Chapter 152

Tests for Two Means in a Cluster-Randomized Design with Clustering in Only One Arm

Introduction

This procedure computes power and sample size for a test comparing two means in cluster-randomized designs in which the outcome is a continuous normal random variable and clustering occurs in only one arm.

Cluster-randomized designs are those in which whole clusters of subjects (classes, hospitals, communities, etc.) are put into the treatment group or the control group. In this case, the means of the two arms (groups), where the first arm is made up of K_i clusters of M_{ij} individuals each and the second arm is made up of individuals, are to be tested using a modified *z* test.

For example, one arm might receive individual intervention (such as medicine) while the other receives this medicine plus some type of group therapy session. The fact that they attend this therapy session implies that they are "clustered". The clustering occurs in only one arm.

Technical Details

Our formulation comes from Moerbeek and Wong (2008). They combine two mixed models: one for the arm made up of individuals and a second, more, complicated model for the arm which accounts for the clustering. This type of design is also mentioned by Julious (2023).

The model for the second (non-clustered) arm is

$$y_i = \beta_0 + x_i'\beta + r_i$$

where y_i is a continuous outcome, x_i is a vector of covariates for subject *i*, β is a vector of effects of these covariates, and r_i is a random error term with expectation zero and variance σ_r^2 .

The mixed model for the first (clustered) arm is

$$y_{ij} = \beta_0 + \delta + x'_{ij}\beta + u_i + e_{ij}$$

where y_{ij} is a continuous outcome for subject $i = 1, ..., m_j$ within cluster j = 1, ..., k, δ is the treatment effect to be tested, u_i is a random error term for clusters with expectation zero and variance σ_u^2 , and e_{ij} is a random error term for subjects within a cluster with expectation zero and variance σ_e^2 .

Note that the variance of y_{ij} is $\sigma_u^2 + \sigma_e^2$. The intracluster correlation (ICC) is

$$\rho = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_e^2}.$$

These models can be combined into a single mixed model using

$$y_{ij} = \beta_0 + I_{ij}\delta + x'_{ij}\beta + I_{ij}u_i + e_{ij}$$

where I_{ij} is an indicator variable which is equal to one for subjects in the cluster arm and zero for subjects in the other, non-clustered, arm. Note that subjects in the non-clustered arm are assigned to a single "cluster" j = k + 1. Here k is the number of clusters in clustered arm. Note that $\sigma_r^2 \neq \sigma_u^2 + \sigma_e^2$, so the model is heteroscedastic (has unequal variances).

In this model, the treatment effect is measured by the difference in the two group means

$$\hat{\delta} = \bar{y}_1 - \bar{y}_2$$

The variance of this estimator is

$$\operatorname{var}(\hat{\delta}) = \frac{\overline{m}\sigma_u^2 + \sigma_e^2}{\overline{m}k} + \frac{\sigma_r^2}{N_1} = \sigma_r^2 \left(\theta \, \frac{(\overline{m} - 1)\rho + 1}{\overline{m}k} + \frac{1}{N_2} \right)$$

where \overline{m} is the average cluster size, N_2 is the number of subjects in the non-clustered arm, and

$$\theta = \frac{\sigma_u^2 + \sigma_e^2}{\sigma_r^2}.$$

Using the above, a large sample formula for computing the power of a two-sided test of the significance of the treatment effect at significance level α is given by

$$\operatorname{var}(\hat{\delta}) = \left(\frac{\delta}{z_{1-\frac{\alpha}{2}} + z_{Power}}\right)^{2}$$

For sample size calculation, we assume that the cluster sizes m_j are distributed with a mean cluster size of \overline{m} and a coefficient of variation of cluster sizes of *COV*. The accuracy of the variance of the two group means, \overline{Y}_i , can be enhanced by replacing \overline{m} in the numerator of the first term of $\operatorname{var}(\delta)$ with $\overline{m}(COV^2 + 1)$. See Julious (2023) page 86.

