Tests for Two Means Assuming Equal Variances using a Bayesian Approach

Introduction

This procedure provides sample size and power calculations for one- or two-sided two-sample z-tests when the variances of the two groups (populations) are assumed to be known and equal. If the variances are unknown, estimates from previous studies can be used if the anticipated group sample sizes are at least 30.

Most of the procedures in **PASS** adopt the frequentist approach to power analysis. The methodology in this procedure uses what is called "hybrid classical and Bayesian" techniques. A prior distribution of the treatment effect parameter is included in the methodology. This allows uncertainty about the value of the treatment effect to be included that cannot be added in the classical frequentist approach.

This procedure is based on Kieser (2020), Ciarleglio et al. (2015), and Ciarleglio et al. (2016).

Test Assumptions

When running a two-sample equal-variance z-test, the basic assumptions are that the distributions of the two populations are normal, and that the variances of the two distributions are known and are the same. If those assumptions are not likely to be met (even approximately), another testing procedure should be used, and the corresponding procedure in **PASS** should be used for sample size or power calculations.

Technical Details

We will summarize the results shown in Kieser (2020).

Assume that we will have two groups of normally distributed responses with means μ_1 and μ_2 and common variance σ^2 . We assume that group 1 is the treatment group and group 2 is the control group. The usual test statistic to compare the group means is given by

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sigma \sqrt{\frac{1}{N_1} + \frac{1}{N_2}}}$$

A one-sided set of hypotheses is H_0 : $\delta \le 0$ versus H_1 : $\delta > 0$. This tests whether the treatment mean is higher than the control mean.

Tests of Two Means Assuming Equal Variances using a Bayesian Approach

If we let $N = N_1 + N_2$ and $R = N_2/N_1$, the traditional frequentist power is given by

$$TP(\delta) = \Pr(Z > z_{1-\alpha} | \delta) = 1 - \Phi\left(z_{1-\alpha} - \left(\frac{\delta}{\sigma}\right)\sqrt{N(R/(1+R)^2)}\right)$$

where $\Phi(X)$ is the standard normal CDF.

Here the value of δ is selected as mean difference that is large enough to be important and meaningful.

Suppose that during the planning phase of the study, there is some doubt about the appropriate value of δ to adopt. Instead, the research team is able to specify a reasonable distribution for δ as being normal with mean δ and variance σ_P^2 . This distribution is called the *prior distribution* of δ .

The expected (average) power can be calculated as

$$EP = \int_{-\infty}^{\infty} \Pr(Z > z_{1-\alpha} | \delta) f(\delta) d\delta = 1 - \int_{-\infty}^{\infty} \Phi\left(z_{1-\alpha} - \left(\frac{\delta}{\sigma}\right) \sqrt{N(R/(1+R)^2)}\right) f(\delta) d\delta$$

where $f(\delta)$ is the normal density.

Note that *EP* provides the unconditional probability of rejecting the null hypothesis, assuming that the prior distribution is correct.

The expression for EP can be simplified to

$$EP = 1 - \Phi\left(\frac{z_{1-\alpha}\theta - \delta}{\sqrt{\theta^2 + \sigma_P^2}}\right)$$

where

$$\theta = \frac{(1+R)^2}{RN}\sigma^2$$

With this expression for the expected power, the minimum required sample size can be determined using a binary search.

Finding the Value of σ_P^2

A difficult step in the above is to find the appropriate value for the variance of the prior distribution. A useful tool during the planning process is to use the following relationship.

$$\sigma_P = \frac{-\delta}{\Phi^{-1} \left(\Pr(y < 0) \right)}$$

where Pr(y < 0) is a stated value such as 0.001, 0.01, or 0.02.

Using this tool, appropriate values σ_P can be found when other methods are not available.

Example 1 – Finding the Sample Size

Researchers wish to compare two types of exercise regimens to determine whether there is a difference in strength. Subjects will be randomized to the treatment or control group, the corresponding exercise regimen will be used, and the strength will be measured using a standard test. The strength index in the control group has been measured in previous research at 22.8 with a standard deviation of 8.3.

The researchers determine that a gain in strength of 20% will be required before the new exercise regimen is of interest to others. This equates to a strength increase of 4.56.

The researchers want to base the required sample size on reaching 90% expected power. They want to see the impact of using three values for the standard deviation of the prior distribution: 1.5, 2, and 2.5.

