Chapter 459

Superiority by a Margin Tests for the Ratio of Two Negative Binomial Rates

Introduction

This procedure may be used to calculate power and sample size for superiority by a margin tests involving the ratio of two Negative Binomial rates.

The calculation details upon which this procedure is based are found in Zhu (2017). Some of the details are summarized below.

Technical Details

Definition of Terms

The following table presents the various terms that are used.

Group	1 (Control)	2 (Treatment)
Sample size	<i>N</i> ₁	N ₂
Individual event rates	λ_1	λ_2
Dispersion parameter:	arphi (Negative Bin	nomial dispersion)
Average exposure time:	μ_t	
Superiority margin ratio:	$R_0 (R_0 > 1 { m whe})$	n higher rates are better; $R_0 < 1$ when higher rates are worse)
Sample size ratio:	$\theta = N_2/N_1$	

Hypotheses

When higher rates are better, the superiority by a margin test hypotheses are

$$H_0: \frac{\lambda_2}{\lambda_1} \le R_0 \quad \text{vs.} \quad H_1: \frac{\lambda_2}{\lambda_1} > R_0$$

where $R_0 > 1$.

Superiority by a Margin Tests for the Ratio of Two Negative Binomial Rates

When higher rates are worse, the superiority by a margin test hypotheses are

$$H_0: \frac{\lambda_2}{\lambda_1} \ge R_0$$
 vs. $H_1: \frac{\lambda_2}{\lambda_1} < R_0$

where $R_0 < 1$.

Sample Size and Power Calculations

Sample Size Calculation

Zhu (2017) bases the sample size calculations on a non-inferiority test derived from a Negative Binomial regression model. The sample size calculation is

$$N_1 \ge \frac{\left(z_{\alpha}\sqrt{V_0} + z_{\beta}\sqrt{V_1}\right)^2}{\left(\log(R_0) - \log\left(\lambda_2/\lambda_1\right)\right)^2}$$

$$N_2 = \theta N_1$$

where

$$V_1 = \frac{1}{\mu_t} \left(\frac{1}{\lambda_1} + \frac{1}{\theta \lambda_2} \right) + \frac{(1+\theta)\varphi}{\theta}$$

and V_0 may be calculated in any of 3 ways.

V₀ Calculation Method 1 (using assumed true rates)

$$V_{01} = \frac{1}{\mu_t} \left(\frac{1}{\lambda_1} + \frac{1}{\theta \lambda_2} \right) + \frac{(1+\theta)\varphi}{\theta}$$

Using Method 1, V_0 and V_1 are equal.

V₀ Calculation Method 2 (fixed marginal total)

$$V_{02} = \frac{(1+R_0\theta)^2}{\mu_t R_0\theta(\lambda_1+\theta\lambda_2)} + \frac{(1+\theta)\varphi}{\theta}$$

Superiority by a Margin Tests for the Ratio of Two Negative Binomial Rates

*V*₀ Calculation Method 3 (restricted maximum likelihood estimation)

$$V_{03} = \frac{2a}{\mu_t \left(-b - \sqrt{b^2 - 4ac}\right)} \left(1 + \frac{1}{\theta R_0}\right) + \frac{(1+\theta)\varphi}{\theta}$$

where

$$a=-\varphi\mu_t R_0(1+\theta),$$

$$b = \varphi \mu_t (\lambda_1 R_0 + \theta \lambda_2) - (1 + \theta R_0),$$

$$c = \lambda_1 + \theta \lambda_2$$

Zhu (2017) did not give a recommendation regarding whether Method 1, 2, or 3 should be used, except to say that "for many scenarios, Methods 1 and 2 gave the smallest and largest sample sizes, respectively, while the sample sizes given by Method 3 were between the other two methods and had the closest simulated power values to the targeted power."

Power Calculation

The corresponding power calculation to the sample size calculation above is

$$Power \ge 1 - \Phi\left(\frac{\sqrt{N_1}(\log(R_0) - \log(\lambda_2/\lambda_1)) - z_\alpha\sqrt{V_0}}{\sqrt{V_1}}\right)$$

Example 1 – Calculating Sample Size

Researchers wish to determine whether the average negative binomial rate of those receiving a new treatment is more than 10% lower than the current control. In the scenario, lower rates are better than higher rates. The average exposure time for all subjects is 1.8 years. The event rate of the control group is 2.6 events per year. The researchers would like to examine the effect on sample size of a range of treatment group event rates from 2.2 down to 1.5. Over-dispersion is not anticipated. Dispersion values ranging from 0.2 to 0.5 will be considered.

