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Chapter 6 

Introduction to Power Analysis 

Overview 
A statistical test’s power is the probability that it will result in statistical significance. Since statistical 
significance is the desired outcome of a study, planning to achieve high power is of prime importance to the 
researcher. Because of its complexity, however, an analysis of power is often omitted. 

PASS calculates statistical power and determines sample sizes. It does so for a broad range of statistical 
techniques, including the study of means, variances, proportions, survival curves, correlations, 
bioequivalence, analysis of variance, log rank tests, multiple regression, and contingency tables. 

PASS was developed to meet several goals, including ease of learning, ease of use, accuracy, completeness, 
interpretability, and appropriateness. It lets you study the influence of sample size, effect size, variability, 
significance level, and power on your statistical analysis. 

Brief Introduction to Power Analysis 
Statistical power analysis must be discussed in the context of statistical hypothesis testing. Hence, this 
discussion starts with a brief introduction to statistical hypothesis testing, paying particular attention to 
topics that relate to power analysis and sample size determination. Although the theory behind hypothesis 
testing is general, its concepts can be reviewed by discussing simple case: testing whether a proportion is 
greater than a known standard. 

Following the usual terminology of statistical hypothesis testing, define two complementary hypotheses 

𝐻𝐻0:𝑃𝑃 ≤ 𝑃𝑃0    vs.    𝐻𝐻0:𝑃𝑃 > 𝑃𝑃0 

where P is the response proportion in the population of interest and P0 is the known standard value. 

H0 is called the null hypothesis because it specifies that the difference between the two proportions is zero 
(null). 

H1 is called the alternative hypothesis. This is the hypothesis of interest to us. Our motivation for conducting 
the study is to provide evidence that the alternative (or research) hypothesis is true. We do this by showing 
that the null hypothesis is unlikely—thus establishing that the alternative hypothesis (the only possibility 
left) is likely. 
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Outcomes from a statistical test may be categorized as follows: 

1. Reject 𝐻𝐻0 when 𝐻𝐻0 is true. That is, conclude that 𝐻𝐻0 is unlikely when it is true. This constitutes a 
decision error known as the Type-I error. The probability of this error is alpha (α) and is often 
referred to as the significance level of the hypothesis test. 

2.  Do not reject 𝐻𝐻0 when 𝐻𝐻0 is false. That is, conclude that 𝐻𝐻0 is likely when it is false. This constitutes a 
decision error known as the Type-II error. The probability of this error is beta (β). Power is 1 – β. It is 
the probability of rejecting 𝐻𝐻0 when it is false. 

3.  Reject 𝐻𝐻0 when 𝐻𝐻0 is false. This is a correct decision. 

4.  Do not reject 𝐻𝐻0 when 𝐻𝐻0 is true. This is also a correct decision. 

The basic steps in conducting a study that is analyzed with a hypothesis test are: 

1. Specify the statistical hypotheses, 𝐻𝐻0 and 𝐻𝐻1. 

2. Run the experiment on a given number of subjects.  

3. Calculate the value of a test statistic, such as the sample proportion. 

4. Determine whether the sample values favor 𝐻𝐻0 or 𝐻𝐻1. 

Binomial Probability Table 
In the current example, suppose that a random sample of ten individuals is selected, i.e., N = 10. The 
number of individuals, R, with the characteristic of interest is counted. Hence, R is the test statistic. A table of 
binomial probabilities gives the probability that R takes on each of its eleven possible values for various 
values for P. 