Since they will use a one-sided z test, the significance level is set to 0.025.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Design Tab

Solve For	Sample Size
Alternative Hypothesis	One-Sided
Expected Power	0.90
Alpha	0.025
Group Allocation	Equal (N1 = N2)
δ (Diff of Group Means, μ1 - μ2)	4.56
σ (Std Dev of Responses)	8.3
σР Input Type	Enter σP
σ_P (Std Dev of Prior Distribution)	1.5 2 2.5

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Groups:	ve For: Sample Size ups: 1 = Treatment, 2 = Control rnative Hypothesis: One-Sided								
-	Evenente d Devver		Osmala Oisa			Standard Deviations			
Expect	ed Power	Sa	Sample Size		Mean Difference	Response	Prior		
Target	Actual	N1	N2	Ν	δ	σ	σP	P(D < 0)	Alpha
0.9	0.90082	113	113	226	4.56	8.3	1.5	0.00118	0.025
0.9	0.90034	173	173	346	4.56	8.3	2.0	0.01130	0.025
).9	0.90013	338	338	676	4.56	8.3	2.5	0.03408	0.025
Target Ex	pected Power		ition of po		rejecting a false r eferred to as Baye				
0	pected Power	defin succ The av	ition of po ess. erage pov	wer. It is r wer obtain		esian predictive po b. Because N1 and	ower, assur	ance, or probab	pility of
Actual Exp	pected Power	defin succ The av (sligh	ition of po ess. erage pountly) large	wer. It is r wer obtain than the	eferred to as Baye ed in this scenaric	esian predictive po b. Because N1 and ower.	ower, assur d N2 are dis	ance, or probat	bility of e is often
Actual Exp N1 and N2 N	pected Power	defin succ The av (sligh The nu The tot	ition of po ess. rerage por ntly) large imber of s tal sample	wer. It is r wer obtain than the ubjects sa size. N =	eferred to as Baye ed in this scenaric target expected po impled from the tro N1 + N2.	esian predictive po b. Because N1 and ower. eatment and contr	ower, assur d N2 are dis ol populatio	ance, or probat crete, this valu ons, respectivel	bility of e is often y.
0	pected Power	defin succ The av (sligh The nu The tot The dif	ition of po ess. rerage por ntly) large imber of s tal sample	wer. It is r wer obtain than the ubjects sa size. N = etween m	eferred to as Baye ed in this scenaric target expected po impled from the tre	esian predictive po b. Because N1 and ower. eatment and contr	ower, assur d N2 are dis ol populatio	ance, or probat crete, this valu ons, respectivel	bility of e is often y.
Actual Exp N1 and N2 N	pected Power	defin succ The av (sligh The nu The to The dif of the The sta	ition of po ess. rerage pon ntly) larger imber of s tal sample ference b e prior dis andard de	wer. It is r wer obtain than the ubjects sa size. N = etween m tribution. viation of	eferred to as Baye ed in this scenaric target expected pr impled from the tre N1 + N2. eans (μ1 - μ2) ass responses.	esian predictive po b. Because N1 and ower. eatment and contr sumed by the alter	ower, assur d N2 are dis ol populatio native hypo	ance, or probat crete, this valu ons, respectivel	bility of e is often y.
Actual Exp I1 and N2 I I IP	pected Power	defin succ The av (sligh The nu The to The dif of the The sta The sta	ition of po ess. rerage pountly) large umber of s tal sample ference b e prior dis andard de andard de	wer. It is r wer obtain than the ubjects sa size. N = etween m tribution. viation of viation of	eferred to as Baye ed in this scenaric target expected pr impled from the tr N1 + N2. eans (μ1 - μ2) ass responses. the normal prior di	esian predictive po b. Because N1 and ower. eatment and contr sumed by the alter stribution of differ	ower, assur d N2 are dis ol populatio native hypo ence.	ance, or probat crete, this valu ons, respectivel othesis. It is also	bility of e is often y. o the mear
Actual Exp N1 and N2 N	pected Power	defin succ The av (sligh The nu The to The dif of the The sta The sta The pro	ition of po ess. rerage pountly) large umber of s tal sample ference b e prior dis andard de andard de obability t	wer. It is r wer obtain r than the ubjects sa e size. N = etween m tribution. viation of viation of hat the hy	eferred to as Baye ed in this scenaric target expected pr impled from the tre N1 + N2. eans (μ1 - μ2) ass responses.	esian predictive po b. Because N1 and ower. eatment and contr sumed by the alter stribution of differ nce is actually neg	ower, assur d N2 are dis ol populatio native hypo ence.	ance, or probat crete, this valu ons, respectivel othesis. It is also	bility of e is often y. o the mear

Summary Statements

A parallel two-group design will be used to test whether there is a difference in group means. The comparison will be made using a two-sample, one-sided, equal-variance Z-test based on the difference of the means, with a Type I error rate (α) of 0.025. The 'known' standard deviation for both groups is assumed to be 8.3. The prior distribution used to characterize presumed values for the unknown true difference in means is the Normal distribution with a mean of 4.56 and a standard deviation of 1.5. To obtain an expected power of 90%, the number of subjects needed will be 113 in the treatment group (1), and 113 in the control group (2). The sample sizes were calculated based on the 'hybrid classical and Bayesian' technique for computing the expected power, or average power across the prior distribution (see Kieser, 2020).

