PASS Sample Size Software NCSS.com

#### Chapter 248

# Non-Inferiority Tests for the Ratio of Two Poisson Rates in a Cluster-Randomized Design

#### Introduction

This procedure calculates power and sample size for non-inferiority tests of the ratio of two rates in a cluster-randomized design in which the outcome variable is a count. It uses the work of Wang, Zhang, and Ahn (2018) which give the power for the case of varying cluster sizes. The analysis uses a simple z-test comparing the two rates.

Cluster-randomized designs are those in which whole clusters of subjects (classes, hospitals, communities, etc.) are put into the treatment group or the control group. Generally speaking, the larger the cluster sizes and the higher the correlation among subjects within the same cluster, the larger will be the overall sample size necessary to detect an effect with the same power.

## The Statistical Hypotheses

Non-inferiority tests are examples of directional (one-sided) tests. This program module provides the input and output in formats that are convenient for these types of tests. This section will review the specifics of non-inferiority testing.

When higher rates are better, the non-inferiority test hypotheses are

$$H_0: \frac{\lambda_1}{\lambda_2} \le R_0$$
 vs.  $H_1: \frac{\lambda_1}{\lambda_2} > R_0$ 

where  $R_0 < 1$ .

When higher rates are worse, the non-inferiority test hypotheses are

$$H_0: \frac{\lambda_1}{\lambda_2} \ge R_0 \text{ vs. } H_1: \frac{\lambda_1}{\lambda_2} < R_0$$

where  $R_0 > 1$ .

### **Technical Details**

The following discussion summarizes the results in Wang, Zhang, and Ahn (2018).

Suppose you are interested in comparing the incidence rates of two groups (treatment and control) with a non-inferiority test. Further suppose that the response is known to be related to other covariates (such as age, race, or gender) and so their impact needs to be adjusted for. This may be accomplished by stratifying on the covariates and forming hypotheses about a common mean difference across all clusters and strata. Often, the stratification is based on cluster size, but this is not required.

Let  $Y_{jki}$  be the count outcome of the ith  $(i = 1, ..., M_{jk})$  subject in the kth  $(k = 1, ..., K_j)$  cluster of the jth (j = 1, 2) group. Assuming that  $Y_{jki}$  follows a Poisson model with

$$\lambda_j = E(Y_{jki}) = Var(Y_{jki})$$

and a common intracluster correlation coefficient (ICC)  $\rho = \operatorname{corr}(Y_{jki}, Y_{jki'})$  for  $i \neq i'$ .

#### **Test Statistic**

An unbiased estimator of  $\lambda_i$  is

$$\hat{\lambda}_j = \frac{\sum_{k=1}^{K_j} \sum_{i=1}^{M_{jk}} Y_{jki}}{\sum_{k=1}^{K_j} M_{jk}}$$

with estimated variance

$$s_j^2 = \frac{\hat{\lambda}_j \sum_{k=1}^{K_j} M_{jk} [1 + (M_{jk} - 1)\hat{\rho}]}{\left(\sum_{k=1}^{K_j} M_{jk}\right)^2}$$

Using a one-sided hypothesis  $H0: \lambda_1 = \lambda_2$  versus  $H1: \lambda_1 < \lambda_2$ , H0 is rejected if

$$\frac{\hat{\lambda}_1 - \hat{\lambda}_2}{\sqrt{s_1^2 + s_2^2}} > z_{1-\alpha}$$

#### Sample Size and Power

Wang, Zhang, and Ahn (2018) provide the following formula for estimating  $K_2$  (the number of clusters in the control group) when there are an unequal number of clusters in each group.

$$K_2 = \frac{\left(z_{1-\frac{\alpha}{2}} + z_{1-\beta}\right)^2 \left(\frac{\lambda_1}{R} + \lambda_2\right)}{(\lambda_1 - \lambda_2)^2} \left[ (1-\rho)\frac{1}{\theta} + \rho + \rho\gamma^2 \right]$$

where  $R = K_1/K_2$ ,  $M = \mathrm{E}(M_{jk})$ ,  $\tau^2 = \mathrm{Var}(M_{jk})$ , and  $\gamma = \tau/M$ . Here M is the average cluster size of all clusters in the study and  $\gamma$  is the coefficient of variation of the cluster sizes. Note that  $z_x = \Phi(x)$  is the standard normal distribution function.

