Chapter 112

Confidence Intervals for One Mean in a Stratified Cluster-Randomized Design

Introduction

This procedure calculates sample size and half-width for confidence intervals of a mean from a stratified cluster randomization trial (CRT) in which the outcome variable is continuous. It uses the results from elementary sampling theory which are presented in Wang, Zhang, and Ahn (2017) and Xu, Zhu, and Ahn (2019).

Suppose that the mean of a continuous outcome variable of a sample from a population of subjects (or items) is to be estimated with a confidence interval. Further suppose that the population can be separated into a few subpopulations, often called strata. Further suppose that each stratum can be separated into a number of clusters and that sampling occurs at the cluster level. That is, a simple random sample of clusters is drawn within a stratum. Next, a simple random sample of subjects is drawn from within each cluster.

Note that this procedure assumes an infinite population in which the size of every cluster and every stratum is not know.

This procedure allows you to determine the appropriate sample size to be taken from each stratum so that width of the confidence interval is guaranteed.

Technical Details

The following discussion summarizes the results in Xu et al. (2019) and Wang et al. (2017).

Suppose you are interested in estimating the mean of a particular population. Further suppose that response is known to be related to other covariates (such as age, race, or gender). It may be possible to improve estimation efficiency by stratifying on one or more of these covariates.

In this design, assume clusters are grouped into H strata. Let K_h denote the number of clusters sampled in the h^{th} stratum, $h = 1, \ldots, H$.

Let N_{kh} denote the number of subjects sampled (the cluster size) in cluster k in stratum h, $k = 1, \ldots, K_h$, $h = 1, \ldots, H$. Assume that the N_{kh}’s are independently and identically distributed with mean M_h and variance ν_h^2. The total number of subjects in the trial is $N = \sum_{h=1}^{H} \sum_{k=1}^{K_h} N_{kh} = \sum_{h=1}^{H} N_h$ where N_h is the number of subjects sampled from stratum h. Note that $N_h = \sum_{k=1}^{K_h} N_{kh} = K_h M_h$.
Let Y_{ijkh} indicate the continuous variable of subject i of cluster j of stratum h. Let μ_h indicate the mean in stratum k. This value is estimated by

$$\hat{\mu}_h = \frac{\sum_{k=1}^{K_h} \sum_{i=1}^{n_{ikh}} Y_{ikh}}{\sum_{k=1}^{K_h} N_{kh}}.$$

The variance of $\hat{\mu}_h$ is given by

$$V(\hat{\mu}_h) = \frac{\sigma_h^2}{K_hM_h} \left[\rho M_h \left(C_h^2 + 1 \right) + (1 - \rho) \right]$$

$$= \frac{\sigma_h^2}{K_hM_h} A_h$$

where $C_h = v_h/M_h$ is the coefficient of variation of the sizes of clusters within stratum h.

Let ρ indicate the intracluster correlation coefficient (ICC) give the correlation of subjects within the same cluster. This value is assumed to be constant for all clusters.

The overall mean μ is given by

$$\mu = \sum_{h=1}^{H} f_h \mu_h$$

where f_h is the fraction of sampled subjects in stratum h. Note that $f_h = K_hM_h/N$.

The parameter μ is estimated by

$$\hat{\mu} = \sum_{h=1}^{H} f_h \hat{\mu}_h$$

The variance of this estimate is given by

$$V(\hat{\mu}) = \sum_{h=1}^{H} f_h^2 \frac{\sigma_h^2}{K_hM_h} \left[\rho M_h \left(C_h^2 + 1 \right) + (1 - \rho) \right]$$

$$= \sum_{h=1}^{H} \left(\frac{K_hM_h}{N} \right)^2 \frac{\sigma_h^2}{K_hM_h} \frac{A_h}{A_h}$$

$$= \frac{1}{N^2} \sum_{h=1}^{H} K_hM_h \sigma_h^2 A_h$$

If the common assumption is made that $\hat{\mu}$ is asymptotically standard normal, then a confidence interval for μ can be constructed as follows

$$CI(\mu) = \hat{\mu} \pm z_{1-\alpha/2} \sqrt{V(\hat{\mu})}$$

The lower and upper limits of this confidence interval are denoted as LCL_μ and UCL_μ. The half-width, d, of this interval is given by

$$d = \left| z_{1-\alpha/2} \right| \sqrt{V(\hat{\mu})}$$

This formula can be used to determine the sample size N required to achieve a specified value of d.

Estimating ICC

An often-difficult task necessary in computing the sample size is to estimate the value of the intracluster correlation coefficient (ICC or \(\rho \)). Xu et al. (2019) provides guidance in estimating this parameter using the ANOVA method. The PASS procedure *Confidence Intervals for Intraclass Correlation* provides methods for estimating ICC within a stratum. These stratum estimates can be averaged to provide an overall estimate.

Step 1. Estimate \(\rho_h \) for each stratum using one of the methods given in the PASS procedure *Confidence Intervals for Intraclass Correlation*.

Step 2. Compute the average of these estimates and use it as the overall estimate of \(\rho \).

Procedure Options

This section describes the options that are specific to this procedure. These are located on the Design tab. For more information about the options of other tabs, refer to the Procedure Window chapter.

Design Tab

The Design tab contain most of the parameters and options of interest for this procedure.

