Chapter 142

Non-Inferiority Tests for the Ratio of Two Within-Subject Variances in a 2×2M Replicated Cross-Over Design

Introduction

This procedure calculates power and sample size of *non-inferiority* tests of within-subject variabilities from a 2×2M replicated cross-over design. This routine deals with the case in which the statistical hypotheses are expressed in terms of the ratio of the within-subject variances.

This design is used to compare two treatments which are administered to subjects in different orders. It has two treatment sequences. Here, M is the number of times a particular treatment is received by a subject. For example, if M = 2, the design is a 2×4 cross-over. The two sequences would often be

sequence 1: RTRT sequence 2: TRTR

It is assumed that either there is no carry-over from one measurement to the next, or there is an ample washout period between measurements.

Technical Details

This procedure uses the formulation given in Chow, Shao, Wang, and Lokhnygina (2018).

Suppose x_{ijkl} is the response in the *i*th sequence (i = 1, 2), *j*th subject (j = 1, ..., Ni), *k*th treatment (k = T, C), and *l*th replicate (l = 1, ..., M). The mixed effect model analyzed in this procedure is

$$x_{ijkl} = \mu_k + \gamma_{ikl} + S_{ijk} + e_{ijkl}$$

where μ_k is the kth treatment effect, γ_{ikl} is the fixed effect of the lth replicate on treatment k in the ith sequence, S_{ij1} and S_{ij2} are random effects of the ijth subject, and e_{ijkl} is the within-subject error term which is normally distributed with mean 0 and variance $V_k = \sigma_{Wk}^2$

Unbiased estimators of these variances are found after applying an orthogonal transformation matrix *P* to the x's as follows

$$z_{ijk} = P'x_{ijk}$$

where P is an $m \times m$ matrix such that P'P is diagonal and $var(z_{ijkl}) = \sigma_{Wk}^2$.

Non-Inferiority Tests for the Ratio of Two Within-Subject Variances in a 2×2M Replicated Cross-Over Design

For example, in a 2×4 cross-over design the z's become

$$z_{ijk1} = \frac{x_{ijk1} + x_{ijk2}}{2} = \bar{x}_{ijk}.$$

and

$$z_{ijk2} = \frac{x_{ijk1} + x_{ijk2}}{\sqrt{2}} = \bar{x}_{ijk}.$$

In this case, the within-subject variances are estimated as

$$\hat{V}_T = \frac{1}{(N_1 + N_2 - 2)(M - 1)} \sum_{i=1}^{2} \sum_{j=1}^{N_i} \sum_{l=1}^{M} (z_{ijTl} - \bar{z}_{i.Tl})^2$$

and

$$\hat{V}_C = \frac{1}{(N_1 + N_2 - 2)(M - 1)} \sum_{i=1}^{2} \sum_{j=1}^{N_i} \sum_{l=1}^{M} (z_{ijCl} - \bar{z}_{i.Cl})^2$$

Testing Non-Inferiority

The following hypotheses are usually used to test for non-inferiority

$$H_0: \frac{\sigma_{WT}^2}{\sigma_{WC}^2} \ge R0$$
 versus $H_1: \frac{\sigma_{WT}^2}{\sigma_{WC}^2} < R0$,

where R0 is the non-inferiority limit.

The corresponding test statistic is $T=(\hat{V}_1/\hat{V}_2)/R0$.

Upon making the usual normality assumptions, T is distributed as an $F_{d,d}$ random variable where

$$d = (N_1 + N_2 - 2)(M - 1).$$

Power

The power of this combination of tests is given by

Power =
$$P\left(F < \frac{R0}{R1} F_{\alpha,d,d}\right)$$

where F is the common F distribution with the indicated degrees of freedom, α is the significance level, and R1 is the value of the variance ratio stated by the alternative hypothesis. Lower quantiles of F are used in the equation.

A simple binary search algorithm can be applied to this power function to obtain an estimate of the necessary sample size.

Non-Inferiority Tests for the Ratio of Two Within-Subject Variances in a 2×2M Replicated Cross-Over Design

Example 1 - Finding Sample Size

A company has developed a generic drug for treating rheumatism and wants to show that it is non-inferior to the standard drug in terms of the within-subject variability. A 2 x 4 replicated cross-over design will be used to test the non-inferiority.

