Chapter 308

Robust Regression

Introduction

Multiple regression analysis is documented in Chapter 305 – Multiple Regression, so that information will not be repeated here. Refer to that chapter for in depth coverage of multiple regression analysis. This chapter will deal solely with the topic of robust regression.

Regular multiple regression is optimum when all of its assumptions are valid. When some of these assumptions are invalid, least squares regression can perform poorly. Thorough residual analysis can point to these assumption breakdowns and allow you to work around these limitations. However, this residual analysis is time consuming and requires a great deal of training.

Robust regression provides an alternative to least squares regression that works with less restrictive assumptions. Specifically, it provides much better regression coefficient estimates when outliers are present in the data. Outliers violate the assumption of normally distributed residuals in least squares regression. They tend to distort the least squares coefficients by having more influence than they deserve. Typically, you would expect that the weight attached to each observation would be about $1/N$ in a dataset with $N$ observations. However, outlying observations may receive a weight of 10, 20, or even 50% This leads to serious distortions in the estimated coefficients.

Because of this distortion, these outliers are difficult to identify since their residuals are much smaller than they should be. When only one or two independent variables are used, these outlying points may be visually detected in various scatter plots. However, the complexity added by additional independent variables often hides the outliers from view in scatter plots. Robust regression down-weights the influence of outliers. This makes residuals of outlying observations larger and easier to spot. Robust regression is an iterative procedure that seeks to identify outliers and minimize their impact on the coefficient estimates.

The amount of weighting assigned to each observation in robust regression is controlled by a special curve called an influence function. There are two influence functions available in NCSS.

Although robust regression can particularly benefit untrained users, careful consideration should be given to the results. Essentially, robust regression conducts its own residual analysis and down-weights or completely removes various observations. You should study the weights it assigns to each observation, determine which observations have been largely eliminated, and decide if you want these observations in your analysis.

$M$-Estimators

Several families of robust estimators have been developed. The robust methods found in NCSS fall into the family of $M$-estimators. This estimator minimizes the sum of a function $\rho(\cdot)$ of the residuals. That is, these estimators are defined as the $\beta$’s that minimize

$$
\min_{\beta} \sum_{j=1}^{N} \rho(y_j - x_j'\beta) = \min_{\beta} \sum_{j=1}^{N} \rho(e_j)
$$

$M$ in $M$-estimators stands for maximum likelihood since the function $\rho(\cdot)$ is related to the likelihood function for a suitable choice of the distribution of the residuals. In fact, when the residuals follow the normal distribution, setting $\rho(u) = \frac{1}{2} u^2$ results in the usual method of least squares.
Unfortunately, $M$-estimators are not necessarily *scale invariant*. That is, these estimators may be influenced by the scale of the residuals. A scale-invariant estimator is found by solving

$$
\min_{\beta} \sum_{j=1}^{N} \rho\left( \frac{y_j - x'_i \beta}{s} \right) = \min_{\beta} \sum_{j=1}^{N} \rho\left( \frac{e_j}{s} \right) = \min_{\beta} \sum_{j=1}^{N} \rho(u_j)
$$

where $s$ is a robust estimate of scale. The estimate of $s$ is used in NCSS is

$$
s = \frac{\text{median}\left| e_j - \text{median}(e_j) \right|}{0.6745}
$$

This estimate of $s$ yields an approximately unbiased estimator of the standard deviation of the residuals when $N$ is large and the error distribution is normal.

The function

$$
\sum_{j=1}^{N} \rho\left( \frac{y_j - x'_i \beta}{s} \right)
$$

is minimized by setting the first partial derivatives of $\rho(\cdot)$ with respect to each $\beta_i$ to zero which forms a set of $p + 1$ nonlinear equations

$$
\sum_{j=1}^{N} x_{ij} \psi\left( \frac{y_j - x'_i \beta}{s} \right) = 0, \quad i = 0,1,\ldots,p
$$

where $\psi(u) = \rho'(u)$ is the *influence function*.

These equations are solved iteratively using an approximate technique called iteratively reweighted least squares (IRLS). At each step, new estimates of the regression coefficients are found using the matrix equation

$$
\beta_{t+1} = (X'W_t X)^{-1} X'W_t y
$$

where $W_t$ is an $N$-by-$N$ diagonal matrix of weights $w_{1t}, w_{2t}, \ldots, w_{Nt}$ defined as

$$
w_{jt} = \begin{cases} 
\frac{\psi\left( \frac{y_j - x'_i \beta}{s} \right)}{s}, & \text{if } y_j \neq x'_i \beta_t \\
1 & \text{if } y_j = x'_i \beta_t
\end{cases}
$$

The ordinary least squares regression coefficients are used at the first iteration to begin the iteration process. Iterations are continued until there is little or no change in the regression coefficients from one iteration to the next. Because of the masking nature of outliers, it is a good idea to run through at least five iterations to allow the outliers to be found.

Two functions are available in NCSS. These are Huber’s method and Tukey’s biweight. Huber’s method is the most frequently recommended in the regression texts that we have seen. The specifics for each of these functions are as follows.

- **Huber’s Method**: The influence function

$$
\psi(u) = \begin{cases} 
\frac{u^2}{2}, & \text{if } |u| \leq \delta \\
\delta \frac{|u|}{|u|}, & \text{if } |u| > \delta
\end{cases}
$$

where $\delta$ is a tuning constant.

- **Tukey’s Biweight**: The influence function

$$
\psi(u) = \frac{1}{2} (1 - \cos(\pi u / \theta))^2, \quad \text{for } |u| \leq \theta
$$

where $\theta$ is the tuning constant.

These functions are used to robustify the regression process by down-weighting the influence of outliers.
Robust Regression

Huber's Method

\[ \rho(u) = \begin{cases} u^2 & \text{if } |u| < c \\ |2u|c - c^2 & \text{if } |u| \geq c \end{cases} \]

\[ \psi(u) = \begin{cases} u & \text{if } |u| < c \\ \text{sign}(u) & \text{if } |u| \geq c \end{cases} \]

\[ w(u) = \begin{cases} 1 & \text{if } |u| < c \\ c/|u| & \text{if } |u| \geq c \end{cases} \]

\[ c = 1.345 \]

Tukey's Biweight

\[ \rho(u) = \frac{c^2}{3} \left\{ 1 - \left[ 1 - \left( \frac{u}{c} \right)^2 \right]^3 \right\} \text{ if } |u| < c \]

\[ \psi(u) = \begin{cases} u \left[ 1 - \left( \frac{u}{c} \right)^2 \right]^2 & \text{if } |u| < c \\ 0 & \text{if } |u| \geq c \end{cases} \]

\[ w(u) = \begin{cases} 1 - \left( \frac{u}{c} \right)^2 & \text{if } |u| < c \\ 0 & \text{if } |u| \geq c \end{cases} \]

\[ c = 4.685 \]

This gives you a sketch of what robust regression is about. If you find yourself using the technique often, we suggest that you study one of the modern texts on regression analysis. All of these texts have chapters on robust regression. A good introductory discussion of robust regression is found in Hamilton (1991). A more thorough discussion is found in Montgomery and Peck (1992).
Standard Errors and Tests for M-Estimates

The standard errors, confidence intervals, and t-tests produced by the weighted least squares assume that the weights are fixed. Of course, this assumption is violated in robust regression since the weights are calculated from the sample residuals, which are random. NCSS can produce standard errors, confidence intervals, and t-tests that have been adjusted to account for the random nature of the weights. The method described next was given in Hamilton (1991).

