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Preface 
Number Cruncher Statistical System (NCSS) is an advanced, easy-to-use statistical analysis 
software package. The system was designed and written by Dr. Jerry L. Hintze over the last 
several years. Dr. Hintze drew upon his experience both in teaching statistics at the university 
level and in various types of statistical consulting. 

The present version, written for 32-bit versions of Microsoft Windows (95, 98, ME, 2000, NT, 
etc.) computer systems, is the result of several iterations. Experience over the years with several 
different types of users has helped the program evolve into its present form. 

Statistics is a broad, rapidly developing field. Updates and additions are constantly being made to 
the program. If you would like to be kept informed about updates, additions, and corrections, 
please send your name, address, and phone number to: 

 
 User Registration 
 NCSS 
 329 North 1000 East 
 Kaysville, Utah 84037 
  
or Email you name, address, and phone number to: 
 
 Sales@NCSS.COM 
 
NCSS maintains a website at WWW.NCSS.COM where we make the latest edition of NCSS 
available for free downloading. The software is password protected, so only users with valid 
serial numbers may use this downloaded edition. We hope that you will download the latest 
edition routinely and thus avoid any bugs that have been corrected since you purchased your 
copy. 

NCSS maintains the following program and documentation copying policy. Copies are limited to 
a one person / one machine basis for “BACKUP” purposes only. You may make as many backup 
copies as you wish. Further distribution constitutes a violation of this copy agreement and will be 
prosecuted to the fullest extent of the law. 

NCSS is not “copy protected.”  You may freely load the program onto your hard disk. We have 
avoided copy protection in order to make the system more convenient for you. Please honor our 
good faith (and low price) by avoiding the temptation to distribute copies to friends and 
associates. 

We believe this to be an accurate, exciting, easy-to-use system. If you find any portion that you 
feel needs to be changed, please let us know. Also, we openly welcome suggestions for additions 
to the system. 
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Chapter 200 

Descriptive 
Statistics 
Introduction 
This procedure summarizes variables both statistically and graphically. Information about the 
location (center), spread (variability), and distribution is provided. The procedure provides a large 
variety of statistical information about a single variable. 

Kinds of Research Questions 
The use of this module for a single variable is generally appropriate for one of four purposes: 
numerical summary, data screening, outlier identification (which sometimes is incorporated into 
data screening), and distributional shape. We will briefly discuss each of these now. 

Numerical Descriptors 
The numerical descriptors of a sample are called statistics. These statistics may be categorized as 
location, spread, shape indicators, percentiles, and interval estimates.  

Location or Central Tendency 
One of the first impressions that we like to get from a variable is its general location. You might 
think of this as the center of the variable on the number line. The average (mean) is a common 
measure of location. When investigating the center of a variable, the main descriptors are the 
mean, median, mode, and the trimmed mean. Other averages, such as the geometric and harmonic 
mean, have specialized uses. We will now briefly compare these measures. 

If the data come from the normal distribution, the mean, median, mode, and the trimmed mean 
are all equal. If the mean and median are very different, most likely there are outliers in the data 
or the distribution is skewed. If this is the case, the median is probably a better measure of 
location. The mean is very sensitive to extreme values and can be seriously contaminated by just 
one observation.  

A compromise between the mean and median is given by the trimmed mean (where a 
predetermined number of observations are trimmed from each end of the data distribution). This 
trimmed mean is more robust than the mean but more sensitive than the median. Comparison of 
the trimmed mean to the median should show the trimmed mean approaching the median as the 
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degree of trimming increases. If the trimmed mean converges to the median for a small degree of 
trimming, say 5 or 10%, the number of outliers is relatively few. 

Variability, Dispersion, or Spread 
After establishing the center of a variable’s values, the next question is how closely the data fall 
about this center. The pattern of the values around the center is called the spread, dispersion, or 
variability. There are numerous measures of variability: range, variance, standard deviation, 
interquartile range, and so on. All of these measures of dispersion are affected by outliers to some 
degree, but some do much better than others. 

The standard deviation is one of the most popular measures of dispersion. Unfortunately, it is 
greatly influenced by outlying observations and by the overall shape of the distribution. Because 
of this, various substitutes for it have been developed. It will be up to you to decide which is best 
in a given situation. 

Shape 
The shape of the distribution describes the pattern of the values along the number line. Are there a 
few unique values that occur over and over, or is there a continuum? Is the pattern symmetric or 
asymmetric? Are the data bell shaped? Do they seem to have a single center or are there several 
areas of clumping? These are all aspects of the shape of the distribution of the data. 

Two of the most popular measures of shape are skewness and kurtosis. Skewness measures the 
direction and lack of symmetry. The more skewed a distribution is, the greater the need for using 
robust estimators, such as the median and the interquartile range. Positive skewness indicates a 
longtailedness to the right while negative skewness indicates longtailedness to the left. Kurtosis 
measures the heaviness of the tails. A kurtosis value less than three indicates lighter tails than a 
normal distribution. Kurtosis values greater than three indicate heavier tails than a normal 
distribution. 

The measures of shape require more data to be accurate. For example, a reasonable estimate of 
the mean may require only ten observations in a random sample. The standard deviation will 
require at least thirty. A reasonably detailed estimate of the shape (especially if the tails are 
important) will require several hundred observations. 

Percentiles 
Percentiles are extremely useful for certain applications as well as for cases when the distribution 
is very skewed or contaminated by outliers. If the distribution of the variable is skewed, you 
might want to use the exact interval estimates for the percentiles. 

Confidence Limits or Interval Estimates 
An interval estimate of a statistic gives a range of its possible values. Confidence limits are a 
special type of interval estimate that have, under certain conditions, a level of confidence or 
probability attached to them.  

If the assumption of normality is valid, the confidence intervals for the mean, variance, and 
standard deviation are valid. However, the standard error of each of these intervals depends on 
the sample standard deviation and the sample size. If the sample standard deviation is inaccurate, 
these other measures will be also. The bottom line is that outliers not only affect the standard 
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deviation but also all confidence limits that use the sample standard deviation. It should be 
obvious then that the standard deviation is a critical measure of dispersion in parametric methods. 

Data Screening 
Data screening involves missing data, data validity, and outliers. If these issues are not dealt with 
prior to the use of descriptive statistics, errors in interpretations are very likely. 

Missing Data 
Whenever data are missing, questions need to be asked.  

1. Is the missingness due to incomplete data collection?  If so, try to complete the data 
collection.  

2. Is the missingness due to nonresponse from a survey?  If so, attempt to collect data from 
the nonresponders.  

3. Are the missing data due to a censoring of data beyond or below certain values?  If so, 
some different statistical tools will be needed.  

4. Is the pattern of missingness random? If only a few data points are missing from a large 
data set and the pattern of missingness is random, there is little to be concerned with. 
However, if the data set is small or moderate in size, any degree of missingness could 
cause bias in interpretations. 

Whenever missing values occur without answers to the above questions, there is little that can be 
done. If the distributional shape of the variable is known and there are missing data for certain 
percentiles, estimates could be made for the missing values. If there are other variables in the data 
set as well and the pattern of missingness is random, multiple regression and multivariate 
methods can be used to estimate the missing values. 

Data Validity 
Data validity needs to be confirmed prior to any statistical analysis, but it usually begins after a 
univariate descriptive analysis. Extremes or outliers for a variable could be due to a data entry 
error, to an incorrect or inappropriate specification of a missing code, to sampling from a 
population other than the intended one, or due to a natural abnormality that exists in this variable 
from time to time. The first two cases of invalid data are easily corrected. The latter two require 
information about the distribution form and necessitate the use of regression or multivariate 
methods to re-estimate the values. 

Outliers 
Outliers in a univariate data set are defined as observations that appear to be inconsistent with the 
rest of the data. An outlier is an observation that sticks out at either end of the data set.  

The visualization of univariate outliers can be done in three ways: with the stem-and-leaf plot, 
with the box plot, and with the normal probability plot. In each of these informal methods, the 
outlier is far removed from the rest of the data. A word of caution: the box plot and the normal 
probability plot evaluate the potentiality of an outlier assuming the data are normally distributed. 
If the variable is not normally distributed, these plots may indicate many outliers. You must be 
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careful about checking what distributional assumptions are behind the outliers you may be 
looking for.  

Outliers can completely distort descriptive statistics. For instance, if one suspects outliers, a 
comparison of the mean, median, mode, and trimmed mean should be made. If the outliers are 
only to one side of the mean, the median is a better measure of location. On the other hand, if the 
outliers are equally divergent on each side of the center, the mean and median will be close 
together, but the standard deviation will be inflated. The interquartile range is the only measure of 
variation not greatly affected by outliers. Outliers may also contaminate measures of skewness 
and kurtosis as well as confidence limits. 

This discussion has focused on univariate outliers, in a simplistic way. If the data set has several 
variables, multiple regression and multivariate methods must be used to identify these outliers. 

Normality 
A primary use of descriptive statistics is to determine whether the data are normally distributed. If 
the variable is normally distributed, you can use parametric statistics that are based on this 
assumption. If the variable is not normally distributed, you might try a transformation on the 
variable (such as, the natural log or square root) to make the data normal. If a transformation is 
not a viable alternative, nonparametric methods that do not require normality should be used. 

NCSS provides seven tests to formally test for normality. If a variable fails a normality test, it is 
critical to look at the box plot and the normal probability plot to see if an outlier or a small subset 
of outliers has caused the nonnormality. A pragmatic approach is to omit the outliers and rerun 
the tests to see if the variable now passes the normality tests. 

Always remember that a reasonably large sample size is necessary to detect normality. Only 
extreme types of nonnormality can be detected with samples less than fifty observations. 

There is a common misconception that a histogram is always a valid graphical tool for assessing 
normality. Since there are many subjective choices that must be made in constructing a 
histogram, and since histograms generally need large sample sizes to display an accurate picture 
of normality, preference should be given to other graphical displays such as the box plot, the 
density trace, and the normal probability plot. 

Data Structure 
The data are contained in a single variable.  

 

SAMPLE dataset (subset) 

Height 
64 
63 
67 
. 
. 
. 
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Procedure Options 
This section describes the options available in this procedure. To find out more about using a 
procedure, turn to the Procedures chapter. 

Following is a list of the procedure’s options. 

Variables Tab 
The options on this panel specify which variables to use.  

Data Variables 

Variable(s) 
Specify a list of one or more variables upon which the univariate statistics are to be generated. 
You can double-click the field or single click the button on the right of the field to bring up the 
Variable Selection window. 

Grouping Variables 

Group (1-5) Variable 
You can select up to five categorical variables. When one or more of these are specified, a 
separate set of reports is generated for each unique set of values for these variables. 

Frequency Variable 

Frequency Variable 
This optional variable specifies the number of observations that each row represents. When 
omitted, each row represents a single observation. If your data is the result of a previous 
summarization, you may want certain rows to represent several observations. Note that negative 
values are treated as a zero weight and are omitted. This is one way of weighting your data. 

Data Transformation Options 

Exponent 
Occasionally, you might want to obtain a statistical report on the square root or square of your 
variable. This option lets you specify an on-the-fly transformation of the variable. The form of 
this transformation is X = YA, where Y is the original value, A is the selected exponent, and X is 
the value that is summarized. 

Additive Constant 
Occasionally, you might want to obtain a statistical report on a transformed version of a variable. 
This option lets you specify an on-the-fly transformation of the variable. The form of this 
transformation is X = Y+B, where Y is the original value, B is the selected value, and X is the 
value that is summarized. 

Note that if you apply both the Exponent and the Additive Constant, the form of the 
transformation is X = (Y+B)A. 
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Reports Tab 
The options on this panel control the format of the report.  

Select Reports 

Summary Section … Percentile Section 
Each of these options indicates whether to display the indicated report.  

Select Plots 

Stem Leaf, Histogram, Probability Plot  
Each of these options indicates whether to display the indicated plot.  

Report Options 

Alpha Level 
The value of alpha for the confidence limits and rejection decisions. Usually, this number will 
range from 0.1 to 0.001. The default value of 0.05 results in 95% confidence limits. 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports were formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Value Labels 
This option applies to the Group Variable(s). It lets you select whether to display data values, 
value labels, or both. Use this option if you want the output to automatically attach labels to the 
values (like 1=Yes, 2=No, etc.). See the section on specifying Value Labels elsewhere in this 
manual.  

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Report Options - Decimal Places 

Values, Means, Probabilities 
Specify the number of decimal places when displaying this item. Select ‘General’ to display all 
possible decimal places. 

Report Options - Percentiles 

Percentile Type 
This selects from five methods used to calculate the pth percentile, zp. The first option, Xp(n+1), 
gives the common value of the median. These options are: 
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• AveXp(n+1) 
The 100pth percentile is computed as 

Zp = (1-g)X[k1] + gX[k2] 

where k1 equals the integer part of p(n+1), k2=k1+1, g is the fractional part of p(n+1), and 
X[k] is the kth observation when the data are sorted from lowest to highest.  

• AveXp(n) 
The 100pth percentile is computed as 

Zp = (1-g)X[k1] + gX[k2] 

where k1 equals the integer part of np, k2=k1+1, g is the fractional part of np, and X[k] is the 
kth observation when the data are sorted from lowest to highest.  

• Closest to np 
The 100pth percentile is computed as 

Zp = X[k1] 

where  k1 equals the integer that is closest to np and X[k] is the kth observation when the data 
are sorted from lowest to highest.  

• EDF 
The 100pth percentile is computed as 

Zp = X[k1]  

where k1 equals the integer part of np if np is exactly an integer or the integer part of np+1 if 
np is not exactly an integer. X[k] is the kth observation when the data are sorted from lowest to 
highest. Note that EDF stands for empirical distribution function. 

• EDF w/Ave 
The 100pth percentile is computed as 

Zp = (X[k1] + X[k2])/2 

where k1 and k2 are defined as follows: If np is an integer, k1=k2=np. If np is not exactly an 
integer, k1 equals the integer part of np and k2 = k1+1. X[k] is the kth observation when the 
data are sorted from lowest to highest. Note that EDF stands for empirical distribution 
function.  

• Smallest Percentile 
By default, the smallest percentile displayed is the 1st percentile. This option lets you change 
this value to any value between 0 and 100. For example, you might enter 2.5 to see the 2.5th 
percentile. 

• Largest Percentile 
By default, the largest percentile displayed is the 99th percentile. This option lets you change 
this value to any value between 0 and 100. For example, you might enter 97.5 to see the 
97.5th percentile. 
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Probability Plot Tab 
The options on this panel control the appearance of the probability plot. 

Vertical and Horizontal Axis 

Label  
This is the text of the label. The characters {Y} are replaced by the name of the variable. The 
characters {M} are replaced by the name of the selected probability distribution. Press the button 
on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on each axis. If left 
blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the tick labels along each axis. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Probability Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} are replaced by the name of the variable. The 
characters {M} are replaced by the name of the selected probability distribution. Press the button 
on the right of the field to specify the font of the text. 
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Histogram Tab 
The options on this panel control the appearance of the histogram. 

Vertical and Horizontal Axis 

Label  
This is the text of the label. The characters {Y} are replaced by the name of the variable. The 
characters {M} are replaced by the name of the selected probability distribution. Press the button 
on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on each axis. If left 
blank, these values are calculated from the data. 

Tick Label Settings 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the tick labels along each axis. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Histogram Settings 

Plot Style File 
Designate a histogram style file. This file sets all histogram options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Histogram procedure. 

Number of Bars 
Specify the number of intervals, bins, or bars used in the histogram. 

Titles 

Plot Title 
This is the text of the title. The characters {X} are replaced by the name of the variable. Press the 
button on the right of the field to specify the font of the text. 
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Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Running Descriptive Statistics 
This section presents a detailed example of how to run a descriptive statistics report on the Height 
variable in the  SAMPLE database. To run this example, take the following steps (note that step 1 
is not necessary if the SAMPLE dataset is open): 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Descriptive Statistics window. 

1 Open the SAMPLE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Sample.s0. 
• Click Open. 

2 Open the Descriptive Statistics window. 
• On the menus, select Analysis, then Descriptive Statistics, then Descriptive Statistics. 

The Descriptive Statistics procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3  Specify the Height variable. 
• On the Descriptive Statistics window, select the Variables tab. (This is the default.) 
• Double-click in the Variables text box. This will bring up the variable selection window. 
• Select Height from the list of variables and then click Ok. The word “Height” will 

appear in the Variables box. Remember that you could have entered a “1” here signifying 
the first (left-most) variable on the dataset. 
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4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

 

The following reports and charts will be displayed in the Output window. 

Descriptive Statistics Report 
This report is rather large and complicated, so we will define each section separately. Usually, 
you will focus on only a few items from this report. Unfortunately, each user wants a different 
few items, so we had to include much more than any one user needs! 

Several of the formulas involve both raw and central moments. The raw moments are defined as: 
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The central moments are defined as: 
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Large sample estimates of the standard errors are provided for several statistics. These are based 
on the following formula from Kendall and Stuart (1987): 
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Summary Section 
 

Summary Section of  Height 
  Standard Standard 
Count Mea  Deviation Error Minimum Maximum Range n
20 62.1 8.441128 1.887493 51 79 28 

 

Count 
This is the number of nonmissing values. If no frequency variable was specified, this is the 
number of nonmissing rows. 

Mean 
This is the average of the data values. (See Means Section below.) 

Standard Deviation 
This is the standard deviation of the data values. (See Variation Section below.) 
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Standard Error 
This is the standard error of the mean. (See Means Section below.) 

Minimum 
The smallest value in this variable. 

Maximum 
The largest value in this variable. 

Range 
The difference between the largest and smallest values for a variable. If the data for a given 
variable is normally distributed, a quick estimate of the standard deviation can be made by 
dividing the range by six. 

Count Section 
 

Counts Section of Height 
 Sum of Missin  Distinc   Total Adjusted g t
Ro s Frequencies Values Values Sum Sum Squares Sum Squares w
75 20 55 14 1242 78482 1353.8 

 

Rows 
This is the total number of rows available in this variable. 

Sum of Frequencies 
This is the number of nonmissing values. If no frequency variable was specified, this is the 
number of nonmissing rows. 

Missing Values 
The number of missing (empty) rows. 

Distinct Values 
This is the number of unique values in this variable. This value is useful for finding data entry 
errors and for determining if a variable is continuous or discrete. 

Sum 
This is the sum of the data values. 

Total Sum Squares 
This is the sum of the squared values of the variable. It is sometimes referred to as the unadjusted 
sum of squares. It is reported for its usefulness in calculating other statistics and is not interpreted 
directly. 

sum squares x i
i

n
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1=
∑  
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Adjusted Sum Squares 
This is the sum of the squared differences from the mean. 

sum squares x xi
i

n

 =  ( )−
=
∑ 2

1

 

Means Section 
 

Means Section of Height 
   Geom ic Harm nic etr o
Parameter Mea  Median Mean Mean Sum Mode n
Value 62.1 5 57052 05865 1242 52 59. 61. 61.
Std Error 1.887493    37.74987  
95% LCL 58.14943 56   1162.989  
95% UC  66.05057 67   1321.011  L
T-Value 32.9008 
Prob Level .000000 
Count 20  20 20  3 

 

Mean 
This is the average of the data values. 
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Std Error (Mean) 
This is the standard error of the mean. This is the estimated standard deviation for the distribution 
of sample means for an infinite population. 

s
s
nx =   

LCL and 95% UCL of the Mean 
This is the upper and lower values of a 100(1-α) interval estimate for the mean based on a t 
distribution with n-1 degrees of freedom. This interval estimate assumes that the population 
standard deviation is not known and that the data for this variable are normally distributed. 

x t sa n x± −/ ,2 1  

T-Value (Mean) 
This is the t-test value for testing that the sample mean is equal to zero versus the alternative that 
it is not. The degrees of freedom for this t-test are n-1. The variable that is being tested must be 
approximately normally distributed for this test to be valid. 

t  =  x 
sn

x
α / ,2 1−  
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Prob Level (Mean) 
This is the significance level of the above t-test, assuming a two-tailed test. Generally, this p-
value is compared to the level of significance, .05 or .01, chosen by the researcher. If the p-value 
is less than the pre-determined level of significance, the sample mean is different from zero. 

Median 
The value of the median. The median is the 50th percentile of the data set. It is the point that 
splits the data base in half. The value of the percentile depends upon the percentile method that 
was selected. 

LCL and 95% UCL of the Median 
These are the values of an exact confidence interval for the median. These exact confidence 
intervals are discussed in the Percentile Section. 

Geometric Mean 
The geometric mean (GM) is an alternative type of mean that is used for business, economic, and 
biological applications. Only nonnegative values are used in the computation. If one of the values 
is zero, the geometric mean is defined to be zero. 

One example of when the GM is appropriate is when a variable is the product of many small 
effects combined by multiplication instead of addition. 
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An alternative form, showing the GM’s relationship to the arithmetic mean, is: 

GM =  
n

xiexp ln( )1∑⎛
⎝⎜

⎞
⎠⎟  

Count for Geometric Mean 
The number of positive numbers used in computing the geometric mean. 

Harmonic Mean 
The harmonic mean is used to average rates. For example, suppose we want the average speed of 
a bus that travels a fixed distance every day at speeds s1, s2, and s3. The average speed, found by 
dividing the total distance by the total time, is equal to the harmonic mean of the three speeds. 
The harmonic mean is appropriate when the distance is constant from trial to trial and the time 
required was variable. However, if the times were constant and the distances were variable, the 
arithmetic mean would have been appropriate. 

Only nonzero values may be used in its calculation.  

HM =  
n

x ii

n 1

1=
∑

 

Count for the Harmonic Mean 
The number of nonzero numbers used in computing the harmonic mean. 
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Sum 
This is the sum of the data values. The standard error and confidence limits are found by 
multiplying the corresponding values for the mean by the sample size, n. 

Std Error of Sum 
This is the standard deviation of the distribution of sums. With this standard error, confidence 
intervals and hypothesis testing can be done for the sum. The assumptions for the interval 
estimate of the mean must also hold here. 

s nsum xs=  

Mode 
This is the most frequently occurring value in a data. 

Mode Count 
This is a count of the most frequently occurring value, i.e., frequency. 

Variation Section 
 

Variation Section of Height 
  Standard Unbiase  Std Erro  Interquartile d r
Parameter Variance Deviation Std Dev of Mean Range Range 
Value 71.25263 8.441128 77 1.887493 14 28 8.5528
Std Error 17.01612 1.425427  0.3187352 
95% LCL 41.20865 6.419396  1.435421 
95% UCL 152.0011 12.32887  2.756819 

 

Variance 
The sample variance, s2, is a popular measure of dispersion. It is an average of the squared 
deviations from the mean. 
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Std Error of Variance 
This is a large sample estimate of the standard error of s2 for an infinite population. 

LCL of the Variance 
This is the lower value of a 100(1-α) interval estimate for the variance based on the chi-squared 
distribution with n-1 degrees of freedom. This interval estimate assumes that the variable is 
normally distributed. 

LCL =  
s (n - 1)2

/ 2 n
2
αχ , −1
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UCL of the Variance 
This is the upper value of a 100(1-α) interval estimate for the variance based on the chi-squared 
distribution with n-1 degrees of freedom. This interval estimate assumes that the variable is 
normally distributed. 

UCL =  
s (n - 1)2

/ 2 n
2
1 1− −αχ ,

 

Standard Deviation 
The sample standard deviation, s, is a popular measure of dispersion. It measures the average 
distance between a single observation and its mean. The use of n-1 in the denominator instead of 
the more natural n is often of concern. It turns out that if n (instead of n-1) were used, a biased 
estimate of the population standard deviation would result. The use of n-1 corrects for this bias. 

Unfortunately, s is inordinately influenced by outliers. For this reason, you must always check for 
outliers in your data before you use this statistic. Also, s is a biased estimator of the population 
standard deviation. An unbiased estimate, calculated by adjusting s, is given under the heading 
Unbiased Std Dev. 
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Another form of the above formula that shows that the standard deviation is proportional to the 
difference between each pair of observations. Notice that the sample mean does not enter into this 
second formulation. 
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Std Error of Standard Deviation 
This is a large sample estimate of the standard error of s for an infinite population. 

LCL of Standard Deviation 
This is the lower value of a 100(1-α) interval estimate for the standard deviation based on the chi-
squared distribution with n-1 degrees of freedom. This interval estimate assumes that the variable 
is normally distributed. 

LCL =  
s (n - 1)2

/ 2 n
2
αχ , −1

 

UCL of Standard Deviation 
This is the upper value of a 100(1-α) interval estimate for the standard deviation based on the chi-
squared distribution with n-1 degrees of freedom. This interval estimate assumes that the variable 
is normally distributed. 

UCL =  
s (n - 1)2

/ 2 n
2
1 1− −αχ ,
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Unbiased Std Dev 
This is an unbiased estimate of the standard deviation. If the data come from a normal 
distribution, the sample variance, s2, is an unbiased estimate of the population variance. 
Unfortunately, the sample standard deviation, s, is a biased estimate of the population standard 
deviation. This bias is usually overlooked, but division of s by a correction factor, c4, will correct 
for this bias. This is frequently done in quality control applications. The formula for c4 is: 
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where 

Γ( )n t en t= − − dt
∞∫ 1

0
 

Std Error of Mean 
This is an estimate of the standard error of the mean. This is an estimate of the precision of the 
sample mean. It, its standard error and confidence limits, are calculated by dividing the 
corresponding Standard Deviation value by the square root of n.  

Interquartile Range 
This is the interquartile range (IQR). It is the difference between the third quartile and the first 
quartile (between the 75th percentile and the 25th percentile). This represents the range of the 
middle 50 percent of the distribution. It is a very robust (not affected by outliers) measure of 
dispersion. In fact, if the data are normally distributed, a robust estimate of the sample standard 
deviation is IQR/1.35. If a distribution is very concentrated around its mean, the IQR will be 
small. On the other hand, if the data are widely dispersed, the IQR will be much larger. 

Range 
The difference between the largest and smallest values for a variable. If the data for a given 
variable is normally distributed, a quick estimate of the standard deviation can be made by 
dividing the range by six. 

Skewness and Kurtosis Section 
 

Skewness and Kurtosis Section of Height 
     Coefficient Coefficient 
Parameter Skewnes  Kurtosis Fisher's g  Fisher's g2 of Variati n of Dispersion s 1 o
Value 0.471155 2.140641 2501 79873 0.135928 0.1142857 0.510 -0.74
Std Error 0.3343679 0.5338696   0.0148992 

 

Skewness 
This statistic measures the direction and degree of asymmetry. A value of zero indicates a 
symmetrical distribution. A positive value indicates skewness (longtailedness) to the right while a 
negative value indicates skewness to the left. Values between -3 and +3 indicate are typical 
values of samples from a normal distribution. For an alternative measure of skewness, see 
Fisher’s g1, below. 
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Std Error of Skewness 
This is a large sample estimate of the standard error of skewness for an infinite population. 

Kurtosis 
This statistic measures the heaviness of the tails of a distribution. The usual reference point in 
kurtosis is the normal distribution. If this kurtosis statistic equals three and the skewness is zero, 
the distribution is normal. Unimodal distributions that have kurtosis greater than three have 
heavier or thicker tails than the normal. These same distributions also tend to have higher peaks 
in the center of the distribution (leptokurtic). Unimodal distributions whose tails are lighter than 
the normal distribution tend to have a kurtosis that is less than three. In this case, the peak of the 
distribution tends to be broader than the normal (platykurtic). Be forewarned that this statistic is  

an unreliable estimator of kurtosis for small sample sizes. For an alternative measure of skewness, 
see Fisher’s g2, below. 

b
m
m2 =  4
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2  

Std Error of Kurtosis 
This is a large sample estimate of the standard error of skewness for an infinite population. 

Fisher’s g1 
Fisher’s g1 measure is an alternative measure of skewness.  

1
1g  =  

n(n -1) b
n - 2

 

Fisher’s g2 
The Fisher’s g2 measure is an alternative measure of kurtosis. 