The desired power is 0.9 and the significance level will be 0.025. The variance calculation method used will be the method where the assumed rates are used.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Deelan	Tab
Design	Tap

Solve For	Sample Size
Higher Negative Binomial Rates Are	Worse
Variance Calculation Method	Using Assumed True Rates
Power	0.90
Alpha	0.025
μ(t) (Average Exposure Time)	1.8
Group Allocation	Equal (N1 = N2)
R0 (Superiority Ratio)	0.9
λ1 (Event Rate of Group 1)	2.6
Enter $\lambda 2$ or Ratio for Group 2	λ2 (Event Rate of Group 2)
λ2 (Event Rate of Group 2)	1.5 to 2.2 by 0.1
φ (Dispersion)	0.2 to 0.5 by 0.05
	-

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Groups: Higher Neg Hypothese Variance C	s:		es Are:	Sample Size 1 = Control, 2 = 7 Worse H0: $\lambda 2 / \lambda 1 \ge R0$ Using Assumed 7	vs. H	Ι: λ2 / λ1	< R0			
	s	Sample Siz	78	Average Exposure		erage t Rate	Event	Rate Ratio		
Power	N1	N2	N	Time μ(t)		λ2	Actual λ2 / λ1	Superiority R0	Dispersion φ	Alpha
0.90380	53	53	106	1.8	2.6	1.5	0.577	0.9	0.20	0.025
0.90054	70	70	140	1.8	2.6	1.6	0.615	0.9	0.20	0.025
0.90061	97	97	194	1.8	2.6	1.7	0.654	0.9	0.20	0.025
0.90043	141	141	282	1.8	2.6	1.8	0.692	0.9	0.20	0.025
0.90074	220	220	440	1.8	2.6	1.9	0.731	0.9	0.20	0.025
0.90001	380	380	760	1.8	2.6	2.0	0.769	0.9	0.20	0.025
0.90035	789	789	1578	1.8	2.6	2.1	0.808	0.9	0.20	0.025
0.90008	2392	2392	4784	1.8	2.6	2.2	0.846	0.9	0.20	0.025
0.90195	58	58	116	1.8	2.6	1.5	0.577	0.9	0.25	0.025
0.90313	78	78	156	1.8	2.6	1.6	0.615	0.9	0.25	0.025
0.90241	108	108	216	1.8	2.6	1.7	0.654	0.9	0.25	0.025
0.90171	157	157	314	1.8	2.6	1.8	0.692	0.9	0.25	0.025
0.90041	244	244	488	1.8	2.6	1.9	0.731	0.9	0.25	0.025
0.90026	423	423	846	1.8	2.6	2.0	0.769	0.9	0.25	0.025
0.90008	878	878	1756	1.8	2.6	2.1	0.808	0.9	0.25	0.025
0.90007	2668	2668	5336	1.8	2.6	2.2	0.846	0.9	0.25	0.025
										•
		•								

Summary Statements

A parallel two-group design (where higher Negative Binomial rates are considered worse) will be used to test whether the Group 2 (treatment) Negative Binomial rate is superior to (less than) the Group 1 (control) Negative Binomial rate by a margin, with a superiority margin ratio of 0.9 (H0: $\lambda 2 / \lambda 1 \ge 0.9$ versus H1: $\lambda 2 / \lambda 1 < 0.9$). The comparison will be made using a one-sided, two-sample, Negative Binomial regression term Z-test using the variance calculation method with assumed true rates, with a Type I error rate (α) of 0.025. The Negative Binomial dispersion is assumed to be 0.2. To detect a ratio of Negative Binomial event rates ($\lambda 2 / \lambda 1$) of 0.577 ($\lambda 2 = 1.5$, $\lambda 1 = 2.6$) with 90% power, with average exposure time 1.8, the number of needed subjects will be 53 in Group 1 and 53 in Group 2.

20%

20%

Superiority by a Margin Tests for the Ratio of Two Negative Binomial Rates

Dropout-Inflated	Sample Siz	e							
	Sa	ample Siz	ze	E	pout-Infla Enrollmen ample Siz	t	Ν	Expected umber o Dropouts	f
Dropout Rate	N1	N2	N	N1'	N2'	N'	D1	D2	D
20%	53	53	106	67	67	134	14	14	28
20%	70	70	140	88	88	176	18	18	36
20%	97	97	194	122	122	244	25	25	50
20%	141	141	282	177	177	354	36	36	72
20%	220	220	440	275	275	550	55	55	110
20%	380	380	760	475	475	950	95	95	190