Let $\phi(u)$ represent the derivative of the influence function $\psi(u)$. To find adjusted standard errors, etc., take the following steps:

1. Calculate $a$ and $\lambda$ using

$$a = \frac{\sum \phi(u_i)}{N}, \quad \lambda = 1 + \frac{(p+1)(1-a)}{Na}$$

where

for Huber estimation

$$\phi(u) = 1 \quad |u| \leq c$$
$$\phi(u) = 0 \quad |u| > c$$

for Tukey’s biweight estimation

$$\phi(u) = \begin{cases} 1 - \frac{u^2}{c^2} & |u| \leq c \\ 1 - 5 \frac{u^2}{c^2} & |u| > c \end{cases}$$
$$\phi(u) = 0 \quad |u| > c$$

2. Define a set of pseudo values of $y_i$ using

$$\tilde{y}_i = \hat{y}_i + \frac{\lambda S}{a} \phi(u_i)$$

3. Regress $\tilde{y}$ on $X$. The standard errors, t-tests, and confidence intervals from this regression are asymptotically correct for the robust regression.

This method is not without criticism. The main criticism is that the results depend on the choices of the MAD scale factor (default = 0.6745) and the tuning constant, $c$. Changing these values will cause large changes in the resulting tests and confidence intervals. For this reason, both methods are available.

Data Structure

The data are entered in two or more columns. An example of data appropriate for this procedure is shown below. These data are from a study of the relationship of several variables with a person’s I.Q. Fifteen people were studied. Each person’s I.Q was recorded along with scores on five different personality tests. The data are contained in the IQ dataset. We suggest that you open this database now so that you can follow along with the example.
# Robust Regression

## IQ dataset

<table>
<thead>
<tr>
<th>Test1</th>
<th>Test2</th>
<th>Test3</th>
<th>Test4</th>
<th>Test5</th>
<th>IQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>34</td>
<td>65</td>
<td>63</td>
<td>64</td>
<td>106</td>
</tr>
<tr>
<td>73</td>
<td>19</td>
<td>73</td>
<td>48</td>
<td>82</td>
<td>92</td>
</tr>
<tr>
<td>54</td>
<td>81</td>
<td>82</td>
<td>65</td>
<td>73</td>
<td>102</td>
</tr>
<tr>
<td>96</td>
<td>72</td>
<td>91</td>
<td>88</td>
<td>94</td>
<td>121</td>
</tr>
<tr>
<td>84</td>
<td>53</td>
<td>72</td>
<td>68</td>
<td>82</td>
<td>102</td>
</tr>
<tr>
<td>86</td>
<td>72</td>
<td>63</td>
<td>79</td>
<td>57</td>
<td>105</td>
</tr>
<tr>
<td>76</td>
<td>62</td>
<td>64</td>
<td>69</td>
<td>64</td>
<td>97</td>
</tr>
<tr>
<td>54</td>
<td>49</td>
<td>43</td>
<td>52</td>
<td>84</td>
<td>92</td>
</tr>
<tr>
<td>37</td>
<td>43</td>
<td>92</td>
<td>39</td>
<td>72</td>
<td>94</td>
</tr>
<tr>
<td>42</td>
<td>54</td>
<td>96</td>
<td>48</td>
<td>83</td>
<td>112</td>
</tr>
<tr>
<td>71</td>
<td>63</td>
<td>52</td>
<td>69</td>
<td>42</td>
<td>130</td>
</tr>
<tr>
<td>63</td>
<td>74</td>
<td>74</td>
<td>71</td>
<td>91</td>
<td>115</td>
</tr>
<tr>
<td>69</td>
<td>81</td>
<td>82</td>
<td>75</td>
<td>54</td>
<td>98</td>
</tr>
<tr>
<td>81</td>
<td>89</td>
<td>64</td>
<td>85</td>
<td>62</td>
<td>96</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
<td>72</td>
<td>64</td>
<td>45</td>
<td>103</td>
</tr>
</tbody>
</table>

## Missing Values

Rows with missing values in the variables being analyzed are ignored. If data are present on a row for all but the dependent variable, a predicted value and confidence limits are generated for that row.

## Procedure Options

This section describes the options available in this procedure.

### Variables, Model Tab

This panel specifies the variables and model used in the analysis.

#### Dependent Variable

$Y$

This option specifies one or more dependent ($Y$) variables. If more than one variable is specified, a separate analysis is run for each.

#### Independent Variables

**Numeric X’s**

Specify numeric independent (also called regressor, explanatory, or predictor) variables here. Numeric variables are those whose values are numeric and are at least ordinal. Nominal variables, even when coded with numbers, should be specified as Categorical Independent Variables. Although you may specify binary (0-1) variables here, they are more appropriately analyzed when you specify them as Categorical X’s.

If you want to create powers and cross-products of these variables, specify an appropriate model below in the Regression Model section.
If you want to create predicted values of $Y$ for values of $X$ not in your database, add the $X$ new values as rows to the bottom of the database, with the value of $Y$ blank. These rows will not be used during estimation phase, but predicted values will be generated for them on the reports.

**Categorical X’s**

Specify categorical (nominal or group) independent variables in this box. By categorical we mean that the variable has only a few unique, numeric or text, values like 1, 2, 3 or Yes, No, Maybe. The values are used to identify categories.

Regression analysis is only defined for numeric variables. Since categorical variables are nominal, they cannot be used directly in regression. Instead, an internal set of numeric variables must be substituted for each categorical variable.

Suppose a categorical variable has $G$ categories. NCSS automatically generates the $G-1$ internal, numeric variables for the analysis. The way these internal variables are created is determined by the Recoding Scheme and, if needed, the Reference Value. These options can be entered separately with each categorical variable, or they can specified using a default value (see Default Recoding Scheme and Default Reference Value below).

The syntax for specifying a categorical variable is $\text{VarName}(\text{CType}; \text{RefValue})$ where $\text{VarName}$ is the name of the variable, $\text{CType}$ is the recoding scheme, and $\text{RefValue}$ is the reference value, if needed.

**CType**

The recoding scheme is entered as a letter. Possible choices are B, P, R, N, S, L, F, A, 1, 2, 3, 4, 5, or E. The meaning of each of these letters is as follows.

