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Chapter 470 

The Box-Jenkins Method 

Introduction 
Box - Jenkins Analysis refers to a systematic method of identifying, fitting, checking, and using integrated 
autoregressive, moving average (ARIMA) time series models. The method is appropriate for time series of 
medium to long length (at least 50 observations). 

In this chapter we will present an overview of the Box-Jenkins method, concentrating on the how-to parts 
rather than on the theory. Most of what is presented here is summarized from the landmark book on time 
series analysis written by George Box and Gwilym Jenkins (1976). 

A time series is a set of values observed sequentially through time. The series may be denoted by 
𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑡𝑡, where t refers to the time period and X refers to the value. If the X’s are exactly determined by 
a mathematical formula, the series is said to be deterministic. If future values can be described only by their 
probability distribution, the series is said to be a statistical or stochastic process. 

A special class of stochastic processes is a stationary stochastic process. A statistical process is stationary if 
the probability distribution is the same for all starting values of t. This implies that the mean and variance 
are constant for all values of t. A series that exhibits a simple trend is not stationary because the values of 
the series depend on t. A stationary stochastic process is completely defined by its mean, variance, and 
autocorrelation function. One of the steps in the Box - Jenkins method is to transform a non-stationary 
series into a stationary one. 
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Autocorrelation Function 
The stationary assumption allows us to make simple statements about the correlation between two 
successive values, 𝑋𝑋𝑡𝑡 and 𝑋𝑋𝑡𝑡+𝑘𝑘. This correlation is called the autocorrelation of lag k of the series. The 
autocorrelation function displays the autocorrelation on the vertical axis for successive values of k on the 
horizontal axis. The following figure shows the autocorrelation function of the sunspot data. 

 

Since a stationary series is completely specified by its mean, variance, and autocorrelation function, one of 
the major (and most subjective) tasks in Box-Jenkins analysis is to identify an appropriate model from the 
sample autocorrelation function. Although the sample autocorrelations contains random fluctuations, for 
moderate sample sizes they are fairly accurate in signaling the order of the ARIMA model. 

The ARMA Model 
The ARMA (autoregressive, moving average) model is defined as follows: 

𝑋𝑋𝑡𝑡 = 𝜙𝜙1𝑋𝑋𝑡𝑡−1 +⋯+ 𝜙𝜙𝑝𝑝𝑋𝑋𝑡𝑡−𝑝𝑝 + 𝑎𝑎𝑡𝑡 − 𝜃𝜃1𝑎𝑎𝑡𝑡−1 − ⋯− 𝜃𝜃𝑞𝑞𝑎𝑎𝑡𝑡−𝑞𝑞 

where the 𝜙𝜙's (phis) are the autoregressive parameters to be estimated, the θ ' s𝜃𝜃's (thetas) are the moving 
average parameters to be estimated, the X’s are the original series, and the a’s are a series of unknown 
random errors (or residuals) which are assumed to follow the normal probability distribution. 

Box-Jenkins use the backshift operator to make writing these models easier. The backshift operator, B, has 
the effect of changing time period t to time period t-1. Thus 𝐵𝐵𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡−1 and 𝐵𝐵2𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡−2. Using this 
backshift notation, the above model may be rewritten as: 

�1 − 𝜙𝜙𝑡𝑡𝐵𝐵 −⋯− 𝜙𝜙𝑝𝑝𝐵𝐵𝑝𝑝�𝑋𝑋𝑡𝑡 = �1 − 𝜃𝜃1𝐵𝐵 −⋯− 𝜙𝜙𝑞𝑞𝐵𝐵𝑞𝑞�𝑎𝑎𝑡𝑡 
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This may be abbreviated even further by writing: 

𝜙𝜙𝑝𝑝(𝐵𝐵)𝑋𝑋𝑡𝑡 = 𝜃𝜃𝑞𝑞(𝐵𝐵)𝑎𝑎𝑡𝑡 

where 

𝜙𝜙𝑝𝑝(𝐵𝐵) = �1 − 𝜙𝜙1𝐵𝐵 −⋯− 𝜙𝜙𝑝𝑝𝐵𝐵𝑝𝑝� 

𝜃𝜃𝑞𝑞(𝐵𝐵) = �1 − 𝜃𝜃1𝐵𝐵 −⋯− 𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞� 

These formulas show that the operators 𝜙𝜙𝑝𝑝(𝐵𝐵) and 𝜃𝜃𝑞𝑞(𝐵𝐵) are polynomials in B of orders p and q 
respectively. One of the benefits of writing models in this fashion is that we can see why several models may 
be equivalent. 