  

     P     

R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
0 0.349 0.107 0.028 0.006 0.001 0.000 0.000 0.000 0.000 
1 0.387 0.376 0.121 0.040 0.010 0.002 0.000 0.000 0.000 
2 0.194 0.302 0.233 0.121 0.044 0.011 0.001 0.000 0.000 
3 0.057 0.201 0.267 0.215 0.117 0.042 0.009 0.001 0.000 
4 0.011 0.088 0.200 0.251 0.205 0.111 0.037 0.006 0.000 
5 0.001 0.026 0.103 0.201 0.246 0.201 0.103 0.026 0.001 
6 0.000 0.006 0.037 0.111 0.205 0.251 0.200 0.088 0.011 
7 0.000 0.001 0.009 0.042 0.117 0.215 0.267 0.201 0.057 
8 0.000 0.000 0.001 0.011 0.044 0.121 0.233 0.302 0.194 
9 0.000 0.000 0.000 0.002 0.010 0.040 0.121 0.376 0.387 
10 0.000 0.000 0.000 0.000 0.001 0.006 0.028 0.107 0.349 

 

Let us discuss in detail the interpretation of the values in this table for the simple case in which a coin is 
flipped ten times and the number of heads is recorded. The column parameter P is the probability of 
obtaining a head on any one toss of the coin. When dealing with coin tossing, one would usually set P = 0.5, 
but this does not have to be the case. The row parameter R is the number of heads obtained in ten tosses of 
a coin.  
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The body of the table gives the probability of obtaining a particular value of R. One way to interpret this 
probability value is as follows: conduct a simulation in which this experiment is repeated a million times for 
each value of P. Using the results of this simulation, calculate the proportion of experiments that result in 
each value of R. This proportion is recorded in this table. For example, when the probability of obtaining a 
head on a single toss of a coin is 0.5, ten flips of a coin would result in five heads 24.6% of the time. That is, 
as the procedure is repeated (flipping a coin ten times) over and over, 24.6% of the outcomes would be five 
heads. 

Calculating the Significance Level, Alpha 
We will now explain how the above table is used to set the significance level (the probability of a type-I error) 
to a pre-specified value. Recall that a type-I error occurs when an experiment results in the rejection of the 
null hypothesis when, in fact, the null hypothesis is true. By studying the table, the impact of using different 
rejection regions can be determined. A rejection region is a simple rule that states which values of the test 
statistic will result in the null hypothesis being rejected. 

For example, suppose we want to test P0 = 0.5. That is, the null hypothesis is that P = 0.5 and the alternative 
hypothesis is that P > 0.5. Suppose the rejection region is R equal to 8, 9, or 10. That is, 𝐻𝐻0 is rejected if R = 8, 
9, or 10. From the above table, the probability of obtaining 8, 9, or 10 heads in 10 tosses when P = 0.5 is 
calculated as follows: 

Pr(𝑅𝑅 = 8,9,10|𝑃𝑃 = 0.5) = Pr(𝑅𝑅 = 8|𝑃𝑃 = 0.5) + Pr(𝑅𝑅 = 9|𝑃𝑃 = 0.5) + Pr(𝑅𝑅 = 10|𝑃𝑃 = 0.5) 

= 0.044 + 0.010 + 0.001 

= 0.055 

That is, 5.5% of these coin tossing experiments using this decision rule result in a type-I error. By setting the 
rejection criterion to R = 8, 9, or 10, alpha has been set to 0.055. 

It is extremely important to understand what alpha means, so we will go over its interpretation again. If the 
probability of obtaining a head on a single toss of a coin is 0.5, then 5.5% of the experiments that use the 
rejection criterion of R = 8, 9, or 10 will result in the false conclusion that P > 0.5.  

The key features of this definition that are often overlooked by researchers are: 

1. The value of alpha is based on a particular value of P. Note that we used the assumption “if the 
probability of obtaining a head is 0.5” in our calculation of alpha. Hence, if the actual value of P is 0.4, 
our calculations based on the assumption that P is 0.5 are wrong. Mathematicians call this a 
conditional probability since it is based on the condition that P is 0.5. Alpha is 0.055 if P is 0.5.  

Often, researchers think that setting alpha to 0.05 means that the probability of rejecting the null 
hypothesis is 0.05. Can you see what is wrong with this statement? They have forgotten to mention 
the key fact that this statement is based on the assumption that P is 0.5!  

