PASS Sample Size Software NCSS.com

Chapter 263

Bridging Study using a Non-Inferiority Test of Two Groups (Binary Outcome)

Introduction

This procedure calculates the power and sample size required for bridging studies that use a non-inferiority test of the mean difference between the results for the two regions: original and bridging. The response data is binary. Only a brief introduction to the subject will be given here. For a comprehensive discussion, refer to Liu, Hsueh, and Chen (2002).

Bridging Studies

Once a pharmaceutical product has been approved for use in one or more regions (countries) through a set of clinical trials, it is often desirable to register the product in a new region that was not included in the original study. When the cost and time needed to complete an additional set of clinical trials in the new region is prohibitive, a *bridging methodology* may be used to obtain the approval. The bridging analysis compares the results of a smaller and shorter *bridging study* in the new region with the data obtained in the original study.

The bridging analysis makes use of a two-group design in which the effectiveness in the new region is compared to the effectiveness in the original region using a non-inferiority test. The effectiveness in each region is measured by the difference between the proportions of a treatment group and a control group. The non-inferiority test shows that the differences in the two regions do not differ by more than a small amount, called the non-inferiority margin.

Test Statistics

This section summarizes the results found in Liu, Hsueh, and Chen (2002), page 974 - 976. Note that in the following presentation, since the response is binary, the mean response is also the proportion of responses in which the outcome is positive.

Original Study

Let Y_{ijk} be the binary response (0 or 1) of subject k on receiving treatment j in original study i. It is assumed that $i=1,\ldots,I$. Also, j=T (treatment), C (control) and $k=1,\ldots,N_{ij}$. Hence Y_{ijk} includes the response data from each of the original trials. Assume that the Y_{ijk} are independently distributed with means μ_{ij} and variance σ_{ij}^2 . Further assume that μ_{ij} has a normal distribution with mean μ_{Oj} and variance γ_{Oj}^2 . Hence, the Y_{ijk} 's are independently distributed with mean μ_{Oj} and variance $\omega_{ij}^2 = \sigma_{ij}^2 + \gamma_{Oj}^2$.

Bridging Study using a Non-Inferiority Test of Two Groups (Binary Outcome)

Let Y_{ij} be the sample means. The MLE of μ_{Oj} is

$$t_{Oj} = \frac{\sum Y_{ij} / (w_{ij}^2 / N_{ij})}{\sum 1 / (w_{ij}^2 / N_{ij})}, i = 1, ..., I; j = T, C$$

where

$$w_{ij}^2 = \sum \frac{\left(Y_{ijk} - t_{Oj}\right)^2}{N_{ij}}$$

is the MLE of ω_{ij}^2 . The MLE's t_{0j} and ω_{ij}^2 are solved for iteratively.

Bridging Study

Let Y_{Bjk} be the binary response of subject k on receiving treatment j in the bridging study conducted in the new region. It is assumed that j = T, C and $k = 1, ..., N_{Bj}$. As before, the Y_{Bjk} 's are independently distributed with mean μ_{Bj} and variance ω_{Bj}^2 .

The MLE of μ_{Bj} is the sample mean Y_{Bj} . Let $t_{Bj} = Y_{Bj}$, j = T, C.

Non-Inferiority Test

The MLEs t_{Oj} and t_{Bj} are independently normally distributed with asymptotic variances estimated by

$$s_{0j}^2 = \frac{1}{\sum 1/(w_{ij}^2/N_{ij})}$$

and

$$s_{Bj}^2 = \sum \frac{(Y_{Bjk} - t_{Bj})^2}{N_{Bj}^2}$$

Let $E_L = -NIM$ be the lower non-inferiority limit for the mean difference between regions, assuming NIM > 0. NIM is the non-inferiority margin. Often, NIM is set using $NIM = f(t_{OT} - t_{OC})$ where f is between 0 and 1.

The non-inferiority hypotheses, assuming higher values are better, are

$$H_0: \theta \leq -NIM$$
 vs. $H_1: \theta > -NIM$

where

$$\theta = (\mu_{BT} - \mu_{BC}) - (\mu_{OT} - \mu_{OC})$$

is the difference in treatment effects between the two regions.

