Chapter 361

Mixed Models Tests for Slope-Interaction in a 2×2 Factorial 2-Level Hierarchical Design with Random Slopes (Level-2 Randomization)

Introduction

This procedure calculates power and sample size for a two-level hierarchical mixed model which is randomized at the **second** level (subjects). The associated **longitudinal** study uses a 2-by-2 factorial design with two binary factors X and Z, each with two possible values (0 and 1). This results in four treatment arms. The goal of the study is to test whether the slopes of subjects across time are different from what would be expected if the effect of the two factors were additive. That is, one wants to test the three-way interaction between the two binary factors and time.

In many cases, this design is called a *repeated measures* design. The classic example is a study in which the level-2 units are subjects, and the level-1 units are time points at which measurements are taken. This factor is nested in the level-2 units.

This procedure is for longitudinal studies in which each subject is measured two or more times.

In this case of level-2 randomization, each level-2 unit (subject) is randomly assigned to one of the four treatments combinations.

Each subject is assumed to have a separate, random slope.

Technical Details

Our formulation comes from Ahn, Heo, and Zhang (2015), chapter 5, section 5.6, pages 172-176. The linear mixed model that is adopted is

$$Y_{ij} = \beta_0 + \delta_X X_{ij} + \delta_Z Z_{ij} + \delta_T T_{ij} + \delta_{XZ} X_{ij} Z_{ij} + \delta_{XT} X_{ij} T_{ij} + \delta_{ZT} Z_{ij} T_{ij} + \boldsymbol{\delta_{XZT}} \boldsymbol{X_{ij}} \boldsymbol{Z_{ij}} \boldsymbol{T_{ij}} + \boldsymbol{v_i} T_{ij} + \boldsymbol{u_i} + \boldsymbol{e_{ij}}$$

where

- Y_{ij} is the continuous response of the j^{th} level-1 unit, within the i^{th} level-2 unit.
- X_{ij} is an indicator variable that is equal to "1" if the i^{th} level-2 unit is assigned to receive intervention X and "0" otherwise. Thus, $X_{ij} = Xi$ for all i.
- Z_{ij} is an indicator variable that is equal to "1" if the i^{th} level-2 unit is assigned to receive intervention Z and "0" otherwise. Thus, $Z_{ij} = Zi$ for all i.
- β_0 is the fixed intercept.

Mixed Models Tests for Slope-Interaction in a 2×2 Factorial 2-Level Hier. Design with Random Slopes (Level-2 Rand.)

 δ_X is the treatment effect of factor X.

 $\delta_{\rm Z}$ is the treatment effect of factor Z.

 δ_{XZ} is the interaction effect of factors X and Z.

 δ_{XT} is the interaction effect of factors X and Z.

 δ_{ZT} is the interaction effect of factors X and Z.

 δ_{XZT} is the 3-way interaction effect of X, Z, and time. **This is the coefficient of interest**.

 v_i is the random slope of the i^{th} level-2 unit. It is distributed as $N(0, \sigma_{\tau}^2)$.

 u_i is the random intercept for the i^{th} level-2 unit. It is distributed as $N(0, \sigma_2^2)$.

 e_{ij} is the level-1 random intercept effect that is distributed as $N(0, \sigma_e^2)$.

 σ_{τ}^2 is variance of the subject-specific random slopes.

 σ^2 is the variance of Y when slopes are fixed, where $\sigma^2 = \sigma_2^2 + \sigma_e^2$.

 ρ_1 is the correlation among level-1 units which are in a particular level-2 unit.

 $r_{ au}$ is the ratio of the random-slope variance to the sum of the other variances. So $r_{ au} = \frac{\sigma_{ au}^2}{\sigma^2}$

 $K_{0,0}$ is the number of level-2 units for which X = 0 and Z = 0.

 $K_{0.1}$ is the number of level-2 units for which X = 0 and Z = 1.

 $K_{1,0}$ is the number of level-2 units for which X = 1 and Z = 0.

 $K_{1,1}$ is the number of level-2 units for which X = 1 and Z = 1.

M is the number of level-1 units per level-2 unit. It is the number of measurement times.

The test of significance of the product $X_{ijk}Z_{ijk}T_{ijk}$ is the interaction effect of X, Z, and Time. This is the test statistic of interest. It tests whether the subject-specific slopes behave the same across all treatment combinations.

Assume that δ_{XZT} is to be tested using a Wald test. The statistical hypotheses are H_0 : $\delta_{XZT} = 0$ vs. H_a : $\delta_{XZT} \neq 0$.

The power is calculated using

$$Power = \Phi \left\{ \left| \frac{\delta_{XZT}}{\sigma} \right| \sqrt{\frac{K_{0,0}M \operatorname{Var}(T)}{f\left(\frac{1}{K_{0,0}} + \frac{1}{K_{1,1}} + \frac{1}{K_{1,0}} + \frac{1}{K_{0,1}}\right)} - \Phi^{-1}(1 - \alpha/2) \right\}$$

Mixed Models Tests for Slope-Interaction in a 2×2 Factorial 2-Level Hier. Design with Random Slopes (Level-2 Rand.)