Assume that $\delta = \mu_1 - \mu_2$ is to be tested using a t-test (small sample) or z-test (large sample). The statistical hypotheses are H_0 : $\delta = 0$ vs. H_a : $\delta \neq 0$. The test statistic

$$t = \frac{\bar{Y}_1 - \bar{Y}_2}{\sqrt{\operatorname{var}(\hat{\delta})}}$$

has an approximate t distribution with degrees of freedom $DF = N_2 + K_1\overline{m} - 2$ for a subject-level analysis.

Let the noncentrality parameter $\Delta = \delta / \sqrt{\operatorname{var}(\hat{\delta})}$. We can define the two critical values based on a central t-distribution with DF degrees of freedom as follows.

$$X_1 = t_{\frac{\alpha}{2}, DF}$$
$$X_2 = t_{1-\frac{\alpha}{2}, DF}$$

The power can be found from the following to probabilities

$$P_{1} = H_{X_{1},DF,\Delta}$$

$$P_{2} = H_{X_{2},DF,\Delta}$$

$$Power = 1 - (P_{2} - P_{1})$$

where $H_{X,DF,\Delta}$ is the cumulative probability distribution of the noncentral-t distribution.

The power of a one-sided test can be calculated similarly.

Note that Julious (2023) uses a homoscedastic model that gives the same power values as these when $\theta = 1$. Candlish *et al.* (2018) recommend that the more complicated heteroscedastic model be used because of their findings in a large simulation study.

Example 1 – Calculating Sample Size

Suppose that a cluster randomized study is to be conducted in which one arm (group 2) will receive an individual medical intervention while the other arm (group 1) receives this medicine plus a special group therapy session conducted by a trained therapist. These therapy sessions will be treated as clusters. Here, group 2 (the non-clustered subjects) is the 'control group' and group 1 (the clustered subjects) is the treatment group. The therapy sessions will involve 10 patients with a COV of cluster size of 0.65.

At the time of the design of the trial, little is known about the variances, so the study will be powered in terms of standardized values. This is accomplished the setting $\sigma_2 = 1$ and defining $\delta_s = \delta/\sigma_2$.

The parameter values are set as follows: *alpha* = 0.05, *power* = 0.9, R = 1.5, δ = 0.5, σ_2 = 1, θ = 0.9, 1.0, 1.1, ρ = 0.4, *M1* = 10, and *COV* = 0.65. Power is to be calculated for a two-sided test.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Design Tab	
Solve For	. Sample Size
Alternative Hypothesis	. Two-Sided (Ha: δ ≠ 0, δ = μ1 - μ2)
Power	. 0.90
Alpha	. 0.05
Group Allocation	. Enter R = (K1 × M1) / N2, solve for K1 and N2
R (Allocation Ratio)	. 1.5
M1 (Average Cluster Size)	. 10
COV (Coefficient of Variation of Cluster Sizes)	. 0.65
δ (Mean Difference = μ 1 - μ 2)	. 0.5
σ2 (Standard Deviation in Group 2)	. 1
Θ (Group Variance Ratio = $\sigma 1^2 / \sigma 2^2$)	. 0.9 1 1.1
ρ (Intracluster Correlation, ICC)	. 0.4

