Chapter 604

Multi-Arm Equivalence Tests for Treatment and Control Means in a Cluster-Randomized Design

Introduction

This module computes power and sample size for multiple equivalence tests of treatment means versus a control mean when the data are obtained from a cluster-randomized design. We could not find any published results about equivalence testing with cluster-randomized designs. What we could find were Schuirmann's TOST procedure and a discussion of how to adjust the t-test sample size results given by Campbell and Walters (2014). So, we applied the Campbell and Walters adjustment to Schuirmann's test.

A *cluster (group) randomized design* is one in which whole units, or clusters, of subjects are randomized to the groups rather than the individual subjects in those clusters. The conclusions of the study concern individual subjects rather than the clusters. Examples of clusters are families, school classes, neighborhoods, hospitals, and doctor's practices.

Cluster-randomized designs are often adopted when there is a high risk of contamination if cluster members were randomized individually. For example, it may be difficult for doctors to use two treatment methods in their practice. The price of randomizing by clusters is a loss of efficiency--the number of subjects needed to obtain a certain level of precision in a cluster-randomized trial is usually much larger than the number needed when the subjects are randomized individually. Hence, standard methods of sample size estimation cannot be used.

In this multi-arm design, there are *G* treatment groups and one control group. A mean is measured in each group. A total of *G* hypothesis tests are anticipated each comparing a treatment group with the common control group using a t-test of the difference between two means.

The Bonferroni adjustment of the type I error rate may be optionally made because several comparisons are being tested using the same data. Making a multiplicity adjustment is usually recommended, but not always. In fact, Saville (1990) advocates not applying it and Machin, Campbell, Tan, and Tan (2018) include omitting it as a possibility.

Background

Whether you want to test several doses of a single treatment or several types of treatments, good research practice requires that each treatment be compared with a control. For example, a popular three-arm design consists of three groups: control, treatment A, and treatment B. Two tests are run: treatment A versus control and treatment B versus the same control. This avoids having to obtain a second control group for treatment B. Besides the obvious efficiency in subjects, it may be easier to recruit subjects if their chances of receiving the new treatment are better than 50-50.

Technical Details

Our formulation of cluster-randomized designs comes from Campbell and Walters (2014) and Ahn, Heo, and Zhang (2015). Suppose you have *G* treatment groups with means μ_i that have samples of size N_i and one control group with response probability μ_c that has a sample of size N_c . The total sample size is $N = N_1 + N_2 + ... + N_G + N_c$.

Equivalence Tests

Measurements are made on individuals that have been randomly assigned to the groups. This *parallel-groups* design may be analyzed by a set of TOST equivalence tests to show that the means of the treatment and control groups do not differ by more than a small amount, either positive or negative. To conduct an equivalence test, you must set upper and lower equivalence limits for the difference between a treatment mean and the control mean. These limits, which will be called *EL* and <u>EU</u>, establish an interval of equivalence. When the sample mean difference falls between these limits, the null hypothesis of non-equivalence is rejected and the equivalence of the two group means is concluded.

The statistical hypotheses are written as follows:

$$H_{0i}: \mu_i - \mu_C \leq EL$$
 or $\mu_i - \mu_C \geq EU$ vs. $H_{1i}: EL < \mu_i - \mu_C < EU$

or, if we define $\delta_i = \mu_i - \mu_C$,

$$H_{0i}: \delta_i \leq EL$$
 or $\delta_i \geq EU$ vs. $H_{1i}: \delta_i < EU$

where EL < 0 and EU > 0. Usually, EL = -EU.

Power Calculations

Denote a continuous observation by Y_{ikj} where *i* is the group, $k = 1, 2, ..., K_i$ is a cluster within group *i*, and *j* = 1, 2, ..., m_{ik} is an item (subject) in cluster *k* of group *i*. Let σ^2 denote the variance of Y_{ikj} , which is $\sigma_{Between}^2 + \sigma_{Within}^2$, where $\sigma_{Between}^2$ is the variation between clusters and σ_{Within}^2 is the variation within clusters. Also, let ρ denote the intracluster correlation coefficient (ICC) which is $\sigma_{Between}^2 / (\sigma_{Between}^2 + \sigma_{Within}^2)$. This correlation is the simple correlation between any two observations in the same cluster.

