References

A

AIAG (Automotive Industry Action Group). 1995. Measurement Systems Analysis. This booklet was developed by Chrysler/Ford/GM Supplier Quality Requirements Task Force. It gives a detailed discussion of how to design and analyze an R&R study. The book may be obtained from ASQC or directly from AIAG by calling 801-358-3570.

Albert, A. and Harris, E. 1987. Multivariate Interpretation of Clinical Laboratory Data. Marcel Dekker, New York, New York. This book is devoted to a discussion of how to apply multinomial logistic regression to medical diagnosis. It contains the algorithm that is the basis of our multinomial logistic regression routine.

Altman, Douglas. 1991. Practical Statistics for Medical Research. Chapman & Hall. New York, NY. This book provides an introductory discussion of many statistical techniques that are used in medical research. It is the only book we found that discussed ROC curves.

B

Baker, Frank. 1992. *Item Response Theory*. Marcel Dekker. New York. This book contains a current overview of IRT. It goes through the details, providing both formulas and computer code. It is not light reading, but it will provide you with much of what you need if you are attempting to use this technique.

Baker, Frank. 1992. *Item Response Theory*. Marcel Dekker. New York. This book contains a current overview of IRT. It goes through the details, providing both formulas and computer code. It is not light reading, but it will provide you with much of what you need if you are attempting to use this technique.

Brush, Gary G. 1988. Volume 12: How to Choose the Proper Sample Size, American Society for Quality Control, 310 West Wisconsin Ave, Milwaukee, Wisconsin, 53203. This is a small workbook for quality control workers.

C

References

Chambers, J.M., Cleveland, W.S., Kleiner, B., and Tukey, P.A. 1983. Graphics Methods for Data Analysis. Duxbury Press, Boston, Mass. This wonderful little book is full of examples of ways to analyze data graphically. It gives complete (and readable) coverage to such topics as scatter plots, probability plots, and box plots. It is strongly recommended.

Cohen, Jacob. 1988. Statistical Power Analysis for the Behavioral Sciences, Lawrence Erlbaum Associates, Hillsdale, New Jersey. This is a very nice, clearly written book. There are MANY examples. It is the largest of the sample size books. It does not deal with clinical trials.

Cohen, Jacob. 1990. “Things I Have Learned So Far.” American Psychologist, December, 1990, pages 1304-1312. This is must reading for anyone still skeptical about the need for power analysis.
References

Conlon, M. and Thomas, R. 1993. “The Power Function for Fisher’s Exact Test.” *Applied Statistics*, Volume 42, No. 1, pages 258-260. This article was used to validate the power calculations of Fisher’s Exact Test in PASS. Unfortunately, we could not use the algorithm to improve the speed because the algorithm requires equal sample sizes.

Cureton, E.E. and D'Agostino, R.B. 1983. *Factor Analysis - An Applied Approach*. Lawrence Erlbaum Associates. Hillsdale, New Jersey. (This is a wonderful book for those who want to learn the details of what factor analysis does. It has both the theoretical formulas and simple worked examples to make following along very easy.)

D

Davies, Owen L. 1971. *The Design and Analysis of Industrial Experiments*. Hafner Publishing Company, New York. This was one of the first books on experimental design and analysis. It has many examples and is highly recommended.

Donner, Allan. 1984. “Approaches to Sample Size Estimation in the Design of Clinical Trials--A Review,” *Statistics in Medicine*, Volume 3, pages 199-214. This is a well done review of the clinical trial literature. Although it is becoming out of date, it is still a good place to start.

Dyke, G.V. and Patterson, H.D. 1952. “Analysis of factorial arrangements when the data are proportions.” *Biometrics*. Volume 8, pages 1-12. This is the source of the data used in the LLM tutorial.

Eckert, Joseph K. 1990. *Property Appraisal and Assessment Administration*. International Association of Assessing Officers. 1313 East 60th Street. Chicago, IL. 60637-2892. Phone: (312) 947-2044. This is a how-to manual published by the IAAO that describes how to apply many statistical procedures to real estate appraisal and tax assessment. We strongly recommend it to those using our *Assessment Model* procedure.

References

References

Greenacres, Michael J. 1993. Correspondence Analysis in Practice. Academic Press. San Diego, CA. This book provides a self-teaching course in correspondence analysis. It is the clearest exposition on the subject that I have ever seen. If you want to gain an understanding of CA, you must obtain this (paperback) book.