Solve For

This option specifies the parameter to be solved for using the other parameters. The parameters that may be selected are *Sample Size* or *Half-Width of C.I.* Select *Sample Size* when you want to find the number of clusters needed. Select *Half-Width of C.I.* when you want to investigate the precision of a certain cluster count.

Confidence and Precision

Confidence Level

Enter the confidence level (or confidence coefficient). This is the proportion of confidence intervals (constructed with this same confidence level, sample size, etc.) that contain the population proportion.

The practical range is between 0.5 and 1. Common values are 0.95 and 0.99. Use 0.9973 if you want \(z \) to be 3.0 and 0.977249 if you want \(z \) to be 2.0.

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be entered.

\(d \) (Precision, Half-Width)

Enter \(d \), the precision, margin of error, or confidence interval half-width. This is half the distance between the lower and upper confidence limits of the mean.

The formula is \(d = \frac{|UCL(\mu) - LCL(\mu)|}{2} \)

Range: \(0 < d \).

Typical values: 0.01, 1, 10, or 100.

You can enter a single value or a list of values.
Sample Size (when Solve For = Sample Size)

Cluster Allocation Pattern
Specify how the clusters are allocated to the individual strata during the search for the total number of clusters needed to assure that the half-width requirement is met.

The choices are

- **All Equal (Search for Clusters per Stratum, K0)**
 The smallest value of the number of clusters per stratum is found that still assures that the half-width requirement is met. The value of Kh is constant across all strata. That is, all Kh = K0.

- **Proportional (Enter Rh = Cluster Allocation Pattern and K)**
 Enter values that express the cluster allocation pattern across strata in the 'Custom Strata Information' section below. Search for a value for K.

 The Rh values will be scaled as proportions which give the proportion of the clusters allocated to the corresponding cluster. The formula is sRh = Rh/ΣRh. The number of clusters is then calculated using Kh = K x sRh. Finally, Kh is rounded to an integer.

 The search for K continues until the minimum value is found that assures that the half-width requirement is met.

Sample Size (when Solve For = Half-Width of C.I.)

Cluster Allocation Pattern
Specify how the clusters are allocated to the individual strata.

The choices are

- **All Equal (Kh = K0)**
 Enter a value for the number of clusters (K0) to be allocated to each stratum.

- **Proportional (Enter Rh = Cluster Allocation Pattern and K)**
 Enter the total number of clusters in the trial, K, in the box below. Also enter values that express the cluster allocation pattern across strata in the 'Custom Strata Information' section below.

 The Rh values will be scaled as proportions which give the proportion of the clusters allocated to the corresponding stratum. The formula is sRh = Rh/ΣRh. The number of clusters is then calculated using Kh = K x sRh. Finally, Kh is rounded to an integer.

- **Custom Kh**
 Enter the number of clusters in each stratum in the 'Kh (Number of Clusters)' column in the 'Custom Strata Information' section below.

K0 (Clusters per Stratum)
Enter one or more values of K0, the number of clusters per stratum to be used for all strata. Thus, the total number of clusters in the study is K0 x (number of strata).

Range
K0 > 1.
You can enter a single value such as 10 or a series of values such as ‘10 25 50’ or ‘10 to 50 by 5’.
K (Total Number of Clusters)

Enter one or more values of K, the total number of clusters in the study. These clusters are allocated to individual clusters using Rh, the cluster allocation pattern, given in the 'Custom Strata Information' section.

\[K > \text{number of strata} + 1 \]

You can enter a single value such as 100 or a series of values such as 50 100 200 or 100 to 500 by 100.

Sample Size – Cluster Size

Mh (Average Cluster Size)

Specify how the average cluster size per stratum is to be entered.

Note that Mh, average cluster size, is the average number of subjects per cluster in stratum h.

The choices are

- **All Equal**

 Enter a single value to be used for all Mh. Hence, all Mh will be equal.

 Specify a value for Mh, average cluster size (average number of subjects per cluster in stratum h), to be used for all stratum.

 This value must be a positive number that is at least 1. It can be a decimal number such as '2.7'.

 You can enter a single value such as '5' or a list of values such as “10 50 100”. If a list is entered, a separate analysis will be conducted for each value.

- **Custom**

 Enter a unique value for each Mh in the Mh (Average Cluster Size) column of the 'Custom Strata Information' section below.

Adjust results for variable cluster sizes with a stratum

In most trials, the cluster sizes (number of subjects per cluster) vary from cluster to cluster. If this variation is ignored by considering only the average cluster size, the calculated number of clusters will underestimate the actual number of clusters that is needed. This can be corrected by adjusting for variation in the cluster sizes. This adjustment is based on the coefficient of variation of the cluster sizes (COV).

Check this option to enter the COV for each stratum, Ch.

Ch (COV of Cluster Sizes)

Specify how the COV of cluster sizes per stratum, Ch, is to be entered.

The choices are

- **All Equal**

 Enter a single value to be used for all Ch. Hence, all Ch will be equal.

 Enter the coefficient of variation of the cluster sizes (number of subjects). This value must be zero or a positive number. You can use a list of values such as “0.4 0.6 0.8”.

