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Chapter 569 

One-Way Repeated Measures 

Introduction 
This module calculates the power for a one-way repeated measures design. It computes power for both the 
univariate (F-test and F-test with Geisser-Greenhouse correction) and multivariate (Wilks’ lambda, Pillai-
Bartlett trace, and Hotelling-Lawley trace) approaches. It can also be used to calculate the power of crossover 
designs.  

Repeated measures designs are popular because they allow a subject to serve as their own control. This 
usually improves the precision of the experiment. However, when the analysis of the data uses the 
traditional F-tests, additional assumptions concerning the structure of the error variance must be made. 
When these assumptions do not hold, the Geisser-Greenhouse correction provides reasonable adjustments 
so that significance levels are accurate.  

An alternative to using the F-test with repeated measures designs is to use one of the multivariate tests: 
Wilks’ lambda, Pillai-Bartlett trace, or Hotelling-Lawley trace. These alternatives are appealing because they 
do not make the strict, often unrealistic, assumptions about the structure of the variance-covariance matrix. 
Unfortunately, they may have less power than the F-test and they cannot be used in all situations. 

Impact of Treatment Order, Unequal Variances, and Unequal Correlations 

Treatment Order 

It is important to understand under what conditions the order of treatment application matters since the 
design will may include subjects with different treatment arrangements, although each subject will 
eventually receive all treatments. Usually, the design requires a washout period between each two treatment 
applications so that the effect of one treatment does not carryover to the next treatment. It is always a good 
research practice to try several different treatment orders. PASS lets you study this by allowing you to set 
the means and standard deviations in any order you like. 

A brief investigation showed that the order of treatment application only matters when the variances at 
each treatment are different. The pattern of the correlation matrix does have an impact, but only when the 
variances are different. 

Unequal Variances 

PASS lets you investigate the impact of unequal variances on power. Of course, different variance patterns 
lead to different powers. However, the special point to understand is that when the variances are different, 
different treatment orders result in different powers as well. 
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Unequal Correlations 

PASS lets you investigate the impact of unequal correlations on power. Of course, different correlation 
patterns lead to different powers. However, the special point to understand is that when the variances are 
equal, different treatment orders do not result in different powers. Thus, when the variances are the same, 
the power values for different treatment orders will remain constant across different treatment orderings. 

Conclusions 

The above considerations result in the following strategy when using this procedure to power analyze (find 
the sample size) for a particular design. 

1. If the variance is constant across treatments, you can analyze any order and the results will stand for 
all orderings. For example, for the case M = 3, there are six possible orders: ABC, ACB, BAC, BCA, 
CAB, and CBA. In this case, the resulting sample size will be identical for any order. 

2. If the variances are different across treatments (for example, if the variances are treatments with 
larger means are assumed to be proportionally larger), you should analyze each order separately 
and then use the average sample size or the maximum sample size. The point is, you cannot simply 
analyze one order. 

Assumptions 
The following assumptions are made when using the F-test to analyze a factorial experimental design. 

1.  The response variable is continuous. 

2.  The residuals follow the normal probability distribution with mean equal to zero and constant 
variance. 

3.  The subjects are independent. 

Since in a within-subject design responses coming from the same subject are not independent, assumption 
3 must be modified for responses within a subject. Independence between subjects is still assumed. 

4.  The within-subject covariance matrix is equal for all subjects. In this type of experiment, the 
repeated measurements on a subject may be thought of as a multivariate response vector having a 
certain covariance structure.  

5.  When using an F-test, the within-subject covariance matrix is assumed to be circular. One way of 
defining circularity is that the variances of differences between any two measurements within a 
subject are constant for all measurements. Since responses that are close together in time (or 
space) often have a higher correlation than those that are far apart, it is common for this 
assumption to be violated. This assumption is not necessary for the validity of the three multivariate 
tests: Wilks’ lambda, Pillai-Bartlett trace, or Hotelling-Lawley trace. 
 

Advantages of Within-Subjects Designs 
Because the response to stimuli usually varies less within an individual than between individuals, the within-
subject variability is usually less than (or at most equal to) the between-subject variability. By reducing the 
underlying variability, the same power can be achieved with a smaller number of subjects. 
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Disadvantages of Within-Subjects Designs 
1.  Practice effect. In some experiments, subjects systematically improve as they practice the task being 

studies. In other cases, subjects may systematically get worse as the get fatigued or bored with the 
experimental task. Note that only the treatment administered first is immune to practice effects. 
Hence, experimenters should try to balance the number of subjects receiving each treatment first. 

