contains three variables: State, Age, and IQ. The researcher wants to test for IQ 
differences across the three states while controlling for each subjects age. An analysis of covariance should 
include a preliminary test of the assumption that the slopes between age and IQ are equal across the three 
states. Without parallel slopes, differences among mean state IQ’s depend on age. 

It turns out that a test for parallel slopes is a test for an Age by State interaction. All that needs to be done is 
to include this term in the model and the appropriate test will be generated.  

Setup 
To run this example, complete the following steps: 

1 Open the ANCOVA example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select ANCOVA and click OK. 

2 Specify the Multiple Regression (Old Version) procedure options 
• Find and open the Multiple Regression (Old Version) procedure using the menus or the Procedure 

Navigator.  
• The settings for this example are listed below and are stored in the Example 6 settings template. To 

load this template, click Open Example Template in the Help Center or File menu. 

 
Variables Tab 
 ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Y Dependent Variable(s) ................................. IQ 
X's Numeric Independent Variables ................. Age 
X's Categorical Independent Variables ............ State 
Default Contrast Type ...................................... Standard Set 
 

Model Tab 


Which Model Terms ......................................... Full Model 
 
Reports Tab 


Select a Group of Reports and Plots ............... Display only those items that are CHECKED BELOW 
ANOVA Detail .................................................. Checked 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 
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Analysis of Variance Detail Section 
 
Analysis of Variance Detail Section 
───────────────────────────────────────────────────────────────────────── 
Model   Sum of Mean  Prob Power 
Term DF R2 Squares Square F-Ratio Level (5%) 
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Intercept 1  313345.2 313345.2    
Model 5 0.2438 80.15984 16.03197 1.547 0.2128 0.4472 
Age 1 0.0296 9.740934 9.740934 0.940 0.3419 0.1537 
State 2 0.1417 46.57466 23.28733 2.248 0.1274 0.4123 
Age*State 2 0.1178 38.72052 19.36026 1.869 0.1761 0.3500 
Error 24 0.7562 248.6402 10.36001    
Total(Adjusted) 29 1.0000 328.8 11.33793    
───────────────────────────────────────────────────────────────────────── 
 

The F-Value for the Age*State interaction term is 1.869. This matches the result that was obtained by hand 
calculations in the General Linear Model example. Since the probability level of 0.1761 is not significant, we 
cannot reject the assumption that the three slopes are equal. 
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Example 7 – Analyzing Pre-Post Data with both 
Categorical and Numeric IV’s 
The PrePost dataset contains the results of a study involving 144 subjects that were divided into three 
groups. The first group (Control) received a placebo, the second group (Dose20) received a small dose of the 
drug of interest, and the third group (Dose40) received a large dose of the drug of interest. Each subject 
response was measured before (Pre) and after (Post) the drug was administered, and the gain from Pre to 
Post was calculated. Also, each subject’s propensity score was measured. This Propensity is a combined 
index created from several demographic variables. The age group (Age) of each subject was also recorded.  

The goal of the research is to build a regression model from this data that will allow the gain scores to be 
predicted. The model should include all significant interaction terms. 

Step 1 – Scan for Outliers Using Robust Regression 
The first step is to scan for outliers using robust regression. Of course, you should also look at the scatter 
plots of Y versus each IV. The robust regression is useful because it provides a list of potential outliers even 
when interactions are included. It is often difficult to find true outliers when interactions are included.  

Setup 

To run this example, complete the following steps: 

1 Open the PrePost example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select PrePost and click OK. 

2 Specify the Multiple Regression (Old Version) procedure options 
• Find and open the Multiple Regression (Old Version) procedure using the menus or the Procedure 

Navigator.  
• The settings for this example are listed below and are stored in the Example 7-1 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables Tab 


Y Dependent Variable(s) ................................. Gain 
X's Numeric Independent Variables ................. Pre,Propensity 
X's Categorical Independent Variables ............ Group-Age 
Perform Robust Regression............................. Checked 
 

Model Tab 


Which Model Terms ......................................... Up to 2-Way 
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Reports Tab 


Select a Group of Reports and Plots ............... Display only those items that are CHECKED BELOW 
Run Summary .................................................. Checked 
Robust Coefficients .......................................... Checked 
Robust Percentiles ........................................... Checked 
Robust Residuals ............................................. Checked 
 
Robust Tab 


Minimum % Beta Change ................................ 1.0 
Maximum Iterations ......................................... 20 
Cutoff for Weight Report .................................. 0.50 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 