For example, consider the model 

𝑋𝑋𝑡𝑡 = 0.8𝑋𝑋𝑡𝑡−1 − 0.15𝑋𝑋𝑡𝑡−2 + 𝑎𝑎𝑡𝑡 − 0.3𝑎𝑎𝑡𝑡−1 

This could be rewritten in the form of (8.3) as: 

(1 − 0.8𝐵𝐵 + 0.15𝐵𝐵2)𝑋𝑋𝑡𝑡 = (1 − 0.3𝐵𝐵)𝑎𝑎𝑡𝑡  

Notice that the polynomial on the left may be factored, so that we can rewrite the model as 

(1 − 0.5𝐵𝐵)(1 − 0.3𝐵𝐵)𝑋𝑋𝑡𝑡 = (1 − 0.3𝐵𝐵)𝑎𝑎𝑡𝑡 

Finally, canceling the (1 - 0.3B) from both sides leaves the simpler, but equivalent, model 

(1 − 0.5𝐵𝐵)𝑋𝑋𝑡𝑡 = 𝑎𝑎𝑡𝑡 

or 

𝑋𝑋𝑡𝑡 = 0.5𝑋𝑋𝑡𝑡−1 + 𝑎𝑎𝑡𝑡 

Note that this is a much simpler model! 

This type of model rearrangement is used by experienced Box-Jenkins forecasters to obtain the simplest 
models possible. The Theoretical ARIMA program displays the roots of the two polynomials, 𝜙𝜙𝑝𝑝(𝐵𝐵) and 
𝜃𝜃𝑞𝑞(𝐵𝐵), so you can see possible model simplifications. 
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Nonstationary Models 
Many time series encountered in practice exhibit nonstationary behavior. Usually, the nonstationarity is due 
to a trend, a change in the local mean, or seasonal variation. Since the Box-Jenkins methodology is for 
stationary models only, we have to make some adjustments before we can model these nonstationary 
series. 

We use one of two methods for reducing a nonstationary series with trend to a stationary series (without 
trend): 

1. Use the first differences of the series, 𝑊𝑊𝑡𝑡 = 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑡𝑡−1. Note that this can be rewritten as  
𝑊𝑊𝑡𝑡 = (1 − 𝐵𝐵)𝑋𝑋𝑡𝑡. A more general form of this equation is: 

𝜙𝜙𝑝𝑝(𝐵𝐵)(1 − 𝐵𝐵)𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜃𝜃𝑞𝑞(𝐵𝐵)𝑎𝑎𝑡𝑡 

 where d is the order of differencing. This is known as the ARIMA(p,d,q) model. 

2. Fit a least squares trend and fit the Box-Jenkins model to the residuals. 

If the model exhibits an occasional change of mean, first differences will result in a stationary model. 

For seasonal series, Box-Jenkins provided a modification to this equation that will be the subject of the next 
section. 

Seasonal Time Series 
To deal with series containing seasonal fluctuations, Box-Jenkins recommend the following general model: 

𝜙𝜙𝑝𝑝(𝐵𝐵)Φ𝑃𝑃(𝐵𝐵)(1 − 𝐵𝐵)𝑑𝑑(1 −𝐵𝐵𝑠𝑠)𝐷𝐷𝑋𝑋𝑡𝑡 = 𝜃𝜃𝑞𝑞(𝐵𝐵)Θ𝑄𝑄(𝐵𝐵𝑠𝑠)𝑎𝑎𝑡𝑡 

where d is the order of differencing, s is the number of seasons per year, and D is the order of seasonal 
differencing. The operator polynomials are 

