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Chapter 340 

Principal Components Regression 

Introduction  
Principal Components Regression is a technique for analyzing multiple regression data that suffer from 
multicollinearity. When multicollinearity occurs, least squares estimates are unbiased, but their variances 
are large so they may be far from the true value. By adding a degree of bias to the regression estimates, 
principal components regression reduces the standard errors. It is hoped that the net effect will be to give 
more reliable estimates. Another biased regression technique, ridge regression, is also available in NCSS. 
Ridge regression is the more popular of the two methods. 

Multicollinearity 
Multicollinearity is discussed both in the Multiple Regression chapter and in the Ridge Regression chapter, 
so we will not repeat the discussion here. However, it is important to understand the impact of 
multicollinearity so that you can decide if some evasive action (like pc regression) would be beneficial. 

Principal Components Regression Models 
Following the usual notation, suppose our regression equation may be written in matrix form as 

𝐘𝐘 = 𝐗𝐗𝐁𝐁 + 𝐞𝐞 

where Y is the dependent variable, X represents the independent variables, B is the regression coefficients 
to be estimated, and e represents the errors or residuals.  

Standardization 
The first step is to standardize the variables (both dependent and independent) by subtracting their means 
and dividing by their standard deviations. This causes a challenge in notation since we must somehow 
indicate whether the variables in a particular formula are standardized or not. To keep the presentation 
simple, we will make the following general statement and then forget about standardization and its 
confusing notation.  

As far as standardization is concerned, all calculations are based on standardized variables. When the final 
regression coefficients are displayed, they are adjusted back to their original scale. 
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PC Regression Basics 
In ordinary least squares, the regression coefficients are estimated using the formula 

𝐁𝐁� = (𝐗𝐗′𝐗𝐗)−𝟏𝟏𝐗𝐗′𝐘𝐘 

Note that since the variables are standardized, X’X = R, where R is the correlation matrix of independent 
variables.  

To perform principal components (PC) regression, we transform the independent variables to their principal 
components. Mathematically, we write 

𝐗𝐗′𝐗𝐗 = 𝐏𝐏𝐏𝐏𝐏𝐏′ = 𝐙𝐙′𝐙𝐙 

where D is a diagonal matrix of the eigenvalues of X’X, P is the eigenvector matrix of X’X, and Z is a data 
matrix (similar in structure to X) made up of the principal components. P is orthogonal so that P’P = I.  

We have created new variables Z as weighted averages of the original variables X. This is nothing new to us 
since we are used to using transformations such as the logarithm and the square root on our data values 
prior to performing the regression calculations. Since these new variables are principal components, their 
correlations with each other are all zero. If we begin with variables X1, X2, and X3, we will end up with Z1, Z2, 
and Z3. 

Severe multicollinearity will be detected as very small eigenvalues. To rid the data of the multicollinearity, 
we omit the components (the z’s) associated with small eigenvalues. Usually, only one or two relatively small 
eigenvalues will be obtained. For example, if only one small eigenvalue were detected on a problem with 
three independent variables, we would omit Z3 (the third principal component). 

When we regress Y on Z1 and Z2, multicollinearity is no longer a problem. We can then transform our 
results back to the X scale to obtain estimates of B. These estimates will be biased, but we hope that the size 
of this bias is more than compensated for by the decrease in variance. That is, we hope that the mean 
squared error of these estimates is less than that for least squares. 

Mathematically, the estimation formula becomes 

𝐀𝐀� = (𝐙𝐙′𝐙𝐙)−𝟏𝟏𝐙𝐙′𝐘𝐘 = 𝐏𝐏−𝟏𝟏𝐙𝐙′𝐘𝐘 

because of the special nature of principal components. Notice that this is ordinary least squares regression 
applied to a different set of independent variables.  

The two sets of regression coefficients, A and B, are related using the formulas 

𝐀𝐀 = 𝐏𝐏′𝐁𝐁 

and 

𝐁𝐁 = 𝐏𝐏𝐀𝐀 
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Omitting a principal component may be accomplished by setting the corresponding element of A equal to 
zero. Hence, the principal components regression may be outlined as follows: 

1.  Complete a principal components analysis of the X matrix and save the principal components in Z. 

2.  Fit the regression of Y on Z obtaining least squares estimates of A. 

3.  Set the last element of A equal to zero. 

4.  Transform back to the original coefficients using B = PA. 

Alternative Interpretation of PC Regression 
It can be shown that omitting a principal component amounts to setting a linear constraint on the 
regression coefficients. That is, in the case of three independent variables, we add the constraint 

𝑝𝑝13𝑏𝑏1 + 𝑝𝑝23𝑏𝑏2 + 𝑝𝑝33𝑏𝑏3 = 0 

Note that this is a constraint on the coefficients, not a constraint on the dependent variable. Essentially, we 
have avoided the multicollinearity problem by avoiding the region of the solution space in which it occurs. 