2.  Carryover effect. In many drug studies, it is important to wash out the influence of one drug 
completely before the next drug is administered. Otherwise, the influence of the first drug carries 
over into the response to the second drug.  

3.  Statistical analysis. The statistical model is more restrictive than in a one-way factorial design since 
the individual responses must have certain mathematical properties. 

Even in the face of all these disadvantages, repeated measures (within-subject) designs are popular in many 
areas of research. It is important that you recognize these problems going in so you can make sure that the 
design is appropriate, rather than learning of them later after the research has been conducted. 

Technical Details 

General Linear Multivariate Model 
This section provides the technical details of the repeated measures designs that can be analyzed by PASS. 
The approximate power calculations outlined in Muller, LaVange, Ramey, and Ramey (1992) are used. Using 
their notation, for N subjects, the usual general linear multivariate model is 

𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝑅𝑅 

where each row of the residual matrix R is distributed as a multivariate normal 

𝑟𝑟𝑟𝑟𝑤𝑤𝑘𝑘(𝑅𝑅)~𝑁𝑁𝑝𝑝(0,Σ) 

Note that p is the number of levels of the within-subject factor, Y is the matrix of responses, X is the design 
matrix, M is the matrix of regression parameters (means), and R is the matrix of residuals. 

Hypotheses about various sets of regression parameters are tested using  

𝐻𝐻0: Θ = Θ0 

𝑋𝑋𝑀𝑀 = Θ 

where D is an orthonormal contrast matrix and Θ0 is a matrix of hypothesized values, usually zeros.  
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Tests of the main effect may be constructed with suitable choices for D. These tests are based on  

𝑋𝑋� = (𝑋𝑋`𝑋𝑋)−𝑋𝑋`𝑌𝑌 

Θ� = 𝑋𝑋�𝑀𝑀 

𝐻𝐻𝑏𝑏×𝑏𝑏 = �Θ� − Θ0�`[𝐶𝐶(𝑋𝑋`𝑋𝑋)−𝐶𝐶`]−1�Θ� − Θ0� 

𝐸𝐸𝑏𝑏×𝑏𝑏 = 𝑀𝑀`Σ�𝑀𝑀 ∙ (𝑁𝑁 − 𝑟𝑟) 

𝑇𝑇𝑏𝑏×𝑏𝑏 = 𝐻𝐻 + 𝐸𝐸 

where r is the rank of X which is, in this case, p - 1. Also, C is the scalar 1 and can be ignored in this case.  

Geisser-Greenhouse F-Test 

Upon the assumption that Σ has compound symmetry, a size 𝛼𝛼 test of  𝐻𝐻0:Θ = Θ0 is given by the F ratio 

𝐹𝐹 =
tr(𝐻𝐻)/(𝑝𝑝 − 1)

tr(𝐸𝐸)/[(𝑝𝑝 − 1)(𝑁𝑁 − 𝑝𝑝 + 1)] 

with degrees of freedom given by 

𝑑𝑑𝑓𝑓1 = 𝑝𝑝 − 1 

𝑑𝑑𝑓𝑓2 = (𝑝𝑝 − 1)(𝑁𝑁 − 𝑝𝑝 + 1) 

and noncentrality parameter 

𝜆𝜆 = 𝑑𝑑𝑓𝑓1(𝐹𝐹) 

The assumption that Σ has compound symmetry is usually not viable. Box (1954a,b) suggested that 
adjusting the degrees of freedom of the above F-ratio could compensate for the lack of compound 
symmetry in Σ. His adjustment has become known as the Geisser-Greenhouse adjustment. Under this 
adjustment, the modified degrees of freedom and noncentrality parameter are given by 

𝑑𝑑𝑓𝑓1 = (𝑝𝑝 − 1)𝜀𝜀 

𝑑𝑑𝑓𝑓2 = (𝑝𝑝 − 1)(𝑁𝑁 − 𝑝𝑝 + 1)𝜀𝜀 

𝜆𝜆 = (𝑑𝑑𝑓𝑓1)𝐹𝐹𝜀𝜀 

where 

𝜀𝜀 =
tr�𝑀𝑀`Σ�𝑀𝑀�2

𝑏𝑏 tr�𝑀𝑀`Σ�𝑀𝑀𝑀𝑀`Σ�𝑀𝑀�
 

The range of 𝜀𝜀 is 1
𝑏𝑏−1

 to 1.  When 𝜀𝜀 = 1, the matrix is spherical. When 𝜀𝜀 = 1
𝑏𝑏−1

, the matrix differs maximally 
from sphericity. 
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The critical value 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is computed using the expected value of 𝜀𝜀 to adjust the degrees of freedom. That is, 
the degrees of freedom of 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 are given by 

