PASS Sample Size Software NCSS.com

Chapter 259

Bridging Study using a Non-Inferiority Test of Two Groups (Continuous Outcome)

Introduction

This procedure calculates the power and sample size required for bridging studies that use a non-inferiority test of the mean difference between the results for the two regions: original and bridging. Only a brief introduction to the subject will be given here. For a comprehensive discussion, refer to Liu, Hsueh, and Chen (2002).

Bridging Studies

Once a pharmaceutical product has been approved for use in one or more regions (countries) through a set of clinical trials, it is often desirable to register the product in a new region that was not included in the original study. When the cost and time needed to complete an additional set of clinical trials in the new region is prohibitive, a *bridging methodology* may be used to obtain the approval. The bridging analysis compares the results of a smaller and shorter *bridging study* in the new region with the data obtained in the original study.

The bridging analysis makes use of a two-group design in which the effectiveness in the new region is compared to the effectiveness in the original region using a non-inferiority test. The effectiveness in each region is measured by the difference between the means of a treatment group and a control group. The non-inferiority test shows that the differences in the two regions do not differ by more than a small amount, called the non-inferiority.

Test Statistics

This section summarizes the results found in Liu, Hsueh, and Chen (2002), page 974 - 976.

Original Study

Let Y_{ijk} be the clinical response of subject k on receiving treatment j in original study i. It is assumed that $i=1,\ldots,I$. Also, j=T (treatment), C (control) and $k=1,\ldots,N_{ij}$. Hence Y_{ijk} includes the response data from each of the original trials. Assume that the Y_{ijk} are independently normally distributed with means μ_{ij} and variance σ_{ij}^2 . Further assume that μ_{ij} has a normal distribution with mean μ_{0j} and variance γ_{0j}^2 . Hence, the Y_{ijk} 's are independently normally distributed with mean μ_{0j} and variance $\omega_{ij}^2 = \sigma_{ij}^2 + \gamma_{0j}^2$.

Let Y_{ij} be the sample means. The MLE of μ_{Oj} is

$$t_{Oj} = \frac{\sum Y_{ij} / (w_{ij}^2 / N_{ij})}{\sum 1 / (w_{ij}^2 / N_{ij})}, i = 1, ..., I; j = T, C$$

Bridging Study using a Non-Inferiority Test of Two Groups (Continuous Outcome)

where

$$w_{ij}^2 = \sum \frac{\left(Y_{ijk} - t_{Oj}\right)^2}{N_{ij}}$$

is the MLE of ω_{ij}^2 . The MLE's t_{0j} and ω_{ij}^2 are solved for iteratively.

Bridging Study

Let Y_{Bjk} be the clinical response of subject k on receiving treatment j in the bridging study conducted in the new region. It is assumed that j = T, C and $k = 1, ..., N_{Bj}$. As before, the Y_{Bjk} 's are independently normally distributed with mean μ_{Bj} and variance ω_{Bj}^2 .

The MLE of μ_{Bj} is the sample mean Y_{Bj} . Let $t_{Bj} = Y_{Bj}$, j = T, C.

Non-Inferiority Test

The MLEs t_{Oi} and t_{Bi} are independently normally distributed with asymptotic variances estimated by

$$s_{0j}^2 = \frac{1}{\sum 1/(w_{ij}^2/N_{ij})}$$

and

$$s_{Bj}^{2} = \sum \frac{\left(Y_{Bjk} - t_{Bj}\right)^{2}}{N_{Bj}^{2}}$$

Let $E_L = -NIM$ be the lower non-inferiority limit for the mean difference between regions, assuming NIM > 0. NIM is the non-inferiority margin. Often, NIM is set using $NIM = f(t_{OT} - t_{OC})$ where f is between 0 and 0.5.

The non-inferiority hypotheses, assuming higher values are better, are

$$H_0: \theta \leq -NIM$$
 vs. $H_1: \theta > -NIM$

where

$$\theta = (\mu_{BT} - \mu_{BC}) - (\mu_{OT} - \mu_{OC})$$

is the difference in treatment effects between the two regions.