2 2g  =  
(n+1)(n -1)
(n - 2)(n - 3)
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Coefficient of Variation 
The coefficient of variation is a relative measure of dispersion. It is most often used to compare 
the amount of variation in two samples. It can be used for the same data over two time periods or 
for the same time period but two different places. It is the standard deviation divided by the mean: 

cv =  s
x

  

Std Error of Coefficient of Variation 
This is a large sample estimate of the standard error of the estimated coefficient of variation. 

Coefficient of Dispersion 
The coefficient of dispersion is a robust, relative measure of dispersion. It is frequently used in 
real estate or tax assessment applications. 
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Trimmed Section 
 

Trimmed Section of Height 
 5% 10% 15% 25% 35% 45% 
Parameter Trimmed Trimmed Trimmed Trimmed Trimmed Trimmed 
Trim-Mean 61.77778 61.5 61.35714 60.9 60.5 59.5 
Trim-Std Dev 7.448297 6.552353 5.692196 3.60401 2.428992 0.7071068 
Count 18 16 14 10 6 2 

 

%Trimmed 
We call 100g the trimming percentage, the percent of data that is trimmed from each side of the 
sorted data. Thus, if g = 5%, for a sample size of 200, 10 observations are ignored from each side 
of the sorted array of data values. Note that our formulation allows fractional data values. 
Different trimming percentages are available, but 5% and 10% are the most common in practice. 

Trim-Mean 
These are the alpha-trimmed means discussed by Hoaglin (1983, page 311). These are useful for 
quickly assessing the impact of outliers. You would like to see stability in these trimmed means 
after a small degree of trimming. The formula for the trimmed mean for 100g% trimming is 
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where [g = α  and r n g= −α . 

Trim-Std Dev 
This is the standard deviation of the observations that remain after the trimming. It can be used to 
evaluate changes in the standard deviation for different degrees of trimming. The formula for the 
trimmed standard deviation for 100g% trimming is the standard formula for a weighted average 
using the weights given below. 

ai = 0 if i g≤ or i n g≥ − +1 

a r
n ni =

−
−
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 if i g= +1or i n g= −  

a
n ni = −

1
2α

 if g i n g+ ≤ ≤ − −2 1  

Count 
This is the number of observations remaining after the trimming operation. Note that this may be 
a fractional amount under alpha-trimming. 
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Mean-Deviation Section 
 

Mean-Deviation Section of Height 
 
Parameter |X-Mean| |X-Median| (X-Mean)^2 (X-Mean ^3 (X-Mean)^4 )
Average 7.01  67.69 262.392 9808.281 6.8
Std Error 1.134273  16.16531 181.2807 3522.41 

 

Average of |X-Mean| 
This is a measure of dispersion, called the mean deviation or the mean absolute deviation. It is 
not affected by outliers as much as the standard deviation, since the differences from the mean are 
not squared. If the distribution for the variable of interest is normal, the mean deviation is 
approximately equal to 0.8 standard deviations. 
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Std Error of |X-Mean| 
This is an estimate of the standard error of the mean deviation. 
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Average of |X-Median| 
This is an alternate formulation of the mean deviation above that is more robust to outliers since 
the median is used as the center point of the distribution. 
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Average of (X-Mean)^2 
This is the second moment about the mean, m2. 

Std Error of (X-Mean)^2 
This is the estimated standard deviation of the second moment. 

Average of (X-Mean)^3 
This is the third moment about the mean, m3. 

Std Error of (X-Mean)^3 
This is the estimated standard deviation of the third moment. 

Average of (X-Mean)^4 
This is the fourth moment about the mean, m4. 

Std Error of (X-Mean)^4 
This is the estimated standard deviation of the fourth moment. 
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Quartile Section 
This gives the value of the jth percentile. Of course, the 25th percentile is called the first (lower) 
quartile, the 50th percentile is the median, and the 75th percentile is called the third (upper) 
quartile. 
 

Quartile Section 
 10th 25th 50th 75th 90th 
Parameter Percentile Percentile Percentile Percentile Percentile 
Value  56 59.5 70 75.7 52
95% LCL  51 56 60  
95% UCL  59 67 76  

 

Value 
These are the values of the specified percentiles. Note that the definition of a percentile depends 
on the type of percentile that was specified. 

LCL and 95% UCL 
These give an exact, 100(1-α)% confidence interval for the population percentile. This 
confidence interval does not assume normality. Instead, it only assumes a random sample of n 
items from a continuous distribution. The interval is based on the equation: 

1 1− 1= − + − − +α I r n r I n r rp p( , ) ( , )  

Here Ip(a,b) is the integral of the incomplete beta function: 
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and q=1-p and Ip(a,b) = 1- I1-p(b,a). 

Normality Test Section 
 

Normality Test Section 
 Test Prob 10% Critical 5% Critical Decision 
Test Name Value Level Value Value (5%) 
Shapiro-Wilk W 0.9373675 0.213730   Can't reject normality 
Anderson-Darling 0.443371 86   Can't reject normality 4 0.2862
Martinez-Iglewicz 1.025854  1.216194 1.357297 Can't reject normality 
Kolmogorov-Smirnov 0.1482353  0.176 0.192 Can't reject normality 
D'Agostino Skewness 1.0367 .299858 1.645 1.960 Can't reject normality 
D'Agostino Kurtosis -.7855 .432156 1.645 1.960 Can't reject normality 
D'Agostino Omnibus 1.6918 .429161 4.605 5.991 Can't reject normality 

 

Normality Tests 
This section displays the results of seven tests of the hypothesis that the data come from the 
normal distribution. The Shapiro-Wilk andAnderson-Darling tests are usually considered as the 
best. The Kolmogorov-Smirnov test is included because of its historical popularity, but is bettered 
in almost every way by the other tests. 

Unfortunately, these tests have small statistical power (probability of detecting nonnormal data) 
unless the sample sizes are large, say over 100. Hence, if the decision is to reject, you can be 
reasonably certain that the data are not normal. However, if the decision is to accept, the situation 
is not as clear. If you have a sample size of 100 or more, you can reasonably assume that the 
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actual distribution is closely approximated by the normal distribution. If your sample size is less 
than 100, all you know is that there was not enough evidence in your data to reject the normality 
assumption. In other words, the data might be nonnormal, you just could not prove it. In this case, 
you must rely on the graphics and past experience to justify the normality assumption. 

Shapiro-Wilk W Test 
This test for normality, developed by Shapiro and Wilk (1965), has been found to be the most 
powerful test in most situations. It is the ratio of two estimates of the variance of a normal 
distribution based on a random sample of n observations. The numerator is proportional to the 
square of the best linear estimator of the standard deviation. The denominator is the sum of 
squares of the observations about the sample mean. W may be written as the square of the 
Pearson correlation coefficient between the ordered observations and a set of weights which are 
used to calculate the numerator. Since these weights are asymptotically proportional to the 
corresponding expected normal order statistics, W is roughly a measure of the straightness of the 
normal quantile-quantile plot. Hence, the closer W is to one, the more normal the sample is. 

The probability values for W are valid for samples in the range of 3 to 5000. 

W may not be as powerful as other tests when ties occur in your data.  

The test is not calculated when a frequency variable is specified. 

Anderson-Darling Test 
This test, developed by Anderson and Darling (1954), is the most popular normality test that is 
based on EDF statistics. In some situations, it has been found to be as powerful as the Shapiro-
Wilk test. 

The test is not calculated when a frequency variable is specified. 

Martinez-Iglewicz 
This test for normality, developed by Martinez and Iglewicz (1981), is based on the median and a 
robust estimator of dispersion. They have shown that this test is very powerful for heavy-tailed 
symmetric distributions as well as a variety of other situations. A value of the test statistic that is 
close to one indicates that the distribution is normal. This test is recommended for exploratory 
data analysis by Hoaglin (1983). The formula for this test is: 
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where sbi
2 is a biweight estimator of scale. 

Martinez-Iglewicz (10% Critical and 5% Critical) 
The 10% and 5% critical values are given here. If the value of the test statistic is greater than this 
value, reject normality at that level of significance. 

Martinez-Iglewicz Decision (5%) 
This reports the outcome of this test at the 5% significance level. 
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Kolmogorov-Smirnov 
This test for normality is based on the maximum difference between the observed distribution and 
expected cumulative-normal distribution. Since it uses the sample mean and standard deviation to 
calculate the expected normal distribution, the Lilliefors’ adjustment is used. The smaller the 
maximum difference the more likely that the distribution is normal.  

This test has been shown to be less powerful than the other tests in most situations. It is included 
because of its historical popularity. 

Kolmogorov-Smirnov (10% Critical and 5% Critical) 
The 10% and 5% critical values are given here. If the value of the test statistic is greater than this 
value, reject normality at that level of significance. The critical values are the Lilliefors’ adjusted 
values as given by Dallal (1986). If the test value is greater than the reject critical value, 
normality is rejected at that level of significance. 

Kolmogorov-Smirnov Decision (5%) 
This reports the outcome of this test at the 5% significance level. 

D’Agostino Skewness 
D’Agostino (1990) describes a normality test based on the skewness coefficient, b1 . Recall that 
because the normal distribution is symmetrical, b1  is equal to zero for normal data. Hence, a 
test can be developed to determine if the value of b1  is significantly different from zero. If it is, 
the data are obviously nonnormal. The statistic, zs, is, under the null hypothesis of normality, 
approximately normally distributed. The computation of this statistic, which is restricted to 
sample sizes n>8, is  
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Skewness Test (Prob Level)  
This is the two-tail, significance level for this test. Reject the null hypothesis of normality if this 
value is less than a pre-determined value, say 0.05. 

Skewness Test Decision (5%) 
This reports the outcome of this test at the 5% significance level. 

D’Agostino Kurtosis 
D’Agostino (1990) describes a normality test based on the kurtosis coefficient, b2. Recall that for 
the normal distribution, the theoretical value of b2 is 3. Hence, a test can be developed to 
determine if the value of b2 is significantly different from 3. If it is, the data are obviously 
nonnormal. The statistic, zk, is, under the null hypothesis of normality, approximately normally 
distributed for sample sizes n>20. The calculation of this test proceeds as follows: 
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Prob Level of Kurtosis Test 
This is the two-tail significance level for this test. Reject the null hypothesis of normality if this 
value is less than a pre-determined value, say 0.05. 

Decision of Kurtosis Test 
This reports the outcome of this test at the 5% significance level. 
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D’Agostino Omnibus 
D’Agostino (1990) describes a normality test that combines the tests for skewness and kurtosis. 
The statistic, K2, is approximately distributed as a chi-square with two degrees of freedom. After 
calculated zs and zk, calculate K2 as follows: 

K z zs k
2 2= + 2  

Prob Level D’Agostino Omnibus 
This is the significance level for this test. Reject the null hypothesis of normality if this value is 
less than a pre-determined value, say 0.05. 

Decision of D’Agostino Omnibus Test 
This reports the outcome of this test at the 5% significance level. 

Histogram Plot 
The following plot combines a histogram, a density trace, and a dot plot. 
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Histogram 
The histogram is a traditional way of displaying the shape of a batch of data. It is constructed 
from a frequency distribution, where choices on the number of classes and class width have been 
made. These choices can drastically affect the shape of the histogram. The ideal shape to look for 
in the case of normality is a bell-shaped symmetrical distribution.  

Density Trace 
The density trace is a smoothed histogram in which the class width or interval and the number of 
bins or classes does not bias the perspective of shape. It is generally overlaid on top of the 
histogram. In evaluating normality, we look for a bell-shaped symmetrical distribution. 

Dot Plot 
This plot displays the data along the horizontal axis. A random, vertical component is added so 
that two points are not plotted at exactly the same point. The dot plot reminds you of the pattern 
of the actual data going into the histogram and density trace.  
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Normal Probability Plot 
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This is a plot of the inverse of the standard normal cumulative versus the ordered observations. If 
the underlying distribution of the data is normal, the points will fall along a straight line. 
Deviations from this line correspond to various types of nonnormality. Stragglers at either end of 
the normal probability plot indicate outliers. Curvature at both ends of the plot indicates long or 
short distribution tails. Convex, or concave, curvature indicates a lack of symmetry. Gaps, 
plateaus, or segmentation in the plot indicate certain phenomenon that need closer scrutiny.  

Confidence bands serve as a visual reference for departures from normality. If any of the 
observations fall outside the confidence bands, the data are not normal. The numerical normality 
tests will usually confirm this fact statistically. If only one observation falls outside the 
confidence limits, it may be an outlier. Note that these confidence bands are based on large 
sample formulas. They may not be accurate for small samples (less than 30). 

Percentile Section 
 
 Percentile Section of Height 
   
 Percentile Value 95% LCL 95% UCL Exact Conf. Level 
 99 79    
 95 78.85    
 90 75.7    
 85 72.7 64 79 95.53193 
 80 71 64 79 95.63281 
 75 70 60 76 96.1823 
 70 66.4 59 76 97.52179 
 65 64.65 59 73 96.83029 
 60 63.6 58 71 96.30099 
 55 61.65 58 71 95.97224 
 50 59.5 56 67 95.86105 
 45 59 56 65 95.97224 
 40 58.4 52 64 96.30099 
 35 58 52 63 96.83029 
 30 56.6 52 60 97.52179 
 25 56 51 59 95.59036 
 20 52.8 51 58 95.63281 
 15 52 51 58 95.53193 
 10 52    
 5 51.05    
 1 51    
  
 Percentile Formula: Ave X(p[n+1]) 
  
This section gives a larger set of percentiles than was included in the Quartile Section. Use it 
when you need a less common percentile. 
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Percentile 
This is the percentage amount that you want the percentile of. 

Value 
This gives the value of the pth percentile. Note that the percentile method used is listed at the 
bottom of the report. 

95%LCL and 95% UCL 
These give an exact, 100(1-α)% confidence interval for the population percentile. This 
confidence interval does not assume normality. Instead, it only assumes a random sample of n 
items from a continuous distribution. The interval is based on the equation: 

1 1− 1= − + − − +α I r n r I n r rp p( , ) ( , )  

Here Ip(a,b) is the integral of the incomplete beta function: 
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and q=1-p and Ip(a,b) = 1- I1-p(b,a). 

Exact Conf. Level 
Because of the discrete nature of the confidence interval constructed above, NCSS finds an 
interval that is less than the specified alpha level. This column gives the actual confidence 
coefficient of the interval. 

Stem-Leaf Plot Section 
  
 Stem-Leaf Plot Section of Height 
  
 Depth Stem  Leaves 
 4   5* | 1222 
 10    . | 668899 
 10   6* | 034 
 7    . | 57 
 5   7* | 113 
 2    . | 69 
     
 Unit = 1   Example:  1|2 Represents  12 
  
The stem-leaf plot is a type of histogram which retains much of the identity of the original data. It 
is useful for finding data-entry errors as well as for studying the distribution of a variable. 

Depth 
This is the cumulative number of leaves, counting in from the nearest end. 

Stem 
The stem is the first digit of the actual number. For example, the stem of the number 523 is 5 and 
the stem of 0.0325 is 3. This is modified appropriately if the batch contains numbers of different 
orders of magnitude. The largest order of magnitude is used in determining the stem. Depending 
upon the number of leaves, a stem may be divided into two or more sub-stems. A special set of 
symbols is then used to mark the stems. 
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In the current example, the star (*) represents numbers in the range of zero to four, while the 
period (.) represents numbers in the range of five to nine. 

Leaf 
The leaf is the second digit of the actual number. For example, the leaf of the number 523 is 2 and 
the leaf of 0.0325 is 2. This is modified appropriately if the batch contains numbers of different 
orders of magnitude. The largest order of magnitude is used in determining the leaf. 

Unit 
This line at the bottom indicates how the data were scaled to make the plot. 
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Chapter 201 

Descriptive Tables 
Introduction 
This procedure produces tables of means, medians, standard deviations, coefficients of variation, 
sums, and counts for various combinations of control (break) variables. Seven tabular formats are 
available. The tables are similar in structure to those produced by cross tabulation.  

This module is used to summarize data containing a combination of continuous and categorical 
variables. Large volumes of such data may be summarized in tables of means, counts, or standard 
deviation. Discussions of these statistics may be found in the Descriptive Statistics chapter and 
will not be reproduced here. 

Types of Categorical Variables 
Note that we will refer to two types of categorical variables: By and Break. Break variables are 
used to split a database into subgroups. A separate table is generated for each unique set of values 
of the Break variables. The values of a By variable are used to define the rows and columns of the 
tabulation table. Up to two By variables may be used per table. 

Data Structure 
The data below are a subset of the RESALE database provided with the software. This (computer 
simulated) data gives the selling price, the number of bedrooms, the total square footage (finished 
and unfinished), and the size of the lots for 150 residential properties sold during the last four 
months in two states. Only the first 8 of the 150 observations are displayed. 

 

RESALE dataset (subset) 

State Price Bedrooms TotalSqft LotSize 
Nev 260000 2 2042 10173 
Nev 66900 3 1392 13069 
Vir 127900 2 1792 7065 
Nev 181900 3 2645 8484 
Nev 262100 2 2613 8355 
Nev 147500 2 1935 7056 
Nev 167200 2 1278 6116 
Nev 395700 2 1455 14422 
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Missing Values 
The treatment of missing values must be carefully considered. You have the option to ignore 
missing values completely or to include them in the reports. If they are ignored, observations with 
missing values in either the categorical variable or the continuous variable are removed. 

Procedure Options 
This section describes the options available in this procedure. To find out more about using a 
procedure, turn to the Procedures chapter. 

Variables Tab 
This panel specifies the variables that will be used in the analysis. 

You can specify a Table Column variable or a Table Row variable or both. The unique values of 
these two variables will form the columns and rows of the table. If more than one variable is 
specified in either section, a separate table will be generated for each combination of variables.  

Four types of categorical variables may be specified: 

1. Variables containing text values. These are called Discrete Variables. 

2. Variables containing numeric values that are to be treated individually. For example, you 
might have used a set of index numbers like “1 2 3 4” to represent four states. These are 
also called Discrete Variables. 

3. Variables containing numeric values that are to be grouped or combined into a set of 
predefined intervals. You specify the interval boundaries. For example, a variable 
containing age values might be grouped as “Under 21, 21 to 55, and Over 55.” The key is 
that you specify the intervals. These are called Numeric Variables (Limits). 

4. Variables containing numeric values that are to be combined into a set of computer-
generated intervals. You specify only the number of intervals. The program determines a 
set of equal-length intervals based on the minimum and maximum found in the data. This 
format may cause problems since you do not set the interval boundaries directly. These 
are called Numeric Variables (Width). 

Data Variables 

Response Variables 
Select at least one response variable. The statistics (means, standard deviations, etc.) generated 
will be for the values in these variables. 

Frequency Variable 

Frequency Variable 
This optional variable specifies the number of observations that each row represents. When 
omitted, each row represents a single observation. If your data is the result of previous 
summarization, you may want certain rows to represent several observations. Note that negative 
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values are treated as a zero frequency and are omitted. Fractional values may be used. You may 
also think of this as a weighting variable. 

Select Table Type 

Table Format 
This option specifies which of the seven table formats you want to use. These formats were 
created based on the number of By variables used (0, 1, or 2), the number of Response Variables 
displayed, and the number of statistics displayed. 

• 1 Combined Stats, No By’s 
A single row of the specified statistics (count, mean, etc.) is generated for each Response 
Variable. Any Table Column Variables or Table Row Variables specified are ignored. An 
example of this table format is: 
 
Table of Summary Statistics 
 
Variable Count Mean Median Std Deviation 
X1 xxx xxx xxx xxx 
X2 xxx xxx xxx xxx 
X3 xxx xxx xxx xxx 
X4 xxx xxx xxx xxx 
 

• 2 Combined Stats, One By 
A cross-tabulation table is constructed in which one side (row or column) is made up of the 
Response Variables and the other is made up of the categories of the Table Column Variable 
(or Table Row Variable). Selected statistics are shown as individual rows of the table. One 
table is generated for each Table Column Variable and Table Row Variable. An example of 
this table format is: 
 
Table of Counts, Means, and Standard Deviations 
 
 By Var 1 
Variables Bv1 Bv2 Bv3 Total  
X1 n n n n 
 mean mean mean mean 
 std dev std dev std dev std dev 
 
X2 xxx xxx xxx xxx 
 mean mean mean mean 
 std dev std dev std dev std dev 
 
X3 xxx xxx xxx xxx 
 mean mean mean mean 
 std dev std dev std dev std dev 
 
X4 xxx xxx xxx xxx 
 mean mean mean mean 
 std dev std dev std dev std dev 
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• 3 Separate Stats, One By (Plots Possible) 
A cross-tabulation table is constructed in which one side (row or column) is made up of the 
Response Variables and the other is made up of the categories of the Table Column Variable 
(or Table Row Variable). A separate table is generated for each statistic. One table is 
generated for each Table Column Variable and Table Row Variable. Examples of this table 
format are: 
 
Table of Means 
 
 By Var 1 
Variables Bv1 Bv2 Bv3 Total 
X1 mean mean mean mean 
X2  mean mean mean mean 
X3  mean mean mean mean 
X4  mean mean mean mean 
 
 
Table of Std Deviations 
 
 By Var 1 
Variables Bv1 Bv2 Bv3 Total  
X1 std dev std dev std dev std dev 
X2  std dev std dev std dev std dev 
X3  std dev std dev std dev std dev 
X4  std dev std dev std dev std dev 
 

• 4 Combined Y’s, Two By’s 
A cross-tabulation table is constructed in which columns are based on the Table Column 
Variable, the rows are based on the Table Row Variable, and a separate table row is given for 
each Response Variable. A single table is generated for each statistic (mean, count, etc.). An 
example of this table format is: 
 
Table of Means 
 
 By Var 1 
By Var 2 Bc1 Bc2 Bc3 Total  
Br1 mean of X1 mean of X1 mean of X1 mean of X1 
 mean of X2 mean of X2 mean of X2 mean of X2 
 mean of X3 mean of X3 mean of X3 mean of X3 
 
Br2 mean of X1 mean of X1 mean of X1 mean of X1 
 mean of X2 mean of X2 mean of X2 mean of X2 
 mean of X3 mean of X3 mean of X3 mean of X3 
 
Br3 mean of X1 mean of X1 mean of X1 mean of X1 
 mean of X2 mean of X2 mean of X2 mean of X2 
 mean of X3 mean of X3 mean of X3 mean of X3 
 
Total mean of X1 mean of X1 mean of X1 mean of X1 
 mean of X2 mean of X2 mean of X2 mean of X2 
 mean of X3 mean of X3 mean of X3 mean of X3 
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• 5 Combined Stats, Two By’s  
A cross-tabulation table is constructed in which columns are based on the Table Column 
Variable, the rows are based on the Table Row Variable, and a separate table row is given for 
each statistic selected (mean, count, etc.). A single table is generated for each Response 
Variable. An example of this table format is: 
 
Table of Counts, Means, and Standard Deviations of X1 
 
 By Var 1 
By Var2 Bc1 Bc2 Bc3 Total  
Br1 n n n n 
 mean mean mean mean 
 std dev std dev std dev std dev 
 
Br2 n n n n 
 mean mean mean mean 
 std dev std dev std dev std dev 
 
Br3 n n n n 
 mean mean mean mean 
 std dev std dev std dev std dev 
 
Total n n n n 
 mean mean mean mean 
 std dev std dev std dev std dev 
 

• 6 Separate Stats, Two By’s (Plots Possible) 
A cross-tabulation table is constructed in which columns are based on the Table Column 
Variable, the rows are based on the Table Row Variable, and a separate table is given for 
each combination of statistic (mean, count, etc.) and Response Variable. An example of this 
table format is: 
 
Table of Means of X1 
 
 By Var 1 
By Var2 Bc1 Bc2 Bc3 Total 
Br1 mean mean mean mean 
Br2 mean mean mean mean 
Br3 mean mean mean mean 
Total mean mean mean mean 
 

• 7 List Format, One Row-By 
This format type creates a simple list of the data. This format requires that one Table-Row 
Variable be specified. You can also specify one or more Break Variables. The statistics listed 
on the report are specified by checking the appropriate checkboxes on this panel. 

This format is especially useful for creating a summarized version of a database. Here’s how: 

1. Run this procedure selecting this type of table format. 

2. Copy the output to the Windows clipboard. 

3. Paste the information into a new datasheet. You will want to adjusted the variable 
names appropriately. 
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An example of this table format is: 
  
Summary List 
   
Break1 Break2 ByVar1 Count Mean StdDev 
Bk1.1 Bk2.1 Bv1 count mean stddev 
Bk1.1 Bk2.1 Bv2 count mean stddev 
Bk1.1 Bk2.1 Bv3 count mean stddev 
Bk1.1 Bk2.2 Bv1 count mean stddev 
Bk1.1 Bk2.2 Bv2 count mean stddev 
Bk1.1 Bk2.2 Bv3 count mean stddev 
Bk1.2 Bk2.1 Bv1 count mean stddev 
Bk1.2 Bk2.1 Bv2 count mean stddev 
Bk1.2 Bk2.1 Bv3 count mean stddev 
 

'By' Variables for Use in Table 
Columns and Rows 

Discrete Variables 
This option specifies those variables that contain text and numeric values that are to be treated as 
discrete variables (Types 1 or 2). Variables containing text values are always listed here. 
Variables containing numeric values are listed here if you want each unique value to be treated 
separately. 

Numeric Variables (Width) 
Use this option to specify variables that contain numeric values that are to be combined into a set 
of computer-generated intervals (Type 4). The intervals are specified in the three boxes: Number, 
Minimum, and Width. Note that you can specify one, two, or all three of these options.  

Number 
The number of intervals to be created. If not enough intervals are specified to reach the maximum 
data value, more intervals are added. 

Minimum 
The minimum value or the left boundary of the first interval. This value must be less than the 
minimum data value. 

Width 
This is the width of an interval. A data value X is in this interval if Lower Limit < X <= Upper 
Limit. If this is left blank, it is calculated from the Number, Minimum, and maximum data value. 

Numeric Variables (Limits) 
This specifies those variables that contain numeric values that are to be combined into a set of 
user-specified intervals (Type 3). The interval boundaries are specified as a list in the Interval 
Upper Limits box. 

Interval Upper Limits 
Specify the upper limits of the intervals, separated by commas. For example, you would enter “1 
3 5” to specify the four intervals: Under 1, 1 to 3, 3 to 5, and Over 5.  

The logic structure of the interval is: 

Lower Bound < Value <= Upper Bound. 
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Note that a “1” would be included in the “Under 1” interval, not the  “1 to 3” interval. Also, a “5” 
would be included in the “3 to 5” interval, not the “Over 5” interval. 

Breaks Tab 
This panel lets you specify up to eight break variables. 

Select Break (Grouping) Variables 

Break Variables 
Specify one or more categorical variables whose distinct values will cause separate reports to be 
generated. Note that a separate set of reports (tables and plots) is generated for each unique set of 
values of these variables. Do not confuse these variables with the Table Column and Table Row 
variables, which specify the variables whose values will appear along the rows or columns of a 
particular table. 

Missing Tab 
This panel lets you specify up to five missing values (besides the default of blank). For example, 
‘0’, ‘9’, or ‘NA’ may be missing values in your database. 

Missing Value Options 

Missing Values 
Specify up to five missing values here. 

Missing Value Inclusion 
Specifies whether to include observations with missing values in the tables.  

Delete All indicates that you want the missing values totally ignored. 

Include in Counts indicates that you want the number of missing values displayed, but you do not 
want them to influence any of the percentages. 

Include in All indicates that you want the missing values treated just like any other category. They 
will be included in all percentages and counts. 

Format Tab 
The following options control the format of the reports. 

Format Options 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 
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Value Labels 
This option lets you select whether to display only values, value labels, or both. Use this option if 
you want the table to automatically attach labels to the values (like 1=Yes, 2=No, etc.). See the 
section on specifying Value Labels elsewhere in this manual.  

