PASS Sample Size Software NCSS.com ## Chapter 920 # **Data Simulator** ## Introduction Because of mathematical intractability, it is often necessary to investigate the properties of a statistical procedure using *simulation* (or *Monte Carlo*) techniques. In power analysis, *simulation* refers to the process of generating several thousand random samples that follow a particular distribution, calculating the test statistic from each sample, and tabulating the distribution of these test statistics so that the significance level and power of the procedure may be investigated. This module creates a histogram of a specified distribution as well as a numerical summary of simulated data. By studying the histogram and the numerical summary, you can determine if the distribution has the characteristics you desire. The distribution formula can then be used in procedures that use simulation, such as the new t-test procedures. Below are examples of two distributions that were generated with this procedure. ## **Technical Details** This section provides details on each of the distributions that may be generated using this procedure. #### **Beta Distribution** The beta distribution is given by the density function $$f(x) = \frac{\Gamma(A+B)}{\Gamma(A)\Gamma(B)} \left(\frac{x-C}{D-C}\right)^{A-1} \left(1 - \frac{x-C}{D-C}\right)^{B-1}, \quad A, B > 0, C \le x \le D$$ where *A* and *B* are shape parameters, *C* is the minimum, and *D* is the maximum. In statistical theory, *C* and *D* are usually zero and one, respectively, but the more general formulation used here is more convenient for simulation work. A beta random variable may be specified using either of two parameterizations: *Beta(A, B, C, D)* or *BetaMS(Mean, SD, C, D)*. If BetaMS(..) is used, the program solves for the values of *A* and *B* from the *Mean* and *SD* using the following relationships $$Mean = (D - C) \left[\frac{A}{A + B} \right] + C$$ $$SD = \sqrt{\frac{(D-C)^2}{(A+B)^2} \left[\frac{AB}{A+B+1} \right]}$$ The beta density can take a number of shapes depending on the values of A and B: 1. When A<1 and B<1 the density is U-shaped. 2. When $0 < A < 1 \le B$ the density is J-shaped. 3. When A=1 and B>1 the density is bounded and decreases monotonically to 0. 4. When A=1 and B=1 the density is the uniform density. PASS Sample Size Software <u>NCSS.com</u> #### **Data Simulator** 5. When A>1 and B>1 the density is unimodal. Beta random variates are generated using Cheng's rejection algorithm as given on page 438 of Devroye (1986). #### **Binomial Distribution** The discrete binomial distribution is given by the function $$Pr(X = r) = \binom{n}{r} P^r (1 - P)^{n-r}, \quad r = 0, 1, 2, ..., n$$ A binomial random variable may be specified using either of two parameterizations: **Binomial(P, n)** or **BinomialMS(Mean, n)**. If the *BinomialMS(...)* version is used, the value of P is calculated from the *Mean* using P = Mean/n. Because of this, you must have 0 < Mean < n. Binomial random variates are generated using the inverse CDF method. That is, a uniform random variate is generated, and then the CDF of the binomial distribution is scanned to determine which value of r is associated with that probability. ## **Cauchy Distribution** The Cauchy distribution is given by the density function $$f(x) = \left[S\pi \left(1 + \left\{ \frac{X - M}{S} \right\}^2 \right) \right]^{-1}, \quad S > 0$$ Although the Cauchy distribution does not possess a mean and standard deviation, *M* and *S* are treated as such. Cauchy random numbers are generated using the algorithm given in Johnson, Kotz, and Balakrishnan (1994), page 327. In this program module, the Cauchy is specified as Cauchy(M, S), where M is a location parameter (median), and S is a scale parameter. ## **Constant Distribution** The *constant* distribution occurs when a random variable can only take a single value, X. The constant distribution is specified as Constant(X), where X is the value. #### **Data with a Many Zero Values** Sometimes data follow a specific distribution in which there is a large proportion of zeros. This can happen when data are counts or monetary amounts. Suppose you want to generate exponentially