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

	Results													
					has N or K1	lo Clu and N	istering 12							
		Group 1 Clusters												
Power	Number o	Average	Coefficient of	Sar	nnle	o Sizo	Allocation	Mean	Group		Standard Deviation			
	Cluster	s Size 1 M1	Cluster Sizes COV	N1 N2	N	Ratio	o Difference R δ	Ratio 0	ICC ρ	Between σu	Within σe	Group 2 σ2	Alpha	
0.90502	3	0 10	0.65	300	200	500	1.5	0.5	0.9	0.4	0.60000	0.73485	1	0.05
0.90327	3	5 10 5 10	0.65	350	234	584	1.5	0.5	1.0	0.4	0.66332	0.81240	1	0.05
COV		The avera The coeffi	ge cluster size cient of variation	e (nur on of	nber the	of s clust	ubjects) of er sizes. Th	the clusters his is the sta	s in group andard de	1. viatio	on of clust	ter sizes	divided b	y the
COV N1, N2, R	and N	The avera The coeffic average The numb The target 2. R = (h	ge cluster size cient of variatio cluster size. er of subjects value of the a (1 × M1) / N2.	e (nur on of in gro illoca The	nber the oups tion actu	of s clust 1 ar ratio al rat	ubjects) of er sizes. Th of 2, and th of the num tio value m	the clusters his is the stand heir total. No ber of subject av not be e	s in group andard de ote that N ² ects in gro xactly R b	1. viatio 1 = K oup 1 ecau	on of clust 1 × M1. and num ise N1 an	ter sizes ber of su d N2 are	divided b bjects in integers	y the group
COV N1, N2, R δ θ	and N	The avera The coeffic average The numb The target 2. R = (H The mean The ratio σ $\sigma^{1^2} = \sigma^2$	ge cluster size cient of variatio cluster size. er of subjects value of the a $(1 \times M1) / N2$. difference in t of the group 1 $2^2 = (\sigma u^2 + \sigma e^2)$	e (nur on of in gro lloca The he re and (mber the oups tion actu espor	of s clust 1 ar ratio al rat nse a o 2 v	ubjects) of er sizes. Th of 2, and th of the num tio value m at which the ariances. In	the clusters his is the stand heir total. Not ber of subjet ay not be en power is conthis case,	in group andard de bte that N ects in gro xactly R b alculated. $\Theta = (\sigma u^2)$	1. viatio 1 = K oup 1 ecau δ = + σe ²	on of clust and num se N1 an μ 1 - μ 2. γ o 2 ² . H	ter sizes ber of su d N2 are ence, Θ	divided b bjects in integers = 1 implie	y the group es that
COV N1, N2, R δ Θ	and N	The avera The coeffic average The numb The target 2. R = (P The mean The ratio c $\sigma 1^2 = \sigma 2$ The intrac cluster. I	ge cluster size cient of variatio cluster size. er of subjects value of the a $(1 \times M1) / N2$. difference in to fthe group 1 $(2^2 = (\sigma u^2 + \sigma e^2))$ luster correlation in this case, p	e (nur on of illoca The he re and g). on (I ⁱ = σu	mber the oups tion actu spor group CC). ² / (o	of s clust 1 ar ratio al rat nse a o 2 v The ru ² +	ubjects) of er sizes. The of the num tio value me at which the ariances. In correlation σe^2).	the clusters his is the sta heir total. No ber of subje ay not be e power is c h this case, between a	in group andard de bte that N ects in gro xactly R b alculated. $\Theta = (\sigma u^2)$ (randoml	1. viatio 1 = K bup 1 ecau δ = + σe ² y sel	on of clust and num se N1 an μ 1 - μ 2. ²) / σ 2 ² . H ected) pa	ter sizes ber of su d N2 are ence, Θ ir of resp	divided b bjects in integers = 1 implie onses wi	by the group es that thin a
