PASS Sample Size Software NCSS.com

#### Chapter 522

# Two-Sample T-Tests for Non-Inferiority Allowing Unequal Variance

### Introduction

This procedure computes power and sample size for *non-inferiority* tests in two-sample designs in which the outcome is a continuous normal random variable and the variances of the two groups (populations) are assumed to be unequal. Measurements are made on individuals that have been randomly assigned to one of two groups. This is sometimes referred to as a *parallel-groups* design. This design is used in situations such as the comparison of the income level of two regions, the nitrogen content of two lakes, or the effectiveness of two drugs.

The details of sample size calculation for the two-sample design are presented in the Two-Sample T-Tests Allowing Unequal Variance chapter and they will not be duplicated here. This chapter only discusses those changes necessary for non-inferiority tests. Sample size formulas for non-inferiority tests of two means are presented in Chow et al. (2018) pages 50-51.

## The Statistical Hypotheses

Remember that in the usual *t*-test setting, the null (H0) and alternative (H1) hypotheses for one-sided tests are defined as

$$H_0: \mu_1 - \mu_2 \le \delta_0$$
 versus  $H_1: \mu_1 - \mu_2 > \delta_0$ 

or equivalently

$$H_0: \delta \leq \delta_0$$
 versus  $H_1: \delta > \delta_0$ .

Rejecting this test implies that the mean difference is larger than the value  $\delta_0$ . This test is called an *upper-tailed test* because it is rejected in samples in which the difference between the sample means is larger than  $\delta_0$ .

Following is an example of a *lower-tailed test*.

$$H_0: \mu_1 - \mu_2 \ge \delta_0$$
 versus  $H_1: \mu_1 - \mu_2 < \delta_0$ 

or equivalently

$$H_0: \delta \geq \delta_0$$
 versus  $H_1: \delta < \delta_0$ .

*Non-inferiority* tests are special cases of the above directional tests. It will be convenient to adopt the following specialized notation for the discussion of these tests.

#### Two-Sample T-Tests for Non-Inferiority Allowing Unequal Variance

| $\frac{\textbf{Parameter}}{\mu_1}$ | PASS Input/Output Not used | Interpretation  Mean of population 1. Population 1 is assumed to consist of those who have received the new treatment.                                                                                                                                                                                                  |
|------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mu_2$                            | Not used                   | <i>Mean</i> of population 2. Population 2 is assumed to consist of those who have received the reference treatment.                                                                                                                                                                                                     |
| $M_{NI}$                           | NIM                        | Margin of non-inferiority. This is a tolerance value that defines the magnitude of the amount that is not of practical importance. This may be thought of as the largest change from the baseline that is considered to be trivial. The sign of the value will be determined by the specific design that is being used. |
| δ                                  | δ                          | Actual difference. This is the value of $\mu_1-\mu_2$ , the difference between the means. This is the value at which the power is calculated.                                                                                                                                                                           |

Note that the actual values of  $\mu_1$  and  $\mu_2$  are not needed. Only their difference is needed for power and sample size calculations.

#### **Non-Inferiority Tests**

A *non-inferiority test* tests that the treatment mean is not worse than the reference mean by more than the non-inferiority margin. The actual direction of the hypothesis depends on the response variable being studied.

#### Case 1: High Values Good

In this case, higher values are better. The hypotheses are arranged so that rejecting the null hypothesis implies that the treatment mean is no less than a small amount below the reference mean. The value of  $\delta$  at which power is calculated is often set to zero. The null and alternative hypotheses with  $\delta_0 = -|M_{NI}|$  are

| $H_0: \mu_1 \le \mu_2 -  M_{NI} $        | versus | $H_1: \mu_1 > \mu_2 -  M_{NI} $  |
|------------------------------------------|--------|----------------------------------|
| $H_0 \colon \mu_1 - \mu_2 \le - M_{NI} $ | versus | $H_1: \mu_1 - \mu_2 > - M_{NI} $ |
| $H_0: \delta \leq - M_{NI} $             | versus | $H_1: \delta > - M_{NI} $        |