How Many PC’s Should Be Omitted 
Unlike the selection of k in ridge regression, the selection of the number of PC’s to omit is relatively straight 
forward. We omit the PC’s corresponding to small eigenvalues. Since the size of the typical eigenvalue of a 
correlation matrix is one, we omit those that are much smaller than one. Usually, the choice will be obvious. 

Assumptions 
The assumptions are the same as those used in regular multiple regression: linearity, constant variance (no 
outliers), and independence. Since PC regression does not provide confidence limits, normality need not be 
assumed. 
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Data Structure 
The data are entered as three or more variables. One variable represents the dependent variable. The other 
variables represent the independent variables. An example of data appropriate for this procedure is shown 
below. These data were concocted to have a high degree of multicollinearity as follows. We put a sequence 
of numbers in X1. Next, we put another series of numbers in X3 that were selected to be unrelated to X1. 
We created X2 by adding X1 and X3. We made a few changes in X2 so that there was not perfect correlation. 
Finally, we added all three variables and some random error to form Y. 

The data are contained in the RidgeReg dataset. We suggest that you open this database now so that you 
can follow along with the example. 

RidgeReg Dataset (Subset) 

X1 X2 X3 Y 
1 2 1 3 
2 4 2 9 
3 6 4 11 
4 7 3 15 
5 7 2 13 
6 7 1 13 
7 8 1 17 
8 10 2 21 
9 12 4 25 
10 13 3 27 

Missing Values 
Rows with missing values in the variables being analyzed are ignored. If data are present on a row for all but 
the dependent variable, a predicted value is generated for that row. 
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Example 1 – Principal Components Regression 
This section presents an example of how to run a principal components regression analysis of the data 
presented above. The data are in the RidgeReg dataset. In this example, we will run a regression of Y on X1 - 
X3.  

Setup 
To run this example, complete the following steps: 

1 Open the RidgeReg example dataset 
• From the File menu of the NCSS Data window, select Open Example Data. 
• Select RidgeReg and click OK. 

2 Specify the Principal Components Regression procedure options 
• Find and open the Principal Components Regression procedure using the menus or the Procedure 

Navigator.  
• The settings for this example are listed below and are stored in the Example 1 settings file. To load 

these settings to the procedure window, click Open Example Settings File in the Help Center or File 
menu. 

 
Variables Tab 


Y: Dependent Variable ..................................... Y 
X's: Independent Variables .............................. X1-X3 
 

Reports Tab 


All Reports ....................................................... Checked (All are selected here for documentation purposes.) 
 

Plots Tab 


All Plots ............................................................ Checked (Some of the aspects of the plot axes may be  
                  modified for improved viewing.) 
 

3 Run the procedure 
• Click the Run button to perform the calculations and generate the output. 
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Descriptive Statistics 
 
Descriptive Statistics 
──────────────────────────────────────────────────────────────────────── 
   Standard   
Variable Count Mean Deviation Minimum Maximum 
─────────────────────────────────────────────────────────────────────────────────────────── 

X1 18 9.5 5.338539 1 18 
X2 18 11.5 5.404247 2 19 
X3 18 2.166667 1.098127 1 4 
Y 18 23.11111 10.87841 3 39 
──────────────────────────────────────────────────────────────────────── 
 

For each variable, the descriptive statistics of the nonmissing values are computed. This report is particularly 
useful for checking that the correct variables were selected. 

Correlation Matrix 
 
Correlation Matrix 
──────────────────────────────────────────────────────────────────────── 
 X1 X2 X3 Y 
────────────────────────────────────────────────────────────────────── 

X1 1.000000 0.987841 -0.015051 0.985544 
X2 0.987841 1.000000 0.133813 0.995574 
X3 -0.015051 0.133813 1.000000 0.116539 
Y 0.985544 0.995574 0.116539 1.000000 
──────────────────────────────────────────────────────────────────────── 
 

Pearson correlations are given for all variables. Outliers, nonnormality, nonconstant variance, and 
nonlinearities can all impact these correlations. Note that these correlations may differ from pair-wise 
correlations generated by the correlation matrix program because of the different ways the two programs 
treat rows with missing values. The method used here is row-wise deletion. 