- **B** for *binary* (the group with the reference value is skipped).
  
  Example: Categorical variable Z with 4 categories. Category D is the reference value.
  
<table>
<thead>
<tr>
<th></th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **P** for *Polynomial* of up to 5th order (you cannot use this option with category variables with more than 6 categories).
  
  Example: Categorical variable Z with 4 categories.
  
<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **R** to compare each with the *reference value* (the group with the reference value is skipped).
  
  Example: Categorical variable Z with 4 categories. Category D is the reference value.
  
<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>
• **N** to compare each with the next category.
  Example: Categorical variable Z with 4 categories.
  Z  S1  S2  S3
  1  1  0  0
  3  -1  1  0
  5  0  -1  1
  7  0  0  -1

• **S** to compare each with the average of all subsequent values.
  Example: Categorical variable Z with 4 categories.
  Z  S1  S2  S3
  1  -3  0  0
  3  1  -2  0
  5  1  1  -1
  7  1  1  1

• **L** to compare each with the prior category.
  Example: Categorical variable Z with 4 categories.
  Z  S1  S2  S3
  1  -1  0  0
  3  1  -1  0
  5  0  1  -1
  7  0  0  1

• **F** to compare each with the average of all prior categories.
  Example: Categorical variable Z with 4 categories.
  Z  S1  S2  S3
  1  1  1  1
  3  1  -1  1
  5  1  -2  0
  7  -3  0  0

• **A** to compare each with the average of all categories (the Reference Value is skipped).
  Example: Categorical variable Z with 4 categories. Suppose the reference value is 3.
  Z  S1  S2  S3
  1  -3  1  1
  3  1  1  1
  5  1  -3  1
  7  1  1  -3

• **1** to compare each with the first category after sorting.
  Example: Categorical variable Z with 4 categories.
  Z  C1  C2  C3
  A  -1  -1  -1
  B  1  0  0
  C  0  1  0
  D  0  0  1
• 2 to compare each with the **second** category after sorting.
Example: Categorical variable Z with 4 categories.

<table>
<thead>
<tr>
<th>Z</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

• 3 to compare each with the **third** category after sorting.
Example: Categorical variable Z with 4 categories.

<table>
<thead>
<tr>
<th>Z</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

• 4 to compare each with the **fourth** category after sorting.
Example: Categorical variable Z with 4 categories.

<table>
<thead>
<tr>
<th>Z</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

• 5 to compare each with the **fifth** category after sorting.
Example: Categorical variable Z with 5 categories.

<table>
<thead>
<tr>
<th>Z</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

• **E** to compare each with the **last** category after sorting.
Example: Categorical variable Z with 4 categories.

<table>
<thead>
<tr>
<th>Z</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

**RefValue**

A second, optional argument is the reference value. The reference value is one of the categories. The other categories are compared to it, so it is usually a baseline or control value. If neither a baseline or control value is evident, the reference value is the most frequent value.

For example, suppose you want to include a categorical independent variable, State, which has four values: Texas, California, Florida, and NewYork. Suppose the recoding scheme is specified as *Compare Each with Reference Value* with the reference value of *California*. You would enter

**State(R;California)**
Default Recoding Scheme

Select the default type of numeric variable that will be generated when processing categorical independent variables. The values in a categorical variable are not used directly in regression analysis. Instead, a set of numeric variables is automatically created and substituted for them. This option allows you to specify what type of numeric variable will be created. The options are outlined in the sections below.

The contrast type may also be designated within parentheses after the name of each categorical independent variable, in which case the default contrast type is ignored.

If your model includes interactions of categorical variables, this option should be set to ‘Contrast with Reference’ or ‘Compare with All Subsequent’ in order to match GLM results for factor effects.

- **Binary** (the group with the reference value is skipped).
  
  Example: Categorical variable Z with 4 categories. Category D is the reference value.
  
  Z  B1  B2  B3
  A  1   0   0
  B  0   1   0
  C  0   0   1
  D  0   0   0

- **Polynomial** of up to 5th order (you cannot use this option with category variables with more than 6 categories).
  
  Example: Categorical variable Z with 4 categories.
  
  Z  P1  P2  P3
  1  -3   1  -1
  3  -1  -1   3
  5   1  -1  -3
  7   3   1   1

- **Compare Each with Reference Value** (the group with the reference value is skipped).
  
  Example: Categorical variable Z with 4 categories. Category D is the reference value.
  
  Z  C1  C2  C3
  A  1   0   0
  B  0   1   0
  C  0   0   1
  D  -1  -1  -1

- **Compare Each with Next**
  
  Example: Categorical variable Z with 4 categories.
  
  Z  S1  S2  S3
  1   1   0   0
  3  -1   1   0
  5   0  -1   1
  7   0   0  -1

- **Compare Each with All Subsequent**
  
  Example: Categorical variable Z with 4 categories.
  
  Z  S1  S2  S3
  1  -3   0   0
  3   1  -2   0
  5   1   1  -1
  7   1   1   1
- **Compare Each with Prior**
  Example: Categorical variable Z with 4 categories.
<table>
<thead>
<tr>
<th>Z</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Compare Each with All Prior**
  Example: Categorical variable Z with 4 categories.
<table>
<thead>
<tr>
<th>Z</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>-3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Compare Each with Average**
  Example: Categorical variable Z with 4 categories. Suppose the reference value is 3.
<table>
<thead>
<tr>
<th>Z</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-3</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>-3</td>
</tr>
</tbody>
</table>

- **Compare Each with First**
  Example: Categorical variable Z with 4 categories.
<table>
<thead>
<tr>
<th>Z</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Compare Each with Second**
  Example: Categorical variable Z with 4 categories.
<table>
<thead>
<tr>
<th>Z</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Compare Each with Third**
  Example: Categorical variable Z with 4 categories.
<table>
<thead>
<tr>
<th>Z</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
- **Compare Each with Fourth**
  Example: Categorical variable Z with 4 categories.
  Z  C1  C2  C3
  A   1   0   0
  B   0   1   0
  C   0   0   1
  D  -1  -1  -1

- **Compare Each with Fifth**
  Example: Categorical variable Z with 5 categories.
  Z  C1  C2  C3  C4
  A   1   0   0   0
  B   0   1   0   0
  C   0   0   1   0
  D   0   0   0   1
  E  -1  -1  -1  -1

- **Compare Each with Last**
  Example: Categorical variable Z with 4 categories.
  Z  C1  C2  C3
  A   1   0   0
  B   0   1   0
  C   0   0   1
  D  -1  -1  -1

**Default Reference Value**
This option specifies the default reference value to be used when automatically generating indicator variables during the processing of selected categorical independent variables. The reference value is often the baseline, and the other values are compared to it. The choices are

- **First Value after Sorting – Fifth Value after Sorting**
  Use the first (through fifth) value in alpha-numeric sorted order as the reference value.

