Non-Inferiority Tests for Two Means in a Cluster-Randomized Design

Introduction

This procedure computes power and sample size for a *non-inferiority* test in cluster-randomized designs in which the outcome is a continuous normal random variable.

Cluster-randomized designs are those in which whole clusters of subjects (classes, hospitals, communities, etc.) are put into the treatment group or the control group. In this case, the means of two groups, made up of K_i clusters of M_{ij} individuals each, are to be tested using a modified *z* test, or t-test, in which the clusters are treated as subjects. Generally speaking, the larger the cluster sizes and the higher the correlation among subjects within the same cluster, the larger will be the overall sample size necessary to detect an effect with the same power.

It should be noted that we could not find any published results about non-inferiority testing with clusterrandomized designs. What we could find were Schuirmann's TOST procedure and a discussion of how to adjust the t-test sample size results given by Campbell and Walters (2014). So, we applied the Campbell and Walters adjustment to Schuirmann's test. We look forward to results that substantiate our approach.

The Statistical Hypotheses

Non-inferiority tests are examples of directional (one-sided) tests. This program module provides the input and output in formats that are convenient for these types of tests. This section will review the specifics of non-inferiority testing.

Remember that in the usual t-test setting, the null (H_0) and alternative (H_a) hypotheses for one-sided tests are defined as follows, assuming that $\delta = \mu_1 - \mu_2$ is to be tested.

$$H_0: \delta \le 0$$
 versus $H_a: \delta > 0$

Rejecting this test implies that the mean difference is larger than the value δ . This test is called an *upper-tailed test* because it is rejected in samples in which the difference between the sample means is larger than *D*.

Following is an example of a *lower-tailed test*.

$$H_0: \delta \ge 0$$
 versus $H_a: \delta < 0$

Non-inferiority tests are special cases of the above directional tests. It will be convenient to adopt the following specialized notation for the discussion of these tests.

Non-Inferiority Tests for Two Means in a Cluster-Randomized Design

<u>Parameter</u> μ ₁	PASS Input/Output Not used	Interpretation <i>Mean</i> of population 1. Population 1 is assumed to consist of those who have received the new treatment.
μ ₂	Not used	<i>Mean</i> of population 2. Population 2 is assumed to consist of those who have received the reference treatment.
ε	NIM	<i>Margin of non-inferiority.</i> This is a tolerance value that defines the magnitude of the amount that is not of practical importance. This may be thought of as the largest change from the baseline that is considered to be trivial. The absolute value is shown to emphasize that this is a magnitude. The sign of the value will be determined by the specific design that is being used.
δ	δ	<i>True difference</i> . This is the value of $\mu_1 - \mu_2$, the difference between the means.

Note that the actual values of μ_1 and μ_2 are not needed. Only their difference is needed for power and sample size calculations.

Non-Inferiority Tests

A *non-inferiority test* tests that the treatment mean is not worse than the reference mean by more than the non-inferiority margin. The actual direction of the hypothesis depends on the response variable being studied.

Case 1: High Values Good, Non-Inferiority Test

In this case, higher values are better. The hypotheses are arranged so that rejecting the null hypothesis implies that the treatment mean is no less than a small amount below the reference mean. The value of δ is often set to zero. The following are equivalent sets of hypotheses.

$H_0:\delta\leq -\varepsilon$	versus	$H_a: \delta > -\varepsilon, \ \varepsilon > 0$
$H_0: \mu_1 - \mu_2 \le -\varepsilon$	versus	$H_a: \ \mu_1 - \mu_2 > -\varepsilon, \ \varepsilon > 0$
$H_0: \mu_1 \le \mu_2 - \varepsilon$	versus	$H_a: \ \mu_1 > \mu_2 - \varepsilon, \ \varepsilon > 0$

Case 2: High Values Bad, Non-Inferiority Test

In this case, lower values are better. The hypotheses are arranged so that rejecting the null hypothesis implies that the treatment mean is no more than a small amount above the reference mean. The value of δ is often set to zero. The following are equivalent sets of hypotheses.

$H_0:\delta\geq\varepsilon$	versus	$H_a: \delta < \varepsilon, \ \varepsilon > 0$
$H_0: \mu_1 - \mu_2 \geq \varepsilon$	versus	$H_a: \mu_1 - \mu_2 < \varepsilon, \ \varepsilon > 0$
$H_0: \mu_1 \geq \mu_2 + \varepsilon$	versus	$H_a: \ \mu_1 < \mu_2 + \varepsilon, \ \varepsilon > 0$

Technical Details

Our formulation is a combination of non-inferiority formulas given by Chow, Shao, Wang, and Lokhnygina (2018) pages 50-51 and the cluster-randomized design formulas given in Campbell and Walters (2014) and Ahn, Heo, and Zhang (2015). Denote an observation by Y_{ijk} where i = 1, 2 gives the group, $j = 1, 2, ..., K_i$ gives the cluster within group i, and $k = 1, 2, ..., m_{ij}$ denotes an individual in cluster j of group i.