Ν1, N2, R δ Θ σu	and N	The avera The coeffic average The numb The target 2. R = (H The mean The ratio σ σ ¹² = σ ² The intrac cluster. I The betwee group 1	ge cluster size cient of variatio cluster size. er of subjects value of the a $(1 \times M1) / N2$. difference in t of the group 1 a of the scale, p uster correlation in this case, p een-cluster stan is $\sigma 1^2 = \sigma u^2 + \sigma^2$	e (nur on of in gro illoca The he re and g). on (I^{i} = σu ndare σe^{2} .	nber the oups tion actu spor group CC). ² / (o d dev	of s clust al ar ratio al rat nse a 2 v The $v^2 +$ viatio	ubjects) of er sizes. The of the number tio value me at which the ariances. In correlation σe^2).	the clusters his is the sta ber total. No ber of subje ay not be e power is c his case, between a sponses in t	in group andard de ote that N ² ects in gro xactly R b alculated. $\Theta = (\sigma u^2)^2$ (randoml group 1. N	1. viatio 1 = K oup 1 ecau δ = + σe ² y sel	on of clust and num se N1 an μ 1 - μ 2. ²) / σ 2 ² . H ected) pa	ter sizes ber of su d N2 are ence, θ ir of resp ariance c	divided b bjects in integers = 1 implie onses wi of subject	y the group es that thin a s in
N1, N2, R δ Θ σu σe	and N	The avera The coeffic average The numb The target 2. R = (H The mean The ratio of $\sigma 1^{2} = \sigma 2$ The intrac cluster. I The betwee group 1 The within group 1	ge cluster size cient of variatio cluster size. er of subjects value of the a $(1 \times M1) / N2$. difference in t of the group 1 a $(2^2 = (\sigma u^2 + \sigma e^2))$ luster correlati in this case, p pen-cluster stati is $\sigma^{12} = \sigma u^2 +$ -cluster standa is $\sigma^{12} = \sigma u^2 +$	e (nur on of in gro illoca The he re and o) on (I^{i} = σu ndare σe^{2} . ard d σe^{2} .	mber the oups tion actu spor group CC). ² / (o d dev eviat	of s clust 1 ar ratio al rat nse a o 2 v The ru ² + viatio	ubjects) of er sizes. The of the number io value metric value metric at which the ariances. In correlation σe^2). n of the response	the clusters his is the sta ber total. No ber of subje ay not be e power is c h this case, between a sponses in gro	in group andard de ote that N ects in gro xactly R b alculated $\Theta = (\sigma u^2)$ (randoml group 1. Not	1. viation 1 = K $\Delta = 1$ $\sigma = 1$	on of clust and num se N1 an μ 1 - μ 2. c) / σ 2 ² . H ected) pa that the varia	ter sizes ber of su d N2 are ence, θ ir of resp ariance c ance of s	divided b bjects in integers = 1 implie onses wi of subject ubjects ir	ny the group es that thin a s in
COV N1, N2, R Θ Φ σu σe σ2	and N	The avera The coeffic average The numb The target 2. $R = (P$ The mean The ratio σ σ ¹² = σ ² The intrac cluster. I The betwee group 1 The within group 1 The stand	ge cluster size cient of variatio cluster size. er of subjects value of the a $(1 \times M1) / N2$. difference in to fthe group 1 i $t^2 = (\sigma u^2 + \sigma e^2)$ luster correlation in this case, p een-cluster stand is $\sigma 1^2 = \sigma u^2 +$ -cluster stand is $\sigma 1^2 = \sigma u^2 +$ and deviation c	e (nur in group in group in group in group The he re and (). on (l' $= \sigma u$ nd ard σe^2 . of the	mber the pups tion actu espon grou CC). CC). CC). cC). d dev evia	of s clust clust 1 ar ratio al rat nse a $c_{2} 2 v$ The $v_{2}^{2} +$ viatio tion c ject i	ubjects) of er sizes. The of the number tio value me at which the ariances. In correlation σe^2). In of the responses	the clusters his is the sta beir total. No ber of subje ay not be e power is c n this case, between a sponses in gro onses in gro	in group andard de ote that N ects in gro xactly R b alculated. $\Theta = (\sigma u^2)^2$ (randoml group 1. Not oup 1. Not	1. viation 1 = K bup 1 ecau $\delta = -$ $\delta = -$ y sel vote v sel vote that n, grown, gr	on of clust and num use N1 an $\mu 1 - \mu 2$. $\gamma / \sigma 2^2$. H ected) pa that the varia bup 2.	ter sizes ber of su d N2 are ence, Θ ir of resp ariance of ance of s	divided b bjects in integers = 1 implie onses wi of subject ubjects ir	y the group es that thin a s in