- **Last Value after Sorting**
  Use the last value in alpha-numeric sorted order as the reference value.

**Weight Variable**

**Weights**
When used, this is the name of a variable containing observation weights for generating a weighted-regression analysis. These weight values should be non-negative.

**Regression Model**
These options control which terms are included in the regression model.

**Terms**
This option specifies which terms (terms, powers, cross-products, and interactions) are included in the regression model. For a straight-forward regression model, select *Up to 1-Way*.

The options are
• **Up to 1-Way**
  This option generates a model in which each variable is represented by a single model term. No cross-products, interactions, or powers are added. Use this option when you want to use the variables you have specified, but you do not want to generate other terms.

  This is the option to select when you want to analyze the independent variables specified without adding any other terms.

  For example, if you have three independent variables A, B, and C, this would generate the model:
  \[ A + B + C \]

• **Up to 2-Way**
  This option specifies that all individual variables, two-way interactions, and squares of numeric variables are included in the model. For example, if you have three numeric variables A, B, and C, this would generate the model:
  \[ A + B + C + A*B + A*C + B*C + A*A + B*B + C*C \]

  On the other hand, if you have three categorical variables A, B, and C, this would generate the model:
  \[ A + B + C + A*B + A*C + B*C \]

• **Up to 3-Way**
  All individual variables, two-way interactions, three-way interactions, squares of numeric variables, and cubes of numeric variables are included in the model. For example, if you have three numeric, independent variables A, B, and C, this would generate the model:

  On the other hand, if you have three categorical variables A, B, and C, this would generate the model:
  \[ A + B + C + A*B + A*C + B*C + A*B*C \]

• **Up to 4-Way**
  All individual variables, two-way interactions, three-way interactions, and four-way interactions are included in the model. Also included would be squares, cubes, and quartics of numeric variables and their cross-products.

  For example, if you have four categorical variables A, B, C, and D, this would generate the model:

• **Interaction**
  Mainly used for categorical variables. A saturated model (all terms and their interactions) is generated. This requires a dataset with no missing categorical-variable combinations (you can have unequal numbers of observations for each combination of the categorical variables). No squares, cubes, etc. are generated.

  For example, if you have three independent variables A, B, and C, this would generate the model:
  \[ A + B + C + A*B + A*C + B*C + A*B*C \]

  Note that the discussion of the Custom option discusses the interpretation of this model.

• **Custom**
  The model specified in the Custom box is used.
Robust Regression

Remove Intercept
Unchecked indicates that the intercept term, $\beta_0$, is to be included in the regression. Checked indicates that the intercept should be omitted from the regression model. Note that deleting the intercept distorts most of the diagnostic statistics ($R^2$, etc.). In most situations, you should include the intercept in the model.

Replace Custom with Preview Model (button)
When this button is pressed, the Custom Model is cleared and a copy of the Preview model is stored in the Custom Model. You can then edit this Custom Model as desired.

Maximum Order of Custom Terms
This option specifies that maximum number of variables that can occur in an interaction (or cross-product) term in a custom model. For example, A*B*C is a third order interaction term and if this option were set to 2, the A*B*C term would not be included in the model.

This option is particularly useful when used with the bar notation of a custom model to allow a simple way to remove unwanted high-order interactions.

Custom
This option specifies a custom model. It is only used when the Terms option is set to Custom. This specifies that terms (single variables, cross-products, and interactions) that are to be kept in the model.

Interactions
An interaction expresses the combined relationship between two or more variables and the dependent variable by creating a new variable that is the product of the variables. The interaction (cross-product) between two numeric variables is generated by multiplying them. The interaction between to categorical variables is generated by multiplying each pair of internal variables. The interaction between a numeric variable and a categorical variable is created by generating all products between the numeric variable and the generated, numeric variables.

Syntax
A model is written by listing one or more terms. The terms are separated by a blank or plus sign. Terms include variables and interactions. Specify regular variables (main effects) by entering the variable names. Specify interactions by listing each variable in the interaction separated by an asterisk (*), such as Fruit*Nuts or A*B*C.

You can use the bar (|) symbol as a shorthand technique for specifying many interactions quickly. When several variables are separated by bars, all of their interactions are generated. For example, A|B|C is interpreted as A + B + C + A*B + A*C + B*C + A*B*C.

You can use parentheses. For example, A*(B+C) is interpreted as A*B + A*C.

Some examples will help to indicate how the model syntax works:

A|B = A + B + A*B

Note that you should only repeat numeric variables. That is, A*A is valid for a numeric variable, but not for a categorical variable.

A|A|B (Max Term Order=2) = A + B + A*A + A*B + B*B
A|B|C = A + B + C + A*B + A*C + B*C + A*B*C
(A + B)*(C + D) = A*C + A*D + B*C + B*D
(A + B)|C = (A + B) + C + (A + B)*C = A + B + C + A*C + B*C
Robust Tab

The options on this panel control the robust regression analysis, if designated.

Robust Method

Robust Influence Function
A robust regression algorithm seeks to reduce the influence of observations that are apparent outliers. This option specifies which of the robust influence functions is used to accomplish this: Tukey’s biweight or Huber’s method. Both of these methods are M-Estimators and use iteratively reweighted least squares.

Huber’s Method
This M-estimator gradually reduces the weight of observations with large residuals. However, no observations have a weight of zero. Also, it works with poor starting values, and it has better convergence properties.

Tukey’s Biweight
This M-estimator down-weights observations with larger and larger outliers until their weight becomes zero. It provides the most protection against heavy-tailed error distributions.

We recommend that use Huber’s method.

Huber’s Tuning Constant
This option specifies the robust truncation constant for Huber’s method. This is a cutoff point on the influence function designating when an observation’s weight should be reduced.

The recommended value is 1.345.

Tukey’s Tuning Constant
This option specifies the robust truncation constant for Tukey’s Biweight method. This is a cutoff point on the influence function designating when an observation’s weight should be set to zero.

The recommended value is 4.685.

Scale Factor

MAD Scale Factor
Specify the constant used to scale MAD. The default value of 0.6745 is suggested in several regression texts because it is appropriate for the Huber method when normal errors are assumed.

Stop Iterating When

Maximum Percent Change in Beta Estimates is Less Than or Equal To
This option specifies an early stopping value for the iteration procedure. Normally, the number of iterations is specified in the next option. However, if the percentage change in each of the estimated regression coefficients is less than this amount, the iteration procedure is terminated. If you want this option to be ignored, set it to zero.

We recommend setting this value to 0.001 and the Number of Iterations to 30.

Number of Iterations is
Specifies the maximum number of iterations allowed while finding a solution. If this number is reached, the procedure is terminated.

We recommend setting this value to 30 and the Maximum Percent Change in Beta Estimates to 0.001.
Reports Tab

These options control which reports are displayed. Note that many of these reports are only needed in special situations. You will only need a few reports for a typical robust regression analysis.

