Chapter 101

Conditional Power and Sample Size
Reestimation of Tests for One Proportion

Introduction

In sequential designs, one or more intermediate analyses of the emerging data are conducted to evaluate whether the experiment should be continued. This may be done to conserve resources or to allow a data monitoring board to evaluate safety and efficacy when subjects are entered in a staggered fashion over a long period of time. Conditional power (a frequentist concept) is the probability that the final result will be significant, given the data obtained up to the time of the interim look. Predictive power (a Bayesian concept) is the result of averaging the conditional power over the posterior distribution of effect size. Both of these methods fall under the heading of stochastic curtailment techniques. Further reading about the theory of these methods can be found in Jennison and Turnbull (2000), Chow and Chang (2007), Chang (2008), Proschan et. al (2006), and Dmitrienko et. al (2005).

This program module computes conditional and predicted power for the case when a one-sample z-test is used to test whether a population proportion is greater than, less than, or not equal to a specific value. It also provides sample size reestimation to achieve a specified conditional power value.

Technical Details

All details and assumptions usually made when using a one proportion z-test continue to be in force here.

Conditional Power

The power of an experiment indicates whether a study is likely to result in useful results, given the sample size. Low power means that the study is futile: little chance of statistical significance even though the alternative hypothesis is true. A study that is futile should not be started. However, futility may be determined only after the study has started. When this happens, the study is curtailed.

The futility of a study that is underway can be determined by calculating its conditional power: the probability of statistical significance at the completion of the study given the data obtained so far.

It is important to note that conditional power at the beginning of the study before any data are collected is equal to the unconditional power. So, conditional power will be high even if early results are negative. Hence, conditional power will seldom result in study curtailment very early in the study.

From Jennison and Turnbull (2000) pages 205 to 208, the general upper one-sided conditional power at stage \(k \) for rejecting a null hypothesis about a parameter \(\theta \) at the end of the study, given the observed test statistic, \(Z_k \), is computed as

\[
P_{uk}(\theta) = \Phi\left(\frac{Z_k \sqrt{I_k} - z_{1-\alpha} \sqrt{I_K} + \theta (I_K - I_k)}{\sqrt{I_K - I_k}}\right),
\]

where \(\Phi \) is the standard normal cumulative distribution function, \(z_{1-\alpha} \) is the \(1 - \alpha \) quantile of the standard normal distribution, and \(I_k \) and \(I_K \) are the information statistics at stage \(k \) and the end of the study, respectively.
the general lower one-sided conditional power at stage \(k \) is computed as

\[
P_{lk}(\theta) = \Phi \left(\frac{-Z_k \sqrt{I_k} - z_{1-\alpha} \sqrt{I_K} - \theta (I_K - I_k)}{\sqrt{I_K - I_k}} \right),
\]

and the general two-sided conditional power at stage \(k \) is computed as

\[
P_k(\theta) = \Phi \left(\frac{Z_k \sqrt{I_k} - z_{1-\alpha/2} \sqrt{I_K} + \theta (I_K - I_k)}{\sqrt{I_K - I_k}} \right) + \Phi \left(\frac{-Z_k \sqrt{I_k} - z_{1-\alpha/2} \sqrt{I_K} - \theta (I_K - I_k)}{\sqrt{I_K - I_k}} \right),
\]

where

\[
\theta = \text{the parameter being tested by the hypothesis}
\]

\(k = \text{an interim stage at which the conditional power is computed (} k = 1, ..., K - 1) \)

\(K = \text{the stage at which the study is terminated, and the final test computed} \)

\(Z_k = \text{the test statistic calculated from the observed data that has been collected up to stage} \ k \)

\(I_k = \text{the information level at stage} \ k \)

\(I_K = \text{the information level at the end of the study} \)

\(z_{1-\alpha} = \text{the standard normal value for the test with a type I error rate of} \ \alpha. \)

For the test of a single proportion with null hypothesis \(H_0: P_1 = P_0 \), where \(P_1 \) is the alternative proportion at which the power is calculated and \(P_0 \) is the hypothesized proportion under the null hypothesis, these components are computed in Change (2008) page 70 as

\[
\theta = P_1 - P_0 \quad \text{(the expected difference under the alternative hypothesis)}
\]

\[
Z_k = (p_k - P_0) \sqrt{I_k} \quad \text{(the z-statistic computed from the observed data)}
\]

\[
I_k = n_k / \sigma^2 \quad \text{(the interim information level)}
\]

\[
I_K = N / \sigma^2 \quad \text{(the final information level)}
\]

where

\(p_k \) is the sample proportion, estimating \(P_1 \) at stage \(k \)

\(I_k \) is the estimated information from the sample at stage \(k \)

\(n_k \) is the sample size at stage \(k \)

\(N \) is the total sample size

\(\sigma^2 = \bar{p}(1 - \bar{p}) \) with \(\bar{p} = (P_1 + P_0) / 2. \)
Computing conditional power requires you to set P_0 and P_1. Their values can come from the values used during the planning of the study, from similar studies, or from estimates made from the data that has emerged.

