Introduction

This procedure calculates the power and sample size required for bridging studies that use an equivalence test to compare the efficacy of a treatment in two regions. The response data is binary. Schuirmann's (1987) two one-sided tests (TOST) approach is used to test the equivalence of a bridging study and the original study. Only a brief introduction to the subject will be given here. For a comprehensive discussion, refer to Liu, Hsueh, and Chen (2002).

Bridging Studies

Once a pharmaceutical product has been approved for use in one or more regions (countries) through a set of clinical trials, it is often desirable to register the product in a new region that was not included in the original study. When the cost and time needed to complete an additional set of clinical trials in the new region is prohibitive, a *bridging methodology* may be used to obtain the approval. The bridging analysis compares the results of a smaller and shorter *bridging study* in the new region with the data obtained in the original study.

The bridging analysis makes use of a two-group design in which the effectiveness in the new region is compared to the effectiveness in the original region using a TOST equivalence test. The effectiveness in each region is measured by the difference between the proportions of a treatment group and a control group. The equivalence test shows that the differences between the two regions do not differ by more than a small amount, called the margin of equivalence.

Test Statistics

This section summarizes the results found in Liu, Hsueh, and Chen (2002), page 974. Note that in the following presentation, since the response is binary, the mean response is also the proportion of responses in which the outcome is positive.

Original Study

Let Y_{ijk} be the binary response (0 or 1) of subject k on receiving treatment j in original study i. It is assumed that i = 1, ..., I. Also, j = T (treatment), C (control) and $k = 1, ..., N_{ij}$. Hence Y_{ijk} includes the response data from each of the original trials. Assume that the Y_{ijk} are independently distributed with means μ_{ij} and variance σ_{ij}^2 . Further assume that μ_{ij} has a normal distribution with mean μ_{Oj} and variance γ_{Oj}^2 . Hence, the Y_{ijk} 's are independently distributed with mean μ_{Oj} and variance $\omega_{ij}^2 = \sigma_{ij}^2 + \gamma_{Oj}^2$.

Let Y_{ij} be the sample means. The MLE of μ_{Oj} is

$$t_{0j} = \frac{\sum Y_{ij} / (w_{ij}^2 / N_{ij})}{\sum 1 / (w_{ij}^2 / N_{ij})}, i = 1, \dots, I; j = T, C$$

where

$$w_{ij}^2 = \sum \frac{\left(Y_{ijk} - t_{Oj}\right)^2}{N_{ij}}$$

is the MLE of ω_{ij}^2 . The MLE's t_{0j} and ω_{ij}^2 are solved for iteratively.

Bridging Study

Let Y_{Bjk} be the binary response of subject k on receiving treatment j in the bridging study conducted in the new region. It is assumed that j = T, C and $k = 1, ..., N_{Bj}$. As before, the $Y_{Bjk}'s$ are independently distributed with mean μ_{Bj} and variance ω_{Bj}^2 .

The MLE of μ_{Bj} is the sample mean Y_{Bj} . Let $t_{Bj} = Y_{Bj}$, j = T, C.

Equivalence Test

The MLEs t_{0j} and t_{Bj} are independently normally distributed with asymptotic variances estimated by

$$s_{0j}^2 = \frac{1}{\sum 1/(w_{ij}^2/N_{ij})}$$

and

$$s_{Bj}^2 = \sum \frac{\left(Y_{Bjk} - t_{Bj}\right)^2}{N_{Bj}^2}$$

Let $E_L = -E$ and $E_U = E$ be the lower and upper equivalence limits for the mean differences, assuming E > 0. Usually, *E* is set using $E = f(t_{OT} - t_{OC})$ where *f* is between 0 and 1.

The TOST equivalence hypotheses are

$$H_0: \theta \le -E$$
 or $\theta \ge E$ vs. $H_1: -E < \theta < E$

where

$$\theta = (\mu_{BT} - \mu_{BC}) - (\mu_{OT} - \mu_{OC})$$

is the difference in treatment effects between the two regions.

The test statistic

$$t = (t_{BT} - t_{BC}) - (t_{OT} - t_{OC})$$

is an asymptotically unbiased estimate for θ .

The variance of *t* is given by

$$s^2 = s_{BT}^2 + s_{BC}^2 + s_{OT}^2 + s_{OC}^2.$$

The two test statistics for the equivalence test are

$$T_L = \frac{(t+E)}{s}$$
 and $T_U = \frac{(t-E)}{s}$

The null hypothesis is rejected, and equivalence is concluded at significance level α if and only if $T_L > z_{\alpha}$ and $T_U < -z_{\alpha}$, where z_{α} is the α^{th} upper percentile of the standard normal distribution.