𝜙𝜙𝑝𝑝(𝐵𝐵) = �1 − 𝜙𝜙1𝐵𝐵 −⋯− 𝜙𝜙𝑝𝑝𝐵𝐵𝑝𝑝� 

𝜃𝜃𝑞𝑞(𝐵𝐵) = �1 − 𝜃𝜃1𝐵𝐵 −⋯− 𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞� 

Φ𝑃𝑃(𝐵𝐵𝑠𝑠) = �1 −Φ1𝐵𝐵𝑠𝑠 −⋯−Φ𝑝𝑝𝐵𝐵𝑠𝑠𝑝𝑝� 

Θ𝑄𝑄(𝐵𝐵𝑠𝑠) = �1 − Θ1𝐵𝐵𝑠𝑠 −⋯− Θ𝑄𝑄𝐵𝐵𝑠𝑠𝑄𝑄� 

Note that (1 − 𝐵𝐵𝑠𝑠)𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑡𝑡−𝑠𝑠. 

Box-Jenkins explain that the maximum value of d, D, p, q, P, and Q is two. Hence, these operator polynomials 
are usually simple expressions. 
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Partial Autocorrelation Function 
We previously discussed the autocorrelation function, which gives the correlations between different lags of 
a series. The Partial Autocorrelation Function is a second function that expresses information useful in 
determining the order of an ARIMA model.  

This function is constructed by calculating the partial correlation between 𝑋𝑋𝑡𝑡 and 𝑋𝑋𝑡𝑡−1, 𝑋𝑋𝑡𝑡 and 𝑋𝑋𝑡𝑡−2, and so 
on, statistically adjusting out the influence of intermediate lags. For example, the partial autocorrelation of 
lag four is the partial correlation between 𝑋𝑋𝑡𝑡 and 𝑋𝑋𝑡𝑡−4 after statistically removing the influence of 𝑋𝑋𝑡𝑡−1, 𝑋𝑋𝑡𝑡−2, 
and 𝑋𝑋𝑡𝑡−3 from both 𝑋𝑋𝑡𝑡 and 𝑋𝑋𝑡𝑡−4. 

The autoregressive order, p, is estimated as the lag of the last large partial autocorrelation. For example, 
suppose the partial autocorrelations were 

Lag Partial Autocorrelation 
1 0.55 
2 0.21 
3 0.11 
4 0.72 
5 0.06 
6 0.09 
7 0.13 

We would conclude that a reasonable value for p is four, since the partial autocorrelations are relatively 
small after the fourth lag. 

Box-Jenkins Methodology – An Overview 
The Box-Jenkins method refers to the iterative application of the following three steps: 

1. Identification. Using plots of the data, autocorrelations, partial autocorrelations, and other 
information, a class of simple ARIMA models is selected. This amounts to estimating appropriate 
values for p, d, and q. 

2. Estimation. The phis and thetas of the selected model are estimated using maximum likelihood 
techniques, backcasting, etc., as outlined in Box-Jenkins (1976). 

3. Diagnostic Checking. The fitted model is checked for inadequacies by considering the 
autocorrelations of the residual series (the series of residual, or error, values). 

These steps are applied iteratively until step three does not produce any improvement in the model.  We 
will now go over these steps in detail. 
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Model Identification 
Assuming for the moment that there is no seasonal variation, the objective of the model identification step 
is to select values of d and then p and q in the ARIMA(p,d,q) model. When the series exhibits a trend, we may 
either fit and remove a deterministic trend or difference the series. Box-Jenkins seem to prefer differencing, 
while several other authors prefer the deterministic trend removal. 

The first step, in either case, is to look at the plots of the autocorrelations and partial autocorrelations. A 
series with a trend will have an autocorrelation patterns similar to the following: 

  

We notice that the large autocorrelations persist even after several lags. This indicates that either a trend 
should be removed or that the series should be differenced. The next step would be to difference the series.  

When the series is differenced, the autocorrelation plots might appear as follows: 

  

Differencing usually reduces the number of large autocorrelations considerably. If the differenced series still 
does not appear stationary, we would have to difference it again. 

