Tests for the Difference Between Two Linear Regression Intercepts

Introduction

Linear regression is a commonly used procedure in statistical analysis. One of the main objectives in linear regression analysis is to test hypotheses about the slope and intercept of the regression equation. This module calculates power and sample size for testing whether two intercepts computed from two groups are significantly different.

Technical Details

Suppose that the dependence of a variable *Y* on another variable *X* can be modeled using the simple linear regression equation

 $Y = \alpha + \beta X + \varepsilon$

In this equation, α is the Y-intercept parameter, β is the slope parameter, Y is the dependent variable, X is the independent variable, and ε is the error. The nature of the relationship between Y and X is studied using a sample of *n* observations. Each observation consists of a data pair: the X value and the Y value. The parameters α and β are estimated using simple linear regression. We will call these estimates α and b.

Since the linear equation will not fit the observations exactly, estimated values must be used. These estimates are found using the method of least squares. Using these estimated values, each data pair may be modeled using the equation

Y = a + bX + e

Note that *a* and *b* are the estimates of the population parameters *a* and β . The *e* values represent the discrepancies between the estimated values (*a* + *bX*) and the actual values *Y*. They are called the errors or residuals.

Two Groups

Suppose there are two groups, and a separate regression equation is calculated for each group. If it is assumed that these *e* values are normally distributed, a test of the hypothesis that $\alpha 1 = \alpha 2$ versus the alternative that they are unequal can be constructed. Dupont and Plummer (1998) state that the test statistic

$$D = \frac{(\hat{\alpha}_2 - \hat{\alpha}_1)\sqrt{n_2}}{S_R}$$

follows the Student's t distribution with v degrees of freedom where

$$v = n_{1} + n_{2} - 4$$

$$S_{R}^{2} = \frac{s^{2}}{m} \left[1 + \frac{\bar{X}_{1}^{2}}{\sigma_{X_{1}}^{2}} + m \left\{ 1 + \frac{\bar{X}_{2}^{2}}{\sigma_{X_{2}}^{2}} \right\} \right]$$

$$m = \frac{n_{1}}{n_{2}}$$

$$\sigma_{X_{1}}^{2} = \frac{1}{n_{1}} \sum_{j} (X_{1j} - \bar{X}_{1})^{2}$$

$$\sigma_{X_{2}}^{2} = \frac{1}{n_{2}} \sum_{j} (X_{2j} - \bar{X}_{2})^{2}$$

$$s^{2} = \frac{1}{n_{1} + n_{2} - 4} \sum_{ij} (Y_{ij} - \hat{Y}_{ij})^{2}$$

$$\hat{Y}_{ij} = a_{i} + b_{i} X_{ij}$$

The power function of difference in intercepts in a two-sided test is (see Dupont and Plummer, 1998) given by

Power =
$$T_{\nu} \left[\delta \sqrt{n_2} - t_{\nu,\alpha/2} \right] + T_{\nu} \left[-\delta \sqrt{n_2} - t_{\nu,\alpha/2} \right]$$

where

$$N = n_1 + n_2$$
$$v = n_1 + n_2 - 4$$
$$m = \frac{n_1}{n_2}$$
$$\delta = \frac{\alpha_2 - \alpha_1}{\sigma_R}$$

Tests for the Difference Between Two Linear Regression Intercepts

$$\sigma_R^2 = \frac{\sigma^2}{m} \left[1 + \frac{\bar{X}_1^2}{\sigma_{X_1}^2} + m \left\{ 1 + \frac{\bar{X}_2^2}{\sigma_{X_2}^2} \right\} \right]$$
$$\sigma_{X_1}^2 = \frac{1}{n_1} \sum_j (X_{1j} - \bar{X}_1)^2$$
$$\sigma_{X_2}^2 = \frac{1}{n_2} \sum_j (X_{2j} - \bar{X}_2)^2$$
$$\sigma^2 = \operatorname{Var}(\varepsilon)$$

Note that σ^2 is estimated by s^2 .