distributed data with 22% extra zeros. You could use the following simulation model: Constant(0)[2]; Exponential(5)[9] The exponential distribution alone was used to generate the histogram below on the left. The histogram below on the right was simulated by adding extra zeros to the exponential data. ## **Exponential Distribution** The exponential distribution is given by the density function $$f(x) = \frac{1}{M}e^{-\frac{x}{M}}, x > 0$$ In this program module, the exponential is specified as Exponential(M), where M is the mean. Random variates from the exponential distribution are generated using the expression $-M \ln(U)$, where U is a uniform random variate. ## **Gamma Distribution** The two-parameter gamma distribution is given by the density function $$f(x) = \frac{(x)^{A-1}}{B^A \Gamma(A)} e^{-\frac{x}{B}}, \quad x > 0, A > 0, B > 0$$ where *A* is a shape parameter and *B* is a scale parameter. A gamma random variable may be specified using either of two parameterizations: *Gamma(A,B)* or *GammaMS(Mean, SD)*. If *GammaMS(Mean, SD)* is used, the values of *A* and *B* are solved for using $$Mean = AB$$ $$SD = B\sqrt{A}$$ Gamma variates are generated using the exponential distribution when A = 1; Best's XG algorithm given in Devroye (1986), page 410, when A > 1; and Vaduva's algorithm given in Devroye (1986), page 415, when A < 1. ## **Gumbel Distribution** The two-parameter Gumbel (extreme value) distribution is given by the density function $$f(x; A, B) = \frac{1}{B} \exp\left\{-\frac{x - A}{B} - \exp\left\{-\frac{x - A}{B}\right\}\right\}$$ where A is a location parameter and B is a scale parameter. A Gumbel random variable may be specified using either of two parameterizations: *Gumbel(A,B)* or *GumbelMS(Mean, SD)*. If *GumbelMS(Mean, SD)* is used, the values of *A* and *B* are solved for using $$Mean = A + 0.57722B$$ $$SD = \sqrt{1.64493B}$$ Gumbel variates may be generated using the following transformation of uniform variates $$g_i = A - B \ln \left\{ \ln \left(\frac{1}{U_i} \right) \right\}$$ ## **Laplace Distribution** The two-parameter Laplace (or double-exponential) distribution is given by the density function $$f(x; A, B) = \frac{1}{2B} \exp\left(-\frac{|x - A|}{B}\right)$$ where *A* is a location parameter and *B* is a scale parameter. A Laplace random variable may be specified using either of two parameterizations: *Laplace(A, B)* or *LaplaceMS(Mean, SD)*. If *LaplaceMS (Mean, SD)* is used, the values of *A* and *B* are solved for using $$Mean = A$$ $$SD = B\sqrt{2}$$ Laplace variates are generated using the following transformation of uniform $\left(-\frac{1}{2} < U < \frac{1}{2}\right)$ variates $$x_i = A - B \operatorname{sgn}(U_i) \ln(1 - 2|U_i|)$$ Here is a histogram of Laplace data ## **Logistic Distribution** The two-parameter logistic distribution is given by the density function $$f(x; A, B) = \frac{\exp\left(-\frac{x - A}{B}\right)}{B\left[1 + \exp\left(-\frac{x - A}{B}\right)\right]^2}$$ where A is a location parameter and B is a scale parameter. A logistic random variable may be specified using either of two parameterizations: *Logistic(A,B)* or *LogisticMS(Mean, SD)*. If *LogisticMS(Mean, SD)* is used, the values of *A* and *B* are solved for using $$Mean = A$$ $$SD = \frac{B\pi}{\sqrt{3}}$$ Logistic variates are generated using the following transformation of uniform variates $$x_i = A + B \ln \left(\frac{U_i}{1 - U_i} \right)$$ Here is a histogram of logistic data ## **Lognormal Distribution** The two-parameter lognormal distribution is given by the density function $$f(x; A, B) = \frac{1}{xB\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(\frac{\ln(x) - A}{B}\right)^2\right\}$$ where A is a location parameter and B is a scale parameter. A lognormal random variable may be specified using either of two parameterizations: *Lognormal(A,B)* or *LognormalMS(Mean, SD)*. If *LognormalMS (Mean, SD)* is used, the values of *A* and *B* are solved for using $$Mean = \exp\left\{A + \frac{B^2}{2}\right\}$$ $$SD = \exp\{2A + B^2\}[\exp\{B^2\} - 1]$$ Lognormal variates are generated the following transformation of normal variates $$x_i = \exp(A + B z_i)$$ Here is a histogram of lognormal data #### **Multinomial Distribution** The *multinomial* distribution occurs when a random variable has only a few discrete values such as 1, 2, 3, 4, and 5. The multinomial distribution is specified as *Multinomial(P1, P2, ..., Pk)*, where *Pi* is the is the probability that the integer *i* occurs. Note that the values start at one, not zero. For example, suppose you want to simulate a distribution which has 50% 3's, and 1's, 2's, 4's, and 5's all with equal percentages. You would enter *Multinomial(1 1 4 1 1)*. As a second example, suppose you wanted to have an equal percentage of 1's, 3's, and 7's, and none of the other percentages. You would enter *Multinomial* (1 0 1 0 0 0 1). #### Likert-Scale Data Likert-scale data are common in surveys and questionnaires. To generate data from a five-point Likert-scale distribution, you could use the following simulation model: Multinomial(6 1 2 1 5) Note that the weights are relative—they do not have to sum to one. The program will make the appropriate weighting adjustments so that they do sum to one. The above expression generated the following histogram. #### **Normal Distribution** The normal distribution is given by the density function $$f(x) = \phi\left(\frac{x-\mu}{\sigma}\right), \quad -\infty \le x \le \infty$$ where $\phi(z)$ is the usual standard normal density. The normal distribution is specified as **Normal(M, S)**, where M is the μ and S is the σ . The normal distribution is generated using the Marsaglia and Bray algorithm as given in Devroye (1986), page 390. #### **Poisson Distribution** The Poisson distribution is given by the function $$Pr(X = x) = \frac{e^{-M}M^x}{x!}, \quad x = 0,1,2,...,M > 0$$ In this program module, the Poisson is specified as P(M), where M is the mean. Poisson random variates are generated using the inverse CDF method. That is, a uniform random variate is generated and then the CDF of the Poisson distribution is scanned to determine which value of X is associated with that probability. ## Tukey's G-H Distribution Hoaglin (1985) presents a discussion of a distribution developed by John Tukey for allowing the detailed specification of skewness and kurtosis in a simulation study. This distribution is extended in the work of Karian and Dudewicz (2000). Tukey's idea was to reshape the normal distribution using functions that change the skewness and/or kurtosis. This is accomplished by multiplying a normal random variable by a skewness function and/or a kurtosis function. The general form of the transformation $$Y = G_g(z)H_h(z)z$$, $X = A + BY$ where z has the standard normal density. The skewness function Tukey proposed is $$G_g(z) = \frac{e^{gz} - 1}{gz}$$ The range of g is typically -1 to 1. The value of $G_0(z) \equiv 1$. The kurtosis function Tukey proposed is $$H_h(z) = e^{hz^2/2}$$ The range of h is also -1 to 1. Hence, if both *g* and *h* are set to zero, the variable *X* follows the normal distribution with mean *A* and standard deviation *B*. As *g* is increased toward 1, the distribution is increasingly skewed to the right. As *g* is decreased towards -1, the distribution is increasingly skewed to the left. As *h* is increased toward 1, the data are stretched out so that more extreme values are probable. As *h* is decreased toward -1, the data are concentrated around the center—resulting in a beta-type distribution. The mean of this distribution is given by $$M = A + B\left(\frac{e^{g^2/2(1-h)} - 1}{g\sqrt{1-h}}\right), \quad 0 \le h < 1$$ which may be easily solved for A. The value B is a scale factor (when g=h=0, B is the standard deviation). Tukey's lambda is specified in the program as **TukeyGH(M, SD, g, h)** where M is the mean, SD is the standard deviation (B = SD/Sqrt(Var(Y)); see Hoaglin (1985) for Var(Y) formula), g is the amount of skewness, and h is the kurtosis. The formula for Var(Y) requires that $0 \le h < 0.5$. Random variates are generated from this distribution by generating a random normal variate, applying the skewness and kurtosis modifications, and scaling to get the desired mean and standard deviation. Here are some examples as g is varied from 0 to 0.4 to 0.6. Notice how the amount of skewness is gradually increased. Similar