𝑑𝑑𝑓𝑓1 = (𝑝𝑝 − 1)𝐸𝐸(𝜀𝜀) 

𝑑𝑑𝑓𝑓2 = (𝑝𝑝 − 1)(𝑁𝑁 − 𝑝𝑝 + 1)𝐸𝐸(𝜀𝜀) 

where 

𝐸𝐸(𝜀𝜀̂) = �
𝜀𝜀 +

𝑔𝑔1
𝑁𝑁 − 𝑟𝑟

   if 𝜀𝜀 >
𝑔𝑔1

𝑁𝑁 − 𝑟𝑟
𝜀𝜀/2            otherwise

 

𝑔𝑔1 = �𝑓𝑓𝐶𝐶𝐶𝐶

𝑇𝑇

𝐶𝐶=1

𝜉𝜉𝐶𝐶2 + ��
𝑓𝑓𝐶𝐶𝜉𝜉𝐶𝐶𝜉𝜉𝑗𝑗

�𝜉𝜉𝐶𝐶 − 𝜉𝜉𝑗𝑗�𝐶𝐶≠𝑗𝑗

 

𝑓𝑓𝐶𝐶 =
𝜕𝜕𝜀𝜀
𝜕𝜕𝜉𝜉𝐶𝐶

=
2∑𝜉𝜉𝑗𝑗
𝑑𝑑𝑓𝑓1 ∑ 𝜉𝜉𝑗𝑗2

−
2𝜆𝜆𝐶𝐶�∑ 𝜉𝜉𝑗𝑗�

2

𝑑𝑑𝑓𝑓1�∑𝜉𝜉𝑗𝑗2�
2 

𝑓𝑓𝐶𝐶𝐶𝐶 =
𝜕𝜕(2)𝜀𝜀

𝜕𝜕𝜉𝜉𝐶𝐶
(2) = 2ℎ1 − 8ℎ2 + 8ℎ3 − 2ℎ4 

ℎ1 =
2

𝑑𝑑𝑓𝑓1 ∑𝜉𝜉𝑗𝑗2
 

ℎ2 =
𝜉𝜉𝐶𝐶�∑ 𝜉𝜉𝑗𝑗�

𝑑𝑑𝑓𝑓1�∑𝜉𝜉𝑗𝑗2�
2 

ℎ3 =
𝜉𝜉𝐶𝐶2�∑𝜉𝜉𝑗𝑗�

2

𝑑𝑑𝑓𝑓1�∑𝜉𝜉𝑗𝑗2�
3 

ℎ4 =
�∑ 𝜉𝜉𝑗𝑗�

2

𝑑𝑑𝑓𝑓1�∑𝜉𝜉𝑗𝑗2�
2 

and the 𝜉𝜉𝑗𝑗′𝑠𝑠 are the ordered eigenvalues of 𝑀𝑀′Σ𝑀𝑀. 
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Wilks’ Lambda Approximate F-Test 

The hypothesis 𝐻𝐻0:Θ = Θ0 may be tested using Wilks’ likelihood ratio statistic W. This statistic is computed 
using 

𝑊𝑊 = |𝐸𝐸𝑇𝑇−1| 

An F approximation to the distribution of W is given by 

𝐹𝐹𝑑𝑑𝑓𝑓1,𝑑𝑑𝑓𝑓2 =
𝜂𝜂/𝑑𝑑𝑓𝑓1

(1 − 𝜂𝜂)/𝑑𝑑𝑓𝑓2
 

where 

𝜆𝜆 = 𝑑𝑑𝑓𝑓1𝐹𝐹𝑑𝑑𝑓𝑓1,𝑑𝑑𝑓𝑓2  

𝜂𝜂 = 1 −𝑊𝑊 

𝑑𝑑𝑓𝑓1 = 𝑝𝑝 − 1 

𝑑𝑑𝑓𝑓2 = 𝑁𝑁 − 𝑝𝑝 + 1 

Pillai-Bartlett Trace Approximate F-Test 

The hypothesis 𝐻𝐻0:Θ = Θ0 may be tested using the Pillai-Bartlett Trace. This statistic is computed using 

𝑇𝑇𝑃𝑃𝑃𝑃 = tr(𝐻𝐻𝑇𝑇−1) 