The test statistic

$$t = (t_{RT} - t_{RC}) - (t_{OT} - t_{OC})$$

is an asymptotically unbiased estimate for θ .

NCSS.com

Bridging Study using a Non-Inferiority Test of Two Groups (Continuous Outcome)

The variance of t is given by

$$s^2 = s_{BT}^2 + s_{BC}^2 + s_{OT}^2 + s_{OC}^2.$$

The test statistic for the non-inferiority test is

$$T_L = \frac{(t + NIM)}{s}$$

The null hypothesis is rejected, and non-inferiority is concluded at significance level α if and only if $T_L > z_\alpha$, where z_α is the α^{th} upper percentile of the standard normal distribution. For a one-sided test such as this, α is often set to 0.025.

Power Calculation

Based on the above results, Liu *et al.* (2002) estimate the sample size required to meet the power, significance level, and effect size requirement as

$$N_B \ge \frac{A_1}{A_2 - A_3}$$

where

$$A_1 = \frac{\sigma_{BT}^2}{g_{BT}} + \frac{\sigma_{BC}^2}{1 - g_{BT}}$$

$$A_2 = \frac{NIM^2}{\left(z_{\alpha} + z_{\beta}\right)^2}$$

$$A_3 = s_{OT}^2 + s_{OC}^2$$

$$g_{BT} = \frac{N_{BT}}{N_{B}}$$

where $\beta=1$ – Power, σ_{BT}^2 is often estimated by s_{OC}^2 , σ_{BC}^2 is often estimated by s_{OC}^2 , and the actual difference between the two study differences is zero.

The power is obtained by rearranging this formula.

Example 1 - Finding Sample Size

A certain drug has been cleared for use in North America using parallel-group, treatment versus control clinical trials. These trials resulted in the following summary statistics:

$$N_{OT} = 973$$
 $\hat{\mu}_{OT} = 15.47$ $s_{OT} = 11.86$ $N_{OC} = 948$ $\hat{\mu}_{OC} = 4.14$ $s_{OC} = 10.39$

Researchers in a region not included in the original study would like to register the new drug for use in that region. To do so, they are planning a bridging study with a significance level of 0.05 and a power of 0.8. They will set $\sigma_{BT} = s_{OT}$ and $\sigma_{BC} = s_{OC}$. They want to calculate the necessary sample size when f is 0.2, 0.3, or 0.4. They are planning a balanced study.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Sample Size
Noт (Sample Size of Group от)	973
Noc (Sample Size of Group oc)	948
Do (Mean Difference)	11.33
Soт (Std Deviation of Group от)	11.86
Soc (Std Deviation of Group oc)	10.39
Power	0.8
Alpha	0.025
Group Allocation	Еqual (Nвт = Nвс)
Non-Inferiority Margin Input	Enter f, the proportion NIM is of Do
f (Proportion NIM is of Do)	0.2 0.3 0.4
овт (Std Deviation of Group вт)	11.86
σвс (Std Deviation of Group вс)	10.39

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Numeric Results

Solve For: Sample Size

Definition: $\theta = (\mu BT - \mu BC) - (\mu OT - \mu OC)$ Hypotheses: $H0: \theta \le -NIM \ vs. \ H1: \theta > -NIM$

H1 Assumption: $\theta = 0$

				Bridging S	tudy	y Original Study		Study					
				Non-Infer	iority	Standard [Deviation		Sar	nple		Standard [Deviation
	S	ample S	Size	Proportion NIM is of Do	Margin	Treatment	Control		s	ize	Mean Difference	Treatment	Control
Power	Nвт	Nвс	Νв	f	NIM	σвт	σвс	Alpha	Nот	Noc	Do	Sот	Soc
0.80031	629	629	1258	0.2	2.266	11.86	10.39	0.025	973	948	11.33	11.86	10.39
0.80021	205	205	410	0.3	3.399	11.86	10.39	0.025	973	948	11.33	11.86	10.39
0.80195	106	106	212	0.4	4.532	11.86	10.39	0.025	973	948	11.33	11.86	10.39

Power The probability of rejecting a false null hypothesis when the alternative hypothesis is true.