Power Calculation

Based on the above results, Liu *et al.* (2002) estimate the sample size required to meet the power, significance level, and effect size requirement as

$$N_B \ge \frac{A_1}{A_2 - A_3}$$

where

$$A_{1} = \frac{\sigma_{BT}^{2}}{g_{BT}} + \frac{\sigma_{BC}^{2}}{1 - g_{BT}}$$
$$A_{2} = \frac{E^{2}}{\left(z_{\alpha} + z_{\beta/2}\right)^{2}}$$
$$A_{3} = s_{OT}^{2} + s_{OC}^{2}$$
$$g_{BT} = \frac{N_{BT}}{N_{B}}$$

where $\beta = 1 - \text{Power}$, σ_{BT}^2 is often estimated by s_{OT}^2 , σ_{BC}^2 is often estimated by s_{OC}^2 , and the actual difference between the two study differences is zero.

Note that since the variance of a Bernoulli random variable is p(1 - p), all four variance terms may be estimated from the corresponding proportions. For example, $\sigma_{BT}^2 = P_{BT}(1 - P_{BT})$.

The power is obtained by rearranging this formula.

Example 1 – Finding Sample Size

A certain drug has been cleared for use in North America using parallel-group, treatment versus control clinical trials. The primary endpoint was binary. These trials resulted in the following summary statistics:

 $N_{OT} = 973$ $\hat{\mu}_{OT} = 0.732$ $N_{OC} = 948$ $\hat{\mu}_{OC} = 0.508$

Researchers in a region not included in the original study would like to register the new drug for use in that region. To do so, they are planning a bridging study with a significance level of 0.05 and a power of 0.8. They will set $P_{BT} = P_{OT}$ and $P_{BC} = P_{OC}$. They want to calculate the necessary sample size when *f* is 0.3, 0.4, or 0.5. They are planning a balanced study.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Design Tab

<u>_</u>	
Solve For	Sample Size
Not (Sample Size of Group ot)	973
Noc (Sample Size of Group oc)	948
Рот (Group от Proportion)	0.732
Poc (Group oc Proportion)	0.508
Power	0.8
Alpha	0.05
Group Allocation	Equal (Nвт = Nвс)
Equivalence Limit Input Type	Enter f, the proportion E is of Рот-Рос
f (Proportion E is of Pot-Poc)	0.4 0.5 0.6
Рвт (Group вт Proportion)	0.732
Рвс (Group вс Proportion)	0.508

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Numeric Results	6				
	Sample Size $\theta = (PBT - PBc) - (POT - Poc)$ $H0: \theta \le -E \text{ or } \theta \ge E \text{ vs. } H1: -E < \theta < E$ $\theta = 0$				
	Bridging Study			Original Study	
	Equivalence	Proportion	Sample	Proportion	

	Sample Size Proportion E			Propo			nple ize	Proportion					
Power	Nвт	Nвс	Νв	is of Рот-Рос f	Margin E	Treatment Рвт	Control Рвс	Alpha	Noт	Noc	Difference Do	Treatment Рот	Control Poc
0.80006 0.80052 0.80094	945 447 272	945 447 272	1890 894 544	0.4 0.5 0.6	0.0896 0.1120 0.1344	0.732 0.732 0.732	0.508 0.508 0.508	0.05 0.05 0.05	973 973 973	948 948 948	0.224 0.224 0.224	0.732 0.732 0.732	0.508 0.508 0.508

Power The probability of rejecting a false null hypothesis when the alternative hypothesis is true.

NBT The number of bridging study subjects assigned to the treatment group.

NBC The number of bridging study subjects assigned to the control group.

NB The total sample size of the bridging study.

f The proportion of |Por - Poc| used as the magnitude of the equivalence limits. E = f x |Por - Poc|.

E The magnitude of the lower and upper equivalence limits: EL and EU. EL = -|E| and EU = |E|.

PBT The response proportion of subjects assigned to the treatment group in the bridging study.

PBC The response proportion of subjects assigned to the control group in the bridging study.

Alpha The probability of rejecting a true null hypothesis.

Not The number of subjects assigned to the treatment group in the original study.

Noc The number of subjects assigned to the control group in the original study.

Do The difference between the group proportions $(\tau - c)$ in the original study.

Pot The response proportion of subjects assigned to the treatment group in the original study.

Poc The response proportion of subjects assigned to the control group in the original study.

Summary Statements

A parallel two-group bridging study design will be used to test whether the bridging study proportion difference (Pbt - Pbc) is equivalent to the original study proportion difference (Pot - Poc), with a difference equivalence proportion of 0.4 corresponding to equivalence bounds of -0.0896 and 0.0896 (H0: $\theta \le -0.0896$ or $\theta \ge 0.0896$ versus H1: -0.0896 < $\theta < 0.0896$, where $\theta = (Pbt - Pbc) - (Pot - Poc)$). The comparison will be made using two one-sided Z-tests based on the difference in treatment effects of the two regions, with an overall Type I error rate (α) of 0.05. The group sample sizes of the original study were 973 (treatment) and 948 (control). The group proportions of the original study were 0.732 (treatment) and 0.508 (control), yielding a difference of 0.224. The assumed group proportions of the bridging study region, used only in the calculation of group standard deviations, are 0.732 (treatment) and 0.508 (control). To detect a difference in treatment effects of 0 (or a bridging study region proportion difference also of 0.224) with 80% power, the number of subjects needed for the bridging study will be 945 in the treatment group and 945 in the control group.