2. Alpha is a statement about a proportion in multiple experiments. Alpha tells us what 
percentage of a large number of experiments will result in 8, 9, or 10 heads. Alpha is a statement 
about what to expect from future experiments. It is not a statement about P. Occasionally, 
researchers conclude that the alpha level is the probability that P = 0.5. This is not what is meant. 
Alpha is not a statement about P. It is a statement about future experiments, given a particular value 
of P. 
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Interpreting P Values 
The term alpha value is often used interchangeably with the term p value. Although these two terms are 
closely related, there is an important distinction between them. A p value is the largest value of alpha that 
would result in the rejection of the null hypothesis for a particular set of data. Hence, while the value of 
alpha is set during the planning of an experiment, the p value is calculated from the data after experiment 
has been run. 

Calculating Power and Beta 
We will now explain how to calculate the power. Recall that power is the probability of rejecting a false null 
hypothesis. A false 𝐻𝐻0 means that P is some value other than P0. In order to compute power, we must know 
the actual value of P. 

Returning to our coin tossing example, suppose the actual value of P is 0.7. What is the power and beta 
value of this testing procedure? The decision rule is to reject the null hypothesis when R is 8, 9, or 10. From 
the above probability table, the probability of obtaining 8, 9, or 10 heads in 10 tosses of a coin when 
probability of a head is actually 0.7 is  

Pr(𝑅𝑅 = 8,9,10|𝑃𝑃 = 0.7) = Pr(𝑅𝑅 = 8|𝑃𝑃 = 0.7) + Pr(𝑅𝑅 = 9|𝑃𝑃 = 0.7) + Pr(𝑅𝑅 = 10|𝑃𝑃 = 0.7) 

= 0.233 + 0.121 + 0.028 

= 0.382 

This is the power. The value of a type-II error is 1.000 - 0.382, which is 0.618. That is, if P is 0.7, then 38.2% of 
these coin tossing experiments will reject 𝐻𝐻0, while 61.8% of them will result in a type-II error. 

It is extremely important to understand what beta means, so we will go over its interpretation again. If the 
probability of obtaining a head on the toss of a coin is 0.7, then 61.8% of the experiments that use the 
rejection criterion of R = 8, 9, or 10 will result in the false conclusion that P = 0.5.  

The key features of this definition that are often overlooked by researchers are: 

1. The value of beta is based on a particular value of P. Note that we used the assumption “if the 
probability of obtaining a head is 0.7” in our calculation of beta. Hence, if the actual value of P is 0.6, 
our calculation based on the assumption that P was 0.7 is wrong. 

2. Beta is a statement about the proportion of experiments. Beta tells us what percentage of a 
large number of experiments will result in 8, 9, or 10 heads. Beta is a statement about what we can 
expect from future experiments. It is not a statement about P.  

3. Beta depends on the value of alpha. Since the rejection region (8, 9, or 10 heads) depends on the 
value of alpha, beta depends on alpha. 

4. You cannot make both errors at the same time. A type-II error can only occur when a type-I error 
did not occur, and vice versa.  
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Specifying Alternative Values of the Parameters 

We have noted a great deal of confusion about specifying the values of the parameters under the 
alternative hypothesis. The alternative hypothesis is usually that the value of one parameter is different 
from another. The hypothesis does not usually specify how different. It simply gives the direction of the 
difference. The power is calculated at specified alternative values. These values should be considered as 
values at which the power is calculated, not as the true value.  

Effect Size 
The effect size is the size of the change in the parameter of interest that can be detected by an experiment. 
For example, in the coin tossing example, the parameter of interest is P, the probability of a head. In 
calculating the sample size, we would need to state what the baseline probability is (probably 0.5) and how 
large of a deviation from P that we want to detect with our experiment. We would expect that it would take 
a much larger sample size to detect a deviation of 0.01 than it would to detect a deviation of 0.40. 

Selecting an appropriate effect size is difficult because it is subjective. The question that must be answered 
is: what size change in the parameter would be of interest? Note that, in power analysis, the effect size is not 
the actual difference. Instead, the effect size is the change in the parameter that is of interest or is to be 
detected. This is a fundamental concept that is often forgotten after the experiment is run.  