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Show Total 
Specify whether to show row and/or column total statistics for those reports that use a by (Table 
Row or Table Column) variable. 

Label Justification 
This option specifies whether the labels should be right or left justified above each column. 

Data Justification 
This option specifies whether the data should be right or left justified in each cell. 

Split Column Headings 
This option lets you select whether to split the column headings into two headings instead of one. 

Double Space 
This option lets you select whether to insert an extra line at the end of each row section. 

Tabs 
These options let you specify the tab settings across the table. The output ruler is also modified by 
the settings of Label Justification and Data Justification. 

First 
Specifies the position of the first cell in inches. Note that the left-hand label always begins at 0.5 
inches. Hence, the distance between this tab and 0.5 is the width provided for the row label 
information. 

Maximum 
Specifies the right border of the table. The number of tabs is determined based on First, the 
Increment, and this option. If you set this value too large, your table may not be printed correctly. 

Increment 
Specifies the width of a cell in inches. 

Offset 
The amount (inches) of offset to the right used with a decimal tab on a custom ruler so the data is 
aligned properly under the left-justified column labels. 
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Decimal Places 
These options let you specify the number of decimal places used in the various items of the table. 

Column-By 
Specifies the number of decimal places displayed in the numeric Table Columns variable values. 
Note that All displays a single-precision (seven place accuracy). 

Row-By 
Specifies the number of decimal places displayed in the numeric Table Rows variable values. 
Note that All displays a single-precision (seven place accuracy). 

Counts ... Maximums 
Specifies the number of decimal places displayed in each statistic. Note that All displays the 
default amount. 

Reports Tab 
These options control which of the available statistics are displayed on reports and plots.  

Select Statistics to be Displayed in 
Reports and Plots 

Counts ... Standard Errors 
For each of these statistics, specify whether you want a numeric report, a plot, or both. 

Plot Options Tab 
The options on this panel control the appearance of the scatter plots of the statistics that may be 
displayed. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 
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Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Connect Line(s) 
Specifies whether connect the points with lines for easier interpretation of trends. 

Plot Settings – Legend 

Show Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies legend label. A {G} is replaced by the appropriate default value. 

Titles 

Plot Title 
This is the text of the title. The characters {Y}, {X}, and {G} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Show Break as Title 
Specifies whether the current values of any Break variables should be displayed as a second title 
line in the plot. 

Symbols Tab 
Specify the symbols used for each of the groups on the plots. 

Plotting Symbols 

Group 1-15  
Specify the symbol used to designate a particular group. Double-click on a symbol or click on the 
button to the right of a symbol to specify the symbol’s size, type, and color. 
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Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Combined Stats, No By’s 
The data used are found in the RESALE database. You may follow along here by making the 
appropriate entries or load the completed template Example1 from the Template tab of the 
Descriptive Tables window. 

1 Open the RESALE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Resale.s0. 
• Click Open. 

2 Open the Descriptive Tables window. 
• On the menus, select Analysis, then Descriptive Statistics, then Descriptive Tables. 

The Descriptive Tables procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Descriptive Tables window, select the Variables tab.  
• Double-click in the Response Variables text box. This will bring up the variable 

selection window.  
• Select Price to LotSize from the list of variables and then click Ok. “Price-LotSize” will 

appear in the Response Variables box.  

4 Specify the reports. 
• Click on the Reports tab. 
• In Counts, select Report. 
• In Means, select Report. 
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• In Medians, select Report. 
• In Standard Deviations, select Report. 
• In Sums, select Report. 
• In COVs, select Report. 
• In CODs, select Report. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

The following report will be displayed in the Output window. 

Combined Stats, No By’s Report 
  
 Variable Summary Section  
      Standard   
 Variables Count Mean Median Deviation Sum  
 Price 150 174392 158200 97656.81 2.61588E+07  
 Year 150 1971.273 1973 13.84667 295691  
 Bedrooms 150 2.42 2 .8919476 363  
 Bathrooms 150 2.4 2.5 .8047677 360  
 Garage 150 1.266667 1 .5636252 190  
 TotalSqft 150 1893.38 1872.5 754.2496 284007  
 LotSize 150 8366.913 8344.5 2376.334 1255037 
   
 Variables COV COD 
 Price 0.55998 49.050  
 Year 0.00702 0.572  
 Bedrooms 0.36857 35.000  
 Bathrooms 0.33532 24.800  
 Garage 0.44497 36.000  
 TotalSqft 0.39836 31.980  
 LotSize  0.28402 23.993 
 

The definitions of these statistics are identical to those found in the Descriptive Statistics chapter. 
They will not be repeated here. 

Example 2 – Combined Stats, One By 
The data used are found in the RESALE database. You may follow along here by making the 
appropriate entries or load the completed template Example2 from the Template tab of the 
Descriptive Tables window. 

1 Open the RESALE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Resale.s0. 
• Click Open. 

2 Open the Descriptive Tables window. 
• On the menus, select Analysis, then Descriptive Statistics, then Descriptive Tables. 

The Descriptive Tables procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  
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3 Specify the variables. 
• On the Descriptive Tables window, select the Variables tab.  
• Double-click in the Response Variables text box. This will bring up the variable 

selection window.  
• Select Price, TotalSqft, and LotSize from the list of variables and then click Ok. 

“Price,TotalSqft,LotSize” will appear in the Response Variables box.  
• In Table Format, select 2 Combined Stats, One By. 
• Double-click in the 'By' Variables for Use in Table Columns - Discrete Variables text 

box. This will bring up the variable selection window.  
• Select State from the list of variables and then click Ok. “State” will appear in the 'By' 

Variables for Use in Table Columns - Discrete Variables box.  

4 Specify the report format. 
• Click on the Format tab. 
• In Variable Names, select Labels. 
• In Value Labels, select Value Labels. 
• Check the box next to Double Space. 
• In Tabs - First, enter 2.0. 

5 Specify the reports. 
• Click on the Reports tab. 
• In Counts, select Report. 
• In Means, select Report. 
• In Standard Deviations, select Report. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Combined Stats, One By Report  
  
 Table of Counts, Means, Standard Deviations  
   
  State 
   
 Variables Nevada Virginia Total  
 Sales Price 88 62 150  
   170762.5 179543.5 174392  
   98665.72 96771.49 97656.81  
          
 Total Area (Sqft) 88 62 150  
   1881.33 1910.484 1893.38  
   788.569 708.6572 754.2496  
          
 Lot Size (Sqft) 88 62 150  
   8571.454 8076.597 8366.913  
   2419.88 2301.226 2376.334  
 

The definitions of these statistics are identical to those found in the Descriptive Statistics chapter. 
They will not be repeated here. 
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Example 3 – Separate Stats, One By 
The data used are found in the RESALE database. You may follow along here by making the 
appropriate entries or load the completed template Example3 from the Template tab of the 
Descriptive Tables window. 

1 Open the RESALE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Resale.s0. 
• Click Open. 

2 Open the Descriptive Tables window. 
• On the menus, select Analysis, then Descriptive Statistics, then Descriptive Tables. 

The Descriptive Tables procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Descriptive Tables window, select the Variables tab.  
• Double-click in the Response Variables text box. This will bring up the variable 

selection window.  
• Select Bedrooms, Bathrooms, Garage, and Fireplace from the list of variables and then 

click Ok. “Bedrooms-Fireplace” will appear in the Response Variables box.  
• In Table Format, select 3 Separate Stats, One By. 
• Double-click in the 'By' Variables for Use in Table Columns - Discrete Variables text 

box. This will bring up the variable selection window.  
• Select State from the list of variables and then click Ok. “State” will appear in the 'By' 

Variables for Use in Table Columns - Discrete Variables box.  

4 Specify the report format. 
• Click on the Format tab. 
• In Variable Names, select Labels. 
• In Value Labels, select Value Labels. 
• In Show Total, select On Reports and Plots. 

5 Specify the reports. 
• Click on the Reports tab. 
• In Counts, select Omit. 
• In Means, select Both. 
• In Standard Deviations, select Omit. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

The following report will be displayed in the Output window. 
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Separate Stats, One By Report and Plot  
  
 Table of Means  
  State 
 Variables Nevada Virginia Total 
 Bedrooms 2.352273 2.516129 2.42 
 Bathrooms 2.409091 2.387097 2.4 
 Garage 1.261364 1.274194 1.266667 
 Fireplace 1.022727 .8709677 .96 
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The definitions of these statistics are identical to those found in the Descriptive Statistics chapter. 
They will not be repeated here. 

Example 4 – Combined Y’s, Two By’s 
The data used are found in the RESALE database. You may follow along here by making the 
appropriate entries or load the completed template Example4 from the Template tab of the 
Descriptive Tables window. 

1 Open the RESALE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Resale.s0. 
• Click Open. 

2 Open the Descriptive Tables window. 
• On the menus, select Analysis, then Descriptive Statistics, then Descriptive Tables. 

The Descriptive Tables procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Descriptive Tables window, select the Variables tab.  
• Double-click in the Response Variables text box. This will bring up the variable 

selection window.  
• Select Price, FinishSqft, and LotSize from the list of variables and then click Ok. 

“Price,FinishSqft-LotSize” will appear in the Response Variables box.  
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• In Table Format, select 4 Combined Y’s, Two Bys. 
• Double-click in the 'By' Variables for Use in Table Columns - Discrete Variables text 

box. This will bring up the variable selection window.  
• Select State from the list of variables and then click Ok. “State” will appear in the Table 

Columns - Discrete Variables box.  
• Double-click in the 'By' Variables for Use in Table Rows - Numeric Variables 

(Limits) text box. This will bring up the variable selection window.  
• Select TotalSqft from the list of variables and then click Ok. “TotalSqft” will appear in 

the 'By' Variables for Use in Table Rows - Numeric Variables (Limits) box.  
• In 'By' Variables for Use in Table Rows - Interval Upper Limits, enter 1000 2000 3000. 

4 Specify the report format. 
• Click on the Format tab. 
• In Variable Names, select Labels. 
• In Value Labels, select Value Labels. 
• In Show Total, select On Reports and Plots. 
• Check Double Space. 
• In Tabs - First, enter 2.0. 

5 Specify the reports. 
• Click on the Reports tab. 
• In Counts, select Omit. 
• In Means, select Report. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

The following report will be displayed in the Output window. 

Combined Y’s, Two By’s Report 
 

 Means of  Sales Price, Finished Area (Sqft), Lot Size (Sqft)  
   
  State 
   
 Total Area (Sqft) Nevada Virginia Total  
 Under 1000 160475 142850 152921.4  
   738.125 739.6667 738.7857  
   8816 9857.833 9262.5  
          
 1000 To 2000 153293.3 172992.9 160849.3  
   1234.311 1247.179 1239.247  
   9094.8 7674.286 8549.945  
          
 2000 To 3000 197200 186461.5 192029.6  
   1974.214 2086.077 2028.074  
   7503.179 8129.808 7804.889  
          
 Over 3000 189071.4 291400 211811.1  
   3375.143 2871 3263.111  
   9200.714 7673.5 8861.333  
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 Total 170762.5 179543.5 174392  
   1594.92 1602.242 1597.947  
   8571.454 8076.597 8366.913  
 

The definitions of these statistics are identical to those found in the Descriptive Statistics chapter. 
They will not be repeated here. 

Example 5 – Combined Stats, Two By’s 
The data used are found in the RESALE database. You may follow along here by making the 
appropriate entries or load the completed template Example5 from the Template tab of the 
Descriptive Tables window. 

1 Open the RESALE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Resale.s0. 
• Click Open. 

2 Open the Descriptive Tables window. 
• On the menus, select Analysis, then Descriptive Statistics, then Descriptive Tables. 

The Descriptive Tables procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Descriptive Tables window, select the Variables tab.  
• Double-click in the Response Variables text box. This will bring up the variable 

selection window.  
• Select Price from the list of variables and then click Ok. “Price” will appear in the 

Response Variables box.  
• In Table Format, select 5 Combined Stats, Two Bys. 
• Double-click in the 'By' Variables for Use in Table Columns - Discrete Variables text 

box. This will bring up the variable selection window.  
• Select State from the list of variables and then click Ok. “State” will appear in the 'By' 

Variables for Use in Table Columns - Discrete Variables box.  
• Double-click in the 'By' Variables for Use in Table Rows - Numeric Variables 

(Limits) text box. This will bring up the variable selection window.  
• Select TotalSqft from the list of variables and then click Ok. “TotalSqft” will appear in 

the 'By' Variables for Use in Table Rows - Numeric Variables (Limits) box.  
• In 'By' Variables for Use in Table Rows - Interval Upper Limits, enter 1000 2000 3000. 

4 Specify the report format. 
• Click on the Format tab. 
• In Variable Names, select Labels. 
• In Value Labels, select Value Labels. 
• In Show Total, select On Reports Only. 
• Check Double Space. 
• In Tabs - First, enter 2.0. 
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5 Specify the reports. 
• Click on the Reports tab. 
• In Counts, select Report. 
• In Means, select Report. 
• In Medians, select Report. 
• In Standard Deviations, select Report. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

The following report will be displayed in the Output window. 

Combined Stats, Two By’s Report 
 

 Table of Counts, Means, Medians, Standard Deviations of Sales Price  
 
  State 
 
 Total Area (Sqft) Nevada Virginia Total  
 Under 1000 8 6 14  
   160475 142850 152921.4  
   136050 85200 110500  
   110945.7 107838.2 105747.5  
 1000 To 2000 45 28 73  
   153293.3 172992.9 160849.3  
   123400 163000 150100  
   91336.91 71798.73 84405.74  
 2000 To 3000 28 26 54  
   197200 186461.5 192029.6  
   182850 145550 176250  
   106136.7 111024.2 107621.7  
 Over 3000 7 2 9  
   189071.4 291400 211811.1  
   150900 291400 168500  
   94037.06 173806.8 111554.4  
 Total 88 62 150  
   170762.5 179543.5 174392  
   151050 162800 158200  
   98665.72 96771.49 97656.81  
 

The definitions of these statistics are identical to those found in the Descriptive Statistics chapter. 
They will not be repeated here. 
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Example 6 – Separate Stats, Two By’s 
The data used are found in the RESALE database. You may follow along here by making the 
appropriate entries or load the completed template Example6 from the Template tab of the 
Descriptive Tables window. 

1 Open the RESALE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Resale.s0. 
• Click Open. 

2 Open the Descriptive Tables window. 
• On the menus, select Analysis, then Descriptive Statistics, then Descriptive Tables. 

The Descriptive Tables procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Descriptive Tables window, select the Variables tab.  
• Double-click in the Response Variables text box. This will bring up the variable 

selection window.  
• Select Price from the list of variables and then click Ok. “Price” will appear in the 

Response Variables box.  
• In Table Format, select 6 Separate Stats, Two Bys. 
• Double-click in the 'By' Variables for Use in Table Rows - Discrete Variables text 

box. This will bring up the variable selection window.  
• Select State from the list of variables and then click Ok. “State” will appear in the 'By' 

Variables for Use in Table Rows - Discrete Variables box.  
• Double-click in the 'By' Variables for Use in Table Columns - Numeric Variables 

(Limits) text box. This will bring up the variable selection window.  
• Select TotalSqft from the list of variables and then click Ok. “TotalSqft” will appear in 

the 'By' Variables for Use in Table Columns - Numeric Variables (Limits) box.  
• In 'By' Variables for Use in Table Columns - Interval Upper Limits, enter 1000 2000 

3000. 

4 Specify the report format. 
• Click on the Format tab. 
• In Variable Names, select Labels. 
• In Value Labels, select Value Labels. 
• In Show Total, select On Reports and Plots. 
• In Label Justification, select Right. 
• In Data Justification, select Right. 
• Check Double Space. 
• In Tabs - First, enter 2.0. 
• In Decimal Places - Means, enter 0. 
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5 Specify the reports. 
• Click on the Reports tab. 
• In Counts, select Omit. 
• In Means, select Both. 

6 Specify the plots. 
• Click on the Plot Options tab. 
• Click on the Vertical Axis - Tick Label Settings button. 
• In Decimals, select 0.  
• Click on Ok to close the settings window. 
• Click on the Horizontal Axis - Tick Label Settings button. 
• In Decimals, select 0. 
• Under Text Rotation, select Vertical. 
• In Max Characters, select 15. 
• Click on Ok to close the settings window. 

7 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Separate Stats, Two By’s Report and Plot 
 

 Means of Sales Price 
 
  Total Area (Sqft) 
 
 State Up To 1000 1000 To 2000 2000 To 3000 Over 3000 Total 
 Nevada 160475 153293 197200 189071 170763 
 Virginia 142850 172993 186462 291400 179544 
 Total 152921 160849 192030 211811 174392 
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Example 7 – List Format 
The data used are found in the RESALE database. You may follow along here by making the 
appropriate entries or load the completed template Example7 from the Template tab of the 
Descriptive Tables window. 

1 Open the RESALE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Resale.s0. 
• Click Open. 

2 Open the Descriptive Tables window. 
• On the menus, select Analysis, then Descriptive Statistics, then Descriptive Tables. 

The Descriptive Tables procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Descriptive Tables window, select the Variables tab.  
• Double-click in the Response Variables text box. This will bring up the variable 

selection window.  
• Select Price from the list of variables and then click Ok. “Price” will appear in the 

Response Variables box.  
• In Table Format, select 7 List Format, One Row-By. 
• Double-click in the 'By' Variables for Use in Table Rows - Discrete Variables text 

box. This will bring up the variable selection window.  
• Select Neighborhood from the list of variables and then click Ok. “Neighborhood” will 

appear in the 'By' Variables for Use in Table Rows - Discrete Variables box.  

4 Specify the break variables. 
• On the Descriptive Tables window, select the Breaks tab.  
• Double-click in the first Break Variables text box. This will bring up the variable 

selection window.  
• Select State from the list of variables and then click Ok. “State” will appear in the first 

Break Variables box.  
• Double-click in the second Break Variables text box. This will bring up the variable 

selection window.  
• Select City from the list of variables and then click Ok. “City” will appear in the second 

Break Variables box.  

5 Specify the report format. 
• Click on the Format tab.  
• In Show Total, select Omit Totals. 
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6 Specify the reports. 
• Click on the Reports tab. 
• In Counts, select Report. 
• In Means, select Report. 
• In Standard Deviations, select Report. 

7 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

List Format Report  
 

 Summary List 
    Price Price Price   
 State City Neighborhood Count Mean StdDev   
 Nev 1 1 11 203727.3 105805.4  
 Nev 1 2 16 183625 105754.7  
 Nev 2 3 16 135018.8 94628.04  
 Nev 2 4 13 156192.3 93304.72  
 Nev 2 5 20 192190 100400.5  
 Nev 3 6 12 151125 88063.07  
 Vir 4 7 13 197307.7 80288.13  
 Vir 4 8 14 168700 86626.27  
 Vir 5 9 6 178716.7 107857.3  
 Vir 5 10 9 159511.1 132957.2  
 Vir 5 11 9 150488.9 70977.03  
 Vir 6 12 11 212963.6 112784.7  
 
The definitions of these statistics are identical to those found in the Descriptive Statistics chapter. 
They will not be repeated here. 

This format is especially useful for creating a database containing only summary information 
such as the means, standard deviations, etc. To create a summary database, take the following 
steps: 

1. Run this report on the data, summarizing across the categorical variables of interest. 

2. Copy the output report to the clipboard.  

3. Open a new database (or spreadsheet). 

4. Paste the data from the clipboard to this new database by placing the cursor in the upper-
left cell and pasting. The paste can use the Ctrl-V key or Paste from the Edit menu. 

5. Label the columns in the Variable Info sheet. 
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Chapter 205 

T-Test –           
One-Sample or 
Paired 
Introduction 
The procedure is used to compare the mean (or median) of a single group to a target value. To 
accomplish this, the procedure calculates the one-sample t-test, the paired t-test, the Wilcoxon 
Signed-Rank test, and the quantile (sign) test.  

Kinds of Research Questions 
For the one-sample or paired-sample situation, the prime concern in research is examining a 
measure of central tendency (location) for the population of interest. The best-known measures of 
location are the mean and median. For a one-sample situation, we might want to know if the 
average waiting time in a doctor’s office is greater than one hour, if the average refund on a 1040 
tax return is different from $500, if the average assessment for similar residential properties is 
less than $120,000, or if the average growth of roses is 4 inches or more after two weeks of 
treatment with a certain fertilizer.  

In the paired case, we take two measurements on the same individual at different times, or we 
have one measurement on each individual of a pair. Examples of the first case are two insurance-
claim adjusters assessing the dollar damage for the same 15 cases or evaluation of the 
improvement in aerobic fitness for 15 subjects where measurements are made at the beginning of 
the fitness program and at the end of it. An example of the second paired situation is the testing of 
the effectiveness of two drugs, A and B, on 20 pairs of patients who have been matched on 
physiological and psychological variables. One patient in the pair receives drug A, and the other 
patient gets drug B. 

The prime question relates to whether we have one random sample of observations or one random 
sample of pairs of observations. Given that determination, the second question focuses on 
whether the data are normally distributed. If normality is true, then the one-sample t-test is the 
choice for assessing whether the measure of central tendency, the mean, is different from some 
theoretical or hypothesized value. On the other hand, if normality is not valid, one of the two 
nonparametric tests, the Wilcoxon Signed Rank test or the quantile test, can be applied. 
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Assumptions 
This section describes the assumptions that are made when you use one of these tests. The key 
assumption relates to normality or nonnormality of the data. One of the reasons for the popularity 
of the t-test is its robustness in the face of assumption violation. However, if an assumption is not 
met even approximately, the significance levels and the power of the t-test are invalidated. 
Unfortunately, in practice it often happens that not one but several assumptions are not met. This 
makes matters even worse! Hence, take the steps to check the assumptions before you make 
important decisions based on these tests. Since the output includes items that let you investigate 
these assumptions, you should always do so. 

One-Sample T-Test Assumptions 
The assumptions of the one-sample t-test are: 

1. The data are continuous (not discrete). 

2. The data follow the normal probability distribution. 

3. The sample is a simple random sample from its population. Each individual in the 
population has an equal probability of being selected in the sample.  

Paired T-Test Assumptions 
The assumptions of the paired t-test are: 

1. The data are continuous (not discrete). 

2. The data, i.e., the differences for the matched-pairs, follow a normal probability 
distribution. 

3. The sample of pairs is a simple random sample from its population. Each individual in 
the population has an equal probability of being selected in the sample.  

Wilcoxon Signed-Rank Test Assumptions 
The assumptions of the Wilcoxon signed-rank test are as follows (note that the difference is 
between a data value and the hypothesized median or between the two data values of a pair): 

1. The differences are continuous (not discrete). 

2. The distribution of these differences is symmetric. 

3. The differences are mutually independent. 

4. The differences all have the same median. 

5. The measurement scale is at least interval. 

Quantile Test Assumptions 
The assumptions of the quantile (sign) test are: 

1. A random sample has been taken resulting in observations that are independent and 
 identically distributed. 

2. The measurement scale is at least ordinal. 
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Limitations 
There are few limitations when using these tests. Sample sizes may range from a few to several 
hundred. If your data are discrete with at least five unique values, you can often ignore the 
continuous variable assumption. Perhaps the greatest restriction is that your data comes from a 
random sample of the population. If you do not have a random sample, your significance levels 
will definitely be incorrect. 

Bootstrapping 
Bootstrapping was developed to provide standard errors and confidence intervals in situations in 
which the standard assumptions are not valid. In these nonstandard situations, bootstrapping is a 
viable alternative to the corrective action suggested earlier. The method is simple in concept, but 
it requires extensive computation time.  

The bootstrap is simple to describe. You assume that your sample is actually the population and 
you draw B samples (B is over 1000) of N from the original dataset, with replacement. With 
replacement means that each observation may be selected more than once. For each bootstrap 
sample, the mean is computed and stored.  

Suppose that you want the standard error and a confidence interval of the mean. The bootstrap 
sampling process has provided B estimates of the mean. The standard deviation of these B means 
is the bootstrap estimate of the standard error of the mean. The bootstrap confidence interval is 
found by arranging the B values in sorted order and selecting the appropriate percentiles from the 
list. For example, a 90% bootstrap confidence interval for the difference is given by fifth and 
ninety-fifth percentiles of the bootstrap mean values.  

The main assumption made when using the bootstrap method is that your sample approximates 
the population fairly well. Because of this assumption, bootstrapping does not work well for small 
samples in which there is little likelihood that the sample is representative of the population. 
Bootstrapping should only be used in medium to large samples. 

Randomization Test 
Because of the strict assumptions that must be made when using this procedure to test hypotheses about 
the difference, NCSS also includes a randomization test as outlined by Edgington (1987). 
Randomization tests are becoming more and more popular as the speed of computers allows them to be 
computed in seconds rather than hours. 

A randomization test is conducted by enumerating all possible permutations of the signs of the values 
while leaving the data values in the original order. The mean is calculated for each permutation and the 
number of permutations that result in a mean with a magnitude greater than or equal to zero is counted. 
Dividing this count by the number of permutations tried gives the significance level of the test.  

For even moderate sample sizes, the total number of permutations is in the trillions, so a Monte Carlo 
approach is used in which the permutations are found by random selection rather than complete 
enumeration. Edgington suggests that at least 1,000 permutations by selected. We suggest that this be 
increased to 10,000.  
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Data Structure 
In the one-sample case, there will be only 
one variable as shown for the variable 
Weight. 

Weight 
159 
155 
157 
125 
103 
122 
101 
 82 
228 
199 
195 
110 
191 
151 
119 
119 
112 
 87 
 190 
 87 
159 
155 
157 

In the matched-pairs case, the analysis will 
require two variables. This example shows 
matched-pairs data with tire wear for the 
right and left tires of the same car.  

Right Tire Left Tire 
42 54 
75 73 
24 22 
56 59 
52 51 
56 45 
23 29 
55 58 
46 49 
52 58 
47 49 
62 67 
55 58 
62 64 

 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
These options specify the variables that will be used in the analysis. They also specify the type of 
analysis that will be performed. If you just specify Response Variables and leave Paired Variables 
blank, a One-Sample T-Test will be run. If you specify both a Response Variable and a Paired 
Variable, a Paired T-Test will be run comparing these two variables. 

Response Variables 

Response Variable(s) 
Specify one or more variables. If more than one variable is specified, a separate analysis is run for 
each variable. 
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Paired Variables 

Paired Variable(s) 
For paired measurements, the second variable is specified here. If this option is left blank, a One-
Sample T-Test is run. If you specify a variable here, a Paired T-Test will be run. If multiple 
variables are specified in both Response Variable(s) and Paired Variable(s), the first variables in 
each list are compared, and then the second variables in each list are compared, and so on. 

Options 

H0 Value 
The hypothesized value of the mean (or median for the nonparametric tests) if only one variable 
is specified. The hypothesized value of the mean (or median for the nonparametric tests) of the 
differences if two variables are specified. This value may represent a quantile other than the 
median if the Quantile Test Proportion is different from 0.5. 

Alpha Level 
The value of alpha for the confidence limits, rejection decision, and power analysis. Usually, this 
number will range from 0.1 to 0.001. The default value of 0.05 results in 95% confidence limits. 

Quantile Test Proportion  
This is the value of the binomial proportion used in the Quantile test. A value of 0.5 results in the 
Sign Test. Under the null hypothesis, the quantile test proportion is the proportion of all values 
below the null quantile. 

Resampling 

Bootstrap Confidence Intervals 
This option causes bootstrap confidence intervals and all associated bootstrap reports and plots to 
be generated using resampling simulation. The bootstrap settings are set under the Resampling 
tab. 

Bootstrapping may be time consuming when the bootstrap sample size is large. A reasonable 
strategy is to keep this option unchecked until you have considered all other reports. Then run this 
option with a bootstrap size of 100 and then 1000 to obtain an idea of the time needed to 
complete the simulation. 

Randomization Test  
Check this option to run the randomization test. 