Bridging Study using a Non-Inferiority Test of Two Groups (Binary Outcome)

The test statistic

$$t = (t_{BT} - t_{BC}) - (t_{OT} - t_{OC})$$

is an asymptotically unbiased estimate for θ .

The variance of *t* is given by

$$s^2 = s_{BT}^2 + s_{BC}^2 + s_{OT}^2 + s_{OC}^2$$
.

The test statistic for the non-inferiority test is

$$T_L = \frac{(t + NIM)}{s}$$

The null hypothesis is rejected, and non-inferiority is concluded at significance level α if and only if $T_L > z_\alpha$, where z_α is the α^{th} upper percentile of the standard normal distribution. For a one-sided test such as this, α is often set to 0.025.

Power Calculation

Based on the above results, Liu *et al.* (2002) estimate the sample size required to meet the power, significance level, and effect size requirement as

$$N_B \ge \frac{A_1}{A_2 - A_3}$$

where

$$A_{1} = \frac{\sigma_{BT}^{2}}{g_{BT}} + \frac{\sigma_{BC}^{2}}{1 - g_{BT}}$$

$$A_{2} = \frac{NIM^{2}}{\left(z_{\alpha} + z_{\beta}\right)^{2}}$$

$$A_{3} = s_{OT}^{2} + s_{OC}^{2}$$

$$g_{BT} = \frac{N_{BT}}{N_{P}}$$

where $\beta = 1$ – Power, σ_{BT}^2 is often estimated by s_{OT}^2 , σ_{BC}^2 is often estimated by s_{OC}^2 , and the actual difference between the two study differences is zero.

Note that since the variance of a Bernoulli random variable is p(1-p), all four variance terms may be estimated from the corresponding proportions. For example, $\sigma_{BT}^2 = P_{BT}(1-P_{BT})$.

The power is obtained by rearranging this formula.

Example 1 – Finding Sample Size

A certain drug has been cleared for use in North America using parallel-group, treatment versus control clinical trials. The primary endpoint was binary. These trials resulted in the following summary statistics:

$$N_{OT} = 973$$
 $\hat{\mu}_{OT} = 0.732$ $N_{OC} = 948$ $\hat{\mu}_{OC} = 0.508$

Researchers in a region not included in the original study would like to register the new drug for use in that region. To do so, they are planning a bridging study with a significance level of 0.05 and a power of 0.8. They will set $P_{BT} = P_{OT}$ and $P_{BC} = P_{OC}$. They want to calculate the necessary sample size when f is 0.3, 0.4, or 0.5. They are planning a balanced study.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Sample Size
Noт (Sample Size of Group от)	973
Noc (Sample Size of Group oc)	948
Рот (Group от Proportion)	0.732
Poc (Group oc Proportion)	0.508
Power	0.8
Alpha	0.025
Group Allocation	Equal (Nвт = Nвс)
Non-Inferiority Margin Input	Enter f, the proportion NIM is of Рот-Рос
f (Proportion NIM is of Рот-Рос)	0.3 0.4 0.5
Рвт (Group вт Proportion)	0.732
Рвс (Group вс Proportion)	0.508

PASS Sample Size Software NCSS.com Bridging Study using a Non-Inferiority Test of Two Groups (Binary Outcome)

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Numeric Results

Solve For: Sample Size

Definition: $\theta = (PBT - PBC) - (POT - POC)$ H0: $\theta \le -NIM$ vs. H1: $\theta > -NIM$ Hypotheses:

H1 Assumption: $\theta = 0$

801

394

801

394

0.80024

0.80016

				Non-Inferio	rits:						Original Study		
	Sa	ample S	Size	Proportion NIM		Propo	rtion			nple ize		Proportion	
Power	Nвт	Nвс	NB	is of Рот-Рос f	Margin NIM	Treatment Рвт	Control Рвс	Alpha	Nот	Noc	Difference Do	Treatment Рот	Control Poc
0.80001	4053	4053	8106	0.3	0.0672	0.732	0.508	0.025	973	948	0.224	0.732	0.508

0.508

0.508

0.732

0.732

973

973

948

948

0.224

0.224

0.732

0.732

0.508

0.508

0.025

0.025

0.1120 Power The probability of rejecting a false null hypothesis when the alternative hypothesis is true.

0.0896

Nrt The number of bridging study subjects assigned to the treatment group. The number of bridging study subjects assigned to the control group. Nвс

0.4

0.5

Bridging Study

Nв The total sample size of the bridging study.