Example 1 – Finding Sample Size

Suppose a sample size needs to be found for a study to compare two intercepts. The basic design is to measure the value of the dependent variable, Y, at five values of the independent variable, X. These values are 10, 20, 30, 40, and 50. The same values of X will be used in both groups. Hence the value of both μ X1 and μ X2 is 30, and the value of both σ X1 and σ X2 is 14.1421. The other parameters of the study are a two-sided alpha of 0.05, power of 0.90, equal subject allocation to both groups, δ of 1, σ of 0.5, 0.7, and 0.9.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Deel		エート
Desi	nn	i ar
0001	<u> </u>	

Solve For	Sample Size
Alternative Hypothesis	δ≠0
Power	0.90
Alpha	0.05
Group Allocation	Equal (N1 = N2)
δ (α1-α2, Intercept Difference)	1
μX1 (Mean of X in Group 1)	
μX2 (Mean of X in Group 2)	
σ (SD of Residuals)	0.5 0.7 0.9
σX1 (SD of X in Group 1)	
$\sigma X2$ (SD of X in Group 2)	

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Solve For Alternativ	r: ve Hypothe	Sai esis: Ha	m <mark>ple Siz</mark> : δ = α1	e - α2 ≠ 0								
								Stand	lard Deviati	on		
Pow	er	s	ample S	Size	Intercept	Mean of	X Values	Desiduala	X Va	alues		
Target	Actual	N1	N2	N	Difference δ	μΧ1	μΧ2	Residuais σ	σΧ1	σΧ2	Alpha	
0.9	0.9005	30	30	60	1	30	30	0.5	14.142	14.142	0.05	
0.9	0.9017	58	58	116	1	30	30	0.7	14.142	14.142	0.05	
Target F	Power	The des hypoth	ired por	wer valu	le (or values) e	entered in t	he procedu	ure. Power is th	ne probabil	ity of rejec	ting a false n	ull
Target F Actual F N1 and	Power Power N2	The des hypoth The pow the tar The num	ired por nesis. ver obta get pov nber of	wer valu ained in t ver. items sa	e (or values) e this scenario. E ampled from ea	entered in t Because N ach group.	he procedu 1 and N2 a	ure. Power is the	ne probabil is value is a	ity of rejec	ting a false n	ull an
Target F Actual F N1 and Ν δ	Power Power N2	The des hypoth The pow the tar The num The tota The diffe α2.	ired por nesis. ver obta get pov nber of I sampl erence	wer valu nined in r ver. items sa e size. N betweer	ie (or values) e this scenario. E ampled from ea N = N1 + N2. population int	entered in t Because N ach group. ercepts at	he procedu 1 and N2 a which pow	ure. Power is the discrete, the er and sample	ne probabil is value is size calcu	ity of rejec often (sligh	ting a false n tly) larger the made. $\delta = \alpha$	ull an 1 -
Target F Actual F N1 and Ν δ	Power Power N2	The des hypoth The pow the tar The num The tota The diffe α2. The mea	ired por nesis. yer obta get pow nber of I sampl erence I	wer valu ined in ver. items sa e size. I betweer he basic	this scenario. E mpled from ea N = N1 + N2. population int X values in gr	entered in t Because N ach group. ercepts at oups 1 and	he procedu 1 and N2 a which pow	ure. Power is the discrete, the discrete, the discrete discrete, the discrete discre	ne probabil is value is size calcu ctively.	ity of rejec often (sligh lations are	ting a false n tly) larger that made. $\delta = \alpha$	ull an 1 -
Target F Actual F N1 and Ν δ μX1 anc σ	Power Power N2	The des hypoth The pow the tar The num The tota The diffe α2. The mea The star	ired por nesis. ver obta get pov nber of I sampl erence l ans of the	wer valu ined in r ver. items sa e size. I betweer he basic eviation	ie (or values) e this scenario. E mpled from ea N = N1 + N2. population int X values in gr of the residual	entered in t Because N ach group. ercepts at oups 1 and s.	he procedu 1 and N2 a which pow d 2 of your	ure. Power is the are discrete, the are and sample design, respectively.	ne probabil is value is size calcu ctively.	ity of rejec	ting a false n (tly) larger that made. $\delta = \alpha$	ull an 1 -
Target F Actual F N1 and Ν δ μX1 anc σ Χ1 anc	Power Power N2 J µX2 J σX2	The des hypoth The pow the tar The nun The tota The diffe α2. The mea The star The star divisor	ired por nesis. ver obta get pownber of I samplerence I ans of the ndard d indard d	wer valu ined in ver. items sa e size. I betweer he basic eviation eviation ot n - 1.	this scenario. E ampled from ea N = N1 + N2. In population int X values in gr of the residual s of the basic >	ercepts at oups 1 and s. C values in	he procedu 1 and N2 a which pow d 2 of your groups 1 a	ure. Power is the are discrete, the are and sample design, respection and 2 of your d	size calcu ctively. esign, resp	ity of rejection (slighting and strength strengt	ting a false n tly) larger that made. $\delta = \alpha$ lote that the	ull an 1 -