results are achieved when h is varied from 0 to 0.5. PASS Sample Size Software NCSS.com #### **Data Simulator** ## **Uniform Distribution** The uniform distribution is given by the density function $$f(x) = \frac{1}{B - A}, \quad A \le x \le B$$ The uniform is specified as either Uniform(A, B) or UniformMS(Mean, SD). If UniformMS(Mean, SD) is used, the program calculates A and B using the relationships $$Mean = \frac{A+B}{2}$$ $$SD = \frac{B - A}{\sqrt{12}}$$ Following is a histogram of a thousands of uniform random variates. Uniform random numbers are generated using Makoto Matsumoto's Mersenne Twister uniform random number generator which has a cycle length greater than 1.0E+6000 (that's a one followed by 6000 zeros). PASS Sample Size Software NCSS.com **Data Simulator** #### Weibull Distribution The Weibull distribution is indexed by a shape parameter, *B*, and a scale parameter, *C*. The Weibull density function is written as $$f(x|B,C) = \frac{B}{C} \left(\frac{z}{C}\right)^{(B-1)} e^{-\left(\frac{x}{C}\right)^{B}}, \quad B > 0, C > 0, x > 0.$$ A Weibull random variable may be specified using either of two parameterizations: *Weibull(A,B)* or *WeibullMS(Mean, SD)*. If *WeibullMS (Mean, SD)* is used, the values of *A* and *B* are found for using $$Mean = C \Gamma \left(1 + \frac{1}{B} \right)$$ $$SD = C\sqrt{\Gamma\left(1 + \frac{2}{B}\right) - \Gamma^2\left(1 + \frac{1}{B}\right)}$$ #### Shape Parameter - B The shape parameter controls the overall shape of the density function. Typically, this value ranges between 0.5 and 8.0. One of the reasons for the popularity of the Weibull distribution is that it includes other useful distributions as special cases or close approximations. For example, if - B = 1 The Weibull distribution is identical to the exponential distribution. - B = 2 The Weibull distribution is identical to the Rayleigh distribution. - B = 2.5 The Weibull distribution approximates the lognormal distribution. - B = 3.6 The Weibull distribution approximates the normal distribution. #### Scale Parameter - C The scale parameter only changes the scale of the density function along the *x* axis. Some authors use 1/*C* instead of *C* as the scale parameter. Although this is arbitrary, we prefer dividing by the scale parameter since that is how one usually scales a set of numbers. PASS Sample Size Software <u>NCSS.com</u> The Weibull is specified in the program as W(M, B), where M is the mean which is given by $M = C\Gamma\left(1 + \frac{1}{R}\right)$. ## **Combining Distributions** A random variable's probability distribution specifies its probability over its range of values. Examples of common continuous probability distributions are the normal and uniform distributions. Unfortunately, experimental data often do not follow these common distributions, so other distributions have been proposed. One of the easiest ways to create distributions with desired characteristics is to combine simple distributions. For example, outliers may be added to a distribution by mixing it with data from a distribution with a much larger variance. Thus, to simulate normally distributed data with 5% outliers, we could generate 95% of the sample from a normal distribution with mean 100 and standard deviation 4 and then generate 5% of the sample from a normal distribution with mean 100 and standard deviation 16. Using the standard notation for the normal distribution, the composite distribution of the new random variable Y could be written as $$Y \sim \delta(0 \le X < 0.95)N(100,4) + \delta(0.95 \le X \le 1.00)N(100,16)$$ where X is a uniform random variable between 0 and 1, $\delta(z)$ is 1 or 0 depending on whether z is true or false, N(100,4) is a normally distributed random variable with mean 100 and standard deviation 4, and N(100,16) is a normally distributed random variable with mean 100 and standard deviation 16. The resulting distribution is shown below. Notice how the tails extend in both directions. PASS Sample Size Software NCSS.com #### **Data Simulator** The procedure for generating a random variable, Y, with the mixture distribution described above is - 1. Generate a uniform random number, X. - 2. If X is less