Futility Index

The *futility index* is $1 - P_k(\theta)|H_1$. The study may be stopped if this index is above 0.8 or 0.9 (that is, if conditional power falls below 0.2 or 0.1).

Predictive Power

Predictive power (a Bayesian concept) is the result of averaging the conditional power over the posterior distribution of effect size. From Jennison and Turnbull (2000) pages 210 to 213, the general upper one-sided predictive power at stage k is given by

$$P_{uk} = \Phi \left(\frac{Z_k \sqrt{I_k} - z_{1-\alpha} \sqrt{I_k}}{\sqrt{I_k - I_k}} \right).$$

the general lower one-sided predictive power at stage k is given by

$$P_{lk} = \Phi \left(\frac{-Z_k \sqrt{I_k} - z_{1-\alpha} \sqrt{I_k}}{\sqrt{I_k - I_k}} \right).$$

the general two-sided predictive power at stage k is given by

$$P_k = \Phi \left(\frac{|Z_k| \sqrt{I_k} - z_{1-\alpha/2} \sqrt{I_k}}{\sqrt{I_k - I_k}} \right) + \Phi \left(\frac{-|Z_k| \sqrt{I_k} - z_{1-\alpha/2} \sqrt{I_k}}{\sqrt{I_k - I_k}} \right),$$

with all terms defined as in the equations for conditional power.

Sample Size Reestimation

As Chang (2014) points out, after an interim analysis, it is often desirable to recalculate the target sample size using updated values for various nuisance parameters such as the variance. This process is known as *sample size reestimation*.

One method of calculating an adjusted sample size estimate is to search for the sample size that results in a predetermined value of conditional power. **PASS** conducts a binary search using the conditional power as the criterion. The result is called the *target sample size*.
Example 1 – Computing Conditional Power

Suppose a study has been planned to detect a change in response rate from 55% to 65% at an alpha of 0.025 using a one-sided z-test. The sample size is 50. An interim analysis will be run after half the data have been collected. The data monitoring board would like to have the conditional power calculated for z-values of 1.0, 1.5, 2.0, 2.5, and 3.0.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the Example 1 settings file. To load these settings to the procedure window, click Open Example Settings File in the Help Center or File menu.

Design Tab

- Solve For: Conditional Power
- Alternative Hypothesis: $H_1: P > P_0$ (One-Sided)
- Alpha: 0.025
- N (Target Sample Size): 50
- nk (Sample Size at Look k): 25
- P0 (Null or Baseline Proportion): 0.55
- P1 (Actual Proportion to Detect): 0.65
- Zk (Current Test Statistic): 1 1.5 2 2.5 3
Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Numeric Results for One-Sample Z-Test

<table>
<thead>
<tr>
<th>Cond. Power</th>
<th>Pred. Power</th>
<th>Target Sample Size N</th>
<th>Current Sample Size nk</th>
<th>Null Prop P0</th>
<th>Actual Prop P1</th>
<th>Diff P1 - P0</th>
<th>Test Statistic Zk</th>
<th>Alpha</th>
<th>Futility</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.22627</td>
<td>0.29262</td>
<td>50</td>
<td>25</td>
<td>0.55</td>
<td>0.65</td>
<td>0.1</td>
<td>1.0</td>
<td>0.025</td>
<td>0.77373</td>
</tr>
<tr>
<td>0.40083</td>
<td>0.56409</td>
<td>50</td>
<td>25</td>
<td>0.55</td>
<td>0.65</td>
<td>0.1</td>
<td>1.5</td>
<td>0.025</td>
<td>0.59917</td>
</tr>
<tr>
<td>0.59825</td>
<td>0.80743</td>
<td>50</td>
<td>25</td>
<td>0.55</td>
<td>0.65</td>
<td>0.1</td>
<td>2.0</td>
<td>0.025</td>
<td>0.40175</td>
</tr>
<tr>
<td>0.77302</td>
<td>0.94244</td>
<td>50</td>
<td>25</td>
<td>0.55</td>
<td>0.65</td>
<td>0.1</td>
<td>2.5</td>
<td>0.025</td>
<td>0.22698</td>
</tr>
<tr>
<td>0.89413</td>
<td>0.98878</td>
<td>50</td>
<td>25</td>
<td>0.55</td>
<td>0.65</td>
<td>0.1</td>
<td>3.0</td>
<td>0.025</td>
<td>0.10587</td>
</tr>
</tbody>
</table>