After an experiment is run that leads to non-significance, researchers often ask, “What was the experiment’s 
power?” and “How large of a sample size would have been needed to detect significance?” To compute the 
power or sample size, they set the effect size equal to the amount that was seen in their experiment. This is 
incorrect. When performing a power analysis after an experiment has completed, the effect size is still the change 
in the parameter that would be of interest to other scientists. It is not the change that was actually observed! 

Often, the effect size is stated as a percentage change rather than an absolute change. If this is the case, you 
must convert the percentage change to an absolute change. For example, suppose that you are designing 
an experiment to determine if tossing a particular coin has exactly a 50% chance of yielding a head. That is, 
P0 is 0.50. Suppose your gambling friends are interested in whether a certain coin has a 10% greater 
chance. That is, they are concerned with the case where P is 0.55 or greater. The effect size is |0.50 - 0.55| 
or 0.05. 

Types of Power Analyses 
There are several types of power analyses. Often, power analysis is performed during the design phase of a 
study to determine the sample size. This type of study would determine the value of N for set values of 
alpha and beta. Another type of power analysis is a post hoc analysis, which is done after the study is 
concluded. A post hoc analysis studies such questions as: 

1. What sample size would have been needed to detect a specific effect size? 

2. What is the smallest effect size that could be detected with this sample size? 

3. What was the power of the test procedure? 

These and similar questions may be answered using power analysis. By considering these kinds of 
questions after a study is concluded, you can gain important insights into how to make your research more 
efficient and effective. 
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Nuisance Parameters 
Statistical hypotheses usually make statements about one or more parameters from a set of one or more 
probability distributions. Often, the hypotheses leave other parameters of the probability distribution 
unspecified. These unspecified parameters are called ‘nuisance’ parameters. 

For example, a common clinical hypothesis is that the response proportions of two drugs are equal. The null 
hypothesis is that the difference between these two drugs is zero. The alternative is that the difference is 
non-zero. Note that the actual values of the two proportions are not stated in the hypothesis—just their 
difference. The actual values of the proportions will be needed to compute the power. That is, different 
powers will result for the case when P1 = 0.05 and P2 = 0.25 and for the case P1 = 0.50 and P2 = 0.70. In this 
example, the proportion difference (D = P1 – P2) is the parameter of interest. The baseline proportion, P1, is 
a nuisance parameter. 

Another example of a nuisance parameter occurs when using the t-test to test whether the mean is equal to 
a particular value. When computing the power or sample size for this test, the hypothesis specifies the value 
of the mean. However, the value of the standard deviation is also required. In this case, the standard 
deviation is a nuisance parameter. 

When performing a power analysis, you should state all your assumptions, including the values of any 
nuisance parameters that were used. When you do not have any idea as to reasonable values for nuisance 
parameters, you should use a range of possible values so that you can analyze how sensitive the results are 
to the values of the nuisance parameters. Also, do not be tempted to use the nuisance parameter’s value 
from a previous (or pilot) study. Instead, a reasonable strategy is to compute a confidence interval and use 
the confidence limit that results in the largest sample size. 

Choice of Test Statistics 
Many hypothesis tests can be tested with a variety of test statistics. For example, statisticians often have to 
decide between the t-test and the Wilcoxon test when testing means. Similarly, when testing whether two 
proportions are equal, they have to decide whether to use a z-test or an exact test. If they choose a z-test, 
they have to decide whether to apply a continuity correction.  

In most cases, each test statistic will have a different power. Thus, it should be obvious that you must 
compute the power of the test statistic that will be used in the analysis. A sample size based on the t-test will not 
be accurate for a nonparametric test. 

The next question is usually “Which test statistic should I use?” You might say “They one that requires the 
smallest sample size.” However, other issues besides power must be considered. For example, 
consideration must be given to whether the assumptions of the test statistic will be met be the data. If your 
data is binary, it is probably unreasonable to assume that they are continuous. 

These are simple principles, but they are often overlooked.  
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Types of Hypotheses 
Hypothesis tests work this way. If the null hypothesis if rejected, the alternative hypothesis is concluded to 
be true. However, if null hypothesis is not rejected, no conclusion is reached--the null hypothesis is not 
concluded to be true. The only way that a conclusion is reach is if the null hypothesis is rejected. 

