Chapter 513

One Proportion – Equivalence Tests

Introduction

This procedure computes confidence limits and equivalence hypothesis tests for a single proportion. For example, you might want confidence limits for the proportion of individuals with the common cold who took ascorbic acid (vitamin C) and recovered within twenty-four hours. You might want to test the equivalence hypothesis that the percentage of individuals with the common cold who recovered immediately after taking ascorbic acid is equivalent to the standard proportion of 50%.

Exact results, based on the binomial distribution, are calculated. Approximate results based on the normal approximation to the binomial distribution are also given. In the case of a single proportion, the exact results are preferable to the approximate results and should always be used. The approximate results are available in the software because they are commonly presented in elementary statistical texts.

This procedure accepts data entered as summary counts (number of “successes” and sample size) but can also tabulate data from columns in the database.

The Binomial Model

Binomial data must exhibit the following four conditions:

1. The response can take on only one of two possible values. This is a binary response variable.
2. The response is observed a known number of times. Each replication is called a Bernoulli trial. The number of replications is labeled n. The number of responses out of the n total that exhibit the outcome of interest is labeled X. Thus X takes on the possible values 0, 1, 2, ..., n.
3. The probability that a particular outcome (a success) occurs is constant for each trial. This probability is labeled P.
4. The trials are independent. The outcome of one trial does not influence the outcome of the any other trial.

The binomial probability, $b(X; n, P)$, is calculated using:

$$b(X; n, P) = \binom{n}{X} P^X (1 - P)^{n-X}$$

where

$$\binom{n}{X} = \frac{n!}{X! (n-X)!}$$

The estimate of P from a sample is labeled p and is estimated using:

$$p = \frac{X}{n}$$

The label \hat{p} is often used in place of p in practice.
Confidence Limits

Using a mathematical relationship (see Ostle(1988), page 110) between the \(F \) distribution and the cumulative binomial distribution, the lower and upper confidence limits of a 100 \((1 - \alpha)\%\) confidence interval are given by:

\[
LCL = \frac{XF_{[\alpha/2],[2,X,2(n-X+1)]}}{(n - X + 1) + XF_{[\alpha/2],[2,X,2(n-X+1)]}}
\]

and

\[
UCL = \frac{(X+1)F_{[1-\alpha/2],[2,(X+1),2(n-X)]}}{(n - X) + (X + 1)F_{[1-\alpha/2],[2,(X+1),2(n-X)]}}
\]

Note that although these limits are based on direct calculation of the binomial distribution, they are only “exact” for a few values of \(\alpha \). Otherwise, these limits are conservative (wider than necessary).

These limits may be approximated using the normal approximation to the binomial as

\[
p \pm z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}
\]

If a correction for continuity is added, the above formula becomes

\[
p \pm z_{\alpha/2} \sqrt{\frac{p(1-p)}{n} + \frac{1}{2n}}
\]

Although these two approximate confidence intervals are found in many elementary statistics books, they are not recommended in general. For example, Newcombe (1998) made a comparative study of seven confidence interval techniques and these methods came in last.

Instead, Newcombe (1998) recommended the Wilson Score confidence interval method because of its performance. The Wilson Score confidence interval is calculated using

\[
\left(2np + z_{\alpha/2}^2\right) \pm \frac{z_{\alpha/2} \sqrt{z_{\alpha/2}^2 + 4np(1-p)}}{2\left(n + z_{\alpha/2}^2\right)}
\]

Equivalence Hypothesis Tests using TOST (Two One-Sided Tests)

Schuirmann’s (1987) two one-sided tests (TOST) approach is used to test equivalence. The equivalence test essentially reverses the roles of the null and alternative hypothesis. Assume that \(P \) represent the population proportion of the response, \(S \) is a standard reference proportion, and \(M \) is the so-called margin of equivalence. The null and alternative hypotheses are

\[
H0: P < S - M \text{ or } P > S + M \\
H1: S - M < P < S + M
\]

The null hypothesis is made up of two simple one-sided hypotheses:

\[
H0_1: P < S - M \\
H0_2: P > S + M
\]

If both of these one-sided tests are rejected, we conclude \(H1 \) that the response is equivalent to the standard proportion (their difference is confined within a small margin). Schuirmann showed that if we want the alpha level of the equivalence test to be \(\alpha \), then each of the one-sided tests should be \(\alpha \) as well (not \(\alpha/2 \) as you might expect). The probability level (p-value) of the equivalence test is equal to the maximum of the probability levels of the two one-sided tests. These tests are conducted using the standard formulas for the one-sample proportions test.
The exact p-values for each of these situations may be computed as follows:

1. \(P\left(\left| \bar{p} - P_0 \right| \geq p - P_0 \right) \), where \(\bar{p} \) represents all possible values of \(p \). This probability is calculated using the binomial distribution.