A non-central F approximation to the distribution of 𝑇𝑇𝑃𝑃𝑃𝑃 is given by 

𝐹𝐹𝑑𝑑𝑓𝑓1,𝑑𝑑𝑓𝑓2 =
𝜂𝜂/𝑑𝑑𝑓𝑓1

(1 − 𝜂𝜂)/𝑑𝑑𝑓𝑓2
 

where 

𝜆𝜆 = 𝑑𝑑𝑓𝑓1𝐹𝐹𝑑𝑑𝑓𝑓1,𝑑𝑑𝑓𝑓2  

𝜂𝜂 =
𝑇𝑇𝑃𝑃𝑃𝑃
𝑠𝑠

 

𝑠𝑠 = 1 

𝑑𝑑𝑓𝑓1 = 𝑝𝑝 − 1 

𝑑𝑑𝑓𝑓2 = 𝑁𝑁 − 𝑝𝑝 + 1 
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Hotelling-Lawley Trace Approximate F-Test 

The hypothesis 𝐻𝐻0:Θ = Θ0 may be tested using the Hotelling-Lawley Trace. This statistic is computed using 

𝑇𝑇𝐻𝐻𝐻𝐻 = tr(𝐻𝐻𝐸𝐸−1) 

An F approximation to the distribution of 𝑇𝑇𝐻𝐻𝐻𝐻 is given by 

𝐹𝐹𝑑𝑑𝑓𝑓1,𝑑𝑑𝑓𝑓2 =
𝜂𝜂/𝑑𝑑𝑓𝑓1

(1 − 𝜂𝜂)/𝑑𝑑𝑓𝑓2
 

where 

𝜆𝜆 = 𝑑𝑑𝑓𝑓1𝐹𝐹𝑑𝑑𝑓𝑓1,𝑑𝑑𝑓𝑓2  

𝜂𝜂 =
𝑇𝑇𝐻𝐻𝐻𝐻
𝑠𝑠

1 + 𝑇𝑇𝐻𝐻𝐻𝐻
𝑠𝑠

 

𝑠𝑠 = 1 

𝑑𝑑𝑓𝑓1 = 𝑝𝑝 − 1 

𝑑𝑑𝑓𝑓2 = 𝑁𝑁 − 𝑝𝑝 + 1 

The M (Mean) Matrix 
In the general linear multivariate model presented above, M represents a matrix of regression coefficients. 
Since you must provide the elements of M, we will discuss its meaning in more detail. Although other 
structures and interpretations of M are possible, in this module we assume that the elements of M are the 
cell means. The row of M represents the single group and the columns of M represent the within-group 
categories.  

Consider now an example in which p = 4. That is, there is one group of subjects that are each measured four 
times. The matrix M would appear as follows. 

𝑋𝑋 = [𝜇𝜇1 𝜇𝜇2 𝜇𝜇3 𝜇𝜇4] 

To calculate the power of this design, you would need to specify appropriate values of all four means under 
the alternative hypothesis. 

Specifying the M Matrix 

When computing the power in a repeated measures analysis of variance, the specification of the M matrix is 
one of your main tasks. The program cannot do this for you. The calculated power is directly related to your 
choice. So, your choice for the elements of M must be selected carefully and thoughtfully. When 
authorization and approval from a government organization is sought, you should be prepared to defend 
your choice of M. In this section, we will explain how you can specify M. 
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Before we begin, it is important that you have in mind exactly what M is. M is a row of means that represent 
the size of the differences among the means that you want the study or experiment to detect. M gives the 
means under the alternative hypothesis. Under the null hypothesis, these means are assumed to be equal.  

The D Matrix for Within-Subject Contrasts 
The D matrix is comprised of contrasts that are applied to the columns of M. The choice of D does not 
matter as long as it is orthogonal, so an appropriate matrix will be generated for you.  

Power Calculations 
To calculate statistical power, we must determine distribution of the test statistic under the alternative 
hypothesis which specifies a different value for the regression parameter matrix B. The distribution theory 
in this case has not been worked out, so approximations must be used. We use the approximations given by 
Mueller and Barton (1989) and Muller, LaVange, Ramey, and Ramey (1992). These approximations state that 
under the alternative hypothesis, 𝐹𝐹𝑈𝑈 is distributed as a noncentral F random variable with degrees of 
freedom and noncentrality shown above. The calculation of the power of a particular test may be 
summarized as follows 

1.  Specify values of M, Σ. 

2.  Determine the critical value using Fcrit = FINV (1 - α, df1 ,df2), where FINV ( ) is the inverse of the central 
F distribution and α is the significance level.  

