Chapter 713

One-Sample Cure Model Tests

Introduction

This module computes the sample size and power of the one-sample parametric cure model proposed by Wu (2015). This technique is useful when working with survival data in phase II clinical trials when a substantial portion of the subjects are cured of the disease or ailment, and you are comparing the results of a new treatment to a historical control.

Technical Details

One-Sample Cure Model Test Statistic

Following Wu (2015), suppose the failure time, T^* , is assumed to be $T^* = v T + (1 - v) \infty$, where v indicates whether the subject will experience failure and T denotes failure time of the subjects not cured. Let S(t) be the *latency distribution* of T which in this procedure is assumed to be the Weibull distribution with shape parameter k known and scale parameter λ . The survival distribution of T^* is a mixture of a cure rate $\pi = P(v = 0)$ and S(t) given by

$$S^*(t) = \pi + (1 - \pi)S(t)$$

Suppose *N* subjects are enrolled in a study during the accrual period of length t_a and then observed during a follow-up period of length t_f . Let t_i and C_i denote the failure time and censoring time of the i^{th} subject. The observed failure time is $X_i = T^*_i \wedge C_i$ and the observed failure indicator is $\Delta_i = I(T^*_i \leq C_i)$. The test *L* is defined in terms of the number of observed failures *O* and the number of expected events *E*, as follows

$$L = \frac{O - E}{\sqrt{(O + E)/2}}$$

The test statistic *L* is asymptotically standard normal distributed under the null, where

$$O = \sum_{i=1}^{n} \Delta_i$$
$$E = \sum_{i=1}^{n} \Lambda_0^*(X_i)$$
$$\Lambda_0^*(t) = -\ln S_0^*(t)$$

Note that $\Lambda_0^*(t)$ is the cumulative hazard function of $S_0^*(t)$ under the null hypothesis.

Statistical Hypothesis

The null hypothesis is

 $H_0: \pi = \pi_0$ and $\lambda = \lambda_0$

which is tested against one of the following three alternatives

 H_{1a} : $\pi = \pi_0$ and $\lambda = \lambda_1$ H_{1b} : $\pi = \pi_1$ and $\lambda = \lambda_0$ H_{1c} : $\pi = \pi_1$ and $\lambda = \lambda_1$

Power Calculation

Wu (2015) gives the following power and sample size formulas for a one-sided hypothesis test based on *L* for the Weibull distribution with known shape parameter *k*. The power of a two-sided test is found by substituting $\alpha/2$ for α . Note that we use the subscript 0 to represent the historic control and the subscript 1 to represent the new treatment group.

Power
$$\cong \Phi\left(-\frac{\bar{\sigma}}{\sigma}z_{1-\alpha} - \frac{\omega\sqrt{n}}{\sigma}\right)$$
$$n = \frac{(\bar{\sigma}z_{1-\alpha} + \sigma z_{Power})^2}{\omega^2}$$

where

$$\begin{split} \omega &= v_1 - v_0 \\ \bar{\sigma}^2 &= (v_1 + v_0)/2 \\ \sigma^2 &= v_1 - v_1^2 + 2v_{00} - v_0^2 - 2v_{01} + 2v_0 v_1 \\ v_0 &= \int_0^\tau G(t) S_1^*(t) h_0(t) dt \\ v_1 &= \int_0^\tau G(t) S_1^*(t) h_1(t) dt \\ v_{00} &= \int_0^\tau G(t) S_1^*(t) h_0(t) \lambda_0^*(t) dt \\ v_{01} &= \int_0^\tau G(t) S_1^*(t) h_1(t) \lambda_0^*(t) dt \end{split}$$

$$\begin{aligned} \tau &= t_a + t_f \\ S_0^*(t) &= \pi_0 + (1 - \pi_0) \exp(-\lambda_0 t^k) \\ S_1^*(t) &= \pi_1 + (1 - \pi_1) \exp(-\lambda_1 t^k) \\ \lambda_0^*(t) &= -\ln(S_0^*(t)) \\ h_0(t) &= \lambda_0 k t^{k-1} \frac{(1 - \pi_0) \exp(-\lambda_0 t^k)}{\pi_0 + (1 - \pi_0) \exp(-\lambda_0 t^k)} \\ h_1(t) &= \lambda_1 k t^{k-1} \frac{(1 - \pi_1) \exp(-\lambda_1 t^k)}{\pi_1 + (1 - \pi_1) \exp(-\lambda_1 t^k)} \\ f_1(t) &= \begin{cases} 1 & \text{if } t \le t_f \\ \frac{\tau - t}{t_a} & \text{if } t_f \le t \le \tau \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