Company researchers set the non-inferiority limit to 1.5, the significance level to 0.05, the power to 0.90, M to 2, and the actual variance ratio values between 0.8 and 1.2. They want to investigate the range of required sample size values assuming that the two group sample sizes are equal.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Sample Size	
Power	0.90	
Alpha	0.05	
Sequence Allocation	Equal (N1 = N2)	
M (Number of Replicates)	2	
R0 (Non-Inferiority Variance Ratio)	1.5	
R1 (Actual Variance Ratio)	0.8 0.9 1 1.1 1.2	

Non-Inferiority Tests for the Ratio of Two Within-Subject Variances in a 2×2M Replicated Cross-Over Design

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Numeric Results

Solve For: Sample Size Variance Ratio: $\sigma^2 w \tau / \sigma^2 w c$

Hypotheses: H0: $\sigma^2 wr / \sigma^2 wc \ge R0$ vs. H1: $\sigma^2 wr / \sigma^2 wc < R0$

Power				Number of	Variance Ra		
Actual	N1	N2	 N	Replicates M	Non-Inferiority R0	Actual R1	Alpha
0.9013	45	45	90	2	1.5	0.8	0.05
0.9036	68	68	136	2	1.5	0.9	0.05
0.9009	106	106	212	2	1.5	1.0	0.05
0.9007	180	180	360	2	1.5	1.1	0.05
0.9004	346	346	692	2	1.5	1.2	0.05
	Actual 0.9013 0.9036 0.9009 0.9007	Actual N1 0.9013 45 0.9036 68 0.9009 106 0.9007 180	Actual N1 N2 0.9013 45 45 0.9036 68 68 0.9009 106 106 0.9007 180 180	Actual N1 N2 N 0.9013 45 45 90 0.9036 68 68 136 0.9009 106 106 212 0.9007 180 180 360	Actual N1 N2 N M 0.9013 45 45 90 2 0.9036 68 68 136 2 0.9009 106 106 212 2 0.9007 180 180 360 2	Actual N1 N2 N M M Roll 0.9013 45 45 90 2 1.5 0.9036 68 68 136 2 1.5 0.9009 106 106 212 2 1.5 0.9007 180 180 360 2 1.5	Actual N1 N2 N M M Non-Inferiority Actual R1 0.9013 45 45 90 2 1.5 0.8 0.9036 68 68 136 2 1.5 0.9 0.9009 106 106 212 2 1.5 1.0 0.9007 180 180 360 2 1.5 1.1

Target Power The desired power value entered in the procedure. Power is the probability of rejecting a false null hypothesis. **Actual Power** The actual power achieved. Because N1 and N2 are discrete, this value is usually slightly larger than the target power. N₁ The number of subjects in sequence 1. N2 The number of subjects in sequence 2. Ν The total number of subjects. N = N1 + N2. Μ The number of replicates. That is, it is the number of times a treatment measurement is repeated on a subject. R0 The non-inferiority limit for the within-subject variance ratio. The value of the within-subject variance ratio at which the power is calculated. R1 Alpha The probability of rejecting a true null hypothesis.

Summary Statements

A 2×2M replicated cross-over design will be used to test whether the treatment within-subject variance (σ^2 wT) is non-inferior to the control within-subject variance (σ^2 wc), by testing whether the within-subject variance ratio (σ^2 wT / σ^2 wc) is less than 1.5 (H0: σ^2 wT / σ^2 wc \geq 1.5 versus H1: σ^2 wT / σ^2 wc < 1.5). Each subject will alternate treatments (T and C), with an assumed wash-out period between measurements to avoid carry-over. With 2 replicate pairs, each subject will be measured 4 times. For those in the Sequence 1 group, the first treatment will be C, and the sequence is [C T C T]. For those in the Sequence 2 group, the first treatment will be T, and the sequence is [T C T C]. The comparison will be made using a one-sided, variance-ratio F-test (with the treatment within-subject variance in the numerator), with a Type I error rate (σ) of 0.05. To detect a within-subject variance ratio (σ^2 wT / σ^2 wc) of 0.8 with 90% power, the number of subjects needed will be 45 in Group/Sequence 1, and 45 in Group/Sequence 2.

