PASS Sample Size Software NCSS.com

Chapter 104

Superiority by a Margin Tests for Vaccine Efficacy with Extremely Low Incidence

Introduction

This module provides power analysis and sample size calculation for superiority by a margin tests of vaccine efficacy (VE) when the disease incidence rate is extremely low. In this case, large sample sizes are required to meet power requirements. The distribution of the number of cases in each group (vaccine and control) can be approximated by a binomial random variable.

VE is a traditional index of the protective efficacy of a vaccine. It is calculated as

$$VE = \frac{P_2 - P_1}{P_2} = 1 - \frac{P_1}{P_2}$$

where P_1 and P_2 are attack rates of the disease being studied among those vaccinated with a new vaccine and those receiving a standard treatment or placebo. An attack rate is the probability that a subject without the disease at the beginning of the study is infected by it during the duration of the course of the study. Hence, an analysis of vaccine effectiveness reduces to an analysis of the ratio of two proportions.

Note that because $P_1 < P_2$, the value of VE < 1.

Perhaps an example will set the stage for the discussion of the terminology that follows. Suppose that the population of interest has a disease incidence rate of 0.002. A promising new vaccine has been developed to the point where it can be tested. The researchers wish to show that the incidence rate in a group treated with this new vaccine will be reduced to at least 0.0015. That is, they want to show that the efficacy of the new vaccine is at least 1 - 0.0015/0.002 = 0.25.

Technical Details

This procedure is based on Chow et al. (2018), pages 459 - 460.

Comparing Two Proportions with Low Incidence

Suppose you have two populations from which dichotomous (binary) responses will be recorded. The probability (or risk) of obtaining an event of interest (testing positive for a disease) in population 1 (the treatment group) is P_1 and in population 2 (the control group) is P_2 .

For sufficiently large sample sizes, the number of cases in each group is given by $\lambda_1 = N_1 P_1$ and $\lambda_2 = N_2 P_2$. The number of cases is distributed approximately as Poisson random variables. The number of cases in the vaccine group given the total number of cases is approximately distributed as a binomial random variable with rate θ , where

Superiority by a Margin Tests for Vaccine Efficacy with Extremely Low Incidence

$$\theta = \frac{\lambda_1}{(\lambda_1 + \lambda_2)} = \frac{1 - VE}{1 - VE + R}$$

with
$$R = N_2/N_1$$
 and $VE = \left(1 - \frac{P_1}{P_2}\right)$.

The one-sided, superiority-by-a-margin hypotheses in terms of VE may be written as

$$H_0: VE \le VE_0$$
 vs. $H_1: VE > VE_0$

An equivalent test about θ is

$$H_0: \theta \ge \theta_0$$
 vs. $H_1: \theta < \theta_0$

Test Statistics

A reasonable test statistic for the testing the above hypotheses is given by

$$T = \frac{\sqrt{x_1 + x_2} (\hat{\theta} - \theta_0)}{\sqrt{\theta_0 (1 - \theta_0)}}$$

where

$$\hat{\theta} = x_1/(x_1 + x_2)$$

$$\theta_0 = \frac{1 - VE_0}{1 - VE_0 + R}$$

In large samples, T is approximately distributed as a standard normal. The null hypothesis is rejected if $T < z_{1-\alpha}$.

The power, assuming an alternative value of $P_1 < P_2$, is given by

$$Power = 1 - \Phi\left(\frac{z_{1-\alpha}\sqrt{\theta_0(1-\theta_0)} - \sqrt{N_1P_1 + N_2P_2}(\theta_0 - \theta)}{\sqrt{\theta(1-\theta)}}\right)$$

This power formula can be used directly for obtaining power or indirectly for obtaining sample size using a simple, binary search.

Note that the power formula given here uses the difference between the two terms in the numerator while the formula given on page 460 of Chow et al. (2018) uses the sum of these terms. This difference is most likely due to a difference in the definition of z_{α} here as the left-tail probability rather than the right-tail probability.

Example 1 - Finding Sample Size

A two-arm parallel study is being planned to substantiate that a new vaccine controls a certain disease better than a control. The disease rate in the control group is 0.004. The superiority boundary is set at 0.003. The disease rate in the treatment group is anticipated to be between 0.001 and 0.002. The significance level of the test is 0.025.