Because of this, it is very important that the null and alternative hypotheses be constructed so that the 
conclusion of interest is associated with the alternative hypothesis. That way, if the null hypothesis is 
rejected, the study reaches the desired conclusion. 

There are several types of hypotheses. These include inequality, equivalence, non-inferiority, and superiority 
hypotheses. In the statistical literature, these terms are used with completely different meanings, so it is 
important to define what is meant by each. We have tried to adopted names that are associated with the 
alternative hypothesis, since this is the hypothesis of interest.  

It is important to note that even though two sets of hypotheses may be similar, they often will have different 
power and sample size requirements. For example, an equivalence test (see below) appears to be the 
simple reverse of a two-sided test of inequality, yet the equivalence test requires a much larger sample size 
to achieve the same power as the inequality test. Hence, you cannot select the sample size for an inequality 
test and then later decide to run an equivalence test.  

Each of the sections to follow will give a brief definition along with an example based on the difference 
between two proportions. 

Inequality Hypothesis 
The term “inequality” represents the classical one-sided and two-sided hypotheses in which the alternative 
hypothesis is simply that the two values are unequal. These hypotheses are called tests of superiority by 
Julious (2004), emphasizing the one-sided versions. 

Two-Sided 

When the null hypothesis is rejected, the conclusion is simply that the two parameters are unequal. No 
statement is made about how different. For example, 0.501 and 0.500 are unequal, as are 0.500 and 0.800. 
Obviously, even though the former are different, the difference is not large enough to be of practical 
importance in most situations. 

𝐻𝐻0:𝑝𝑝1 − 𝑝𝑝2 = 0    vs.    𝐻𝐻1:𝑝𝑝1 − 𝑝𝑝2 ≠ 0      or      𝐻𝐻1: (𝑝𝑝1 − 𝑝𝑝2 < 0)   or   (𝑝𝑝1 − 𝑝𝑝2 > 0) 

One-Sided 

These tests offer a little more information than the two-sided tests since the direction of the difference is 
given. Again, no indication is made about how much higher (or lower) the superior value is to the inferior.  

𝐻𝐻0:𝑝𝑝1 − 𝑝𝑝2 ≤ 0    vs.    𝐻𝐻1:𝑝𝑝1 − 𝑝𝑝2 > 0      or      𝐻𝐻0:𝑝𝑝1 − 𝑝𝑝2 ≥ 0    vs.    𝐻𝐻1:𝑝𝑝1 − 𝑝𝑝2 < 0  
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Non-Inferiority Hypothesis  
These tests are a special case of the one-sided inequality tests. The term ‘non-inferiority’ is used to indicate 
that one treatment is not worse than another treatment. That is, one proportion is not less than another 
proportion by more than a trivial amount called the ‘margin of equivalence’. 

For example, suppose that a new drug is being developed that is less expensive and has fewer side effects 
than the standard drug. Producers must show that its effectiveness is no worse than the drug it is to 
replace. 

When testing two proportions in which a higher proportion is better, the non-inferiority of treatment 1 as 
compared to treatment 2 is expressed as 

𝐻𝐻0:𝑝𝑝1 − 𝑝𝑝2 ≤ −𝛿𝛿    vs.    𝐻𝐻1:𝑝𝑝1 − 𝑝𝑝2 > −𝛿𝛿      or      𝐻𝐻0:𝑝𝑝1 ≤ 𝑝𝑝2 − 𝛿𝛿    vs.    𝐻𝐻1:𝑝𝑝1 > 𝑝𝑝2 − 𝛿𝛿  

where δ > 0 is called the margin of equivalence. Note that when 𝐻𝐻0 is rejected, the conclusion is that the first 
proportion is not less than the second proportion by more than δ. 

Perhaps an example will help introduce this type of test. Suppose that the current treatment for a disease 
works 70% of the time. Unfortunately, this treatment is expensive and occasionally exhibits serious side-
effects. A promising new treatment has been developed to the point where it can be tested. One of the first 
questions that must be answered is whether the new treatment is as good as the current treatment. In 
other words, do at least 70% of subjects respond to the new treatment?  

