Chapter 517

One-Sample Z-Tests for Equivalence

Introduction

This procedure allows you to study the power and sample size of *z*-tests of equivalence of one mean with a value (e.g., a historical control or gold standard). Schuirmann's (1987) two one-sided tests (TOST) approach is used to test equivalence. The *z*-test assumes that the population standard deviation is known.

Outline of an Equivalence Test

PASS follows the *two one-sided tests* approach described by Schuirmann (1987) and Phillips (1990). It will be convenient to adopt the following specialized notation for the discussion of these tests.

<u>Parameter</u>	<u>PASS Input/Output</u>	<u>Interpretation</u>
E_L , E_U	EL, EU	<i>Lower</i> and <i>Upper Equivalence Limits</i> . If the actual mean is between E_L and E_U , the treatment is said to be <i>equivalent</i> to the reference value.
μ	μ	<i>Population mean.</i> If the data are paired differences, this is the mean of those differences. This parameter will be estimated by the study.
μ_1	μ1	<i>Actual population mean at which power is calculated</i> . This is the assumed population mean used in all calculations.

With $E_L < E_U$, the null hypothesis of non-equivalence is

$$H_0: \mu \leq E_L$$
 or $\mu \geq E_U$.

The alternative hypothesis of equivalence is

 $H_1: E_L < \mu < E_U.$

One-Sample Z-Test Statistic

A one-sample *z*-test is used to analyze the data when the standard deviation is known. The test assumes that the data are a simple random sample from a population of normally distributed values that have the same known variance. This assumption implies that the observations are continuous and normal. The calculation of the two, one-sided *z*-tests proceeds as follows

$$z_L = \frac{\bar{x} - E_L}{\sigma/\sqrt{N}}$$
$$z_U = \frac{\bar{x} - E_U}{\sigma/\sqrt{N}}$$

where σ is the known standard deviation of the measurements. The test is usually calculated using a 100(1 – 2 α)% confidence interval of the mean. If both limits of this confidence interval are between E_L and E_U , equivalence is concluded.

Power Calculation

The power of this test is

$$\Pr(z_L \ge z_{1-\alpha} \text{ and } z_U \le z_{\alpha})$$

where z_L and z_U are distributed as standard normal.

Example 1 – Finding Power

A one-group design is to be used to compare the impact on diastolic blood pressure of a new drug with the known standard drug. The average diastolic blood pressure after administration of the reference drug is 96 mmHg. Researchers believe this average may drop to 92 mmHg with the use of a new drug. The known σ is 25.

Following FDA guidelines, the researchers want to show that the diastolic blood pressure with the new drug is within 20% of the diastolic blood pressure with the standard drug. Thus, the equivalence limits of the mean difference of the two drugs are 96 - 19.2 = 76.8 and 96 + 19.2 = 115.2. They decide to calculate the power for a range of sample sizes between 5 and 50. The significance level is 0.05.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Design Tab

Solve For	Power
Alpha	0.05
N (Sample Size)	5 10 15 20 30 40 50
EU (Upper Equivalence Limit)	115.2
EL (Lower Equivalence Limit)	76.8
μ1 (Actual Mean)	92
σ (Standard Deviation)	25

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Solve For: Power Hypotheses: H0: $\mu \le EL$ or $\mu \ge EU$ vs. H1: EL < μ < EU						
Sample		Equivalence Limits		Actual	Standard	
Power	Sample Size N	Lower EL	Upper EU	Mean µ1	Deviation σ	Alpha
0.05418	5	76.8	115.2	92	25	0.05
0.51085	10	76.8	115.2	92	25	0.05
0.73549	15	76.8	115.2	92	25	0.05
0.85252	20	76.8	115.2	92	25	0.05
0.95374	30	76.8	115.2	92	25	0.05
0.98610	40	76.8	115.2	92	25	0.05
0.99603	50	76.8	115.2	92	25	0.05

Power The probability of rejecting a false null hypothesis when the alternative hypothesis is true.

N The sample size, the number of subjects (or pairs) in the study.

EL The minimum allowable mean that still results in equivalence.

EU The maximum allowable mean that still result in equivalence.

 $\mu 1$ The actual value of the mean at which the power and sample size are computed.

σ The standard deviation of the response (or standard deviation of differences for paired data). It measures the variability in the population.

Alpha The probability of rejecting a true null hypothesis.