Alphas and Confidence Levels

Test Alpha

Alpha is the significance level used in conducting the hypothesis tests. The value of 0.05 is usually used. This corresponds to a chance of 1 out of 20. However, you should not be afraid to use other values since 0.05 became popular in pre-computer days when it was the only value available.

Typical values range from 0.01 to 0.20.

Assumptions Alpha

This value specifies the significance level that must be achieved to reject a preliminary test of an assumption. In regular hypothesis tests, common values of alpha are 0.05 and 0.01. However, most statisticians recommend that preliminary tests of assumptions use a larger alpha such as 0.10, 0.15, or 0.20.

We recommend 0.20.

Confidence Level

Enter the confidence level (or confidence coefficient) as a percentage for the confidence intervals reported. The interpretation of confidence level is that if confidence intervals are constructed across many experiments at the same confidence level, the percentage of such intervals that surround the true value of the parameter is equal to the confidence level.

Typical values range from 80 to 99.99. Usually, 95 is used.

Select Reports

Check those reports that you want to see. If you want to see a common set of reports, click the Uncheck All button followed by the Common Set button.

Show All Rows

This option makes it possible to display fewer observations in the row-by-row lists. This is especially useful when you have a lot of observations.

Robust Residuals

This report displays the robust residuals and observation weights. This is a key report and should be studied carefully to determine which observations are being down-weighted.

Weight Cutoff

This option is only displayed if Robust Residuals is checked. On the Robust Residuals report, only rows with weights less than this amount are displayed. This report allows you to quickly focus on those rows that have been down-weighted.

The possible range is 0.000 to 1.00. We recommend 0.20.
Bootstrap Calculation Options – Sampling

If you check the Bootstrap CI’s report, additional options will appear at the bottom of the page.

**Confidence Levels**

These are the confidence coefficients of the bootstrap confidence intervals. They are entered as percentages. All values must be between 50 and 99.99. For example, you might enter 90 95 99.

You may enter several values, separated by blanks or commas. A separate confidence interval is generated for each value entered.

**Samples**

This is the number of bootstrap samples used. A general rule of thumb is that you use at least 100 when standard errors are your focus or at least 1000 when confidence intervals are your focus. If computing time is available, it does not hurt to do 4000 or 5000.

We recommend setting this value to at least 3000.

**Retries**

If the results from a bootstrap sample cannot be calculated, the sample is discarded and a new sample is drawn in its place. This parameter is the number of times that a new sample is drawn before the algorithm is terminated. We recommend setting the parameter to at least 50.

**Percentile Type**

The method used to create the percentiles when forming bootstrap confidence limits. You can read more about the various types of percentiles in the Descriptive Statistics chapter. We suggest you use the \( \text{Ave } X(p[n+1]) \) option.

**C.I. Method**

This option specifies the method used to calculate the bootstrap confidence intervals. The reflection method is recommended.

- **Percentile**
  
  The confidence limits are the corresponding percentiles of the bootstrap values.

- **Reflection**
  
  The confidence limits are formed by reflecting the percentile limits. If \( X_0 \) is the original value of the parameter estimate and \( XL \) and \( XU \) are the percentile confidence limits, the reflection interval is \( 2X_0 - XU, 2X_0 - XL \).

**Format Tab**

These options specify the number of decimal places shown when the indicated value is displayed in a report. Note that the number of decimal places shown in plots is controlled by the Tick Label Settings buttons on the Axes tabs.

**Variable Labels**

**Precision**

This option is used when the number of decimal places is set to All. It specifies whether numbers are displayed as single (7-digit) or double (13-digit) precision numbers in the output. All calculations are performed in double precision regardless of the Precision selected here.

- **Single**
  
  Unformatted numbers are displayed with 7-digits
Double
Unformatted numbers are displayed with 13-digits. This option is most often used when the extremely accurate results are needed for further calculation. For example, double precision might be used when you are going to use the Multiple Regression model in a transformation.

Double Precision Format Misalignment
Double precision numbers may require more space than is available in the output columns, causing column alignment problems. The double precision option is for those instances when accuracy is more important than format alignment.

Variable Names
This option lets you select whether to display variable names, variable labels, or both.

Stagger label and output if label length is ≥
When writing a row of information to a report, some variable names/labels may be too long to fit in the space allocated. If the name (or label) contains more characters than specified here, the rest of the output for that line is moved down to the next line. Most reports are designed to hold a label of up to 15 characters.

Enter 1 when you always want each row’s output to be printed on two lines.

Enter 100 when you want each row printed on only one line. Note that this may cause some columns to be misaligned.

Decimal Places

Probability ... Mean Square Decimals
Specify the number of digits after the decimal point to display on the output of values of this type. This option in no way influences the accuracy with which the calculations are done.

All
Select All to display all digits available. The number of digits displayed by this option is controlled by whether the Precision option is Single (7) or Double (13).

Plots Tab
These options control the inclusion and the settings of each of the plots.

Select Plots

Histogram ... Partial Resid vs X Plot
Indicate whether to display these plots. Click the plot format button to change the plot settings.

Edit During Run
This is the small check-box in the upper right-hand corner of the format button. If checked, the graphics format window for this plot will be displayed while the procedure is running so that you can format it with the actual data.

Storage Tab
These options let you specify if, and where on the dataset, various statistics are stored.

Warning: Any data already in these variables are replaced by the new data. Be careful not to specify columns that contain important data.
Data Storage Options

Storage Option
This option controls whether the values indicated below are stored on the dataset when the procedure is run.

- **Do not store data**
  No data are stored even if they are checked.

- **Store in empty columns only**
  The values are stored in empty columns only. Columns containing data are not used for data storage, so no data can be lost.

- **Store in designated columns**
  Beginning at the First Storage Variable, the values are stored in this column and those to the right. If a column contains data, the data are replaced by the storage values. Care must be used with this option because it cannot be undone.

Store First Item In
The first item is stored in this column. Each additional item that is checked is stored in the columns immediately to the right of this variable.

Leave this value blank if you want the data storage to begin in the first blank column on the right-hand side of the data.

Warning: any existing data in these columns is automatically replaced, so be careful.

Data Storage Options – Select Items to Store

Predicted Y ... VC(Betas) Matrix
Indicate whether to store these row-by-row values, beginning at the column indicated by the Store First Variable In option.
Example 1 – Robust Regression (Common Reports)

This section presents an example of how to run a robust regression analysis of the data presented earlier in this chapter. The data are in the IQ dataset. This example will run a robust regression of IQ on Test1 through Test5. This program outputs over thirty different reports and plots, many of which contain duplicate information. If you want to obtain complete documentation for all reports, refer to the Multiple Regression chapter. Only those reports that are specifically needed for a robust regression will be presented here.

You may follow along here by making the appropriate entries or load the completed template Example 1 by clicking on Open Example Template from the File menu of the Robust Regression window.