3.  Compute the noncentrality parameter λ. 

4.  Compute the power as Power = 1 - NCFPROB (Fcrit, df1, df2, λ), where NCFPROB ( ) is the noncentral F 
distribution.  

Covariance Matrix Assumptions 
The following assumptions are made when using the F-test. These assumptions are not needed when using 
one of the three multivariate tests.   

In order to use the F ratio to test hypotheses, certain assumptions are made about the distribution of the 
residuals 𝑒𝑒𝐶𝐶𝑗𝑗𝑘𝑘.  Specifically, it is assumed that the residuals for each subject, 𝑒𝑒𝐶𝐶𝑗𝑗1, 𝑒𝑒𝐶𝐶𝑗𝑗2,⋯ , 𝑒𝑒𝐶𝐶𝑗𝑗𝑇𝑇, are distributed 
as a multivariate normal with means equal to zero and covariance matrix Σ𝐶𝐶𝑗𝑗. Two additional assumptions 
are made about these covariance matrices. First, they are assumed to be equal for all subjects. That is, it is 
assumed that Σ11 = Σ12 = ⋯ = Σ𝐺𝐺𝐺𝐺 = Σ. Second, the covariance matrix is assumed to have a particular 
form called circularity. A covariance matrix is circular if there exists a matrix A such that 

Σ = 𝐴𝐴 + 𝐴𝐴′ + 𝜆𝜆𝐼𝐼𝑇𝑇 

where 𝐼𝐼𝑇𝑇 is the identity matrix of order T, and 𝜆𝜆 is a constant.  

This property may also be defined as 

𝜎𝜎𝐶𝐶𝐶𝐶 + 𝜎𝜎𝑗𝑗𝑗𝑗 − 2𝜎𝜎𝐶𝐶𝑗𝑗 = 2𝜆𝜆 
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One type of matrix that is circular is one that has compound symmetry. A matrix with this property has all 
elements on the main diagonal equal and all elements off the main diagonal equal. An example of a 
covariance matrix with compound symmetry is 

Σ =

⎣
⎢
⎢
⎢
⎡ 𝜎𝜎

2 𝜌𝜌𝜎𝜎2 𝜌𝜌𝜎𝜎2 ⋯ 𝜌𝜌𝜎𝜎2

𝜌𝜌𝜎𝜎2 𝜎𝜎2 𝜌𝜌𝜎𝜎2 ⋯ 𝜌𝜌𝜎𝜎2

𝜌𝜌𝜎𝜎2 𝜌𝜌𝜎𝜎2 𝜎𝜎2 ⋯ 𝜌𝜌𝜎𝜎2
⋮ ⋮ ⋮ ⋱ ⋮

𝜌𝜌𝜎𝜎2 𝜌𝜌𝜎𝜎2 𝜌𝜌𝜎𝜎2 ⋯ 𝜎𝜎2 ⎦
⎥
⎥
⎥
⎤

 

or, with actual numbers, 

�

9 2 2 2
2 9 2 2
2 2 9 2
2 2 2 9

� 

An example of a matrix which does not have compound symmetry but is still circular is 

�

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

� + �

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

�+ �

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

� = �

4 3 4 5
3 6 5 6
4 5 8 7
5 6 7 10

� 

Needless to say, the need to have the covariance matrix circular is a very restrictive assumption. 

Covariance Patterns 
In a repeated measures design with N subjects, each measured M times, observations within a single subject 
may be correlated, and a pattern for their covariance must be specified. In this case, the overall covariance 
matrix will have the block-diagonal form: 

𝑉𝑉 =

⎝

⎜
⎛

𝑉𝑉1 0 0 ⋯ 0
0 𝑉𝑉2 0 ⋯ 0
0 0 𝑉𝑉3 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑉𝑉𝑁𝑁⎠

⎟
⎞

, 

where Vi is the M x M covariance submatrices corresponding to the ith subject. The 0's represent M x M 
matrices of zeros giving zero covariances for observations on different subjects. This routine allows the 
specification of two different covariance matrix types: All ρ’s Equal and AR(1), Banded(1), and Banded(2). 
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All ρ’s Equal (Compound Symmetry) 

A compound symmetry covariance model assumes that all covariances are equal, and all variances on the 
diagonal are equal. That is 

Σ = 𝜎𝜎2

⎝

⎜
⎜
⎛

1 𝜌𝜌 𝜌𝜌 𝜌𝜌 ⋯ 𝜌𝜌
𝜌𝜌 1 𝜌𝜌 𝜌𝜌 ⋯ 𝜌𝜌
𝜌𝜌 𝜌𝜌 1 𝜌𝜌 ⋯ 𝜌𝜌
𝜌𝜌 𝜌𝜌 𝜌𝜌 1 ⋯ 𝜌𝜌
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝜌𝜌 𝜌𝜌 𝜌𝜌 𝜌𝜌 ⋯ 1⎠

⎟
⎟
⎞

𝑀𝑀×𝑀𝑀

 

where σ2 is the subject variance and ρ is the correlation between observations on the same subject.  