- **Custom**

 Enter a unique value for each Ch in the Ch (COV of Cluster Sizes) column of the 'Custom Strata Information' section below.
Coefficient of Variation
The COV of X is defined as the standard deviation of X divided by the mean of X.
Campbell and Walters (2014) page 71 give guidance on the possible values of COV. They indicate that as the average cluster size increases, COV tends toward 0.65. They say that typical values of COV range from 0.4 to 0.9.

Standard Deviation
The standard deviation, calculated by the sample formula (divide by M-1), is a measure of the variability. When no other information is available, Campbell and Walters (2014) page 71 suggest using (Maximum Cluster Size - Minimum Cluster Size) / 4.

All Cluster Sizes Equal
When all cluster sizes are equal, the coefficient of variation is zero.

Standard Deviation and Intracluster Correlation

Sh (Standard Deviation) *drop-down*
Specify how the standard deviation per stratum, Sh, is to be entered.

Note that in ‘Sh’, the ‘S’ represents *standard deviation* and ‘h’ designates the *stratum*.

The choices are

- **All Equal**
 Enter a single value to be used for all Sh. Hence, all Sh will be equal.
 Enter the standard deviation of the subjects in all strata. This is the standard deviation of the response variable.
 0 < Sh.
 If you have no idea what the standard deviation is, you can use the approximation Sh = (Data Range) / 4.

- **Custom**
 Enter a unique value for each Sh in the Sh (Standard Deviation) column of the 'Custom Strata Information' section below.

ρ (Intracluster Correlation, ICC)
This is the value of the intracluster (or intraclass) correlation coefficient. It may be interpreted as the correlation between any two observations in the same cluster. It may also be thought of as the proportion of the variation in response that can be accounted for by the between-cluster variation.

The documentation presents details of estimating this value.

Range
Possible values are from 0 to just below 1. Typical values are between 0.0001 and 0.3.

You may enter a single value or a list of values.
Custom Strata Information

This section lets you enter settings for each of the \(H \) individual strata. Each line on the report represents one or more strata. You can save time by entering settings for groups of strata that will have identical parameter values.

Set

This is an identification number for a set of equal strata used on the reports.

Number of Strata

Specify the number of strata specified on this line. Usually, you will enter a “1” to specify a single stratum, or you will enter a “0” to ignore this line. However, this option lets you specify several strata that have the same parameter values.

The total number of strata is equal to the sum of these values.

Examples

0 which means ‘ignore this line’.

1 which means ‘one stratum defined by this line’.

2 which means ‘two strata defined by this line’.

Kh (Number of Clusters)

Enter a value for the number of clusters in stratum \(h \).

Range

\(Kh \geq 1 \). At least one stratum must have a \(Kh \) value greater than 1.

Rh (Cluster Allocation Pattern)

Enter an allocation ratio value for this stratum. This value represents the relative frequency of clusters in this stratum.

Note that this value applies to the number of CLUSTERS, not the number of SUBJECTS.

For example, if there are four strata, the following sets of \(Rh \) would result in identical stratum cluster proportions:

- 2, 4, 6, 8
- 10, 20, 30, 40
- 0.1, 0.2, 0.3, 0.4

The resulting cluster proportions are:

- 0.1 in stratum 1.
- 0.2 in stratum 2.
- 0.3 in stratum 3.
- 0.4 in stratum 4.

Note

Only enter one number, even if there are more than one stratum being defined by the line.
Range
These values can be any positive values. The values will be rescaled so that the resulting proportions sum to 1.

Sh (Standard Deviation)
Enter the standard deviation of the subjects in stratum h. This is the standard deviation of the response variable. The range is $0 < Sh$.
If you have no idea what the standard deviation is, you can use the approximation $Sh = (\text{Data Range}) / 4$.

Mh (Average Cluster Size)
Specify a value for Mh, the average cluster size (average number of subjects per cluster) in stratum h.
This value must be a positive number that is at least 1. It can be a decimal number such as ‘2.7’.

Ch (COV of Cluster Sizes)
Enter the coefficient of variation of the cluster sizes (number of subjects) in stratum h. This value must be zero or a positive number. It is used to find the standard deviation of the cluster sizes.

Coefficient of Variation
The COV of X is defined as the standard deviation of X divided by the mean of X. Campbell and Walters (2014) page 71 give guidance on the possible values of COV. They indicate that as the average cluster size increases, COV tends toward 0.65. They say that typical values of COV range from 0.4 to 0.9.

Standard Deviation of Cluster Sizes
The standard deviation of the cluster sizes, calculated by the sample formula (divide by $K_h - 1$), is a measure of the variability. When no other information is available, Campbell and Walters (2014) page 71 suggest using $(\text{Maximum Cluster Size} - \text{Minimum Cluster Size}) / 4$.

All Cluster Sizes Equal
When all cluster sizes are equal, the coefficient of variation is zero.

Show More Strata Sets
Check this box to show ten more Strata Information sets. If this option is not checked, any active strata sets (Number of Strata > 0) with set identification numbers > 5 will be ignored.
Example 1 – Finding Sample Size

A study using a stratified cluster design is being planned to estimate the effectiveness of a certain drug in treating a certain disease. The strata are four large metropolitan areas. The clusters are doctor’s practices.

The average size of the practices in each of the strata are 80, 60, 50, 40. The cluster allocation pattern for the relative frequencies of clusters for the strata are 1, 1.5, 1.75, and 2. The COV for all strata will be set to 0.40. The ICC of similar studies has been 0.02.