For sample size calculation, we assume that the m_{ik} are distributed with a mean cluster size of M_i and a coefficient of variation of cluster sizes of *COV*. The variances of the group means, \overline{Y}_i , are approximated by

$$V_i = \frac{\sigma^2(DE_i)(RE_i)}{K_i M_i}$$

where

$$DE_i = 1 + (M_i - 1)\rho$$
$$RE_i = \frac{1}{1 - (COV)^2 \lambda_i (1 - \lambda_i)}$$
$$\lambda_i = M_i \rho / (M_i \rho + 1 - \rho)$$

DE is called the *Design Effect* and RE is the *Relative Efficiency* of unequal to equal cluster sizes. Both are greater than or equal to one, so both inflate the variance.

Assume that $\delta_i = \mu_i - \mu_c - NIM$ is to be tested using two modified two-sample t-tests. The test statistics are

$$t_L = \frac{\bar{Y}_i - \bar{Y}_C - EL}{\sqrt{\hat{V}_i + \hat{V}_C}}$$

and

$$t_U = \frac{\bar{Y}_i - \bar{Y}_C - EU}{\sqrt{\hat{V}_i + \hat{V}_C}}$$

We assume that these statistics have an approximate *t* distribution with degrees of freedom $DF = K_iM_i + K_CM_C - 2$ for a *subject-level* analysis or $K_i + K_C - 2$ for a *cluster-level* analysis.

Define the noncentrality parameters as $\Delta_{Li} = (\delta_i - EL)/\sigma_{di}$ and $\Delta_{Ui} = (\delta_i - EU)/\sigma_{di}$ where $\sigma_{di} = \sqrt{V_i + V_c}$.

The power of this test procedure is given by

Power =
$$\Pr(T_L \ge t_{1-\alpha,DF} \text{ and } T_U \le -t_{1-\alpha,DF})$$

where T_L and T_U are distributed as the bivariate, noncentral *t* distribution with noncentrality parameters Δ_L and Δ_U .

Multiplicity Adjustment

Because *G* t-tests between treatment groups and the control group are run when analyzing the results of this study, many statisticians recommend that a Bonferroni adjustment be applied. This adjustment is easy to apply: the value of alpha that is used in the test is found by dividing the original alpha by the number of tests. For example, if the original alpha is set at 0.05 and the number of treatment (not including the control) groups is five, the individual tests should be conducted using an alpha of 0.01.

The main criticism of this procedure is that if there are many tests, the value of alpha becomes very small. To mitigate against this complaint, some statisticians recommend separating the treatment groups into those that are of primary interest and those that are of secondary interest. The Bonferroni adjustment is made by the using the number of primary treatments rather than the total number of treatments.

There are some who advocate ignoring the adjustment entirely in the case of randomized clinical trials. See for example Saville (1990) and the discussion in chapter 14 of Machin, Campbell, Tan, and Tan (2018).

Size of the Control Group

Because the control group is used over and over, some advocate increasing the number of clusters in this group. The standard adjustment is to include \sqrt{G} clusters in the control group for each cluster in one of the treatment groups. See Machin, Campbell, Tan, and Tan (2018, pages 231-232). Note that often, the treatment groups all have the same sample size.

Example 1 – Finding the Sample Size

Suppose that a four-arm, cluster-randomized, equivalence study is to be conducted in which $\mu_1 = \mu_2 = \mu_3 = 5$, $\mu_c = 5$, EL = -1, EU = 1, $\sigma = 3.7$, $\rho = 0.01$, *Mi* = 5, 10, or 15, *COV* = 0.65, *alpha* = 0.05, and the number of clusters is to be calculated. The required power value is 0.9 calculated for a subject-based, equivalence test.