1  Open the IQ dataset.
   - From the File menu of the NCSS Data window, select Open Example Data.
   - Click on the file IQ.NCSS.
   - Click Open.

2  Open the Robust Regression window.
   - Using the Analysis menu or the Procedure Navigator, find and select the Robust Regression procedure.
   - On the menus, select File, then New Template. This will fill the procedure with the default template.

3  Specify the variables and model.
   - On the Robust Regression window, select the Variables, Model tab.
   - Set the Y box to IQ.
   - Set the Numeric X’s box to Test1-Test5.
   - Set the Terms box to 1-Way.

4  Run the procedure.
   - From the Run menu, select Run Procedure. Alternatively, just click the green Run button.

Run Summary

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Rows</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>IQ</td>
<td>Number Processed</td>
<td>17</td>
</tr>
<tr>
<td>Number Ind. Variables</td>
<td>5</td>
<td>Number Used in Estimation</td>
<td>15</td>
</tr>
<tr>
<td>Weight Variable</td>
<td>None</td>
<td>Number Filtered Out</td>
<td>0</td>
</tr>
<tr>
<td>Robust Method</td>
<td>Huber's Method</td>
<td>Number with X's Missing</td>
<td>0</td>
</tr>
<tr>
<td>Tuning Constant</td>
<td>1.345</td>
<td>Number with Weight Missing</td>
<td>0</td>
</tr>
<tr>
<td>MAD Scale Factor</td>
<td>0.6745</td>
<td>Number with Y Missing</td>
<td>0</td>
</tr>
<tr>
<td>Sum of Robust Weights</td>
<td></td>
<td>Sum of Robust Weights</td>
<td>13.065</td>
</tr>
</tbody>
</table>

This report summarizes the robust regression results. It presents the variables used, the number of rows used, and the basic results. Of particular interest is the number of iterations performed (15 here) and the Max % Change in any Coefficient since they establish whether the algorithm converged before iterations were stopped. The S using MAD should be compared to the S using MSE to determine the impact of the outliers.
Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test1</td>
<td>15</td>
<td>67.991</td>
<td>16.708</td>
<td>37</td>
<td>96</td>
</tr>
<tr>
<td>Test2</td>
<td>15</td>
<td>60.117</td>
<td>18.462</td>
<td>19</td>
<td>89</td>
</tr>
<tr>
<td>Test3</td>
<td>15</td>
<td>73.025</td>
<td>13.171</td>
<td>43</td>
<td>96</td>
</tr>
<tr>
<td>Test4</td>
<td>15</td>
<td>64.922</td>
<td>13.108</td>
<td>39</td>
<td>88</td>
</tr>
<tr>
<td>Test5</td>
<td>15</td>
<td>71.981</td>
<td>14.104</td>
<td>42</td>
<td>94</td>
</tr>
<tr>
<td>IQ</td>
<td>15</td>
<td>102.921</td>
<td>8.714</td>
<td>92</td>
<td>130</td>
</tr>
</tbody>
</table>

For each variable, the count, arithmetic mean, standard deviation, minimum, and maximum are computed. Note that these statistics use the robust weights. This report is particularly useful for checking that the correct variables were selected.

Robust Iterations - Coefficients

<table>
<thead>
<tr>
<th>Robust Iteration</th>
<th>Max Percent Change in Coefficients</th>
<th>b(0)</th>
<th>b(1)</th>
<th>b(2)</th>
<th>b(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>85.24038</td>
<td>-1.93357</td>
<td>-1.65988</td>
<td>0.10495</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>244.726</td>
<td>1.726</td>
<td>4.446</td>
<td>7.637</td>
<td>22.154</td>
</tr>
<tr>
<td>2</td>
<td>61.163</td>
<td>1.573</td>
<td>3.093</td>
<td>7.084</td>
<td>29.533</td>
</tr>
<tr>
<td>3</td>
<td>23.552</td>
<td>1.511</td>
<td>2.599</td>
<td>7.083</td>
<td>30.626</td>
</tr>
<tr>
<td>4</td>
<td>0.795</td>
<td>1.564</td>
<td>2.285</td>
<td>7.296</td>
<td>30.714</td>
</tr>
<tr>
<td>5</td>
<td>0.431</td>
<td>1.569</td>
<td>2.271</td>
<td>7.387</td>
<td>30.604</td>
</tr>
<tr>
<td>6</td>
<td>0.199</td>
<td>1.581</td>
<td>2.252</td>
<td>7.440</td>
<td>30.553</td>
</tr>
<tr>
<td>7</td>
<td>0.091</td>
<td>1.586</td>
<td>2.246</td>
<td>7.464</td>
<td>30.525</td>
</tr>
<tr>
<td>8</td>
<td>0.042</td>
<td>1.589</td>
<td>2.243</td>
<td>7.475</td>
<td>30.513</td>
</tr>
<tr>
<td>9</td>
<td>0.025</td>
<td>1.590</td>
<td>2.242</td>
<td>7.480</td>
<td>30.507</td>
</tr>
<tr>
<td>10</td>
<td>0.001</td>
<td>1.590</td>
<td>2.241</td>
<td>7.483</td>
<td>30.504</td>
</tr>
</tbody>
</table>

This report shows the largest percent change in any of the coefficients as well as the first four coefficients. The 0th iteration shows the ordinary least squares estimates on the full dataset.

The report allows you to determine if enough iterations have been run for the coefficients to have stabilized. In this example, the coefficients have stabilized. If they had not, we would increase the number of robust iterations and rerun the analysis.

Robust Iterations - Residuals

<table>
<thead>
<tr>
<th>Robust Iteration</th>
<th>Max Percent Change in Coefficients</th>
<th>Percentiles of Absolute Residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25th</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>2.767</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1.726</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.573</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1.511</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1.564</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1.569</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1.581</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1.586</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1.589</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1.590</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1.590</td>
</tr>
</tbody>
</table>
The purpose of this report is to highlight the percentage changes among the coefficients and to show the convergence of the absolute value of the residuals after a selected number of iterations.

### Robust Iteration
This is the robust iteration number.

### Max Percent Change in Coefficients
This is the maximum percentage change in any of the regression coefficients from one iteration to the next. This quantity can be used to determine if enough iterations have been run. Once this value is less than 0.01%, little is gained by further iterations.

### Percentiles of Absolute Residuals
The absolute values of the residuals for this iteration are sorted and the percentiles are calculated. We want to terminate the iteration process when there is little change in median of the absolute residuals.