Summary Statements

A two-group simple linear regression (Y versus X) design will be used to test whether the Group 1 intercept (α 1) is different from the Group 2 intercept (α 2) (H0: $\delta = 0$ versus H1: $\delta \neq 0$, $\delta = \alpha 1 - \alpha 2$). The comparison will be made using a two-sided intercept-difference t-test, with a Type I error rate (α) of 0.05. The mean of X for Group 1 is assumed to be 30 and the mean of X for Group 2 is assumed to be 30. The standard deviation of X for Group 1 is assumed to be 14.142 and the standard deviation of X for Group 2 is assumed to be 14.142. The common standard deviation of residuals for both groups is assumed to be 0.5. To detect an intercept difference ($\delta = \alpha 1 - \alpha 2$) of 1 with 90% power, the number of needed subjects will be 30 in Group 1 and 30 in Group 2.

Tests for the Difference Between Two Linear Regression Intercepts

S	ample S	lize	Dro E Sa	pout-Infl nrollme ample Si	ated nt ze	E N E	Expecte Number Dropout	d of ts	
N1	N2	N	N1'	N2'	N'	D1	D2	D	
30	30	60	38	38	76	8	8	16	
58	58	116	73	73	146	15	15	30	
95	95	190	119	119	238	24	24	48	
	N1 30 58 95	Sample S N1 N2 30 30 58 58 95 95	N1 N2 N 30 30 60 58 58 116 95 95 190	Sample Size Broken N1 N2 N N1' 30 30 60 38 58 58 116 73 95 95 190 119	Sample Size N1 N2 N1 N2' 30 30 60 38 38 58 58 116 73 73 95 95 190 119 119	N1 N2 N N1' N2' N' 30 30 60 38 38 76 58 58 116 73 73 146 95 95 190 119 119 238	Sample Size N1' N2' N' D1 30 30 60 38 38 76 8 58 58 116 73 73 146 15 95 95 190 119 119 238 24	Sample Size N1' N2' N' D1 D2 30 30 60 38 38 76 8 8 58 58 116 73 73 146 15 15 95 95 190 119 119 238 24 24	

Dropout-Inflated Sample Size

Dropout Rate	The percentage of subjects (or items) that are expected to be lost at random during the course of the study and for whom no response data will be collected (i.e., will be treated as "missing"). Abbreviated as DR.
N1, N2, and N	The evaluable sample sizes at which power is computed. If N1 and N2 subjects are evaluated out of the
	N1' and N2' subjects that are enrolled in the study, the design will achieve the stated power.
N1', N2', and N'	The number of subjects that should be enrolled in the study in order to obtain N1, N2, and N evaluable subjects based on the assumed dropout rate. After solving for N1 and N2, N1' and N2' are calculated by
	inflating N1 and N2 using the formulas N1' = N1 / (1 - DR) and N2' = N2 / (1 - DR), with N1' and N2'
	always rounded up. (See Julious, S.A. (2010) pages 52-53, or Chow, S.C., Shao, J., Wang, H., and
	Lokhnygina, Y. (2018) pages 32-33.)
D1 D2 and D	The expected number of dreposite $D1 = N1^{1}$ $N1^{2} = N2^{1}$ $N2^{2}$ and $D = D1 + D2$