Because of the many benefits of the new treatment, clinicians are willing to adopt the new treatment even if 
it is slightly less effective than the current treatment. They must determine, however, how much less 
effective the new treatment can be and still be adopted. Should it be adopted if 69% respond? 68%? 65%? 
60%? There is a percentage below 70% at which the difference between the two treatments is no longer 
considered ignorable. After thoughtful discussion with several clinicians, it is decided that if a response of at 
least 63% is achieved, the new treatment will be adopted. The difference between these two percentages is 
called the margin of equivalence. The margin of equivalence in this example is 7% (which is ten percent of the 
original 70%).  

The developers must design an experiment to test the hypothesis that the response rate of the new 
treatment is at least 0.63. The statistical hypothesis to be tested is 

𝐻𝐻0:𝑝𝑝1 − 𝑝𝑝2 ≤ −0.07    vs.    𝐻𝐻1:𝑝𝑝1 − 𝑝𝑝2 > −0.07 

Notice that when the null hypothesis is rejected, the conclusion is that the response rate is at least 0.63. 
Note that even though the response rate of the current treatment is 0.70, the hypothesis test is about a 
response rate of 0.63. Also, notice that a rejection of the null hypothesis results in the conclusion of interest.  
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Non-Zero Null Hypothesis  
These tests are a special case of the one-sided inequality tests. The term ‘non-zero null’ is used to indicate 
that one treatment is better than another by more than a trivial amount. For example, suppose that a new 
drug is being developed that is thought to have superior performance to the existing drug. Producers must 
show that its effectiveness is better than the drug it is to replace. 

When testing two proportions in which a higher proportion is better, the superiority of treatment 1 over 
treatment 2 is expressed as 

𝐻𝐻0:𝑝𝑝1 − 𝑝𝑝2 ≤ 𝛿𝛿    vs.    𝐻𝐻1:𝑝𝑝1 − 𝑝𝑝2 > 𝛿𝛿      or      𝐻𝐻0:𝑝𝑝1 ≤ 𝑝𝑝2 + 𝛿𝛿    vs.    𝐻𝐻1:𝑝𝑝1 > 𝑝𝑝2 + 𝛿𝛿  

where δ > 0 is called the difference margin. Note that when 𝐻𝐻0 is rejected, the conclusion is that the first 
proportion is higher than the second proportion by more than δ. 

Equivalence Hypothesis  
The term ‘equivalence’ is used here to represent tests designed to show that response rates of two 
treatments do not differ by more than a trivial amount called the ‘margin of equivalence’. These tests are 
the reverse of the two-sided inequality test. 

The typical set of hypotheses are 

𝐻𝐻0:𝑝𝑝1 − 𝑝𝑝2 ≤ 𝛿𝛿𝐿𝐿    or   𝑝𝑝1 − 𝑝𝑝2 ≥ 𝛿𝛿𝑈𝑈    vs.    𝐻𝐻1:𝛿𝛿𝐿𝐿 < 𝑝𝑝1 − 𝑝𝑝2 < 𝛿𝛿𝑈𝑈  

where 𝛿𝛿𝐿𝐿 < 0 and 𝛿𝛿𝑈𝑈 > 0 are called the equivalence limits. 

Suppose 70% of subjects with a certain disease respond to a certain drug. The company that produces the 
drug has decided to open a new facility in another city. They must show that the drug produced in the new 
facility is equivalent (all most the same) as that produced in existing facilities. After thoughtful discussion 
with several clinicians and regulatory agencies, it is decided that if the response rate of the drug produced at 
the new facility is between 65% and 75%, the new facility will go into production. In this case, the margin of 
equivalence is 5%.  

The statistical hypothesis to be tested is 

𝐻𝐻0: |𝑝𝑝1 − 𝑝𝑝2| ≥ 0.05    vs.    𝐻𝐻1: |𝑝𝑝1 − 𝑝𝑝2| < 0.05 
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