Robust Regression Output 
 
Robust Regression Coefficients Section 
───────────────────────────────────────────────────────────────────────── 
Robust Max % Change Robust Robust Robust Robust 
Iteration in any Beta B(0) B(1) B(2) B(3) 
──────────────────────────────────────────────────────────────────────────────────────────────── 

0  19.3828 -2.6061 0.8632 -7.1093 
1 1238.621 18.1621 -2.4050 0.7838 -7.4761 
2 25.133 17.1554 -2.1905 0.6801 -7.5543 
3 15.109 16.4886 -2.0322 0.6002 -7.5867 
4 15.095 16.1000 -1.9235 0.5419 -7.6036 
5 12.774 15.8236 -1.8637 0.5130 -7.6174 
6 9.683 15.6587 -1.8243 0.4931 -7.6274 
7 7.007 15.5714 -1.7971 0.4780 -7.6319 
8 4.955 15.5352 -1.7780 0.4660 -7.6323 
9 2.864 15.5109 -1.7677 0.4598 -7.6308 
10 1.494 15.4926 -1.7620 0.4566 -7.6305 
11 0.995 15.4860 -1.7577 0.4538 -7.6301 
───────────────────────────────────────────────────────────────────────── 

 
 
Robust Residuals and Weights 
───────────────────────────────────────────────────────────────────────── 
    Absolute  
 Actual Predicted  Percent Robust 
Row Gain Gain Residual Error Weight 
──────────────────────────────────────────────────────────────────────────────────────── 

9 222.000 203.685 18.315 8.250 0.2893 
16 174.000 158.661 15.339 8.815 0.3452 
30 24.000 35.324 -11.324 47.183 0.4673 
45 214.000 195.817 18.183 8.497 0.2914 
53 5.000 -5.711 10.711 214.220 0.4941 
54 57.000 69.484 -12.484 21.902 0.4240 
99 260.000 232.035 27.965 10.756 0.1895 
105 73.000 85.251 -12.251 16.783 0.4320 
106 54.000 64.679 -10.679 19.776 0.4957 
116 204.000 187.062 16.938 8.303 0.3128 
144 6.000 -6.181 12.181 203.011 0.4346 
───────────────────────────────────────────────────────────────────────── 
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There are only a few suspected outliers. Row 99 was especially suspicious since its weight is less than 0.20. 
We also looked at the Regression Diagnostics report and found that these rows also had large values 
RStudent and Dffits. However, since we could find nothing wrong with the data for these subjects and since 
we want our final equation to represent as wide of a population as possible, we decided to include these 
rows in the rest of the analysis.   

Step 2 – Search for a Parsimonious Model 
Once we have determined that our data is as free of large outliers as we wish, our next task is to conduct a 
variable selection phase to find a model with as few IV’s as possible which still achieves a high R-squared 
value. The Run Summary report (not shown above) listed the an R-squared of 0.9894 with a total of 21 IV’s. 
Our goal in this phase is to substantially decrease the number of IV’s while achieving an R-squared near 
0.9894. Because we are fitting interactions, we will conduct as hierarchical forward search with switching. 

Note that the changes listed below assume that you have just completed Step 1. You may follow along here 
by making the appropriate entries or load the completed settings file Example 7-2 by clicking on Open 
Example Settings File from the File menu of the Multiple Regression window. 

Setup 

To run this example, complete the following steps: 

1 Open the PrePost example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select PrePost and click OK. 

2 Specify the Multiple Regression (Old Version) procedure options 
• Find and open the Multiple Regression (Old Version) procedure using the menus or the Procedure 

Navigator.  
• The settings for this example are listed below and are stored in the Example 7-2 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables Tab 


Perform Robust Regression............................. Unchecked 
 

Model Tab 


Subset Selection .............................................. Hierarchical Forward with Switching 
Max Terms in Subset ....................................... 10 
Which Model Terms ......................................... Up to 2-Way 
 

Reports Tab 


Select a Group of Reports and Plots ............... Display only those items that are CHECKED BELOW 
Run Summary .................................................. Checked 
Subset Summary ............................................. Checked 
Subset Detail ................................................... Checked 
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3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 

Variable Selection Output 
 
Subset Selection Summary Section 
───────────────────────────────────────────────────────────────────────── 
No. No. R-Squared R-Squared 
Terms X's Value Change 
────────────────────────────────────────────────────────── 

1 1 0.3514 0.3514 
2 3 0.7334 0.3821 
3 5 0.7433 0.0099 
4 9 0.7618 0.0185 
5 7 0.9854 0.2236 
6 8 0.9862 0.0008 
7 10 0.9879 0.0017 
8 11 0.9880 0.0001 
9 16 0.9885 0.0005 
10 18 0.9889 0.0003 
───────────────────────────────────────────────────────────────────────── 
 