We let σ^2 denote the variance of Y_{ijk} , which is $\sigma_{Between}^2 + \sigma_{Within}^2$, where $\sigma_{Between}^2$ is the variation between clusters and σ_{Within}^2 is the variation within clusters. Also, let ρ denote the intracluster correlation coefficient (ICC) which is $\sigma_{Between}^2 / (\sigma_{Between}^2 + \sigma_{Within}^2)$. This correlation is simply the correlation between any two observations in the same cluster.

For sample size calculation, we assume that the m_{ij} are distributed with a mean cluster size of M_i and a coefficient of variation cluster sizes of *COV*. The variance of the two group means, \overline{Y}_i , are approximated by

$$V_{i} = \frac{\sigma^{2}(DE_{i})(RE_{i})}{K_{i}M_{i}}$$
$$DE_{i} = 1 + (M_{i} - 1)\rho$$
$$RE_{i} = \frac{1}{1 - (COV)^{2}\lambda_{i}(1 - \lambda_{i})}$$
$$\lambda_{i} = M_{i}\rho/(M_{i}\rho + 1 - \rho)$$

DE is called the *Design Effect* and RE is the *Relative Efficiency* of unequal to equal cluster sizes. Both are greater than or equal to one, so both inflate the variance.

Assume that $\delta = \mu_1 - \mu_2$ is to be tested using a modified two-sample t-test. Assuming that higher values are better, the non-inferiority test statistic is

$$t = \frac{\bar{Y}_1 - \bar{Y}_2 - \varepsilon}{\sqrt{\hat{V}_1 + \hat{V}_2}}$$

We assume this statistic has an approximate t distribution with degrees of freedom $DF = K_1M_1 + K_2M_2 - 2$ for a *subject-level* analysis or $K_1 + K_2 - 2$ for a *cluster-level* analysis.

Define the noncentrality parameter as $\Delta = (\delta - \varepsilon)/\sigma_d$, where $\sigma_d = \sqrt{V_1 + V_2}$. We can define the critical value based on a central t-distribution with DF degrees of freedom as follows.

$$X = t_{\alpha,DF}$$

The power can be found from the following to probabilities

Power =
$$1 - H_{X,DF,\Delta}$$

where $H_{X,DF,\Delta}$ is the cumulative probability distribution of the noncentral-t distribution.

Example 1 – Calculating Power

Suppose that a non-inferiority test is to be conducted on data obtained from a cluster-randomized design in which *NIM*= 1; δ = 0; σ = 4; ρ = 0.0, 0.01, and 0.10; *M1* and *M2* = 10; *COV* = 0.65; *alpha* = 0.025; and *K1* and *K2* = 10, 20, or 40. Power is to be calculated assuming higher means are better.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Design Tab	
Solve For	Power
Higher Means Are	Better (Ha: δ > -NIM)
Test Statistic	T-Test Based on Number of Subjects
Alpha	0.025
K1 (Number of Clusters)	10 20 40
M1 (Average Cluster Size)	10
K2 (Number of Clusters)	K1
M2 (Average Cluster Size)	M1
COV of Cluster Sizes	0.65
NIM (Non-Inferiority Margin)	1
δ (Mean Difference = μ 1 - μ 2)	0
σ (Standard Deviation)	4
ρ (Intracluster Correlation, ICC)	0 0.01 0.1

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Solve For: Groups: Test Statis Higher Mea Hypothese	stic: ans Are	1 = T- : Be	Test wi etter	th DF B		rol n Number ō > -NIM	of Subje	ects						
		nber uster:		c	luster \$	Size	Sa	ample S	ize	Mean Difference δ	Non- Inferiority Margin -NIM	Standard Deviation σ	ICC P	Alpha
Power	K1	K2	к	M1	M2	COV	N1	N2	N					
0.4204	10	10	20	10	10	0.65	100	100	200	0	-1	4	0.00	0.025
0.7033	20	20	40	10	10	0.65	200	200	400	0	-1	4	0.00	0.025
0.9423	40	40	80	10	10	0.65	400	400	800	0	-1	4	0.00	0.025
0.3802	10	10	20	10	10	0.65	100	100	200	0	-1	4	0.01	0.025
0.6504	20	20	40	10	10	0.65	200	200	400	0	-1	4	0.01	0.025
0.9139	40	40	80	10	10	0.65	400	400	800	0	-1	4	0.01	0.025
0.2258	10	10	20	10	10	0.65	100	100	200	0	-1	4	0.10	0.025
0.4018	20	20	40	10	10	0.65	200	200	400	0	-1	4	0.10	0.025
0.6795	40	40	80	10	10	0.65	400	400	800	0	-1	4	0.10	0.025

COV	The coefficient of variation of the cluster sizes.
N1, N2, and N	The number of subjects in groups 1 and 2, and their total.
-NIM	The margin of non-inferiority. Since higher means are better, this value is negative and is the distance below
	the group 2 (control) mean that is still considered non-inferior.
δ	The mean difference in the response at which the power is calculated. $\delta = \mu 1 - \mu 2$.
σ	The standard deviation of the subject responses.
ρ	The intracluster correlation (ICC). The correlation between a pair of subjects within a cluster.
Alpha	The probability of rejecting a true null hypothesis.

