Chapter 680

UCL of the Standard Deviation from a Pilot Study

Introduction

This routine calculates the multiplier M of the estimated standard deviation, s, from a pilot study to obtain the upper confidence limit (UCL) for the actual standard deviation, σ . This inflated estimate of σ can then be used in the sample size calculations for the main study.

Browne (1995), Kieser and Wassmer (1996), and Machin *et al.* (2018) point out that using the standard deviation from a small pilot study directly in sample size calculations tends to result in under-powered studies. They indicate that if s is replaced by s_{UCL} , where s_{UCL} is the 100 γ % upper confidence limit of s, before the sample size calculations are made, the probability that the planned power of the main trial is achieved is about γ .

Technical Details

Upper Confidence Limit (UCL) of σ

Suppose a pilot study results in an estimate s_{Pilot} of σ . The 100 γ % UCL is given by

$$UCL(\gamma, df) = \sqrt{\frac{df}{\chi^2(1-\gamma, df)}} s_{Pilot} = Ms_{Pilot}$$

where df is the degrees of freedom of s_{Pilot} and $\chi^2(1-\gamma, df)$ is the $1-\gamma$ percentile of the Chi-squared distribution with df degrees of freedom.

Thus, the estimate of σ that is used in the sample size calculation of the main trial is given by inflating the standard deviation obtained from the pilot study by the inflation factor M.

Procedure Options

This section describes the options that are specific to this procedure. These are located on the Design tab. For more information about the options of other tabs, go to the Procedure Window chapter.

Design Tab

The Design tab contains most of the parameters and options that you will be concerned with.

Solve For

Solve For

This option specifies the parameter (SD Multiplier or Degrees of Freedom) to be solved for from the other parameters.

Standard Deviation's Confidence Limit's Confidence Level Percentage

CL (Confidence Level Percentage)

Enter one or more values of the confidence level percentage. Usually, this value is set at 80, 90, or 95.

0 < CL < 100.

Note that you can enter small numbers (5, 10, 20) for the lower confidence limit.

Degrees of Freedom

DF (Degrees of Freedom)

Enter one or more values for the degrees of freedom of the pilot study.

For a one-group study enter N-1.

For a two-group study enter N1+N2-2.

You may enter a

Single value

Example: 24

Range of values

Example: 20 to 60 by 10

List of values

Example: 20 30 40

Standard Deviation Multiplier

M (Standard Deviation Multiplier)

When Solve For = Degrees of Freedom, enter one or more values of M, the multiplier.

For UCL, use M > 1. For LCL, use numbers 0 < M < 1.

Example: 1.1 1.2 1.3 1.4 1.5

Example 1 – Calculating the SD Multiplier

Suppose you want to see the SD multipliers for confidence levels of 80, 90, and 95. Also, you want the value for DF = $1\ 2\ 5\ 10\ 20\ 30\ 40\ 60$.

Setup

This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load the **UCL** of the **Standard Deviation from a Pilot Study** procedure. You may then make the appropriate entries as listed below, or open **Example 1** by going to the **File** menu of the procedure window and choosing **Open Example Template**.

<u>Option</u>	<u>Value</u>
Design Tab	
Solve For	M (Std Dev Multiplier)
CL (Confidence Level Percentage)	80 90 95
DF (Degrees of Freedom)	1 2 5 10 20 30 40 60

Annotated Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results

Degrees	Confidence		
of	Level	SD	N
Freedom	Percentage	Multiplier	Multiplier
DF	CL	M	MN
1	80	3.9472	15.5800
2 5	80	2.1169	4.4814
5	80	1.4610	2.1344
10	80	1.2721	1.6184
20	80	1.1713	1.3719
30	80	1.1331	1.2840
40	80	1.1121	1.2367
60	80	1.0885	1.1848
1	90	7.9579	63.3281
2	90	3.0808	9.4912
2 5	90	1.7621	3.1050
10	90	1.4337	2.0554
20	90	1.2678	1.6074
30	90	1.2068	1.4564
40	90	1.1734	1.3769
60	90	1.1364	1.2915
1	95	15.9472	254.3144
2	95	4.4154	19.4957
2 5	95	2.0893	4.3650
10	95	1.5931	2.5379
20	95	1.3576	1.8432
30	95	1.2737	1.6223
40	95	1.2284	1.5089
60	95	1.1787	1.3893

Report Definitions

DF is degrees of freedom. In a two-group study, DF = N1 + N2 - 2 = N - 2. In a one-group study, DF = N - 1.

CL is the confidence level of a one-sided confidence interval for the standard deviation. It is a percentage.

M is the multiplier to inflate a pilot standard deviation to its UCL for use in the main trial planning.

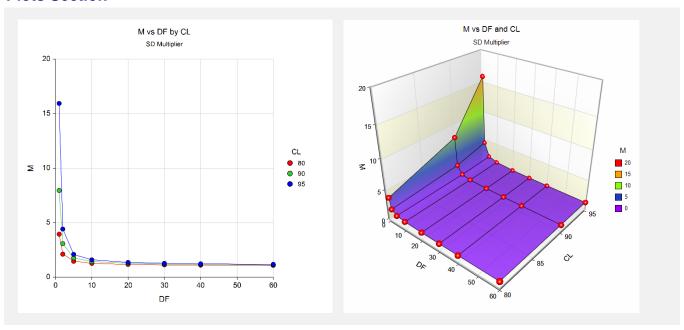
MN is the corresponding multiplier to inflate the sample size N. Note that $MN = M \times M$.