Prior studies have shown a standard deviation for this disease is 0.4702.

The confidence level is set to 0.95 and d is set to three values 0.02, 0.03, 0.04.

Setup

This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load this procedure. You may then make the appropriate entries as listed below, or open Example 1 by going to the File menu and choosing Open Example Template.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Tab</td>
<td></td>
</tr>
<tr>
<td>Solve For</td>
<td>Sample Size</td>
</tr>
<tr>
<td>Confidence Level</td>
<td>0.95</td>
</tr>
<tr>
<td>d (Precision, Half-Width)</td>
<td>0.02 0.03 0.04</td>
</tr>
<tr>
<td>Cluster Allocation Pattern</td>
<td>Proportional (Enter Rh = Cluster Allocation Pattern)</td>
</tr>
<tr>
<td>Mh (Average Cluster Size)</td>
<td>Custom</td>
</tr>
<tr>
<td>Adjust results…</td>
<td>Checked</td>
</tr>
<tr>
<td>Ch (COV of Cluster Sizes)</td>
<td>All Equal</td>
</tr>
<tr>
<td>Ch for All Strata</td>
<td>0.4</td>
</tr>
<tr>
<td>Sh (Standard Deviations)</td>
<td>All Equal</td>
</tr>
<tr>
<td>Sh for All Strata</td>
<td>0.4702</td>
</tr>
<tr>
<td>ρ (Intracluster Correlation, ICC)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Set 1 Number of Strata……………………. 1
Set 1 Rh (Cluster Allocation Pattern)……. 1
Set 1 Mh (Average Cluster Size) 80

Set 2 Number of Strata……………………. 1
Set 2 Rh (Cluster Allocation Pattern)……. 1.5
Set 2 Mh (Average Cluster Size) 60

Set 3 Number of Strata……………………. 1
Set 3 Rh (Cluster Allocation Pattern)……. 1.75
Set 3 Mh (Average Cluster Size) 50

Set 4 Number of Strata……………………. 1
Set 4 Rh (Cluster Allocation Pattern)……. 2
Set 4 Mh (Average Cluster Size) 40

Set 5 Number of Strata……………………. 0
Show More Strata Sets……………………. Unchecked
Annotated Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results

<table>
<thead>
<tr>
<th>C.I. Half-Width</th>
<th>Total Number Subjects</th>
<th>Total Number Clusters</th>
<th>Average Clusters per Strata K0</th>
<th>Average Cluster Size</th>
<th>Average COV of Cluster Sizes</th>
<th>Standard Deviation S</th>
<th>ICC ρ</th>
<th>Conf Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0200</td>
<td>4930</td>
<td>91</td>
<td>22.75</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.0200</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0297</td>
<td>2230</td>
<td>41</td>
<td>10.25</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.0200</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0396</td>
<td>1260</td>
<td>23</td>
<td>5.75</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.0200</td>
<td>0.950</td>
</tr>
</tbody>
</table>

References

Wang, J., Zhang, S., and Ahn, C. 2017. 'Power analysis for stratified cluster randomisation trials with cluster size being the stratifying factor.' Statistical Theory and Related Fields, Volume 1, Number 1, pages 121-127.

Report Definitions

- **d**: The half-width of the confidence interval of P. \(d = \frac{[\text{UCL}(P) - \text{LCL}(P)]}{2} \).
- **N**: The total number of subjects.
- **K**: The total number of clusters.
- **K0**: The average number of clusters per stratum.
- **S**: The square root of weighted average of the strata variances. The weights are proportional to the number of subjects.
- **ρ**: The intracluster correlation coefficient (ICC) average across all strata.
- **Conf Level**: The confidence level of the confidence interval for the mean.

Summary Statements

A confidence interval for the mean will be computed from a stratified cluster design, which allocates the 91 clusters among 4 strata resulting in an overall sample size of 4930. The average cluster size is 54.0. This scenario has a confidence interval half-width of 0.0200 when the confidence level is 0.950, the average COV of cluster sizes is 0.4000, the intracluster correlation coefficient is 0.0200, and the overall standard deviation is 0.4702.

This report gives the results for each of the three values of \(d \).

Strata-Detail Report

<table>
<thead>
<tr>
<th>Strata</th>
<th>Number Subjects</th>
<th>Number Clusters</th>
<th>Average Cluster Size</th>
<th>COV of Cluster Sizes</th>
<th>Prop of Total Subjects</th>
<th>Prop of Total Clusters</th>
<th>Standard Deviation S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1200</td>
<td>15</td>
<td>80.0</td>
<td>0.4000</td>
<td>0.243</td>
<td>0.160</td>
<td>0.4702</td>
</tr>
<tr>
<td>2</td>
<td>1320</td>
<td>22</td>
<td>60.0</td>
<td>0.4000</td>
<td>0.268</td>
<td>0.240</td>
<td>0.4702</td>
</tr>
<tr>
<td>3</td>
<td>1250</td>
<td>25</td>
<td>50.0</td>
<td>0.4000</td>
<td>0.254</td>
<td>0.280</td>
<td>0.4702</td>
</tr>
<tr>
<td>4</td>
<td>1160</td>
<td>29</td>
<td>40.0</td>
<td>0.4000</td>
<td>0.235</td>
<td>0.320</td>
<td>0.4702</td>
</tr>
</tbody>
</table>
Confidence Intervals for One Mean in a Stratified Cluster-Randomized Design