#### Case 2: High Values Bad

In this case, lower values are better. The hypotheses are arranged so that rejecting the null hypothesis implies that the treatment mean is no more than a small amount above the reference mean. The value of  $\delta$  at which power is calculated is often set to zero. The null and alternative hypotheses with  $\delta_0 = |M_{NI}|$  are

$$H_0: \mu_1 \geq \mu_2 + |M_{NI}|$$
 versus  $H_1: \mu_1 < \mu_2 + |M_{NI}|$   $H_0: \mu_1 - \mu_2 \geq |M_{NI}|$  versus  $H_1: \mu_1 - \mu_2 < |M_{NI}|$   $H_0: \delta \geq |M_{NI}|$  versus  $H_1: \delta < |M_{NI}|$ 

#### **Example**

A non-inferiority test example will set the stage for the discussion of the terminology that follows. Suppose that a test is to be conducted to determine if a new cancer treatment adversely affects mean bone density. The adjusted mean bone density (AMBD) in the population of interest is 0.002300 gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that if the treatment reduces AMBD by more than 5% (0.000115 gm/cm), it poses a significant health threat. The treatment group standard deviation is 0.000350 gm/cm.

The hypothesis of interest is whether the mean AMBD in the treated group is more than 0.000115 below that of the reference group. The statistical test will be set up so that if the null hypothesis is rejected, the conclusion will be that the new treatment is non-inferior. The value 0.000115 gm/cm is called the *margin of non-inferiority*.

## Two-Sample Unequal-Variance T-Test (Welch's T-Test) Statistic

Welch (1938) proposed the following test when the two variances are not assumed to be equal.

$$t_{df}^* = \frac{(\bar{X}_1 - \bar{X}_2) - \delta_0}{s_{\bar{X}_1 - \bar{X}_2}^*}$$

where

$$\bar{X}_k = \frac{\sum_{i=1}^{n_k} X_{ki}}{n_k},$$

$$s_k = \sqrt{\frac{\sum_{i=1}^{n_k} (X_{ki} - \bar{X}_k)^2}{(n_k - 1)}},$$

$$s_{\bar{X}_1 - \bar{X}_2}^* = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}},$$

$$df = \frac{s_{\bar{X}_1 - \bar{X}_2}^*}{\frac{s_1^4}{n_1^2(n_1 - 1)} + \frac{s_2^4}{n_2^2(n_2 - 1)}},$$

and  $\delta_0$  is the value of the difference hypothesized by the null hypothesis which depends on the magnitude and sign of  $M_{NI}$ .

The null hypothesis is rejected if the computed p-value is less than a specified level (usually 0.05). Otherwise, no conclusion can be reached.

## **Computing the Power**

When  $\sigma_1 \neq \sigma_2$ , the power for Welch's unequal-variance *t*-test is calculated as follows.

1. Calculate: 
$$\sigma_{\bar{X}} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$
.

2. Calculate: 
$$df = \frac{\sigma_{\overline{\chi}}^4}{\sigma_1^4 (n_1 - 1)} + \frac{\sigma_2^4}{n_2^2 (n_2 - 1)}$$

which is the adjusted degrees of freedom.

- 3. Find  $t_{\alpha}$  such that  $1 T_{df}(t_{\alpha}) = \alpha$ , where  $T_{df}(x)$  is the area to the left of x under a central-t distribution with degrees of freedom, df.
- 4. Calculate the noncentrality parameter:  $\lambda = \frac{\delta \delta_0}{\sigma_{\overline{\chi}}}$  .
- 5. Calculate:  $Power = 1 T'_{df,\lambda}(t_{\alpha})$ , where  $T'_{df,\lambda}(x)$  is the area to the left of x under a noncentral-t distribution with degrees of freedom, df, and noncentrality parameter,  $\lambda$ .

When solving for something other than power, **PASS** uses this same power calculation formulation, but performs a search to determine that parameter.

## **Example 1 - Power Analysis**

Suppose that a test is to be conducted to determine if a new cancer treatment adversely affects bone density. The adjusted mean bone density (AMBD) in the population of interest is 0.002300 gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that if the treatment reduces AMBD by more than 5% (0.000115 gm/cm), it poses a significant health threat. They also want to consider what would happen if the margin of equivalence is set to 2.5% (0.0000575 gm/cm). The treatment group standard deviation is 0.000350 gm/cm.