These correlation coefficients show which independent variables are highly correlated with the dependent 
variable and with each other. Independent variables that are highly correlated with one another may cause 
multicollinearity problems. 

Least Squares Multicollinearity 
 
Least Squares Multicollinearity 
──────────────────────────────────────────────────────────────────────── 
 Variance   
Independent Inflation R-Squared  
Variable Factor (VIF) vs. Other X's Tolerance 
───────────────────────────────────────────────────────────────────────── 

X1 477.2665 0.9979 0.0021 
X2 485.8581 0.9979 0.0021 
X3 11.7455 0.9149 0.0851 
───────────────────────────────────────────────────────────────────────── 

 
Since some VIF's are greater than 10, multicollinearity is a problem. 
──────────────────────────────────────────────────────────────────────── 
 

This report provides information useful in assessing the amount of multicollinearity in your data. 
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Variance Inflation Factor (VIF) 

The variance inflation factor (VIF) is a measure of multicollinearity. It is the reciprocal of 1-Rx
2, where Rx

2 is 
the R2 obtained when this variable is regressed on the remaining independent variables. A VIF of 10 or more 
for large data sets indicates a multicollinearity problem since the Rx

2 with the remaining X’s is 90 percent. For 
small data sets, even VIF’s of 5 or more can signify multicollinearity.  

𝑉𝑉𝑉𝑉𝐹𝐹𝑗𝑗 =
1

1 − 𝑅𝑅𝑗𝑗2
 

R-Squared vs. Other X’s 

Rx
2 is the R-squared obtained when this variable is regressed on the remaining independent variables. A 

high Rx
2 indicates a lot of overlap in explaining the variation among the remaining independent variables. 

Tolerance 

Tolerance is just 1- Rx
2, the denominator of the variance inflation factor. 

Eigenvalues of Correlations  
 
Eigenvalues of Correlations 
──────────────────────────────────────────────────────────────────────── 
  Percent  
  ─────────────────── Condition 
Number Eigenvalue Incremental Cumulative Number 
───────────────────────────────────────────────────────────────────────────────────── 

1 1.994969 66.50 66.50 1.00 
2 1.004003 33.47 99.97 1.99 
3 0.001027 0.03 100.00 1941.85 
───────────────────────────────────────────────────────────────────────────────────── 

 
Some Condition Numbers greater than 1000. Multicollinearity is a SEVERE problem. 
──────────────────────────────────────────────────────────────────────── 
 

This section gives an eigenvalue analysis of the independent variables after they have been centered and 
scaled. Notice that in this example, the third eigenvalue is very small. 

Eigenvalue 

The eigenvalues of the correlation matrix. The sum of the eigenvalues is equal to the number of 
independent variables. Eigenvalues near zero indicate a multicollinearity problem in your data. 

Incremental Percent  

Incremental percent is the percent this eigenvalue is of the total. In an ideal situation, these percentages 
would be equal. Percents near zero indicate a multicollinearity problem in your data. 

Cumulative Percent 

This is the running total of the Incremental Percent. 
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Condition Number 

The condition number is the largest eigenvalue divided by each corresponding eigenvalue. Since the 
eigenvalues are really variances, the condition number is a ratio of variances. Condition numbers greater 
than 1000 indicate a severe multicollinearity problem while condition numbers between 100 and 1000 
indicate a mild multicollinearity problem. 

Eigenvectors of Correlations  
 
Eigenvectors of Correlations 
──────────────────────────────────────────────────────────────────────── 
Number Eigenvalue X1 X2 X3 
─────────────────────────────────────────────────────────────────────────────── 

1 1.994969 0.701391 0.707741 0.084573 
2 1.004003 -0.134162 0.014553 0.990853 
3 0.001027 0.700036 -0.706322 0.105159 
──────────────────────────────────────────────────────────────────────── 
 

This report displays the eigenvectors associated with each eigenvalue. The notion behind eigenvalue 
analysis is that the axes are rotated from those defined by the variables to a new set defined by the 
variances of the variables. Rotation is accomplished by taking weighted averages of the standardized 
original variables. The first new variable is constructed to account for the largest amount of variance 
possible from a single axis. 

