PASS Sample Size Software NCSS.com

Chapter 302

Non-Inferiority Tests for Two Between-Subject Variances in a 2×2M Replicated Cross-Over Design

Introduction

This procedure calculates power and sample size of *non-inferiority* tests of between-subject variabilities from a 2×2M replicated cross-over design. This routine deals with the case in which the statistical hypotheses are expressed in terms of the ratio of the between-subject variances.

This design is used to compare two treatments which are administered to subjects in different orders. The design has two treatment sequences. Here, *M* is the number of times a particular treatment is received by a subject.

For example, if M = 2, the design is a 2×4 replicated cross-over. The two sequences might be

sequence 1: C T C T

sequence 2: T C T C

It is assumed that either there is no carry-over from one measurement to the next, or there is an ample washout period between measurements.

Technical Details

This procedure uses the formulation given in Chow, Shao, Wang, and Lokhnygina (2018), pages 213 - 216.

Suppose x_{ijkl} is the response in the *i*th sequence (i = 1, 2), *j*th subject (j = 1, ..., Ni), *k*th treatment (k = T, C), and *l*th replicate (l = 1, ..., M). The mixed effect model analyzed in this procedure is

$$x_{iikl} = \mu_k + \gamma_{ikl} + S_{iik} + e_{iikl}$$

where μ_k is the kth treatment effect, γ_{ikl} is the fixed effect of the kth replicate on treatment k in the kth sequence, S_{ij1} and S_{ij2} are random effects of the kth subject, and kth is the within-subject error term which is normally distributed with mean 0 and variance $V_k = \sigma_{Wk}^2$.

Unbiased estimators of these variances are found after applying an orthogonal transformation matrix *P* to the x's as follows

$$z_{ijk} = P'x_{ijk}$$

where P is an $m \times m$ matrix such that P'P is diagonal and $var(z_{ijkl}) = \sigma_{Wk}^2$.

Let $N_s = N_1 + N_2 - 2$. In a 2×4 cross-over design the z's become

$$z_{ijk1} = \frac{x_{ijk1} + x_{ijk2}}{2} = \bar{x}_{ijk}.$$

and

$$z_{ijk2} = \frac{x_{ijk1} + x_{ijk2}}{\sqrt{2}} = \bar{x}_{ijk}.$$

In this case, the within-subject variances are estimated as

$$s_{WT}^2 = \frac{1}{N_S(M-1)} \sum_{i=1}^{2} \sum_{j=1}^{N_i} \sum_{l=1}^{M} (z_{ijTl} - \bar{z}_{i.Tl})^2$$

and

$$s_{WC}^2 = \frac{1}{N_S(M-1)} \sum_{i=1}^{2} \sum_{j=1}^{N_i} \sum_{l=1}^{M} (z_{ijCl} - \bar{z}_{i.Cl})^2$$

Similarly, the between-subject variances are estimated as

$$s_{BT}^2 = \frac{1}{N_S} \sum_{i=1}^{2} \sum_{j=1}^{N_i} (\bar{x}_{ijT.} - \bar{x}_{i.T.})^2$$

and

$$s_{BC}^2 = \frac{1}{N_S} \sum_{i=1}^{2} \sum_{j=1}^{N_i} (\bar{x}_{ijC.} - \bar{x}_{i.C.})^2$$

where

$$\bar{x}_{i.k.} = \frac{1}{N_i} \sum_{j=1}^{N_i} \bar{x}_{ijk.}$$

Now, since $E(s_{BK}^2) = \sigma_{BK}^2 + \sigma_{WK}^2/M$, estimators for the between-subject variance are given by

$$\hat{\sigma}_{BK}^2 = s_{BK}^2 - \hat{\sigma}_{WK}^2 / M$$

The sample between-subject covariance is calculated using

$$s_{BTC}^2 = \frac{1}{N_S} \sum_{i=1}^2 \sum_{i=1}^{N_i} (\bar{x}_{ijT.} - \bar{x}_{i.T.}) (\bar{x}_{ijC.} - \bar{x}_{i.C.})$$

Using this value, the sample between-subject correlation is easily calculated.