than 0.95, Y is created by generating a random number from the N(100,4) distribution. - 3. If X is greater than or equal to 0.95, Y is created by generating a random number from the N(100,16) distribution. Note that only one uniform random number and one normal random number are generated for any particular random realization from the mixture distribution. In general, the formula for a mixture random variable, Y, which is to be generated from two or more random variables defined by their distribution function $F_i(Z_i)$ is given by $$Y \sim \sum_{i=1}^{k} \delta(a_i \le X < a_{i+1}) F_i(Z_i), \quad a_1 = 0 < a_2 < \dots < a_{K+1} = 1$$ Note that the a_i 's are chosen so that weighting requirements are met. Also note that only one uniform random number and one other random number actually need to be generated for a particular value. The $F_i(Z_i)$'s may be any of the distributions which are listed below. Since the test statistics which will be simulated are used to test hypotheses about one or more means, it will be convenient to parameterize the distributions in terms of their means. ## **Creating New Distributions using Expressions** The set of probability distributions discussed above provides a basic set of useful distributions. However, you may want to mimic reality more closely by combining these basic distributions. For example, paired data is often analyzed by forming the differences of the two original variables. If the original data are normally distributed, then the differences are also normally distributed. Suppose, however, that the original data are exponential. The difference of two exponentials is not a common distribution. #### **Expression Syntax** The basic syntax is C1 D1 operator1 C2 D2 operator2 C3 D3 operator3 ... where C1, C2, C3, etc. are coefficients (numbers), D1, D2, D3, etc. are probability distributions, and *operator* is one of the four symbols: +, -, *, /. Parentheses are only permitted in the specification of distributions. Examples of valid expressions include N(4, 5) - N(4, 5) 2E(3) - 4E(4) + 2E(5) N(4, 2)/E(4)-K(5) #### Notes about the Coefficients: C1, C2, C3 The coefficients may be positive or negative decimal numbers such as 2.3, 5, or -3.2. If no coefficient is specified, the coefficient is assumed to be one. #### Notes about the Distributions: D1, D2, D3 The distributions may be any of the distributions listed above such as normal, exponential, or beta. The expressions are evaluated by generating random values from each of the distributions specified and then combining them according to the operators. #### Notes about the operators: +, -, *, / All multiplications and divisions are performed first, followed by any additions and subtractions. Note that if only addition and subtraction are used in the expression, the mean of the resulting distribution is found by applying the same operations to the individual distribution means. If the expression involves multiplication or division, the mean of the resulting distribution is usually difficult to calculate directly. ## **Creating New Distributions using Mixtures** Mixture distributions are formed by sampling a fixed percentage of the data from each of several distributions. For example, you may model outliers by obtaining 95% of your data from a normal distribution with a standard deviation of 5 and 5% of your data from a distribution with a standard deviation of 50. #### **Mixture Syntax** The basic syntax of a mixture is D1[W1]; D2[W2]; ...; Dk[Wk] where the D's represent distributions and the W's represent weights. Note that the weights must be positive numbers. Also note that semi-colons are used to separate the components of the mixture. Examples of valid mixture distributions include N(4, 5)[19]; N(4, 50)[1] 95% of the distribution is N(4, 5), and the other 5% is N(4, 50). W(4, 3)[7]; K(0)[3] 70% of the distribution is W(4, 3), and the other 30% is made up of zeros. N(4, 2)-N(4,3)[2]; E(4)*E(2)[8] 20% of the distribution is N(4, 2)-N(4,3), and the other 80% is E(4)*E(2). #### Notes about the Distributions The distributions D1, D2, D3, etc. may be any valid distributional expression. #### Notes about the Weights The weights