AR(1) 

An AR(1) (autoregressive order 1) covariance model assumes that all variances on the diagonal are equal 
and that covariances t time periods apart are equal to ρtσ2. That is 

Σ = 𝜎𝜎2

⎝

⎜
⎜
⎜
⎛

1 𝜌𝜌 𝜌𝜌2 𝜌𝜌3 ⋯ 𝜌𝜌𝑀𝑀−1

𝜌𝜌 1 𝜌𝜌 𝜌𝜌2 ⋯ 𝜌𝜌𝑀𝑀−2

𝜌𝜌2 𝜌𝜌 1 𝜌𝜌 ⋯ 𝜌𝜌𝑀𝑀−3

𝜌𝜌3 𝜌𝜌2 𝜌𝜌 1 ⋯ 𝜌𝜌𝑀𝑀−4
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝜌𝜌𝑀𝑀−1 𝜌𝜌𝑀𝑀−2 𝜌𝜌𝑀𝑀−3 𝜌𝜌𝑀𝑀−4 ⋯ 1 ⎠

⎟
⎟
⎟
⎞

𝑀𝑀×𝑀𝑀

 

where σ2 is the residual variance and ρ is the correlation between observations on the same subject.  

Banded(1) 

A Banded(1) (banded order 1) covariance model assumes that all variances on the diagonal are equal, 
covariances for observations one time period apart are equal to ρσ2, and covariances for measurements 
greater than one time period apart are equal to zero. That is 

Σ = 𝜎𝜎2

⎝

⎜⎜
⎛

1 𝜌𝜌 0 0 ⋯ 0
𝜌𝜌 1 𝜌𝜌 0 ⋯ 0
0 𝜌𝜌 1 𝜌𝜌 ⋯ 0
0 0 𝜌𝜌 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ 1⎠

⎟⎟
⎞

𝑀𝑀×𝑀𝑀

 

where σ2 is the residual variance and ρ is the correlation between observations on the same subject.  
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Banded(2) 

A Banded(2) (banded order 2) covariance model assumes that all variances on the diagonal are equal, 
covariances for observations one or two time periods apart are equal to ρσ2, and covariances for 
measurements greater than two time period apart are equal to zero. That is 

Σ = 𝜎𝜎2

⎝

⎜⎜
⎛

1 𝜌𝜌 𝜌𝜌 0 ⋯ 0
𝜌𝜌 1 𝜌𝜌 𝜌𝜌 ⋯ 0
𝜌𝜌 𝜌𝜌 1 𝜌𝜌 ⋯ 0
0 𝜌𝜌 𝜌𝜌 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ 1⎠

⎟⎟
⎞

𝑀𝑀×𝑀𝑀

 

where σ2 is the residual variance and ρ is the correlation between observations on the same subject. 
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Example 1 – Determining Sample Size 
Researchers are planning a study of the impact of a new drug on heart rate. They want to evaluate the 
differences in heart rate within subjects after this drug is administered. Each subject will be measured 5 
minutes before exercise, 5 minutes after exercise, 10 minutes after exercise, and finally 15 minutes after 
exercise. Two days later, each subject will be measured in the same way again, except that, this time, the 
drug will not be administered. The differences between these two sets of measurements will be used as the 
basic data for the analysis. 

They expect a quadratic pattern in the mean differences and want to be able to detect a 10% shift in heart 
rate between the two treatments. The data analyzed will be the difference between the with-drug and 
without-drug measurements at each time point. 

Similar studies have found a standard deviation of the difference between scores at each time point to be 
between 7 and 9, and a correlation between adjacent differences on the same individual to be 0.6. The 
researchers assume that a first-order autocorrelation pattern adequately models the data.  Since the 
covariances will not be equal, they decide to use the Wilks’ Lambda test statistic.  

They decided to use a mean pattern of 0, -4, -3, and 0 to represent the differences at the four time points. 
They decide to look at three values of K: 1, 2, and 3. 