Following accepted procedure, the analysis will be a non-inferiority test using the *t*-test at the 0.025 significance level. Power is to be calculated assuming that the new treatment has no effect on AMBD. Several sample sizes between 10 and 800 will be analyzed. The researchers want to achieve a power of at least 90%. All numbers have been multiplied by 10000 to make the reports and plots easier to read.

#### Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

| Solve For                          | Power                         |
|------------------------------------|-------------------------------|
| Higher Means Are                   | Better (H1: δ > -NIM)         |
| Alpha                              | 0.025                         |
| Group Allocation                   | Equal (N1 = N2)               |
| Sample Size Per Group              | 10 50 100 200 300 500 600 800 |
| NIM (Non-Inferiority Margin)       | 0.575 1.15                    |
| δ (Actual Difference to Detect)    | 0                             |
| σ1 (Standard Deviation of Group 1) | 3                             |
| σ2 (Standard Deviation of Group 2) | 3.5                           |

#### **Output**

Click the Calculate button to perform the calculations and generate the following output.

#### **Numeric Results**

Solve For: Power

Test Type: Two-Sample Welch's Unequal-Variance T-Test

Difference:  $\delta = \mu 1 - \mu 2 = \mu T - \mu R$ 

Higher Means Are: Better

Hypotheses: H0:  $\delta \leq -NIM$  vs. H1:  $\delta > -NIM$ 

|         | Sample Size |     |      | Non-<br>Inferiority<br>Margin | Mean<br>Difference | Standard<br>Deviation |     |       |  |
|---------|-------------|-----|------|-------------------------------|--------------------|-----------------------|-----|-------|--|
| Power   | N1          | N2  | N    | -NIM                          | δ                  | σ1                    | σ2  | Alpha |  |
| 0.05631 | 10          | 10  | 20   | -0.575                        | 0                  | 3                     | 3.5 | 0.025 |  |
| 0.13857 | 50          | 50  | 100  | -0.575                        | 0                  | 3                     | 3.5 | 0.025 |  |
| 0.23613 | 100         | 100 | 200  | -0.575                        | 0                  | 3                     | 3.5 | 0.025 |  |
| 0.42062 | 200         | 200 | 400  | -0.575                        | 0                  | 3                     | 3.5 | 0.025 |  |
| 0.57807 | 300         | 300 | 600  | -0.575                        | 0                  | 3                     | 3.5 | 0.025 |  |
| 0.79641 | 500         | 500 | 1000 | -0.575                        | 0                  | 3                     | 3.5 | 0.025 |  |
| 0.86323 | 600         | 600 | 1200 | -0.575                        | 0                  | 3                     | 3.5 | 0.025 |  |
| 0.94149 | 800         | 800 | 1600 | -0.575                        | 0                  | 3                     | 3.5 | 0.025 |  |
| 0.11250 | 10          | 10  | 20   | -1.150                        | 0                  | 3                     | 3.5 | 0.025 |  |
| 0.41541 | 50          | 50  | 100  | -1.150                        | 0                  | 3                     | 3.5 | 0.025 |  |
| 0.69928 | 100         | 100 | 200  | -1.150                        | 0                  | 3                     | 3.5 | 0.025 |  |
| 0.94054 | 200         | 200 | 400  | -1.150                        | 0                  | 3                     | 3.5 | 0.025 |  |
| 0.99071 | 300         | 300 | 600  | -1.150                        | 0                  | 3                     | 3.5 | 0.025 |  |
| 0.99985 | 500         | 500 | 1000 | -1.150                        | 0                  | 3                     | 3.5 | 0.025 |  |
| 0.99998 | 600         | 600 | 1200 | -1.150                        | 0                  | 3                     | 3.5 | 0.025 |  |
| 1.00000 | 800         | 800 | 1600 | -1.150                        | 0                  | 3                     | 3.5 | 0.025 |  |

Power The probability of rejecting a false null hypothesis when the alternative hypothesis is true.

N1 The sample size from group 1. N2 The sample size from group 2.

N The total sample size from both groups. N = N1 + N2.