NBT The number of bridging study subjects assigned to the treatment group.

NBC The number of bridging study subjects assigned to the control group.

NB The total sample size of the bridging study.

f The proportion of |Do| used as the magnitude of the non-inferiority margin. NIM = f x |Do|.

NIM The magnitude of the non-inferiority margin. L = -NIM or U = NIM. NIM > 0.

The response standard deviation of subjects assigned to the treatment group in the bridging study.
 The response standard deviation of subjects assigned to the control group in the bridging study.

Alpha The probability of rejecting a true null hypothesis.

Noτ The number of subjects assigned to the treatment group in the original study. The number of subjects assigned to the control group in the original study. The difference between the group means (τ - c) in the original study.

Sot The response standard deviation of subjects assigned to the treatment group in the original study.

Soc The response standard deviation of subjects assigned to the control group in the original study.

Summary Statements

A parallel two-group bridging study design will be used to test whether the bridging study mean difference (µвт - µвс) is non-inferior to the original study mean difference (µот - µос), with a difference non-inferiority proportion of 0.2 corresponding to a non-inferiority margin of 2.266 (H0: $\theta \le$ -2.266 versus H1: $\theta >$ -2.266, where $\theta =$ (µвт - µвс) - (µот - µос)). The comparison will be made using a one-sided non-inferiority Z-test based on the difference in treatment effects of the two regions, with a Type I error rate (α) of 0.025. The group sample sizes of the original study were 973 (treatment) and 948 (control). The within-group standard deviations of the original study were 11.86 (treatment) and 10.39 (control). The original study mean difference (treatment minus control) was 11.33. The standard deviations within the treatment and control groups of the bridging study region are assumed to be 11.86 and 10.39, respectively. To detect a difference in treatment effects of 0 (or a bridging study region mean difference also of 11.33) with 80% power, the number of subjects needed for the bridging study will be 629 in the treatment group and 629 in the control group.

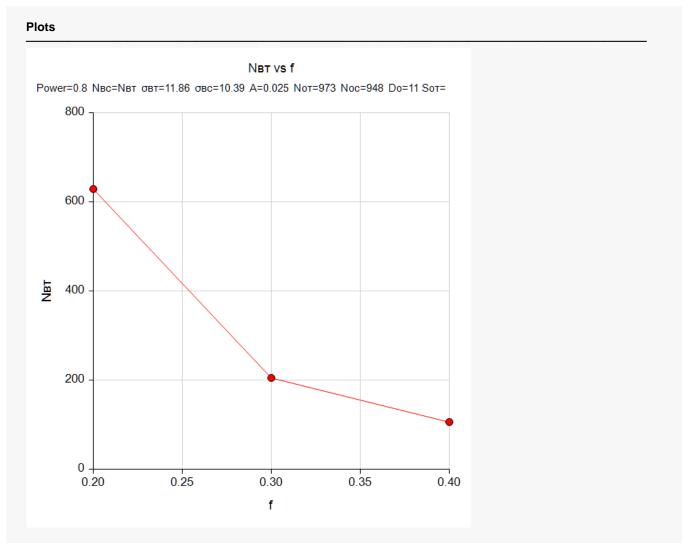
PASS Sample Size Software NCSS.com

Bridging Study using a Non-Inferiority Test of Two Groups (Continuous Outcome)