The test will be conducted at the 0.05 significance level. What sample size is necessary to achieve 90% power 
over a range of possible means and standard deviations? 

Setup 
If the procedure window is not already open, use the PASS Home window to open it. The parameters for this 
example are listed below and are stored in the Example 1 settings file. To load these settings to the 
procedure window, click Open Example Settings File in the Help Center or File menu. 

 
Design Tab      
    _____________ _______________________________________ 

 

Solve For ....................................................... Sample Size 
Test Statistic .................................................. Multivariate: Wilks Lambda Test 
Power............................................................. 0.90 
Alpha.............................................................. 0.05 
M (Measurements) ......................................... 4 
μi's (μ1, μ2, ..., μM) ........................................ List 
μi's List ........................................................... 0 -4 -3 0 
K (Means Multiplier) ....................................... 1 2 3 
Pattern of σ's Across Time ............................. Equal: σ = σ1 = σ2 = ··· = σM 
σ (Standard Deviation) ................................... 7 9 
Pattern of ρ's Across Time ............................. AR(1) 
ρ (Correlation) ................................................ 0.6 
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Output 
Click the Calculate button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results 
─────────────────────────────────────────────────────────────────────────────────────────────── 
Solve For: Sample Size 
Test: Wilks Lambda Test 
μi's: 0 -4 -3 0 
σi's: All Equal 
ρ's: AR(1) 
─────────────────────────────────────────────────────────────────────────────────────────────── 
    Standard  Within-  
 Sample Number of Means Deviation Standard Subject  
 Size Measurements Multiplier of Means Deviation Correlation  
Power N M K σm σ ρ Alpha 
────────────────────────────────────────────────────────────────────────────────────────────────────── 
0.9040 26 4 1 1.79 7 0.6 0.05 
0.9025 39 4 1 1.79 9 0.6 0.05 
0.9176 11 4 2 3.57 7 0.6 0.05 
0.9314 15 4 2 3.57 9 0.6 0.05 
0.9298 8 4 3 5.36 7 0.6 0.05 
0.9433 10 4 3 5.36 9 0.6 0.05 
─────────────────────────────────────────────────────────────────────────────────────────────── 
Power The probability of rejecting a false null hypothesis when the alternative hypothesis is true. 
N The total number of subjects in the study. 
M The number of time points at which each subject is measured. 
K The effect size multiplier. The original means are all multiplied by this value, resulting in a corresponding change in 
    the effect size. 
σm Standard Deviation of Means. The magnitude of differences among the hypothesized means. 
σ The standard deviation across subjects at a given time point. 
ρ The (auto)correlation between observations made on a subject at the first and second time points. 
Alpha The probability of rejecting a true null hypothesis. 
 
 
Summary Statements 
───────────────────────────────────────────────────────────────────────── 
A single-factor, repeated measures design with a sample of 26 subjects, measured at 4 time points, achieves 90% 
power to detect differences among the means using a Wilks Lambda Test at a 0.05 significance level. The 
standard deviation across subjects at the same time point is assumed to be 7. The correlation matrix from which 
the covariance matrix is generated follows an AR(1) pattern across time  with a correlation of 0.6 between the first 
and second time point measurements. The standard deviation of the hypothesized means is 1.79. 
───────────────────────────────────────────────────────────────────────── 
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Dropout-Inflated Sample Size 
───────────────────────────────────────────────────────────────────────── 
  Dropout-  
  Inflated Expected 
  Enrollment Number of 
 Sample Size Sample Size Dropouts 
Dropout Rate N N' D 
───────────────────────────────────────────────────────────────────────────── 

20% 26 33 7 
20% 39 49 10 
20% 11 14 3 
20% 15 19 4 
20% 8 10 2 
20% 10 13 3 
───────────────────────────────────────────────────────────────────────── 
Dropout Rate The percentage of subjects (or items) that are expected to be lost at random during the course of the study 
    and for whom no response data will be collected (i.e., will be treated as "missing"). Abbreviated as DR. 
N The evaluable sample size at which power is computed. If N subjects are evaluated out of the N' subjects that 
    are enrolled in the study, the design will achieve the stated power. 
N' The total number of subjects that should be enrolled in the study in order to obtain N evaluable subjects, 
    based on the assumed dropout rate. After solving for N, N' is calculated by inflating N using the formula N' = 
    N / (1 - DR), with N' always rounded up. (See Julious, S.A. (2010) pages 52-53, or Chow, S.C., Shao, J., 
    Wang, H., and Lokhnygina, Y. (2018) pages 32-33.) 
D The expected number of dropouts. D = N' - N. 
 