This equation can easily be rearranged to provide a formula for power  $(1 - \beta)$ .

# **Example 1 – Finding the Number of Clusters**

A non-inferiority study is being planned to investigate whether a new intervention will decrease the incidence rate of a certain disease over the rate achieved by the current intervention. The response is a count. For a number of reasons, the researchers decide to administer the intervention to whole clusters (clinics) rather than randomize the treatment to individuals. The number of clinics receiving each treatment will be balanced.

The average number of subjects per clinic is 20. The coefficient of variation of the cluster sizes is 0.4.

Prior studies have obtained an incidence rate of 0.4 for the current treatment and an ICC of 0.01. The non-inferiority ratio is set to 1.1. The researchers want to compare the necessary sample size when the actual incidence rate of the new treatment is 0.3, 0.25, 0.2, and 0.15.

The one-sided significance level is set to 0.025 and the power is set to 0.8.

#### Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

| Solve For                               | K1 (Number of Clusters in Group 1)     |
|-----------------------------------------|----------------------------------------|
| Higher Rates Are                        | Worse (H1: λ1 / λ2 < R0, where R0 > 1) |
| Power                                   | 0.80                                   |
| Alpha                                   | 0.025                                  |
| K2 (Clusters in Group 2)                | K1                                     |
| M (Average of Cluster Sizes)            | 20                                     |
| CV (Coef of Variation of Cluster Sizes) | 0.4                                    |
| Incidence Rate Input Type               | Ratios (R0 and R1)                     |
| R0 (Non-Inferiority Ratio)              | 1.1                                    |
| R1 (Actual Ratio)                       | 0.5 0.6 0.7 0.8                        |
| λ2 (Incidence Rate of Control Group)    | 0.4                                    |
| ρ (Intracluster Correlation, ICC)       | 0.01                                   |

**PASS Sample Size Software** NCSS.com Non-Inferiority Tests for the Ratio of Two Poisson Rates in a Cluster-Randomized Design

#### Output

Click the Calculate button to perform the calculations and generate the following output.

#### **Numeric Reports**

#### **Numeric Results**

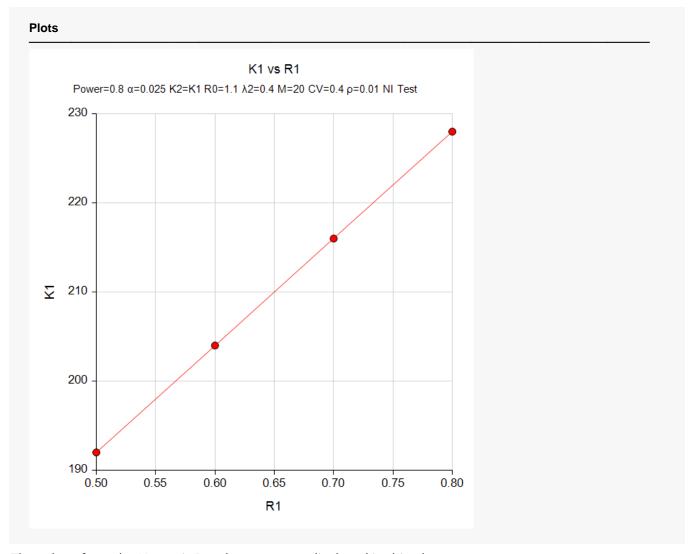
Solve For: K1 (Number of Clusters in Group 1)

1 = Treatment, 2 = Control Groups:

Higher Rates Are: Worse

H0:  $\lambda 1 / \lambda 2 \ge R0$  vs. H1:  $\lambda 1 / \lambda 2 < R0$ Hypotheses:

| Power                                                  | Number                                         | Cluster Size                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Treatment                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ratio                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|--------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                                        | Treatment K1                                   |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | Sample<br>Size<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Non-<br>Inferiority<br>λ1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Actual<br>λ1.1                                                             | Control<br>λ2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Non-<br>Inferiority<br>R0                                 | Actual<br>R1                                | Intracluster<br>Correlation<br>ρ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Alpha   |
| 0.80035                                                | 192                                            | 192                                                                                                                   | 384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4                                                                      | 7680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.20                                                                       | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1                                                       | 0.5                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.025   |
| 0.80035                                                | 204                                            | 204                                                                                                                   | 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4                                                                      | 8160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.24                                                                       | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1                                                       | 0.6                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.025   |
| 0.80035                                                | 216                                            | 216                                                                                                                   | 432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4                                                                      | 8640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.28                                                                       | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1                                                       | 0.7                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.025   |
| 0.80035                                                | 228                                            | 228                                                                                                                   | 456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4                                                                      | 9120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.32                                                                       | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1                                                       | 0.8                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.025   |
| K1, K2,<br>M                                           | and K Th<br>Th<br>Th                           | ne numbe<br>ne averag<br>ne coeffic                                                                                   | r of clu<br>e clust<br>ient of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sters in g<br>er size. It<br>variation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | roup:                                                                    | s 1, 2, an<br>e anticipa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d both, responded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ectively<br>e numbe                                                        | /.<br>er of subj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           | ster.                                       | s divided by t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | he      |
| K1, K2,<br>M<br>CV                                     | and K Th<br>Th<br>Th                           | ne numbe<br>ne averag<br>ne coeffic<br>average o                                                                      | r of clu<br>e clust<br>ient of<br>cluster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sters in g<br>er size. It<br>variation o<br>size.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | roup:<br>is the                                                          | s 1, 2, an<br>e anticipa<br>e cluster s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d both, responded both, responded by the desired averages. It is the desired by t | pectively<br>e numbe<br>ne stand                                           | r.<br>er of subj<br>ard devia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ects per clu                                              | ster.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | he      |