D1, D2, and D The expected number of dropouts. D1 = N1' - N1, D2 = N2' - N2, and D = D1 + D2.

Dropout Summary Statements

Anticipating a 20% dropout rate, 38 subjects should be enrolled in Group 1, and 38 in Group 2, to obtain final group sample sizes of 30 and 30, respectively.

References

Dupont, W.D. and Plummer, W.D. Jr. 1998. Power and Sample Size Calculations for Studies Involving Linear Regression. Controlled Clinical Trials. Vol 19. Pages 589-601.

This report shows the calculated sample size for each of the scenarios. Note that since the design has five X values, the sample sizes would be rounded up to the first multiple of 5 above the designated value. For example, the value of 58 would be rounded up to 60.

Tests for the Difference Between Two Linear Regression Intercepts

Plots Section

This plot shows the sample size required for each value of $\boldsymbol{\sigma}.$

Example 2 – Validation by Manual Calculation

We could not find a published validation example, so we will calculate the first row of the above report manually. The first row of Example 1 is

Solve Fo	Solve For: Power Alternative Hypothesis: Ha: $\delta = \alpha 1 - \alpha 2 \neq 0$									
							Stand	ard Deviati	on	
	Sa	ample S	ize	Intercept	Mean of	X Values	Pasiduala	X Va	alues	
Power	N1	N2	N	δ	μΧ1	μΧ2	σ	σΧ1	σΧ2	Alpha
0 9005	30	30	60	1	30	30	0.5	14.142	14.142	0.05

The power function of difference in intercepts in a two-sided test is (see Dupont and Plummer, 1998) given by

Power =
$$T_{\nu} \left[\delta \sqrt{n_2} - t_{\nu,\alpha/2} \right] + T_{\nu} \left[-\delta \sqrt{n_2} - t_{\nu,\alpha/2} \right]$$

Plugging in the values, including results from **PASS's** Probability Calculator, we obtain

$$\begin{split} N &= n_1 + n_2 = 60 \\ v &= n_1 + n_2 - 4 = 56 \\ m &= \frac{n_1}{n_2} = 1 \\ \sigma_R^2 &= \frac{\sigma^2}{m} \bigg[1 + \frac{\bar{X}_1^2}{\sigma_{X_1}^2} + m \bigg\{ 1 + \frac{\bar{X}_2^2}{\sigma_{X_2}^2} \bigg\} \bigg] = \frac{0.25}{1} \bigg[1 + \frac{900}{200} + m \bigg\{ 1 + \frac{900}{200} \bigg\} \bigg] = \frac{11}{4} = 2.75 \\ \delta &= \frac{\alpha_2 - \alpha_1}{\sigma_R} = \frac{1}{\sqrt{2.75}} = 0.603022689 \\ t_{v,\alpha/2} &= t_{56,0.975} = 2.0032407188 \\ \text{Power} &= T_v \bigg[\delta \sqrt{n_2} - t_{v,\frac{\alpha}{2}} \bigg] + T_v \bigg[-\delta \sqrt{n_2} - t_{v,\frac{\alpha}{2}} \bigg] \\ &= T_{56} \big[0.603\sqrt{30} - 2.0032407188 \big] + T_{56} \big[-0.603\sqrt{30} - 2.0032407188 \big] \\ &= T_{56} \big[1.29965 \big] + T_{56} \big[-4.60254187 \big] = 0.90047 \end{split}$$

The 0.90047 matches the 0.9005 on the report.