Two-Sample T-Tests using Effect Size

Introduction

This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the effect size is specified rather than the means and variance(s). The details of this procedure are given in Cohen (1988). The design corresponding to this test procedure is sometimes referred to as a *parallel-groups* design. In this design, two groups from independent, normally distributed populations are compared by considering the difference in their means scaled be their common standard deviation.

This procedure is specific to the two-sample t-test assuming equal variance. If the variances are known to be significantly different, this procedure can still be used if the group sample sizes are equal and the average of the variances is used.

Test Assumptions

When running a two-sample equal-variance t-test, the basic assumptions are that the distributions of the two populations are approximately normal, and that the variances of the two distributions are the same. If the variances are different, this procedure can still be used if the two group sample sizes are nearly equal.

Test Procedure

If we assume that μ_1 and μ_2 represent the means of the two populations of interest and their common (unknown) standard deviation is σ , the effect size is represented by d, where

$$d = \frac{\mu_1 - \mu_2}{\sigma}$$

The null hypothesis is H₀: d = 0 and the alternative hypothesis depends on the number of "sides" of the test:

Two-Sided:	$H_1: d \neq 0$	or	$H_1:\mu_1-\mu_2\neq 0$
Upper One-Sided:	$H_1: d > 0$	or	$H_1: \mu_1 - \mu_2 > 0$
Lower One-Sided:	$H_1: d < 0$	or	$H_1: \mu_1 - \mu_2 < 0$

A suitable Type I error probability (α) is chosen for the test, the data is collected, and a *t*-statistic is generated using the formula:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

N<u>CSS.com</u>

This *t*-statistic follows a *t* distribution with $n_1 + n_2 - 2$ degrees of freedom. The null hypothesis is rejected in favor of the alternative if,

for $H_1: d \neq 0$ or $H_1: \mu_1 - \mu_2 \neq 0$

$$t < t_{\alpha/2}$$
 or $t > t_{1-\alpha/2}$,

for $H_1: d > 0$ or $H_1: \mu_1 - \mu_2 > 0$

 $t > t_{1-\alpha}$

Or, for $H_1: d < 0$ or $H_1: \mu_1 - \mu_2 < 0$

 $t < t_{\alpha}$.

Comparing the *t*-statistic to the cut-off *t*-value (as shown here) is equivalent to comparing the *p*-value to α .

Power Calculation

The power is calculated using the same formulation as in the Two-Sample T-Tests Assuming Equal Variances procedure with the modification that the σ used in that procedure is set equal to one.

If the variances cannot be assumed to be equal, the modification suggested by Cohen (1988) is used. This modification is to substitute an average value of the two variances and then proceeding as if the variances were equal. The average value is computed using

$$\sigma = \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{2}}$$

Cohen remarks that this method is only accurate if the two sample sizes are (nearly) equal.

The Effect Size

If we assume that μ_1 and μ_2 represent the means of the two populations of interest and their common (unknown) standard deviation is σ , the effect size is represented by d, where

$$d = \frac{\mu_1 - \mu_2}{\sigma}$$

Cohen (1988) proposed the following interpretation of the d values. A d near 0.2 is a small effect, a d near 0.5 is a *medium* effect, and a *d* near 0.8 is a *large* effect. These values for small, medium, and large effects are popular in the social sciences. However, this convention is not as popular among the medical sciences since the scale of the effect is left unstated which makes interpretation difficult.

Example 1 – Finding the Sample Size

Researchers wish to compare two types of local anesthesia using a balanced, parallel-group design. Subjects in pain will be randomized to one of two treatment groups, the treatment will be administered, and the subject's evaluation of pain intensity will be measured on a seven-point scale.

The researchers would like to determine the sample sizes required to detect a small, medium, and large effect size with a two-sided t-test when the power is 80% or 90% and the significance level is 0.05.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 1** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Design Tab	
Solve For	Sample Size
Alternative Hypothesis	Two-Sided
Power	0.8 0.9
Alpha	0.05
Group Allocation	Equal (N1 = N2)

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Reports

Results

Alternative Hypothesis: H1: $d \neq 0$	Solve For: Test Type: Alternative Hypothesis:	Sample Size Two-Sample Equal-Variance T-Test H1: d ≠ 0
--	---	--

