Chapter 913

Kappa Estimator

Introduction

This tool calculates κ and SD(κ) from a table (matrix) of agreement frequencies. By experimenting with the table values, you can get a feel for the possible range of SD(κ) values that will be obtained.

Technical Details

We begin with an example. Consider a study comparing the results of two raters on N subjects. Each subject will be tested by one rater and then retested by the other rater on a nominal scale with three categories. The spreadsheet would look something like this.

Table of Agreement Frequencies						
	Rater B					
Rater A	B1	B2	B3			
A1	103	24	31			
A2	21	187	19			
A3	32	25	96			

Each cell is divided by the total of all cells to provide the following table of agreement proportions.

Table of Agreement Proportions						
	Rater B					
Rater A	B1	B2	B3	Total		
A1	0.19	0.04	0.06	0.29		
A2	0.04	0.35	0.04	0.42		
A3	0.06	0.05	0.18	0.28		
Total	0.29	0.44	0.27	1.00		

The values of κ , PE, PO, Fleiss's SD(κ), and Cohen's SD(κ) are calculated from this table. In this case, the values are $\kappa = 0.567062$, PE = 0.347418, PO = 0.717472, Fleiss's SD(κ) = 0.678379, and Cohen's SD(κ) = 0.689919. One concept we learn is that there is little practical difference between the two measures of SD(κ) in this case.

Now you can begin chancing the values in the first table and noting the corresponding change in the statistics at the bottom.

Kappa Estimator

Once you have experience with the values of κ and SD(κ), you can close this window and enter these values directly into the appropriate boxes.