Number 

The number of the eigenvalue. 

Eigenvalue 

The eigenvalues of the correlation matrix. The sum of the eigenvalues is equal to the number of 
independent variables. Eigenvalues near zero indicate multicollinearity in your data. The eigenvalues 
represent the spread (variance) in the direction defined by this new axis. Hence, small eigenvalues indicate 
directions in which there is no spread. Since regression analysis seeks to find trends across values, when 
there is not a spread, the trends cannot be computed accurately. 

Table Values 

The table values give the eigenvectors. The eigenvectors give the weights that are used to create the new 
axis. By studying the weights, you can gain an understanding of what is happening in the data. 

In the example above, we can see that the first factor (new variable associated with the first eigenvalue) is 
constructed by adding X1 and X2. Note that the weights are almost equal. X3 has a small weight, indicating 
that it does not play a role in this factor. 

Factor 2 seems to be completely created from X3. X1 and X2 play only a small role in its construction. 

Factor 3 seems to be the difference between X1 and X2. Again, X3 plays only a small role. Hence, the 
interpretation of these eigenvectors leads to the following statements: 

1. Most of the variation in X1, X2, and X3 can be accounted for by considering only two variables: Z = 
X1+X2 and X3. 

2. The third dimension, calculated as X1-X2, is almost negligible and might be ignored. 
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Beta Trace Plot 
 
Beta Trace Plot 
───────────────────────────────────────────────────────────────────────── 

 
 

This plot shows the standardized regression coefficients (often referred to as the betas) on the vertical axis 
and the number of principal components (PC’s) included along the horizontal axis. Thus, the set on the right 
is the least squares set. 

By studying this plot, you can determine what omitting a certain number of PC’s has done to the estimated 
regression coefficients.  
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Variance Inflation Factor Plot 
 
Variance Inflation Factor Plot 
───────────────────────────────────────────────────────────────────────── 

 
 

This is a plot that shows the effect of the omitted PC’s on the variance inflation factors. Since the major goal 
of PC regression is to remove the impact of multicollinearity, it is important to know at what point 
multicollinearity has been dealt with. This plot shows this.  

Since the rule-of-thumb is that multicollinearity is not a problem once all VIFs are less than 10, we inspect 
the graph for this point. In this example, it appears that all VIFs are less than 10 if only two of the three PC’s 
are included. 
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Standardized Principal Components Regression Coefficients 
 
Standardized Principal Components Regression Coefficients 
──────────────────────────────────────────────────────────────────────── 
# of PC's X1 X2 X3 
───────────────────────────────────────────────────── 

1 0.4942 0.4987 0.0596 
2 0.4945 0.4987 0.0574 
3 -0.2034 1.2029 -0.0475 
──────────────────────────────────────────────────────────────────────── 
 

This report gives the values that are plotted on the beta trace. 

Variance Inflation Factors 
 
Variance Inflation Factors 
──────────────────────────────────────────────────────────────────────── 
# of PC's X1 X2 X3 
────────────────────────────────────────────────────────── 

1 0.2466 0.2511 0.0036 
2 0.2645 0.2513 0.9815 
3 477.2665 485.8581 11.7455 
──────────────────────────────────────────────────────────────────────── 
 

This report gives the values that are plotted on the variance inflation factor plot. Note how easy it is to 
determine when all three VIFs are less than 10. 

Principal Components Analysis 
 
Principal Components Analysis 
──────────────────────────────────────────────────────────────────────── 
    Variance Inflation Factor (VIF) 
    ────────────────────── 
# of PC's R-Squared SSE B'B Average Maximum 
───────────────────────────────────────────────────────────────────────────────────────────────── 

1 0.9905 1.1677 0.4965 0.1671 0.2511 
2 0.9905 1.1674 0.4965 0.4991 0.9815 
3 0.9915 1.1028 1.4905 324.9567 485.8581 
──────────────────────────────────────────────────────────────────────── 
 

This report provides a quick summary of the various statistics that might go into the choice of k. 

# of PC’s 

This is the number of principal components included in the regression reported on this line. 

R-Squared 

This is the value of R-squared. Since the least squares solution maximizes R-squared, the largest value of R-
squared occurs at bottom of the report (when all PC’s are included). 

Sigma 

This is the square root of the mean squared error. Least squares minimizes this value, so we want to select 
the number of PC’s that does not stray very much from the least squares value. 
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B’B 

This is the sum of the squared standardized regression coefficients. PC regression assumes that this value is 
too large and so the method tries to reduce this. We want to find the number of PC’s at which this value has 
stabilized. 