### Regression Coefficients T-Tests Assuming Fixed Weights

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Regression Coefficient b(i)</th>
<th>Standard Error Sb(i)</th>
<th>Standardized Coefficient</th>
<th>T-Statistic to Test H0: β(i)=0</th>
<th>Prob Level</th>
<th>Reject H0 at 5%?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>60.77725</td>
<td>15.683629</td>
<td>0.0000</td>
<td>3.875</td>
<td>0.0038</td>
<td>Yes</td>
</tr>
<tr>
<td>Test1</td>
<td>-1.40516</td>
<td>0.633752</td>
<td>-2.6941</td>
<td>2.217</td>
<td>0.0538</td>
<td>No</td>
</tr>
<tr>
<td>Test2</td>
<td>-1.17550</td>
<td>0.540272</td>
<td>-2.4904</td>
<td>2.176</td>
<td>0.0576</td>
<td>No</td>
</tr>
<tr>
<td>Test3</td>
<td>0.19198</td>
<td>0.139920</td>
<td>0.2902</td>
<td>1.372</td>
<td>0.2033</td>
<td>No</td>
</tr>
<tr>
<td>Test4</td>
<td>2.86553</td>
<td>1.128164</td>
<td>4.3102</td>
<td>2.540</td>
<td>0.0317</td>
<td>Yes</td>
</tr>
<tr>
<td>Test5</td>
<td>0.11523</td>
<td>0.132366</td>
<td>0.1865</td>
<td>0.871</td>
<td>0.4066</td>
<td>No</td>
</tr>
</tbody>
</table>

This report gives the coefficients, standard errors, and significance tests assuming that the robust weights are fixed, known quantities.

### Independent Variable
The names of the independent variables are listed here. The intercept is the value of the $Y$ intercept.

### Regression Coefficient b(i)
The regression coefficients are the least squares estimates of the parameters. The value indicates how much change in $Y$ occurs for a one-unit change in that particular $X$ when the remaining $X$'s are held constant. These coefficients are often called partial-regression coefficients since the effect of the other $X$'s is removed. These coefficients are the values of $b_0, b_1, \ldots, b_p$.

### Standard Error Sb(i)
The standard error of the regression coefficient, $s_{b_i}$, is the standard deviation of the estimate. It is used in hypothesis tests or confidence limits.

### Standardized Coefficient
Standardized regression coefficients are the coefficients that would be obtained if you standardized the independent variables and the dependent variable. Here standardizing is defined as subtracting the mean and dividing by the standard deviation of a variable. A regression analysis on these standardized variables would yield these standardized coefficients.
When the independent variables have vastly different scales of measurement, this value provides a way of making comparisons among variables. The formula for the standardized regression coefficient is:

\[ b_{j, std} = b_j \left( \frac{s_{X_j}}{s_Y} \right) \]

where \( s_Y \) and \( s_{X_j} \) are the standard deviations for the dependent variable and the \( j^{th} \) independent variable.

**T-Statistic to test H0: \( \beta(i) = 0 \)**

This is the t-test value for testing the hypothesis that \( \beta_j = 0 \) versus the alternative that \( \beta_j \neq 0 \) after removing the influence of all other \( X \)'s. This \( t \)-value has \( n-p-1 \) degrees of freedom.

**Prob Level**

This is the \( p \)-value for the significance test of the regression coefficient. The \( p \)-value is the probability that this \( t \)-statistic will take on a value at least as extreme as the actually observed value, assuming that the null hypothesis is true (i.e., the regression estimate is equal to zero). If the \( p \)-value is less than alpha, say 0.05, the null hypothesis of equality is rejected. This \( p \)-value is for a two-tail test.

**Reject H0 at 5%?**

This is the conclusion reached about the null hypothesis. It will be either reject \( H0 \) at the 5% level of significance or not.

Note that the level of significance is specified in the Test Alpha box on the Format tab panel.

### Regression Coefficients T-Tests Assuming Random Weights

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Regression Coefficient b(i)</th>
<th>Standard Error Sb(i)</th>
<th>Standardized Coefficient</th>
<th>T-Statistic to Test H0: ( \beta(i) = 0 )</th>
<th>Prob Level</th>
<th>Reject H0 at 5%?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>60.77725</td>
<td>15.927008</td>
<td>0.0000</td>
<td>3.816</td>
<td>0.0041</td>
<td>Yes</td>
</tr>
<tr>
<td>Test1</td>
<td>-1.40516</td>
<td>0.691721</td>
<td>-2.6941</td>
<td>-2.031</td>
<td>0.0728</td>
<td>No</td>
</tr>
<tr>
<td>Test2</td>
<td>-1.17550</td>
<td>0.586729</td>
<td>-2.4904</td>
<td>-2.003</td>
<td>0.0761</td>
<td>No</td>
</tr>
<tr>
<td>Test3</td>
<td>0.19198</td>
<td>0.147810</td>
<td>0.2902</td>
<td>1.299</td>
<td>0.2263</td>
<td>No</td>
</tr>
<tr>
<td>Test4</td>
<td>2.86553</td>
<td>1.233082</td>
<td>4.3102</td>
<td>2.324</td>
<td>0.0452</td>
<td>Yes</td>
</tr>
<tr>
<td>Test5</td>
<td>0.11523</td>
<td>0.135253</td>
<td>0.1865</td>
<td>0.852</td>
<td>0.4164</td>
<td>No</td>
</tr>
</tbody>
</table>

This report gives the coefficients, standard errors, and significance tests assuming that the robust weights are random, unknown quantities found from the data. This is a much more reasonable assumption than that the weights are fixed.

### Regression Coefficients Confidence Intervals Assuming Fixed Weights

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Regression Coefficient b(i)</th>
<th>Standard Error Sb(i)</th>
<th>Lower 95% Conf. Limit of ( \beta(i) )</th>
<th>Upper 95% Conf. Limit of ( \beta(i) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>60.77725</td>
<td>15.683629</td>
<td>25.29841</td>
<td>96.25608</td>
</tr>
<tr>
<td>Test1</td>
<td>-1.40516</td>
<td>0.633752</td>
<td>-2.83881</td>
<td>0.02849</td>
</tr>
<tr>
<td>Test2</td>
<td>-1.17550</td>
<td>0.540272</td>
<td>-2.39768</td>
<td>0.04668</td>
</tr>
<tr>
<td>Test3</td>
<td>0.19198</td>
<td>0.139920</td>
<td>-0.12454</td>
<td>0.50850</td>
</tr>
<tr>
<td>Test4</td>
<td>2.86553</td>
<td>1.128164</td>
<td>0.31345</td>
<td>5.41761</td>
</tr>
<tr>
<td>Test5</td>
<td>0.11523</td>
<td>0.132366</td>
<td>-0.18421</td>
<td>0.41466</td>
</tr>
</tbody>
</table>

Note: The T-Value used to calculate these confidence limits was 2.262.

This report gives the coefficients, standard errors, and confidence interval assuming fixed weights.
**Independent Variable**
The names of the independent variables are listed here. The intercept is the value of the $Y$ intercept.

**Regression Coefficient**
The regression coefficients are the least squares estimates of the parameters. The value indicates how much change in $Y$ occurs for a one-unit change in $x$ when the remaining $X$’s are held constant. These coefficients are often called partial-regression coefficients since the effect of the other $X$’s is removed. These coefficients are the values of $b_0, b_1, \ldots, b_p$.