Randomization tests may be time consuming when the Monte Carlo sample size is large. A 
reasonable strategy is to keep this option unchecked until you have run and considered all other 
reports. Then run this option with a Monte Carlo size of 100, then 1000, and then 10000 to obtain 
an idea of the time needed to complete the simulation. 
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Reports Tab 
The options on this panel control the format of the report.  

Select Additional Reports 

Nonparametric Tests 
Select this option to display the indicated report.  

Select Plots 

Histogram … Average-Difference Plot 
Check the boxes to display the plot.  

Report Options 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports were formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Histogram Tab 
The options on this panel control the appearance of the histogram. 

Vertical and Horizontal Axis 

Label  
This is the text of the label. The characters {Y} are replaced by the name of the variable. The 
characters {M} are replaced by the name of the selected probability distribution. Press the button 
on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on each axis. If left 
blank, these values are calculated from the data. 

Tick Label Settings 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the tick labels along each axis. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 
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Histogram Settings 

Plot Style File 
Designate a histogram style file. This file sets all histogram options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Histogram procedure. 

Number of Bars 
Specify the number of intervals, bins, or bars used in the histogram. 

Titles 

Plot Title 
This is the text of the title. The characters {X} are replaced by the name of the variable. Press the 
button on the right of the field to specify the font of the text. 

Probability Plot Tab 
The options on this panel control the appearance of the probability plot. 

Vertical and Horizontal Axis 

Label  
This is the text of the label. The characters {Y} are replaced by the name of the variable. The 
characters {M} are replaced by the name of the selected probability distribution. Press the button 
on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on each axis. If left 
blank, these values are calculated from the data. 

Tick Label Settings 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the tick labels along each axis. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Probability Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 
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Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} are replaced by the name of the variable. The 
characters {M} are replaced by the name of the selected probability distribution. Press the button 
on the right of the field to specify the font of the text. 

Scatter Plot Tab 
The options on this panel control the appearance of the scatter plot of the two paired variables. 

Vertical and Horizontal Axis 

Label  
This is the text of the label. The characters {Y} are replaced by the name of the response variable. 
The characters {X} are replaced by the name of the paired variable. Press the button on the right 
of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on each axis. If left 
blank, these values are calculated from the data. 

Tick Label Settings 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the tick labels along each axis. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Scatter Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 
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Titles 

Plot Title 
This is the text of the title. The following codes are replaced by appropriate values when the plot 
is generated.  
{X} is replaced by the appropriate horizontal variable's name.  
{Y} is replaced by the appropriate vertical variable's name.  
{G} is replaced by the appropriate grouping variable's name.  
{M} is replaced by the model (if available).  
{S} is replaced by an appropriate internal phrase. This option works only for histograms. 
{Z} is replaced by the appropriate variable's name (if used).  

Ave-Diff Plot Tab 
The options on this panel control the appearance of the average-difference scatter plot. 

Vertical and Horizontal Axis 

Label  
This is the text of the label. The characters {Y} and {X} are replaced by the appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on each axis. If left 
blank, these values are calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the tick labels along each axis. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Ave-Diff Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 
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Titles 

Plot Title 
This is the text of the title. The following codes are replaced by appropriate values when the plot 
is generated.  
{X} is replaced by the appropriate horizontal variable's name.  
{Y} is replaced by the appropriate vertical variable's name.  
{G} is replaced by the appropriate grouping variable's name.  
{M} is replaced by the model (if available).  
{S} is replaced by an appropriate internal phrase. This option works only for histograms. 
{Z} is replaced by the appropriate variable's name (if used).  

Resampling Tab 
This panel controls the bootstrapping. Note that bootstrapping is only used when the Bootstrap 
report is checked on the Reports panel. 

Bootstrap Options – Sampling 

Samples (N) 
This is the number of bootstrap samples used. A general rule of thumb is that you use at least 100 
when standard errors are your focus or at least 1000 when confidence intervals are your focus. If 
computing time is available, it does not hurt to do 4000 or 5000.  

We recommend setting this value to at least 3000. 

Retries 
If the results from a bootstrap sample cannot be calculated, the sample is discarded and a new 
sample is drawn in its place. This parameter is the number of times that a new sample is drawn 
before the algorithm is terminated. We recommend setting the parameter to at least 50. 

Bootstrap Options – Estimation 

Percentile Type 
The method used to create the percentiles when forming bootstrap confidence limits. You can 
read more about the various types of percentiles in the Descriptive Statistics chapter. We suggest 
you use the Ave X(p[n+1]) option. 

C.I. Method 
This option specifies the method used to calculate the bootstrap confidence intervals. The 
reflection method is recommended. 

• Percentile 
The confidence limits are the corresponding percentiles of the bootstrap values.  

• Reflection 
The confidence limits are formed by reflecting the percentile limits. If X0 is the original value 
of the parameter estimate and XL and XU are the percentile confidence limits, the Reflection 
interval is (2 X0 - XU, 2 X0 - XL). 
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Bootstrap Confidence Coefficients 
These are the confidence coefficients of the bootstrap confidence intervals. Since bootstrapping 
calculations may take several minutes, it may be useful to obtain confidence intervals using 
several different confidence coefficients. 

All values must be between 0.50 and 1.00. You may enter several values, separated by blanks or 
commas. A separate confidence interval is given for each value entered.  

Examples: 

0.90 0.95 0.99 

0.90:.99(0.01) 

0.90.  

Bootstrap Options – Histograms 

Vertical Axis Label 
This is the label of the vertical axis of a bootstrap histogram. 

Horizontal Axis Label 
This is the label of the horizontal axis of a bootstrap histogram. 

Plot Style File 
This is the histogram style file. We have provided several different style files to choose from, or 
you can create your own in the Histogram procedure. 

Histogram Title 
This is the title used on the bootstrap histograms. 

Number of Bars 
The number of bars shown in a bootstrap histogram. We recommend setting this value to at least 
25 when the number of bootstrap samples is over 1000. 

Randomization Test Options 

Monte Carlo Samples 
Specify the number of Monte Carlo samples used when conducting randomization tests. You also 
need to check the ‘Randomization Test’ box under the Variables tab to run this test. 
Somewhere between 1000 and 100000 Monte Carlo samples are usually necessary. Although the 
default is 1000, we suggest the use of 10000 when using this test. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Running a Paired T-Test 
This section presents an example of how to run a paired t-test. The data are the tire data shown 
above and found in the SAMPLE database. The data can be found under the variables labeled 
RtTire and LtTire. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the T-Test – One Sample or Paired window. 

1 Open the SAMPLE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Sample.s0. 
• Click Open. 

2 Open the T-Test – One-Sample or Paired window. 
• On the menus, select Analysis, then T-Tests, then T-Test - One Sample or Paired. The 

T-Test - One Sample or Paired procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the T-Test - One Sample or Paired window, select the Variables tab. (This is the 

default.)  
• Double-click in the Response Variable(s) text box. This will bring up the variable 

selection window.  
• Select RTTIRE from the list of variables and then click Ok. “RTTIRE” will appear in 

the Response Variables box.  
• Double-click in the Paired Variable(s) text box. This will bring up the variable selection 

window.  
• Select LTTIRE from the list of variables and then click Ok. “LTTIRE” will appear in the 

Paired Variables box.  
• Check the Bootstrap Confidence Intervals option.  
• Check the Randomization Test option.  

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

 

The following reports and charts will be displayed in the Output window. 
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Descriptive Statistics Section 
 
    Standard Standard 95% LCL 95% UCL 
 Variable Count Mean Deviation Error of Mean of Mean 
 RtTire 14 50.5 13.96011 3.730996 42.43967 58.56033 
 LtTire 14 52.57143 13.7657 3.679038 44.62335 60.51951 
 Difference 14 -2.071429 5.225151 1.39648 -5.088341 0.9454835 
 T for Confidence Limits = 2.1604 
 

Variable 
The name of the variable whose descriptive statistics are listed here. Note that the third row gives 
the statistics for the paired differences. 

Count 
This is the number of nonmissing values. 

Mean 
This is the average of the data values. 

x =  
x

n

i
i

n

=
∑

1  

Standard Deviation 
The sample deviation is the square root of the variance. It is a measure of dispersion based on 
squared distances from the mean for the variables listed. 

s =  
( x  -  x )

n - 1
i

2∑
 

Standard Error 
This is the estimated standard deviation of the distribution of sample means for an infinite 
population. 

s =  
s
nx  

The standard error for the mean of differences is similar, except that s is computed on the 
differences themselves. 

Lower and Upper Confidence Limit 
This formula gives the upper (with plus) and lower (with minus) values of a 100(1-�) interval 
estimate for the mean based on a t distribution with n-1 degrees of freedom. This interval estimate 
assumes that the population standard deviation is not known and that the data for this variable are 
normally distributed. This interval estimate is provided for the mean of the differences as well as 
for the mean of the two individual variables for paired data. 

x t s
nn± −α / ,2 1  

T for Confidence Limits 
This is the value of tα/2,n-1 used to construct the above interval estimate. 
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Bootstrap Section 
 
 ------------     Estimation Results ------------ | ------------     Bootstrap Confidence Limits ---------------- 
 Parameter Estimate | Conf. Level Lower Upper 
 Mean 
 Original Value -2.0714 | 0.9000 -4.4286 0.0714 
 Bootstrap Mean -2.0754 | 0.9500 -5.0000 0.5000 
 Bias (BM - OV) -0.0040 | 0.9900 -5.8571 1.1429 
 Bias Corrected -2.0675    
 Standard Error 1.3590    
 
 Sampling Method = Observation, Confidence Limit Type = Reflection, Number of Samples = 3000. 
 
 Bootstrap Histograms Section 
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This report provides bootstrap confidence intervals of the mean. Note that since these results are 
based on 3000 random bootstrap samples, they will differ slightly from the results you obtain 
when you run this report. 

Original Value 
This is the parameter estimate obtained from the complete sample without bootstrapping. 

Bootstrap Mean 
This is the average of the parameter estimates of the bootstrap samples. 

Bias (BM - OV) 
This is an estimate of the bias in the original estimate. It is computed by subtracting the original 
value from the bootstrap mean. 

Bias Corrected 
This is an estimated of the parameter that has been corrected for its bias. The correction is made 
by subtracting the estimated bias from the original parameter estimate. 

Standard Error 
This is the bootstrap method’s estimate of the standard error of the parameter estimate. It is 
simply the standard deviation of the parameter estimate computed from the bootstrap estimates. 

Conf. Level 
This is the confidence coefficient of the bootstrap confidence interval given to the right. 
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Bootstrap Confidence Limits –  Lower and Upper 
These are the limits of the bootstrap confidence interval with the confidence coefficient given to 
the left. These limits are computed using the confidence interval method (percentile or reflection) 
designated on the Bootstrap panel. 

Note that to be accurate, these intervals must be based on over a thousand bootstrap samples and 
the original sample must be representative of the population. 

Bootstrap Histogram 
The histogram shows the distribution of the bootstrap parameter estimates. 

Tests of Assumptions about Differences Section 
  
 Tests of Assumptions about Differences Section  
  
 Assumption Value Probability Decision(5%) 
 Skewness Normality 1.3651 0.172212 Cannot reject normality 
 Kurtosis Normality 1.9065 0.056589 Cannot reject normality 
 Omnibus Normality 5.4982 0.063985 Cannot reject normality 
 Correlation Coefficient 0.929062 
 
The main assumption when using the t-test is that the data are normally distributed. Either the 
single variable must be normal, or the differences for paired data must be normal. The normality 
assumption can be checked statistically by the skewness, kurtosis, or omnibus normality tests and 
visually by the normal probability plot or box plot. 

In the case of nonnormality, the two nonparametric tests have the assumption of symmetry about 
the median. While the normal distribution is symmetric, not all symmetric distributions are 
normal. This assumption of symmetry is less restrictive than the one of normality, and it can be 
evaluated visually by the histogram or the normal probability plot. Generally, the Wilcoxon 
signed-rank test is more powerful than the sign test (and should be preferred), but there are some 
cases where the efficiency of the sign test surpasses that of the Wilcoxon signed-rank, specifically 
when the underlying distribution is a double exponential. 

If the data are asymmetrical, the natural tendency is to use the nonparametric test. However, 
frequently a transformation, such as the natural logarithm or the square root of the original data, 
can change the underlying distribution from skewed to normal. To evaluate whether the 
underlying distribution of the variable is normal after the transformation, rerun the normal 
probability plot on the transformed variable. If some of the data values are negative or zero, it 
may be necessary to add a constant to the original data prior to the transformation. Of course, if 
the transformation or re-expression works, then the one-sample t-test is performed on the 
transformed data. 

Normality (Skewness, Kurtosis, and Omnibus) 
These three tests allow you to test the skewness, kurtosis, and overall normality of the data. If any 
of them reject the hypothesis of normality, the data should not be considered normal. These tests 
are discussed in more detail in the Descriptive Statistics chapter. 
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T-Test Section 
 
 T-Test For Difference Between Means Section 
  
 Alternative  Prob Reject H0 Power Power 
 Hypothesis T-Value Level at .050 (Alpha=.05) (Alpha=.01)  
 RtTire-LtTire<>0 -1.4833 .161824 No .279644 .101545 
 Randomization Test  .146000 No 
 RtTire-LtTire<0 -1.4833 .080912 No .405551 .160410 
 RtTire-LtTire>0 -1.4833 .919088 No .001124 .000120 
 

Alternative Hypothesis 
In hypothesis testing, the null and alternative hypotheses are always the opposite of one another. 
For instance, in a two-tail test on the difference between two paired means, the null hypothesis 
would be Ho: μd =0 with the alternative being Ha: μd ≠0. This two-tail alternative is represented 
by RtTire-LtTire<>0. The left-tail alternative is represented by RtTire-LtTire<0 (i.e., Ha: μd<
while the right-tail alternative is depicted by RtTire-LtTire>0 (i.e., H

0) 
a: μd>0). 

T-Value 
This is the test statistic for the t-test. It has n-1 degrees of freedom. It is identical for both one-
tailed and two-tailed tests. 

t =  
x -  

s
n

n
o

−1
μ

 

Prob Level 
This is the significance level (or p-value) of the statistical test. It is the probability that the test 
statistic may take on a value at least as extreme as the actually observed value, assuming that the 
null hypothesis is true. If the significance level is less than α, say 5%, the null hypothesis is 
rejected. If the significance level is greater than α, we do not have enough evidence to reject the 
null hypothesis.  

Note that if a randomization test was selected, its probability level is displayed on the second line. 

Reject H0 at .050 
This is the conclusion reached about the null hypothesis. It will be either ‘Yes’ or ‘No’ for a 5% 
level of significance. Note that when we say No, we really mean that we do not have enough 
evidence to reject H0. This is very different from concluding that the null hypothesis is true!  

Power(Alpha=0.05, Alpha=0.01) 
Power is the probability of rejecting the null hypothesis when the alternative hypothesis is true. 
The power of a test is one minus the probability of a type II error (β). The power of a test depends 
on the value of the type I error, the sample size, the standard deviation, and the magnitude of the 
difference between the null and alternative hypothesized means. To calculate the power here, we 
set this difference to the actual difference observed in the sample. 

High power is desirable. High power means that there is a high probability of rejecting the null 
hypothesis when the null hypothesis is false. This is a critical measure of sensitivity in hypothesis 
testing. This estimate of power is based upon the sampling distribution of the statistic being 
normal under the alternative hypothesis. 
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Nonparametric Tests Section 
Nonparametric methods are also called distribution-free methods because they do not depend on a 
complete specification of the distribution shape. When the data are not normal, there are two 
possibilities: the quantile test and the Wilcoxon signed-rank test. 

Quantile (Sign) Test 
The quantile (sign) test is perhaps the oldest of all the nonparametric procedures. This 
nonparametric test is based on the binomial distribution. It assumes two mutually exclusive 
outcomes, constant or stable probability of success or failure, and n independent trials. Some  
quantiles of interest are median, quartile, decile, and percentile.  

When the quantile of interest is the median, a quantile test is called the sign test. The terminology, 
sign test, reinforces the point that the data are converted to a series of pluses and minuses. The 
test is based on the number of pluses that occur. Zero differences are thrown out, and the sample 
size is reduced accordingly. 

While the sign test is simple, there are more powerful nonparametric alternatives, such as the 
Wilcoxon signed-rank test. However, if the shape of the underlying distribution of a variable is 
the double exponential distribution, the sign test may be the better choice. 
 
 Quantile (Sign) Test 
  
 Null Quantile Number Number H1:Q<>Q0 H1:Q<Q0 H1:Q>Q0 
 Quantile (Q0) Proportion Lower Higher Prob Level Prob Level Prob Level 
 0 0.5 10 4 0.179565 0.089783 0.971313 
 

Null Quantile (Q0) 
Under the null hypothesis, the proportion of all values below the null quantile is the quantile 
proportion. For the sign test, the null quantile is the null median. For a paired sign test, the null 
quantile is often set to 0. 

Quantile Proportion 
Under the null hypothesis, the quantile proportion is the proportion of all values below the null 
quantile. For the sign test, this proportion is 0.5. 

Number Lower 
This is the actual number of values (or differences in a paired test) that are below the null 
quantile. 

Number Higher 
This is the actual number of values (or differences in a paired test) that are above the null 
quantile. 

H1:Q<>Q0 Prob Level 
This is the two-sided probability that the true quantile is equal to the stated null quantile (Q0), for 
the quantile proportion stated and given the observed values. A small prob level indicates that the 
true quantile for the stated quantile proportion is different from the null quantile. 

H1:Q<Q0 Prob Level 
This is the one-sided probability that the true quantile is greater than or equal to the stated null 
quantile (Q0), for the quantile proportion stated and given the observed values. A small prob level 
indicates that the true quantile for the stated quantile proportion is less than the null quantile. 
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H1:Q>Q0 Prob Level 
This is the one-sided probability that the true quantile is less than or equal to the stated null 
quantile (Q0), for the quantile proportion stated and given the observed values. A small prob level 
indicates that the true quantile for the stated quantile proportion is greater than the null quantile. 

Wilcoxon Signed-Rank Test 
This nonparametric test makes use of the sign and the magnitude of the rank of the differences 
(original data minus the hypothesized value for one-sample data or differences between the pairs 
of measurements for paired data). It is the best nonparametric alternative to the one sample t-test 
or paired t-test. 
 
 Nonparametric Tests Section 
 
 Wilcoxon Signed-Rank Test for Difference in Medians 
 
 W Mean Std Dev Number Number Sets Multiplicity 
 Sum Ranks of W of W of Zeros of Ties Factor 
 21 52.5 15.84692 0 3 126 
 
    Approximation Without  Approximation With  
  Exact Probability Continuity Correction  Continuity Correction 
 Alternative Prob Reject H0  Prob Reject H0  Prob Reject H0 
 Hypothesis Level at .050 Z-Value Level at .050 Z-Value Level at .050 
 X1-X2<>0 .049438 Yes 1.9878 .046837 Yes 1.9562 .050440 No 
 X1-X2<0 .024719 Yes -1.9878 .023419 Yes -1.9562 .025220 Yes 
 X1-X2>0 .979065 No -1.9878 .976581 No -2.0193 .978273 No 
 

Sum Ranks (W) 
The basic statistic for this test is the sum of the positive ranks, ΣRR

d W. 

+ (The sum of the positive 
ranks is chosen arbitrarily. The sum of the negative ranks could equally be used). This statistic is 
calle

∑ += RW  

Mean of W 
This is the mean of the sampling distribution of the sum of ranks for a sample of n items. 
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where d0 is the number of zero differences. 

Std Dev of W 
This is the standard deviation of the sampling distribution of the sum of ranks. Here ti represents 
the number of times the ith value occurs. 
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where d0 is the number zero differences, ti is the number of absolute differences that are tied for a 
given non-zero rank, and the sum is over all sets of tied ranks. 

Number of Zeros 
This is the number of times that the difference between the observed value (or difference) and the 
hypothesized value is zero. The zeros are used in computing ranks, but are not considered 
positive ranks or negative ranks. 
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Number Sets of Ties 
The treatment of ties is to assign an average rank for the particular set of ties. This is the number 
of sets of ties that occur in the data, including ties at zero. 

Multiplicity Factor 
This is the correction factor that appeared in the standard deviation of the sum of ranks when 
there were ties. 

Alternative Hypothesis 
For the Wilcoxon signed-rank test, the null and alternative hypotheses relate to the median. In the 
two-tail test for the median difference (assuming a hypothesized value of 0), the null hypothesis 
would be Ho: median=0 with the alternative being Ha: median≠0. This two-tail alternative is 
represented by Median<>0.  

The left-tail alternative is represented by Median<0 (i.e., Ha: median<0) while the right-tail 
alternative is depicted by Median>0 (i.e., Ha: median>0). For paired measurements, the 
hypothesized median is set equal to zero. If a value other than zero is desired for paired data, 
create a new single variable equal to the differences and rerun this test. 

Exact Probability: Prob Level 
This is an exact p-value for this statistical test, assuming no ties. The p-value is the probability 
that the test statistic will take on a value at least as extreme as the actually observed value, 
assuming that the null hypothesis is true. If the p-value is less than α, say 5%, the null hypothesis 
is rejected. If the p-value is greater than α, the null hypothesis is accepted. For convenience, the 
p-value is given for all three alternatives although only one is actually used. 

Exact Probability: Reject H0 at .050 
This is the conclusion reached about the null hypothesis. It will be to either accept Ho or reject Ho 
at the assigned level of significance. An acceptance means that the null hypothesis is tenable, and 
a rejection means that it is not. 

Approximations with (and without) Continuity Correction: Z-Value 
Given the sample size is at least ten, a normal approximation method may be used to approximate 
the distribution of the sum of ranks. Although this method does correct for ties, it does not have 
the continuity correction factor. The z value is as follows: 

z
W w

W
=

− μ
σ

 

If the correction factor for continuity is used, the formula becomes: 

z
W w

W
=

− ±μ
σ

1
2  

Approximations with (and without) Continuity Correction:  Prob Level 
This is the p-value for the normal approximation approach for the Wilcoxon signed-rank test. The 
p-value is the probability that the test statistic will take a value at least as extreme as the actually 
observed value, assuming that the null hypothesis is true. If the p-value is less than a, say 5%, the 
null hypothesis is rejected. If the p-value is greater than a, the null hypothesis is accepted. 

Approximations with (and without) Continuity Correction: Reject H0 at .050 
This is the conclusion reached about the whether to reject null hypothesis. It will be either Yes or 
No at the given level of significance. 
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Graphic Perspectives 
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Histogram and Density Trace 
The nonparametric tests need the assumption of symmetry, and these two graphic tools can 
provide that information. Since the histogram’s shape is impacted by the number of classes or 
bins and the width of the bins, the best choice is to trust the density trace, which is a smoothed 
histogram. If the distribution of differences is symmetrical but not normal, proceed with the 
nonparametric test. 

Normal Probability Plot 
If any of the observations fall outside the confidence bands, the data are not normal. The 
goodness-of-fit tests mentioned earlier, especially the omnibus test, should confirm this fact 
statistically. If only one observation falls outside the confidence bands and the remaining 
observations hug the straight line, there may be an outlier. If the data were normal, we would see 
the points falling along a straight line.  

Note that these confidence bands are based on large-sample formulas. They may not be accurate 
for small samples. 

Scatter Plot 
The intention of this plot is to look for patterns between the pairs. Preferably, you would like to 
see either no correlation or a positive linear correlation between Y and X. If there is a curvilinear 
relationship between Y and X, the paired t-test is not appropriate. If there is a negative 
relationship between the observations in the pairs, the paired t-test is not appropriate. If there are 
outliers, the nonparametric approach would be safer. 

Average-Difference Plot 
This average-difference plot is designed to detect a lack of symmetry in the data. This plot is 
constructed from the paired differences, not the original data. Here’s how. Let D(i) represent the 
ith ordered difference. Pairs of these sorted differences are considered, with the pairing being 
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done as you move toward the middle from either end. That is, consider the pairs D(1) and D(n), 
D(2) and D(n-1), D(3) and D(n-2), etc. Plot the average versus the difference of each of these 
pairs. Your plot will have about n/2 points, depending on whether n is odd or even. If the data are 
symmetric, the average of each pair will be the median and the difference between each pair will 
be zero. 

Symmetry is an important assumption for the t-test. A perfectly symmetric set of data should 
show a vertical line of points hitting the horizontal axis at the value of the median. Departures 
from symmetry would deviate from this standard. 

One-Sample T-Test Checklist 
This checklist, prepared by a professional statistician, is a flowchart of the steps you should 
complete to conduct a valid one-sample or paired-sample t-test (or one of its nonparametric 
counterparts). You should complete these tasks in order. 

Step 1 – Data Preparation 

Introduction 
This step involves scanning your data for anomalies, data entry errors, typos, and so on. 
Frequently we hear of people who completed an analysis with the right techniques but obtained 
strange conclusions because they had mistakenly selected the data. 

Sample Size 
The sample size (number of nonmissing rows) has a lot of ramifications. The larger the sample 
size for the one-sample t-test the better. Of course, the t-test may be performed on very small 
samples, say 4 or 5 observations, but it is impossible to assess the validity of assumptions with 
such small samples. It is our statistical experience that at least 20 observations are necessary to 
evaluate normality properly. On the other hand, since skewness can have unpleasant effects on t-
tests with small samples, particularly for one-tailed tests, larger sample sizes (30 to 50) may be 
necessary. 

It is possible to have a sample size that is too large for a statistical significance test. When your 
sample size is very large, you are almost guaranteed to find statistical significance. However, the 
question that then arises is whether the magnitude of the difference is of practical importance. 

Missing Values 
The number and pattern of missing values is always an issue to consider. Usually, we assume that 
missing values occur at random throughout your data. If this is not true, your results will be 
biased since a particular segment of the population is underrepresented. If you have a lot of 
missing values, some researchers recommend comparing other variables with respect to missing 
versus nonmissing. If you find large differences in other variables, you should begin to worry 
about whether the missing values might cause a systematic bias in your results. 

Type of Data 
The mathematical basis of the t-test assumes that the data are continuous. Because of the 
rounding that occurs when data are recorded, all data are technically discrete. The validity of 
assuming the continuity of the data then comes down to determining when we have too much 
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rounding. For example, most statisticians would not worry about human-age data that was 
rounded to the nearest year. However, if these data were rounded to the nearest ten years or 
further to only three groups (young, adolescent, and adult), most statisticians would question the 
validity of the probability statements. Some studies have shown that the t-test is reasonably 
accurate when the data has only five possible values (most would call this discrete data). If your 
data contains less than five unique values, any probability statements made are tenuous. 

Outliers 
Generally, outliers cause distortion in statistical tests. You must scan your data for outliers (the 
box plot is an excellent tool for doing this). If you have outliers, you have to decide if they are 
one-time occurrences or if they would occur in another sample. If they are one-time occurrences, 
you can remove them and proceed. If you know they represent a certain segment of the 
population, you have to decide between biasing your results (by removing them) or using a 
nonparametric test that can deal with them. Most would choose the nonparametric test. 

Step 2 – Setup and Run the Panel 

Introduction 
Now comes the fun part: running the program. NCSS is designed to be simple to operate, but it 
can still seem complicated. When you go to run a procedure such as this for the first time, take a 
few minutes to read through the chapter again and familiarize yourself with the issues involved. 

Enter Variables 
The NCSS panels are set with ready-to-run defaults. About all you have to do is select the 
appropriate variable (variables for paired data). 

Select All Plots 
As a rule, you should select all diagnostic plots (box plots, histograms, etc.) even though they 
may take a few extra seconds to generate. They add a great deal to your analysis of the data. 

Specify Alpha 
Most beginners in statistics forget this important step and let the alpha value default to the 
standard 0.05. You should make a conscious decision as to what value of alpha is appropriate for 
your study. The 0.05 default came about when people had to rely on printed probability tables in 
which there were only two values available: 0.05 or 0.01. Now you can set the value to whatever 
is appropriate. 

