Chapter 471

Confidence Intervals for the Difference Between Two Means

Introduction

This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means to the confidence limit(s) at a stated confidence level for a confidence interval about the difference in means when the underlying data distribution is normal.

Caution: This procedure assumes that the standard deviations of the future samples will be the same as the standard deviations that are specified. If the standard deviation to be used in the procedure is estimated from a previous sample or represents the population standard deviation, the Confidence Intervals for the Difference between Two Means with Tolerance Probability procedure should be considered. That procedure controls the probability that the distance from the difference in means to the confidence limits will be less than or equal to the value specified.

Technical Details

There are two formulas for calculating a confidence interval for the difference between two population means. The different formulas are based on whether the standard deviations are assumed to be equal or unequal.

For each of the cases below, let the means of the two populations be represented by μ_1 and μ_2 , and let the standard deviations of the two populations be represented as σ_1 and σ_2 .

Case 1 – Standard Deviations Assumed Equal

When $\sigma_1 = \sigma_2 = \sigma$ are unknown, the appropriate two-sided confidence interval for $\mu_1 - \mu_2$ is

$$\bar{X}_1 - \bar{X}_2 \pm t_{1-\alpha/2, n_1+n_2-2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

where

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Upper and lower one-sided confidence intervals can be obtained by replacing $\alpha/2$ with α .

Confidence Intervals for the Difference Between Two Means

The required sample size for a given precision, D, can be found by solving the following equation iteratively

$$D = t_{1-\alpha/2, n_1+n_2-2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

This equation can be used to solve for D or n_1 or n_2 based on the values of the remaining parameters.

Case 2 – Standard Deviations Assumed Unequal

When $\sigma_1 \neq \sigma_2$ are unknown, the appropriate two-sided confidence interval for $\mu_1 - \mu_2$ is

$$\bar{X}_1 - \bar{X}_2 \pm t_{1-\alpha/2,\nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

where

$$\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{s_1^4}{n_1^2(n_1 - 1)} + \frac{s_2^4}{n_2^2(n_2 - 1)}}$$

In this case t is an approximate t and the method is known as the Welch-Satterthwaite method. Upper and lower one-sided confidence intervals can be obtained by replacing $\alpha/2$ with α .

The required sample size for a given precision, D, can be found by solving the following equation iteratively

$$D = t_{1-\alpha/2,\nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

This equation can be used to solve for D or n_1 or n_2 based on the values of the remaining parameters.

Confidence Level

The confidence level, $1 - \alpha$, has the following interpretation. If thousands of samples of n_1 and n_2 items are drawn from populations using simple random sampling and a confidence interval is calculated for each sample, the proportion of those intervals that will include the true population mean difference is $1 - \alpha$.

Notice that is a long term statement about many, many samples.

Example 1 – Calculating Sample Size

Suppose a study is planned in which the researcher wishes to construct a two-sided 95% confidence interval for the difference between two population means such that the width of the interval is no wider than 20 units. The confidence level is set at 0.95, but 0.99 is included for comparative purposes. The standard deviation estimates, based on the range of data values, are 32 for Population 1 and 38 for Population 2. Instead of examining only the interval half-width of 10, a series of half-widths from 5 to 15 will also be considered.

The goal is to determine the necessary sample size for each group.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

D	-: <i>~</i> ~	Tab
De	sian	i au

Solve For	.Sample Size
Interval Type	.Two-Sided
Confidence Level	.0.95 0.99
Group Allocation	.Equal (N1 = N2)
Distance from Mean Diff to Limit(s)	.5 to 15 by 1
S1 (Standard Deviation Group 1)	.32
S2 (Standard Deviation Group 2)	.38
Std. Dev. Equality Assumption	Assume S1 and S2 are Unequal

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Numeric Results

Solve For:	Sample Size
Interval Type:	Two-Sided
Standard Deviations:	Unknown and Unequal