The sample sizes will be equal in each arm. The researchers would like to determine the required sample size needed to achieve a power of 0.80.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Sample Size
Power	0.8
Alpha	0.025
Group Allocation	Equal (N1 = N2)
Vaccine Efficacy Input Type	Enter P1.0, P1.1, and P2
P1.0 (Superiority Vaccine Event Prob)	0.003
P1.1 (Actual Vaccine Event Prob)	0.001 0.0015 0.002
P2 (Control Event Probability)	0.004

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Numeric Results

Solve For: Sample Size Test Statistic: Z-Test

Groups: 1 = Vaccine, 2 = Control Hypotheses: $H0: VE \le VE0$ vs. H1: VE > VE0

_			0			Vacci	ne	Vaccine Efficacy					
Pow	ver 		Sample Siz	:e 	Control	Superiority	Actual	Superiority	Actual				
Target	Actua	al N1	N2	N	P2	P1.0	P1.1	VE0	VE1	Alpha			
0.8	0.8000	6 6536	6536	13072	0.004	0.003	0.0010	0.25	0.750	0.025			
0.8	0.8000	1 13538	13538	27076	0.004	0.003	0.0015	0.25	0.625	0.025			
0.8	0.8000	0 34321	34321	68642	0.004	0.003	0.0020	0.25	0.500	0.025			
Actual F	Power				or the scena arget power		. Because I	N1 and N2 are	discrete, th	is value is			
NIA and	NO	, ,	,, ,		0 1			C b -	nd N2 are discrete, this value is				
N1 and	INZ	•				nd the control g	roup, respe	ectively.	_ = ==================================				
N		The total sar	nple size.	N = N1 +	N2.				0.25 0.625 0.025 0.25 0.500 0.025 othesis. N2 are discrete, this value is				
P1.0		The smalles	t value of	the event p	probability for	or vaccinated g	roup that s	till yields a supe	eriority cond	clusion.			
P1.1		The event pr	obability of	of the vacc	inated grou	p assumed by I	H1.		-				
P2		The event pr	obability (attack rate	e) of the con	trol aroup							
VE0							hie ie tha s	superiority boun	dary of VE	VF0 - 1 -			
V LU		THE VACCINE	cilicacy a	SSUITIEU D	y ii i e Hull Hy	politicala, i io. i	1113 13 1116 3	superiority bour	idaly of VL	. VLU - 1 -			

Event Probability

P1.0/P2.

VE1 The vaccine efficacy assumed by the alternative hypothesis, H1. This is the VE value at which the power is

calculated. VE = (P2 - P1)/P2.

Calculated. VE = (PZ - PT)/PZ.

Alpha The probability of rejecting a true null hypothesis.

Summary Statements

A parallel two-group design will be used to test vaccine efficacy by a margin, with a superiority vaccine efficacy of 0.25 (H0: VE \leq 0.25 versus H1: VE > 0.25). The comparison will be made using a one-sided, two-sample, superiority-by-a-margin Z-test, with a Type I error rate (α) of 0.025. The vaccine and control group event probabilities are assumed to be 0.001 and 0.004, respectively. The vaccine group event probability at the superiority limit is 0.003. To detect a vaccine efficacy of 0.75 with 80% power, the number of subjects needed will be 6536 in the vaccine group, and 6536 in the control group.