2. \(\sum_{r=0}^{X} b(r; n, p) \)

3. \(\sum_{r=X}^{n} b(r; n, p) \)

The simple large-sample z-test is based on the test statistic

\[
z = \frac{p - P_0}{\sqrt{\frac{P_0(1 - P_0)}{n}}}
\]

Two approximations to the exact p-values are also available. One uses P_0 and the other uses p in the calculation of the standard error. The first approximation uses P_0 in the calculation of the standard error:

\[
z_c = \frac{X + 0.5 - nP_0}{\sqrt{nP_0(1 - P_0)}}
\]

if $X < nP_0$, or

\[
z_c = \frac{X - 0.5 - nP_0}{\sqrt{nP_0(1 - P_0)}}
\]

if $X > nP_0$.

The second approximation uses p in the calculation of the standard error:

\[
z_c = \frac{X + 0.5 - np}{\sqrt{np(1 - p)}}
\]

if $X < np$, or

\[
z_c = \frac{X - 0.5 - np}{\sqrt{np(1 - p)}}
\]

if $X > np$.

These z-values are used to calculate probabilities using the standard normal probability distribution.

Data Structure

The procedure accepts data entered as summary counts (number of “successes” (X) and sample size (n)), but can also tabulate data from columns in the database. A separate report is generated for each outcome variable entered.
Example 1 – Equivalence Test of One Proportion using Summary Data

This section presents an example of how to run an equivalence test of summary data in which \(n \) is 100, \(X \) is 55, the standard proportion, \(S \), is 0.50, and the equivalence margin, \(M \), is set to 0.10.

Setup

To run this example, complete the following steps:

1. **Specify the One Proportion – Equivalence Tests procedure options**
 - Find and open the One Proportion – Equivalence Tests procedure using the menus or the Procedure Navigator.
 - The settings for this example are listed below and are stored in the Example 1 settings template. To load this template, click Open Example Template in the Help Center or File menu.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Data Input</td>
<td>Enter the Number of “Successes” (X) and the Sample Size (n)</td>
</tr>
<tr>
<td>Number of "Successes" (X)</td>
<td>55</td>
</tr>
<tr>
<td>Sample Size (n)</td>
<td>100</td>
</tr>
<tr>
<td>Equivalence Bounds</td>
<td>Symmetric</td>
</tr>
<tr>
<td>Standard Proportion</td>
<td>0.50</td>
</tr>
<tr>
<td>Equivalence Margin</td>
<td>0.10</td>
</tr>
</tbody>
</table>

2. **Run the procedure**
 - Click the Run button to perform the calculations and generate the output.

Data Report

<table>
<thead>
<tr>
<th>Data Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of "Successes" (X)</td>
</tr>
<tr>
<td>55</td>
</tr>
</tbody>
</table>

This report documents the values that were entered.
Confidence Limits Section

<table>
<thead>
<tr>
<th>Number of "Successes" (X)</th>
<th>Sample Size (n)</th>
<th>Sample Proportion (p)</th>
<th>Z*</th>
<th>95% C. I. of P</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55</td>
<td>0.55</td>
<td>1.95996</td>
<td>0.4472802</td>
<td>0.6496798</td>
<td></td>
</tr>
</tbody>
</table>

Simple Z Confidence Interval of P

<table>
<thead>
<tr>
<th>Number of "Successes" (X)</th>
<th>Sample Size (n)</th>
<th>Sample Proportion (p)</th>
<th>Z*</th>
<th>95% C. I. of P</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55</td>
<td>0.55</td>
<td>1.95996</td>
<td>0.452493</td>
<td>0.647507</td>
<td></td>
</tr>
</tbody>
</table>

Simple Z Confidence Interval of P with Continuity Correction

<table>
<thead>
<tr>
<th>Number of "Successes" (X)</th>
<th>Sample Size (n)</th>
<th>Sample Proportion (p)</th>
<th>Z*</th>
<th>95% C. I. of P</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55</td>
<td>0.55</td>
<td>1.95996</td>
<td>0.447493</td>
<td>0.6525069</td>
<td></td>
</tr>
</tbody>
</table>

Wilson Score Confidence Interval of P

<table>
<thead>
<tr>
<th>Number of "Successes" (X)</th>
<th>Sample Size (n)</th>
<th>Sample Proportion (p)</th>
<th>Z*</th>
<th>95% C. I. of P</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55</td>
<td>0.55</td>
<td>1.95996</td>
<td>0.452446</td>
<td>0.6438546</td>
<td></td>
</tr>
</tbody>
</table>

The Wilson score interval is the interval recommended in Newcombe (1998). The limits are based on the formulas that were presented earlier.