It is often useful to determine the magnitude of a large autocorrelation and partial autocorrelation 
coefficient. An autocorrelation must be at least 2 √𝑁𝑁⁄ , in absolute value to be statistically significant. The 
following list gives some common values of significant autocorrelations for various sample sizes. Note that 
even though an autocorrelation is statistically significant, it may not be large enough to worry about.  
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N Large Autocorrelation 
25 0.40 
50 0.28 
75 0.23 
100 0.23 
200 0.14 
500 0.09 
1000 0.06 

By considering the patterns of the autocorrelations and the partial autocorrelations, we can guess a 
reasonable model for the data. The following chart shows the autocorrelation patterns that are produced by 
various types of ARMA models. 

Model Autocorrelations Partial Autocorrelations 

ARIMA(p,d,0) Infinite. Tails off. Finite. Cuts off after p lags. 

ARIMA(0,d,q) Finite. Cuts off  Infinite. Tails off. 
 after q lags. 

ARIMA(p,d,q) Infinite. Tails off. Infinite. Tails off. 

The identification phase determines the values of d (differencing), p (autoregressive order), and q (moving 
average order). By studying the two autocorrelation plots, you estimate these values.  

Differencing 

The level of differencing is estimated by considering the autocorrelation plots. When the autocorrelations 
die out quickly, the appropriate value of d has been found. 

Value of p 

The value of p is determined from the partial autocorrelations of the appropriately differenced series. If the 
partial autocorrelations cut off after a few lags, the last lag with a large value would be the estimated value 
of p. If the partial autocorrelations do not cut off, you either have a moving average model (p=0) or an 
ARIMA model with positive p and q. 

Value of q 

The value of q is found from the autocorrelations of the appropriately differenced series.  If the 
autocorrelations cut off after a few lags, the last lag with a large value would be the estimated value of q. If 
the autocorrelations do not cut off, you either have an autoregressive model (q=0) or an ARIMA model with a 
positive p and q. 
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Mixed Model 

When neither the autocorrelations nor the partial autocorrelations cut off, a mixed model is suggested. In an 
ARIMA(p,d,q) model, the autocorrelation function will be a mixture of exponential decay and damped sine 
waves after the first q-p lags. The partial autocorrelation function have the same pattern after p-q lags. By 
studying the first few correlations of each plot, you may be able to obtain reasonable guesses for p and q. 

Our experience has been that directly identifying the values of p and q in mixed models is very difficult. 
Instead, we use a trial and error approach in which successively more complex models are fit until the 
residuals show no further structure (large autocorrelations). Usually, we try fitting an ARIMA(1,d,0), an 
ARIMA(2,d,1), and an ARMA(4,3). We would select the simplest model that had a reasonably good fit. (We have 
found that the ARIMA(2,d,1) often works well and we usually begin with it.) 

Identification of a seasonal series is much more difficult. Box-Jenkins describe methods for model 
identification, but the user must be very skilled and experienced to successfully identify the model order. 
We have found that trial and error must usually be used. Usually, you want to keep the number of 
parameters to a minimum, so the values of p, P, q, Q, d, and D that you select should be less than or equal to 
two. 

As you can see, the identification step is subjective. One of the frequent objections about the Box-Jenkins 
method is that two trained forecasters will arrive at different forecasting models, even though they are 
using the same software. However, as we showed earlier, often models that appear to be very different on 
the surface are actually quite similar. 

Model Estimation and Diagnostic Checking 

Maximum Likelihood Estimation 

Once you have guesstimated values of p, d, and q, you are ready to estimate the phis and thetas. This 
program follows the maximum likelihood estimation process outlined in Box-Jenkins (1976).  The maximum 
likelihood equation is solved by nonlinear function maximization. Backcasting is used to obtain estimates of 
the initial residuals. The estimation process is calculation intensive and iterative, so it often takes a few 
seconds to obtain a solution. 

Diagnostic Checking 

Once a model has been fit, the final step is the diagnostic checking of the model.  The checking is carried out 
by studying the autocorrelation plots of the residuals to see if further structure (large correlation values) can 
be found.  If all the autocorrelations and partial autocorrelations are small, the model is considered 
adequate and forecasts are generated. If some of the autocorrelations are large, the values of p and/or q 
are adjusted and the model is re-estimated. 