w1, w2, w3, etc. need not sum to one (or to one hundred). The program uses these weights to calculate new, internal weights that do sum to one. For example, if you enter weights of 1, 2, and 1, the internal weights will be 0.25, 0.50, and 0.25. When a weight is not specified, it is assumed to have the value of '1.' Thus N(4, 5)[19]; N(4,50)[1] is equivalent to N(4, 5)[19]; N(4,50) PASS Sample Size Software NCSS.com #### **Data Simulator** ## **Special Functions** A set of special functions is available to modify the generator number after all other operations are completed. These special functions are applied in the order they are given next. #### **Square Root (Absolute Value)** This function is activated by placing a ^ in the expression. When active, the square root of the absolute value of the number is used. #### Logarithm (Absolute Value) This function is activated by placing a \sim in the expression. When active, the logarithm (base e) of the absolute value of the number is used. #### **Exponential** This function is activated by placing an & in the expression. When active, the number is exponentiated to the base e. If the current number x is greater than 70, exp(70) is used rather than exp(x). #### **Absolute Value** This function is activated by placing $a \mid in$ the expression. When active, the absolute value of the number is used. #### Integer This function is activated by placing a # in the expression. When active, the number is rounded to the nearest integer. # **Example 1 - Generating Normal Data** In this example, 5000 values will be generated from the standard normal (mean zero, variance one) distribution. These values will be displayed in a histogram and summarized numerically. ## Setup If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu. | nber of Simulated Values 5000 | |--------------------------------------| #### **Output** Click the Calculate button to perform the calculations and generate the following output. PASS Sample Size Software NCSS.com #### **Data Simulator** #### **Descriptive Statistics of Simulated Data** Random Seed: 4825077 (User-Entered) | Statistic | Value | Statistic | Value | |--------------------------|-------------|-----------------|-------------| | Mean | -0.00735189 | Minimum | -3.198628 | | Standard Deviation | 0.9846264 | 1st Percentile | -2.29576 | | Skewness | 0.01892133 | 5th Percentile | -1.632904 | | Kurtosis | 2.955601 | 10th Percentile | -1.302684 | | Coefficient of Variation | -133.9283 | 25th Percentile | -0.6741531 | | Count | 5000 | Median | 0.003536118 | | | | 75th Percentile | 0.6621755 | | | | 90th Percentile | 1.251083 | | | | 95th Percentile | 1.634083 | | | | 99th Percentile | 2.293717 | | | | Maximum | 3.501695 | #### References Devroye, Luc. 1986. Non-Uniform Random Variate Generation. Springer-Verlag. New York. Matsumoto, M. and Nishimura, T. 1998. 'Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator.' ACM Trans. On Modeling and Computer Simulations. This report shows the histogram and a numerical summary of the 5000 simulate normal values. It is interesting to check how well the simulation did. Theoretically, the mean should be zero, the standard deviation one, the skewness zero, and the kurtosis three. Of course, your results will vary from these because these are based on generated random numbers. #### **Data Simulator** # Example 2 – Generating Data from a Contaminated Normal In this example, we will generate data from a contaminated normal. This will be accomplished by generating 95% of the data from a Normal(100,3) distribution and 5% from a Normal(110,15) distribution. #### Setup If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu. | Design Tab | | |------------------------------------------|--------------------------------------| | Probability Distribution to be Simulated | Normal(100 3)[95]; Normal(110 15)[5] | | Number of Simulated Values | 5000 | | Random Seed | 4859120 (for Reproducibility) | ## **Output** Click the Calculate button to perform the calculations and generate the following output. PASS Sample Size Software NCSS.com #### **Data Simulator** | Random Seed: 4859120 (User-Entered) | | | | | | |-------------------------------------|------------|-----------------|----------|--|--| | Statistic | Value | Statistic | Value | | | | Mean | 100.4728 | Minimum | 77.80581 | | | | Standard Deviation | 4.539289 | 1st Percentile | 92.27074 | | | | Skewness | 2.950785 | 5th Percentile | 95.07836 | | | | Kurtosis | 24.15254 | 10th Percentile | 96.16431 | | | | Coefficient of Variation | 0.04517926 | 25th Percentile | 98.06859 | | | | Count | 5000 | Median | 100.1365 | | | | | | 75th Percentile | 102.2967 | | | | | | 90th Percentile | 104.2849 | | | | | | 95th Percentile | 105.8792 | | | | | | 99th Percentile | 119.2142 | | | | | | Maximum | 147.3307 | | | This report shows the data from the contaminated normal. The mean is close to 100, but the standard deviation, skewness, and kurtosis have non-normal values. Note that there are now some very large outliers. # Example 3 - Likert-Scale Data In this example, we will generate data following a discrete distribution on a Likert scale. The distribution of the Likert scale will be 30% 1's, 10% 2's, 20% 3's, 10% 4's, and 30% 5's. ## Setup If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 3** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu. | Probability Distribution to be SimulatedMultinomial(30 10 20 10 30) Number of Simulated Values | Design Tab | | |-------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------| | | Probability Distribution to be Simulated | Multinomial(30 10 20 10 30) | | | Number of Simulated Values | 5000 | | Random Seed4935948 (for Reproducibility) | Random Seed | 4935948 (for Reproducibility) | #### **Output** Click the Calculate button to perform the calculations and generate the following output. #### Data Simulator | Random Seed: 4935948 (User-Entered) | | | | | |-------------------------------------|--------------|-----------------|-------|--| | Statistic | Value | Statistic | Value | | | Mean | 2.9996 | Minimum |
1 | | | Standard Deviation | 1.604903 | 1st Percentile | 1 | | | Skewness | -0.002252797 | 5th Percentile | 1 | | | Kurtosis | 1.462438 | 10th Percentile | 1 | | | Coefficient of Variation | 0.5350391 | 25th Percentile | 1 | | | Count | 5000 | Median | 3 | | | | | 75th Percentile | 5 | | | | | 90th Percentile | 5 | | | | | 95th Percentile | 5 | | | | | 99th Percentile | 5 | | | | | Maximum | 5 | | This report shows the data from a Likert scale. # Example 4 - Bimodal Data In this example, we will generate data that have a bimodal distribution. We will accomplish this by combining data from two normal distributions, one with a mean of 10 and the other with a mean of 30. The standard deviation will be set at 4. ## Setup If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 4** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu. | Design Tab | |---| | Probability Distribution to be SimulatedNormal(10 4);Normal(30 4) | | Number of Simulated Values5000 | | Random Seed4952810 (for Reproducibility) | ## **Output** Click the Calculate button to perform the calculations and generate the following output. #### Data Simulator | Random Seed: 4952810 (User-Entered) | | | | | |-------------------------------------|-------------|-----------------|-----------|--| | Statistic | Value | Statistic | Value | | | Mean | 20.04346 | Minimum | -3.764241 | | | Standard Deviation | 10.79143 | 1st Percentile | 2.068878 | | | Skewness | 0.006285575 | 5th Percentile | 4.874204 | | | Kurtosis | 1.508403 | 10th Percentile | 6.67796 | | | Coefficient of Variation | 0.5384015 | 25th Percentile | 9.943349 | | | Count | 5000 | Median | 20.32332 | | | | | 75th Percentile | 30.09816 | | | | | 90th Percentile | 33.37585 | | | | | 95th Percentile | 35.11776 | | | | | 99th Percentile | 38.53935 | | | | | Maximum | 44.17963 | | This report shows the results for the simulated bimodal data. # **Example 5 – Gamma Data with Extra Zeros** In this example, we will generate data that have a gamma distribution, except that we will force there to be about 30% zeros. The gamma distribution will have a shape parameter of 5 and a mean of 10. ## Setup If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 5** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu. | Design Tab | | |--|---------------------------------------| | Probability Distribution to be Simulated | Gamma(10 5)[7];Constant(0)[3] | | Number of Simulated Values | 5000 | | Random Seed | 4964180 (for Reproducibility) | | | , , , , , , , , , , , , , , , , , , , | #### Output Click the Calculate button to perform the calculations and generate the following output. #### Data Simulator | Random Seed: 4964180 (User-Entered) | | | | | |-------------------------------------|-------------|-----------------|----------|--| | Statistic | Value | Statistic | Value | | | Mean | 35.21869 | Minimum | 0 | | | Standard Deviation | 26.76631 | 1st Percentile | 0 | | | Skewness | -0.02239197 | 5th Percentile | 0 | | | Kurtosis | 2.035473 | 10th Percentile | 0 | | | Coefficient of Variation | 0.7600029 | 25th Percentile | 0 | | | Count | 5000 | Median | 39.91582 | | | | | 75th Percentile | 54.68145 | | | | | 90th Percentile | 67.20717 | | | | | 95th Percentile | 75.47593 | | | | | 99th Percentile | 91.6681 | | | | | Maximum | 137.8659 | | This report shows the results for the simulated gamma data with extra zeros. # **Example 6 - Mixture of Two Poisson Distributions** In this example, we will generate data that have a mixture of two Poisson distributions. 60% of the data will be from a Poisson distribution with a mean of 10 and 40% from a Poisson distribution with a mean of 20. ## Setup If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 6** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu. | Design Tab | | |--|---------------------------------| | Probability Distribution to be Simulated | Poisson(10)[60];Poisson(20)[40] | | Number of Simulated Values | 5000 | | Random Seed | 4974629 (for Reproducibility) | | Random Seed | 4974629 (for Reproducibility) | #### Output Click the Calculate button to perform the calculations and generate the following output. #### Data Simulator | Random Seed: 4974629 (User-Entered) | | | | | | |-------------------------------------|-----------|-----------------|-------|--|--| | Statistic | Value | Statistic | Value | | | | Mean | 13.902 | Minimum | 2 | | | | Standard Deviation | 6.126818 | 1st Percentile | 4 | | | | Skewness | 0.5497524 | 5th Percentile | 6 | | | | Kurtosis | 2.54864 | 10th Percentile | 7 | | | | Coefficient of Variation | 0.4407149 | 25th Percentile | 9 | | | | Count | 5000 | Median | 13 | | | | | | 75th Percentile | 18 | | | | | | 90th Percentile | 23 | | | | | | 95th Percentile | 25 | | | | | | 99th Percentile | 29 | | | | | | Maximum | 36 | | | This report shows the results for the simulated mixture-Poisson data. # Example 7 – Difference of Two Identically Distributed Exponentials In this example, we will demonstrate that the difference of two identically distributed exponential random variables follows a symmetric distribution. This is particularly interesting because the exponential distribution is skewed. In fact, the difference between any two identically distributed random variables follows a symmetric distribution. ## Setup If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 7** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu. | Design Tab | | |--|---------------------------------| | Probability Distribution to be Simulated | Exponential(10)-Exponential(10) | | Number of Simulated Values | 5000 | | Random Seed | 4985014 (for Reproducibility) | | | | ## **Output** Click the Calculate button to perform the calculations and generate the following output. #### Data Simulator | Random Seed: 4985014 (User-Entered) | | | | |-------------------------------------|--------------|-----------------|-----------| | Statistic | Value | Statistic | Value | | Mean | 0.3071028 | Minimum | -71.18158 | | Standard Deviation | 14.17484 | 1st Percentile | -38.02635 | | Skewness | 0.0007240931 | 5th Percentile | -23.19301 | | Kurtosis | 5.57414 | 10th Percentile | -15.48767 | | Coefficient of Variation | 46.15666 | 25th Percentile | -6.789442 | | Count | 5000 | Median | 0.1603061 | | | | 75th Percentile | 7.250011 | | | | 90th Percentile | 16.50293 | | | | 95th Percentile | 24.40185 | | | | 99th Percentile | 39.29205 | | | | Maximum | 72.90659 | This report demonstrates that the distribution of the difference is symmetric.