The control group multiplier will be set to $\sqrt{G} = \sqrt{3} = 1.732$ since the control group is used for three comparisons in this design.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Des	ian	Tab
Des	iyn	Tab

Solve For	•
Test Statistic	T-Test Based on Number of Subjects
Power of Each Test	0.90
Overall Alpha	0.05
Bonferroni Adjustment	Standard Bonferroni
Group Allocation	Enter Group Allocation Pattern, solve for group numbers of clusters
M (Average Cluster Size)	5 10 15
COV of Cluster Sizes	0.65
EU (Upper Equivalence Limit)	1
EL (Lower Equivalence Limit)	Upper Limit
Control Mean	5
Control Items Per Cluster	M
Control Cluster Allocation	1.732
Set A Number of Groups	
Set A Mean	5
Set A Items Per Cluster	M
Set A Cluster Allocation	1
Set B Number of Groups	0
Set C Number of Groups	0
Set D Number of Groups	0
More	Unchecked
σ (Standard Deviation)	
ρ (Intracluster Correlation)	0.01

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Numeric Results	
Solve For:	Sample Size
Group Allocation:	Enter Group Allocation Pattern, solve for group numbers of clusters
Test Type:	T-Test with DF based on number of subjects
Hypotheses:	H0: $\delta \leq EL$ or $\delta \geq EU$ vs. H1: $EL < \delta < EU$
Number of Groups:	4
Bonferroni Adjustment:	Standard Bonferroni (Divisor = 3)