Note that t_a represents the accrual time and t_f represents the follow-up time.

The values of the v_0 , v_1 , v_{00} , and v_{01} can be calculated by numeric integration.

The hazard rates λ_0 and λ_1 can be given in terms of the hazard ratio *HR*, the median survival times M_0 and M_1 , or the survival proportions S_0 and S_1 at time t_0 of the latency distribution. These parameters are defined as

$$HR = \frac{\lambda_1}{\lambda_0}$$
$$\lambda_0 = \frac{\ln(2)}{M_0^k} = \frac{-\ln[S_0]}{t_0^k}$$
$$\lambda_1 = \frac{\ln(2)}{M_1^k} = \frac{-\ln[S_1]}{t_0^k}$$

Example 1 – Finding the Sample Size

A researcher is planning a clinical trial to compare the response of a new treatment to that of the current treatment. The median survival time in the current population is 1.54 and the cure rate is 0.32. Failures in the current population exhibits a Weibull distribution with a shape parameter of 1.67. The researcher wants a sample size large enough to detect hazard ratios of 0.7, 0.75, and 0.8 at a 5% significance level for a two-sided test. They assume that the cure rate stays the same. The accrual period will be 3 years. The follow-up period will be 1 year.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Design Tab	
Solve For	Sample Size
Alternative Hypothesis	Two-Sided
Power	0.90
Alpha	0.05
Ta (Accrual Time)	3
Tf (Follow-Up Time)	1
π0 (Proportion Cured - Control)	0.32
π1 (Proportion Cured - New)	0.32
Input Type	M0, HR (Median Survival, Hazard Ratio)
M0 (Median Survival - Control)	1.54
HR (Hazard Ratio - λ1/λ0)	0.7 0.75 0.8
k (Weibull Shape Parameter)	1.67