This process of checking the residuals and adjusting the values of p and q continues until the resulting 
residuals contain no additional structure. Once a suitable model is selected, the program may be used to 
generate forecasts and associated probability limits. 
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Example 1 – Chemical Process Concentrations 
To complete this chapter, we will construct forecasts for two example problems. The first example we 
consider is called Series A by Box-Jenkins and is from their book. This is a set of 197 concentration values 
from a chemical process taken at two-hour intervals. The data are stored in the SeriesA dataset. If you want 
to follow along, you should open this dataset now. The following figure shows a plot of the data.  

Time Series Data Plot 
 
Data Plot 
───────────────────────────────────────────────────────────────────────── 

 
 

Notice that although the series moves around, it does not seem to follow a definite trend. The 
autocorrelation charts are shown next. 
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Series Autocorrelation Plots 
 
Autocorrelation Plot Section 
───────────────────────────────────────────────────────────────────────── 

     
 

The autocorrelations seem to die down fairly regularly after lag 1. The partial autocorrelations seem to be 
small after the first one, so we decide to fit an ARIMA(1,0,1) to these data.  

Model Estimation Reports 
The following output shows the results of fitting the model. 

 
Model Description Section 
───────────────────────────────────────────────────────────────────────── 
Series SeriesA-MEAN 
Model Regular(1,0,1)    Seasonal(No seasonal parameters) 
Mean 1.706244 
 
Observations 197 
Missing Values None 
Iterations 11 
Pseudo R-Squared 38.477242 
Residual Sum of Squares 0.1922096 
Mean Square Error 0.0009856902 
Root Mean Square 0.0313957 
───────────────────────────────────────────────────────────────────────── 
 
 
Model Estimation Section 
───────────────────────────────────────────────────────────────────────── 
Parameter Parameter Standard  Prob 
Name Estimate Error T-Value Level 
──────────────────────────────────────────────────────────────────────────────────── 

AR(1) 0.9208993 0.04111259 22.3994 0.000000 
MA(1) 0.5958619 0.08240521 7.2309 0.000000 
───────────────────────────────────────────────────────────────────────── 
 

The final step is to make the diagnostic checks of our model. The autocorrelation plot of the residuals are 
shown next. 
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Autocorrelation of Residuals Plot 
 
Autocorrelation Plot Section 
───────────────────────────────────────────────────────────────────────── 

 
 

No action here. Finally, we take a look at the Portmanteau test results. 

Portmanteau Test Report 
 
Portmanteau Test Section SeriesA-MEAN 
───────────────────────────────────────────────────────────────────────── 
  Portmanteau Prob  
Lag DF Test Value Level Decision (0.05) 
──────────────────────────────────────────────────────────────────────────────── 

. . . . . 

. . . . . 

. . . . . 
13 11 15.87 0.146054 Adequate Model 
14 12 18.12 0.112215 Adequate Model 
15 13 20.82 0.076500 Adequate Model 
16 14 20.85 0.105477 Adequate Model 
17 15 21.62 0.118122 Adequate Model 
18 16 23.40 0.103375 Adequate Model 
19 17 23.71 0.127450 Adequate Model 
20 18 25.64 0.108222 Adequate Model 
21 19 27.14 0.101334 Adequate Model 
22 20 27.17 0.130594 Adequate Model 
23 21 27.62 0.151180 Adequate Model 
24 22 28.13 0.171548 Adequate Model 
. . . . . 
. . . . . 
. . . . . 
───────────────────────────────────────────────────────────────────────── 
 

The diagnostic checking reveals no new patterns, so we can assume that our model is adequate. We 
generate the forecasts for the next few periods. These are shown next.  
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Time Series Plot Including Forecasts 
 
Forecast and Data Plot 
───────────────────────────────────────────────────────────────────────── 
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Example 2 – Carbon Dioxide Above Mauna Loa, Hawaii 
This example will an approach to data with a linear trend and seasonal variation. We will consider 216 
monthly carbon dioxide measurements above Mauna Loa, Hawaii. The data was obtained from Newton 
(1988). It is stored in the dataset named MLCO2.  