Strata-Detail Report for Row 1

<table>
<thead>
<tr>
<th>Strata</th>
<th>Number of Subjects</th>
<th>Number of Clusters</th>
<th>Average Cluster Size</th>
<th>COV of Cluster Sizes</th>
<th>Prop of Total Subjects</th>
<th>Prop of Total Clusters</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>560</td>
<td>7</td>
<td>80.0</td>
<td>0.4000</td>
<td>0.251</td>
<td>0.160</td>
<td>0.4702</td>
</tr>
<tr>
<td>2</td>
<td>600</td>
<td>10</td>
<td>60.0</td>
<td>0.4000</td>
<td>0.269</td>
<td>0.240</td>
<td>0.4702</td>
</tr>
<tr>
<td>3</td>
<td>550</td>
<td>11</td>
<td>50.0</td>
<td>0.4000</td>
<td>0.247</td>
<td>0.280</td>
<td>0.4702</td>
</tr>
<tr>
<td>4</td>
<td>520</td>
<td>13</td>
<td>40.0</td>
<td>0.4000</td>
<td>0.233</td>
<td>0.320</td>
<td>0.4702</td>
</tr>
</tbody>
</table>

Strata-Detail Report Definitions

- h is an arbitrary sequence number for each stratum.
- Nh is the number of subjects in stratum h. $Nh = Kh \times Mh$.
- Kh is the number of clusters in stratum h.
- Mh is the average cluster size in stratum h.
- Ch is the COV of the cluster sizes in stratum h.
- Fh is the proportion of the total subjects in stratum h.
- sRh is the proportion of the total clusters in stratum h.
- Sh is the standard deviation in stratum h of the response.

This report shows the values of the individual, strata-level parameters.

Chart Section

The values from the Numerical Results report are displayed in this plot.

![K vs d Chart](chart.png)

CL=0.950 Mh=56 Ch=0.40 Sh=0.47 ICC=0.02 CI Prop
Example 2 – Validation using Hand Calculations

We could not find an example of this procedure in the literature, so we will validate it using hand calculations. To do this, we will use the following example.

Suppose a stratified cluster design has two clusters: A and B. Suppose the number of clusters per stratum is 10 for stratum A and 20 for stratum B. Suppose the average cluster sizes are 20 in both strata and the COV of cluster sizes are 0.4 in both strata. Suppose the standard deviations in A and B are 0.4899 and 0.5, respectively. Further suppose, that the ICC is 0.1 and the confidence level is 0.95.

These strata values are summarized in the following table.

<table>
<thead>
<tr>
<th>Strata</th>
<th>Number of Clusters</th>
<th>Average Cluster Size (Mh)</th>
<th>COV of Cluster Sizes (Ch)</th>
<th>Standard Deviation (Sh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>20</td>
<td>0.4</td>
<td>0.4899</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>20</td>
<td>0.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

First, calculate \(N = 10(20) + 20(20) = 600 \).

Next, calculate \(f_A = \frac{K_A M_A}{N} = \frac{10 \times 20}{600} = \frac{1}{3} \).

Similarly, calculate \(f_B = \frac{K_B M_B}{N} = \frac{20 \times 20}{600} = \frac{2}{3} \).

Next, calculate \(A_A = A_B = \rho M_h (C_h^2 + 1) + (1 - \rho) = 0.1(20)(0.4^2 + 1) + (1 - 0.1) = 3.22 \).

The variance can then be calculated as

\[
V(\hat{\mu}) = \sum_{h=1}^{H} f_h^2 \frac{\sigma_h^2}{K_h M_h} \left[\rho M_h (C_h^2 + 1) + (1 - \rho) \right]
\]

\[
= 3.22 \left[\frac{1}{9} \left(\frac{0.4899^2}{200} \right) + \frac{4}{9} \left(\frac{0.5^2}{400} \right) \right]
\]

\[
= 3.22 \left[\frac{0.0012}{9} + \frac{0.0025}{9} \right]
\]

\[
= 0.00132377778
\]

Finally, the half-width is calculated as

\[
d = \left| z_{1-\alpha/2} \right| \sqrt{V(\hat{\mu})}
\]

\[
= 1.95996398 \sqrt{0.00132377778}
\]

\[
= 0.07131085
\]
Setup

This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load this procedure. You may then make the appropriate entries as listed below, or open Example 2 by going to the File menu and choosing Open Example Template.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve For</td>
<td>Half-Width of C.I.</td>
</tr>
<tr>
<td>Confidence Level</td>
<td>0.95</td>
</tr>
<tr>
<td>Cluster Allocation Pattern</td>
<td>Custom Kh</td>
</tr>
<tr>
<td>Mh (Average Cluster Size)</td>
<td>All Equal</td>
</tr>
<tr>
<td>Mh for All Strata</td>
<td>20</td>
</tr>
<tr>
<td>Adjust results…</td>
<td>Checked</td>
</tr>
<tr>
<td>Ch (COV of Cluster Sizes)</td>
<td>All Equal</td>
</tr>
<tr>
<td>Ch for All Strata</td>
<td>0.4</td>
</tr>
<tr>
<td>Sh (Standard Deviations)</td>
<td>Custom</td>
</tr>
<tr>
<td>ρ (Intracluster Correlation, ICC)</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Set 1 Number of Strata 1
Set 1 Kh (Number of Clusters) 10
Set 1 Sh (Standard Deviation) 0.4899

Set 2 Number of Strata 1
Set 2 Kh (Number of Clusters) 20
Set 2 Sh (Standard Deviation) 0.5

Output

Click the Calculate button to perform the calculations and generate the following output.