Testing Variance Non-Inferiority

The following statistical hypotheses are used to test for between-subject variance non-inferiority.

$$H_0: \frac{\sigma_{BT}^2}{\sigma_{BC}^2} \ge R0$$
 versus $H_1: \frac{\sigma_{BT}^2}{\sigma_{BC}^2} < R0$,

where R0 is the non-inferiority limit.

Let $\eta = \sigma_{BT}^2 - R0\sigma_{BC}^2$ be the parameter of interest. The test statistic is $\hat{\eta} = \hat{\sigma}_{BT}^2 - R0\hat{\sigma}_{BC}^2$.

Non-Inferiority Test

For the non-inferiority test, compute the limit $\hat{\eta}_U$ using

$$\hat{\eta}_U = \hat{\eta} + \sqrt{\Delta_U}$$

Reject the null hypothesis if $\hat{\eta}_U < 0$.

The Δ is given by

$$\Delta_{U} = h(1 - \alpha, N_{s} - 1)\lambda_{1}^{2} + h(\alpha, N_{s} - 1)\lambda_{2}^{2} + h(1 - \alpha, N_{s}(M - 1))\frac{\hat{\sigma}_{WT}^{4}}{M^{2}} + h(\alpha, N_{s}(M - 1))\frac{\hat{\sigma}_{WC}^{4}}{M^{2}}$$

where

$$h(A,B) = \left(1 - \frac{B}{\chi_{A,B}^2}\right)^2$$

$$\lambda_i^2 = \left(\frac{s_{BT}^2 - s_{BC}^2 \pm \sqrt{(s_{BT}^2 + s_{BC}^2)^2 - 4(R0)s_{BTC}^4}}{2}\right) \text{ for } i = 1,2$$

and $\chi^2_{A,B}$ is the upper quantile of the chi-square distribution with B degrees of freedom.

Power

Non-Inferiority Test

The power of the non-inferiority test is given by

Power =
$$\Phi\left(z_{\alpha} - \frac{(R_1 - R_0)\sigma_{BC}^2}{\sqrt{\sigma^{*2}/N_s}}\right)$$

where

$$R_1 = \frac{\sigma_{BT}^2}{\sigma_{BC}^2}$$

$$\sigma_{RT}^2 = R_1 \sigma_{RC}^2$$

$$\sigma^{*2} = 2 \left[\left(\sigma_{BT}^2 + \frac{\sigma_{WT}^2}{M} \right)^2 + R_0^2 \left(\sigma_{BC}^2 + \frac{\sigma_{WC}^2}{M} \right)^2 + \frac{\sigma_{WT}^4}{M^2 (M-1)} + \frac{R_0^2 \sigma_{WC}^4}{M^2 (M-1)} - 2R_0 R_1 \sigma_{BC}^4 \rho^2 \right]$$

where R1 is the value of the variance ratio stated by the alternative hypothesis and $\Phi(x)$ is the standard normal CDF.

A simple binary search algorithm can be applied to the power function to obtain an estimate of the necessary sample size.

Example 1 - Finding Sample Size

A company has developed a generic drug for treating rheumatism and wants to show that it is non-inferior to the standard drug in terms of the between-subject variability. A 2 x 4 cross-over design will be used to test the non-inferiority.

Company researchers set the non-inferiority limit to 1.5, the significance level to 0.05, the power to 0.90, M to 2, and the actual variance ratio values between 0.9 and 1.3. They also set $\sigma^2BC = 0.4$, $\sigma^2WT = 0.2$, $\sigma^2WC = 0.3$, and $\rho = 0.75$. They want to investigate the range of required sample size values assuming that the two sequence sample sizes are equal.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Sample Size
Power	0.90
Alpha	0.05
Sequence Allocation	Equal (N1 = N2)
M (Number of Replicates)	2
R0 (Non-Inferiority Variance Ratio)	1.5
R1 (Actual Variance Ratio)	0.9 1 1.1 1.2 1.3
σ²вс (Control Variance)	0.4
σ²wτ (Treatment Variance)	0.2
σ²wc (Control Variance)	0.3
ρ (Treatment, Control Correlation)	0.75

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Numeric Results

Solve For: Sample Size

Hypotheses: H0: $\sigma^2 BT/\sigma^2 BC \ge R0$ vs. H1: $\sigma^2 BT/\sigma^2 BC < R0$