Average Variance Inflation Factor (VIF) 

This is the average of the variance inflation factors.  

Maximum Variance Inflation Factor (VIF) 

This is the maximum variance inflation factor. Since we are looking for the number of PC’s which results in 
all VIFs being less than 10, this value is very helpful. 

Principal Components vs. Least Squares Regression Comparison 
 
Principal Components vs. Least Squares Regression Comparison with 1 Component Omitted 
──────────────────────────────────────────────────────────────────────── 
 Regular Coefficients Standardized Coefficients Standard Error 
 ─────────────────── ────────────────── ────────────────── 
Independent Principal Least Principal Least Principal Least 
Variable Components Squares Components Squares Components Squares 
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Intercept 0.763326 0.2230599     
X1 1.007698 -0.4144863 0.4945 -0.2034 0.0272776 1.094502 
X2 1.003778 2.421286 0.4987 1.2029 0.02626337 1.090883 
X3 0.568248 -0.4703622 0.0574 -0.0475 0.2554352 0.8347205 
 
R-Squared 0.9905 0.9915     
Sigma 1.1674 1.1028     
──────────────────────────────────────────────────────────────────────── 
 

This report provides a detailed comparison between the PC regression solution and the ordinary least 
squares solution to the estimation of the regression coefficients. 

Independent Variable 

The names of the independent variables are listed here. The intercept is the value of b0. 

Regular Principal Components and Least Squares Coefficients 

These are the estimated values of the regression coefficients b0, b1, ..., bp. The first column gives the values 
for PC regression and the second column gives the values for regular least squares regression. 

The value indicates how much change in Y occurs for a one-unit change in X when the remaining X’s are held 
constant. These coefficients are also called partial-regression coefficients since the effect of the other X’s is 
removed. 
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Standardized Principal Components and Least Squares Coefficients 

These are the estimated values of the standardized regression coefficients. The first column gives the values 
for PC regression and the second column gives the values for regular least squares regression. 

Standardized regression coefficients are the coefficients that would be obtained if you standardized each 
independent and dependent variable. Here standardizing is defined as subtracting the mean and dividing by 
the standard deviation of a variable. A regression analysis on these standardized variables would yield these 
standardized coefficients.  

When there are vastly different units involved for the variables, this is a way of making comparisons 
between variables. The formula for the standardized regression coefficient is: 

𝑏𝑏𝑗𝑗,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑏𝑏𝑗𝑗 �
𝑠𝑠𝑥𝑥𝑗𝑗
𝑠𝑠𝑦𝑦
� 

where 𝑠𝑠𝑦𝑦 and 𝑠𝑠𝑥𝑥𝑗𝑗  are the standard deviations for the dependent variable and the corresponding jth 
independent variable, respectively. 

Principal Components and Least Squares Standard Error 

These are the estimated standard errors (precision) of the regression coefficients. The first column gives the 
values for PC regression and the second column gives the values for regular least squares regression. 

The standard error of the regression coefficient, 𝑠𝑠𝑏𝑏𝑗𝑗 , is the standard deviation of the estimate. Since one of 
the objects of PC regression is to reduce this (make the estimates more precise), it is of interest to see how 
much reduction has taken place. 

R-Squared 

R-squared is the coefficient of determination. It represents the percent of variation in the dependent 
variable explained by the independent variables in the model. The R-squared values of both the PC and 
regular regressions are shown. 

Sigma 

This is the square root of the mean squared error. It provides a measure of the standard deviation of the 
residuals from the regression model. 

 It represents the percent of variation in the dependent variable explained by the independent variables in 
the model. The R-squared values of both the PC and regular regressions are shown. 
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Principal Components Regression Coefficients 
 
Principal Components Regression Coefficients 
──────────────────────────────────────────────────────────────────────── 
Principal Regression Individual  
Component Coefficient R-Squared Eigenvalue 
─────────────────────────────────────────────────────────────────────── 

PC1 7.6653 0.9905 1.994969 
PC2 -0.0245 0.0000 1.004003 
PC3 -10.8457 0.0010 0.001027 
──────────────────────────────────────────────────────────────────────── 
 

This report provides the details of the regression based on the principal components (the Z’s). 

Principal Component 

This is the number of the principal component being reported about on this line. The order here 
corresponds to the order of the eigenvalues. Thus, the first is associated with the largest eigenvalue and the 
last is associated with the smallest. 