PASS Sample Size Software NCSS.com

Superiority by a Margin Tests for Vaccine Efficacy with Extremely Low Incidence

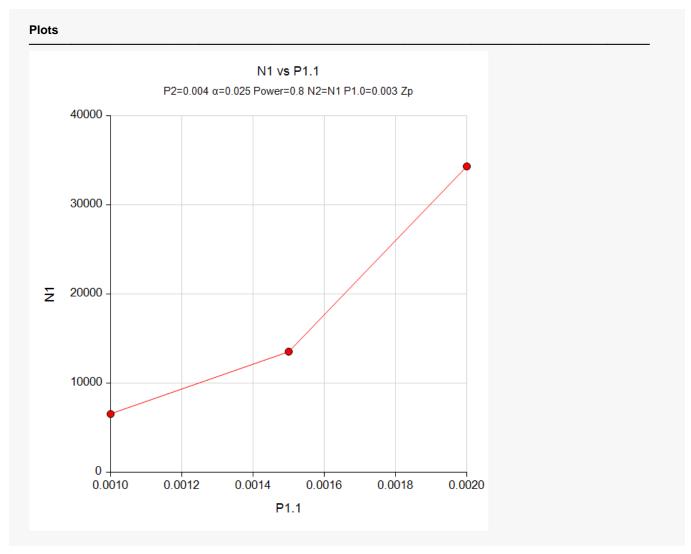
Dropout-Inflated Sample Size

	s	Sample Size		I	ppout-Infla Enrollmer Sample Siz	nt	Expected Number of Dropouts		
Dropout Rate	N1	N2	N	N1'	N2'	N'	D1	D2	D
20%	6536	6536	13072	8170	8170	16340	1634	1634	3268
20%	13538	13538	27076	16923	16923	33846	3385	3385	6770
20%	34321	34321	68642	42902	42902	85804	8581	8581	17162
Dropout Rate	The percentage			•		ost at randon treated as "n	_		
N1, N2, and N	The evaluable N1' and N2'					and N2 subj			t of the
N1', N2', and N'	The number of subjects, bat inflating N1 always rour	of subjects t ased on the and N2 usi aded up. (So	hat should be assumed dro ng the formul	e enrolled in t pout rate. Aft as N1' = N1 / A. (2010) pag	he study in ter solving f (1 - DR) ar		in N1, N2, a 2, N1' and N (1 - DR), wi	nd N eval 2' are calc th N1' and	ulated by N2'
D1, D2, and D	The expected				02 = N2' - N	I2, and D = D	1 + D2.		

Dropout Summary Statements

Anticipating a 20% dropout rate, 8170 subjects should be enrolled in Group 1, and 8170 in Group 2, to obtain final group sample sizes of 6536 and 6536, respectively.

References


Chow, S.C., Shao, J., Wang, H., and Lokhnygina, Y. 2018. Sample Size Calculations in Clinical Research, Third Edition. Taylor & Francis/CRC. Boca Raton, Florida.

Blackwelder, William C. 1993. 'Sample Size and Power for Prospective Analysis of Relative Risk.' Statistics in Medicine, Vol. 12, 691-698.

Nauta, Jozef. 2020. Statistics in Clinical and Observational Vaccine Studies, 2nd Edition. Springer. Cham, Switzerland.

This report shows the values of each of the parameters, one scenario per row.

Plots Section

The values from the table are displayed in the above chart. This chart gives a quick look at the sample sizes that are required for various values of P1.1.

Example 2 – Validation using Hand Calculations

We could not find a validation example in the literature so we will validate the procedure using hand calculations. A two-arm parallel study is being planned to substantiate that a new vaccine controls a certain disease better than a control. The disease rate in the control group is 0.004. The superiority boundary is set at 0.003. The disease rate in the treatment group is anticipated to be 0.001. The significance level of the test is 0.025 and the power is 0.80. The sample size per group is 6536.

We will validate this procedure by calculating the power and showing that the power is indeed 0.80.

$$Power = 1 - \Phi\left(\frac{z_{1-\alpha}\sqrt{\theta_0(1-\theta_0)} - \sqrt{N_1P_1 + N_2P_2}(\theta_0 - \theta)}{\sqrt{\theta(1-\theta)}}\right)$$

$$= 1 - \Phi\left(\frac{1.959964\sqrt{0.428571(0.571429)} - \sqrt{6536(0.001 + 0.004)}(0.428571 - 0.2)}{\sqrt{0.2(1-0.2)}}\right)$$

$$= 1 - \Phi\left(\frac{0.969931 - 1.306659}{0.4}\right)$$

$$= 1 - \Phi(-0.84182)$$

$$= 0.80006$$

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Power
Alpha	0.025
Group Allocation	Equal (N1 = N2)
Sample Size Per Group	6536
Vaccine Efficacy Input Type	Enter P1.0, P1.1, and P2
P1.0 (Superiority Vaccine Event Prob)	0.003
P1.1 (Actual Vaccine Event Prob)	0.001
P2 (Control Event Probability)	0.004

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results Solve For: Test Statistic: Z-Test Groups: 1 = Vaccine, 2 = Control Hypotheses: H0: VE ≤ VE0 vs. H1: VE > VE0 **Event Probability** Vaccine Vaccine Efficacy Sample Size Control Superiority Actual Superiority Actual N1 N2 Ν P2 VE1 Alpha Power P1.0 P1.1 0.80006 6536 6536 13072 0.004 0.003 0.001 0.25 0.75 0.025

PASS has also calculated the power as 0.80006, so the procedure is validated.