Power		Sample Size			Effect	
Actual	N1	N2	N	d	Alpha	
0.8004	393	393	786	0.2	0.05	
0.9002	526	526	1052	0.2	0.05	
0.8015	64	64	128	0.5	0.05	
0.9032	86	86	172	0.5	0.05	
0.8075	26	26	52	0.8	0.05	
0.9015	34	34	68	0.8	0.05	
	Actual 0.8004 0.9002 0.8015 0.9032 0.8075	Actual N1 0.8004 393 0.9002 526 0.8015 64 0.9032 86 0.8075 26	Actual N1 N2 0.8004 393 393 0.9002 526 526 0.8015 64 64 0.9032 86 86 0.8075 26 26	Actual N1 N2 N 0.8004 393 393 786 0.9002 526 526 1052 0.8015 64 64 128 0.9032 86 86 172 0.8075 26 26 52	Actual N1 N2 N d 0.8004 393 393 786 0.2 0.9002 526 526 1052 0.2 0.8015 64 64 128 0.5 0.9032 86 86 172 0.5 0.8075 26 26 52 0.8	

Two-Sample T-Tests using Effect Size

Target Power Actual Power	The desired power. It may not be achieved because of integer N1 and N2. The achieved power. Because N1 and N2 are integers, this value is often (slightly) larger than the target
	power.
N1 and N2	The number of items sampled from each population.
Ν	The total sample size. $N = N1 + N2$.
d	Effect Size. Cohen recommended Low = 0.2. Medium = 0.5, and High = 0.8. d = $(\mu 1 - \mu 2) / \sigma$.
Alpha	The probability of rejecting a true null hypothesis.

Summary Statements

A parallel two-group design will be used to test the difference between two means. The comparison will be made using a two-sided, two-sample equal-variance t-test, with a Type I error rate (α) of 0.05. The effect size is defined as d = (μ 1 - μ 2) / σ , where σ is the common standard deviation for both groups. To detect a population effect size of 0.2 with 80% power, the number of needed subjects will be 393 in Group 1 and 393 in Group 2.

Dropout-Inflated Sample Size

	S	ample S	ize	I	pout-Inf Enrollme ample S	ent	Number of		
Dropout Rate	N1	N2	N	N1'	N2'	N'	D1	D2	D
20%	393	393	786	492	492	984	99	99	198
20%	526	526	1052	658	658	1316	132	132	264
20%	64	64	128	80	80	160	16	16	32
20%	86	86	172	108	108	216	22	22	44
20%	26	26	52	33	33	66	7	7	14
20%	34	34	68	43	43	86	9	9	18

N1, N2, and N
N1, N2, and N
N1' and N2' subjects that are enrolled in the study, the design will achieve the stated power.
N1', N2', and N'
N1', N2', and N'
The number of subjects that should be enrolled in the study in order to obtain N1, N2, and N evaluable subjects, based on the assumed dropout rate. After solving for N1 and N2, N1' and N2' are calculated by inflating N1 and N2 using the formulas N1' = N1 / (1 - DR) and N2' = N2 / (1 - DR), with N1' and N2' always rounded up. (See Julious, S.A. (2010) pages 52-53, or Chow, S.C., Shao, J., Wang, H., and Lokhnygina, Y. (2018) pages 32-33.)
D1, D2, and D