Time Series Data Plot 
 
Forecast and Data Plot 
───────────────────────────────────────────────────────────────────────── 

 
 

Note that the data are nonstationary on two counts: they show a trend and an annual cycle. The next step is 
to study the autocorrelations. The autocorrelation charts are shown next. 
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Series Autocorrelation Plots 
 
Autocorrelation Plot Section 
───────────────────────────────────────────────────────────────────────── 

     
 

Notice that the autocorrelations do not die out and they show a cyclical pattern. This points to 
nonstationarity in the data. The partial autocorrelations point to a value of 2 for p. However, because of the 
obvious nonstationarity, we first want to look at the autocorrelation functions of the first differences. 
Because these are monthly data, we use seasonal differences of length twelve. We also remove the trend in 
the data. 

 
Autocorrelation Plot Section 
───────────────────────────────────────────────────────────────────────── 

     
 

The autocorrelations die out fairly quickly. The partial autocorrelations are large around lags one and 
twelve. This suggests the multiplicative seasonal model: ARIMA(1,0,0) x (1,1,0)12. 
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Model Estimation Reports 
Following are the results of fitting this model.  

 
Model Description Section 
───────────────────────────────────────────────────────────────────────── 
Series MLCO2-TREND 
Model Regular(1,0,1)    Seasonal(1,1,0) Seasons =12 
Trend Equation (14.07418)+(0.07830546)x(date) 
 
Observations 216 
Missing Values None 
Iterations 13 
Pseudo R-Squared 99.500042 
Residual Sum of Squares 30.3262 
Mean Square Error 0.1508766 
Root Mean Square 0.3884284 
───────────────────────────────────────────────────────────────────────── 
 
 
Model Estimation Section 
───────────────────────────────────────────────────────────────────────── 
Parameter Parameter Standard  Prob 
Name Estimate Error T-Value Level 
───────────────────────────────────────────────────────────────────────────────────── 

AR(1) 0.9836381 0.01274416 77.1834 0.000000 
SAR(1) -0.4927093 0.05991305 -8.2237 0.000000 
MA(1) 0.3183001 0.06915411 4.6028 0.000004 
───────────────────────────────────────────────────────────────────────── 
 

Everything appears fine here. The final step is to make the diagnostic checks of our model. The 
autocorrelation plot of the residuals is shown next. 

Autocorrelation of Residuals Plot 
 
Autocorrelation Plot Section 
───────────────────────────────────────────────────────────────────────── 

 
 

There appear to be some persistent autocorrelations at lag 25. We take a look at the Portmanteau test 
results. 
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Portmanteau Test Report 
 
Portmanteau Test Section MLCO2-TREND 
───────────────────────────────────────────────────────────────────────── 
  Portmanteau Prob  
Lag DF Test Value Level Decision (0.05) 
──────────────────────────────────────────────────────────────────────────────── 

. . . . . 

. . . . . 

. . . . . 
13 10 33.45 0.000229 Inadequate Model 
14 11 33.45 0.000445 Inadequate Model 
15 12 33.45 0.000823 Inadequate Model 
16 13 33.88 0.001255 Inadequate Model 
17 14 37.87 0.000544 Inadequate Model 
18 15 38.32 0.000810 Inadequate Model 
19 16 41.28 0.000504 Inadequate Model 
20 17 44.00 0.000342 Inadequate Model 
21 18 46.57 0.000245 Inadequate Model 
22 19 47.58 0.000295 Inadequate Model 
23 20 53.11 0.000078 Inadequate Model 
24 21 79.02 0.000000 Inadequate Model 
. . . . . 
. . . . . 
. . . . . 
───────────────────────────────────────────────────────────────────────── 
 

The test points to additional information in the residual autocorrelations. We should refine our model 
further. We tried several other models but could not find one that worked a lot better. Finally, we generate 
the forecasts from this model. 

Time Series Plot Including Forecasts 
 
Forecast and Data Plot 
───────────────────────────────────────────────────────────────────────── 

 
 

As an exercise, you might try fitting this data with the Winters exponential smoothing algorithm. 
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