<table>
<thead>
<tr>
<th>Numeric Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Strata: 2</td>
</tr>
<tr>
<td>Solve for: Half-Width</td>
</tr>
<tr>
<td>Allocation: Custom</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C.I. Half-Width</th>
<th>Total Number Subjects</th>
<th>Total Number Clusters</th>
<th>Average Clusters per Strata</th>
<th>Average Cluster Size</th>
<th>Average COV of Cluster Sizes</th>
<th>Standard Deviation</th>
<th>ICC ρ</th>
<th>Conf Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0713</td>
<td>600</td>
<td>30</td>
<td>15.00</td>
<td>20.0</td>
<td>0.4000</td>
<td>0.4966</td>
<td>0.1000</td>
<td>0.950</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strata</th>
<th>Number Subjects Nh</th>
<th>Number Clusters Kh</th>
<th>Average Cluster Size Mh</th>
<th>COV of Cluster Sizes Ch</th>
<th>Prop of Total Subjects Fh</th>
<th>Prop of Total Clusters sRh</th>
<th>Standard Deviation Sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>10</td>
<td>20.0</td>
<td>0.4000</td>
<td>0.333</td>
<td>0.333</td>
<td>0.4899</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
<td>20</td>
<td>20.0</td>
<td>0.4000</td>
<td>0.333</td>
<td>0.667</td>
<td>0.5000</td>
</tr>
</tbody>
</table>

This report shows that PASS has also computed \(d = 0.0713 \). Thus, the procedure is validated.
Example 3 – Looking at the Impact of ICC on the Half-Width

We will continue with the scenario began in Example 1 to show the impact of the intracluster correlation coefficient (ICC) on half-width.

From Example 1: a study using a stratified cluster design is being planned to estimate the effectiveness of a certain drug in treating a certain disease. The strata are four large metropolitan areas. The clusters are doctor’s practices. The total number of clusters will be set to 100. The average size of the practices in each of the strata are 80, 60, 50, 40. The cluster allocation pattern for the relative frequencies of clusters for the strata are 1, 1.5, 1.75, and 2. The COV for all strata will be set to 0.40. Prior studies have shown the standard deviation for this disease is 0.4702. The confidence level is set to 0.95 and d will be solved for.

The values of ICC will be 0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.99, 0.999.

Setup

This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load this procedure. You may then make the appropriate entries as listed below, or open Example 3 by going to the File menu and choosing Open Example Template.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve For</td>
<td>Half-Width of C.I.</td>
</tr>
<tr>
<td>Confidence Level</td>
<td>0.95</td>
</tr>
<tr>
<td>Cluster Allocation Pattern</td>
<td>Proportional (Enter Rh = Cluster Allocation Pattern and K)</td>
</tr>
<tr>
<td>K (Total Number of Clusters)</td>
<td>100</td>
</tr>
<tr>
<td>Mh (Average Cluster Size)</td>
<td>Custom</td>
</tr>
<tr>
<td>Adjust results…</td>
<td>Checked</td>
</tr>
<tr>
<td>Ch (COV of Cluster Sizes)</td>
<td>All Equal</td>
</tr>
<tr>
<td>Ch for All Strata</td>
<td>0.4</td>
</tr>
<tr>
<td>Sh (Standard Deviations)</td>
<td>All Equal</td>
</tr>
<tr>
<td>Sh for All Strata</td>
<td>0.4702</td>
</tr>
<tr>
<td>ρ (Intracluster Correlation, ICC)</td>
<td>0 0.05 0.1 0.2 0.4 0.6 0.8 0.9 0.99 0.999</td>
</tr>
</tbody>
</table>

Set 1 Number of Strata 1
Set 1 Rh (Cluster Allocation Pattern)...... 1
Set 1 Mh (Average Cluster Size) 80

Set 2 Number of Strata 1
Set 2 Rh (Cluster Allocation Pattern)...... 1.5
Set 2 Mh (Average Cluster Size) 60

Set 3 Number of Strata 1
Set 3 Rh (Cluster Allocation Pattern)...... 1.75
Set 3 Mh (Average Cluster Size) 50

Set 4 Number of Strata 1
Set 4 Rh (Cluster Allocation Pattern)...... 2
Set 4 Mh (Average Cluster Size) 40
Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results

