Chapter 122

Tests for Vaccine Efficacy with Composite Efficacy Measure using the Difference of Two Means

Introduction

This module provides power analysis and sample size calculation for inequality tests of vaccine efficacy (VE) when one is interested in both the incidence and severity of an infection. The burden-of-illness (BOI) score allows investigation of both disease incidence rates and disease severity and duration. See Chang et al. (1994) and Callegaro et al. (2020) for more details.

The BOI score requires that a severity-of-illness score X > 0 be assigned to individuals who develop the disease and a severity score of 0 be assigned to those not infected. Thus, a binary incidence variable and a continuous severity variable are combined to form a single burden-of-illness measurement.

Technical Details

This routine is based on Chang et al. (1994).

In the discussion that follows, the subscripts 1 and 2 refer to the new vaccine group and the control (or placebo) group, respectively. Let N_1 and N_2 be the sample sizes of the two groups.

A post-infection variable *X* records a BOI score. If a subject is not infected, their BOI score is 0. The BOI score measures various attributes of the infection such as amount of pain, duration, etc. Often, *X* is an ordinal variable taking on values from 1 to 7 or 1 to 10.

Test Statistics

The test statistic associated with this procedure is

$$T = \bar{X}_2 - \bar{X}_1$$

where \bar{X}_1 and \bar{X}_2 are the group means of the BOI scores, X.

Tests for Vaccine Efficacy with Composite Efficacy Measure using the Difference of Two Means

In a fixed-time design, which is terminated after a preset elapsed time, the following results are obtained.

$$E(\bar{X}_j) = P_j \mu_j, \qquad j = 1,2$$

$$V(\bar{X}_j) = P_j \{\sigma_j^2 + (1 - P_j)\mu_j^2\}/N_j$$

where P_j is the probability of infection, μ_j is the expectation of X of those infected in group j, σ_j is the standard deviation of X for those infected in group j.

It follows that E(T) and V(T) are

$$E(T) = P_2 \mu_2 - P_1 \mu_1$$

$$V(T) = V(\overline{X}_2) + V(\overline{X}_1)$$

Since under the null hypothesis E(T) = 0, a test statistic Z is as follows

$$Z = \frac{T}{\sqrt{\widehat{V}(T)}}$$

Power Calculation

The asymptotic power of this test statistic for a two-sided inequality test is given by

$$\begin{split} Power &= Pr\left(\frac{|T|}{\sqrt{V_0}} > z_{1-\alpha/2}\right) \\ &= Pr\left(\frac{T}{\sqrt{V_0}} > z_{1-\alpha/2}\right) + Pr\left(\frac{T}{\sqrt{V_0}} < -z_{1-\alpha/2}\right) \\ &= \Phi\left(\frac{-z_{1-\alpha/2}\sqrt{V_0} + (P_2\mu_2 - P_1\mu_1)}{\sqrt{V_1}}\right) + 1 - \Phi\left(\frac{z_{1-\alpha/2}\sqrt{V_0} + (P_2\mu_2 - P_1\mu_1)}{\sqrt{V_1}}\right) \end{split}$$

where

$$V_0 = W(P_2, \mu_2, \sigma_2, N_2) + W(P_2, \mu_2, \sigma_1, N_1)$$

$$V_1 = W(P_2, \mu_2, \sigma_2, N_2) + W(P_1, \mu_1, \sigma_1, N_1)$$

$$W(P, \mu, \sigma, N) = P\{\sigma^2 + (1 - P)\mu^2\}/N$$

Power for one-sided tests is found using either the left or right term of the two-sided expression above.

Sample Size Calculation

Sample size is found using a binary search on this power formula.

Example 1 – Finding Sample Size

A two-arm parallel study is being planned to substantiate that a new vaccine reduces the incidence rate of a certain disease more than a control. The disease rate in the control group is 0.01. The disease rate in the treatment group is anticipated to be between 0.005 and 0.007.