Step 3 – Check Assumptions 

Introduction 
Once the program output is displayed, you will be tempted to go directly to the probability of the 
t-test, determine if you have a significant result, and proceed to something else. However, it is 
very important that you proceed through the output in an orderly fashion. The first task is to 
determine which of the assumptions are met by your data.  
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Sometimes, when the data are nonnormal, a data transformation (like square roots or logs) might 
normalize the data. Frequently, this kind of transformation or re-expression approach works very 
well. However, always check the transformed variable to see if it is normally distributed. 

It is not unusual in practice to find a variety of tests being run on the same basic null hypothesis. 
That is, the researcher who fails to reject the null hypothesis with the first test will sometimes try 
several others and stop when the hoped-for significance is obtained. For instance, a statistician 
might run the one-sample t-test on the original data, the one-sample t-test on the logarithmically 
transformed data, the Wilcoxon rank-sum test, and the Quantile test. An article by Gans (1984) 
suggests that there is no harm on the true significance level if no more than two tests are run. This 
is not a bad option in the case of questionable outliers. However, as a rule of thumb, it seems 
more honest to investigate whether the data is normal. The conclusion from that investigation 
should direct you to the right test. 

Random Sample 
The validity of this assumption depends on the method used to select the sample. If the method 
used ensures that each individual in the population of interest has an equal probability of being 
selected for this sample, you have a random sample. Unfortunately, you cannot tell if a sample is 
random by looking at either it or statistics from it.  

Check Descriptive Statistics 
You should check the Descriptive Statistics Section first to determine if the Count and the Mean 
are reasonable. If you have selected the wrong variable, these values will alert you. 

Normality 
To validate this assumption, you would first look at the plots. Outliers will show up on the box 
plots and the probability plots. Skewness, kurtosis, more than one mode, and a host of other 
problems will be obvious from the density trace on the histogram. After considering the plots, 
look at the Tests of Assumptions Section to get numerical confirmation of what you see in the 
plots. Remember that the power of these normality tests is directly related to the sample size, so 
when the normality assumption is accepted, double-check that your sample is large enough to 
give conclusive results (at least 20). 

Symmetry 
The nonparametric tests need the assumption of symmetry. The easiest ways to evaluate this 
assumption are from the density trace on the histogram or from the average-difference plot. 

Step 4 – Choose the Appropriate Statistical Test 

Introduction 
After understanding how your data fit the assumptions of the various one-sample tests, you are 
ready to determine which statistical procedures will be valid. You should select one of the 
following three situations based on the status of the normality. 

Normal Data 
Use the T-Test Section for hypothesis testing and the Descriptive Statistics Section for interval 
estimation. 
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Nonnormal and Asymmetrical Data 
Try a transformation, such as the natural logarithm or the square root, on the original data since 
these transformations frequently change the underlying distribution from skewed to normal. If 
some of the data values are negative or zero, add a constant to the original data prior to the 
transformation. If the transformed data is now normal, use the T-Test Section for hypothesis 
testing and the Descriptive Statistics Section for interval estimation. 

Nonnormal and Symmetrical Data  
Use the Wilcoxon Rank-Sum Test or the Quantile Test for hypothesis testing. 

Step 5 – Interpret Findings 

Introduction 
You are now ready to conduct your test. Depending on the nature of your study, you should look 
at either of the following sections. 

Hypothesis Testing 
Here you decide whether to use a two-tailed or one-tailed test. The two-tailed test is the standard. 
If the probability level is less than your chosen alpha level, reject the null hypothesis of equality 
to a specified mean (or median) and conclude that the mean is different. Your next task is to look 
at the mean itself to determine if the size of the difference is of practical interest. 

Confidence Limits 
The confidence limits let you put bounds on the size of the mean (for one independent sample) or 
mean difference (for dependent samples). If these limits are narrow and close to your 
hypothesized value, you might determine that even though your results are statistically 
significant, there is no practical significance. 

Step 6 – Record Your Results 
Finally, as you finish a test, take a moment to jot down your impressions. Explain what you did, 
why you did it, what conclusions you reached, which outliers you deleted, areas for further 
investigation, and so on. Since this is a technical process, your short-term memory will not retain 
these details for long. These notes will be worth their weight in gold when you come back to this 
study a few days later! 

Example of Paired T-Test Steps 
This example will illustrate the use of one-sample tests for paired data. A new four-lane road is 
going through the west end of a major metropolitan area. About 150 residential properties will be 
affected by the road. A random sample of 15 properties was selected. These properties were 
evaluated by two different property assessors. We are interested in determining whether there is 
any difference in their assessment. The assessments are recorded in thousands of dollars and are 
shown in the table. The assessment values are represented by Value1 and Value2 for the two 
property assessors. 
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Value1 Value2 
118.5 117.1 
154.2 159.6 
130.8 136.5 
154.8 146.9 
131.4 136.0 
104.1 99.7 
154.9 157.8 
97.6 96.1 
140.0 144.8 
116.9 112.4 
129.6 129.1 
108.2 114.5 
108.6 113.7 
178.3 194.3 
92.9 8 

Step 1 – Data Preparation 
These data are paired measurements. The sample size is smaller than you would like, but it is 
10% of the current population. There are no missing values, and the use of the dollar value makes 
the data continuous. 

Step 2 – Setup and Run the Paired T-Test Panel 
The selection and running of the Paired T-Test from the Analysis menu on the pairs of 
assessments, Value1 and Value2, would produce the output that follows. The alpha value has 
been set at 0.05. Interpretation of the results will come in the steps to follow. 

Step 3 – Check Assumptions 
The major assumption to check for is normality. We begin with the graphic perspectives: normal 
probability plots, histograms, density traces, and box plots. Since this is paired data, we look at 
the normality of the differences. 

Histogram, Density Trace, and Normal Probability Plot 
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Scatter Plot and Average-Difference Plot 
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The normal probability plot on the differences indicates normality, except for an outlier on the 
low side. However, this potential outlier is within the 95% confidence bands of the probability 
plot. While the histogram and density trace are not good tools for evaluating normality on small 
samples, they do show the left skewness created by this one observation. This observation could 
be an outlier. Of course, a larger sample size would have been a definite advantage for the 
histogram and density trace, but normality seems to be valid (we make ourselves a note to check 
up on this outlier). 

In evaluating normality by numerical measures, look at the Probability (p-value) and the Decision 
for the given alpha of 0.05. Investigation of the Tests of Assumptions Section confirms that the 
differences in assessment are normal by all three normality tests since the p-values are greater 
than 0.05. In fact, the p-values are much greater than 0.05. The “Cannot reject normality” under 
Decision(5%) is the formal conclusion of the normality tests. 
  
 Tests of Assumptions Section  
   
 Assumption (About Differences) Value Probability Decision(5%) 
 Skewness Normality  -0.9490 0.342635 Cannot reject normality 
 Kurtosis Normality  0.7722 0.440019 Cannot reject normality 
 Omnibus Normality  1.4968 0.473127 Cannot reject normality 
 Correlation Coefficient 0.982357 
 
From the scatter plot above, it is evident that there is a strong positive linear relationship between 
the two assessments, as also confirmed by the Pearson correlation of 0.9824. 

Step 4 – Choose the Appropriate Statistical Test 
In Step 3, the conclusions from checking the assumptions were three-fold: (1) the data are 
continuous, (2) the differences are normally distributed, and (3) there is a strong positive 
relationship between the two assessments. As a result of these findings, the appropriate statistical 
test is the paired t-test, which is shown next. 
   
 Descriptive Statistics Section  
   Standard Standard 95% LCL 95% UCL 
 Variable Count Mean Deviation Error of Mean of Mean 
 Value1 15 128.0533 24.68883 6.374629 114.3811 141.7256 
 Value2 15 129.74 28.30113 7.307321 114.0674 145.4126 
 Difference 15 -1.686667 6.140366 1.585436 -5.087088 1.713755 
 T for Confidence Limits = 2.1448 
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 T-Test For Difference Between Means Section 
  
 Alternative  Prob Reject H0 Power Power 
 Hypothesis T-Value Level at .050 (Alpha=.05) (Alpha=.01)  
 Value1-Value2<>0 -1.0639 .305402 No .168139 .051619 
 Value1-Value2<0 -1.0639 .152701 No .263633 .086687 
 Value1-Value2>0 -1.0639 .847299 No .003912 .000489 
 

Step 5 – Interpret Findings 
In the Descriptive Statistics Section, the mean difference is -$1.687 thousand with the standard 
deviation of differences being $6.140 thousand. The 95% interval estimate for the mean 
difference ranges from -$5.087 thousand to $1.714 thousand. 

The formal two-tail hypothesis test for this example is shown under the T-Test Section. The p-
value for this two-tail test is 0.305402, which is much greater than 0.05. Thus, the conclusion of 
this hypothesis test is acceptance, i.e., there is no difference in the assessments. However, it is 
important to note that the power of this test is only 0.168139. One would like the power to be at 
least .80 or more, but small sample sizes will have poor power unless the difference is very 
pronounced. 

Remember when checking the assumption of normality, we noted that there was one possible 
outlier in the normal probability plot in the output. If we had run the Wilcoxon Signed-Rank test 
instead of the paired t-test, the p-value would be 0.302795. Hence, the conclusion is the same: 
there is no difference between assessments. This kind of decision confirmation does not always 
happen, but it is a simple option on questionable assumption situations. However, since the data 
are normally distributed, the paired t-test was the correct statistical test to choose. 
  
 Wilcoxon Signed-Rank Test for Difference in Medians 
 
 W Mean Std Dev Number Number Sets Multiplicity 
 Sum Ranks of W of W of Zeros of Ties Factor 
 41 60 17.60682 0 0 0 
 
    Approximation Without  Approximation With 
  Exact Probability Continuity Correction  Continuity Correction 
 Alternative Prob Reject H0  Prob Reject H0  Prob Reject H0 
 Hypothesis Level at .050 Z-Value Level at .050 Z-Value Level at .050 
 X1-X2<>0 .302795 No 1.0791 .280531 No 1.0507 .293383 No 
 X1-X2<0 .151398 No -1.0791 .140265 No -1.0507 .146691 No 
 X1-X2>0 .861572 No -1.0791 .859735 No -1.1075 .865967 No 
 

Step 6 – Record Your Results 
The conclusions for this example are that there is no difference between assessors for residential 
properties evaluated in this area, according to the paired t-test. The Wilcoxon Signed-Rank gave 
the same conclusion. If you were troubled by the one outlier, you could use a transformation on 
the differences plus a constant and rerun the paired t-test. Or, further examination of the one 
outlier might reveal extenuating circumstances that confirm that this is a one-time anomaly. If 
that were the case, the observation could be omitted and the analysis redone. 
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Example of One-Sample T-Test Steps 
This example will illustrate the use of one-sample tests for a single variable. A registration 
service for a national motel/hotel chain wants the average wait time for incoming calls on 
Mondays (during normal business hours, 8:00 a.m. to 5:00 p.m.) to be less than 25 seconds. A 
random sample of 30 calls yielded the results shown below. 

Row Anstime Row Anstime 
1 15 16 8 
2 12 17 12 
3 25 18 30 
4 11 19 12 
5 20 20 25 
6 10 21 26 
7 16 22 16 
8 26 23 29 
9 21 24 22 
10 23 25 12 
11 32 26 12 
12 34 27 12 
13 17 28 30 
14 16 29 15 
15 16 30 39 

Step 1 – Data Preparation 
This is not paired data but just a single random sample of one variable. There are no missing 
values, and the variable is continuous. 

Step 2 – Setup and Run the One-Sample T-Test 
Select and run the One-Sample T-Test from the Analysis menu on the single variable, Anstime. 
The alpha value has been set at 0.05. Interpretation of the results will come in the steps to follow. 

Step 3 – Check Assumptions 
The major assumption to check for is normality, and you should begin with the graphic 
perspectives: normal probability plots, histograms, density traces, and box plots. Some of these 
plots are given below. 
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The normal probability plot above does not look straight. It shows some skewness to the right. 
Some of the data points fall outside the 95% confidence bands. The histogram and density trace 
on answer time confirm the skewness to the right. This type of skewness to the right turns up 
quite often when dealing with elapsed-time data. 

The skewness, kurtosis, and the omnibus normality tests in the output below have p-values 
greater than 0.05, indicating that answer time seems to be normally distributed. This conflict in 
conclusions between the normal probability plot and the normality tests is probably due to the 
fact that this sample size is not large enough to accurately assess the normality of the data. 

 
 Tests of Assumptions Section  
   
 Assumption Value Probability Decision(5%) 
 Skewness Normality 1.4246 0.154281 Cannot reject normality 
 Kurtosis Normality -0.7398 0.459446 Cannot reject normality 
 Omnibus Normality 2.5766 0.275733 Cannot reject normality 
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Step 4 – Choose the Appropriate Statistical Test 
In Step 3, the conclusions from checking the assumptions were two-fold: (1) the data are 
continuous, and (2) the answer times are (based on the probability plot) non-normal. As a result 
of these findings, the appropriate statistical test is the Wilcoxon Signed-Rank test, which is shown 
in the figure. For comparison purposes, the t-test results are also shown in the output. 
 
 T-Test For Difference Between Mean and Value Section 
 
 Alternative  Prob Reject H0 Power Power 
 Hypothesis T-Value Level at .050 (Alpha=.05) (Alpha=.01)  
 AnsTime<>25 -3.4744 .001630 Yes .918832 .757472 
 AnsTime<25 -3.4744 .000815 Yes .959664 .837398 
 AnsTime>25 -3.4744 .999185 No .000000 .000000 
   
 Wilcoxon Signed-Rank Test 
 
 W Mean Std Dev Number Number Sets Multiplicity 
 Sum Ranks of W of W of Zeros of Ties Factor 
 90 231 48.52319 2 8 384 
 
    Approximation Without  Approximation With 
  Exact Probability Continuity Correction  Continuity Correction 
 Alternative Prob Reject H0  Prob Reject H0  Prob Reject H0 
 Hypothesis Level at .050  Z-Value Level at .050 Z-Value Level at .050
 Median<>25   2.9058 .003663 Yes 2.8955 .003785 Yes 
 Median<25    -2.9058 .001831 Yes -2.8955 .001893 Yes 
 Median>25   -2.9058 .998169 No -2.9161 .998228 No 
 

Step 5 – Interpret Findings 
Since the nonparametric test is more appropriate here and the concern was that the average 
answer time was less than 25 seconds, the Median<25 is the proper alternative hypothesis. The p-
value for the Wilcoxon Signed-Rank test is 0.00128, which is much less than 0.05. Thus, the 
conclusion of the test is to reject the null hypothesis. This says that the median answer time is 
significantly less than 25 seconds. 

It is interesting to note that the p-value for the left-tailed t-test is about the same. This points out 
the robustness of the t-test in the cases of heavy-tailed but almost symmetric distributions. 

Step 6 – Record Your Results 
The conclusions for this example are that the median is less than 25 seconds. Again, if you were 
troubled by the shape of the distribution, you could use a transformation such as the natural 
logarithm to make the data more normal and try the t-test. However, in this case, that seems to be 
more work than is needed. 
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Chapter 206 

T-Test –             
Two-Sample  
Introduction 
This procedure calculates the two-sample t-test, the Mann-Whitney U test, and the Kolmogorov-
Smirnov test of data either contained in two variables (columns) or in one variable indexed by a 
second (grouping) variable. 

Kinds of Research Questions 
One of the most common tasks in research is to compare two populations (groups). We might 
want to compare the income level of two regions, the nitrogen content of two lakes, or the 
effectiveness of two drugs. The first question that arises is what aspects (parameters) of the 
populations we shall compare. We might consider comparing the averages, the medians, the 
standard deviations, the distributional shapes (histograms), or maximum values. We base the 
comparison parameter on our particular problem. 

Perhaps the simplest comparison that we can make is between the means of the two populations. 
If we can show that the mean of population A is different from that of population B, we can 
conclude that the populations are different. Other aspects of the two populations can (and should) 
also be considered, but the mean is usually the starting point. 

If we are willing to make assumptions about the other features of the two populations (such as 
that they are normally distributed and their variances are equal), we can use the two-sample t-test 
to compare the means of random samples drawn from these two populations. If these assumptions 
are violated, the nonparametric Mann-Whitney U test or the Kolmogorov-Smirnov test may be 
used instead. 

Assumptions 
The following assumptions are made by the statistical tests described in this section. One of the 
reasons for the popularity of the t-test is its robustness in the face of assumption violation. 
However, if an assumption is not met even approximately, the significance levels and the power 
of the t-test are invalidated. Unfortunately, in practice it often happens that not one but several 
assumptions are not met. This makes matters even worse! Hence, take the appropriate steps to 
check the assumptions before you make important decisions based on these tests. Since the output 
includes items that let you investigate these assumptions, you should always do so. 
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Two-Sample T-Test Assumptions 
The assumptions of the two-sample t-test are: 

1. The data are continuous (not discrete). 

2. The data follow the normal probability distribution. 

3. The variances of the two populations are equal. (If not, the Aspin-Welch Unequal-
Variance test is used.) 

4. The two samples are independent. There is no relationship between the individuals in one 
sample as compared to the other (as there is in the paired t-test).  

5. Both samples are simple random samples from their respective populations. Each 
individual in the population has an equal probability of being selected in the sample.  

Mann-Whitney U Test Assumptions 
The assumptions of the Mann-Whitney U test are: 

1. The variable of interest is continuous (not discrete). The measurement scale is at least 
ordinal.  

2. The probability distributions of the two populations are identical, except for location. 

3. The two samples are independent. 

4. Both samples are simple random samples from their respective populations. Each 
individual in the population has an equal probability of being selected in the sample.  

Kolmogorov-Smirnov Test Assumptions 
The assumptions of the Kolmogorov-Smirnov test are: 

1. The measurement scale is at least ordinal. 

2. The probability distributions are continuous. 

3. The two samples are mutually independent. 

4. Both samples are simple random samples from their respective populations. 

Limitations 
There are few limitations when using these tests. Sample sizes may range from a few to several 
hundred. If your data are discrete with at least five unique values, you can often ignore the 
continuous variable assumption. Perhaps the greatest restriction is that your data come from a 
random sample of the population. If you do not have a random sample, your significance levels 
will definitely be incorrect. 
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Bootstrapping 
Bootstrapping was developed to provide standard errors and confidence intervals in situations in 
which the standard assumptions are not valid. In these nonstandard situations, bootstrapping is a 
viable alternative to the corrective action suggested earlier. The method is simple in concept, but 
it requires extensive computation time.  

The bootstrap is simple to describe. You assume that your sample is actually the population and 
you draw B samples (B is over 1000) of N1 from the original group one dataset and N2 from the 
original group 2 dataset, with replacement. With replacement sampling means that each 
observation is placed back in the population before the next one is selected so that each 
observation may be selected more than once. For each bootstrap sample, the means and their 
difference are computed and stored.  

Suppose that you want the standard error and a confidence interval of the difference. The 
bootstrap sampling process has provided B estimates of the difference. The standard deviation of 
these B differences is the bootstrap estimate of the standard error of the difference. The bootstrap 
confidence interval is found by arranging the B values in sorted order and selecting the 
appropriate percentiles from the list. For example, a 90% bootstrap confidence interval for the 
difference is given by fifth and ninety-fifth percentiles of the bootstrap difference values.  

The main assumption made when using the bootstrap method is that your sample approximates 
the population fairly well. Because of this assumption, bootstrapping does not work well for small 
samples in which there is little likelihood that the sample is representative of the population. 
Bootstrapping should only be used in medium to large samples. 

Randomization Test 
Because of the strict assumptions that must be made when using this procedure to test hypotheses 
about the difference, NCSS also includes a randomization test as outlined by Edgington (1987). 
Randomization tests are becoming more and more popular as the speed of computers allows them 
to be computed in seconds rather than hours. 

A randomization test is conducted by enumerating all possible permutations of the groups while 
leaving the data values in the original order. The difference is calculated for each permutation and 
the number of permutations that result in a difference with a magnitude greater than or equal to 
the actual difference is counted. Dividing this count by the number of permutations tried gives the 
significance level of the test.  

For even moderate sample sizes, the total number of permutations is in the trillions, so a Monte 
Carlo approach is used in which the permutations are found by random selection rather than 
complete enumeration. Edgington suggests that at least 1,000 permutations by selected. We 
suggest that this be increased to 10,000.  
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Data Structure 
The data may be entered in two formats, as shown in the two examples below. The examples give 
the yield of corn for two types of fertilizer. The first format is shown in the first table in which the 
responses for each group are entered in separate variables. That is, each variable contains all 
responses for a single group. In the second format the data are arranged so that all responses are 
entered in a single variable. A second variable, the Grouping Variable, contains an index that 
gives the group (A or B) to which the row of data belongs. 

In most cases, the second format is more flexible. Unless there is some special reason to use the 
first format, we recommend that you use the second. 

 

Grouping and Response Variables 

Fertilizer Yield 
B 546 
B 547 
B 774 
B 465 
B 459 
B 665 
B 467 
B 365 
B 589 
B 534 
B 456 
B 651 
B 654 
B 665 
B 546 
B 537 
A 452 
A 874 
A 554 
A 447 
A 356 
A 754 
A 558 
A 574 
A 664 
A 682 
A 547 
A 435 
A 245 

Two Response Variables 

Yield A Yield B 
452 546 
874 547 
554 774 
447 465 
356 459 
754 665 
558 467 
574 365 
664 589 
682 534 
 456 
547 651 
 654 
435 665 
 546 
245 537 
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Procedure Options 
This section describes the options available in this procedure. To find out more about using a 
procedure, turn to the Procedures chapter. 

Following is a list of the procedure’s options. 

Variables Tab 
The options on this panel specify which variables to use.  

Response Variables 

Response Variable(s) 
This option lets you specify the variable(s) to be analyzed. Note that if you specify only one 
variable here, you must also specify a grouping variable. If you simply want to compare two 
variables, you should specify them both here. Note that if more than one variable is specified, 
only the variable numbers are displayed.  

Group Variables 

Group Variables 
Optional group (breakdown) variables may be selected to indicate how the values of the response 
variable should be grouped. Examples of grouping variables are males and females, age groups, 
and yes or no responses. A separate analysis is performed for each pair of unique values in this 
variable. Note that the values in the variable can be either numeric or text. If more than one 
Group Variable is specified, a separate analysis is performed for all combinations of values. 

Options 

H0 Value 
This is the hypothesized difference between the two population means. It is usually assumed to be 
zero. 

Alpha Level 
The value of alpha for the confidence limits, rejection decision, and power analysis. Usually, this 
number will range from 0.1 to 0.001. The 0.05 default level represents 95% confidence limits.  

Resampling 

Bootstrap Confidence Intervals 
This option causes bootstrap confidence intervals and all associated bootstrap reports and plots to 
be generated using resampling simulation. The bootstrap settings are set under the Resampling 
tab. 

Bootstrapping may be time consuming when the bootstrap sample size is large. A reasonable 
strategy is to keep this option unchecked until you have considered all other reports. Then run this 
option with a bootstrap size of 100 and then 1000 to obtain an idea of the time needed to 
complete the simulation. 
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Randomization Test of Difference 
Check this option to run the randomization test. 

Randomization tests may be time consuming when the Monte Carlo sample size is large. A 
reasonable strategy is to keep this option unchecked until you have run and considered all other 
reports. Then run this option with a Monte Carlo size of 100, then 1000, and then 10000 to obtain 
an idea of the time needed to complete the simulation. 

Reports Tab 
The options on this panel control the format of the report.  

Select Additional Reports 

Nonparametric Tests 
Select this option to display the indicated report.  

Select Plots 

Histogram … Box Plot 
Check the boxes to display the plot.  

Report Options 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option applies to the Group Variable(s). It lets you select whether to display data values, 
value labels, or both. Use this option if you want the output to automatically attach labels to the 
values (like 1=Yes, 2=No, etc.). See the section on specifying Value Labels elsewhere in this 
manual.  

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports were formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 
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Histogram Tab 
The options on this panel control the appearance of the histogram. 

Vertical and Horizontal Axis 

Label  
This is the text of the label. The characters {Y} are replaced by the name of the variable. The 
characters {M} are replaced by the name of the selected probability distribution. Press the button 
on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on each axis. If left 
blank, these values are calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the tick labels along each axis. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Histogram Settings 

Plot Style File 
Designate a histogram style file. This file sets all histogram options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Histogram procedure. 

Number of Bars 
Specify the number of intervals, bins, or bars used in the histogram. 

Titles 

Plot Title 
This is the text of the title. The characters {X} are replaced by the name of the variable. Press the 
button on the right of the field to specify the font of the text. 
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Probability Plot Tab 
The options on this panel control the appearance of the probability plot. 

Vertical and Horizontal Axis 

Label  
This is the text of the label. The characters {Y} are replaced by the name of the variable. The 
characters {M} are replaced by the name of the selected probability distribution. Press the button 
on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on each axis. If left 
blank, these values are calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the tick labels along each axis. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Probability Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} are replaced by the name of the variable. The 
characters {M} are replaced by the name of the selected probability distribution. Press the button 
on the right of the field to specify the font of the text. 
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Box Plot Tab 
The options on this panel control the appearance of the box plot. 

Vertical Axis 

Label  
This is the text of the label. The characters {Y} are replaced by the name of the variable. The 
characters {M} are replaced by the name of the selected probability distribution. Press the button 
on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the axis. If left 
blank, these values are calculated from the data. 

Tick Label Settings… 
Pressing this button brings up a window that sets the font, rotation, and number of decimal places 
displayed in the tick labels along this axis. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on this axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Horizontal Axis 

Label  
This is the text of the label. The characters {Y} are replaced by the name of the variable. The 
characters {M} are replaced by the name of the selected probability distribution. Press the button 
on the right of the field to specify the font of the text. 

Tick Label Settings 
Pressing this button brings up a window that sets the font, rotation, and number of decimal places 
displayed in the tick labels along this axis. 

Box Plot Settings 

Plot Style File 
Designate a box plot style file. This file sets all box plot options that are not set directly on this 
panel. Unless you choose otherwise, the default style file (Default) is used. These files are created 
in the Box Plot procedure. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by the appropriate variable 
names. Press the button on the right of the field to specify the font of the text. 
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Resampling Tab 
This panel controls the bootstrapping. Note that bootstrapping is only used when the Bootstrap 
report is checked on the Reports panel. 

Bootstrap Options – Sampling 

Samples (N) 
This is the number of bootstrap samples used. A general rule of thumb is that you use at least 100 
when standard errors are your focus or at least 1000 when confidence intervals are your focus. If 
computing time is available, it does not hurt to do 4000 or 5000.  

We recommend setting this value to at least 3000. 

Retries 
If the results from a bootstrap sample cannot be calculated, the sample is discarded and a new 
sample is drawn in its place. This parameter is the number of times that a new sample is drawn 
before the algorithm is terminated. We recommend setting the parameter to at least 50. 

Bootstrap Options – Estimation 

Percentile Type 
The method used to create the percentiles when forming bootstrap confidence limits. You can 
read more about the various types of percentiles in the Descriptive Statistics chapter. We suggest 
you use the Ave X(p[n+1]) option. 

C.I. Method 
This option specifies the method used to calculate the bootstrap confidence intervals. The 
reflection method is recommended. 

• Percentile 
The confidence limits are the corresponding percentiles of the bootstrap values.  

• Reflection 
The confidence limits are formed by reflecting the percentile limits. If X0 is the original value 
of the parameter estimate and XL and XU are the percentile confidence limits, the Reflection 
interval is (2 X0 - XU, 2 X0 - XL). 

Bootstrap Confidence Coefficients 
These are the confidence coefficients of the bootstrap confidence intervals. Since bootstrapping 
calculations may take several minutes, it may be useful to obtain confidence intervals using 
several different confidence coefficients. 

All values must be between 0.50 and 1.00. You may enter several values, separated by blanks or 
commas. A separate confidence interval is given for each value entered.  