<table>
<thead>
<tr>
<th>C.I. Half-Width</th>
<th>Total Number Subjects</th>
<th>Total Number Clusters</th>
<th>Average Clusters per Strata K0</th>
<th>Average Cluster Size</th>
<th>Average COV of Cluster Sizes</th>
<th>Standard Deviation S</th>
<th>ICC ρ</th>
<th>Conf Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0125</td>
<td>5400</td>
<td>100</td>
<td>25.00</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.0000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0259</td>
<td>5400</td>
<td>100</td>
<td>25.00</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.0500</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0345</td>
<td>5400</td>
<td>100</td>
<td>25.00</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.1000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0471</td>
<td>5400</td>
<td>100</td>
<td>25.00</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.2000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0655</td>
<td>5400</td>
<td>100</td>
<td>25.00</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.4000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0797</td>
<td>5400</td>
<td>100</td>
<td>25.00</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.6000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0917</td>
<td>5400</td>
<td>100</td>
<td>25.00</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.8000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0972</td>
<td>5400</td>
<td>100</td>
<td>25.00</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.9000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.1018</td>
<td>5400</td>
<td>100</td>
<td>25.00</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.9900</td>
<td>0.950</td>
</tr>
<tr>
<td>0.1023</td>
<td>5400</td>
<td>100</td>
<td>25.00</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.9990</td>
<td>0.950</td>
</tr>
</tbody>
</table>

This report gives the results for each of the various values of ICC.

Chart Section

This plot shows the impact on half-width of increasing ICC. The value of d increases from 0.0125 to 0.1023.
Example 4 – Looking at the Impact of ICC on the Sample Size

We will continue with the scenario began in Example 1 to show the impact of the intracluster correlation coefficient (ICC) on sample size.

From Example 1: a study using a stratified cluster design is being planned to estimate the effectiveness of a certain drug in treating a certain disease. The strata are four large metropolitan areas. The clusters are doctor’s practices. The average size of the practices in each of the strata are 80, 60, 50, 40. The cluster allocation pattern for the relative frequencies of clusters for the strata are 1, 1.5, 1.75, and 2. The COV for all strata will be set to 0.40. Prior studies have shown the standard deviation for this disease is 0.4702. The confidence level is set to 0.95 and \(d \) will be set to 0.05. The total number of clusters, \(K \), will be solved for.

The values of ICC will be 0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.99, 0.999.

Setup

This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load this procedure. You may then make the appropriate entries as listed below, or open Example 4 by going to the File menu and choosing Open Example Template.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve For</td>
<td>Sample Size</td>
</tr>
<tr>
<td>Confidence Level</td>
<td>0.95</td>
</tr>
<tr>
<td>(d) (Precision, Half-Width)</td>
<td>0.05</td>
</tr>
<tr>
<td>Cluster Allocation Pattern</td>
<td>Proportional (Enter Rh = Cluster Allocation Pattern)</td>
</tr>
<tr>
<td>(M_h) (Average Cluster Size)</td>
<td>Custom</td>
</tr>
<tr>
<td>Adjust results…</td>
<td>Checked</td>
</tr>
<tr>
<td>(Ch) (COV of Cluster Sizes)</td>
<td>All Equal</td>
</tr>
<tr>
<td>(Ch) for All Strata</td>
<td>0.4</td>
</tr>
<tr>
<td>(Sh) (Standard Deviations)</td>
<td>All Equal</td>
</tr>
<tr>
<td>(Sh) for All Strata</td>
<td>0.4702</td>
</tr>
<tr>
<td>(\rho) (Intracluster Correlation, ICC)</td>
<td>0 0.05 0.1 0.2 0.4 0.6 0.8 0.9 0.99 0.999</td>
</tr>
<tr>
<td>Set 1 Number of Strata</td>
<td>1</td>
</tr>
<tr>
<td>Set 1 Rh (Cluster Allocation Pattern)</td>
<td>1.5</td>
</tr>
<tr>
<td>Set 1 Mh (Average Cluster Size)</td>
<td>80</td>
</tr>
<tr>
<td>Set 2 Number of Strata</td>
<td>1</td>
</tr>
<tr>
<td>Set 2 Rh (Cluster Allocation Pattern)</td>
<td>1.75</td>
</tr>
<tr>
<td>Set 2 Mh (Average Cluster Size)</td>
<td>50</td>
</tr>
<tr>
<td>Set 3 Number of Strata</td>
<td>1</td>
</tr>
<tr>
<td>Set 3 Rh (Cluster Allocation Pattern)</td>
<td>2.0</td>
</tr>
<tr>
<td>Set 3 Mh (Average Cluster Size)</td>
<td>40</td>
</tr>
<tr>
<td>Set 4 Number of Strata</td>
<td>1</td>
</tr>
<tr>
<td>Set 4 Rh (Cluster Allocation Pattern)</td>
<td>2.0</td>
</tr>
<tr>
<td>Set 4 Mh (Average Cluster Size)</td>
<td>40</td>
</tr>
</tbody>
</table>
Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results

<table>
<thead>
<tr>
<th>C.I. Half-Width</th>
<th>Total Number Subjects N</th>
<th>Total Number Clusters K</th>
<th>Average Clusters per Strata K0</th>
<th>Average Cluster Size</th>
<th>Average COV of Cluster Sizes</th>
<th>Standard Deviation S</th>
<th>ICC ρ</th>
<th>Conf Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0473</td>
<td>380</td>
<td>7</td>
<td>1.75</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.0000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0500</td>
<td>1440</td>
<td>27</td>
<td>6.75</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.0500</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0498</td>
<td>2610</td>
<td>48</td>
<td>12.00</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.1000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0500</td>
<td>4790</td>
<td>89</td>
<td>22.25</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.2000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0499</td>
<td>9300</td>
<td>172</td>
<td>43.00</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.4000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0500</td>
<td>13730</td>
<td>254</td>
<td>63.50</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.6000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0500</td>
<td>18200</td>
<td>337</td>
<td>84.25</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.8000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0500</td>
<td>22400</td>
<td>415</td>
<td>103.75</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.9900</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0500</td>
<td>22630</td>
<td>419</td>
<td>104.75</td>
<td>54.0</td>
<td>0.4000</td>
<td>0.4702</td>
<td>0.9990</td>
<td>0.950</td>
</tr>
</tbody>
</table>

This report gives the results for each of the various values of ICC.