				Cluster		. .				alence nits	0 (1)		А	lpha
Comparison	Power	Number of Clusters Ki	Cluster Allocation	Average Mi	cov	-Sample Size Ni	Mean µi	Difference δi	Lower EL	Upper EU	Standard Deviation σ		Overall	Bonferroni- Adjusted
Control		114	1.732	5	0.65	570	5				3.7	0.01		
vs A1	0.90401	66	1.000	5	0.65	330	5	0	-1	1		0.01	0.05	0.01667
vs A2	0.90401	66	1.000		0.65	330	5	Ő		1		0.01	0.05	0.01667
vs A3	0.90401	66	1.000		0.65	330	5	0		1		0.01	0.05	0.01667
Total		312		-		1560		-			-			
Control		61	1.732	10	0.65	610	5				3.7	0.01		
vs A1	0.90359	35	1.000	10	0.65	350	5	0	-1	1	3.7	0.01	0.05	0.01667
vs A2	0.90359	35	1.000	10	0.65	350	5	0	-1	1	3.7	0.01	0.05	0.01667
vs A3	0.90359	35	1.000	10	0.65	350	5	0	-1	1	3.7	0.01	0.05	0.01667
Total		166				1660								
Control		43	1.732	15	0.65	645	5				3.7	0.01		
vs A1	0.90574	25	1.000	15	0.65	375	5	0	-1	1	3.7	0.01	0.05	0.01667
vs A2	0.90574	25	1.000	15	0.65	375	5	0	-1	1	3.7	0.01	0.05	0.01667
vs A3	0.90574	25	1.000	15	0.65	375	5	0	-1	1	3.7	0.01	0.05	0.01667
Total		118				1770								
Actual Powe	er	The nower					nly.							
			actually a				-							
Ki		The number			ith gr		-	number of	cluster	s is rep	ported in t	he la	st row of	the
		The number column. The cluste	er of cluste	rs in the ratio of	the ith	oup. The	e total							
Allocation		The number column. The cluster clusters	er of cluste r allocation assigned to	rs in the ratio of to the grou	the ith up.	oup. The n group.	e total The v	alue on ea	ch row	repres	ents the re			
Allocation Mi		The number column. The cluster clusters The average	er of cluste r allocation assigned to ge number	rs in the ratio of to the grou of items	the ith up. per c	oup. The n group. luster (c	e total The v	alue on ea age cluster	ch row r size) i	repres	ents the re			
Allocation Mi COV		The number column. The cluster clusters The average The coeffic	er of cluste r allocation assigned to ge number cient of var	rs in the ratio of t the grou of items iation of t	the ith up. per c the cl	oup. The n group. luster (c uster siz	e total The va or aver ces wit	alue on ea age cluster hin the gro	ch row r size) i up.	repres n the it	ents the re	elativ	ve numbe	er of
Allocation Mi COV Ni		The number column. The cluster clusters The averag The coeffic The number	er of cluste r allocation assigned to ge number sient of var er of items	rs in the ratio of t the grou of items iation of t in the ith	the ith up. per c the cl grou	oup. The n group. cluster (c uster siz p. The te	e total The van or aver ces wit otal sa	alue on ea age cluster hin the gro mple size	ch row r size) i up. is show	repres n the it /n as th	ents the re th group. ne last row	elativ v of ti	re numbe he colum	r of n.
Allocation Mi COV Ni		The number column. The cluster clusters The average The coeffic	er of cluste r allocation assigned to ge number sient of var er of items	rs in the ratio of t the grou of items iation of t in the ith	the ith up. per c the cl grou	oup. The n group. cluster (c uster siz p. The te	e total The van or aver ces wit otal sa	alue on ea age cluster hin the gro mple size	ch row r size) i up. is show	repres n the it /n as th	ents the re th group. ne last row	elativ v of ti	re numbe he colum	r of n.
Ki Allocation Mi COV Ni μi δi		The number column. The cluster clusters a The average The coeffic The number The mean	er of cluste r allocation assigned to ge number cient of var er of items of the ith g nce betwe	rs in the ratio of to the grou of items iation of t in the ith roup at v	the ith up. per c the cl grou vhich	oup. The n group. cluster (c uster siz p. The to the pow	e total The va or aver ces wit otal sa ver is c	alue on ea age cluster hin the gro mple size omputed.	ch row r size) i up. is show The firs	repres n the it /n as th st row c	ents the re th group. ne last row contains µ	elativ / of tl c, the	ve numbe he colum e control	r of n. group
Allocation Mi COV Ni μi		The number column. The cluster clusters The averag The coeffic The number The number The mean. The different compute The lower treatment	er of cluste r allocation assigned to ge number cient of var er of items of the ith g nce betwe d. equivalence t group an	rs in the ratio of the gro of items iation of t in the ith roup at v en the ith re limit fo d the cor	the ith up. per c the cl grou which n trea r the ntrol g	oup. The n group. cluster (c uster siz p. The to the pow tment m difference	e total The va or avera ces wit otal sa ver is c ean ar ce. Thi	alue on ea age cluster hin the gro mple size computed.	ch row r size) i up. is show The firs rol mean nallest r	repres n the it n as th t row c an (µi - negativ	ents the re th group. ne last row contains µ µc) at wh e mean di	elativ v of tl c, the ich tl ffere	re numbe he colum e control he power nce betw	n. group is reen each
Allocation Mi COV Ni μi δi EL		The number column. The cluster clusters The average The coeffic The number The number The number The differe compute The lower treatmen equivale The upper between	er of cluste r allocation assigned to ge number cient of var er of items of the ith g nce betwe d. equivalence t group an nt to the co equivalence each treat	rs in the ratio of the gro of items iation of i in the ith roup at v en the ith the limit fo d the cor outrol gro ce limit for ment gro	the ith per c the cl grou which n trea n trea n trea up. or the oup ar	oup. The group. cluster (cluster siz p. The ti the pow tment m difference roup that difference difference	e total The va or aver ces wit otal sa ver is c ean ar ce. Thi at still r ce. Th	alue on ea age cluste hin the gro mple size computed. Ind the cont is is the sm results in th	ch row r size) i up. is show The firs rol me nallest r ne conc rgest po	repres n the it n as th t row c an (μi - negativ clusion	ents the re th group. he last row contains μ μc) at wh e mean di that the tr difference	elativ v of tl c, the ich tl ffere eatm mea	re numbe he colum e control he power nce betw ent grou	n. group is reen each p is nce