Examples: 

0.90 0.95 0.99 

0.90:.99(0.01) 

0.90.  
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Bootstrap Options – Histograms 

Vertical Axis Label 
This is the label of the vertical axis of a bootstrap histogram. 

Hortizontal Axis Label 
This is the label of the horizontal axis of a bootstrap histogram. 

Plot Style File 
This is the histogram style file. We have provided several different style files to choose from, or 
you can create your own in the Histogram procedure. 

Histogram Title 
This is the title used on the bootstrap histograms. 

Number of Bars 
The number of bars shown in a bootstrap histogram. We recommend setting this value to at least 
25 when the number of bootstrap samples is over 1000. 

Randomization Test Options 

Monte Carlo Samples 
Specify the number of Monte Carlo samples used when conducting randomization tests. You also 
need to check the ‘Randomization tests’ box under the Variables tab to run this test. 
Somewhere between 1000 and 100000 Monte Carlo samples are usually necessary. Although the 
default is 1000, we suggest the use of 10000 when using this test. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Running a Paired T-Test 
This section presents an example of how to run a two-sample t-test. We will use the corn yield 
data found in YldA and YldB of the SAMPLE database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the T-Test – Two-Sample window. 

1 Open the SAMPLE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Sample.s0. 
• Click Open. 

2 Open the T-Test – Two-Sample window. 
• On the menus, select Analysis, then T-Tests, then T-Test – Two-Sample. The T-Test – 

Two-Sample procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the T-Test – Two-Sample window, select the Variables tab. 
• Double-click in the Response Variable(s) box. This will bring up the variable selection 

window. 
• Select YldA and YldB from the list of variables and then click Ok. The words “YldA-

YldB” will appear in the Response Variables box. 
• Check the Bootstrap Confidence Intervals option. 
• Check the Randomization Test of Difference option. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

The following reports and charts will be displayed in the Output window. 

Descriptive Statistics Section 
This section gives a descriptive summary of each group. See the Descriptive Statistics chapter for 
details about this section. 

You should glance through this report quickly to make sure that the Means and Counts are 
correct. This provides another check of whether you are analyzing the data you intended! 
 
    Standard Standard 95% LCL 95% UCL 
 Variable Count Mean Deviation Error of Mean of Mean 
 YldA 13 549.3846 168.7629 46.80641 447.4022 651.367 
 YldB 16 557.5 104.6219 26.15546 501.7509 613.249 
  
 Note: T-alpha (YldA) = 2.1788,   T-alpha (YldB) = 2.1314 
 

Variable 
These are the names of the independent variables.  
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Count 
The count gives the number of nonmissing values. This value is often referred to as the sample 
size or n.  

Mean 
This is the average for each group. 

Standard Deviation 
The sample standard deviation is the square root of the sample variance. It is a measure of spread.  

Standard Error 
This is the estimated standard deviation for the distribution of sample means for an infinite 
population. It is the sample standard deviation divided by the square root of sample size, n.  

LCL of the Mean 
This is the lower value of a 100(1-α)% interval estimate of the mean based on a Student’s t 
distribution with n-1 degrees of freedom. This interval estimate assumes that the population 
standard deviation is not known and that the data are normally distributed.  

UCL of the Mean 
This is the upper value of a 100(1-α)% interval estimate for the mean based on a t distribution 
with n-1 degrees of freedom. 

T-alpha 
This is the t-value used to construct the confidence interval estimate. If you were constructing the 
interval manually, you would obtain this value from a table of the Student’s t distribution.  

Confidence-Limits of Difference Section 
Given that the assumptions of independent samples and normality are valid, this section provides 
an interval estimate (confidence limits) of the difference between the two means. Results are 
given for both the equal and unequal variance cases. Use the Equal Variance results if the Equal-
Variance Test  in the Tests of Assumptions Section is marked “Cannot reject.” Otherwise, use the 
Unequal Variance results.  
 
 Variance  Mean Standard Standard 95% LCL 95% UCL 
 Assumption DF Differenc  Deviatio  Error of Differe ce of Difference e n n
 Equal 27 -8.115385 136.891 51.11428 -112.9932 96.76247 
 Unequal 19.1690 -8.115385 198.5615 53.61855 -120.2734 104.0426 
 
 Note: T-alpha (Equal) = 2.0518,   T-alpha (Unequal) = 2.0918 
   

DF 
The degrees of freedom for the two cases are next.  

For the equal variance case:  

df n nX Y= + − 2 
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For the unequal variance case:  
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Mean Difference 
This is the difference between the sample means.  

Standard Deviation 
In the equal variance case, this quantity is: 

s n s n s
n nX Y

X Y

X Y
− =

− + −
+ −

( ) ( )1 1
2

2 2

 

In the unequal variance case, this quantity is:  

s sX Y X Y− = +2 2s  

Standard Error 
This is the estimated standard deviation of the distribution of differences between independent 
sample means.  

For the equal variance case:  
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For the unequal variance case:  

s s
n

s
nX Y

X

X

Y

Y
− = +

2 2

 

LCL of Difference 
This is the lower value of a 100(1-α)% interval estimate for the difference between two means. 
The Equal Variance results are based on the usual t distribution. The Unequal Variance results are 
based on the Aspin-Welch Unequal-Variance procedure.  

UCL of Difference 
This is the upper value of a 100(1-α)% interval estimate for the difference between two means. 
The Equal Variance results are based on the usual t distribution. The Unequal Variance results are 
based on the Aspin-Welch Unequal-Variance procedure. 

T-alpha 
This is the t value used to construct the confidence limits. It depends upon the variance situation 
and the α level of significance (or 1-α degree of confidence).  
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Bootstrap Section 
 
 ------------     Estimation Results ------------ | ------------     Bootstrap Confidence Limits ---------------- 
 Parameter Estimate | Conf. Level Lower Upper 
 Mean 
 Difference 
 Original Value -8.1154 | 0.9000 -90.5036 75.0834 
 Bootstrap Mean -8.7702 | 0.9500 -108.3319 91.0124 
 Bias (BM - OV) -0.6548 | 0.9900 -135.1548 122.6257 
 Bias Corrected -7.4605    
 Standard Error 50.7672    
 Mean 1 
 Original Value 549.3846 | 0.9000 476.4615 624.9808 
 Bootstrap Mean 548.1727 | 0.9500 465.5423 635.9904 
 Bias (BM - OV) -1.2119 | 0.9900 430.7788 664.6100 
 Bias Corrected 550.5965    
 Standard Error 44.6132    
 Mean 2 
 Original Value 557.5000 | 0.9000 515.5688 598.9938 
 Bootstrap Mean 556.9429 | 0.9500 508.6281 606.5625 
 Bias (BM - OV) -0.5571 | 0.9900 492.3141 622.4988 
 Bias Corrected 558.0571    
 Standard Error 25.1733    
 
 Sampling Method = Observation, Confidence Limit Type = Reflection, Number of Samples = 3000. 
 
 Bootstrap Histograms Section 
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This report provides bootstrap confidence intervals of the two means and their difference. Note 
that since these results are based on 3000 random bootstrap samples, they will differ slightly from 
the results you obtain when you run this report.  
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Original Value 
This is the parameter estimate obtained from the complete sample without bootstrapping. 

Bootstrap Mean 
This is the average of the parameter estimates of the bootstrap samples. 

Bias (BM - OV) 
This is an estimate of the bias in the original estimate. It is computed by subtracting the original 
value from the bootstrap mean. 

Bias Corrected 
This is an estimated of the parameter that has been corrected for its bias. The correction is made 
by subtracting the estimated bias from the original parameter estimate. 

Standard Error 
This is the bootstrap method’s estimate of the standard error of the parameter estimate. It is 
simply the standard deviation of the parameter estimate computed from the bootstrap estimates. 

Conf. Level 
This is the confidence coefficient of the bootstrap confidence interval given to the right. 

Bootstrap Confidence Limits - Lower and Upper 
These are the limits of the bootstrap confidence interval with the confidence coefficient given to 
the left. These limits are computed using the confidence interval method (percentile or reflection) 
designated on the Bootstrap panel. 

Note that to be accurate, these intervals must be based on over a thousand bootstrap samples and 
the original sample must be representative of the population. 

Bootstrap Histogram 
The histogram shows the distribution of the bootstrap parameter estimates. 

Equal-Variance T-Test and Aspin-Welch Unequal-Variance 
Sections 
These two sections present the t-test results for the equal variance and unequal variance cases, 
respectively. The definitions are essentially identical for each case, so they are combined. 
 
 Alternative  Prob Reject H0 Power Power 
 Hypothesis TValu  Level at .050 (Alpha=.05) (Alpha=.01)  e
 Difference <> 0 -.1588 .875032 No .052693 .010837 
 Randomization Test  .879000 
  Difference < 0 -.1588 .437516 No .068110 .014804 
  Difference  > 0 -.1588 .562484 No .035954 .006616 
 Difference: (YldA)-(YldB) 
 
 Aspin-Welch Unequal-Variance Test Section 
 
 Alternative  Prob Reject H0 Power Power 
 Hypothesis T-Valu  Level at .050 (Alpha=.05) (Alpha=.01)  e
 Difference <>  -.1514 .881278 No .052376 .010723 0
 Difference < 0 -.1514 .440639 No .066968 .014437 
  Difference > 0 -.1514 .559361 No .036649 .006802 
 Difference: (YldA)-(YldB) 
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Alternative Hypothesis 
This value identifies the test direction of the test reported in this row. Strict procedure requires 
you to select the null and alternative hypothesis prior to your analysis. 

X-Y<>0. This is the two-tail test case. The null and alternative hypotheses are 

 Ho: μX-μY=0, Ha: μX-μY ≠0. 

X-Y<0. This is the left-tail test case. The null and alternative hypotheses are 

 Ho: μX-μY=0, Ha: μX-μY<0. 

X-Y>0. This is the right-tail test case. The null and alternative hypotheses are 

 Ho: μX-μY=0, Ha: μX-μY>0.  

T-Value 
This is the t-test test statistic computed from your data. The formulas for the two possible 
variance assumptions are identical in form. The only difference between them is that the 
appropriate denominator must be selected, depending on whether the variances are equal. 

t x x
s

X Y X Y

X Y

=
− − −

−

( ) ( )μ μ  

Prob Level 
This is the p-value (significance level) for the statistical test. The p-value is the probability that 
the test statistic will take a value at least as extreme as the observed value, assuming that the null 
hypothesis is true. If the p-value is less than α, say 0.05, the null hypothesis is rejected. If the p-
value is greater than α, the null hypothesis is accepted.  

Reject H0 at .050 
This is the conclusion reached (accept or reject) about the null hypothesis, H0. If you reject the 
null hypothesis, your study is said to be significant. Otherwise, it is not significant.  

Power (Alpha=0.05) and Power (Alpha=0.01) 
Power is the probability of rejecting the hypothesis that the means are equal when they are in fact 
not equal. Power is one minus the probability of type II error (β). The power of the test depends 
on the sample size, the magnitudes of the variances, the alpha level, and the actual difference 
between the two population means.  

The power value calculated here assumes that the population standard deviation is equal to the 
sample standard deviation and that the difference between the population means is exactly equal 
to the difference between the sample means. Of course, this cannot be true, but it allows us to 
calculate the power at these values.  

High power is desirable. High power means that there is a high probability of rejecting the null 
hypothesis when the null hypothesis is false. This is a critical measure of precision in hypothesis 
testing.  

Usually you would consider the power of the test when you failed to reject the null hypothesis. 
The power will give you some idea of what actions you might take to make your results 
significant. If you accept the null hypothesis with high power, there is not much left to do. At 
least you know that the two means are not different. However, if you accept the null hypothesis 
with low power, you can take one or more of the following actions:  
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1. Increase your alpha level. Perhaps you should be testing at alpha = 0.05 instead of alpha 
=.01. Increasing the alpha level will increase the power. 

2. Increasing your sample size will increase the power of your test if you have low power. If 
you have high power, an increase in sample size will have little effect.  

3. Decrease the magnitude of the variance. Perhaps you can redesign your study so that 
measurements are more precise and extraneous sources of variation are removed.  

Tests of Assumptions Section 
This section presents the results of tests validating the normality and equal variance assumptions. 
Note that the t-test assumes that each group is normally distributed, so the normality tests are 
conducted on each group separately. Other assumptions concerning independence and random 
sampling are not tested here. You must justify those assumptions by considering your experiment 
procedure.  

When using this report, all you need to do is scan down the column labeled Decision(5%). If none 
of the tests are rejected, you can feel confident that the assumptions are met. (Of course, the 
power of these tests is also influenced by your sample size. If you have a small sample size, say 
less than 25 per group, the power of these normality tests will be questionable and you will have 
to rely on other means to justify your assumptions.)  

Two aspects of normality are tested for, skewness and kurtosis. If the normality of a batch of data 
fails because of skewness, it might be possible to use the square root or logarithmic 
transformation to normalize your data. If only one of the variables is normally distributed, look at 
the normal probability plot or box plot for the one variable that is not normally distributed to see 
if an outlier or two may have caused the nonnormality.  

There are several schools of thought on whether a preliminary test for variance equality is proper 
before using the t-test. Various simulation studies that used the preliminary variance test have 
shown it to be very inadequate for a preliminary test. Our suggestion is to use the equal variance 
t-test when the sample sizes are equal or approximately equal and use the unequal variance t-test 
when the sample sizes are unequal. When the sample sizes are different, the most serious 
situation is when the smaller sample is associated with the larger variance. The other option is to 
use a different test for equality of variances. Conover and others (1981) did extensive simulation 
involving different distributions, sample sizes, means, and variances; and they found that the 
modified-Levene test is one of the most robust and powerful tests for equality of variance. Thus, 
if a preliminary test is to be preferred, use the modified-Levene test. Otherwise, do not do any 
preliminary test, and choose the t-test based on whether the sample sizes are equal.  

In the case of nonnormality, two nonparametric tests were suggested. The basic assumptions of 
independent samples, continuous random variables, and a measurement scale of at least ordinal 
scale hold for both tests. The Mann-Whitney U or Wilcoxon Rank-Sum test has the additional 
assumption that the distributions for the two variables are identical (although not necessary 
normal) in form and shape (i.e., same variance) but differ only in location (i.e., in medians). On 
the other hand, the Kolmogorov-Smirnov is a general test for differences between two groups. As 
a general test, it is somewhat sensitive to all kinds of differences between groups or populations 
and yet not particularly sensitive to any specific type of difference. The Kolmogorov-Smirnov 
test is a good choice when there are a lot of ties in your data that tends to invalidate the Wilcoxon 
Rank-Sum test.  

Finally, you should back up the results of these numerical tests by considering the box plots, 
histograms, and probability plots of the two groups. As explained below, they let you visually 
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determine if the assumptions of normality (probability plots) and equal variance (box plots) are 
justified. 
   
 Assumption Value Probability Decision(5%) 
 Skewness Normality (YldA) 0.2691 0.787854 Cannot reject normality 
 Kurtosis Normality (YldA) 0.3081 0.758028 Cannot reject normality 
 Omnibus Normality (YldA) 0.1673 0.919743 Cannot reject normality 
 Skewness Normality (YldB) 0.4587 0.646444 Cannot reject normality 
 Kurtosis Normality (YldB) 0.1291 0.897258 Cannot reject normality 
 Omnibus Normality (YldB) 0.2271 0.892665 Cannot reject normality 
 Variance Ratio Equal-Variance Test 2.6020 0.083146 Cannot reject equal variances 
 Modified Levene Equal-Variance Test 1.9940 0.169347 Cannot reject equal variances 
 

Skewness Normality 
This is a skewness test reported by D’Agostino (1990). Remember that skewness is lack of 
symmetry. One characteristic of the normal distribution is that it has no skewness. Hence, one 
type of nonnormality is skewness.  

The Value is the test statistic for skewness, while Probability is the p-value for a two-tail test for 
normality. If this p-value is less than a chosen level of significance, usually 0.05, the data are not 
normally distributed according to this test. If the p-value is greater than the chosen level of 
significance, the data are assumed to be normally distributed. Under Decision (5%), the 
conclusion about normality is given.  

Kurtosis Normality 
Kurtosis measures the heaviness of the tails of the distribution. D’Agostino (1990) reported a 
second normality test that tests kurtosis. The Value column gives the test statistic for kurtosis, 
while Probability is the p-value for a two-tail test for normality. If this p-value is less than a 
chosen level of significance, 0.05, the data are not normally distributed according to this test. If 
the p-value is greater than the chosen level of significance, the data are assumed normal. Under 
Decision (5%), the conclusion of the test is given. If the data are not normally distributed, the 
conclusion is rejection. If the data are normally distributed, the conclusion is acceptance.  

Omnibus Normality 
This third normality test, also developed by D’Agostino (1990), combines the skewness and 
kurtosis tests into a single measure. The definitions for Value, Probability, and Decision (5%) are 
the same as for the previous two normality tests. This normality test is considered to be the best 
of the three.  

Variance Ratio Equal-Variance Test 
This equal variance test is the ratio of two sample variances. This variance ratio is distributed as 
an F distribution with nx-1 degrees of freedom for the numerator sample variance and ny-1 
degrees of freedom for the denominator sample variance.  

F
s
s

X

Y

=
2

2  

This variance ratio is shown under Value. Be careful! This test requires that the two samples are 
drawn from normal populations. If the two samples are not normally distributed, do not use this 
test as a preliminary test for equality of variances. It would be better to check for equality of 
variance with the modified Levene test or to use some graphic tool, such as the box plot.  

The p-value (Probability) is compared to the level of significance. If it is less than the level of 
significance, there is a difference in variances and the Decision is rejection of the null hypothesis 
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of equal variances. If the p-value is greater than the level of significance, there is acceptance of 
equal variances.  

Modified Levene Equal-Variance Test 
The modified Levene test has been found to be one of the best tests for equality of variances. 
Levene’s procedure is outlined as follows. First, redefine the variables for each treatment or 
sample by taking the absolute value of the difference from the sample median. For one sample, 
this redefinition would be 

z1j = −x Medj x  

And for the other,  

z2j = −y Medj y  

Next, run a two-group one-way analysis of variance on this redefined variable. The F-value for 
this one-way analysis of variance is shown under Value and its corresponding p-value under 
Probability.  

The p-value (Probability) is compared to the level of significance. If it is less than the level of 
significance, there is a difference in variances and the Decision is rejection of the null hypothesis 
of equal variances. Otherwise, there is acceptance of equal variances.  

Mann-Whitney U or Wilcoxon Rank-Sum Test 
This test is the nonparametric substitute for the equal-variance t-test when the assumption of 
normality is not valid. When in doubt about normality, play it safe and use this test. The 
assumptions for this test were given in the Assumptions Section at the beginning of this chapter. 
Two key assumptions that we remind you of are that the distributions are at least ordinal in nature 
and that they are identical, except for location. This means that ties (repeated values) are not 
acceptable. When ties are present in your data, you can use the approximation provided, but know 
that the exact results no longer hold.  

This particular test is based on ranks and has good properties (asymptotic relative efficiency) for 
symmetric distributions. There are exact procedures for this test given small samples with no ties, 
and there are large sample approximations.  
 
  Mann W Mea  Std Dev n
 Variable Whitn y U Sum Ranks of W of W e
 YldA 101.5 192.5 195 22.79508 
 YldB 106.5 242.5 240 22.79508 
 Number Sets of Ties = 3,   Multiplicity Factor = 18 
 
  Exact Probability oximation Wi hout Correctio  proximation ith Correction Appr t n Ap W
 Alternative  Reject H0  Prob Reject H0  Prob Reject H0 Prob
 Hypoth sis Level t .050 Z-Valu  Level at .050 Z-Val e Level at .050 e a e u
 Diff<>    -.1097 .912671 No .0877 .930086 No 0
 Diff<0   -.1097 .456336 No -.0877 .465043 No 
 Diff>0   -.1097 .543664 No -.1316 .552351 No 
 

Variable 
This is the name for each sample, group, or treatment.  
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Mann Whitney U 
The Mann-Whitney test statistic, U, is defined as the total number of times a Y precedes an X in 
the configuration of combined samples Gibbons (1985). It is directly related to the sum of ranks. 
This is why this test is sometimes called the Mann-Whitney U test and other times called the 
Wilcoxon Rank Sum test. The Mann-Whitney U test calculates Ux and Uy. The formula for Ux is 
as follows (the formula for Uy is obtained by replacing “x” by “y” in this formula): 

Ux Wx
n nx x= −

+( )1
2

 

W Sum Ranks 
Given that the two samples (X and Y) are combined into one and the observations are ranked in 
ascending order, W is the sum of the ranks for the group or treatment, X or Y. Note that tied 
values are resolved by using the average rank of the tied values.  

Wx = Σ(ranksx) 

Mean of W 
This is the mean of the distribution of W, formulated as follows:  

W
n n n

x
x x y=

+ +( )1
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and 

W
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y
y x y=

+ +( )1
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Std Dev of W 
This is the standard deviation of the W corrected for ties. If there are no ties, this standard 
deviation formula simplifies since the second term under the radical is zero.  
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where t1 is the number of observations tied at value one, t2 is the number of observations tied at 
some value two, and so forth. Generally, this correction for ties in the standard deviation makes 
little difference unless there are a lot of ties.  

Number Sets of Ties 
This gives the number of sets of tied values. If there are no ties, this number is zero. A set of ties 
is two or more observations with the same value. This is used in adjusting the standard deviation 
for the W.  

Multiplicity factor 
This is the tie portion of the standard deviation of W, given by 

( )t ti i
i

3

1
−

=
∑  

Alternative Hypothesis 
For the Wilcoxon rank-sum test, the null and alternative hypotheses relate to the equality or non-
equality of two medians. If a difference other than zero is desired between the medians of the null 
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hypothesis (such as Ho: medianx=mediany + d where d is some specified number), simply add the 
number d to each Y, and run the test on the original X’s and the newly adjusted Y’s.  

This value identifies the test direction of the test reported in this row. Strict statistical procedure 
requires you to select the null and alternative hypothesis prior to your analysis.  

Diff<>0. This is the two-tail test case. The null and alternative hypotheses are 

 Ho: MedianX=MedianY , Ha: MedianX ≠ MedianY.  

Diff<0. This is the left-tail test case. The null and alternative hypotheses are 

 Ho: MedianX = MedianY , Ha: MedianX < MedianY 

Diff>0. This is the right-tail test case. The null and alternative hypotheses are 

 Ho: MedianX = MedianY, Ha: MedianX > MedianY 

Exact Probability: Prob Level 
This is an exact p-value for this statistical test based on the distribution of W. This p-value 
assumes no ties (if ties are detected, this value is left blank). The p-value is the probability that 
the test statistic will take a value at least as extreme as the actually observed value, assuming that 
the null hypothesis is true. The exact probability value is available for sample sizes up to 38.  

Exact Probability: Reject H0 at .050 
This is the conclusion reached about the null hypothesis. 

Approximation without correction: Z value 
A normal approximation method can be used for the distribution of the sum of ranks which 
corrects for ties but does not have the correction factor for continuity. The z value is:  

z
Wn Wn

Wn
=

− μ
σ

 

where W is the sum of ranks for the smaller sample size and μW is the mean of W. The z value, 
the p-value, and the decision at specified alpha level are provided.  

Approximation with correction: Z value 
This is a normal approximation that corrects for ties and has the correction factor for continuity. 
The z value is:  

z Wn Wn

Wn
=

− +μ
σ

0 5.  

where W is the sum of ranks for the smaller sample size and μW is the mean of W.  

If a normal approximation procedure is used, this one is the most accurate. 

Prob Level 
This is the p-value for the Wilcoxon rank-sum test. Exact values are given for sample sizes under 
40. The normal approximation approach is reported for sample sizes over 40. The p-value is the 
probability that the test statistic will take a value at least as extreme as the actually observed 
value, assuming that the null hypothesis of equality of medians is true. If the p-value is less than 
α, say 0.05, the null hypothesis is rejected. If the p-value is greater than α, the null hypothesis is 
accepted.  
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Reject H0 at .050 
This is the conclusion about H0 that is reached.  

Kolmogorov-Smirnov Test 
This is a two-sample test for differences between two samples or distributions. If a statistical 
difference is found between the distributions of X and Y, the test provides no insight as to what 
caused the difference. For example, the difference could be due to differences in location (mean), 
variation (standard deviation), presence of outliers, type of skewness, type of kurtosis, number of 
modes, and so on.  

The assumptions for this nonparametric test are: (1) there are two independent random samples; 
(2) the two population distributions are continuous; and (3) the data are at least ordinal in scale. 
This test is frequently preferred over the Wilcoxon sum-rank test when there are a lot of ties. The 
test statistic is the maximum distance between the empirical distribution functions (EDF) of the 
two samples.  
 
 Alternative Dmn Reject Ho if Test lpha Reject H0 Prob A
 Hypothesis Criterion Value Greater Than Leve  at .050 Level l
 D(1)<>D(2  0.322115 0.4768 .050 No .3468 )
 D(1)<D(2) 0.322115 0.4768 .025 No  
 D(1)>D(2) 0.177885 0.4768 .025 No  
  

Alternative Hypothesis 
The null and alternative hypotheses relate to the equality of the two distribution functions (noted 
as F(X) or F(Y)). This value identifies the test direction of the test reported in this row. Strict 
procedure requires you to select the null and alternative hypotheses prior to your analysis. 

D(1)<>D(2). This is the two-tail test case. The null and alternative hypotheses are 

 Ho: F(X) = F(Y), Ha: F(X) ≠ F(Y)  

D(1)<D(2). This is the left-tail test case. The null and alternative hypotheses are 

 Ho: F(X) = F(Y), Ha: F(X) < F(Y)  

D(1)>D(2). This is the right-tail test case. The null and alternative hypotheses are 

 Ho: F(X) = F(Y), Ha: F(X) > F(Y)  

Dmn-criterion value 
This is the maximum difference between the two empirical distribution functions. It is the 
Kolmogorov-Smirnov test statistic.  

Reject Ho if Greater Than 
This number is the decision criterion for the Kolmogorov-Smirnov test based on nX and nY. If the 
test statistic Dmn is greater than this decision limit, there is a statistically significant difference 
between the two samples. However, we do not know what aspect of the two samples is different.  

Test Alpha Level 
This is the level of significance, α, for this test.  
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Reject H0 at .050 
If the level of significance is α, a No means that the test statistic was less than the decision 
criterion and that there is no statistical difference between the two samples. A Yes means that 
there is a statistical difference between the two groups.  

Prob Level 
This is the p-value for a two-tail test. If the level of significance, α, is larger than this p-value, 
reject H0.  

Histogram and Density Trace 
The histogram with the density trace overlay (the wavy line) lets you study the distributional 
features of the two samples to determine if (and which) two-sample tests are appropriate. Note 
that histograms require larger samples than probability plots. Since the shape of the histogram is 
influenced by the number of classes or bins and the width of the bins, the best choice is to trust 
the density trace, which is a smoothed histogram. A complete discussion of histograms is given in 
the chapter on this topic.  
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Normal Probability Plots 
This is a normal probability plot of the actual data values for each sample. There would be two 
normal probability plots. If any of the data values fall outside the confidence bands, the data are 
not normal for that group. The goodness-of-fit tests mentioned earlier, especially the omnibus 
test, should confirm this fact statistically. If only one observation falls outside the confidence 
bands and the remaining data values hug the straight line, there is an outlier. 
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Box Plots 
Box plots are useful for assessing symmetry, presence of outliers, general equality of location, 
and equality of variation.  
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Two-Sample T-Test Checklist 
This checklist, prepared by a professional statistician, is a flowchart of the steps you should 
complete to conduct a valid two-sample t-test (or one of its nonparametric counterparts). You 
should complete these tasks in order. 

Step 1 – Data Preparation 

Introduction 
This step involves scanning your data for anomalies, keypunch errors, typos, and so on. You 
would be surprised how often we hear of people completing an analysis, only to find that they had 
mistakenly selected the wrong database. 