Chart Section

This plot shows the impact on sample size (number of clusters) of increasing ICC. The value of K increases from 7 to 419 and the value of N increases from 380 to 22,630.
Example 5 – Looking at the Impact of COV on the Sample Size

We will continue with the scenario began in Example 1 to show the impact of the cluster size COV on sample size.

From Example 1: a study using a stratified cluster design is being planned to estimate the effectiveness of a certain drug in treating a certain disease. The strata are four large metropolitan areas. The clusters are doctor’s practices. The average size of the practices in each of the strata are 80, 60, 50, 40. The cluster allocation pattern for the relative frequencies of clusters for the strata are 1, 1.5, 1.75, and 2. Prior studies have shown the standard deviation for this disease is 0.4702. The confidence level is set to 0.95 and d will be set to 0.05. The total number of clusters, K, will be solved for.

The values of Ch will be 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, and 1.5.

Setup

This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load this procedure. You may then make the appropriate entries as listed below, or open Example 5 by going to the File menu and choosing Open Example Template.

Option	**Value**
Design Tab: | Sample Size
Solve For | Sample Size
Confidence Level | 0.95
d (Precision, Half-Width) | 0.05
Cluster Allocation Pattern | Proportional (Enter Rh = Cluster Allocation Pattern)
M_h (Average Cluster Size) | Custom
Adjust results… | Checked
Ch (COV of Cluster Sizes) | All Equal
Ch for All Strata | 0 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
S_h (Standard Deviations) | All Equal
S_h for All Strata | 0.4702
ρ (Intracluster Correlation, ICC) | 0.2

Set 1 Number of Strata | 1
Set 1 Rh (Cluster Allocation Pattern) | 1
Set 1 M_h (Average Cluster Size) | 80

Set 2 Number of Strata | 1
Set 2 Rh (Cluster Allocation Pattern) | 1.5
Set 2 M_h (Average Cluster Size) | 60

Set 3 Number of Strata | 1
Set 3 Rh (Cluster Allocation Pattern) | 1.75
Set 3 M_h (Average Cluster Size) | 50

Set 4 Number of Strata | 1
Set 4 Rh (Cluster Allocation Pattern) | 2
Set 4 M_h (Average Cluster Size) | 40
Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results

<table>
<thead>
<tr>
<th>C.I. Width</th>
<th>Number of Subjects</th>
<th>Total Number Clusters</th>
<th>Average Clusters per Strata</th>
<th>Average Cluster Size</th>
<th>Average COV of Cluster Sizes</th>
<th>Standard Deviation S</th>
<th>ICC ρ</th>
<th>Conf Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0497</td>
<td>4200</td>
<td>78</td>
<td>19.50</td>
<td>54.0</td>
<td>0.0000</td>
<td>0.4702</td>
<td>0.2000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0500</td>
<td>4200</td>
<td>78</td>
<td>19.50</td>
<td>54.0</td>
<td>0.1000</td>
<td>0.4702</td>
<td>0.2000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0499</td>
<td>4520</td>
<td>84</td>
<td>21.00</td>
<td>54.0</td>
<td>0.3000</td>
<td>0.4702</td>
<td>0.2000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0498</td>
<td>5170</td>
<td>96</td>
<td>24.00</td>
<td>54.0</td>
<td>0.5000</td>
<td>0.4702</td>
<td>0.2000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0499</td>
<td>6100</td>
<td>113</td>
<td>28.25</td>
<td>54.0</td>
<td>0.7000</td>
<td>0.4702</td>
<td>0.2000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0500</td>
<td>7360</td>
<td>136</td>
<td>34.00</td>
<td>54.0</td>
<td>0.9000</td>
<td>0.4702</td>
<td>0.2000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0499</td>
<td>8900</td>
<td>165</td>
<td>41.25</td>
<td>54.0</td>
<td>1.1000</td>
<td>0.4702</td>
<td>0.2000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0499</td>
<td>10800</td>
<td>200</td>
<td>50.00</td>
<td>54.0</td>
<td>1.3000</td>
<td>0.4702</td>
<td>0.2000</td>
<td>0.950</td>
</tr>
<tr>
<td>0.0500</td>
<td>12950</td>
<td>240</td>
<td>60.00</td>
<td>54.0</td>
<td>1.5000</td>
<td>0.4702</td>
<td>0.2000</td>
<td>0.950</td>
</tr>
</tbody>
</table>

This report gives the results for each of the various values of COV. The value of K increases from 78 to 240 and the value of N increases from 4200 to 12,950.

Chart Section

This plot shows the impact on sample size (number of clusters) of increasing ICC.