Summary Statements

A parallel, two-group cluster-randomized design (where higher means are considered to be better) will be used to test whether the Group 1 (treatment) mean (μ 1) is non-inferior to the Group 2 (control) mean (μ 2), with a non-inferiority margin of -1 (H0: $\delta \le -1$ versus H1: $\delta > -1$, $\delta = \mu$ 1 - μ 2). The comparison will be made using a one-sided t-test with the degrees of freedom based on the total number of subjects (see Campbell and Walters, 2014, and Ahn, Heo, and Zhang, 2015), with a Type I error rate (α) of 0.025. The common subject-to-subject standard deviation for both groups is assumed to be 4, the intracluster correlation coefficient is assumed to be 0, and the coefficient of variation of cluster sizes is assumed to be 0.65. To detect a mean difference (μ 1 - μ 2) of 0, with 10 clusters of 10 subjects per cluster in Group 1 (totaling 100 subjects) and 10 clusters of 10 subjects per cluster in Group 2 (totaling 100 subjects), the power is 0.4204.

References

Ahn, C., Heo, M., and Zhang, S. 2015. Sample Size Calculations for Clustered and Longitudinal Outcomes in Clinical Research. CRC Press. New York.

Campbell, M.J. and Walters, S.J. 2014. How to Design, Analyse and Report Cluster Randomised Trials in Medicine and Health Related Research. Wiley. New York.

Chow, S.C., Shao, J., Wang, H., and Lokhnygina, Y. 2018. Sample Size Calculations in Clinical Research, 3rd Edition. Chapman & Hall/CRC. Boca Raton, FL. Pages 86-88.

Donner, A. and Klar, N. 1996. 'Statistical Considerations in the Design and Analysis of Community Intervention Trials'. J. Clin. Epidemiol. Vol 49, No. 4, pages 435-439.

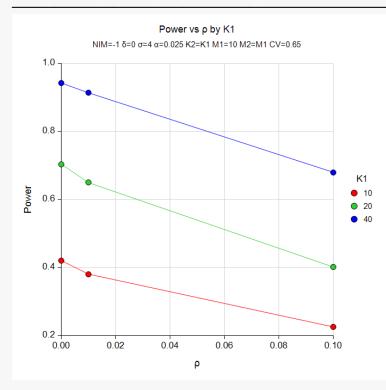
Donner, A. and Klar, N. 2000. Design and Analysis of Cluster Randomization Trials in Health Research. Arnold. London.

Julious, Steven A. 2010. Sample Sizes for Clinical Trials. CRC Press. New York.

This report shows the power for each of the scenarios.

Plots Section

Plots



1.0

0.8

Power

0.4

0.00

0.02

0.04

ø

0.06

0.08

Non-Inferiority Tests for Two Means in a Cluster-Randomized Design

0.6

0.4

40

35 30

25

20

15

4

These plots show the results of the various scenarios specified.

0.10 10

NCSS.com

Example 2 – Validation using Chow, Shao, Wang, and Lokhnygina (2018)

We could not find a validation example for this test, so we will use a validation in which M1 = M2 = 1. Chow, Shao, Wang, and Lokhnygina (2018) page 53 has an example of a sample size calculation for a non-inferiority trial. Their example obtains a sample size of 51 in each group when δ = 0, NIM = 0.05, σ = 0.1, alpha = 0.05, and power = 0.80. Because M1 = 1, the values of ρ and COV are ignored. They obtain a value of 51 for K1 and K2.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Design Tab

Solve For	K1 (Number of Clusters)
Higher Means Are	Better (Ha: δ > -NIM)
Test Statistic	T-Test Based on Number of Subjects
Power	0.8
Alpha	0.05
M1 (Average Cluster Size)	1
K2 (Number of Clusters)	K1
M2 (Average Cluster Size)	M1
COV of Cluster Sizes	0
NIM (Non-Inferiority Margin)	0.05
δ (Mean Difference = μ 1 - μ 2)	0
σ (Standard Deviation)	0.1
ρ (Intracluster Correlation, ICC)	0

Non-Inferiority Tests for Two Means in a Cluster-Randomized Design

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results for a Test of Mean Difference

Solve Fo Groups: Test Stat Higher M Hypothes	tistic: Ieans A		1 = T-T Bet	Treatm Sest with	er of Clu nent, 2 = n DF Bas IM vs.	Control	Number o	f Subje	cts						
			ber of sters Clu			Cluster Size			ample \$	Size	Mean Difference	Non- Inferiority	Standard	100	
Power	K1	K	2	к	M1	M2	cov	N1	N2	N	δ	Margin -NIM	Deviation σ	ICC P	Alpha
0.8059	51	5′	1	102	1	1	0	51	51	102	0	-0.05	0.1	0	0.05

PASS calculates the same sample sizes as Chow, Shao, Wang, and Lokhnygina (2018).