			Seauena	20		Rati	·Subject V o		Within-S Varia		Between- Subject (Treatment,	
Pow Target				Number of Replicates M	Non- Inferiority R0	Actual R1	Control σ²вс	Treatment σ²wτ	Control	Control) rol Correlation	Alpha	
0.9	0.9011	107	107	214	2	1.5	0.9	0.4	0.2	0.3	0.75	0.05
0.9	0.9010	156	156	312	2	1.5	1.0	0.4	0.2	0.3	0.75	0.05
0.9	0.9009	248	248	496	2	1.5	1.1	0.4	0.2	0.3	0.75	0.05
0.9	0.9005	450	450	900	2	1.5	1.2	0.4	0.2	0.3	0.75	0.05
0.9	0.9001	1038	1038	2076	2	1.5	1.3	0.4	0.2	0.3	0.75	0.05

Target Power	The desired power value entered in the procedure. Power is the probability of rejecting a false null hypothesis.
Actual Power	The actual power achieved. Because N1 and N2 are discrete, this value is usually slightly larger than the target power.
N1	The number of subjects in sequence 1.
N2	The number of subjects in sequence 2.
N	The total number of subjects. $N = N1 + N2$.
M	The number of replicates. That is, it is the number of times a treatment measurement is repeated on a
	subject.
R0	The non-inferiority limit for the between-subject variance ratio.
R1	The value of the between-subject variance ratio at which the power is calculated.
σ ² BC	The between-subject variance of measurements in the control group.
σ^2 WT	The within-subject variance of measurements in the treatment group.
σ ² wc	The within-subject variance of measurements in the control group.
ρ	The between-subject correlation of the average subject treatment-group measurements versus the average subject control-group measurements.
Alpha	The probability of rejecting a true null hypothesis.

Summary Statements

A 2×2M replicated cross-over design will be used to test whether the between-subject variance of the treatment (σ^2BT) is non-inferior to the between-subject variance of the control (σ^2BC) by testing the between-subject variance ratio (σ^2BT / σ^2BC) against the non-inferiority ratio 1.5 (H0: σ^2BT / σ^2BC \geq 1.5 versus H1: σ^2BT / σ^2BC < 1.5). Each subject will alternate treatments (T and C), with an assumed wash-out period between measurements to avoid carry-over. With 2 replicate pairs, each subject will be measured 4 times. For those in the Sequence 1 group, the first treatment will be C, and the sequence is [C T C T]. For those in the Sequence 2 group, the first treatment will be T, and the sequence is [T C T C]. The comparison will be made using a one-sided, variance-difference test (treatment minus control) as described in Chow, Shao, Wang, and Lokhnygina (2018), with a Type I error rate (α) of 0.05. For the control group, the between-subject variance (σ^2BC) is assumed to be 0.4, and the within-subject variance is assumed to be 0.3. The within-subject variance of the treatment group is assumed to be 0.2. The between-subject correlation between the average treatment measurement per subject and the average control measurement per subject is assumed to be 0.75. To detect a between-subject variance ratio (σ^2BT / σ^2BC) of 0.9 with 90% power, the number of subjects needed will be 107 in Group/Sequence 1, and 107 in Group/Sequence 2.

PASS Sample Size Software NCSS.com

Non-Inferiority Tests for Two Between-Subject Variances in a 2×2M Replicated Cross-Over Design

Dropout-Inflated Sample Size

	s	ample Si	ze	E	pout-Infla Enrollmer ample Siz	nt	N	Expecte lumber o Dropout	of
Dropout Rate	N1	N2	N	N1'	N2'	N'	D1	D2	D
20%	107	107	214	134	134	268	27	27	54
20%	156	156	312	195	195	390	39	39	78
20%	248	248	496	310	310	620	62	62	124
20%	450	450	900	563	563	1126	113	113	226
20%	1038	1038	2076	1298	1298	2596	260	260	520
Dropout Rate	The percentage			hat are expect be collected (i.e					
N1, N2, and N	The evaluable	sample size	es at which p		ted. If N1 a	and N2 subjec	cts are evalu	ated out o	
N1', N2', and N'	The number of subjects, bas inflating N1 a always round Lokhnygina, `	subjects the and N2 using ed up. (See Y. (2018)	at should be assumed drop g the formula be Julious, S.A ages 32-33.)	enrolled in the bout rate. After s N1' = N1 / (1 a. (2010) pages	study in or solving for - DR) and s 52-53, or	rder to obtain N1 and N2, N2' = N2 / (1 Chow, S.C.,	N1, N2, and N1' and N2' a - DR), with Shao, J., Wa	l N evalua are calcula N1' and N	ated by 2'
D1, D2, and D	The expected r	number of c	Iropouts. D1 :	= N1' - N1, D2	= N2' - N2	, and $D = D1$	+ D2.		