Allocation Mi COV Ni μi δi EL EU		The number column. The cluster clusters The average The coeffic The number The number The number The number The differe compute The lower treatment equivaler The upper between group is	er of cluste r allocation assigned to ge number cient of var er of items of the ith g nce betwe d. equivalence t group an nt to the cc equivalence equivalent equivalent	rs in the ratio of the gro of items iation of i in the ith roup at w en the ith the limit for d the cor- nutrol gro ce limit for ment gro to the co	the ith per c the cl grou which n trea r the trol g up. or the pup ar ontrol	oup. The group. Juster (custer siz p. The to the pow tment m difference of the co group.	e total The var or aver es wit otal sa ver is c ean ar ce. Thi at still r ce. Thi	alue on ea age cluster hin the gro mple size omputed. nd the cont s is the cont s is the sm esults in th is is the lar group that	ch row r size) i up. is show The firs rol me nallest r ne conc rgest po	repres n the it n as th t row c an (μi - negativ clusion	ents the re th group. he last row contains μ μc) at wh e mean di that the tr difference	elativ v of tl c, the ich tl ffere eatm mea	re numbe he colum e control he power nce betw ent grou	n. group is reen each p is nce
Allocation Mi COV Ni μi δi EL EU		The number column. The cluster clusters i The average The coeffic The number The number The number The number The difference compute The lower treatmenne equivaler The upper between group is The standa	er of cluster r allocation assigned to ge number cient of var er of items of the ith g unce betwe d. equivalence t group an nt to the ccc equivalent and deviatio	rs in the ratio of the groo of items iation of the in the ith roup at w en the ith the limit for d the cor- ontrol groo ce limit for ment groo to the cor- on of the	the ith up. per c the cl grou which n trea n trea n trea up. or the oup ar ontrol respo	oup. The group. Juster (custer siz p. The to the pow tment m difference difference difference difference difference difference difference sources wi	e total The var er aver es wit otal sa ver is c ean ar ce. Thi at still r ce. Th control g thin ea	alue on ea age cluster hin the gro mple size computed. Ind the cont is is the sm results in the is is the lar group that ach group.	ch row r size) i up. is show The firs rol me nallest r na conc gest po still res	repres n the it n as th t row c an (µi - negativ clusion ositive ults in	ents the reaction of the group. The last row contains μ (μ c) at where μ (μ c) at where μ (μ c) at where the the the the the the conclusion of the	v of tl c, the ich tl ffere eatm mea sion	re numbe he colum e control he power nce betw ent grou	n. group is reen each p is nce
Allocation Mi COV Ni μi δi EL EU σ ρ	na	The number column. The cluster clusters a The average The coeffic The number The number The number ompute The lower treatment equivaler The upper between group is The standa The intracl	er of cluster r allocation assigned to ge number cient of var er of items of the ith g nce betwe d. equivalence t group an nt to the co equivalent and deviatio uster corre	rs in the ratio of the group of items iation of the in the ith roup at w en the ith the limit for d the cor- netrol group to the cor- ment group difference to the cor- to th	the ith per c the cl grou which n trea n trea up. or the oup ar ontrol respo CC). T	oup. The group. Juster (custer siz p. The to the pow tment m difference of the co group.	e total The var ces wit otal sa ver is c ean ar ce. Thi at still r ce. Th pontrol g thin ea	alue on ea age cluster hin the gro mple size computed. Ind the cont is is the cont esults in the is is the lar group that ach group. between s	ch row r size) i up. is show The firs rol me allest r e conc rgest po still res	repres n the it n as th st row c an (µi - negativ clusion positive ults in s within	ents the ro th group. ne last row contains µ µc) at wh e mean di that the tr difference the conclu	v of tl c, the ich tl ffere eatm mea usion	te numbe he colum e control he power nce betw hent grou an differe that the	n. group r is reen each p is nce treatment
Allocation Mi COV Ni μi δi		The number column. The cluster clusters a The average The coeffic The number The number The number The number ompute The lower treatmen equivaler The upper between group is The standa The intracl	er of cluster r allocation assigned to ge number cient of var er of items of the ith g ence betwe d. equivalence t group an nt to the co equivalent ard deviatio uster corre bility of reje	rs in the ratio of the grou of items iation of the in the ith roup at v en the ith the limit for d the cor- netrol gro to the cor- net to the co- no of the lation (IC ecting at	the ith up. per c the cl grou vhich n trea r the up. or the up ar ontrol resport CC). T least	oup. The n group. Iuster (custer siz p. The to the pow tment m difference on the corre- onses wi The corre- one of the corre- one of the corre-	e total The var ces wit otal sa ver is c ean ar ce. Thi at still r ce. Th pontrol o thin ea elation	alue on ea age cluster hin the gro omputed. ⁻ nd the cont is is the sm esults in th is is the lar group that ach group. between s nparisons i	ch row r size) i up. is show The firs rol me allest r allest r e conc rgest po still res subjects n this e	repres n the it n as th st row c an (µi - negativ clusion positive ults in s within experim	ents the re- th group. ne last row contains µ µc) at wh e mean di that the tr difference the conclu- n a cluster. nent when	v of tl c, the ich tl ffere eatm mea usion	te numbe he colum e control he power nce betw hent grou an differe that the	n. group r is reen each p is nce treatment

