Chapter 436

Tests for the Difference Between Two Poisson Rates

Introduction

The Poisson probability law gives the probability distribution of the number of events occurring in a specified interval of time or space. The Poisson distribution is often used to fit count data, such as the number of defects on an item, the number of accidents at an intersection during a year, the number of calls to a call center during an hour, or the number of meteors seen in the evening sky during an hour.

The Poisson distribution is characterized by a single parameter which is the mean number of occurrences during the specified interval.

The procedure documented in this chapter calculates the power or sample size for testing whether the difference of two Poisson rates is different from zero.

Technical Details

These results follow Mathews (2010). Assume that all subjects in each group are observed for a fixed time period (which we set as one without loss of generality and the number of events (outcomes or defects) is recorded. The following table presents the various terms used.

Group	1	2
Sample Size	<i>N</i> ₁	<i>N</i> ₂
Number of Events	<i>X</i> ₁	<i>X</i> ₂
Event Rate	λ_1	λ_2
Distribution of X	Poisson(λ ₁)	Poisson(λ_2)

Mathews (2010) proposed two test statistics that can be used to test statistical hypotheses about the rate difference. The first is based is the *large-sample z-test* of the hypotheses H0: $\lambda_1 = \lambda_2$ versus Ha: $\lambda_1 \neq \lambda_2$.

$$z_{LS} = \frac{\hat{\lambda}_2 - \hat{\lambda}_1}{\sqrt{\frac{\hat{\lambda}_1}{N_1} + \frac{\hat{\lambda}_2}{N_2}}}$$

where $\hat{\lambda}_i = X_i / N_i$. This test is appropriate when $X_i > 30$.

Tests for the Difference Between Two Poisson Rates

The power of the two-sided level a hypothesis test is given by

$$Power = \Phi\left[\frac{\lambda_2 - \lambda_1}{\sqrt{\frac{\lambda_1}{N_1} + \frac{\lambda_2}{N_2}}} - z_{1-\alpha/2}\right]$$

where $z_x = \Phi(x)$ is the standard normal distribution function.

The second test is the *square root transform* version of the first. The square root transform helps the test statistic approach normality for smaller sample sizes. It is given by

$$z_{SR} = \frac{\sqrt{\hat{\lambda}_2} - \sqrt{\hat{\lambda}_1}}{\frac{1}{2}\sqrt{\frac{1}{N_1} + \frac{1}{N_2}}}$$

The power of the two-sided level α hypothesis test is given by

$$Power = \Phi\left[\frac{\sqrt{\lambda_2} - \sqrt{\lambda_1}}{\frac{1}{2}\sqrt{\frac{1}{N_1} + \frac{1}{N_2}}} - z_{1-\alpha/2}\right]$$

Example 1 – Calculating Sample Size

Suppose that a study is to be conducted in which $\lambda 1 = 1$, $\lambda 2 = 1.1 \ 1.2 \ 1.3 \ 1.4$, power = 0.9, and alpha = 0.05. The sample size is to be calculated for a two-sided, large-samples test. The design is to have an equal sample size in each arm.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Design Tab	
Solve For	Sample Size
Alternative Hypothesis	•
Test Statistic	Large Samples
Power	0.90
Alpha	0.05
Group Allocation:	Equal (N1 = N2)
λ1 (Event Rate of Group 1)	1
Enter λ2, Diff, or Ratio for Group 2	λ2 (Event Rate of Group 2)
λ2 (Event Rate of Group 2)	

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Solve For: Alternative Test Statis Groups:	Hypothes	sis: Two∙ Larg	ple Size -Sided e-Sample Control, 2 =		nent			
	c	ample Siz	70			Event Rate		
Power	 N1	N2	N	λ1	λ2	Difference Diff	Ratio RR	Alpha
0.90006	2207	2207	4414	1	1.1	0.1	1.1	0.05
0.90005	578	578	1156	1	1.2	0.2	1.2	0.05
0.90050	269	269	538	1	1.3	0.3	1.3	0.05
0.90070	158	158	316	1	1.4	0.4	1.4	0.05

Tests for the Difference Between Two Poisson Rates

Power	The probability of rejecting a false null hypothesis when the alternative hypothesis is true.
N1 and N2	The number of subjects in groups 1 and 2, respectively.
Ν	The total sample size. $N = N1 + N2$.
λ1	The mean event (or incidence) rate of group 1, the control, reference, or baseline group.
λ2	The mean event (or incidence) rate of group 2, the treatment group.
Diff	The difference between the two event rates. Diff = $\lambda 2 - \lambda 1$.
RR	The ratio of the two event rates. RR = $\lambda 2 / \lambda 1$.
Alpha	The probability of rejecting a true null hypothesis.