1602

The proportion of |Pot - Poc| used as the magnitude of the non-inferiority margin. NIM = f x |Pot - Poc|.

NIM The non-inferiority margin. L = -NIM or U = NIM. NIM > 0

Рвт The response proportion of subjects assigned to the treatment group in the bridging study. Рвс The response proportion of subjects assigned to the control group in the bridging study.

Alpha The probability of rejecting a true null hypothesis.

Nот The number of subjects assigned to the treatment group in the original study. Noc The number of subjects assigned to the control group in the original study. Dο The difference between the group proportions (T - c) in the original study.

Рот The response proportion of subjects assigned to the treatment group in the original study. Poc The response proportion of subjects assigned to the control group in the original study.

Summary Statements

A parallel two-group bridging study design will be used to test whether the bridging study proportion difference (µвт - µвс) is non-inferior to the original study proportion difference (µот - µос), with a difference non-inferiority proportion of 0.3 corresponding to a non-inferiority margin of 0.0672 (H0: $\theta \le -0.0672$ versus H1: $\theta > -0.0672$, where $\theta = (PBT - PBC) - (POT - POC)$. The comparison will be made using a one-sided non-inferiority Z-test based on the difference in treatment effects of the two regions, with a Type I error rate (α) of 0.025. The group sample sizes of the original study were 973 (treatment) and 948 (control). The group proportions of the original study were 0.732 (treatment) and 0.508 (control), yielding a difference of 0.224. The assumed group proportions of the bridging study region, used only in the calculation of group standard deviations, are 0.732 (treatment) and 0.508 (control). To detect a difference in treatment effects of 0 (or a bridging study region proportion difference also of 0.224) with 80% power, the number of subjects needed for the bridging study will be 4053 in the treatment group and 4053 in the control group.

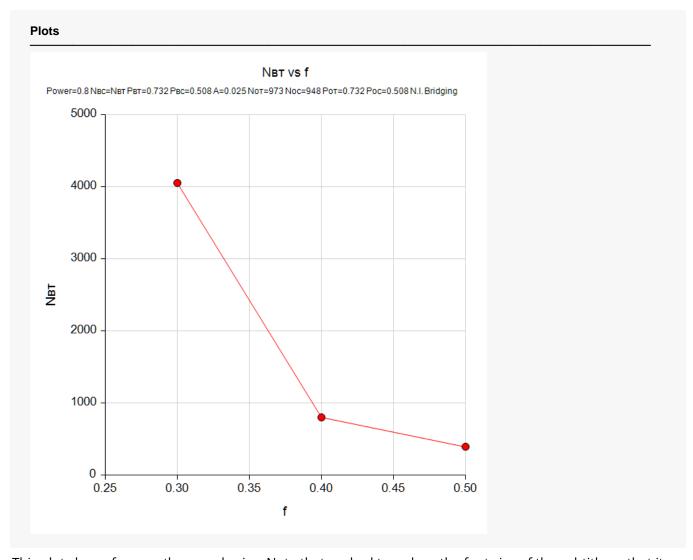
PASS Sample Size Software NCSS.com

Bridging Study using a Non-Inferiority Test of Two Groups (Binary Outcome)

Dropout-	Inflated	Samp	le Size
-----------------	-----------------	------	---------