987

2990

1974

5980

198

598

Dropout-Infla

789

2392

789

2392

1578

4784

				•	•							
•	•	•	•	•	•	•	•	•	•	•	·	•
Dropout Rate							ted to be los .e., will be tre					
N1, N2, and N					•	•	uted. If N1 ar the design v		-			the
N1', N2', and N'	subjec inflatir always	ts, based og N1 and s rounded	on the ass N2 using t	umed he forr ulious	dropout nulas N , S.A. (2	rate. Afte 1' = N1 / (e study in ord r solving for 1 - DR) and l es 52-53, or (N1 and N2' = N	N2, N1' 2 / (1 - E	and N2' a DR), with N	re calculate I1' and N2'	ed by
D1, D2, and D	The exp	ected nun	nber of dro	pouts.	$D1 = N^2$	1' - N1, D2	2 = N2' - N2,	and D :	= D1 + D	02.		

987

2990

Dropout Summary Statements

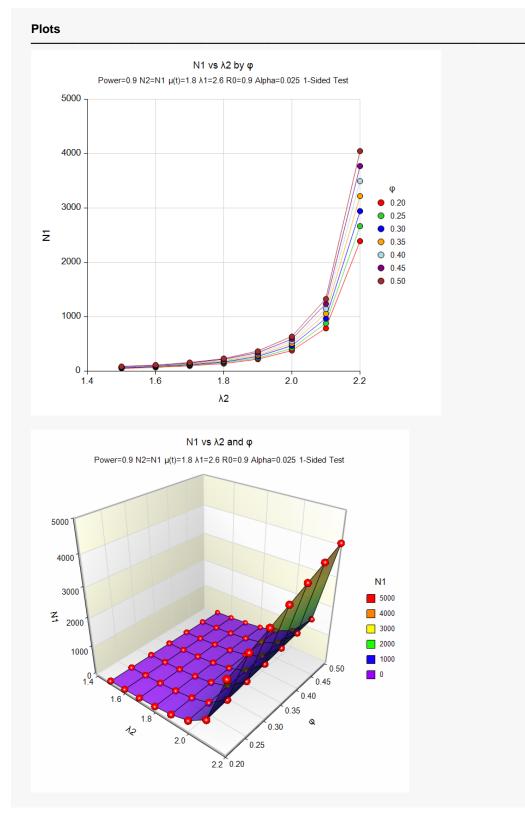
Anticipating a 20% dropout rate, 67 subjects should be enrolled in Group 1, and 67 in Group 2, to obtain final group sample sizes of 53 and 53, respectively.

References

Zhu, H. 2017. 'Sample Size Calculation for Comparing Two Poisson or Negative Binomial Rates in Non-Inferiority or Equivalence Trials.' Statistics in Biopharmaceutical Research, 9(1), 107-115, doi:10.1080/19466315.2016.1225594.

This report shows the sample sizes for the indicated scenarios.

396


1196

198

598

Superiority by a Margin Tests for the Ratio of Two Negative Binomial Rates

Plots Section

These plots represent the required sample sizes for various values of $\lambda 2$ and the dispersion parameter.

Example 2 – Validation

Zhu (2017) presents an example of solving for sample size where lower negative binomial rates are better, the event rates are both 1.5, the dispersion is 0.24, the average duration is 0.85, the superiority ratio is 1.1, the power is 0.9, and the Type I error rate is 0.025.

The calculated sample size is 2372 for the REML variance calculation method.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Sample Size
Higher Negative Binomial Rates Are	Worse
Variance Calculation Method	Restricted Maximum Likelihood Estimation
Power	0.90
Alpha	0.025
μ(t) (Average Exposure Time)	0.85
Group Allocation	Equal (N1 = N2)
R0 (Superiority Margin Ratio)	1.1
λ1 (Event Rate of Group 1)	1.5
Enter λ2 or Ratio for Group 2	λ2 (Event Rate of Group 2)
λ2 (Event Rate of Group 2)	1.5
φ (Dispersion)	0.24

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve For	:			Sample Size							
Groups:				1 = Control, 2 = 1	reatmer	nt					
Higher Ne	gative Bin	omial Rate	s Are:	Worse							
Hypothes	es:			H0: $\lambda 2 / \lambda 1 \ge R0$	vs. H1	1: λ2 / λ1	< R0				
Variance	Calculatior	Method:		Restricted Maxim	um Like	libood					
						iiiioou					
		Comple Si		Average	Ave	erage	Event	Rate Ratio			
		Sample Siz		Average Exposure	Ave				Dispersion		
Power		Sample Siz		Average	Ave	erage	Event Actual λ2 / λ1	Rate Ratio	Dispersion φ	Alpha	

The sample sizes calculated in **PASS** match those of Zhu (2017) exactly.