Example 1 – Calculating Power

Suppose that a two-level hierarchical design is planned in which there will be two interventions. Each intervention will be whether one of two drugs is administered. There will be only one measurement per subject and the four treatments will be applied to whole clusters (level-two units). The analysis will be a mixed model of continuous data using the model given earlier in this chapter. The following parameter settings are to be used for the power analysis: $\delta xz\tau = 7$; $\sigma = 9.7$; $\rho = 0.06$; $\tau = 0.1$; and $\tau = 0.1$; $\tau = 0.1$; and $\tau = 0.1$; $\tau = 0.1$; and $\tau = 0.1$; $\tau = 0.1$; $\tau = 0.1$; $\tau = 0.1$; and $\tau = 0.1$; and $\tau = 0.1$; $\tau = 0.1$; and $\tau = 0.1$; and

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Power
Alpha	0.05
K00 (Group 00 Count (X=0, Z=0))	5 10 15 20
K01 (Group 01 Count (X=0, Z=1))	K00
K10 (Group 10 Count (X=1, Z=0))	K00
K11 (Group 11 Count (X=1, Z=1))	K00
M (Level 1 Units Per Level-2 Unit)	5 10
δxzτ (Three-Way Interaction)	7
σ (Standard Deviation)	9.7
ρ1 (Correlation Among Level-1 Units)	0.06
rτ (V(τ) / σ²)	0.1

Mixed Models Tests for Slope-Interaction in a 2×2 Factorial 2-Level Hier. Design with Random Slopes (Level-2 Rand.)

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Solve F	or: Pow	er										
	Total Sample	Number of Level-2 Units					Number of Level-1	Three-Way	Standard	Correlation Among		
Power	Size N	Group 00 K00	Group 01 K01	Group 10 K10	Group 11 K11	Total K				Level-1 Units ρ1		Alpha
0.4490	100	5	5	5	5	20	5	7	9.7	0.06	0.1	0.05
.6763	200	5	5	5	5	20	10	7	9.7	0.06	0.1	0.05
).7359	200	10	10	10	10	40	5	7	9.7	0.06	0.1	0.05
.9277	400	10	10	10	10	40	10	7	9.7	0.06	0.1	0.05
.8874	300	15	15	15	15	60	5	7	9.7	0.06	0.1	0.05
.9870	600	15	15	15	15	60	10	7	9.7	0.06	0.1	0.05
.9558	400	20	20	20	20	80	5	7	9.7	0.06	0.1	0.05
.9980	800	20	20	20	20	80	10	7	9.7	0.06	0.1	0.05
ower	The p	robability	of rejecting	g a false n	ull hypothe	sis wh	nen the altern	ative hypot	hesis is tru	e.		
V	The to	otal numbe	er of Level	-1 units in	the study.							
(00)	The n	umber of	Level-2 un	its in Grou	n) (0.0) (th	e arou	p in which X	= 0 and $Z =$: 0).			
(01							p in which X					
(10							p in which X					
11							p in which X					
(-2 units in		c giou	p III WIIIOII X	- 1 and 2 -	, .			
Λ					,	o th	e number of t	imo pointe)				
										t which the ne	war ia	
XZT		nree-way i culated.	nteraction	among the	e subject-s	pecili	siopes (pTT	- p 10) - (bt	71 - p00) a	t which the po	wei is	
5	The s	tandard de	eviation of	the Yijk as	ssuming a	fixed-	slope model.					
o1	The c	orrelation	among Le	vel-1 units	in a partic	ular L	evel-2 unit.					
Т		atio of the										

Summary Statements

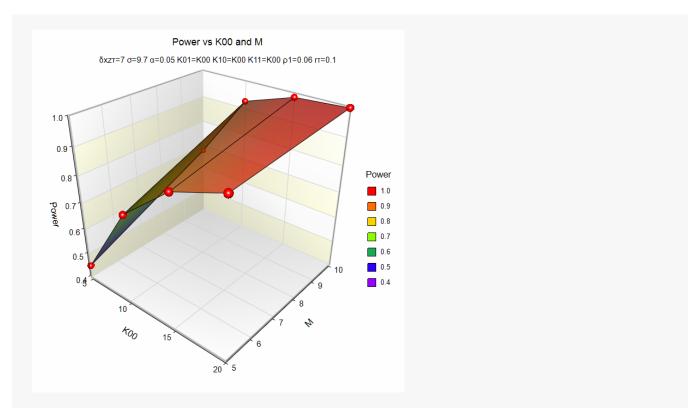
The probability of rejecting a true null hypothesis.