Summary Statements

A parallel, 4-group cluster-randomized design (with one control group and 3 treatment groups) will be used to test whether the mean for each treatment group is equivalent to the control group mean, with equivalence difference bounds of -1 and 1 (H0: $\delta \le -1$ or $\delta \ge 1$ versus H1: $-1 < \delta < 1$, $\delta = \mu i - \mu c$). Each of the 3 equivalence comparisons will be made using two one-sided, two-sample, Bonferroni-adjusted (divisor = 3) t-tests with degrees of freedom based on the number of subjects, with an overall (experiment-wise) Type I error rate (α) of 0.05. The common subject-to-subject standard deviation for all groups is assumed to be 3.7. The coefficient of variation of the cluster size in all clusters is assumed to be 0.65. The control group mean is assumed to be 5. The intracluster correlation is assumed to be 0.01. The average cluster size (number of subjects or items per cluster) for the control group is assumed to be 5, and the average cluster size for each of the treatment groups is assumed to be 5, 5, and 5. To detect the treatment means 5, 5, and 5 with at least 90% power for each test, the control group cluster count needed will be 114 and the number of needed clusters for the treatment groups will be 66, 66, and 66 (totaling 312 clusters overall).

References

Ahn, C., Heo, M., and Zhang, S. 2015. Sample Size Calculations for Clustered and Longitudinal Outcomes in Clinical Research. CRC Press. New York.

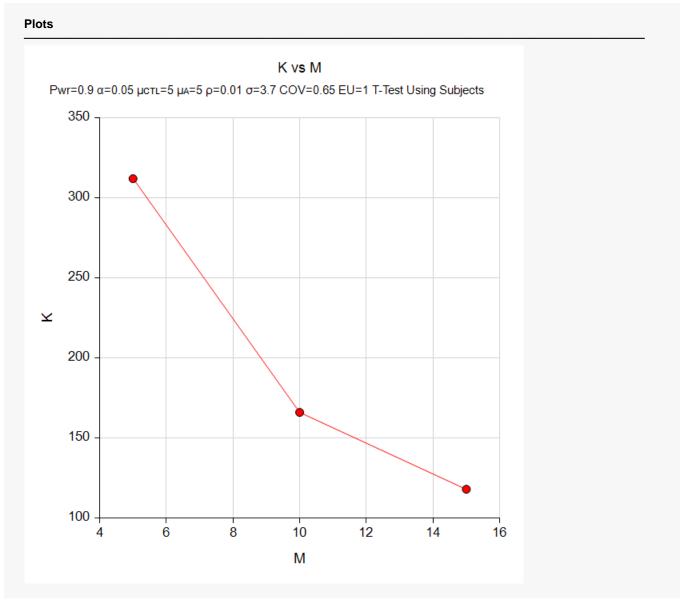
- Blackwelder, W.C. 1998. 'Equivalence Trials.' In Encyclopedia of Biostatistics, John Wiley and Sons. New York. Volume 2, 1367-1372.
- Campbell, M.J. and Walters, S.J. 2014. How to Design, Analyse and Report Cluster Randomised Trials in Medicine and Health Related Research. Wiley. New York.

Chow, S.C., Shao, J., Wang, H., and Lokhnygina, Y. 2018. Sample Size Calculations in Clinical Research, Third Edition. Taylor & Francis/CRC. Boca Raton, Florida.

Donner, A. and Klar, N. 1996. 'Statistical Considerations in the Design and Analysis of Community Intervention Trials'. J. Clin. Epidemiol. Vol 49, No. 4, pages 435-439.

Donner, A. and Klar, N. 2000. Design and Analysis of Cluster Randomization Trials in Health Research. Arnold. London.

Julious, Steven A. 2010. Sample Sizes for Clinical Trials. CRC Press. New York.


Machin, D., Campbell, M.J., Tan, S.B, and Tan, S.H. 2018. Sample Sizes for Clinical, Laboratory, and Epidemiology Studies, 4th Edition. Wiley Blackwell.

Phillips, Kem F. 1990. 'Power of the Two One-Sided Tests Procedure in Bioequivalence', Journal of Pharmacokinetics and Biopharmaceutics, Volume 18, No. 2, pages 137-144.