-NIM The magnitude and direction of the margin of non-inferiority. Since higher means are better, this value is negative and is the maximum distance below µ2 that µ1 can be and still conclude that group 1 is non-inferior to group 2.

The difference between the group means at which power and sample size calculations are made.  $\delta = \mu 1 - \mu 2$ .

 $\sigma$ 1,  $\sigma$ 2 The assumed standard deviations for groups 1 and 2, respectively.

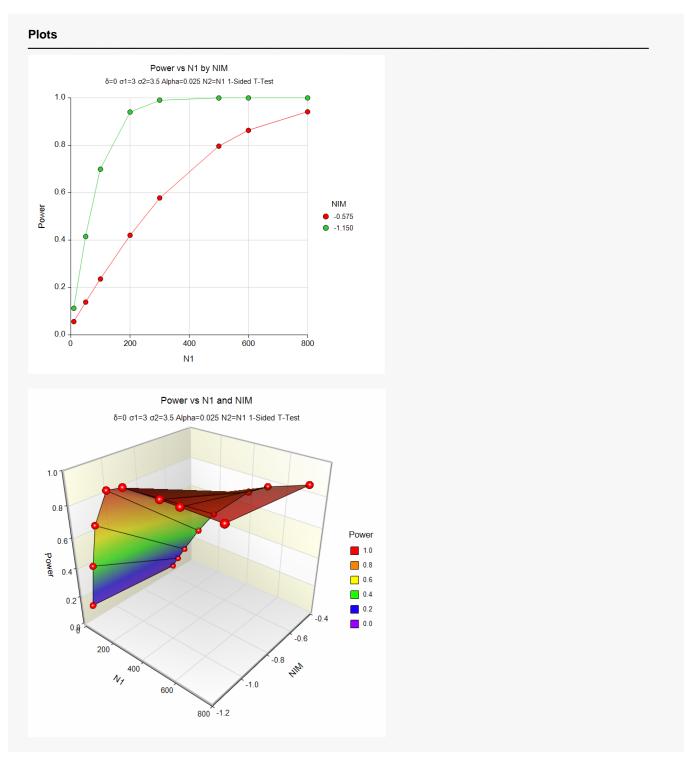
Alpha The probability of rejecting a true null hypothesis.

#### **Summary Statements**

A parallel two-group design will be used to test whether the Group 1 (treatment) mean ( $\mu$ 1) is non-inferior to the Group 2 (reference) mean ( $\mu$ 2), with a non-inferiority margin of -0.575 (H0:  $\delta$  < -0.575 versus H1:  $\delta$  > -0.575,  $\delta$  =  $\mu$ 1 -  $\mu$ 2). The comparison will be made using a one-sided, two-sample unequal-variance t-test, with a Type I error rate ( $\alpha$ ) of 0.025. The standard deviation for Group 1 is assumed to be 3 and the standard deviation for Group 2 is assumed to be 3.5. To detect a difference in means of 0, with sample sizes of 10 in Group 1 and 10 in Group 2, the power is 0.05631.