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Groups: Alternativ	r: /e Hypothesis:	Sample Size 0 = Historic C Two-Sided	ontrol, 1 = Ne	w or Treatment							
Power	Sample Size N	Number of Events E	Time		Cure Pate		Hozard	Median		Weibull	
			Accrual	Follow-Up Tf			Ratio	Survival Time		Shape	
			Та		π0	π1	HR	MO	M1	·k	Alpha
0.9006	370	157	3	1	0.32	0.32	0.70	1.54	1.91	1.67	0.05
0.9000	576	253	3	1	0.32	0.32	0.75	1.54	1.83	1.67	0.05
0.9001	972	441	3	1	0.32	0.32	0.80	1.54	1.76	1.67	0.05
N E	The sample The expect The length	e size of the n ed number of of the accrual	ew group, a events (failu time during	ssuming no su ures) in the ne which subject	bject los w group s are ad	t to drop during th ded to th	out or follow ne study. ne study. Su	v-up duri Ibjects al	ing the st re added	udy. uniformly.	
Ta Tf π0 π1	The length The cure ra The anticipa statistics	of the follow-u ite (proportion ated cure rate that you want	to test.	the last subje the historic cont cured) of the t	rol group new grou	ed to the o. up. The d	e study. difference b	etween 1	τ1 and π	0 may be or	ne of the
Ta Tf π0 π1 HR	The length The cure ra The anticipa statistics The hazard	of the follow-u ite (proportion ated cure rate that you want ratio is the ne	to test. e w group's h	the last subje he historic cont cured) of the hazard rate div	rol group new grou	ed to the o. up. The d the haza	e study. difference b ird rate of th	etween 1 le historio	τ1 and π	0 may be or HR = λ1 / λ	ne of the 0.
Ta Tf π0 π1 HR M0	The length The cure ra The anticipa statistics The hazard The mediar	of the follow-u te (proportion ated cure rate that you want I ratio is the no o survival time	to test. ew group's he of the of the of the test.	the last subje he historic cont cured) of the hazard rate div ric control grou	ided by 1	ed to the o. up. The d the haza	e study. difference b ard rate of th	etween 1 le historio	τ1 and π c control.	0 may be or HR = λ1 / λ	ne of the 0.
Ta Tf π0 π1 HR M0 M1	The length The cure ra The anticipa statistics The hazard The mediar The mediar	of the follow-u te (proportion ated cure rate that you want ratio is the non survival time survival time	to test. every group's h e of the histo of the new	the last subject the historic control cured) of the in- nazard rate div ric control grou (treatment) group	ided by t up.	ed to the o. up. The d the haza	e study. difference b rd rate of th	etween 1 le historie	τ1 and π c control.	0 may be or HR = λ1 / λ	ne of the 0.
Ta Tf π0 π1 HR VI0 V1 K	The length The cure ra The anticipa statistics The hazard The mediar The mediar The shape	of the follow-u te (proportion ated cure rate that you want ratio is the no survival time parameter of	to the arter cured) of the composition to test. ew group's he of the histor of the new the Weibull	the last subje the historic cont cured) of the mazard rate div ric control grou (treatment) grou distribution use	ided by t ided by t up. oup. ed for bc	ed to the o. up. The o the haza	e study. difference b rd rate of th ps.	etween 1 e historie	τ1 and π c control.	0 may be or HR = λ1 / λ	ne of the 0.

Summary Statements

A single-group design will be used to test whether a new treatment cure rate and/or hazard rate is different from that of a historical control. The comparison will be made using a two-sided, one-sample cure model test, with a Type I error rate (α) of 0.05. It is assumed that the survival time distribution is approximated reasonably well by the Weibull distribution with a shape parameter value of 1.67. The accrual time will be 3 and the follow-up time (time after complete accrual) will be 1. To detect a cure rate of 0.32 in the new treatment group when the cure rate in the historical control group is 0.32 and/or detect a hazard ratio of 0.7 when the median survival time of the historical control group is 1.54, with 90% power, the number of needed subjects will be 370. The expected number of events during the study is 157.

References

Wu, Jianrong. 2015. 'Single-arm phase II trial design under parametric cure models', Pharmaceutical Statistics, wileyonlinelibrary.com, DOI: 10.1002/pst.1678.

This report presents the calculated sample sizes for each scenario as well as the values of the other parameters.

Plots Section

This plot shows the relationship between sample size and HR.

Example 2 – Validation using Wu (2015)

Wu (2015) gives an example in which the power if 0.80, alpha = 0.05 for a one-sided test, k = 1.018, Ta = 3 and Tf = 1, $\lambda 0$ = 0.836, HR = 1/1.75 = 0.57143, and $\pi 0$ = 0.35. Wu calculates N to be 93.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Design Tab	
Solve For	Sample Size
Alternative Hypothesis	One-Sided
Power	0.80
Alpha	0.05
Ta (Accrual Time)	3
Tf (Follow-Up Time)	1
π0 (Proportion Cured - Control)	0.35
π1 (Proportion Cured - New)	0.35
Input Type	λ0, HR (Hazard Rate, Hazard Ratio)
λ0 (Hazard Rate - Control)	0.836
HR (Hazard Ratio - λ1/λ0)	0.57143
k (Weibull Shape Parameter)	1.018

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve For: Groups: Alternative Hypothesis:		Sample Size 0 = Historic C One-Sided	Control, 1 = Ne	ew or Treatment							
	Sample Size N	Number of	1	[ime	Cure	Rate	Hazard	Hazar	d Rate	Weibull	
Power		N E Ta	Follow-Up Tf			HR	λ0	λ1	Shape k	Alpha	
Power	in the second se	-									

PASS has also calculated N as 93.