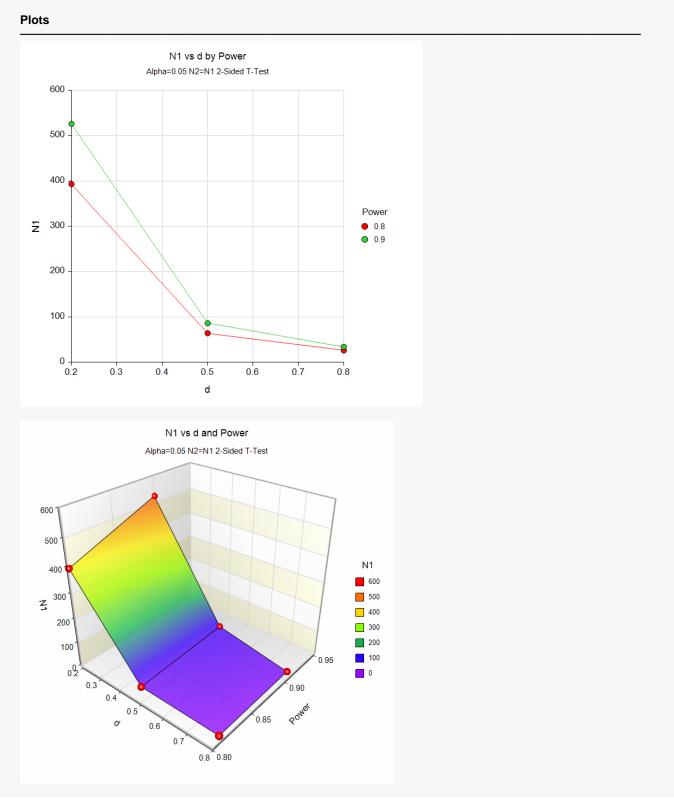
Dropout Summary Statements

Anticipating a 20% dropout rate, 492 subjects should be enrolled in Group 1, and 492 in Group 2, to obtain final group sample sizes of 393 and 393, respectively.

References

Cohen, Jacob. 1988. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates. Hillsdale, New Jersey

Julious, S. A. 2010. Sample Sizes for Clinical Trials. Chapman & Hall/CRC. Boca Raton, FL.


Machin, D., Campbell, M., Tan, B. T., Tan, S. H. 2009. Sample Size Tables for Clinical Studies, 3rd Edition. Wiley-Blackwell.

Ryan, Thomas P. 2013. Sample Size Determination and Power. John Wiley & Sons. New Jersey.

These reports show the values of each of the parameters, one scenario per row.

Two-Sample T-Tests using Effect Size

Plots Section

These plots show the relationship between effect size, power, and sample size.

Example 2 – Finding the Power

Researchers wish to compare two types of local anesthesia using a balanced, parallel-group design. Subjects in pain will be randomized to one of two treatment groups, the treatment will be administered, and the subject's evaluation of pain intensity will be measured on a seven-point scale.

The researchers would like to determine the power to detect a small, medium, and large effect size with a two-sided t-test for group sample sizes of 25, 50, 100, 200, 400 and a significance level of 0.05.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 2** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Design Tab	
Solve For	Power
Alternative Hypothesis	Two-Sided
Alpha	0.05
Group Allocation	Equal (N1 = N2)
Sample Size Per Group	
d	0.2 0.5 0.8

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results

Solve For:	Power
Test Type:	Two-Sample Equal-Variance T-Test
Alternative Hypothesis:	H1: d ≠ 0
Allemative hypothesis.	HI. U + U

	S	Sample Size			
Power	N1	N2	N	Size d	Alpha
0.1066	25	25	50	0.2	0.05
0.1677	50	50	100	0.2	0.05
0.2906	100	100	200	0.2	0.05
0.5141	200	200	400	0.2	0.05
0.8073	400	400	800	0.2	0.05
0.4101	25	25	50	0.5	0.05
0.6969	50	50	100	0.5	0.05
0.9404	100	100	200	0.5	0.05
0.9988	200	200	400	0.5	0.05
1.0000	400	400	800	0.5	0.05
0.7915	25	25	50	0.8	0.05
0.9773	50	50	100	0.8	0.05
0.9999	100	100	200	0.8	0.05
1.0000	200	200	400	0.8	0.05
1.0000	400	400	800	0.8	0.05

Example 3 – Validation using Another Procedure

This procedure should give identical results to the **Two-Sample T-Tests Assuming Equal Variance** procedure when the value of σ there is set to one. We will use this fact to provide a validation problem for this procedure.

If we run that procedure with power = 0.90, alpha = 0.05, $\mu_1 = 1$, $\mu_2 = 0$, $\sigma = 1$, and solve for sample size with N1 = N2, we obtain N1 = N2 = 23.

Setup

If the procedure window is not already open, use the PASS Home window to open it. The parameters for this example are listed below and are stored in the **Example 3** settings file. To load these settings to the procedure window, click **Open Example Settings File** in the Help Center or File menu.

Design	

Solve For	Sample Size
Alternative Hypothesis	Two-Sided
Power	0.90
Alpha	0.05
Group Allocation	Equal (N1 = N2)
d	1

Output

Click the Calculate button to perform the calculations and generate the following output.

Solve Fo Test Typ Alternativ		Tw			I-Variance T	-Test		
Power		Sample Size			Effect			
Pov	ver	Sa	imple 5	26				
Pov Target	Actual	N1	N2	N	Size	Alpha		

This procedure also calculated N1 = N2 = 23, thus the procedure is validated.