	Sample Size				opout-Inf Enrollme Sample S	nt	Expected Number of Dropouts			
Dropout Rate	Nвт	Nвс	Nв	N вт'	Nвс'	NB'	Dт	Dc	D	
20%	4053	4053	8106	5067	5067	10134	1014	1014	2028	
20%	801	801	1602	1002	1002	2004	201	201	402	
20%	394	394	788	493	493	986	99	99	198	
Dropout Rate	study an	-	• •	,	•	o be lost at rar (i.e., will be tre				
	as DR.									
Nвт, Nвс, and Nв	subjects	are evalua	ted out of the	•	•	(as entered by s that are enro	,			
NBT, NBC, and NB	The evalua subjects achieve The numbo evaluable and NBC rounded	are evalua the stated per of subjects, using the fup. (See J	ted out of the cower. cts that shoul based on the ormulas Nвт	e NBT' and No d be enrolled e assumed d ' = NBT / (1 - 2010) pages	sc' subjects d in the stud ropout rate DR) and N	`	lled in the stu obtain Nвт, N c' are calcula - DR), with N	idy, the de вс, and Ne ted by infla вт' and Nв	sign will з ting Nвт	

Dropout Summary Statements


Anticipating a 20% dropout rate, 5067 subjects should be enrolled in Group 1, and 5067 in Group 2, to obtain final group sample sizes of 4053 and 4053, respectively.

References

Liu, J.P., Hsueh, H., Chen, J.J. 2002. 'Sample Size Requirements for Evaluation of Bridging Evidence.' Biometrical Journal, Volume 44 (8), Pages 969-981.

This report shows the sample size for the indicated parameter configurations.

Plots Section

This plot shows f versus the sample size. Note that we had to reduce the font size of the subtitle so that it would fit in the space allotted.

Bridging Study using a Non-Inferiority Test of Two Groups (Binary Outcome)

Example 2 – Validation using a Previously Validated Procedure

We could not find a validation example in the literature, so we will validate this procedure using the *Bridging Study using a Non-Inferiority Test of Two Groups* (*Continuous Outcomes*) procedure that has been validated.

The following example will be used for the validation. The summary statistics of the original study are

$$N_{OT} = 1000$$
 $P_{OT} = 0.8$
 $N_{OC} = 1000$ $P_{OC} = 0.5$

Note that
$$D_0 = 0.8 - 0.5 = 0.3$$
, $s_{OT} = \sqrt{0.8(0.2)} = 0.4$ and $s_{OC} = \sqrt{0.5(0.5)} = 0.5$. In the bridging study, set $f = 0.4$, $alpha = 0.025$, and $power = 0.8$.

These values translate to the following in the Continuous Outcomes procedure.

$$N_{OT} = 1000$$
 $D_O = 0.3$ $s_{OT} = 0.4$ $N_{OC} = 1000$ $s_{OC} = 0.5$

Running these values through that procedure results in the following sample sizes for the bridging study:

$$N_{BT}=N_{BC}=288.$$

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Sample Size
Noт (Sample Size of Group от)	1000
Noc (Sample Size of Group oc)	1000
Рот (Group от Proportion)	0.8
Poc (Group oc Proportion)	0.5
Power	0.8
Alpha	0.025
Group Allocation	Еqual (Nвт = Nвс)
Non-Inferiority Margin Input	Enter f, the proportion NIM is of Ροτ-Ρος
f (Proportion NIM is of Рот-Рос)	0.4
Рвт (Group вт Proportion)	0.8
Рвс (Group вс Proportion)	0.5

PASS Sample Size Software NCSS.com

Bridging Study using a Non-Inferiority Test of Two Groups (Binary Outcome)

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve For Definition Hypothes H1 Assu	n: ses:	θ = (Рвт - Рвс) - (Рот - Рос)											
				Bridging St	udy						Original	Study	
				Non-Inferio	rity	Proportion			Sample		Proportion		
	Sa	mple S	Size	Proportion NIM	Marain	Transment	Control		Size		D:#	Trantmant	011
Power	Nвт	Nвс	Νв	is of Рот-Рос f	Margin NIM	Treatment Рвт	Control Рвс	Alpha	Nот	Noc	Difference Do	Treatment Рот	Control Poo
		288	576	0.4	0.12	0.8	0.5	0.025	1000	1000	0.3	0.8	0.5

This procedure has also calculated a sample size of 288 per group, so the procedure is validated.