 
Subset Selection Detail Section 
───────────────────────────────────────────────────────────────────────── 
  No. of No. of  Term Term 
Step Action Terms X's R2 Entered Removed 
──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

0 Add 0 0 0.0000 Intercept  
1 Add 1 2 0.3514 Propensity  
2 Add 2 2 0.7290 Group  
3 Switch 2 3 0.7334 Pre Propensity 
4 Add 3 4 0.7433 Age  
5 Add 4 9 0.7618 Group*Age  
6 Add 5 10 0.7690 Pre*Pre  
7 Switch 5 8 0.9822 Pre*Group Group*Age 
8 Switch 5 7 0.9854 Propensity Age 
9 Add 6 8 0.9862 Propensity*Propensity  
10 Add 7 10 0.9879 Propensity*Group  
11 Add 8 11 0.9880 Pre*Propensity  
12 Add 9 13 0.9880 Age  
13 Switch 9 14 0.9882 Pre*Age Pre*Propensity 
14 Switch 9 16 0.9884 Group*Age Pre*Age 
15 Switch 9 15 0.9884 Pre*Propensity Propensity*Group 
16 Switch 9 16 0.9885 Pre*Age Pre*Propensity 
17 Add 10 18 0.9889 Propensity*Age  
───────────────────────────────────────────────────────────────────────── 
 

We notice from the Subset Selection Summary report that the first five terms achieve an R-squared of 
0.9854. After that, additional terms increase R-squared very little. We decide to include the first five terms in 
our model. 

The Subset Selection Detail report shows that these five terms are: Group, Pre, Propensity, Pre*Pre, and 
Group*Pre. 
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Step 3 – Estimate the Model 
The next step is to estimate the regression equation and evaluate the residual plots. There are two ways to 
create the model. The first way is to reset the maximum number of terms to five and rerun the subset 
selection. The second way is enter the final model in the Custom Model box. This has the advantage that 
you can run other analyses, such as robust regression, which are not possible during a variable search. So 
we setup the analysis using the second method. 

Note that the changes listed below assume that you have just completed Step 2. You may follow along here 
by making the appropriate entries or load the completed settings file Example 7-3 by clicking on Open 
Example Settings File from the File menu of the Multiple Regression window. 

Setup 

To run this example, complete the following steps: 

1 Open the PrePost example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select PrePost and click OK. 

2 Specify the Multiple Regression (Old Version) procedure options 
• Find and open the Multiple Regression (Old Version) procedure using the menus or the Procedure 

Navigator.  
• The settings for this example are listed below and are stored in the Example 7-3 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables Tab 


X's Categorical Independent Variables ............ Group 
 

Model Tab 


Subset Selection .............................................. None - No Search is Conducted 
Which Model Terms ......................................... Custom Model 
Custom Model.................................................. Group Pre Pre*Pre Group*Pre Propensity 
 

Reports Tab 


Select a Group of Reports and Plots ............... Display only those items that are CHECKED BELOW 
Run Summary .................................................. Checked 
Equation .......................................................... Checked 
Regression Coefficients ................................... Checked 
ANOVA Detail .................................................. Checked 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 
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Standard Regression Output 
 
Run Summary Section 
───────────────────────────────────────────────────────────────────────── 
Parameter Value Parameter Value 
──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Dependent Variable Gain Rows Processed 144 
Number Ind. Variables 7 Rows Filtered Out 0 
Weight Variable None Rows with X's Missing 0 
R2 0.9854 Rows with Weight Missing 0 
Adj R2 0.9847 Rows with Y Missing 0 
Coefficient of Variation 0.1496 Rows Used in Estimation 144 
Mean Square Error 38.70051 Sum of Weights 144.000 
Square Root of MSE 6.220973 Completion Status Normal Completion 
Ave Abs Pct Error 47.269   
───────────────────────────────────────────────────────────────────────── 
 
 
Regression Coefficient T-Tests Section 
───────────────────────────────────────────────────────────────────────── 
 Regression Standard T-Value  Reject Power 
Independent Coefficient Error to test Prob H0 at of Test 
Variable b(i) Sb(i) H0: β(i)=0 Level 5%? at 5% 
───────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Intercept 11.5547 2.5123 4.599 0.0000 Yes 0.9954 
(Group="Dose20") 
 -5.1942 2.7863 -1.864 0.0645 No 0.4567 
(Group="Dose40") 
 -35.5054 2.7570 -12.878 0.0000 Yes 1.0000 
Pre -2.0806 0.2045 -10.173 0.0000 Yes 1.0000 
Propensity 0.7301 0.0818 8.924 0.0000 Yes 1.0000 
Pre*Pre 0.0241 0.0019 12.591 0.0000 Yes 1.0000 
(Group="Dose20")*Pre 
 0.6312 0.0708 8.915 0.0000 Yes 1.0000 
(Group="Dose40")*Pre 
 3.2646 0.0730 44.724 0.0000 Yes 1.0000 
───────────────────────────────────────────────────────────────────────── 
 