Summary Statements

A parallel, two-group design with cluster-randomized subjects in Group 1 only (and no clustering in Group 2) will be used to test whether the Group 1 mean (μ 1) is different from the Group 2 mean (μ 2) (H0: δ = 0 versus Ha: $\delta \neq 0$, δ = μ 1 - μ 2). The comparison will be made using a two-sided mixed model test, with a Type I error rate (α) of 0.05. For Group 2, the subject-to-subject standard deviation is assumed to be 1. For Group 1, the within-cluster standard deviation is assumed to be 0.73485 (calculated from the assumed Group 1 to Group 2 variance ratio 0.9), the between-cluster standard deviation is assumed to be 0.6, the intracluster correlation coefficient is assumed to be 0.4, and the coefficient of variation of cluster sizes is assumed to be 0.65. To detect a mean difference (μ 1 - μ 2) of 0.5, with 10 subjects per cluster in Group 1 and 200 subjects in Group 2, with 90% power, the number of needed clusters in Group 1 is 30 (totaling 300 subjects in Group 1).

References
Moerbeek, M. and Wong, W.K. 2008. 'Sample size formulae for trials comparing group and individual treatments in a multilevel model.' Statistics in Medicine, Vol. 27, pages 2850-2864. Julious, Steven A. 2023. Sample Sizes for Clinical Trials. Second Edition. CRC Press. New York. Donner, A. and Klar, N. 2000. Design and Analysis of Cluster Randomization Trials in Health Research. Arnold. London.

This report shows the power for each of the scenarios.

Plots Section

Plots

This plot shows the number of clusters versus the variance ratios.

Example 2 – Validation using Moerbeek and Wong (2008)

Moerbeek and Wong (2008) page 2855 provide a table in which several sample sizes are calculated for a two-sided test. When alpha is 0.05, δ is 0.5, COV = 0, θ is 0.9, ρ is 0.1, σ_2 is 1.0, N2 is 67, M1 is 5, and K1 is 15, they calculate a power of 0.80.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Power
Alternative Hypothesis	Two-Sided (Ha: δ ≠ 0, δ = μ1 - μ2)
Alpha	0.05
Group Allocation	Enter K1 and N2 individually
K1 (Number of Clusters)	15
M1 (Average Cluster Size)	5
COV (Coefficient of Variation of Cluster Sizes)	0
N2 (Number of Subjects)	67
δ (Mean Difference = μ 1 - μ 2)	0.5
σ 2 (Standard Deviation in Group 2)	1
Θ (Group Variance Ratio = $\sigma 1^2 / \sigma 2^2$)	0.9
ρ (Intracluster Correlation, ICC)	0.1

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve F Clusteri Group A Hypothe	or: ng: Allocation: eses:	Power Group 1 has C Enter K1 and I H0: $\delta = 0$ vs.	Clustering, Group N2 individually Ha: δ ≠ 0	2 has	No C	lusterii	ng						
		Group 1 Clu	sters										
	Average Coefficient of Number of Cluster Variation of							Group Variance		Standard Deviation			
	Number o	of Cluster	Variation of	Sa	mple	Size	Mean	Variance					
ower	Number o Cluster K	Average of Cluster s Size 1 M1	Variation of Cluster Sizes COV	Sa N1	mple N2	Size N	Mean Difference δ	Variance Ratio θ	ICC P	Between σu	Within σe	Group 2 σ2	Alpha

PASS calculates the same power value as Moerbeek and Wong (2008). Thus the procedure is validated.

Example 3 – Validation using Julious (2023)

Julious (2023) page 88 provides a table in which several sample sizes are calculated for a two-sided test. When alpha is 0.05, δ is 0.3, COV = 0, θ is 1, ρ is 0.03, σ_2 is 1.0, N2 is 234, M1 is 20.555, and K1 is 18, they calculate a power of 0.90.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 3** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Design Tab	
Solve For	Power
Alternative Hypothesis	Two-Sided (Ha: δ ≠ 0, δ = μ1 - μ2)
Alpha	0.05
Group Allocation	Enter K1 and N2 individually
K1 (Number of Clusters)	18
M1 (Average Cluster Size)	20.555
COV (Coefficient of Variation of Cluster Sizes)	0
N2 (Number of Subjects)	234
δ (Mean Difference = μ1 - μ2)	0.3
σ2 (Standard Deviation in Group 2)	1
Θ (Group Variance Ratio = $\sigma 1^2 / \sigma 2^2$)	1
ρ (Intracluster Correlation, ICC)	0.03

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve Fo Clusterin Group Al Hypothes	or: lg: llocation: ses:	Power Group 1 has 0 Enter K1 and H0: δ = 0 vs.	Clustering, Group N2 individually Ha: δ ≠ 0	2 has	No Cl	usterin	g						
	Average Coefficient of						Moon	Group		Standard Deviation			
Power	Cluster	rs Size	Cluster Sizes COV	 	N2	N	Difference δ	Ratio	ICC 0	Between σu	Within σe	Group 2 σ2	Alpha
							-						

PASS also calculates a power of 0.90. The procedure is validated.