Regression Coefficient 

These are the estimated values of the regression coefficients a1, ..., ap. The value indicates how much change 
in Y occurs for a one-unit change in z when the remaining z’s are held constant.  

Individual R-Squared 

This is the amount contributed to R-squared by this component.  

Eigenvalue 

This is the eigenvalue of this component.  

Principal Components Regression Coefficients with Component(s) Omitted  
 
Principal Components Regression Coefficients with 1 Component Omitted 
──────────────────────────────────────────────────────────────────────── 
   Standardized  
Independent Regression Standard Regression  
Variable Coefficient Error Coefficient VIF 
──────────────────────────────────────────────────────────────────────────────────────── 

Intercept 0.763326    
X1 1.007698 0.0272776 0.4945 0.2645 
X2 1.003778 0.02626337 0.4987 0.2513 
X3 0.568248 0.2554352 0.0574 0.9815 
──────────────────────────────────────────────────────────────────────────────────────── 

 
Model 
──────────────────────────────────────────────────────────────── 

0.763326 + 1.007698*X1 + 1.003778*X2 + 0.568248*X3 
──────────────────────────────────────────────────────────────── 

──────────────────────────────────────────────────────────────────────── 
 

This report provides the details of the PC regression solution. 

Independent Variable 

The names of the independent variables are listed here. The intercept is the value of b0. 
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Regression Coefficient 

These are the estimated values of the regression coefficients b0, b1, ..., bp. The value indicates how much 
change in Y occurs for a one-unit change in x when the remaining X’s are held constant. These coefficients 
are also called partial-regression coefficients since the effect of the other X’s is removed. 

Standard Error 

These are the estimated standard errors (precision) of the PC regression coefficients. The standard error of 
the regression coefficient, 𝑠𝑠𝑏𝑏𝑗𝑗 , is the standard deviation of the estimate. In regular regression, we divide the 
coefficient by the standard error to obtain a t statistic. However, this is not possible here because of the bias 
in the estimates. 

Standardized Regression Coefficient 

These are the estimated values of the standardized regression coefficients. Standardized regression 
coefficients are the coefficients that would be obtained if you standardized each independent and 
dependent variable. Here standardizing is defined as subtracting the mean and dividing by the standard 
deviation of a variable. A regression analysis on these standardized variables would yield these standardized 
coefficients.  

When there are vastly different units involved for the variables, this is a way of making comparisons 
between variables. The formula for the standardized regression coefficient is: 

𝑏𝑏𝑗𝑗,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑏𝑏𝑗𝑗 �
𝑠𝑠𝑦𝑦
𝑠𝑠𝑥𝑥𝑗𝑗
� 

where sy and 𝑠𝑠𝑥𝑥𝑗𝑗  are the standard deviations for the dependent variable and the corresponding jth 
independent variable. 

VIF 

These are the values of the variance inflation factors associated with the variables. When multicollinearity 
has been conquered, these values will all be less than 10. Details of what VIF were given earlier. 
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Analysis of Variance 
 
Analysis of Variance with 1 Component Omitted 
──────────────────────────────────────────────────────────────────────── 
  Sum of Mean   
Source DF Squares Square F-Ratio P-Value 
──────────────────────────────────────────────────────────────────────────────────────────── 

Intercept 1 9614.223 9614.223   
Model 3 1992.698 664.2327 487.3907 0.000000 
Error 14 19.07968 1.362834   
Total(Adjusted) 17 2011.778 118.3399   
──────────────────────────────────────────────────────────────────────────────────────────── 

 
Additional Model Information 
─────────────────────────────────────────────────── 

Mean of Dependent Variable 23.11111 
Root Mean Square Error 1.167405 
R-Squared 0.9905 
Coefficient of Variation 0.05051271 
─────────────────────────────────────────────────── 

──────────────────────────────────────────────────────────────────────── 
 

An analysis of variance (ANOVA) table summarizes the information related to the sources of variation in the 
data.  

Source 

This represents the partitions of the variation in y. There are four sources of variation listed: intercept, 
model, error, and total (adjusted for the mean).  

DF 

The degrees of freedom are the number of dimensions associated with this term. Note that each 
observation can be interpreted as a dimension in n-dimensional space. The degrees of freedom for the 
intercept, model, error, and adjusted total are 1, p, n-p-1, and n-1, respectively. 