Alpha

A 2×2 factorial (X = 0,1 and Z = 0,1) 2-level design will have random assignment of subjects (level-2 units) to each of the 4 treatment arms (Groups 00, 01, 10, and 11), with repeated measurements (level-1 units) on each subject (over time). This design will be used to test whether the outcome trends (slopes) are different for each of the treatment combinations (or, equivalently, whether the group combination mean differences change across time). This hypothesis will be evaluated by testing the three-way interaction term (X x Z x time) of the linear mixed-effects model, assuming random slopes, with a Type I error rate (α) of 0.05. This interaction is formed from the four group slopes across time using the following formula: $\delta xz\tau = (\beta 11 - \beta 10) - (\beta 01 - \beta 00)$. The standard deviation of Yij, assuming a fixed-slope model, is assumed to be 9.7 (this standard deviation is the square-root of the fixed-slope model variance of Yij (σ^2), where the variance is the sum of the error term variance and the level-2 random intercept variance). The ratio of the subject-specific random slope variance to σ^2 (V(τ) / σ^2) is assumed to be 0.1 (the variance of Yij, assuming a random-slope model, is $\sigma^2 + V(\tau) \times T[k]^2$). The intraclass correlation coefficient of level-1 units (repeated measurements on a subject) is assumed to be 0.06. To detect a three-way interaction among the subject-specific slopes (δxzt) of at least 7, with level-2 (subject-level) sample sizes of 5 in Group 00 (X = 0, Z = 0), 5 in Group 01 (X = 0, Z = 1), 5 in Group 10 (X = 1, Z = 0), and 5 in Group 11 (X = 1, Z = 1), with 5 level-1 units (repeated measurements) obtained from each level-2 unit (subject) (for a grand total of 100 level-1 measurements), the power is 0.449.

Mixed Models Tests for Slope-Interaction in a 2×2 Factorial 2-Level Hier. Design with Random Slopes (Level-2 Rand.)

References


Ahn, C., Heo, M., and Zhang, S. 2015. Sample Size Calculations for Clustered and Longitudinal Outcomes in Clinical Research. CRC Press. New York.

This report shows the power for each of the scenarios.

Plots Section

Plots Power vs K00 by M δxzτ=7 σ=9.7 α=0.05 K01=K00 K10=K00 K11=K00 ρ1=0.06 rτ=0.1 1.0 0.9 0.8 Μ Power 5 10 0.5 0.4 10 15 20 K00

Mixed Models Tests for Slope-Interaction in a 2×2 Factorial 2-Level Hier. Design with Random Slopes (Level-2 Rand.)

These plots show the power for the various parameter settings.

Mixed Models Tests for Slope-Interaction in a 2×2 Factorial 2-Level Hier. Design with Random Slopes (Level-2 Rand.)

Example 2 - Calculating Sample Size (K00)

Continuing with the last example, suppose the researchers want to determine the value of K00 needed to achieve 90% power for both values of M.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	K00 (Group 00 Count (X=0, Z=0))
Power	0.90
Alpha	0.05
K01 (Group 01 Count (X=0, Z=1))	K00
K10 (Group 10 Count (X=1, Z=0))	K00
K11 (Group 11 Count (X=1, Z=1))	K00
M (Level 1 Units Per Level-2 Unit)	5 10
δxzτ (Three-Way Interaction)	7
σ (Standard Deviation)	9.7
ρ1 (Correlation Among Level-1 Units)	0.06
rτ (V(τ) / σ²)	0.1

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve F	or: K00	(Group 00 (Count (X=0,	Z=0))								
	Total	Number of Level-2 Units					Number of Level-1		Cton doud	Correlation		
	Sample Size	Group 00	Group 01	Group 10	Group 11	Total				Among Level-1 Units	V(τ) / σ²	
Power		K00	K01	K10	K11	K	М	бххт	σ	ρ1		Alpha
0.9061	320	16	16	16	16	64	5	7	9.7	0.06	0.1	0.05
0.9003	360	9	9	9	9	36	10	7	9.7	0.06	0.1	0.05

This report shows the power for each of the scenarios.

Mixed Models Tests for Slope-Interaction in a 2×2 Factorial 2-Level Hier. Design with Random Slopes (Level-2 Rand.)

Example 3 - Validation using Ahn, Heo, and Zhang (2015)

Ahn, Heo, and Zhang (2015) page 176 provide a table in which several scenarios are reported. We will validate this procedure by duplicating the fifth row. The following parameter settings are to be used for the power analysis: $\delta xz\tau = 0.4$; $\sigma = 4$; $\rho = 0.1$; $\tau = 0.1$;

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 3** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	K00 (Group 00 Count (X=0, Z=0))
Power	0.80
Alpha	0.05
K01 (Group 01 Count (X=0, Z=1))	K00
K10 (Group 10 Count (X=1, Z=0))	K00
K11 (Group 11 Count (X=1, Z=1))	K00
M (Level 1 Units Per Level-2 Unit)	5
δxzτ (Three-Way Interaction)	0.4
σ (Standard Deviation)	4
ρ1 (Correlation Among Level-1 Units)	0.1
rτ (V(τ) / σ²)	0.1

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve For: K00 (Group 00 Count (X=0, Z=0))												
	Total Sample Size N	Number of Level-2 Units					Number of Level-1	Three Way	Ot	Correlation		
Power		Group 00 K00	Group 01 K01	Group 10 K10	Group 11 K11	Total K	Level-2 Unit	Three-Way Interaction δxzτ	Deviation	Among Level-1 Units ρ1		Alpha
0.8003	11940	597	597	597	597	2388	5	0.4	4	0.1	0.1	0.05

PASS also calculates the value of K00 to be 597 and the power as 0.8003.