Previous trials have obtained an average BOI score in the control group of 1.5. Three BOI scores in the vaccine group will be considered: 1.0, 1.1, and 1.2. The standard deviations of both groups will be set to 0.9. The significance level of the test is 0.05. The sample sizes will be equal in each arm. The task is to determine the required sample size to achieve a power of 0.80 when using a two-sided test in each of the resulting scenarios.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Sample Size
Alternative Hypothesis	Two-Sided (H1: δ ≠ 0)
Power	0.8
Alpha	0.05
Group Allocation	Equal (N1 = N2)
P1 (Vaccine Event Prob H1)	0.005 0.007
P2 (Control Event Probability)	0.01
μ1 (Mean of Vaccine Group)	1.0 1.1 1.2
μ2 (Mean of Control Group)	1.5
Std Dev Input Type	Equal
σ (Std Dev of Both Groups)	0.9

Tests for Vaccine Efficacy with Composite Efficacy Measure using the Difference of Two Means

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Numeric Results

Solve For: Sample Size Test Statistic: Z-Test

Groups: 1 = Vaccine, 2 = Control Alternative Hypothesis: Two-Sided (H1: $\delta \neq 0$)

							Burden	of-Illness (B	OI) Scores		Vassi	F#:	
			_	Event Pr	obability	Mean	Infected		Standard	Deviation		ne Efficacy	
	S	ample S	ize 	Vaccine	Control	Vaccine	Control	Adjusted Difference	Vaccine	Control	Scores	Event Probability	
Power	N1	N2	N	P1	P2	μ1	μ2	δ	σ1	σ2	VЕвоі	VÉ	Alpha
0.8000	4227	4227	8454	0.005	0.01	1.0	1.5	0.0100	0.9	0.9	0.667	0.5	0.05
0.8001	4716	4716	9432	0.005	0.01	1.1	1.5	0.0095	0.9	0.9	0.633	0.5	0.05
0.8001	5293	5293	10586	0.005	0.01	1.2	1.5	0.0090	0.9	0.9	0.600	0.5	0.05
0.8000	6757	6757	13514	0.007	0.01	1.0	1.5	0.0080	0.9	0.9	0.533	0.3	0.05
0.8000	8188	8188	16376	0.007	0.01	1.1	1.5	0.0073	0.9	0.9	0.487	0.3	0.05
0.8000	10113	10113	20226	0.007	0.01	1.2	1.5	0.0066	0.9	0.9	0.440	0.3	0.05

The severity-of-illness (SOI) score is only obtained from those subjects that were infected.

The burden-of-illness (BOI) score is obtained from all subjects. For infected subjects, BOI = SOI. For uninfected subjects, BOI = 0.

Power	The probability of rejecting a false null hypothesis when the alternative hypothesis is true.
I OWEI	The probability of rejecting a raise null hypothesis when the alternative hypothesis is true.

N1 and N2 The sample sizes of the vaccine group and the control group, respectively.

N The total sample size. N = N1 + N2.

P1 The event probability of the vaccine group assumed by H1.
P2 The event probability (attack rate) of the control group.
µ1 The mean BOI score of those infected in the vaccine group.
µ2 The mean BOI score of those infected in the control group.

δ The difference between the adjusted BOI means of the two groups. δ = Sc2 - Sc1, where $Sc1 = P1 \times μ1$ and

 $Sc2 = P2 \times \mu2$.

The standard deviation of the BOI scores of those infected in the vaccine group.
 The standard deviation of the BOI scores of those infected in the control group.

VEBoI The vaccine efficacy using the BOI scores assumed by H1. VEBoI = 1 - $(P1 \times \mu1) / (P2 \times \mu2)$. VEBoI is included

for reference only.

VE The vaccine efficacy assumed by H1. VE = 1 - P1 / P2. VE is included for reference only.

Alpha The probability of rejecting a true null hypothesis.

Summary Statements

A parallel two-group design will be used to test vaccine efficacy with a composite efficacy measure. The comparison will be made using a two-sided Z-test based on the difference of the means, with a Type I error rate (α) of 0.05. The severity score means of the vaccine and control groups are assumed to be 1 and 1.5, respectively. (Note that these severity scores correspond only to those subjects that are infected.) The severity score standard deviations of the vaccine and control groups are assumed to be 0.9 and 0.9, respectively. The event probabilities of the vaccine and control groups are assumed to be 0.005 and 0.01, respectively. To detect a difference in mean burden-of-illness (BOI) scores of 0.01 with 80% power, the number of subjects needed will be 4227 in the vaccine group, and 4227 in the control group.