Haberman, S.J. 1972. “Loglinear Fit of Contingency Tables.” Applied Statistics. Volume 21, pages 218-225. This lists the fortran program that is used to create our LLM algorithm.

Hartigan, J. 1975. Clustering Algorithms. John Wiley. New York. (This is the “bible” of cluster algorithms. Hartigan developed the K-means algorithm used in NCSS.)

Hartigan, J. 1975. Clustering Algorithms. John Wiley. New York. (This is the “bible” of cluster algorithms. Hartigan developed the K-means algorithm used in NCSS.)
References

Hsieh, F.Y. 1989. “Sample Size Tables for Logistic Regression,” Statistics in Medicine, Volume 8, pages 795-802. This is the article that was the basis for the sample size calculations in logistic regression in PASS 6.0. It has been superceded by the 1998 article.
Hsieh, F.Y. and Lavori, P.W. 2000. “Sample-Size Calculations for the Cox Proportional Hazards Regression Model with Nonbinary Covariates,” Controlled Clinical Trials, Volume 21, pages 552-560. The sample size calculation for Cox regression in PASS are based on this article.
References

I

J

Jackson, J.E. 1991. *A User's Guide To Principal Components*. John Wiley & Sons. New York. This is a great book to learn about PCA from. It provides several examples and treats everything at a level that is easy to understand.

James, Mike. 1985. *Classification Algorithms*. John Wiley & Sons. New York. This is a great text on the application of discriminant analysis. It includes a simple, easy-to-understand, theoretical development as well as discussions of the application of discriminant analysis.

K

Kaufman, L. and Rousseeuw, P.J. 1990. *Finding Groups in Data*. John Wiley. New York. This book gives an excellent introduction to cluster analysis. It treats the forming of the distance matrix and several different types of cluster methods, including fuzzy. All this is done at an elementary level so that users at all levels can gain from it.

Kim, P.J., and Jennrich, R.I. 1973. Tables of the exact sampling distribution of the two sample Kolmogorov-Smirnov criterion D_{mn} ($m < n$), in *Selected Tables in Mathematical Statistics*, Volume 1, (edited by H. L. Harter and D.B. Owen), American Mathematical Society, Providence, Rhode Island.

Kruskal, J. 1964. “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.” *Psychometrika* 29, pages 1-27, 115-129. This article presents the algorithm on which the non-metric algorithm used in NCSS is based.

Kruskal, J. and Wish, M. 1978. *Multidimensional Scaling*. Sage Publications. Beverly Hills, CA. This is a well-written monograph by two of the early pioneers of MDS. We suggest it to all serious students of MDS.

Lachenbruch, P.A. 1975. *Discriminant Analysis*. Hafner Press. New York. This is an in-depth treatment of the subject. It covers a lot of territory, but has few examples.

Lachin, John M. 2000. *Biostatistical Methods*. John Wiley & Sons. New York. This is a graduate-level methods book that deals with statistical methods that are of interest to biostatisticians such as odds ratios, relative risks, regression analysis, case-control studies, and so on.

References

Lawson, John. 1987. Basic Industrial Experimental Design Strategies. Center for Statistical Research at Brigham Young University. Provo, Utah. 84602. This is a manuscript used by Dr. Lawson in courses and workshops that he provides to industrial engineers. It is the basis for many of our experimental design procedures.

Lipsey, Mark W. 1990. Design Sensitivity Statistical Power for Experimental Research, Sage Publications, 2111 West Hillcrest Drive, Newbury Park, CA. 91320. This is an excellent introduction to power analysis.

Makridakis, S. and Wheelwright, S.C. 1978. Iterative Forecasting. Holden-Day.: San Francisco, California. This is a very good book for the layman since it includes several detailed examples. It is written for a person with a minimum amount of mathematical background.

Mather, Paul. 1976. Computational Methods of Multivariate Analysis in Physical Geography. John Wiley & Sons. This is a great book for getting the details on several multivariate procedures. It was written for non-statisticians. It is especially useful in its presentation of cluster analysis. Unfortunately, it is out-of-print. You will have to look for it in a university library (it is worth the hunt).