Sum of Squares 

These are the sums of squares associated with the corresponding sources of variation. Note that these 
values are in terms of the dependent variable, y. The formulas for each are:  

Mean Square 

The mean square is the sum of squares divided by the degrees of freedom. This mean square is an 
estimated variance. For example, the mean square error is the estimated variance of the residuals (the 
residuals are sometimes called the errors). 

F-Ratio 

This is the F statistic for testing the null hypothesis that all βj = 0. This F-statistic has p degrees of freedom for 
the numerator variance and n-p-1 degrees of freedom for the denominator variance. 

Since PC regression produces biased estimates, this F-Ratio is not a valid test. It serves as an index, but it 
would not stand up under close scrutiny.  
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P-Value 

This is the p-value for the above F test. The p-value is the probability that the test statistic will take on a 
value at least as extreme as the observed value, assuming that the null hypothesis is true. If the p-value is 
less than α, say 0.05, the null hypothesis is rejected. If the p-value is greater than α, then the null hypothesis 
is accepted.  

Mean of Dependent Variable 

This is the arithmetic mean of the dependent variable.  

Root Mean Square Error 

This is the square root of the mean square error. It is an estimate of σ, the standard deviation of the ei’s. 

R-Squared 

This is the coefficient of determination. It is defined in full in the Multiple Regression chapter. 

Coefficient of Variation 

The coefficient of variation is a relative measure of dispersion, computed by dividing root mean square 
error by the mean of the dependent variable. By itself, it has little value, but it can be useful in comparative 
studies. 

𝐶𝐶𝑉𝑉 =
√𝑀𝑀𝑀𝑀𝑀𝑀
𝑦𝑦�
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Predicted Values and Residuals 
 
Predicted Values and Residuals with 1 Component Omitted 
──────────────────────────────────────────────────────────────────────── 
 Y  
 ──────────────  
Row Actual Predicted Residual 
──────────────────────────────────────────────────────── 

1 3 4.346828 -1.346828 
2 9 7.930331 1.069669 
3 11 12.08208 -1.082081 
4 15 13.52531 1.47469 
5 13 13.96476 -0.9647598 
6 13 14.40421 -1.40421 
7 17 16.41569 0.5843138 
8 21 19.99919 1.000811 
9 25 24.15094 0.849061 
10 27 25.59417 1.405833 
11 25 26.03362 -1.033618 
12 27 26.47307 0.5269322 
13 29 28.48454 0.5154559 
14 33 32.06805 0.9319535 
15 35 36.2198 -1.219797 
16 37 37.66302 -0.6630252 
17 37 38.10247 -1.102475 
18 39 38.54193 0.4580744 
──────────────────────────────────────────────────────────────────────── 
 

This section reports the predicted values and the sample residuals, or ei’s. When you want to generate 
predicted values for individuals not in your sample, add their values to the bottom of your database, leaving 
the dependent variable blank. Their predicted values will be shown on this report. 

Actual Y 

This is the actual value of Y for the ith row. 

Predicted Y 

The predicted value of Y for the ith row. It is predicted using the levels of the X’s for this row. 

Residual 

This is the estimated value of ei. This is equal to the Actual minus the Predicted. 
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Histogram of Residuals 
The purpose of the histogram and density trace of the residuals is to display the distribution of the 
residuals. 

 
Distributional Plots of Residuals 
───────────────────────────────────────────────────────────────────────── 

 
 

The odd shape of this histogram occurs because of the way in which these particular data were 
manufactured. 

Probability Plot of Residuals 
 
Distributional Plots of Residuals 
───────────────────────────────────────────────────────────────────────── 
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Residuals vs. Yhat Plot 
This plot should always be examined. The preferred pattern to look for is a point cloud or a horizontal band. 
A wedge or bowtie pattern is an indicator of nonconstant variance, a violation of a critical regression 
assumption. A sloping or curved band signifies inadequate specification of the model. A sloping band with 
increasing or decreasing variability suggests nonconstant variance and inadequate specification of the 
model. 

 
Residuals vs. Yhat Plot 
───────────────────────────────────────────────────────────────────────── 
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Residuals vs. X’s Plots 
This is a scatter plot of the residuals versus each independent variable. Again, the preferred pattern is a 
rectangular shape or point cloud. Any other nonrandom pattern may require a redefining of the regression 
model. 

 
Residuals vs. X's Plots 
───────────────────────────────────────────────────────────────────────── 
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