 
Dropout Summary Statements 
───────────────────────────────────────────────────────────────────────── 
Anticipating a 20% dropout rate, 33 subjects should be enrolled to obtain a final sample size of 26 subjects. 
───────────────────────────────────────────────────────────────────────── 
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───────────────────────────────────────────────────────────────────────── 
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Muller, K. E., and Barton, C. N. 1989. 'Approximate Power for Repeated-Measures ANOVA Lacking Sphericity.' 
   Journal of the American Statistical Association, Volume 84, No. 406, pages 549-555. 
Muller, K. E., LaVange, L.E., Ramey, S.L., and Ramey, C.T. 1992. 'Power Calculations for General Linear 
   Multivariate Models Including Repeated Measures Applications.' Journal of the American Statistical Association, 
   Volume 87, No. 420, pages 1209-1226. 
Simpson, S.L., Edwards, L.J., Muller, K.E., Sen, P.K., and Styner, M.A. 2010. 'A linear exponent AR(1) family of 
   correlation structures.' Statistics in Medicine, Volume 29(17), pages 1825-1838. 
Naik, D.N. and Rao, S.S. 2001. 'Analysis of multivariate repeated measures data with a Kronecker product 
   structured covariance matrix.' Journal of Applied Statistics, Volume 28 No. 1, pages 91-105. 
───────────────────────────────────────────────────────────────────────── 
 

This report gives the power for each value of the other parameters. The definitions are shown in the report. 
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Plots Section 
 
Plots 
───────────────────────────────────────────────────────────────────────── 

 
 

 
 

The plots show the relationship between N, K, and σ when the other parameters in the design are held 
constant. 
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Example 2 – Validation using PASS’s Repeated Measures 
Procedure 
To validate this procedure, we will run the first scenario through PASS’s Repeated Measures Analysis 
procedure. We did this and obtained the following report. 

 
Design Report 
───────────────────────────────────────────────────────────────────────── 
Solve For: Sample Size Based on the Wilks' Lambda Approximate F-Test (All Terms) 
───────────────────────────────────────────────────────────────────────── 
   Sample Size  
   ────────────  Standard    
   Average  Effect Deviation Standard Effect  
   Group Total Multiplier of Effects Deviation Size  
Term* Test Power n N K σm σ σm / σ Alpha 
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 

W1 (4) Wilks 0.90402 26 26 1 1.78536 2.58147 0.6916 0.05 
───────────────────────────────────────────────────────────────────────── 
* The numbers in parentheses represent the number of levels associated with the factor. 
 

Setup 
If the procedure window is not already open, use the PASS Home window to open it. The parameters for this 
example are listed below and are stored in the Example 2 settings file. To load these settings to the 
procedure window, click Open Example Settings File in the Help Center or File menu. 

 
Design Tab      
    _____________ _______________________________________ 

 

Solve For ....................................................... Sample Size 
Test Statistic .................................................. Multivariate: Wilks Lambda Test 
Power............................................................. 0.90 
Alpha.............................................................. 0.05 
M (Measurements) ......................................... 4 
μi's (μ1, μ2, ..., μM) ........................................ List 
μi's List ........................................................... 0 -4 -3 0 
K (Means Multiplier) ....................................... 1 
Pattern of σ's Across Time ............................. Equal: σ = σ1 = σ2 = ··· = σM 
σ (Standard Deviation) ................................... 7 
Pattern of ρ's Across Time ............................. AR(1) 
ρ (Correlation) ................................................ 0.6 
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Output 
Click the Calculate button to perform the calculations and generate the following output. 

 
Numeric Results 
─────────────────────────────────────────────────────────────────────────────────────────────── 
Solve For: Sample Size 
Test: Wilks Lambda Test 
μi's: 0 -4 -3 0 
σi's: All Equal 
ρ's: AR(1) 
─────────────────────────────────────────────────────────────────────────────────────────────── 
    Standard  Within-  
 Sample Number of Means Deviation Standard Subject  
 Size Measurements Multiplier of Means Deviation Correlation  
Power N M K σm σ ρ Alpha 
────────────────────────────────────────────────────────────────────────────────────────────────────── 
0.904 26 4 1 1.79 7 0.6 0.05 
─────────────────────────────────────────────────────────────────────────────────────────────── 
 

This new, simplified procedure has obtained identical results with the previously validated procedure. 
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