#### **Dropout-Inflated Sample Size**

|                               | Sample Size                             |                                                      |                                             | ı                                                     | Dropout-Inflated<br>Enrollment<br>Sample Size |                                                |                                                | Expected<br>Number of<br>Dropouts |                      |  |
|-------------------------------|-----------------------------------------|------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|-----------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------|----------------------|--|
| Dropout Rate                  | N1                                      | N2                                                   | N                                           | N1'                                                   | N2'                                           | N'                                             | D1                                             | D2                                | D                    |  |
| 20%                           | 10                                      | 10                                                   | 20                                          | 13                                                    | 13                                            | 26                                             | 3                                              | 3                                 | 6                    |  |
| 20%                           | 50                                      | 50                                                   | 100                                         | 63                                                    | 63                                            | 126                                            | 13                                             | 13                                | 26                   |  |
| 20%                           | 100                                     | 100                                                  | 200                                         | 125                                                   | 125                                           | 250                                            | 25                                             | 25                                | 50                   |  |
| 20%                           | 200                                     | 200                                                  | 400                                         | 250                                                   | 250                                           | 500                                            | 50                                             | 50                                | 100                  |  |
| 20%                           | 300                                     | 300                                                  | 600                                         | 375                                                   | 375                                           | 750                                            | 75                                             | 75                                | 150                  |  |
| 20%                           | 500                                     | 500                                                  | 1000                                        | 625                                                   | 625                                           | 1250                                           | 125                                            | 125                               | 250                  |  |
| 20%                           | 600                                     | 600                                                  | 1200                                        | 750                                                   | 750                                           | 1500                                           | 150                                            | 150                               | 300                  |  |
| 20%                           | 800                                     | 800                                                  | 1600                                        | 1000                                                  | 1000                                          | 2000                                           | 200                                            | 200                               | 400                  |  |
| Dropout Rate<br>N1, N2, and N | The evaluable<br>are evaluate           | n no respo<br>sample si<br>d out of th               | onse data will<br>zes at which              | be collected (<br>power is comp                       | i.e., will be to<br>outed (as er              | treated as "mi                                 | ssing"). Abbı<br>ıser). If N1 a                | eviated as<br>nd N2 sub           | s DR.<br>jects       |  |
| N1', N2', and N'              | formulas N1<br>S.A. (2010) <sub>I</sub> | f subjects<br>sed on the<br>' = N1 / (1<br>pages 52- | assumed dro<br>- DR) and N2<br>53, or Chow, | pout rate. N1'<br>' = N2 / (1 - DI<br>S.C., Shao, J., | and N2' ard<br>R), with N1'<br>Wang, H.,      | e calculated b<br>and N2' alwa<br>and Lokhnygi | y inflating N1<br>ys rounded u<br>na, Y. (2018 | and N2 ι<br>ιρ. (See Jι           | ising the<br>ulious, |  |
| D1, D2, and D                 | The expected                            | number of                                            | dropouts. D1                                | = N1' - N1, D                                         | 2 = N2' - N2'                                 | 2, and $D = D1$                                | + D2.                                          |                                   |                      |  |


#### **Dropout Summary Statements**

Anticipating a 20% dropout rate, 13 subjects should be enrolled in Group 1, and 13 in Group 2, to obtain final group sample sizes of 10 and 10, respectively.

#### References

Chow, S.C., Shao, J., Wang, H., and Lokhnygina, Y. 2018. Sample Size Calculations in Clinical Research, Third Edition. Taylor & Francis/CRC. Boca Raton, Florida.

Julious, Steven A. 2004. 'Tutorial in Biostatistics. Sample sizes for clinical trials with Normal data.' Statistics in Medicine, 23:1921-1986.



The above report shows that for NIM = 1.15, the sample size necessary to obtain 90% power is about 170 per group. However, if NIM = 0.575, the required sample size is about 675 per group.

## Example 2 - Finding the Sample Size

Continuing with Example 1, the researchers want to know the exact sample size for each value of NIM to achieve 90% power.

#### Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

| Solve For                                  | Sample Size           |
|--------------------------------------------|-----------------------|
| Higher Means Are                           | Better (H1: δ > -NIM) |
| Power                                      | 0.90                  |
| Alpha                                      | 0.025                 |
| Group Allocation                           | Equal (N1 = N2)       |
| NIM (Non-Inferiority Margin)               | 0.575 1.15            |
| δ (Actual Difference to Detect)            | 0                     |
| σ1 (Standard Deviation of Group 1)         | 3                     |
| $\sigma$ 2 (Standard Deviation of Group 2) | 3.5                   |

#### Output

Click the Calculate button to perform the calculations and generate the following output.