Non-Inferiority Tests for the Ratio of Two Within-Subject Variances in a 2×2M Replicated Cross-Over Design

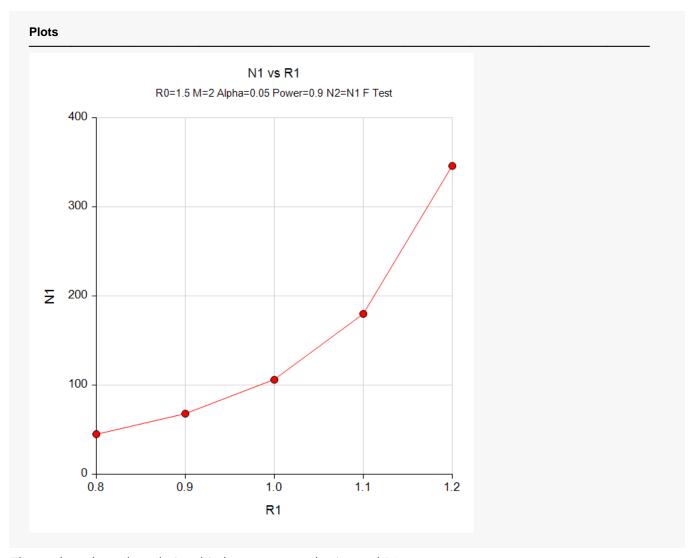
Dropout-Inflated Sample Size

	s	ample Si	ze	E	pout-Infl Inrollme ample S	nt	ı	Expecte Number Dropou	of
Dropout Rate	N1	N2	N	N1'	N2'	N'	D1	D2	D
20%	45	45	90	57	57	114	12	12	24
20%	68	68	136	85	85	170	17	17	34
20%	106	106	212	133	133	266	27	27	54
20%	180	180	360	225	225	450	45	45	90
20%	346	346	692	433	433	866	87	87	174
Dropout Rate	The percentag) that are exp					
N1, N2, and N	The evaluable	sample si	zes at which		mputed. If	N1 and N2 s	subjects are	evaluate	ed out of
N1', N2', and N'	inflating N1	sed on the and N2 us ded up. (S	assumed di ing the formi ee Julious, S	ropout rate. <i>F</i> ulas N1' = N1 S.A. (2010) p	After solvir	ng for N1 and) and N2' = N	l N2, N1' ar l2 / (1 - DR)	nd N2' are), with N1	calcula and N2
D1, D2, and D	The expected	number of	dropouts. D	1 = N1' - N1	D2 = N2'	- N2, and D	= D1 + D2.		

Dropout Summary Statements

Anticipating a 20% dropout rate, 57 subjects should be enrolled in Group 1, and 57 in Group 2, to obtain final group sample sizes of 45 and 45, respectively.

References


Chow, S.C., Shao, J., Wang, H., and Lokhnygina, Y. 2018. Sample Size Calculations in Clinical Research, Third Edition. Taylor & Francis/CRC. Boca Raton, Florida.

Chow, S.C., and Liu, J.P. 2014. Design and Analysis of Clinical Trials, Third Edition. John Wiley & Sons. Hoboken, New Jersey.

This report gives the sample sizes for the indicated scenarios.

Non-Inferiority Tests for the Ratio of Two Within-Subject Variances in a 2×2M Replicated Cross-Over Design

Plots Section

These plots show the relationship between sample size and R1.

Non-Inferiority Tests for the Ratio of Two Within-Subject Variances in a 2×2M Replicated Cross-Over Design

Example 2 - Validation using Chow et al. (2018)

The following example of finding the sample size for a 2x4 cross-over design is shown in Chow *et al.* (2018) pages 199 - 200.

Find the sample size when the non-inferiority limit is 1.21, the significance level to 0.05, M is 2, the power is 0.8, and the alternative variance ratio value 0.4444. They obtained N1 = N2 = 14.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Sample Size
Power	0.80
Alpha	0.05
Sequence Allocation	Equal (N1 = N2)
M (Number of Replicates)	2
R0 (Non-Inferiority Variance Ratio)	1.21
R1 (Actual Variance Ratio)	0.444

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve Fo Variance Hypothe	Ratio: d	Sample Size σ²wτ / σ²wc H0: σ²wτ / c) vs.	H1: σ²wτ / σ²wc <	< R0		,
Power			Sequence Sample Size		Normalia and	Variance R		
Fov Target	ver ———— Actual		N2	N	Number of Replicates M	Non-Inferiority R0	Actual R1	Alpha
u. 90.								

The sequence sample sizes are 14 and match the results of Chow et al. (2018).