Sample Size 
The sample size (number of nonmissing rows) has a lot of ramifications. The two-sample t-test 
was developed under the assumption that the sample sizes of each group would be equal. In 
practice, this seldom happens, but the closer you can get to equal sample sizes the better.  

With regard to the combined sample size, the t-test may be performed on very small samples, say 
4 or 5 observations per group. However, in order to test assumptions and obtain reliable estimates 
of variation, you should attempt to obtain at least 30 individuals per group.  

It is possible to have a sample size that is too large. When your sample size is quite large, you are 
almost guaranteed to find statistical significance. However, the question that then arises is 
whether the magnitude of the difference is of practical importance. 

Missing Values 
The number and pattern of missing values are always issues to consider. Usually, we assume that 
missing values occur at random throughout your data. If this is not true, your results will be 
biased since a particular segment of the population is underrepresented. If you have a lot of 
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missing values, some researchers recommend comparing other variables with respect to missing 
versus nonmissing. If you find large differences in other variables, you should begin to worry 
about whether the missing values are cause for a systematic bias in your results. 

Type of  Data 
The mathematical basis of the t-test assumes that the data are continuous. Because of the 
rounding that occurs when data are recorded, all data are technically discrete. The validity of 
assuming the continuity of the data then comes down to determining when we have too much 
rounding. For example, most statisticians would not worry about human-age data that was 
rounded to the nearest year. However, if these data were rounded to the nearest ten years or 
further to only three groups (young, adolescent, and adult), most statisticians question the validity 
of the probability statements. Some studies have shown that the t-test is reasonably accurate when 
the data has only five possible values (most would call this discrete data). If your data contains 
less than five unique values, any probability statements made are tenuous. 

Outliers 
Generally, outliers cause distortion in most popular statistical tests. You must scan your data for 
outliers (the box plot is an excellent tool for doing this). If you have outliers, you have to decide 
if they are one-time occurrences or if they would occur in another sample. If they are one-time 
occurrences, you can remove them and proceed. If you know they represent a certain segment of 
the population, you have to decide between biasing your results (by removing them) or using a 
nonparametric test that can deal with them. Most would choose the nonparametric test. 

Step 2 – Setup and Run the T-Test Panel 

Introduction 
Now comes the fun part: running the program. NCSS is designed to be simple to operate, but it 
can still seem complicated. When you go to run a procedure such as this for the first time, take a 
few minutes to read through the chapter again and familiarize yourself with the issues involved. 

Enter Variables 
The NCSS procedures are set with ready-to-run defaults. About all you have to do is select the 
appropriate variables. 

Select All Plots 
As a rule, you should select all diagnostic plots (box plots, histograms, etc.) even though they 
may take a few extra seconds to generate. They add a great deal to your analysis of the data. 

Specify Alpha 
Most beginners in statistics forget this important step and let the alpha value default to the 
standard 0.05. You should make a conscious decision as to what value of alpha is appropriate for 
your study. The 0.05 default came about when people had to rely on printed probability tables and 
there were only two values available: 0.05 or 0.01. Now you can set the value to whatever is 
appropriate. 
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Step 3 – Check Assumptions 

Introduction 
Once the program output is displayed, you will be tempted to go directly to the probability of the 
t-test, determine if you have a significant result, and proceed to something else. However, it is 
very important that you proceed through the output in an orderly fashion. The first task is to 
determine which assumptions are met by your data. 

Sometimes, when the data are nonnormal for both samples, a data transformation (like square 
roots or logs) might normalize the data. Frequently, when only one sample is normal and the 
other is not, this transformation, or re-expression, approach works well. 

It is not unusual in practice to find a variety of tests being run on the same basic null hypothesis. 
That is, the researcher who fails to reject the null hypothesis with the first test will sometimes try 
several others and stop when the hoped-for significance is obtained. For instance, a statistician 
might run the equal-variance t-test on the original two samples, the equal-variance t-test on the 
logarithmically transformed data, the Wilcoxon rank-sum test, and the Kolmogorov-Smirnov test. 
An article by Gans (“The Search for Significance:  Different Tests on the Same Data,” The 
Journal of Statistical Computation and Simulation,” 1984, pp. 1-21) suggests that there is no 
harm on the true significance level if no more than two tests are run. This is not a bad option in 
the case of questionable outliers. However, as a rule of thumb, it seems more honest to investigate 
whether the data are normal. The conclusion from that investigation should direct one to the right 
test. 

Random Sample 
The validity of this assumption depends upon the method used to select the sample. If the method 
used assures that each individual in the population of interest has an equal probability of being 
selected for this sample, you have a random sample. Unfortunately, you cannot tell if a sample is 
random by looking at it or statistics from it.  

Sample Independence 
The two samples must be independent. For example, if you randomly divide a group of 
individuals into two groups, you have met this requirement. However, if your population consists 
of cars and you assign the left tire to one group and the right tire to the other, you do not have 
independence. Here again, you cannot tell if the samples are independent by looking at them. You 
must consider the sampling methodology. 

Check Descriptive Statistics 
You should check the Individual-Group Statistics Section first to determine if the Count and the 
Mean are reasonable. If you have selected the wrong variable, these values will alert you. 

Normality 
To validate this assumption, you would first look at the plots. Outliers will show up on the box 
plots and the probability plots. Skewness, kurtosis, more than one mode, and a host of other 
problems will be obvious from the density trace on the histogram. No data will be perfectly 
normal. After considering the plots, look at the Tests of Assumptions Section to get numerical 
confirmation of what you see in the plots. Remember that the power of these normality tests is 
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directly related to the sample size, so when the normality assumption is accepted, double-check 
that your sample is large enough to give conclusive results. 

Equal Variance 
The equal variance assumption is important in determining which statistical test to use. Check the 
box plots for boxes with about the same widths. Confirm your conclusion by looking at the 
Equal-Variance Test (Modified Levene) line. Note that, strictly speaking, these equal variance 
tests require the assumption of normality. If your data are not normal, you should use the 
modified Levene test. It works in many nonnormal situations. 

Some researchers recommend against using a preliminary test on variances (which research and 
simulations do not strongly support). If you decide against these preliminary tests, base your 
choice of a test procedure on the sample sizes. If the two sample sizes are approximately equal, 
use the equal-variance t-test. If the ratio of the two sample sizes (larger sample size over the 
smaller sample size) is equal to or greater than 1.5, use the unequal-variance t-test. This is the 
recommendation of Ott (1984), page 144. 

Step 4 – Choose the Appropriate Statistical Test 

Introduction 
After understanding how your data fit the assumptions of the various two-sample tests, you are 
ready to determine which statistical procedures will be valid. You should select one of the 
following four situations based on the status of the normality and equal variance assumptions. 

Normal Data with Equal Variances 
Use the Equal Variance T-Test Section for hypothesis testing and the Equal Variance portion of 
the Confidence Limits Section for interval estimation. 

Normal Data with Unequal Variances 
Use the Unequal Variance T-Test Section for hypothesis testing and the Unequal Variance 
portion of the Confidence Limits Section for interval estimation. 

Non-Normal Data with Equal Variances 
Use the Mann-Whitney U or Wilcoxon Rank-Sum Test for hypothesis testing. 

Non-Normal Data with Unequal Variances 
Use the Kolmogorov-Smirnov Test in this case or if your data have a lot of ties.  

Step 5 – Interpret Findings 

Introduction 
You are now ready to conduct your two-sample test. Depending upon the nature of your study, 
you look at either of the following sections. 
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Hypothesis Testing 
First find the appropriate Alternative Hypothesis row. Usually, you will use the first (Var1-
Var2<>0) row. This two-tailed test is the standard. If the probability level is less than your chosen 
alpha level, you reject the null hypothesis of equal means (or medians) and conclude that the 
means are different. Your next task is to look at the means themselves to determine if the size of 
the difference is of practical interest. 

Confidence Limits 
The confidence limits of the difference let you put bounds on the size of the difference. If these 
limits are narrow and close to zero, you might determine that even though your results are 
statistically significant, the magnitude of their difference is not of practical interest. 

Step 6 – Record Your Results 
Finally, as you finish a test, take a moment to jot down your impressions. Explain what you did, 
why you did it, what conclusions you reached, which outliers you deleted, areas for further 
investigation, and so on. Since this is a technical process, your short-term memory will not retain 
it for long. These notes will be worth their weight in gold when you come back to this printout a 
few days later! 

Example of Two-Sample T-Test Steps 
This example illustrates the interpretation of two-sample tests. Of course, no example is infallible, 
but the intention is to highlight a number of the issues that you must consider in choosing the 
right two-sample test for your data as you proceed through the Two-Sample Checklist. 

Two friends, who are also neighbors, love pizza, and they each usually order their pizzas from 
different places. Friend A orders from pizza company 1, while friend B orders from pizza 
company 2. The two friends got in an argument about which pizza company delivers the fastest or 
whether there was a difference at all in delivery times. Friend A took a random sample of 10 
delivery times from pizza place 1 over the next six months. Friend B took a random sample of 8 
delivery times over the same time frame. The pizza orders were not necessarily taken on the same 
day, but the orders were usually placed in the evening hours from 6 to 9 p.m. The data are shown 
below.  

Pizza1 Pizza2 
21 15 
20 17 
25 17 
20 19 
23 22 
20 12 
13 16 
18 21 
25  
24  
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Step 1 – Data Preparation 
The sample sizes here are not as large as we would like, but they are typical. There are no missing 
values, and the data are continuous (although the times are rounded to the closest minute). There 
is no way to assess outliers until Step 3. 

Step 2 – Setup and Run the T-Test Panel 
The selection and running of the Two-Sample T-Test from the Analysis menu on the two 
response variables, Pizza1 and Pizza2, would produce the reports that follow. The alpha value has 
been set at 0.05. 

Step 3 – Check Assumptions 
We first check for normality with the graphic perspectives: box plots, normal probability plots, 
histograms, and density traces. 
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The tails of the box plot for Pizza1 show left skewness, and the median is not in the middle of the 
box itself (i.e., it is also pulled left). While the tails for Pizza2 are symmetrical, the median is also 
pulled left toward the short delivery times. Remember that these samples are small, and 
interpretation of box plots for small samples must be flexible. The interpretation from the box 
plots is that both groups show some non-normality. 

The normal probability plots in give a similar picture. Since all of the data values for Pizza2 lie 
within the 95% confidence bands, delivery times seem to be normal. On the other hand, the 
normal probability plot for Pizza1 shows a possible outlier among the short delivery times since 
the observation of 13 minutes is outside the confidence bands. If it were not for this one 
observation, the normal probability plot for Pizza1 would be normal.  

The histogram does not usually give an accurate graphic perception of normality for small 
samples, although the super-imposed density trace helps a lot. Examination of the histogram for 
Pizza1 shows that there is at least one observation that contributes to the left skewness, and the 
histogram for Pizza1 does not look normal. However, the histogram for Pizza2 reveals a 
reasonably normal distribution. 

At this point of the graphic analysis of the normality assumption, you would likely say the Pizza2 
delivery times are normal while Pizza1 delivery times are not. However, since these samples are 
small, be sure to evaluate the numerical confirmation of normality by the skewness, kurtosis, and 
omnibus normality tests for each pizza firm using the Tests of Assumptions Section. 
  
 Test of Assumptions Section  
   
 Assumption Value Probability Decision(5%) 
 Skewness Normality (pizza1) -1.4244 0.154336 Cannot reject normality 
 Kurtosis Normality (pizza1) 1.0525 0.292585 Cannot reject normality 
 Omnibus Normality (pizza1) 3.1366 0.208404 Cannot reject normality 
 Skewness Normality (pizza2) -0.1541 0.877509 Cannot reject normality 
 Kurtosis Normality) (pizza2) -0.0171 0.986393 Cannot reject normality 
 Omnibus Normality (pizza2) 0.0240 0.988049 Cannot reject normality 
 Variance Ratio Equal-Variance Test 1.2729 0.767280 Cannot reject equal variances 
 Modified Levene Equal-Variance Test 0.0945 0.762487 Cannot reject equal variances 
 
 

When evaluating normality, focus your attention on the probability (p-value) and the decision for 
the given alpha of 0.05. In this case, the decision is acceptance of the hypothesis that the data for 
Pizza1 is normally distributed by all three normality tests. The lowest probability is 0.1543 for the 
skewness test, and this is greater than 0.05, the set alpha value. This same amount of skewness for 
a larger sample size would have rejected the normality assumption. However, for our example, it 
seems reasonable to assume that both Pizza1 and Pizza2 are normally distributed. We would 
strongly recommend that the one outlying value in Pizza1 be double-checked for validity. 

We next check for equal variance. Both variance tests (variance-ratio and modified-Levene) 
indicate acceptance of the hypothesis of equal variances as a shown by the probability greater 
than 0.05 and the “cannot reject” under the decision conclusion. This equality of variances is 
portrayed by the box plots. 

If you do not consider the preliminary test on variances appropriate, use the sample size criterion. 
If the sample sizes are roughly equal (no more than a 1.5 ratio of the larger sample size divided 
by the smaller sample size), use the equal-variance t-test. In this case, this sample size ratio is 
10/8 or 1.25. Thus, go ahead with the equal variance t-test. If you are in doubt, run both tests and 
compare answers. 
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Step 4 – Choose the Appropriate Statistical Test 
In this example, the conclusions from the assumption checking have been that both samples are 
normally distributed and that the variances are equal or that the sample sizes are roughly equal. In 
light of these findings, the appropriate test is the equal-variance t-test, sometimes called the 
pooled t-test. 

Step 5 – Interpret Findings 
In order to understand the following discussion, you should run the two-sample t-test on the 
above data and look at the statistical reports. 

The mean delivery times are 20.9 and 17.4 minutes. Note that the standard deviations are about 
equal at 3.665 and 3.249 minutes for Pizza1 and Pizza2, respectively. 

We are interested in the difference between the means. Under the Confidence Limits Section and 
the Equal Variance Case, the 95% confidence limits for the difference ranges from 0.016557 to 
7.033442 minutes. Since zero is not in this interval, there is a statistically significant difference 
between the two means. 

The formal two-tail hypothesis test for this example is shown under the Equal-Variance T-Test 
section. The p-value or probability of accepting Ho is 0.049, which is less than the chosen alpha 
level at 0.05, resulting in the rejection of Ho. That is, there is a difference between the two pizza 
delivery times. The power of this two-tail t-test at 0.05 level of significance is 0.5166. The higher 
the power (i.e., closer to 1), the better the statistical test is able to detect that the alternative 
hypothesis is true. The power is not great here (many would find it bearable), and it could have 
been greatly improved by slightly larger sample sizes. 

If we had been interested in checking for the average Pizza1 delivery times being greater than that 
of Pizza2, we would have looked at the right-tail test in the equal-variance t-test section. The 
decision here is definitely a rejection since the p-value or the probability of accepting Ho is 
significantly less than 0.05 (i.e., 0.0245). The power of this one-tail test is much better at 0.653. 

This would usually finish the interpretation of this example. However, if you were having second 
thoughts about the normality for Pizza1 delivery times, you might check the nonparametric 
equivalent of the equal-variance t-test--the Mann-Whitney U Test--to see if you obtain a similar 
conclusion. The approximate p-value for the two-tail test is 0.044. This p-value is close to that 
which we had under the equal-variance t-test. Note that we still reject the null hypothesis. The 
right-tail test yields a p-value of 0.022, which is almost identical to the equal-variance t-test p-
value for this right tail test. 

Whenever the data are normal, use the appropriate t-test because the power is always better. If in 
doubt, cross check your t-test with the appropriate nonparametric test. 

This concludes the analysis of this example. 



  207-1 

Chapter 207 

T-Test –           
Two-Sample     
(From Means and 
SD’s) 
Introduction 
This program computes the two-sample t-test directly from the mean, standard deviation, and 
sample size. Confidence intervals for the means, difference, and standard deviation are computed. 
Hypothesis tests include the results for both one and two sided tests as well as equivalence tests.   

Technical Details  
The formulas used by this procedure are the same as those presented in the Two-Sample T-Test. 
We refer you to that chapter for details. In this section, technical details of new output not 
documented previously are added.  

Equivalence Tests 
An equivalence test is designed to show that one (new) treatment is similar to, but not necessarily 
better than, another (standard) treatment. To accomplish this, the roles of the null and alternative 
hypotheses are reversed. The hypotheses for testing equivalence of two means are (assuming that 
δL < 0  and δU > 0 ) 

H HL U L0 1 2 1 2 1 1 2: : uμ μ δ μ μ δ δ μ μ δ− ≤ − ≥ < − <or versus  
The alternative hypothesis states that the true difference is in some small, clinically acceptable 
range. For example, we might be willing to conclude that the benefits of two drugs are equivalent 
if the difference in their mean response rates is between -0.1 and 0.1. 

The conventional method of testing equivalence hypotheses is to perform two, one-sided tests 
(TOST) of hypotheses. The null hypothesis of non-equivalence is rejected in favor of the 
alternative hypothesis of equivalence if both one-sided tests are rejected. Unlike the common 
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two-sided tests, however, the type I error rate is set directly at the nominal level (usually 0.05)—it 
is not split in half. So, to perform the test, two, one-sided tests are conducted at the α  
significance level. If both are rejected, the alternative hypothesis is concluded at the α  
significance level. Note that the p-value of the test is the maximum of the p-values of the two 
tests. 

The two, one-sided tests of hypotheses for the difference are 

H H: :L L01 1 2 11 1 2μ μ δ− ≤ μ − μ δ>versus

H H: :
 

U U02 1 2 12 1 2μ μ δ μ μ δ− ≥ − <versus  

Confidence Intervals for the Standard Deviation 
Using the common notation for sample statistics (see, for example, ZAR (1984) page 115), a 

( )%1100 α−  confidence interval for the standard deviation is given by 
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Note that this interval relies heavily on the assumption that the underlying data distribution is 
normal. If the data distribution is not normal, you should not use these results. 

Confidence Intervals for the Standard Deviation Ratio 
Using the common notation for sample statistics (see, for example, ZAR (1984) page 125), a 

( )%1100 α−  confidence interval for the ratio of two standard deviations is given by 
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Note that this interval relies heavily on the assumption that the underlying data distribution is 
normal. If the data distribution is not normal, you should not use these results.  

Data Structure 
This procedure does not use data from the database. Instead, you enter the values directly into the 
panel. 
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Procedure Options 
This section describes the options available in this procedure. 

Data Tab 
Enter the data values directly on this panel. 

Groups 1 and 2 

N1 and N2 (Sample Size) 
These boxes specify the sample sizes (number of subjects) in each group. 

M1 and M2 (Means) 
These boxes specify the sample means for each group. Note that you should enter as many digits 
as possible—do not round off the value if possible. 

SD1 and SD2 (Standard Deviations) 
These boxes specify the sample standard deviation for each group. Note that you should enter as 
many digits as possible—do not round off the value if possible. 

Note that you must enter either the standard deviation (SD) or the standard error (SE), but not 
both. 

SE1 and SE2 (Standard Errors of the Mean) 
These boxes specify the sample standard errors for each group. Note that you should enter as 
many digits as possible—do not round off the value if possible. 

Note that you must enter either the standard deviation (SD) or the standard error (SE), but not 
both. 

Options 

H0: Diff. (M1-M2) 
Enter the hypothesized value of the difference between mean δ0  under the null hypothesis. 
Usually, this value is zero. This option lets you specify a value other than zero, which is 
commonly used for non-inferiority tests. 

Upper and Lower Equivalence Bounds 
These options specify the upper and lower equivalence bounds for the test of mean equivalence. 
That is, these options specify δU  andδL . Usually,δ δL U= − , but this is not required.  

This value is sometimes called the margin of equivalence. It represents the largest difference that 
would still result in the conclusion of equivalence. For example, suppose that if the mean 
responses of two drugs are no more than 5 units apart, they are to be considered equivalent. Then, 
in this case, the margin of equivalence is 5. 

If this value is left blank, the equivalence test is not displayed. 
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Reports Tab 
This panel contains options that control the format of the output. 

Report Options – Decimal Places 

Means, SD's ... Test Values 
The number of digits displayed to the right of the decimal place.  

Report Options – Alpha Levels 

Confidence Limits 
This option sets the alpha value for any confidence limits that are generated. The confidence 
coefficient of a confidence interval is equal to 1 - alpha. Thus, an alpha of 0.05 results in a 
confidence coefficient of 95%. Typical values are 0.01, 0.05, and 0.10. 

Hypothesis Test 
This option sets the alpha value for any hypothesis tests that are generated. Typical values are 
0.05, 0.01, and 0.10.  

Note that alpha is the probability of rejecting the null hypothesis when it is true.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the  
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Example 1 – Analyzing Summarized Data Using a T-Test 
This section presents an example of using this panel to analyze a set of previously summarized 
data. A published report showed the following results: N1 = 15, Mean1 = 3.7122, SD1 = 1.9243, 
N2 = 13, Mean2 = 1.8934, and SD2 = 2.4531. Along with the other results, suppose you want to 
see an equivalence test in which the margin of equivalence is 0.3.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the T-Test – Two-Sample (From Means and SD’s) window. 

1 Open the T-Tests - Two Sample (From Means and SD’s) window. 
• On the menus, select Analysis, then T-Tests, then T-Tests - Two Sample (From Means 

and SD’s). The procedure will be displayed.  

2 Specify the data. 
• On the window, select the Data tab.  
• In the N1 box, enter 15. 
• In the M1 box, enter 3.7122. 
• In the SD1 box, enter 1.9243. 
• In the N2 box, enter 13. 
• In the M2 box, enter 1.8934. 
• In the SD2 box, enter 2.4531. 
• In the Upper Equiv. Bound box, enter 0.3. 

3 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

The following reports will be displayed in the Output window. 

Confidence Intervals of Means 
 

     95% Lower 95% Upper 
   Standard Standard Conf. Limit Conf. Limit 
Sample N Mean Deviation Error of Mean of Mean 
1 15 3.7122 1.9243 0.4969 2.6466 4.7778 
2 13 1.8934 2.4531 0.6804 0.4110 3.3758 

 

This report documents the values that were input alone with the associated confidence intervals. 

Confidence Intervals of Difference 
 

     95% Lower 95% Upper 
Variance  Mean Standard Standard Conf. Limit Conf. Limit 
Assumption DF Difference Deviation Error of Difference of Difference 
Equal 26.00 1.8188 2.1843 0.8277 0.1174 3.5202 
Unequal 22.68 1.8188 3.1178 0.8425 0.0747 3.5629 

 

This report provides confidence intervals for the difference between the means. The first row 
gives the equal-variance interval. The second row gives the interval corrected for unequal 
variances.  
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The interpretation of these confidence intervals is that when populations are repeatedly sampled 
and confidence intervals are calculated, 95% of those confidence intervals will include (cover) the 
true value of the difference. 

Hypothesis Tests 
 

Two-Sided, Two-Sample T-Test  (H0: M1 = M2 versus H1: M1 <> M2) 
 
    Conclude H1   
Variance   Prob at 5.0% Power Power 
Assumption DF T-Value Level Significance? (Alpha=0.05) (Alpha=0.01) 
Equal 26.00 2.197 0.0371 Yes 0.5619 0.3025 
Unequal 22.68 2.159 0.0417 Yes 0.5427 0.2834 
 
 
Lower, One-Sided, Two-Sample T-Test  (H0: M1 = M2 versus H1: M1 < M2) 
 
    Conclude H1   
Variance   Prob at 5.0% Power Power 
Assumption DF T-Value Level Significance? (Alpha=0.05) (Alpha=0.01) 
Equal 26.00 2.197 0.9814 No 0.0001 0.0000 
Unequal 22.68 2.159 0.9792 No 0.0001 0.0000 
 
 
Upper, One-Sided, Two-Sample T-Test  (H0: M1 = M2 versus H1: M1 > M2) 
 
    Conclude H1   
Variance   Prob at 5.0% Power Power 
Assumption DF T-Value Level Significance? (Alpha=0.05) (Alpha=0.01) 
Equal 26.00 2.197 0.0186 Yes 0.6896 0.4040 
Unequal 22.68 2.159 0.0208 Yes 0.6733 0.3838 
 

These reports give the results of the t-test of whether the means are equal. The first line gives t-
test based on the equal variance assumption. This is the standard t-test. The second line gives the 
t-test using an adjustment to compensate for unequal group variances. 
The power values are computed assuming that the observed difference in the sample means 
coincides with the true difference in the population means. 

Variance Assumption 
Two t-tests are conducted for each set of hypotheses. The equal-variance test is the classical t-
test. The unequal-variance test is adjusted to compensate for unequal group variances.  

DF 
This column specifies the degrees of freedom. Note that fractional degrees of freedom are usually 
obtained with the unequal-variance test. 

T-Value 
This is value of the t statistic.  

Prob Level 
This is the p-value (significance level) of the test. The p-value is the probability that the test 
statistic will take a value at least as extreme as the observed value, assuming that the null 
hypothesis is true. If the p-value is less than 0.05, the null hypothesis is rejected. If the p-value is 
greater than 0.05, the null hypothesis is accepted.  
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Conclude H1 at 5% Significance 
This is the conclusion reached about the null hypothesis. When H0 is rejected, you conclude that 
H1 is true and the results are said to be significant. When H0 is not rejected, the results are said to 
be non-significant. Note that a non-significant result does not establish H0. If you wish to 
establish H0, you should use an equivalence test. 

Power (Alpha=0.05) and Power (Alpha=0.01) 
Power is the probability of rejecting the hypothesis that the means are equal when they are in fact 
not equal. Power is one minus the probability of type II error (β). The power of the test depends 
on the sample size, the magnitudes of the variances, the alpha level, and the actual difference 
between the two population means.  

The power value calculated here assumes that the population standard deviation is equal to the 
sample standard deviation and that the difference between the population means is exactly equal 
to the difference between the sample means. Of course, this cannot be true, but it allows us to 
calculate the power at these values.  

High power is desirable. High power means that there is a high probability of rejecting the null 
hypothesis when the null hypothesis is false. This is a critical measure of precision in hypothesis 
testing.  

Usually you would consider the power of the test when you failed to reject the null hypothesis. 
The power will give you some idea of what actions you might take to make your results 
significant. If you do not reject H0 and you have high power, there is not much left to do.  

Equivalence Tests of Means 
 

Equivalence Tests of Difference  (H0: M1 - M2 < -0.3000 or M1 - M2 > 0.3000 versus H1: Equivalence) 
Estimated Difference (M1 - M2) = 1.8188 
 
 Lower Test Lower Test Upper Test Upper Test  Conclude H1 
Variance Statistic's Statistic's Statistic's Statistic's Prob at 5.0% 
Assumption Value Prob Value Prob Level Significance? 
Equal 1.835 0.9610 2.560 0.0083 0.9610 No 
Unequal 1.803 0.9576 2.515 0.0097 0.9576 No 

 

This report gives the results the equivalence test. The equivalence test is designed to establish 
that, for practical purposes, the two means are equal. 

Lower Test Statistic’s Value 
The equivalence test is based on two, one-sided tests (TOST). This is the test statistic for the 
lower test. 

Lower Test Statistic’s Probability 
The equivalence test is based on two, one-sided tests (TOST). This is the significance level for 
the lower test. 

Upper Test Statistic’s Value 
The equivalence test is based on two, one-sided tests (TOST). This is the test statistic for the 
upper test. 
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Upper Test Statistic’s Probability 
The equivalence test is based on two, one-sided tests (TOST). This is the significance level for 
the upper test. 

Prob Level 
This is the significance level of the test. This value is the maximum of the lower and upper 
probabilities. If this value is less that 0.05, the null hypothesis of non-equivalence is rejected and 
equivalence is concluded. 

Conclude H1 at 5% Significance? 
If this value is ‘No’, equivalence is not established. If this value is ‘Yes’, equivalence is 
established. 