#### **Numeric Results**

Solve For: Sample Size

Test Type: Two-Sample Welch's Unequal-Variance T-Test

Difference:  $\delta = \mu 1 - \mu 2 = \mu T - \mu R$ 

Higher Means Are: Better

Hypotheses: H0:  $\delta$  ≤ -NIM vs. H1:  $\delta$  > -NIM

| ver     | S                     | ample S               | ize                          | Non-<br>Inferiority<br>Margin                                                                 | Mean<br>Difference                                                                                                                                                                     |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                     |
|---------|-----------------------|-----------------------|------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Actual  | N1                    | N2                    | N                            | -NIM                                                                                          | δ                                                                                                                                                                                      | σ1                                                                                                                                                                                                                                            | σ2                                                                                                                                                                                                                                                                        | Alpha                                                                                                                                                                                                                                                                               |
| 0.90018 | 676                   | 676                   | 1352                         | -0.575                                                                                        | 0                                                                                                                                                                                      | 3                                                                                                                                                                                                                                             | 3.5                                                                                                                                                                                                                                                                       | 0.025                                                                                                                                                                                                                                                                               |
| 0.90030 | 170                   | 170                   | 340                          | -1.150                                                                                        | 0                                                                                                                                                                                      | 3                                                                                                                                                                                                                                             | 3.5                                                                                                                                                                                                                                                                       | 0.025                                                                                                                                                                                                                                                                               |
|         | <b>Actual</b> 0.90018 | Actual N1 0.90018 676 | Actual N1 N2 0.90018 676 676 | Actual         N1         N2         N           0.90018         676         676         1352 | Wer         Sample Size         Inferiority Margin           Actual         N1         N2         N         -NIM           0.90018         676         676         1352         -0.575 | wer         Sample Size         Inferiority Margin Difference         Mean Difference           Actual         N1         N2         N         -NIM         δ           0.90018         676         676         1352         -0.575         0 | wer         Sample Size         Inferiority Margin Difference         Mean Device Difference           Actual         N1         N2         N         -NIM         δ         σ1           0.90018         676         676         1352         -0.575         0         3 | Wer         Sample Size         Inferiority Margin Point         Mean Deviation           Actual         N1         N2         N         -NIM         δ         σ1         σ2           0.90018         676         676         1352         -0.575         0         3         3.5 |

This report shows the exact sample size requirement for each value of NIM.

## **Example 3 – Validation of Sample Size using Simulation**

Example 5 of the Tests for Two Means (Simulation) procedure documentation presents a sample size calculation for a non-inferiority test of

$$H_0: \mu_1 - \mu_2 \ge 4$$
 versus  $H_1: \mu_1 - \mu_2 < 4$ 

or equivalently

$$H_0: \delta \geq 4$$
 versus  $H_1: \delta < 4$ .

This example demonstrates an equal-variance *t*-test with standard deviation in both groups equal to 6, a NIM of 4, and an actual difference of 0. If we modify this example slightly such that the standard deviation in group 1 is 6 and the standard deviation in group 2 is 9, and we use the Welch's unequal-variance *t*-test (see Tests for Two Means (Simulation) – Example 8), then the sample size result is 78 per group with 10,000 simulations.

#### Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 3** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

| Solve For                          | Sample Size         |  |
|------------------------------------|---------------------|--|
| Higher Means Are                   | Worse (H1: δ < NIM) |  |
| Power                              | 0.90                |  |
| Alpha                              | 0.025               |  |
| Group Allocation                   | Equal (N1 = N2)     |  |
| NIM (Non-Inferiority Margin)       | 4                   |  |
| δ (Actual Difference to Detect)    | 0                   |  |
| σ1 (Standard Deviation of Group 1) | 6                   |  |
| σ2 (Standard Deviation of Group 2) | 9                   |  |

#### **Output**

Click the Calculate button to perform the calculations and generate the following output.

#### **Numeric Results**

Solve For: Sample Size

Test Type: Two-Sample Welch's Unequal-Variance T-Test

Difference:  $\delta = \mu 1 - \mu 2 = \mu T - \mu R$ 

Higher Means Are: Worse

Hypotheses:  $H0: \delta \ge NIM \text{ vs. } H1: \delta < NIM$ 

| Power  |         | S  | ample S | Size | Non-<br>Inferiority<br>Margin | Mean<br>Difference | Star<br>Devi |    |       |
|--------|---------|----|---------|------|-------------------------------|--------------------|--------------|----|-------|
| Target | Actual  | N1 | N2      | N    | NIM                           | δ                  | σ1           | σ2 | Alpha |
| 0.9    | 0.90018 | 78 | 78      | 156  | 4                             | 0                  | 6            | 9  | 0.025 |

The sample size of 78 per group matches the simulation result.