Summary Statements

A single-group design will be used to test equivalence of a mean to a value, by testing the mean against the lower and upper equivalence limits of 76.8 and 115.2 (H0: $\mu \le 76.8$ or $\mu \ge 115.2$ versus H1: 76.8 < $\mu < 115.2$). The comparison will be made using two one-sided Z-tests, with an overall Type I error rate (α) of 0.05. The (known) standard deviation is assumed to be 25. To detect a mean of 92 with a sample size of 5, the power is 0.05418.

One-Sample Z-Tests for Equivalence

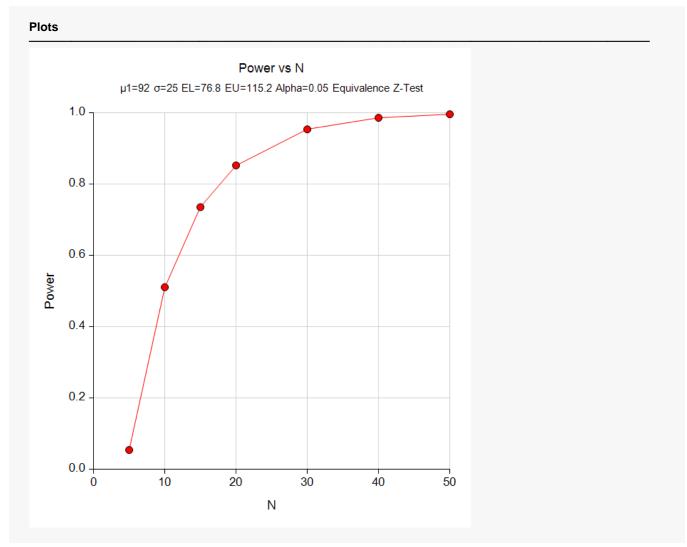
Dropout-Inflated Sample Size

Dropout Rate	Sample Size	Dropout- Inflated Enrollment Sample Size N'	Expected Number of Dropouts D
20%	5	7	2
20%	10	13	3
20%	15	19	4
20%	20	25	5
20%	30	38	8
20%	40	50	10
20%	50	63	13
Dropout Rate	The percentage of subject and for whom no response	onse data will be col	llected (i.e., will b
Ν	The evaluable sample s out of the N' subjects t		
N'	The total number of sub based on the assumed N' always rounded up. Lokhnygina, Y. (2018)	d dropout rate. N' is (See Julious, S.A. (pages 32-33.)	calculated by infla (2010) pages 52-
D	The expected number of	f dropouts. $D = N^2 - I$	N.

Dropout Summary Statements

Anticipating a 20% dropout rate, 7 subjects should be enrolled to obtain a final sample size of 5 subjects.

References


Chow, S.C., Shao, J., Wang, H., and Lokhnygina, Y. 2018. Sample Size Calculations in Clinical Research, Third Edition. Taylor & Francis/CRC. Boca Raton, Florida.

Mathews, Paul. 2010. Sample Size Calculations - Practical Methods for Engineers and Scientists. Mathews Malnar and Bailey. Fairport Harbor, OH.

Blackwelder, W.C. 1998. 'Equivalence Trials.' In Encyclopedia of Biostatistics, John Wiley and Sons. New York. Volume 2, 1367-1372.

This report shows the power for the indicated scenarios. Note that if they want 90% power, they will require a sample of around 30 subjects.

Plots Section

This plot shows the power versus the sample size.

Example 2 – Validation using Chow, Shao, Wang, and Lokhnygina (2018)

Chow, Shao, Wang, and Lokhnygina (2018) presents an example on pages 46 and 47 of a one-sample equivalence *z*-test sample size calculation in which EU = 0.05, EL = -0.05, μ 1 = 0.0, σ = 0.1, alpha = 0.05, and power = 0.80. They obtain a sample size of 35.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Deelan	Tah
Design	Tap

Solve For	Sample Size
Power	0.80
Alpha	0.05
EU (Upper Equivalence Limit)	0.05
EL (Lower Equivalence Limit)	0.05
µ1 (Actual Mean)	0
σ (Standard Deviation)	0.1

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve For: Sample Size Hypotheses: H0: $\mu \le EL$ or $\mu \ge EU$ vs. H1: EL < μ < EU						
	Sample	Equivalence Limits		Actual	Standard	
Power	Size	Lower EL	Upper EU	Mean µ1	Deviation σ	Alpha
0.81088	35	-0.05	0.05	0	0.1	0.05

The sample size of 35 matches Chow, Shao, Wang, and Lokhnygina (2018) exactly.