Dropout Summary Statements

Anticipating a 20% dropout rate, 134 subjects should be enrolled in Group 1, and 134 in Group 2, to obtain final group sample sizes of 107 and 107, respectively.

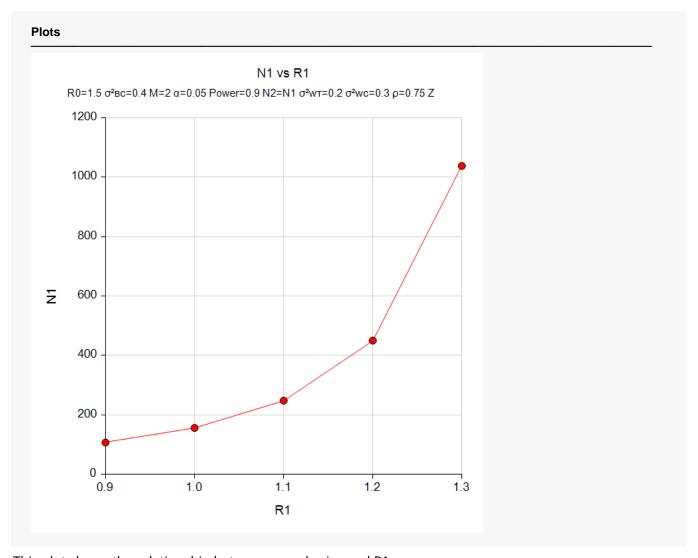
References

Chow, S.C., Shao, J., Wang, H., and Lokhnygina, Y. 2018. Sample Size Calculations in Clinical Research, Third Edition. Taylor & Francis/CRC. Boca Raton, Florida.

Chow, S.C., and Liu, J.P. 2014. Design and Analysis of Clinical Trials, Third Edition. John Wiley & Sons. Hoboken, New Jersey.

This report gives the sample sizes for the indicated scenarios.

Plots Section



This plot shows the relationship between sample size and R1.

Example 2 - Validation using Chow et al. (2018)

We will use an example from Chow et al. (2018) page 217 to validate this procedure.

In this example, R0 = 1.21, significance level = 0.05, power = 0.80, M = 2, σ BT = 0.3, σ BC = 0.4, σ WT = 0.2, σ WC = 0.3, and ρ =0.75. From these values, we find that R1 = 0.5625. The resulting sample size, after some rounding, is found to be 34 per sequence. (There is a typo in the book which puts the value at 29. This is an obvious error since Ns – 2 is found to be 66.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Sample Size	
Power	0.80	
Alpha	0.05	
Sequence Allocation	Equal (N1 = N2)	
M (Number of Replicates)	2	
R0 (Non-Inferiority Variance Ratio)	1.21	
R1 (Actual Variance Ratio)	0.5625	
σ²вс (Control Variance)	0.16	
σ²wτ (Treatment Variance)	0.04	
σ²wc (Control Variance)	0.09	
ρ (Treatment, Control Correlation)	0.75	

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve For Hypothe		nple Siz σ²вт/σ²		vs.	Н1: σ²вт/σ²вс							
Between-Subject Variance Between-												
		S	equenc	:e		Rati	o 		Within-Subject Variance		Subject (Treatment,	
Pow	er	Sample Size			Number of	Non-	Astual	Control	Treatment	Control	Control) Correlation	
Target	Actual	N1	N2	N	Replicates M	Inferiority R0		σ ² BC	rreatment σ²wτ	σ ² wc	Correlation P	Alpha
0.8	0.8097	35	35	70	2	1.21	0.563	0.16	0.04	0.09	0.75	0.05

The per-group sample size of 35 is one more than the value of 34 which is given in the reference. Their number yields a power that is slightly less than the desired 0.8, so **PASS** has increased the sequence sizes by one to 35.