Hypothesis Test Section

Exact Test for Equivalence using TOST (Two One-Sided Tests)

<table>
<thead>
<tr>
<th>Test</th>
<th>Alternative Hypothesis</th>
<th>Sample Proportion</th>
<th>Z-Statistic</th>
<th>Prob Level</th>
<th>Reject H0 at α = 0.05?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Boundary</td>
<td>P > 0.4</td>
<td>0.55</td>
<td>2.9598</td>
<td>0.00154</td>
<td>Yes</td>
</tr>
<tr>
<td>Upper Boundary</td>
<td>P < 0.6</td>
<td>0.55</td>
<td>-0.91860</td>
<td>0.17916</td>
<td>No</td>
</tr>
<tr>
<td>Equivalence</td>
<td>0.4 < P < 0.6</td>
<td>0.55</td>
<td>-1.02060</td>
<td>0.15372</td>
<td>No</td>
</tr>
</tbody>
</table>

Simple Z-Test for Equivalence using TOST (Two One-Sided Tests)

<table>
<thead>
<tr>
<th>Test</th>
<th>Alternative Hypothesis</th>
<th>Sample Proportion</th>
<th>Z-Statistic</th>
<th>Prob Level</th>
<th>Reject H0 at α = 0.05?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Boundary</td>
<td>P > 0.4</td>
<td>0.55</td>
<td>3.06190</td>
<td>0.00110</td>
<td>Yes</td>
</tr>
<tr>
<td>Upper Boundary</td>
<td>P < 0.6</td>
<td>0.55</td>
<td>-1.02060</td>
<td>0.15372</td>
<td>No</td>
</tr>
<tr>
<td>Equivalence</td>
<td>0.4 < P < 0.6</td>
<td>0.55</td>
<td>-0.91860</td>
<td>0.17916</td>
<td>No</td>
</tr>
</tbody>
</table>

Z Approximation Test using P0 for Equivalence using TOST (Two One-Sided Tests)

<table>
<thead>
<tr>
<th>Test</th>
<th>Alternative Hypothesis</th>
<th>Sample Proportion</th>
<th>Z-Statistic</th>
<th>Prob Level</th>
<th>Reject H0 at α = 0.05?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Boundary</td>
<td>P > 0.4</td>
<td>0.55</td>
<td>2.9598</td>
<td>0.00154</td>
<td>Yes</td>
</tr>
<tr>
<td>Upper Boundary</td>
<td>P < 0.6</td>
<td>0.55</td>
<td>-0.91860</td>
<td>0.17916</td>
<td>No</td>
</tr>
<tr>
<td>Equivalence</td>
<td>0.4 < P < 0.6</td>
<td>0.55</td>
<td>-1.02060</td>
<td>0.15372</td>
<td>No</td>
</tr>
</tbody>
</table>
One Proportion - Equivalence Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Alternative Hypothesis</th>
<th>Sample Proportion</th>
<th>Z-Statistic</th>
<th>Prob Level</th>
<th>Reject H0 at α = 0.05?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Boundary</td>
<td>P > 0.4</td>
<td>0.55</td>
<td>2.91460</td>
<td>0.00178</td>
<td>Yes</td>
</tr>
<tr>
<td>Upper Boundary</td>
<td>P < 0.6</td>
<td>0.55</td>
<td>-0.90450</td>
<td>0.18286</td>
<td>No</td>
</tr>
<tr>
<td>Equivalence</td>
<td>0.4 < P < 0.6</td>
<td>0.55</td>
<td>-0.90450</td>
<td>0.18286</td>
<td>No</td>
</tr>
</tbody>
</table>

The formulas for these tests were shown earlier. The test fail to conclude equivalence.
Example 2 – Equivalence Test of One Proportion using Raw Data

This section presents an example of how to run an analysis of raw data that may have been used to generate the summary data in example 1. The data for this example are found in the Prop1 dataset.

Setup

To run this example, complete the following steps:

1. Open the Prop1 example dataset
 - From the File menu of the NCSS Data window, select Open Example Data.
 - Select Prop1 and click OK.

2. Specify the One Proportion – Equivalence Tests procedure options
 - Find and open the One Proportion – Equivalence Tests procedure using the menus or the Procedure Navigator.
 - The settings for this example are listed below and are stored in the Example 2 settings template. To load this template, click Open Example Template in the Help Center or File menu.

Option	**Value**
 Data Tab
 Type of Data Input | Tabulate "Successes" from a Categorical Outcome Variable in the Database
 Outcome Variable(s) | Response
 "Success" Value | 1
 Equivalence Bounds | Symmetric
 Standard Proportion | 0.50
 Equivalence Margin | 0.10

 Reports Tab
 Exact (Binomial) | Checked
 Simple Z | Checked
 Simple Z with Continuity Correction | Checked
 Wilson Score | Checked
 Exact (Binomial) Test | Checked
 Simple Z-Test | Checked
 Z Approximation Test using P0 | Checked
 Z Approximation Test using p | Checked

3. Run the procedure
 - Click the Run button to perform the calculations and generate the output.
The results are exactly the same as they were in Example 1.