| K1, K2,<br>M<br>CV<br>N                                | and K Th<br>Th<br>Th<br>;<br>Th                | ne numbe<br>ne averag<br>ne coeffic<br>average o<br>ne total sa                                                       | r of clust e clust ient of cluster ample s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sters in g<br>er size. It<br>variation o<br>size.<br>size, i.e., t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | roup:<br>is the<br>of the                                                | s 1, 2, and e anticipal e cluster so tal numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d both, responded average sizes. It is the er of subject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pectively<br>e number<br>ne stand<br>ots from                              | r.<br>er of subj<br>lard devia<br>all cluste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ects per clu                                              | ster.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | he      |
| K1, K2,<br>M<br>CV<br>N<br>λ1.0                        | and K Th<br>Th<br>Th<br>in<br>Th<br>Th         | ne numbe<br>ne averag<br>ne coeffic<br>average one total sa<br>ne non-inf                                             | r of clust<br>e clust<br>ient of<br>cluster<br>ample s<br>eriority                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | er size. It yariation of size. size, i.e., to bound or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | roupsis the of the to                                                    | s 1, 2, and a second control of the second c | d both, responded both, responded by the desired averages. It is the desired by t | e number<br>e number<br>ne stand<br>ots from<br>atment (                   | v.<br>er of subjo<br>lard devia<br>all cluste<br>group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ects per clu<br>tion of clus                              | ster.<br>ter sizes                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | he      |
| Power<br>K1, K2,<br>M<br>CV<br>N<br>λ1.0<br>λ1.1<br>λ2 | and K Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th   | ne numbe<br>ne averag<br>ne coeffic<br>average one<br>ne total sa<br>ne non-inf<br>ne actual                          | r of clust e clust of cluster ample seriority incider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er size. It yariation of size. size, i.e., to bound or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | roup:<br>is the<br>of the<br>he to<br>n inci<br>f the                    | s 1, 2, and a second a cluster second a numb dence ratreatmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d both, respected averagesizes. It is the er of subjecte in the tre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e number<br>e number<br>ne stand<br>ots from<br>atment (                   | v.<br>er of subjo<br>lard devia<br>all cluste<br>group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ects per clu<br>tion of clus                              | ster.<br>ter sizes                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | he      |
| K1, K2,<br>M<br>CV<br>N<br>λ1.0<br>λ1.1                | and K Th            | ne numbe<br>ne averag<br>ne coeffic<br>average on<br>ne total sa<br>ne non-inf<br>ne actual<br>ne incider             | r of clude cluster of | er size. It variation of size. Size, i.e., to bound or once rate of ein the co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | roup: is the of the the to n inci f the ontrol                           | s 1, 2, and a anticipal anticipal accounts of a cluster so atal numb dence rate atmen group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d both, respected averagesizes. It is the er of subjecte in the treet group at w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e number<br>e number<br>ne stand<br>cts from<br>atment of<br>which the     | v.  er of subject of s | ects per clustion of clustrs.                             | ster.<br>ter sizes                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| K1, K2,<br>M<br>CV<br>N<br>λ1.0<br>λ1.1                | and K Th T | the number and average of the total same actual the incider $\lambda 1.0 / \lambda$ are incider and incider           | or of clustrient of cluster ample seriority incider ace rates 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sters in ger size. It variation of size. Size, i.e., to bound on the core rate of erratio ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | roups<br>is the<br>of the<br>the to<br>n inci<br>f the<br>ontrol<br>sume | s 1, 2, and a enticipal of cluster so tal numb dence rate treatmen group. d by the i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d both, respected averagesizes. It is the er of subjecte in the treet group at whall hypothe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pectively e number ne stand cts from atment which the esis. This           | ard devia<br>all cluste<br>group.<br>e power is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ects per clustion of clustrs. computed called the r       | ster.<br>ter sizes<br>non-infel             | s divided by t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ary. R0 |
| K1, K2,<br>M<br>CV<br>N<br>λ1.0<br>λ1.1<br>λ2<br>R0    | and K Th T | ne number average coefficier total sale non-infine actual ne incider \$\lambda \tau 1.0 / \lambda ne incider computed | r of clust e clust ient of cluster ample seriority incider ace rate ace rate 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sters in ger size. It variation of size. Size, i.e., to bound on the core rate of the ratio assertation assertatio | roups<br>is the<br>of the<br>the to<br>n inci<br>f the<br>ontrol<br>sume | s 1, 2, and a second and a second a sec | d both, respected averages; It is the er of subjecte in the treet group at whall hypothes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pectively e number e stand cts from atment which the esis. This properties | or.  er of subjusted deviated  | ects per clustion of clustrs. computed called the ratio a | ster.<br>ter sizes<br>non-infel<br>at which | divided by the divide | ary. R0 |