• "	S	Sample S	ize	Distan Mean Di to Li	ce from ifference imits	Standard Deviations	
Level	N1	N2	N	Target	Actual	S1	S2
0.95	380	380	760	5	4.995	32	38
0.95	265	265	530	6	5.995	32	38
0.95	195	195	390	7	6.995	32	38
0.95	150	150	300	8	7.984	32	38
0.95	119	119	238	9	8.973	32	38
0.95	97	97	194	10	9.951	32	38
0.95	80	80	160	11	10.973	32	38
0.95	68	68	136	12	11.918	32	38
0.95	58	58	116	13	12.926	32	38
0.95	50	50	100	14	13.947	32	38
0.95	44	44	88	15	14.895	32	38
0.99	655	655	1310	5	5.000	32	38
0.99	455	455	910	6	5.999	32	38
0.99	335	335	670	7	6.991	32	38
0.99	258	258	516	8	7.997	32	38
0.99	205	205	410	9	8.981	32	38
0.99	166	166	332	10	9.991	32	38
0.99	138	138	276	11	10.972	32	38
0.99	116	116	232	12	11.983	32	38
0.99	99	99	198	13	12.991	32	38
0.99	86	86	172	14	13.960	32	38
0.99	75	75	150	15	14.975	32	38

Confidence Level	The proportion of confidence intervals (constructed with this same confidence level, sample size, etc.) that would contain the true difference in population means
N1 and N2 N Distance from Mean Difference to Limits Target Distance Actual Distance S1 and S2	The number of items sampled from each population. The total sample size. N = N1 + N2. The distance from the confidence limit(s) to the difference in sample means. The value of the distance that is entered into the procedure. The value of the distance that is obtained from the procedure. The standard deviations upon which the distance from mean difference to limit calculations are based.

Summary Statements

A parallel two-group design will be used to obtain a two-sided 95% confidence interval for the difference between two means. The standard deviations of the two groups are assumed to be unequal and the individual-variance t-distribution formula (using the Welch-Satterthwaite method for degrees of freedom) will be used to calculate the confidence interval. The Group 1 sample standard deviation is assumed to be 32 and the Group 2 sample standard deviation is assumed to be 38. To produce a confidence interval with a distance of no more than 5 from the sample mean difference to either limit, the number of subjects needed will be 380 in Group 1 and 380 in Group 2.

Confidence Intervals for the Difference Between Two Means

Dropout-Inflated Sample Size

	Sample Size			Dro S	pout-Inf Enrollme Sample S	lated ent lize	Expected Number of Dropouts		
Dropout Rate	N1	N2	N	N1'	N2'	N'	D1	D2	D
20%	380	380	760	475	475	950	95	95	190
20%	265	265	530	332	332	664	67	67	134
20%	195	195	390	244	244	488	49	49	98
20%	150	150	300	188	188	376	38	38	76
20%	119	119	238	149	149	298	30	30	60
20%	97	97	194	122	122	244	25	25	50
20%	80	80	160	100	100	200	20	20	40
20%	68	68	136	85	85	170	17	17	34
20%	58	58	116	73	73	146	15	15	30
20%	50	50	100	63	63	126	13	13	26
20%	44	44	88	55	55	110	11	11	22
20%	655	655	1310	819	819	1638	164	164	328
20%	455	455	910	569	569	1138	114	114	228
20%	335	335	670	419	419	838	84	84	168
20%	258	258	516	323	323	646	65	65	130
20%	205	205	410	257	257	514	52	52	104
20%	166	166	332	208	208	416	42	42	84
20%	138	138	276	173	173	346	35	35	70
20%	116	116	232	145	145	290	29	29	58
20%	99	99	198	124	124	248	25	25	50
20%	86	86	172	108	108	216	22	22	44
20%	75	75	150	94	94	188	19	19	38
Dropout Rate	The percentag and for whor	e of subje n no respo	cts (or items) onse data will	that are expe	ected to be (i.e., will b	e lost at rando be treated as "	m during the missing"). At	course of obreviated	the study as DR.
N1, N2, and N	The evaluable evaluated ou confidence in	sample si it of the N nterval.	zes at which t 1' and N2' sub	the confidence bjects that are	e interval e enrolled	is computed. in the study, t	If N1 and N2 he design wil	subjects a Il achieve	are the stated
N1', N2', and N'	The number of subjects, bas	f subjects sed on the	that should be assumed dro	e enrolled in to pout rate. Af	he study i ter solving	n order to obta for N1 and N	ain N1, N2, a 2. N1' and N	nd N eval	uable ulated by