References

Mosteller, F. and Tukey, J.W. 1977. *Data Analysis and Regression*. Addison-Wesley, Menlo Park, California. This book should be read by all serious users of regression analysis. Although the terminology is a little different, this book will give you a fresh look at the whole subject.

Motulsky, Harvey. 1995. *Intuitive Biostatistics*. Oxford University Press, New York, New York. This is a wonderful book for those who want to understand the basic concepts of statistical testing. The author presents a very readable coverage of the most popular biostatistics tests. If you have forgotten how to interpret the various statistical tests, get this book!

Myers, R.H. 1990. *Classical and Modern Regression with Applications*. PWS-Kent Publishing Company, Boston, Massachusetts. This is one of the bibles on the topic of regression analysis.

N

References

Orloci, L. & Kenkel, N. 1985. Introduction to Data Analysis. International Co-operative Publishing House. Fairland, Maryland. This book was written for ecologists. It contains samples and BASIC programs of many statistical procedures. It has one brief chapter on MDS, and it includes a non-metric MDS algorithm.
References

Ott, L. 1984. *An Introduction to Statistical Methods and Data Analysis, Second Edition*. Wadsworth. Belmont, Calif. This is a complete methods text. Regression analysis is the focus of five or six chapters. It stresses the interpretation of the statistics rather than the calculation, hence it provides a good companion to a statistical program like ours.

References

Pregibon, Daryl. 1981. “Logistic Regression Diagnostics.” *Annals of Statistics*, Volume 9, Pages 705-725. This article details the extensions of the usual regression diagnostics to the case of logistic regression. These results were extended to multiple-group logistic regression in Lesaffre and Albert (1989).

Prihoda, Tom. 1983. “Convenient Power Analysis For Complex Analysis of Variance Models.” *Poster Session of the American Statistical Association Joint Statistical Meetings*, August 15-18, 1983, Toronto, Canada. Tom is currently at the University of Texas Health Science Center. This article includes FORTRAN code for performing power analysis.

Ramsey, Philip H. 1978 “Power Differences Between Pairwise Multiple Comparisons,” *JASA*, vol. 73, no. 363, pages 479-485.

Rencher, Alvin C. 1998. *Multivariate Statistical Inference and Applications*. John Wiley. New York, New York. This book provides a comprehensive mixture of theoretical and applied results in multivariate analysis. My evaluation may be biased since Al Rencher took me fishing when I was his student.

References

Ryan, Thomas P. 1997. Modern Regression Methods. John Wiley & Sons. New York. This is a comprehensive treatment of regression analysis. The author often deals with practical issues that are left out of other texts.

S

Schuirmann, Donald. 1981. “On hypothesis testing to determine if the mean of a normal distribution is continued in a known interval,” Biometrics, Volume 37, pages 617.

References

Tabachnick, B. and Fidell, L. 1989. *Using Multivariate Statistics*. Harper Collins. 10 East 53d Street, NY, NY 10022. This is an extremely useful text on multivariate techniques. It presents computer printouts and discussion from several popular programs. It provides checklists for each procedure as well as sample written reports. I strongly encourage you to obtain this book!

Therneau, T.M. and Grambsch, P.M. 2000. *Modeling Survival Data*. Springer: New York, New York. A the time of the writing of the Cox regression procedure, this book provides a thorough, up-to-date discussion of this procedure as well as many extensions to it. Recommended, especially to those with at least a masters in statistics.

References

Torgerson, W.S. 1952. “Multidimensional scaling. I. Theory and method.” *Psychometrika* 17, 401-419. This is one of the first articles on MDS. There have been many advances, but this article presents many insights into the application of the technique. It describes the algorithm on which the metric solution used in this program is based.

Welch, B.L. 1938. “The significance of the difference between two means when the population variances are unequal.” *Biometrika*, 29, 350-362.

Welch, B.L. 1949. “Further Note on Mrs. Aspin’s Tables and on Certain Approximations to the Tabled Function,” *Biometrika*, 36, 293-296.

Wilson, E.B. 1927. “Probable Inference, the Law of Succession, and Statistical Inference,” Journal of the American Statistical Association, Volume 22, pages 209-212. This article discusses the ‘score’ method that has become popular when dealing with proportions.

Zou, GY. 2013. “Confidence interval estimation for the Bland-Altman limits of agreement with multiple observations per individual,” Statistical Methods in Medical Research, Volume 22, Number 6, pages 630-642.