#### **Summary Statements**

A parallel two-group cluster-randomized design will be used to test whether the Group 1 (treatment) incidence rate (λ1) is non-inferior to the Group 2 (control) incidence rate (λ2), with an incidence rate non-inferiority ratio of 1.1 (H0:  $\lambda 1 / \lambda 2 \ge 1.1$  versus H1:  $\lambda 1 / \lambda 2 < 1.1$ ). The comparison will be made using a one-sided incidence rate difference Z-test with a Type I error rate ( $\alpha$ ) of 0.025. The intracluster correlation coefficient is assumed to be 0.01. The control group incidence rate is assumed to be 0.4. The individual cluster sizes (the number of subjects per cluster) are assumed to vary according to a discrete distribution with mean 20 and coefficient of variation 0.4. To detect an incidence rate ratio ( $\lambda 1 / \lambda 2$ ) of 0.5 (or treatment group incidence rate of 0.2) with 80% power, with an average of 20 subjects per cluster, the number of clusters needed will be 192 in Group 1 (treatment) and 192 in Group 2 (control) (for an overall total of 7680 subjects).

#### References

Wang, J., Zhang, S., and Ahn, C. 2018. 'Sample size calculation for count outcomes in cluster randomization trials with varying cluster sizes.' Communications in Statistics--Theory and Methods, DOI: 10.1080/03610926.2018.1532004.

#### **Plots Section**



The values from the Numeric Results report are displayed in this plot.

# Example 2 – Validation using a Previously Validated Procedure

We could not find a validation example in the literature so we will use a previously validated procedure in **PASS** to validate this procedure.

Suppose in a non-inferiority design, higher rates are worse, power = 0.9, alpha = 0.025, K2 = K1, M = 50, CV = 0.2,  $\lambda$ 1.0 = 0.6,  $\lambda$ 1.1 = 0.5,  $\lambda$ 2 = 0.5, and  $\rho$  = 0.002. Solve for K1.

This scenario can be solved using the procedure "Tests for the Difference Between Two Poisson Rates in a Cluster-Randomized Design" with the following settings.

Set the alternative hypothesis to "One-Sided (H1:  $\delta$  > 0)", power = 0.9, alpha = 0.025, K2 = K1, M = 50, CV = 0.2,  $\lambda$ 1 = 0.6,  $\lambda$ 2 = 0.5, and  $\rho$  = 0.002. The solution is K1 = K2 = 26.

#### Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

| Solve For                               | K1 (Number of Clusters in Group 1)     |
|-----------------------------------------|----------------------------------------|
| Higher Rates Are                        | Worse (H1: λ1 / λ2 < R0, where R0 > 1) |
| Power                                   | 0.9                                    |
| Alpha                                   | 0.025                                  |
| K2 (Clusters in Group 2)                | K1                                     |
| M (Average of Cluster Sizes)            | 50                                     |
| CV (Coef of Variation of Cluster Sizes) | 0.2                                    |
| Incidence Rate Input Type               | Incidence Rates (λ1.0 and λ1.1)        |
| λ1.0 (Non-Inferiority Incidence Rate)   | 0.6                                    |
| λ1.1 (Actual Incidence Rate)            | 0.5                                    |
| λ2 (Incidence Rate of Control Group)    | 0.5                                    |
| ρ (Intracluster Correlation, ICC)       | 0.002                                  |

PASS Sample Size Software NCSS.com

Non-Inferiority Tests for the Ratio of Two Poisson Rates in a Cluster-Randomized Design

#### **Output**

Click the Calculate button to perform the calculations and generate the following output.

| Solve Fo<br>Groups:<br>Higher R<br>Hypothe | ates Are:     | 1 =<br>Wo | Treatme<br>orse | nt, 2 = 0 | ters in Gro<br>Control<br>s. H1: λ1 / |          | R0              |                     |             |            |                   |              |                  |        |
|--------------------------------------------|---------------|-----------|-----------------|-----------|---------------------------------------|----------|-----------------|---------------------|-------------|------------|-------------------|--------------|------------------|--------|
|                                            |               |           |                 |           |                                       |          |                 |                     | In          | cidence R  | ate               |              |                  |        |
|                                            | Num           | hor       | of Cluste       |           | Cluster Size                          |          | Total<br>Sample | Treatment           |             |            | Ratio             |              |                  |        |
|                                            |               |           |                 |           |                                       |          |                 | Non-                |             |            | Non-              |              | Intracluster     |        |
|                                            |               | nt (      | Control         | Total     | Average                               | <b>-</b> | Size            | Inferiority<br>λ1.0 | Actual λ1.1 | Control λ2 | Inferiority<br>R0 | Actual<br>R1 | Correlation<br>0 | Alpha  |
| Power                                      | Treatmer<br>K | 1         | K2              | K         | M                                     | CV       | N               | Λ1.0                | Λ1.1        | 7,2        | ΝU                | N I          | P                | Aipiia |

**PASS** has also obtained K1 = K2 = 26. Thus, the procedure is validated.