Dropout-Inflated Sample Size

	Si	ample Si	ze	E	pout-Infl inrollme ample Si	nt	1	Expecte Number Dropou	of
Dropout Rate	N1	N2	N	N1'	N2'	N'	D1	D2	D
20%	113	113	226	142	142	284	29	29	58
20%	173	173	346	217	217	434	44	44	88
20%	338	338	676	423	423	846	85	85	170

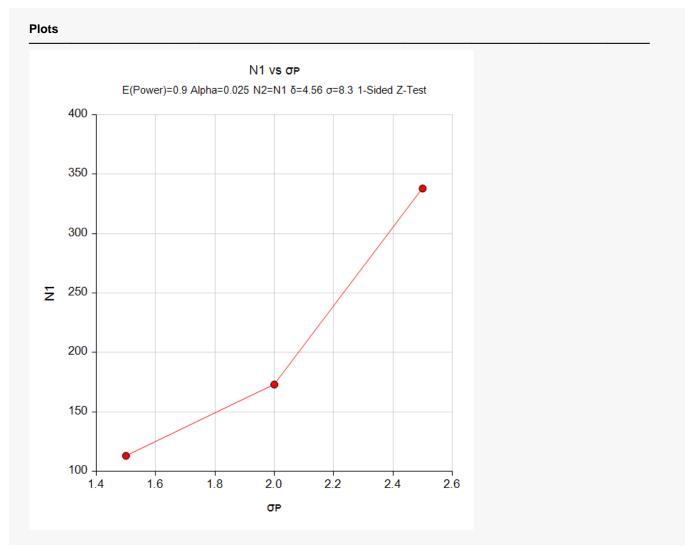
Dropout Rate	The percentage of subjects (or items) that are expected to be lost at random during the course of the study
N1, N2, and N	and for whom no response data will be collected (i.e., will be treated as "missing"). Abbreviated as DR. The evaluable sample sizes at which power is computed (as entered by the user). If N1 and N2 subjects
NT, NZ, and N	are evaluated out of the N1' and N2' subjects that are enrolled in the study, the design will achieve the stated power.
N1', N2', and N'	The number of subjects that should be enrolled in the study in order to obtain N1, N2, and N evaluable subjects, based on the assumed dropout rate. N1' and N2' are calculated by inflating N1 and N2 using the formulas N1' = N1 / (1 - DR) and N2' = N2 / (1 - DR), with N1' and N2' always rounded up. (See Julious, S.A. (2010) pages 52-53, or Chow, S.C., Shao, J., Wang, H., and Lokhnygina, Y. (2018) pages 32-33.)
D1, D2, and D	The expected number of dropouts. $D1 = N1' - N1$, $D2 = N2' - N2$, and $D = D1 + D2$.

Dropout Summary Statements

Anticipating a 20% dropout rate, 142 subjects should be enrolled in Group 1, and 142 in Group 2, to obtain final group sample sizes of 113 and 113, respectively.

References

Kieser, Meinhard. 2020. Methods and Applications of Sample Size Calculation and Recalculation in Clinical Trials. Springer. Cham, Switzerland.


Ciarleglio, M.M., Arendt, C.D., and Peduzzi, P.N. 2016. 'Selection of the effect size for sample size determination for a continuous response in a superiority clinical trial using a hybrid classical and Bayesian procedure'. Clinical Trials, Volume 13(3), pages 275-285. DOI: 10.1177.1740774516628825

Ciarleglio, M.M., Arendt, C.D., Makuch, R.W., and Peduzzi, P.N. 2015. 'Selection of the treatment effect for sample size determination in a superiority clinical trial using a hybrid classical and Bayesian procedure'. Contemporary Clinical Trials, Volume 41, pages 160-171. DOI: 10.1016/j.cct.2015.01.002

This report shows the values of each of the parameters, one scenario per row.

Tests of Two Means Assuming Equal Variances using a Bayesian Approach

Plots Section

This plot shows the relationship between the standard deviation of the prior distribution and the group sample sizes.

Tests of Two Means Assuming Equal Variances using a Bayesian Approach

Example 2 – Validation using Kieser (2020)

Kieser (2020) page 36 presents Table 3.3b which we will use as a validation example.

Subjects will be randomized equally to either a treatment or a control group. The value of the difference is 10 and the standard deviation is 20. The one-sided significance level is 0.025. The expected power is set to 0.90. The value of P(D < 0) is 0.01. The resulting group sample sizes are 200.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Design Tab

Solve For Alternative Hypothesis Expected Power Alpha Group Allocation	One-Sided 0.90 0.025
δ (Diff of Group Means, μ1 - μ2) σ (Std Dev of Responses) σΡ Input Type P(D < 0)	20 Enter P(D < 0)

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve Fo Groups: Alternati		·							
Expected Power						Stand	dard Deviation	ons	
Expec	ted Power	Sa	ample S	ize	Mean			ons	
Expec Target	ted Power Actual	Sa N1	ample S N2	ize N	Mean Difference δ	Stand Response σ	lard Deviatio Prior σP	P(D < 0)	Alpha

PASS has also calculated the group sample size to be 200. The procedure is validated.