 
Regression Coefficient Confidence Intervals Section 
───────────────────────────────────────────────────────────────────────── 
 Regression Standard Lower 95% Upper95%  
Independent Coefficient Error Conf. Limit Conf. Limit Standardized 
Variable b(i) Sb(i) of β(i) of β(i) Coefficient 
─────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Intercept 11.5547 2.5123 6.5866 16.5229 0.0000 
(Group="Dose20") 
 -5.1942 2.7863 -10.7043 0.3159 -0.0489 
(Group="Dose40") 
 -35.5054 2.7570 -40.9575 -30.0532 -0.3345 
Pre -2.0806 0.2045 -2.4850 -1.6761 -0.7314 
Propensity 0.7301 0.0818 0.5683 0.8919 0.3453 
Pre*Pre 0.0241 0.0019 0.0203 0.0278 0.6285 
(Group="Dose20")*Pre 
 0.6312 0.0708 0.4912 0.7713 0.2465 
(Group="Dose40")*Pre 
 3.2646 0.0730 3.1203 3.4090 1.1848 
───────────────────────────────────────────────────────────────────────── 
Note: The T-Value used to calculate these confidence limits was 1.978. 
 

This concludes the regression analysis. We have estimated a regression equation that contains only seven 
IV’s, yet accounts for over 98% of the variability in the Gain score. 
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Note that the interpretation of the regression coefficients is difficult because of the inclusion of the 
Group*Pre interaction term. For example, the equation seems to indicate that the Gain is reduced by 5.1942 
for the Dose20 group as compared to the Control group. However, the (Group=DOSE2)*Pre regression 
coefficient of 0.6312 will more than offset this value for most subjects because typical pretest values are 
greater than 10. That is, 10*0.6312 = 6.312 which is greater than 5.1942.  

For example, a subject in the Dose20 group with a pretest score of 50 has an estimated gain score which is 
26.3658 = -5.1942+0.6312(50) higher than a similar subject in the Control group. 

As a final note, you may wish to adjust the structure of the Group variable. If you wanted to change the 
reference value to DOSE40 rather than the default of CONTROL, you would change the Default Reference 
Value on the Variables tab to Last Value after Sorting or the X’s: Categorical Independent Variables box from 
Group to Group(DOSE40) and rerun the analysis. This would yield the following table (you can generate this 
table by loading the completed settings file Example 7-4 by clicking on Open Example Settings File from the 
File menu of the Multiple Regression window). 

Standard Regression Output 
 
Regression Coefficient T-Tests Section 
───────────────────────────────────────────────────────────────────────── 
 Regression Standard T-Value  Reject Power 
Independent Coefficient Error to test Prob H0 at of Test 
Variable b(i) Sb(i) H0: β(i)=0 Level 5%? at 5% 
───────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Intercept -23.9507 2.6621 -8.997 0.0000 Yes 1.0000 
(Group="Control") 
 35.5054 2.7570 12.878 0.0000 Yes 1.0000 
(Group="Dose20") 
 30.3112 2.8590 10.602 0.0000 Yes 1.0000 
Pre 1.1841 0.2087 5.674 0.0000 Yes 0.9999 
Propensity 0.7301 0.0818 8.924 0.0000 Yes 1.0000 
Pre*Pre 0.0241 0.0019 12.591 0.0000 Yes 1.0000 
(Group="Control")*Pre 
 -3.2646 0.0730 -44.724 0.0000 Yes 1.0000 
(Group="Dose20")*Pre 
 -2.6334 0.0753 -34.989 0.0000 Yes 1.0000 
───────────────────────────────────────────────────────────────────────── 
 
 
Estimated Model 
───────────────────────────────────────────────────────────────────────── 
-23.9506614382102+35.50538794438*(Group="Control")+30.3112093048755*(Group="Dose20")+1.18406725423 
673*Pre+0.730124848180748*Propensity+0.024058147508663*Pre*Pre-3.26462104811021*(Group="Control")*Pr 
e-2.63337520487248*(Group="Dose20")*Pre 
───────────────────────────────────────────────────────────────────────── 
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