Tests for Vaccine Efficacy with Composite Efficacy Measure using the Difference of Two Means

Dropout-Inflated Sample Size

	s	sample Siz	ze	I	ppout-Infla Enrollmer Sample Siz	nt	Expected Number of Dropouts		
Dropout Rate	N1	N2	N	N1'	N2'	N'	D1	D2	D
20%	4227	4227	8454	5284	5284	10568	1057	1057	2114
20%	4716	4716	9432	5895	5895	11790	1179	1179	2358
20%	5293	5293	10586	6617	6617	13234	1324	1324	2648
20%	6757	6757	13514	8447	8447	16894	1690	1690	3380
20%	8188	8188	16376	10235	10235	20470	2047	2047	4094
20%	10113	10113	20226	12642	12642	25284	2529	2529	5058
Dropout Rate	The percentag		. ,	that are exped be collected (i			-		•
N1, N2, and N	The evaluable	sample sized out of the	es at which p	,	uted (as en	tered by the ι	user). Íf N1 a	and N2 su	bjects
N1', N2', and N'	formulas N1	sed on the : ' = N1 / (1 -	assumed dro DR) and N2'	enrolled in the pout rate. N1' = N2 / (1 - DF S.C., Shao, J.,	and N2' are R), with N1'	e calculated b and N2' alwa	y inflating N ys rounded	1 and N2 up. (See J	using the Iulious,
D1, D2, and D	The expected							, , ,	,

Dropout Summary Statements

Anticipating a 20% dropout rate, 5284 subjects should be enrolled in Group 1, and 5284 in Group 2, to obtain final group sample sizes of 4227 and 4227, respectively.

References

Chang, M.N., Guess, H.A., and Heyse, J.F. 1994. 'Reduction in Burden of Illness: A New Efficacy Measure for Prevention Trials'. Statistics in Medicine. Vol 13. Pages 1807-1814. https://doi.org/10.1002/sim.4780131803 Callegaro, A., Curran, D., and Matthews, S. 2020. 'Burden-of-illness vaccine efficacy'. Pharmaceutical Statistics. Volume 19, Issue 5. Pages 636-645. https://doi.org/10.1002/pst.2020

Chow, S.C., Shao, J., Wang, H., and Lokhnygina, Y. 2018. Sample Size Calculations in Clinical Research, Third Edition. Taylor & Francis/CRC. Boca Raton, Florida.

Nauta, Jozef. 2020. Statistics in Clinical and Observational Vaccine Studies, 2nd Edition. Springer. Cham, Switzerland.

This report shows the values of each of the parameters, one scenario per row.

Tests for Vaccine Efficacy with Composite Efficacy Measure using the Difference of Two Means

Plots Section

Plots N1 vs µ1 by P1 Power=0.8 α =0.05 N2=N1 P2=0.01 μ 2=1.5 σ =0.9 Z Test 12000 10000 P1 Ξ 8000 0.005 0.007 6000 4000 1.00 1.05 1.10 1.15 1.20 μ1 N1 vs µ1 and P1 Power=0.8 α=0.05 N2=N1 P2=0.01 μ2=1.5 σ=0.9 Z Test 12000 10000 N1 8000 12000 Z 10000 8000 6000 6000 499% 0.0065 1.05 0.0060 *و^* 47 0.0055 1.15 1.20 0.0050

The values from the table are displayed in the above chart. This chart gives a quick look at the sample sizes that are required for various values of $\mu 1$ and P1.

Tests for Vaccine Efficacy with Composite Efficacy Measure using the Difference of Two Means

Example 2 - Validation using Chang et al. (1994)

Chang, Guess, and Heyse (1994) page 1811 present an example which will be used to validate this procedure.

The settings for this example are P1 = 0.007, P2 = 0.01, μ 1 = 1.05, μ 2 = 1.5, σ = 0.9, α = 0.05 (two-sided), and power = 0.95. The resulting sample size was found to be 11,687 per group.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Solve For	Sample Size
Alternative Hypothesis	Two-Sided (H1: δ ≠ 0)
Power	0.95
Alpha	0.05
Group Allocation	Equal (N1 = N2)
P1 (Vaccine Event Prob H1)	0.007
P2 (Control Event Probability)	0.01
μ1 (Mean of Vaccine Group)	1.05
μ2 (Mean of Control Group)	1.5
Std Dev Input Type	Equal
σ (Std Dev of Both Groups)	0.9

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve For: Sample Size Test Statistic: Z-Test Groups: $1 = Vaccine, 2 = Control$ Alternative Hypothesis: Two-Sided (H1: $\delta \neq 0$)													
					Burden-of-Illness (BOI) Scores Vaccine Efficacy								
		Sample Size			obability	Mean Infected		A -1:41	Standard Deviation				
Power		N2	N	Vaccine P1	Control P2	Vaccine µ1	Control µ2	Adjusted Difference δ	Vaccine σ1	Control σ2	Scores VEBOI	Event Probability VE	Alpha
0.95	11686	11686	23372	0.007	0.01	1.05	1.5	0.00765	0.9	0.9	0.51	0.3	0.05

PASS has calculated the group sample size at 11,686. The difference between this and the original value of 11,687 may be attributed to rounding. Thus, the procedure is validated.