Lokhnygina, Y. (2018) pages 32-33.) D1, D2, and D The expected number of dropouts. D1 = N1' - N1, D2 = N2' - N2, and D = D1 + D2.

Dropout Summary Statements

Anticipating a 20% dropout rate, 475 subjects should be enrolled in Group 1, and 475 in Group 2, to obtain final group sample sizes of 380 and 380, respectively.

inflating N1 and N2 using the formulas N1' = N1 / (1 - DR) and N2' = N2 / (1 - DR), with N1' and N2' always rounded up. (See Julious, S.A. (2010) pages 52-53, or Chow, S.C., Shao, J., Wang, H., and

References

Ostle, B. and Malone, L.C. 1988. Statistics in Research. Iowa State University Press. Ames, Iowa. Zar, Jerrold H. 1984. Biostatistical Analysis (Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey.

This report shows the calculated sample size for each of the scenarios.

Confidence Intervals for the Difference Between Two Means

NCSS.com

Plots Section

These plots show the sample size of each group versus the precision for the two confidence levels.

Example 2 – Validation using Ostle and Malone

Ostle and Malone (1988) page 150 give an example of a precision calculation for a confidence interval for the difference between two means when the confidence level is 95%, the two standard deviations are 6.2185 and 16.06767, and the sample sizes are 7 and 6. The precision is 13.433 (when df = 6.257, not 6).

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Design Tab	
Solve For	Sample Size
Interval Type	Two-Sided
Confidence Level	0.90
Group Allocation	Enter N2, solve for N1
N2	6
Distance from Mean Diff to Limit(s)	13.433
S1 (Standard Deviation Group 1)	6.2185
S2 (Standard Deviation Group 2)	16.06767
Std. Dev. Equality Assumption	Assume S1 and S2 are Unequal

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve For: Interval Type: Standard Devi	ations:	Sample Two-Si Unknor	e Size ided wn and	Unequal			
Confidence	Sa	ample S	ize	Distan Mean D to L	ce from ifference imits	Sta Devi	ndard ations
Level	N1	N2	N	Target	Actual	S 1	S2
					10,100	0.00	40.07

PASS also calculated the sample size in Group 1 to be 7.

Example 3 – Validation using Zar (1984)

Zar (1984) page 132 gives an example of a precision calculation for a confidence interval for the difference between two means when the confidence level is 95%, the pooled standard deviation estimate is 0.7206, and the sample sizes are 6 and 7. The precision is 0.88.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 3** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Design Tab	
Solve For	Distance from Mean Difference to Limit
Interval Type	Two-Sided
Confidence Level	0.95
Group Allocation	Enter N1 and N2 individually
N1 (Sample Size Group 1)	6
N2 (Sample Size Group 2)	7
S1 (Standard Deviation Group 1)	0.7206
S2 (Standard Deviation Group 2)	
Std. Dev. Equality Assumption	Assume S1 and S2 are Equal

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Resu	ults						
Solve For: Interval Type: Standard Devi	ations:	Distand Two-Si Unknor	ce from ided wn and	Mean Difference Equal	to Limit(s	\$)	
Si		Sample Size		Distance from Mean	Standard Deviations		
Level	N1	N2	N	to Limits	S1	S2	
0.95	6	7	13	0.882	0.72	0.72	

PASS also calculates the precision to be 0.88.