- **Conditional Power**: The probability of rejecting a false null hypothesis at the end of the study given the data that have emerged so far.
- **Predictive Power**: The result of averaging the conditional power over the posterior distribution of the effect size.
- **N**: The target sample size.
- **nk**: The sample size obtained through stage k.
- **P0**: The proportion assuming the null hypothesis.
- **P1**: The actual proportion to detect under the alternative hypothesis at which conditional power is calculated.
- **P1 - P0**: The proportion difference that is to be detected by the completed study.
- **Zk**: The value of the test statistic from the observed data at stage k.
- **Alpha**: The probability of rejecting a true null hypothesis.
- **Futility**: Equal to one minus the conditional power. A value greater than 0.9 or 0.8 indicates the study should be stopped because there is little chance of achieving statistical significance.

Summary Statements

A single-group design is used to test whether the proportion is greater than 0.55 (H0: P ≤ 0.55 versus H1: P > 0.55). The comparison will be made using a one-sided, one-sample z-test, with a Type I error rate (α) of 0.025. The desired difference to detect is P1 - P0 = 0.1. With a current sample size of 25 out of a target sample size of 50, and with a current z-value of 1, the conditional power is 0.22627. The predictive power is 0.29262, and the futility index is 0.77373.

References

This report shows the values of each of the parameters, one scenario per row. The definitions of each column are given in the Report Definitions section.
Plots Section

This plot shows the relationship between conditional power and Z_k.
Example 2 – Validation

We could not find an example of a conditional power calculation for a one-sample test in the literature. Since the calculations are relatively simple, we will validate the calculation of the third scenario of Example 1 by hand.

In this case

\[
I_k = \frac{n_k}{\sigma^2} = \frac{25}{0.6(1-0.6)} = 104.1666667
\]

\[
I_K = \frac{N}{\sigma^2} = \frac{50}{0.6(1-0.6)} = 208.3333333
\]

\[
P_{uk} (\theta) = \Phi \left(\frac{Z_k \sqrt{I_k} - Z_{1-\alpha} \sqrt{I_K} + \theta (I_K - I_k)}{\sqrt{I_K - I_k}} \right)
\]

\[
= \Phi \left(\frac{2.0 \sqrt{104.1666667} - (1.959964) \sqrt{208.3333333} + (0.65 - 0.55)(208.3333333 - 104.1666667)}{\sqrt{208.3333333 - 104.1666667}} \right)
\]

\[
= \Phi \left(\frac{2.5394376}{10.2062073} \right)
\]

\[
= \Phi(0.2488131)
\]

\[
= 0.5982473
\]

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the Example 2 settings file. To load these settings to the procedure window, click Open Example Settings File in the Help Center or File menu.

<table>
<thead>
<tr>
<th>Design Tab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve For</td>
</tr>
<tr>
<td>Alternative Hypothesis</td>
</tr>
<tr>
<td>Alpha</td>
</tr>
<tr>
<td>N (Target Sample Size)</td>
</tr>
<tr>
<td>nk (Sample Size at Look k)</td>
</tr>
<tr>
<td>P0 (Null or Baseline Proportion)</td>
</tr>
<tr>
<td>P1 (Actual Proportion to Detect)</td>
</tr>
<tr>
<td>Zk (Current Test Statistic)</td>
</tr>
</tbody>
</table>
Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results for One-Sample Z-Test

<table>
<thead>
<tr>
<th>Cond. Power</th>
<th>Pred. Power</th>
<th>Target Sample Size</th>
<th>N</th>
<th>Current Sample Size</th>
<th>Null Prop</th>
<th>Actual Prop</th>
<th>Diff - Prop</th>
<th>Test Statistic</th>
<th>Zk</th>
<th>Alpha</th>
<th>Futility</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59825</td>
<td>0.80743</td>
<td>50</td>
<td>25</td>
<td>0.55</td>
<td>0.65</td>
<td>0.1</td>
<td>2</td>
<td>0.025</td>
<td>0.40175</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The conditional power of 0.59825 matches the value calculated by hand.
Example 3 – Sample Size Reestimation

Suppose a study has started that was designed to detect a change in response rate from 55% to 65% at an alpha of 0.025 using a one-sided z-test. The target sample size was 50.

An interim analysis is run after half the data had been collected. This analysis yielded a z-test value of 2.12. The value of P_0 (the baseline proportion) was found to be 0.587.

The data monitoring board would like to have the sample size re-estimated for an actual difference of $\delta_1 = 0.1$ ($P_1 = 0.687$) and a conditional power of 0.8.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the Example 3 settings file. To load these settings to the procedure window, click Open Example Settings File in the Help Center or File menu.

Output

Click the Calculate button to perform the calculations and generate the following output.

Notice that the target sample size has increased from 50 to 111.