**Standard Error $Sb(i)$**
The standard error of the regression coefficient, $s_{b_j}$, is the standard deviation of the estimate. It is used in hypothesis tests and confidence limits.

**Lower - Upper 95% Conf. Limit of $\beta(i)$**
These are the lower and upper values of a $100(1 - \alpha)$% interval estimate for $\beta_j$ based on a $t$-distribution with $n-p-1$ degrees of freedom. This interval estimate assumes that the residuals for the regression model are normally distributed.

The formulas for the lower and upper confidence limits are:

$$b_j \pm t_{1-\alpha/2,n-p-1} \cdot s_{b_j}$$

**Note: The T-Value ...**
This is the value of $t_{1-\alpha/2,n-p-1}$ used to construct the confidence limits.

### Regression Coefficients Confidence Intervals Assuming Random Weights

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Regression Coefficient $b(i)$</th>
<th>Standard Error of $\beta(i)$ $Sb(i)$</th>
<th>Lower 95% Conf. Limit of $\beta(i)$</th>
<th>Upper 95% Conf. Limit of $\beta(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>60.77725</td>
<td>15.927008</td>
<td>24.74785</td>
<td>96.80664</td>
</tr>
<tr>
<td>Test1</td>
<td>-1.40516</td>
<td>0.691721</td>
<td>-2.96994</td>
<td>0.15962</td>
</tr>
<tr>
<td>Test2</td>
<td>-1.17550</td>
<td>0.586729</td>
<td>-2.50277</td>
<td>0.15177</td>
</tr>
<tr>
<td>Test3</td>
<td>0.19198</td>
<td>0.147810</td>
<td>-0.14239</td>
<td>0.52635</td>
</tr>
<tr>
<td>Test4</td>
<td>2.86553</td>
<td>1.233082</td>
<td>0.07610</td>
<td>5.65495</td>
</tr>
<tr>
<td>Test5</td>
<td>0.11523</td>
<td>0.135253</td>
<td>-0.19074</td>
<td>0.42119</td>
</tr>
</tbody>
</table>

Note: The T-Value used to calculate these confidence limits was 2.262.

This report gives the coefficients, standard errors, and confidence interval assuming random weights.

### Estimated Equation

$$\text{IQ} = 60.7772455334515 - 1.40516102388176 \times \text{Test1} - 1.17549846722092 \times \text{Test2} + 0.191975633021348 \times \text{Test3} + 2.86552848363198 \times \text{Test4} + 0.115229465460253 \times \text{Test5}$$

This is the estimated robust regression line presented in double precision. Besides showing the regression model in long form, it may be used as a transformation by copying and pasting it into the Transformation portion of the spreadsheet.
### Robust Residuals and Weights

<table>
<thead>
<tr>
<th>Row</th>
<th>Actual IQ</th>
<th>Predicted IQ</th>
<th>Residual</th>
<th>Absolute Percent Error</th>
<th>Robust Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>106.000</td>
<td>104.563</td>
<td>1.437</td>
<td>1.356</td>
<td>1.0000</td>
</tr>
<tr>
<td>2</td>
<td>92.000</td>
<td>96.874</td>
<td>-4.874</td>
<td>5.298</td>
<td>1.0000</td>
</tr>
<tr>
<td>3</td>
<td>102.000</td>
<td>100.096</td>
<td>1.904</td>
<td>1.867</td>
<td>1.0000</td>
</tr>
<tr>
<td>4</td>
<td>121.000</td>
<td>121.713</td>
<td>-0.713</td>
<td>0.590</td>
<td>1.0000</td>
</tr>
<tr>
<td>5</td>
<td>102.000</td>
<td>98.569</td>
<td>3.431</td>
<td>3.364</td>
<td>1.0000</td>
</tr>
<tr>
<td>6</td>
<td>105.000</td>
<td>100.337</td>
<td>4.663</td>
<td>4.411</td>
<td>1.0000</td>
</tr>
<tr>
<td>7</td>
<td>97.000</td>
<td>98.486</td>
<td>-1.486</td>
<td>1.532</td>
<td>1.0000</td>
</tr>
<tr>
<td>8</td>
<td>92.000</td>
<td>94.240</td>
<td>-2.240</td>
<td>2.435</td>
<td>1.0000</td>
</tr>
<tr>
<td>9</td>
<td>94.000</td>
<td>95.953</td>
<td>-1.953</td>
<td>2.078</td>
<td>1.0000</td>
</tr>
<tr>
<td>10</td>
<td>112.000</td>
<td>103.822</td>
<td>8.178</td>
<td>7.302</td>
<td>0.6392</td>
</tr>
<tr>
<td>11</td>
<td><strong>130.000</strong></td>
<td><strong>99.498</strong></td>
<td><strong>30.502</strong></td>
<td><strong>23.463</strong></td>
<td><strong>0.1711</strong></td>
</tr>
<tr>
<td>12</td>
<td>115.000</td>
<td>113.409</td>
<td>1.591</td>
<td>1.383</td>
<td>1.0000</td>
</tr>
<tr>
<td>13</td>
<td>98.000</td>
<td>105.485</td>
<td>-7.485</td>
<td>7.637</td>
<td>0.6973</td>
</tr>
<tr>
<td>14</td>
<td>96.000</td>
<td>105.340</td>
<td>-9.340</td>
<td>9.729</td>
<td>0.5588</td>
</tr>
<tr>
<td>15</td>
<td>103.000</td>
<td>104.758</td>
<td>-1.758</td>
<td>1.707</td>
<td>1.0000</td>
</tr>
<tr>
<td>16</td>
<td>90.381</td>
<td>0.000</td>
<td>90.381</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>17</td>
<td>96.301</td>
<td>0.000</td>
<td>96.301</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

The predicted values, the residuals, and the robust weights are reported for the last iteration. These robust weights can be saved for use in a weighted regression analysis, or they can be used as a filter to delete observations with a weight less than some number, say 0.20, in an ordinary least squares regression analysis.

Note that in this analysis, row 11 appears to be an outlier.

**Row**
This is the number of the row.

**Actual**
This is the actual value of the dependent variable.

**Predicted**
This is the predicted value of $Y$ based on the robust regression equation from the final iteration.

**Residual**
The residual is the difference between the Actual and Predicted values of $Y$.

**Absolute Percent Error**
This is the Residual divided by the Actual times 100.

**Robust Weight**
These are the final robust weights for each observation. These weights will range from zero to one. Observations with a low weight make a minimal contribution to the determination of the regression coefficients. In fact, observations with a weight of zero have been deleted from the analysis. These weights can be saved and used again in a weighted least squares regression.
Residuals vs X’s Plots

These are the scatter plots of the residuals versus each independent variable. Again, the preferred pattern is a rectangular shape or point cloud. Any other nonrandom pattern may require a redefining of the regression model.