Dropout-Inflated Sample Size

	S	Sample S	ze	I	pout-Infla Enrollmer ample Siz	nt	N	Expected Number of Dropouts	of
Dropout Rate	Nвт	Nвс	Νв	Nвт'	N вс'	Nв'	Dт	Dc	D
20%	945	945	1890	1182	1182	2364	237	237	474
20%	447	447	894	559	559	1118	112	112	224
20%	272	272	544	340	340	680	68	68	136
Dropout Rate	•	0	•	,	•	e lost at rando	0		
Nвт, Nвс, and Nв	subjects		ted out of the			entered by the transformed by the second sec			
NET' NEC' and NE'				l ha anrollad i	the study	in order to ob			

Nвт', Nвс', and Nв'	The number of subjects that should be enrolled in the study in order to obtain NBT, NBC, and NB
	evaluable subjects, based on the assumed dropout rate. Nвт' and Nвс' are calculated by inflating Nвт
	and Nвс using the formulas Nвт' = Nвт / (1 - DR) and Nвс' = Nвс / (1 - DR), with Nвт' and Nвс' always
	rounded up. (See Julious, S.A. (2010) pages 52-53, or Chow, S.C., Shao, J., Wang, H., and
	Lokhnygina, Y. (2018) pages 32-33.)
DT Dc and D	The expected number of dropouts $DT = NBT' - NBT DC = NBC' - NBC and D = DT + DC$

Dropout Summary Statements

Anticipating a 20% dropout rate, 1182 subjects should be enrolled in Group 1, and 1182 in Group 2, to obtain final group sample sizes of 945 and 945, respectively.

References

Liu, J.P., Hsueh, H., Chen, J.J. 2002. 'Sample Size Requirements for Evaluation of Bridging Evidence.' Biometrical Journal, Volume 44 (8), Pages 969-981.

This report shows the sample size for the indicated parameter configurations.

Plots Section

This plot shows the power versus the sample size. Note that we had to reduce the font size of the subtitle so that it would fit in the space allotted.

Example 2 – Validation using a Previously Validated Procedure

We could not find a validation example in the literature, so we will validate this procedure using the *Bridging Study using the Equivalence Test of Two Groups (Continuous Outcomes)* procedure that has been validated.

The following example will be used for the validation. The summary statistics of the original study are

 $N_{OT} = 1000$ $P_{OT} = 0.8$ $N_{OC} = 1000$ $P_{OC} = 0.5$

Note that $D_0 = 0.8 - 0.5 = 0.3$, $s_{OT} = \sqrt{0.8(0.2)} = 0.4$ and $s_{OC} = \sqrt{0.5(0.5)} = 0.5$. In the bridging study, set f = 0.4, *alpha* = 0.05, and *power* = 0.8.

These values translate to the following in the Continuous Outcomes procedure.

 $N_{OT} = 1000$ $D_O = 0.3$ $s_{OT} = 0.4$ $N_{OC} = 1000$ $s_{OC} = 0.5$

Running these values through that procedure results in the following sample sizes for the bridging study:

 $N_{BT} = N_{BC} = 323.$

Setup

Docian Tab

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Design Tab	
Solve For	Sample Size
Noт (Sample Size of Group от)	
Noc (Sample Size of Group oc)	
Рот (Group от Proportion)	0.8
Poc (Group oc Proportion)	0.5
Power	0.8
Alpha	0.05
Group Allocation	Еqual (Nвт = Nвс)
Equivalence Limit Input Type	Enter f, the proportion E is of Рот-Рос
f (Proportion E is of Рот-Рос)	0.4
Рвт (Group вт Proportion)	0.8
Рвс (Group вс Proportion)	0.5

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results

Solve Fo Definition Hypothes H1 Assur	n: ses:	θ = (H0:	θ≤-E	ze Рвс) - (Рот - Рос) orθ≥E vs. H1:	-E < θ < Ε	1								
				Bridging St	udy						Original	Cturdur.		
				Equivaler	ice						Original			
	Sa	ample Size Proportion		Proportion E	·····	Proportion			Sample Size		Proportion			
		· · ·			is of Pot-Poc	Margin	Treatment	Control				Difference	Treatment	Control
Power	Νвт	Ивс	Nв	f	E	Рвт	Рвс	Alpha	Νοτ	Noc	Do	Рот	Poc	
0.80065	323	323	646	0.4	0.12	0.8	0.5	0.05	1000	1000	0.3	0.8	0.5	

This procedure has also calculated a sample size of 323 per group, so the procedure is validated.