NCSS Statistical Software NCSS.com

Chapter 483

Quadratic Programming

Introduction

Quadratic programming maximizes (or minimizes) a quadratic objective function subject to one or more constraints. The technique finds broad use in operations research and is occasionally of use in statistical work.

The mathematical representation of the quadratic programming (QP) problem is

Maximize

$$z = CX + \frac{1}{2}X'HX$$
 or $z = CX + X'DX$

subject to

$$AX \leq b, X \geq 0$$

where

$$X = (x_1, x_2, ..., x_n)'$$

$$\mathbf{C} = (c_1, c_2, ..., c_n)$$

$$\boldsymbol{b} = (b_1, b_2, \dots, b_m)'$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} h_{11} & \cdots & h_{1n} \\ \vdots & \ddots & \vdots \\ h_{n1} & \cdots & h_{nn} \end{bmatrix}$$

$$\mathbf{D} = \begin{bmatrix} d_{11} & \cdots & d_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \cdots & d_{nn} \end{bmatrix}$$

The symmetric matrix \mathbf{H} is often called the Hessian. The upper-triangular matrix \mathbf{D} is constructed from \mathbf{H} using

$$\mathbf{D} = \begin{pmatrix} 2h_{11} & \cdots & h_{1i} & \cdots & h_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 2h_{ii} & \cdots & h_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 2h_{nn} \end{pmatrix}$$

Quadratic Programming

The x_i 's are the decision variables (the unknowns), the first equation is called the objective function and the m inequalities (and equalities) are called *constraints*. The constraint bounds, the b_i 's, are often called *right-hand sides* (RHS).

NCSS solves a particular quadratic program using a primal active set method available in the *Extreme Optimization* mathematical subroutine package.

Example

We will solve the following problem using **NCSS**:

Minimize

$$z = x_1 - 2x_2 + 4x_3 + x_1^2 + 2x_2^2 + 3x_3^2 + x_1x_3$$

subject to

$$3x_1 + 4x_2 - 2x_3 \le 10$$

$$-3x_1 + 2x_2 + x_3 \ge 2$$

$$2x_1 + 3x_2 + 4x_3 = 5$$

$$0 \le x_1 \le 5$$

$$1 \le x_2 \le 5$$

$$0 \le x_3 \le 5$$

The solution (see Example 1 below) is $x_1 = 0.290$, $x_2 = 1.413$, and $x_3 = 0.045$, which results in z = 1.741.

Data Structure

This technique requires a special data format which will be discussed under the *Specifications* tab. Here is the way the above example would be entered. It is stored in the dataset QP.

QP Dataset

Туре	Logic	RHS	X1	X2	Х3	D1	D2	D3
0			1	-2	4	1	0	1
С	<	10	3	4	-2		2	0
С	>	2	-3	2	1			3
С	=	5	2	3	4			
L			0	1	0			
U			5	5	5			

Example 1 - Quadratic Programming

This section presents an example of how to run the data presented in the example given above. The data are contained in the QP database. Here is the specification of the problem.

Minimize

$$z = x_1 - 2x_2 + 4x_3 + x_1^2 + 2x_2^2 + 3x_3^2 + x_1x_3$$

subject to

$$3x_1 + 4x_2 - 2x_3 \le 10$$

$$-3x_1 + 2x_2 + x_3 \ge 2$$

$$2x_1 + 3x_2 + 4x_3 = 5$$

$$0 \le x_1 \le 5$$

$$1 \le x_2 \le 5$$

$$0 \le x_3 \le 5$$

Setup

To run this example, complete the following steps:

1 Open the QP example dataset

- From the File menu of the NCSS Data window, select **Open Example Data**.
- Select **QP** and click **OK**.

2 Specify the Quadratic Programming procedure options

- Find and open the **Quadratic Programming** procedure using the menus or the Procedure Navigator.
- The settings for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Type of Optimum	Minimum
Row Type Column	Туре
Variables Columns	X1-X3
Labels of Constraints Column	CLabel
Input Type of Quadratic Terms	Quadratic Coefficients
Quadratic Coefficients Columns	D1-D3
Logic Column	Logic
Constraint Bounds (RHS) Column	RHS

NCSS.com

3 Run the procedure

• Click the **Run** button to perform the calculations and generate the output.

Objective Function and Solution for Minimum

Objective Function and Solution for Minimum

Variable	Objective Function Coefficient	Value at Minimum	Lower Bound	Upper Bound
X1	1	0.2905	0	5
X2	-2	1.4133	1	5
X3	4	0.0448	0	5
Minimum of	Objective Function	1.7413		

Solution Status: The optimization model is optimal.

This report lists the linear portion of the objective function coefficients, the values of the variables at the minimum (that is, the solution), and the lower and upper bonds if specified. It also shows the value of the objective function at the solution as well as the status of the algorithm when it terminated.

Constraints

Constraints

Label, Logic	X1	X2	Х3	RHS
Con1, ≤	3	4	-2	10
Con2, ≥	-3	2	1	2
Con3, =	2	3	4	5

This report presents the coefficients of the constraints as they were input.

Values of Constraints at Solution for Minimum

Values of Constraints at Solution for Minimum

	1	RHS
Label, Logic	Original	at Solution
Con1, ≤	10	6.4348
Con2, ≥	2	2.0000
Con3, =	5	5.0000

This report presents the right-hand side of each constraint along with its value at the optimal values of the variables.

Hessian Matrix

Variable	X1	X2	Х3
X1	2	0	1
X2	0	4	0
X3	1	0	6

This report shows the Hessian matrix calculated from the D matrix that was input.

Quadratic Portion of the Objective Function

Variable	X1	X2	Х3
X1	1	0	1
X2		2	0
X3			3

This report shows the coefficients of the quadratic portion of the objective function presented in matrix format.