UCL of the Standard Deviation from a Pilot Study

References

Browne, R.H. 1995. 'On the use of a pilot sample for sample size determination'. Stat Med. Vol 14. Pages 1933-1940.

Whitehead, A.L., Julious, S, Cooper, C.L., Campbell, M.J. 2016. 'Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable'. Stat Meth Med Res. Vol 25(3). Pages 1057-1073.


Machin, D, Campbell, M.J., Tan, S.B, Tan, S.H. 2018. 'Sample Sizes for Clinical, Laboratory and Epidemiology Studies, Fourth Edition'. John Wiley and Sons. Hoboken, New Jersey.

Summary Statements

The standard deviation from a pilot study based on 1 degrees of freedom should be multiplied by 3.9472 to inflate it to the 80% confidence limit. This will inflate the sample size by a factor of 15.5800 over its value if the pilot standard deviation is used without adjustment.

This report shows the calculated multiple for each of the scenarios.

Plots Section

These plots show the calculated values of M for various DF and CL.

Example 2 – Validation using Machin et al. (2018)

Machin *et al.* (2018) page 265 give Table 16.1 which contains multipliers for various scenarios. We will duplicate the first row of this table as a validation example. In this example DF = 1 and CL = 80, 90, 95. Multipliers are calculated as 3.947, 7.958, and 15.947.

Setup

This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load the UCL of the Standard Deviation from a Pilot Study procedure. You may then make the appropriate entries as listed below, or open Example 2 by going to the File menu of the procedure window and choosing Open Example Template.

<u>Option</u>	<u>Value</u>
Design Tab	
Solve For	. M (Std Dev Multiplier)
CL (Confidence Level Percentage)	. 80 90 95
DF (Degrees of Freedom)	.1

Output

Click the Calculate button to perform the calculations and generate the following output.

Numeric Results

Degrees	Confidence		
of	Level	SD	N
Freedom	Percentage	Multiplier	Multiplier
DF	ČL	M	MN
1	80	3.9472	15.5800
1	90	7.9579	63.3281
1	95	15.9472	254.3144

PASS matches the first row of Table 16.1 on page 265 exactly.

Example 3 – Calculating the Two-Sided Multipliers

Suppose you want to see the two-sided SD multipliers for a confidence level of 90. You want the values for DF = 1.251020304060.

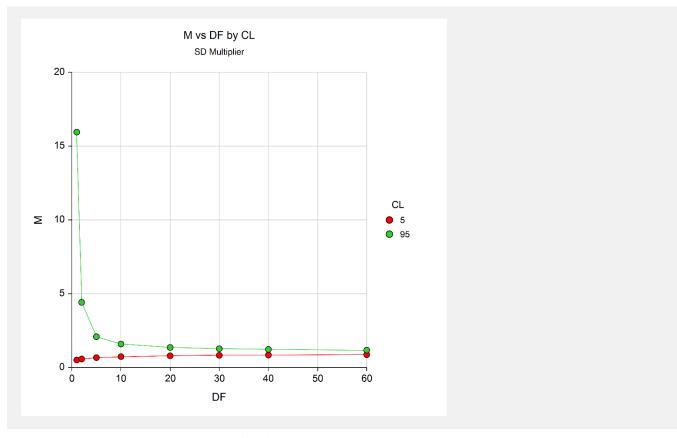
Setup

This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load the **UCL** of the **Standard Deviation from a Pilot Study** procedure. You may then make the appropriate entries as listed below, or open **Example 3** by going to the **File** menu of the procedure window and choosing **Open Example Template**.

<u>Option</u>	<u>Value</u>
Design Tab	
Solve For	SD Multiplier
CL (Confidence Level Percentage)	5 95
DF (Degrees of Freedom)	1 2 5 10 20 30 40 60

Output

Click the Calculate button to perform the calculations and generate the following output.


Numeric Results

Degrees of	Confidence Level	SD	N
Freedom	Percentage	Multiplier	Multiplier
DF	CL	M	MN
1	5	0.5102	0.2603
2	5	0.5778	0.3338
5	5	0.6720	0.4517
10	5	0.7391	0.5462
20	5	0.7980	0.6367
30	5	0.8279	0.6854
40	5	0.8470	0.7174
60	5	0.8710	0.7587
1	95	15.9472	254.3144
2	95	4.4154	19.4957
5	95	2.0893	4.3650
10	95	1.5931	2.5379
20	95	1.3576	1.8432
30	95	1.2737	1.6223
40 60	95 95	1.2284 1.1787	1.5089 1.3893

This report shows the calculated multiplier for each of the scenarios.

UCL of the Standard Deviation from a Pilot Study

Plots Section

This plot shows the calculated values of M for various DF and CL.