Dropout-Inflated Sample Size

	s	Sample S	ize		ppout-Infl Enrollmei Sample Si	nt	ı	Expecte Number of Dropout	of
Dropout Rate	Nвт	Nвс	Νв	N вт'	N вс'	NB'	Dт	Dc	D
20%	629	629	1258	787	787	1574	158	158	316
20%	205	205	410	257	257	514	52	52	104
20%	106	106	212	133	133	266	27	27	54
Dropout Rate	study and as DR.	d for whom	no response	data will be c	ollected (i.e	e lost at rande , will be treat	ed as "missi	ng"). Abbr	eviated
Nвт, Nвс, and Nв	subjects		ted out of the	•		s entered by the hat are enrolle	,		
Nвт', Nвс', and Nв'	The number evaluable and NBC rounded	er of subjects, using the function of the subjects, using the function of the subject of the sub	cts that should based on the ormulas Nвт'	assumed dro = Nвт / (1 - D 2010) pages 5	pout rate. N R) and Nвс	in order to ob NBT' and NBC' a S' = NBC / (1 - I now, S.C., Sha	are calculate DR), with NB	ed by inflat т' and Nвс	
Dт, Dc, and D	, ,	, ,	r of dropouts.	,	BT DC = NE	c' - Nec and	D = DT + Dc		

Dropout Summary Statements


Anticipating a 20% dropout rate, 787 subjects should be enrolled in Group 1, and 787 in Group 2, to obtain final group sample sizes of 629 and 629, respectively.

References

Liu, J.P., Hsueh, H., Chen, J.J. 2002. 'Sample Size Requirements for Evaluation of Bridging Evidence.' Biometrical Journal, Volume 44 (8), Pages 969-981.

This report shows the sample size for the indicated parameter configurations.

Plots Section

This plot shows the power versus the sample size. Note that we had to reduce the font size of the subtitle so that it would fit in the space allotted.

Bridging Study using a Non-Inferiority Test of Two Groups (Continuous Outcome)

Example 2 - Validation using Liu et al. (2002)

Liu et al. (2002) include Table 2 of example results on page 977. We will use the entry from the sixth row and second column (f=0.2) of this table as our validation example. The other table parameters are CV = 80%, $N_O=1000$, $g_{NT}=0.5$. They find the resulting bridging study sample size to be 55 per group (110 total).

These input values are consistent with the following summary statistics:

$$N_{OT} = 500$$
 $\hat{\mu}_{OT} = 4$ $s_{OT} = 0.8$ $N_{OC} = 500$ $\hat{\mu}_{OC} = 2$ $s_{OC} = 0.8$

The significance level = 0.05 and the power = 0.8. Set $\sigma_{BT} = s_{OT}$ and $\sigma_{BC} = s_{OC}$.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Sample Size
Noт (Sample Size of Group от)	500
Noc (Sample Size of Group oc)	500
Do (Mean Difference)	2
Soт (Std Deviation of Group от)	0.8
Soc (Std Deviation of Group oc)	0.8
Power	0.8
Alpha	0.05
Group Allocation	Еqual (Nвт = Nвс)
Non-Inferiority Margin Input	Enter f, the proportion NIM is of Do
f (Proportion NIM is of Do)	0.2
σвт (Std Deviation of Group вт)	0.8
σвс (Std Deviation of Group вс)	0.8

PASS Sample Size Software NCSS.com

Bridging Study using a Non-Inferiority Test of Two Groups (Continuous Outcome)

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve Fo Definition Hypothes H1 Assur	n: ses:	θ = (H0: 6	1 ≤ -NIN	e вс) - (μοτ - μοс) И vs. H1: θ >	-NIM								
				Bridging \$							Original	Study	
				Non-Inferiority		Standard Deviation			Sample			Standard Deviation	
Power	 Nвт	mple S NBC	NB	Proportion NIM is of Do f	Margin NIM	Treatment	Control σвс	Alpha	S Nот	ize Noc	Mean Difference Do	Treatment Soт	Control
0.80063	 55	 55	110	0.2	0.4	0.8	0.8	0.05	500	500	2	0.8	0.8

PASS has also calculated a sample size of 55 per group, so the procedure is validated.