Summary Statements

A parallel two-group design will be used to test whether the Group 2 (treatment) Poisson rate is different from the Group 1 (control) Poisson rate. The comparison will be made using a two-sided, two-sample, large-sample Z-test, with a Type I error rate (α) of 0.05. The Poisson (event) rate of Group 1 is assumed to be 1. To detect a Group 2 Poisson (event) rate of 1.1 (or a difference of 0.1) with 90% power, the number of subjects needed will be 2207 in Group 1 (control) and 2207 in Group 2 (treatment).

Dropout-Inflated Sample Size

	s	ample Si	ze	I	pout-Infla Enrollmer Sample Siz	nt	l	Expecte Number Dropou	of
Dropout Rate	N1	N2	N	N1'	N2'	N'	D1	D2	D
20%	2207	2207	4414	2759	2759	5518	552	552	1104
20%	578	578	1156	723	723	1446	145	145	290
20%	269	269	538	337	337	674	68	68	136
20%	158	158	316	198	198	396	40	40	80
Dropout Rate N1, N2, and N	The percentag and for whon The evaluable	n no respor	nse data will t	e collected (i	.e., will be t	treated as "m	issing"). Abb	previated a	as DR. Ó
ini, inz, and in			at are enrolled	•					or the
N1', N2', and N'	The number of	subjects the	nat should be assumed drop	enrolled in the	e study in c er solving fo	order to obtair or N1 and N2,	n N1, N2, an N1' and N2	d N evalu ' are calcu	lated by

inflating N1 and N2 using the formulas N1' = N1 / (1 - DR) and N2' = N2 / (1 - DR), with N1' and N2' always rounded up. (See Julious, S.A. (2010) pages 52-53, or Chow, S.C., Shao, J., Wang, H., and Lokhnygina, Y. (2018) pages 32-33.)

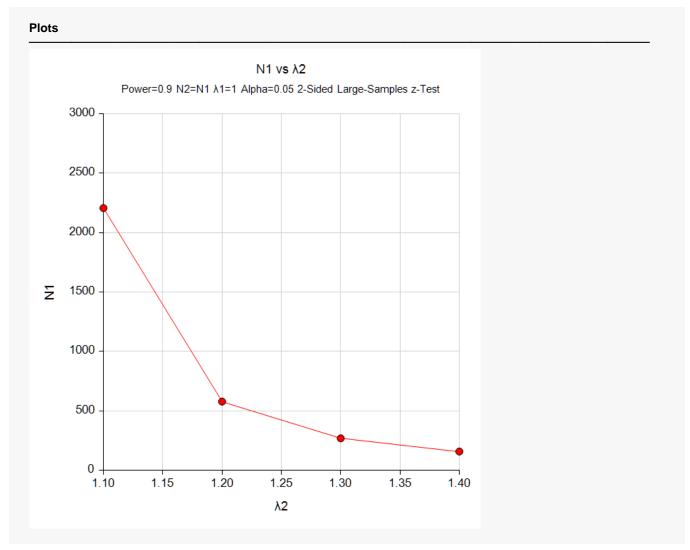
```
D1, D2, and D The expected number of dropouts. D1 = N1' - N1, D2 = N2' - N2, and D = D1 + D2.
```

Dropout Summary Statements

Anticipating a 20% dropout rate, 2759 subjects should be enrolled in Group 1, and 2759 in Group 2, to obtain final group sample sizes of 2207 and 2207, respectively.

References

Mathews, Paul. 2010. Sample Size Calculations: Practical Methods for Engineers and Scientists. Mathews Malnar and Bailey. Fairport Harbor, OH. www.mmbstatical.com


Smith, P.G. and Morrow, R.H. 1996. Field Trials of Health Intervention in Developing Countries: A Toolbox. Macmillan Education. Oxford, England.

Campbell, M.J. and Walters, S.J. 2014. How to Design, Analyse and Report Cluster Randomised Trials in Medicine and Health Related Research. John Wiley. New York.

This report shows the sample size for each of the scenarios.

Tests for the Difference Between Two Poisson Rates

Plots Section

This plot shows the sample size versus the group 2 event rate.

Example 2 – Validation using Mathews (2010)

Mathews (2010) on page 126 presents a power calculation for this test. For the values $\lambda 1 = 10$, $\lambda 2=15$, alpha = 0.05, N1 = 8, and N2 = 6, the power is shown to be 0.826 for a one-sided test.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Colve For	
Solve ForPower	
Alternative HypothesisOne-Sid	ded
Test Statistic Large S	Samples
Alpha 0.05	
Group Allocation: Enter N	1 and N2 individually
N18	
N26	
λ1 (Event Rate of Group 1) 10	
Enter λ2, Diff, or Ratio for Group 2λ2 (Eve	ent Rate of Group 2)
λ2 (Event Rate of Group 2) 15	

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve For: Alternative Test Statis Groups:	e Hypoth	esis:	Power One-Sid Large-S 1 = Con	ample 2		ent			
	Sa	mple \$	Size						
Power	Sa N1	mple \$	Size N	λ1	λ2	Difference Diff	Ratio RR	Alpha	

PASS calculates the same power.