Schuirmann, Donald. 1987. 'A Comparison of the Two One-Sided Tests Procedure and the Power Approach for Assessing the Equivalence of Average Bioavailability', Journal of Pharmacokinetics and Biopharmaceutics, Volume 15, Number 6, pages 657-680.

This report shows the numeric results of this sample size study. Notice that the results are shown in blocks of four rows at a time. Each block represents an individual treatment.

Plots Section

This plot gives a visual presentation to the results in the Numeric Report. We can quickly see the impact on the total cluster count, K, of increasing the cluster size, M.

Example 2 – Validation using a Previously Validated Procedure

We could not find a validation result in the statistical literature, so we will use a previously validated **PASS** procedure (**Equivalence Tests for Two Means in a Cluster-Randomized Design**) to produce the results for the following example.

Suppose that a four-arm, cluster-randomized study is to be conducted in which $\mu_1 = \mu_2 = \mu_3 = 5$, $\mu_c = 5$, EL = -1, EU = 1, σ = 3.7, ρ = 0.01, *Ki* = 11, *Mi* = 10, *COV* = 0.65, and *alpha* = 0.05 / 3 = 0.0166666667. The calculated power is 0.94135 for a subject-based test. All groups will have the same number of clusters.

The Equivalence Tests for Two Means in a Cluster-Randomized Design procedure is set up as follows.

Design Tab	
Solve For	Power
Test Statistic	T-Test Based on Number of Subjects
Alpha	0.016666667
K1 (Number of Clusters)	50
M1 (Average Cluster Size)	10
K2 (Number of Clusters)	K1
M2 (Average Cluster Size)	M1
COV of Cluster Sizes	0.65
EU (Upper Equivalence Limit)	1
EL (Lower Equivalence Limit)	Upper Limit
δ (Mean Difference = μ1 - μ2)	0
σ (Standard Deviation)	3.7
ρ (Intracluster Correlation, ICC)	0.01

This set of options generates the following report.

Numeric Results for a Test of Mean Difference

Solve For Groups: Test Stati Hypothes	stic:		with DF	based o	on numb	oer of sub : EL < δ <								
										Equiv	alence			
	I	Number		~	luctor 9	2170	Samo	lo Sizo	Moon	Lir	nits	Standard		
Power	м –– К1	Number Cluste K2		C 	luster \$	Size COV	Samp	le Size	Mean Difference δ	Lir Lower EL	Upper EU	Standard Deviation σ	ICC P	Alpha

The power is computed to be 0.94135.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Power
est Statistic	T-Test Based on Number of Subjects
Overall Alpha	0.05
Sonferroni Adjustment	Standard Bonferroni
Group Allocation	Equal (Kc = K1 = K2 =)
(i (Group Number of Clusters)	50
1 (Average Cluster Size)	
OV of Cluster Sizes	0.65
U (Upper Equivalence Limit)	1
L (Lower Equivalence Limit)	Upper Limit
Control Mean	5
Control Items Per Cluster	M
Set A Number of Groups	3
Set A Mean	5
Set A Items Per Cluster	M
Set B Number of Groups	0
Set C Number of Groups	0
Set D Number of Groups	0
1ore	Unchecked
(Standard Deviation)	3.7
(Intracluster Correlation)	0.01

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve For: Test Type: Hypotheses: Number of Gi Bonferroni Ac		H0: δ ≤ EL 4	T-Test with DF based on number of subjects H0: δ ≤ EL or δ ≥ EU vs. H1: EL < δ < EU										
Comparison Power		Number of	Cluster Size		Comula			Equivalence Limits		0		Alpha	
		Clusters	Average Mi	соу	Sample Size Ni	Mean µi	Difference δi	Lower EL	Upper EU	Standard Deviation σ	ICC ρ	Overall	Bonferroni- Adjusted
Control		50	10	0.65	500	5				3.7	0.01		
vs A1	0.94135	50	10	0.65	500	5	0	-1	1	3.7	0.01	0.05	0.01667
vs A2	0.94135	50	10	0.65	500	5	0	-1	1	3.7	0.01	0.05	0.01667
vs A3	0.94135	50	10	0.65	500	5	0	-1	1	3.7	0.01	0.05	0.01667
					2000								

As you can see, the power is 0.94135 for all treatment groups which matches the power found in the validation run above. The procedure is validated.