Confidence Intervals of Standard Deviations 
 

     95% Lower 95% Upper 
  Mean Standard Standard Conf. Limit Conf. Limit 
Sample DF Difference Deviation Error of SD of SD 
1 15 3.7122 1.9243 0.4969 1.4088 3.0348 
2 13 1.8934 2.4531 0.6804 1.7591 4.0494 
 

This report gives a confidence interval for the standard deviation in each group. Note that the 
accuracy of these intervals is very dependent on the assumption that the data were normally 
distributed. 

Confidence Interval for Standard Deviation Ratio 
 

    95% Lower 95% Upper 
    Conf. Limit Conf. Limit 
Statistics SD1 SD2 SD Ratio of Var. Ratio of Var. Ratio 
SD Ratio 1.9243 2.4531 0.784 0.192 1.877 
 

This report gives a confidence interval for the ratio of the two standard deviations. Note that the 
accuracy of this interval is very dependent on the assumption that the data were normally 
distributed. 

Equal Variance Test 
 
     Reject Hypothesis 
     of Equal Variance 
    Prob at the 5.0% 
Statistic DF1 DF2 F-Value Level Significance Level? 
Variance Ratio 14 12 1.625 0.3834 No 
 

This report provides a test of whether the two variances are equal. Unfortunately, when you fail to 
reject, you do not establish the validity of the equal variance assumption. 
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Chapter 210 

One-Way Analysis 
of Variance 
Introduction 
This procedure performs a one-way (single-factor) analysis of variance and the Kruskal-Wallis 
one-way analysis of variance on ranks of data contained in either two or more variables or in one 
variable indexed by a second (grouping) variable. The one-way analysis of variance compares the 
means of two or more groups to determine if at least one group mean is different from the others. 
The F-ratio is used to determine statistical significance. The tests are nondirectional in that the 
null hypothesis specifies that all means are equal and the alternative hypothesis simply states that 
at least one mean is different.  

Kinds of Research Questions 
One of the most common tasks in research is to compare two or more populations (groups). We 
might want to compare the income level of two regions, the nitrogen content of three lakes, or the 
effectiveness of four drugs. The first question that arises concerns which aspects (parameters) of 
the populations we should compare. We might consider comparing the means, medians, standard 
deviations, distributional shapes (histograms), or maximum values. We base the comparison 
parameter on our particular problem. 

One of the simplest comparisons we can make is between the means of two or more populations. 
If we can show that the mean of one population is different from that of the other populations, we 
can conclude that the populations are different. Other aspects of the populations can (and should) 
also be considered, but the mean is usually the starting point. 

If we are willing to make assumptions about other characteristics of the populations (such as that 
they are normally distributed and that their variances are equal), we can use the F-ratio to 
compare the means of random samples drawn from these populations. If these assumptions are 
violated, the nonparametric Kruskal-Wallis test may be used. 
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Assumptions 
The statistical tests described in this chapter make certain assumptions. One reason for the 
popularity of the F-test is its robustness in the face of assumption violation. However, if an 
assumption is not even approximately met, the significance levels and the power of the F-test are 
invalidated. Unfortunately, in practice it often happens that not one but several assumptions are 
not met. This makes matters even worse! Hence, steps should be taken to check the assumptions 
before important decisions are made. The reports include sections that investigate these 
assumptions. 

One-Way Analysis of Variance Assumptions 
The assumptions of the one-way analysis of variance are: 

1. The data are continuous (not discrete). 

2. The data follow the normal probability distribution. Each group is normally distributed 
about the group mean. 

3. The variances of the populations are equal. 

4. The groups are independent. There is no relationship among the individuals in one group 
as compared to another. 

5. Each group is a simple random sample from its population. Each individual in the 
population has an equal probability of being selected in the sample. 

Kruskal-Wallis Test Assumptions 
The assumptions of the Kruskal-Wallis test are: 

1. The variable of interest is continuous (not discrete). The measurement scale is at least 
ordinal.  

2. The probability distributions of the populations are identical, except for location. Hence, 
we still require that the population variances are equal.  

3. The groups are independent. 

4. All groups are simple random samples from their respective populations. Each individual 
in the population has an equal probability of being selected in the sample.  

Limitations 
There are few limitations when using these tests. Sample sizes may range from a few to several 
hundred. If your data are discrete with at least five unique values, you can assume that you have 
met the continuous variable assumption. Perhaps the greatest restriction is that your data come 
from a random sample of the population. If you do not have a random sample, your significance 
levels will be incorrect. 
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Multiple Comparison Procedures 
Given that the analysis of variance (ANOVA) test finds a significant difference among treatment 
means, the next task is to determine which treatments are different. Multiple comparison 
procedures (MCPs) are methods that pinpoint which treatments are different.  

The discussion to follow considers the following experiment. Suppose an experiment studies how 
two gasoline additives influence the miles per gallon obtained. Three types of gasoline were 
studied. The first sample received additive W, the second received additive V, and the third did 
not receive an additive (the control group).  

If the F-test from an ANOVA for this experiment is significant, we do not know which of the 
three possible pairs of groups are different. MCPs can help solve this dilemma. 

Multiple Comparison Considerations 
Whenever MCPs are to be used, the researcher needs to contemplate the following issues. 

Exploration Versus Decision-Making 
When conducting exploration (or data snooping), you make several comparisons to discover the 
underlying factors that influence the response. In this case, you do not have a set of planned 
comparisons to make. In contrast, in a decision-making mode, you would try to determine which 
treatment is preferred. In the above example, because you do not know which factors influence 
gasoline additive performance, you should use the exploration mode to identify those. A decision-
making emphasis would choose the gasoline that provides the highest miles per gallon. 

Choosing a Comparison Procedure 
You should consider two items here. First, will you know before or after experimentation which 
comparisons are of interest? Second, are you interested in some or all possible comparisons? 
Your choice of an MCP will depend on how you answer these two questions. 

Error Rates 
You will need to consider two types of error rates: comparisonwise and experimentwise. 

1. Comparisonwise error rate. In this case, you consider each comparison of the means as if 
it were the only test you were conducting. This is commonly denoted as α . The 
conceptual unit is the comparison. Other tests that might be conducted are ignored during 
the calculation of the error rate. If we perform several tests, the probability of a type I 
error on each test is α.  

2. Experimentwise, or familywise, error rate. In this situation, the error rate relates to a 
group of independent tests. This is the probability of making one or more type I errors in 
a group of independent comparisons. We will denote this error rate as fα .  

The relationship between these two error rates is: 
c

f )1(1 αα −−=  

where c is the total number of comparisons in the family. The following table shows these error 
rates for a few values of c and α. The body of the table consists of the calculated values of αf. 
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Calculated Experimentwise Error Rates 

c 

α 2 3 5 10 20 

0.20 .360 .488 .672 .893 .988

0.10 .190 .271 .410 .651 .878

0.05 .098 .143 .226 .401 .642

0.02 .040 .059 .096 .183 .332

0.01 .020 .030 .049 .096 .182

 
As you can see, the possibility of at least one erroneous result goes up markedly as the number of 
tests increases. For example, in order to obtain an αf of 0.05 with a c of 5, you would need to set 
α to 0.01. 

Multiple Comparison Procedure Definitions 
All of the multiple comparison procedures (MCPs) considered here assume that there is 
independence between treatments or samples, equal variance for each treatment, and normality 
(except the Kruskal-Wallis Z, which does not need normality). In addition, unless stated 
otherwise, the significance tests are assumed to be two-tailed. 

Let y i  and ni  represent the mean and sample size of the ith treatment group. Let s2
 represent the 

the mean square error for these means based on v degrees of freedom. Let k be the number of 
treatments being compared for a factor or interaction. 

Alpha 
This is the αf, or α, specified for the multiple comparison test. It may be comparisonwise or 
experimentwise, depending on the test. This alpha can range from 0.01 to 0.10. 

Bonferroni (All Pairs) 
The Bonferroni MCP chooses the comparisonwise error rate in such a way as to control the 
desired experimentwise αf. With k means and with an interest in all-possible pairs, the 
comparisonwise error rate is defined as ( )( )1/ −= kkfαα . The significance test for any pair 
would be as follows, where  is a Student’s t with v degrees of freedom t ,vα

| y - y |

s
1
n

 +  1
n

  ti j

2

i j

,v
⎛

⎝
⎜

⎞

⎠
⎟

≥ α  

Generally, this MCP is run after the fact to find out which pairs are different. 
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Bonferroni (Versus Control) 
If one of the treatments is a control group and you want to compare all of the other means to the 
mean of this control group, there are k - 1 comparisons. Again, you should choose the 
comparisonwise error rate in such a way as to achieve the overall or experimentwise α. The 
comparisonwise error rate is ( )( )12/ −= kfαα . The significance test for any two means would be as 
follows, where tα,v is a Student's t 
 

v,

ji
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ji  t 

n
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n
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Comparison 
This is a planned (a priori) significance test for a specific comparison that would also have a 
comparisonwise error rate. If you wanted to make several planned comparisons contained within one 
of the possible comparison options (the standard set of comparisons, the set of orthogonal 
polynomials, the set of comparisons with each treatment with the first treatment, the set with each 
treatment with the last treatment, or a set of no more than three customized contrasts), you could 
adjust the comparisonwise error rate to achieve a specific overall error rate. This test, distributed as a 
Student’s , would be as follows, where a  are the comparison coefficients: t ,vα / 2 j
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Duncan’s 
This MCP looks at all pairwise comparisons among k means, but the error rate is neither on an 
experimentwise nor on a comparisonwise basis. The error rate is based on the number of steps 
apart, r, the two means are when they are ordered. The probability of falsely rejecting the equality 
of two population means when the sample means are r steps apart is 1-(1-α)r-1. The significance 
test is based on the Studentized range, : q ,r,vα

| y  -  y |
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n ni j

+

≥ α  
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Dunnett’s One and Two-Tailed Tests Versus a Control 
If one of the treatments is a control group and you want to compare all of the other means to the 
mean of this control group, there are k - 1 comparisons. Dunnett’s multiple comparison procedure 
(see Hsu(1996)) gives an experimentwise error rate of α . The significance test for any two means 
would be as follows, where is calculated using Dunnett’s formulas.  vq ,α
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Often, it is of interest to find only those treatments that are better (or worse) than the control, so 
both one and two sided versions of this test are provided. 

A set of two-sided, simultaneous confidence intervals are also provided for the difference 
between each treatment and the control. 

Fisher’s LSD 
Fisher’s least significant difference (FSD) is a special version of the least significant difference 
(LSD). The difference between LSD and FSD is that FSD is only used when the F-test for the 
term is significant. LSD and FSD are used for pairwise comparisons.  

The error rate for each comparison is comparisonwise. This test has no control of the 
experimentwise error rate. The significance test is as follows, where γ α= / 2  for the LSD 
and c/αγ =  for the FSD. 
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Hsu’s Tests Versus the Best 
Hsu (1996) chapter 4 provides a procedure for testing each group versus the best. This procedure is 
useful when you want to determine which of treatments is the best. Note that because of sampling 
variability, the sample best may not necessarily be the true best. Hsu’s constrained multiple 
comparison with the best procedure allows the candidates for the best to be compared. 
The method uses Dunnett’s one-sided critical values, , to provide simultaneous confidence 
intervals for 

qi

( ) kijiji ,,1,max L=−
≠

μμ  

 
which are constrained to include 0. The constraints were suggested by John W. Tukey because a 
confidence interval for the above quantity whose lower limit is 0 indicates that the ith treatment is 
the best. Likewise, a confidence interval for the above quantity whose upper limit is 0 indicates 
that the ith treatment is not the best. 

Hsu’s confidence intervals are given by 
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Kruskal-Wallis Z (Dunn's Test) 
This test is attributed to Dunn (1964) and is referenced in Daniel (1990), pages 240 - 242. This 
MCP is a distribution-free multiple comparison, meaning that the assumption of normality is not 
necessary. It is to be used for testing pairs of medians following the Kruskal-Wallis test. The test 
needs sample sizes of at least five (but preferably larger) for each treatment. The error rate is 
adjusted on a comparisonwise basis to give the experimentwise error rate, αf. Instead of using 
means, this MCP uses average ranks, as the following formula indicates, with ( )( )1/ −= kkfαα : 
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Adjusted for ties the inequality becomes 
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In these inequalities, N is the total sample size and t is the number of values in the combined 
sample that are tied at a given rank. 
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Newman-Keuls 
The Newman-Keuls MCP relies on the number of ordered steps r, where r ranges from 2 to k, 
between two sample means. The error rate is neither experimentwise nor comparisonwise. Instead 
it is defined for sample means which are the same number of ordered steps apart. This test relies 
on the Studentized range distribution. 
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Scheffe’s 
This MCP can be used to examine all possible comparisons among k means or just to look at all 
pairs as done here. It controls the overall or experimentwise error rate and is less sensitive than 
the Tukey-Kramer MCP. The significance test for pairs is as follows: 
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Tukey-Kramer 
This test can be used to examine all pairs of treatment means. The error rate is experimentwise, 
and this test uses the Studentized range distribution. This test is conservative, which means that 
the two averages must be very different. The significance test follows: 
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Recommendations 
These recommendations assume that normality and equal variance are valid. If normality is not 
valid for each treatment, then use the Kruskal-Wallis Z MCP.  

1.  Planned all-possible pairs. If you are interested in paired comparisons only and you know 
this in advance, use either the Bonferroni for pairs or the Tukey-Kramer MCP. 

2.  Unplanned all-possible pairs. Use Scheffe’s MCP.  

3.  Each versus a control. Use Dunnett’s test.  

4.  Selected but planned. Use Comparison and adjust the alpha level accordingly.  

5.  Comparison with the best. Use Hsu’s procedure. 
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Data Structure 
The data may be entered in two formats, as shown in the examples below. The examples give the 
yield of corn for three types of fertilizer. The first format, shown in the first table below, puts the 
responses for each group in separate variables; that is, each variable contains all responses for a 
single group.  

The second format, shown in the second table below, arranges the data so that all responses are 
entered in a single variable. A second variable, the Grouping Variable, contains an index that 
gives the group (A, B, or C) to which that row of data belongs. 

In most cases, the second format is more flexible. Unless there is some special reason to use the 
first format, we recommend that you use the second. 

 

      

One Grouping and One Response Variable 

Row Fertilizer Yield  Row Fertilizer Yield 
1 B 546  22 A 754 
2 B 547  23 A 558 
3 B 774  24 A 574 
4 B 465  25 A 664 
5 B 459  26 A 682 
6 B 665  27 A 547 
7 B 467  28 A 435 
8 B 365  29 A 245 
9 B 589  30 C 785 
10 B 534  31 C 458 
11 B 456  32 C 886 
12 B 651  33 C 536 
13 B 654  34 C 669 
14 B 665  35 C 857 
15 B 546  36 C 821 
16 B 537  37 C 772 
17 A 452  38 C 732 
18 A 874  39 C 689 
19 A 554  40 C 654 
20 A 447  41 C 297 
21 A 356    356 

Three Response Variables 

Yield A Yield B Yield C 
452 546 785 
874 547 458 
554 774 886 
447 465 536 
356 459  
754 665 669 
558 467 857 
574 365 821 
664 589 772 
682 534 732 
 456 689 
547 651 654 
 654  
435 665 297 
 546 830 
245 537 827 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Response Variables 

Response Variable(s) 
This option lets you specify the variable(s) to be analyzed. Note that if you specify only one 
variable here, you must also specify a grouping variable. If you want to compare several variables 
(columns), you specify them here. If more than one variable is specified, only the variable 
numbers are displayed. 

Factor Variable 

Factor Variable 
The optional grouping (breakdown) variable indicates how the values of the response variable(s) 
should be grouped. Examples of grouping variables are males and females, age groups, “yes” or 
“no” responses, and so on. Note that the values in the variable may be either numeric or text. The 
treatment of text variables is specified for each variable by the Data Type option on the database.  

A separate analysis is performed for each Response Variable when the Factor Variable is 
specified. 

Type 
This option specifies whether the factor is fixed or random. This is a formality in the one-way 
ANOVA since the F-test is identical no matter which option is selected. The selection influences 
the calculated power of the F-test as well as the expected mean squares. 

Planned Comparisons 

Comparison 
Specifies the planned comparisons that should be generated. Several predefined sets are available 
or you can specify up to three of your own in the Custom (1-3) options that follow. Each option 
will be explained next. Note that the contrasts are defined by a set of coefficients (see “Contrast” 
below). 

• None 
This option indicates that no planned comparisons should be generated. 



   One-Way Analysis of Variance  210-11 

• Standard Set 
This option generates a standard (commonly used) set of contrasts. The following example 
displays the type of contrast generated by this option. Suppose there are four levels (groups) 
in the factor. The contrasts generated by this option are: 

 -3,1,1,1  Compare the first-level mean with the average of the rest. 

 0,-2,1,1  Compare the second-level mean with the average of the rest. 

 0,0,-1,1  Compare the third-level mean with the fourth-level mean. 

• Orthogonal Polynomials 
This option generates a set of orthogonal contrasts that allows you to test various trend 
components from linear up to sixth order. These contrasts are appropriate even if the levels 
are unequally spaced or the group sample sizes are unequal. Of course, these contrasts are 
only appropriate for data that is at least ordinal. Usually, you would augment the analysis of 
this type of data with a multiple regression analysis. 

The following example displays the type of contrast generated by this option. Suppose there 
are four equally spaced levels in the factor and each group has two observations. The 
contrasts generated by this option are (scaled to whole numbers): 

 -3,-1,1,3 Linear component. 

 1,-1,-1,1 Quadratic component. 

 -1,3,-3,1 Cubic component. 

• Linear Trend 
This option generates a set of orthogonal contrasts and retains only the linear component. 
This contrast is appropriate even if the levels are unequally spaced and the group sample sizes 
are unequal. See “Orthogonal Polynomials” above for more detail. 

• Linear-Quadratic Trend 
This option generates the complete set of orthogonal polynomials, but only the results for the 
first two (the linear and quadratic) are reported. 

• Linear-Cubic Trend 
This option generates the complete set of orthogonal polynomials, but only the results for the 
first three are reported. 

• Linear-Quartic Trend 
This option generates the complete set of orthogonal polynomials, but only the results for the 
first four are reported. 
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• Each with First 
This option generates a set of nonorthogonal contrasts appropriate for comparing each of the 
remaining levels with the first level. The following example displays the type of contrast 
generated by this option. Suppose there are four levels (groups) in the factor. The contrasts 
generated by this option are: 

 -1,1,0,0  Compare the first- and second-level means. 

 -1,0,1,0  Compare the first- and third-level means. 

 -1,0,0,1  Compare the first- and fourth-level means. 

• Each with Last 
This option generates a set of nonorthogonal contrasts appropriate for comparing each of the 
remaining levels with the last level. The following example displays the type of contrast 
generated by this option. Suppose there are four levels (groups) in the factor. The contrasts 
generated by this option are: 

 -1,0,0,1  Compare the first- and fourth-level means. 

 0,-1,0,1  Compare the second- and fourth-level means. 

 0,0,-1,1  Compare the third- and fourth-level means. 

• Custom 
This option indicates that the contrasts listed in the next three boxes should be used. 

Planned Comparisons – Custom 
Comparisons 
The following options are only used if Comparisons is set to 'Custom'. 

Custom (1-3) 
This option lets you write a user-specified comparison by specifying the weights of that 
comparison. Note that there are no numerical restrictions on these coefficients. They do not even 
have to sum to zero. However, this is recommended. If the coefficients do sum to zero, the 
comparison is called a contrast. The significance tests anticipate that only one or two of these 
comparisons are to be run. If you run several, you should make some type of Bonferroni 
adjustment to your alpha value. 

When you put in your own contrasts, you must be careful that you specify the appropriate number 
of weights. For example, if the factor has four levels, four weights must be specified, separated by 
commas. Extra weights are ignored. If too few weights are specified, the missing weights are 
assumed to be zero.  

These comparison coefficients designate weighted averages of the level-means that are to be 
statistically tested. The null hypothesis is that the weighted average is zero. The alternative 
hypothesis is that the weighted average is nonzero. The weights (comparison coefficients) are 
specified here.  

As an example, suppose you want to compare the average of the first two levels with the average 
of the last two levels in a six-level factor. You would enter “-1,-1,0,0,1,1.” 
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As a second example, suppose you want to compare the average of the first two levels with the 
average of the last three levels in a six-level factor. The contrast would be 

-3,-3,0,2,2,2. 

Note that in each case, we have used weights that sum to zero. This is why we could not use ones 
in the second example. 

Reports Tab 
The following options control which plots and reports are displayed.  

Select Reports 

Assumptions Report ... Means Report 
Specify whether to display the indicated reports. 

Select Plots 

Means Plot and Box Plot 
Specify whether to display the indicated plots. 

Report Options 

Test Alpha 
The value of alpha for the statistical tests and power analysis. Usually, this number will range 
from 0.1 to 0.001. A common choice for alpha is 0.05, but this value is a legacy from the age 
before computers when only printed tables were available. You should determine a value 
appropriate for your particular study. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, whereas the double precision will display thirteen-place accuracy. 

Variable Names 
Indicate whether to display the variable names or the variable labels.  

Value Labels 
Indicate whether to display the data values or their labels.  

Multiple Comparison Tests 

Bonferroni (All-Pairs) ... Tukey-Kramer Confidence Intervals 
These options specify which MC tests and confidence intervals to display. 
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Multiple Comparison Tests – Options 

MC Alpha 
Specifies the alpha value used by the multiple-comparison tests. 

MC Decimals 
Specify how many decimals to display in the multiple comparison sections. 

Means Plot Tab 
These options specify the plots of group means. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Connect Lines 
Click this box to connect the points for a particular factor. This makes it easier to spot patterns in 
the means. 
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Titles 

Plot Title 
This option contains the text of the plot title. The characters {Y} and {X} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 

Box Plot Tab 
The options on this panel control the appearance of the box plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) axis. 
If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on the vertical axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a box plot style file. This file sets all box plot options that are not set directly on this 
panel. Unless you choose otherwise, the default style file (Default) is used. These files are created 
in the Box Plot procedure. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by the appropriate variable 
names. Press the button on the right of the field to specify the font of the text. 
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Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Running a One-Way ANOVA 
This section presents an example of how to run a one-way analysis of variance. We will use the 
corn yield data contained in the SAMPLE database. These data are contained in the variables 
labeled YldA, YldB, and YldC. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the One-Way Analysis of Variance window. 

1 Open the SAMPLE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Sample.s0. 
• Click Open. 

2 Open the One-Way Analysis of Variance window. 
• On the menus, select Analysis, then Analysis of Variance (ANOVA), then One-Way 

Analysis of Variance. The One-Way Analysis of Variance procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the One-Way Analysis of Variance window, select the Variables tab. 
• Double-click in the Response Variables box. This will bring up the variable selection 

window. 
• Select YldA, YldB, and YldC from the list of variables and then click Ok. 
• Select Custom in the Comparisons list box. 
• Enter -2,1,1 in the Custom 1 box. 
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4 Specify the reports. 
• On the One-Way Analysis of Variance window, select the Reports tab. 
• Check the Duncan’s Test option of the Multiple Comparison Tests. 
• Check the Kruskal-Wallis Z Test (Dunn's Test) option of the Multiple Comparison 

Tests. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
 

The following reports and charts will be displayed in the Output window. 

Tests of Assumptions Section 
  
 Tests of Assumptions Section  
  Test Prob Decision 
 Assumption Value Level (0.05)  
 Skewness Normality of Residuals -0.1787 0.858144 Accept 
 Kurtosis Normality of Residuals 0.4200 0.674472 Accept 
 Omnibus Normality of Residuals 0.2084 0.901062 Accept 
 Modified-Levene Equal-Variance Test 1.0866 0.347107 Accept 
 

This section presents the results of tests validating the normality and equal variance assumptions. 
Note that the ANOVA assumes combined residuals (deviations for group means) are normal. 
Hence, the normality tests are performed on the combined set of residuals from all groups. Other 
assumptions concerning independence and random sampling are not tested here. You must justify 
those assumptions by considering your experiment procedure.  
When using this report, all you need to do is scan down the column labeled Decision(5%). If none 
of the tests are rejected, you can feel confident that the assumptions are met. (Of course, the 
power of these tests is also influenced by your sample size. If you have a small sample size, say 
less than 25 per group, the power of the normality tests will be questionable and you will have to 
rely on other means to justify your assumptions.)  

Two aspects of normality are tested for, skewness and kurtosis. If the normality of residuals fails 
because of skewness, it might be possible to use the square root or logarithmic transformation to 
normalize your data. 

Conover (1981) did extensive simulation involving different distributions, sample sizes, means, 
and variances; and they found that the modified-Levene test is one of the most robust and 
powerful tests for equality of variance. Thus, if a preliminary test is to be performed, use the 
modified-Levene test. 

In the case of nonnormality, the Kruskal-Wallis nonparametric test is suggested. The basic 
assumptions of independent samples, continuous random variables, and a measurement scale of at 
least ordinal scale hold for this test. The Kruskal-Wallis test has the additional assumption that 
the distributions for the groups are identical (although not necessary normal) in form and shape 
(i.e., same variance) but differ only in location (i.e., in medians). 

Finally, you should back up the results of these numerical tests by considering the box plots of the 
groups. As explained below, they let you visually determine if the assumptions of normality and 
equal variance are justified.  

We next present the individual definitions of the items in this report. 
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Normality (Skewness, Kurtosis, and Omnibus) 
These three tests allow you to test the skewness, kurtosis, and overall normality of the data. If any 
of them reject the hypothesis of normality, the data should not be considered normal. These tests 
are discussed in more detail in the “Descriptive Statistics” chapter. 

Equal-Variance Test (Modified Levene)  
The modified Levene test has been found to be one of the best tests for equality of variances. The 
Levene (1960) procedure is outlined in the “Two-Sample Tests” chapter and will not be repeated 
here. 

Box Plots 
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Box plots are useful for assessing symmetry, presence of outliers, general equality of location, 
and equality of variation.  

Expected Mean Squares Section 
 
 Expected Mean Squares Section 
   
 Source  Term Denominator Expected 
 Term DF Fixed? Term Mean Square 
 A( ... ) 2 Yes S(A) S+sA 
 S(A) 40 No   S(A)  
   
 Note: Expected Mean Squares are for the balanced cell-frequency case.  
 

The Expected Mean Square expressions are provided to show the appropriate error term for each 
factor. The correct error term for a factor is that term that is identical except for the factor being 
tested. 

Source Term 
The source of variation or term in the model. 

DF 
The degrees of freedom. The number of observations “used” by this term. 
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Term Fixed?  
Indicates whether the term is “fixed” or “random.” 

Denominator Term 
Indicates the term used as the denominator in the F-ratio. 

Expected Mean Square 
This is the expected value of the mean square for the term in the ANOVA model assuming 
balanced data (equal group counts). “S (A)” represents the expected value of the mean square 
error (sigma). The uppercase letters represent either the adjusted sum of squared treatment means 
if the factor is fixed, or the variance component if the factor is random. The lowercase letter 
represents the number of levels for that factor, and “s” represents the number of replications of 
the whole experimental layout.  

Analysis of Variance Table Section 
   
 Analysis of Variance Table  
   
 Source  Sum of Mean  Prob Power 
 Term DF Squares Square F-Ratio Level (Alpha=0.05)  
 A ( ... ) 2 268532.4 134266.2 7.47 .001746* .925284 
 S (Error) 40 718574.3 17964.36 
 Total (Adjusted) 42 987106.6 
 Total 43 
   
 * Term significant at alpha = 0.05 
 

Source Term 
The source of variation. The term in the model. 

DF 
The degrees of freedom. The number of observations “used” by the corresponding model term.  

Sum of Squares 
This is the sum of squares for this term. It is usually included in the ANOVA table for 
completeness, not for direct interpretation. 

Mean Square 
An estimate of the variation accounted for by this term. The sum of squares divided by the 
degrees of freedom. 

F-Ratio 
The ratio of the mean square for this term and the mean square of its corresponding error term. 
This is also called the F-test value. 

Prob Level 
The significance level of the above F-ratio. The probability of an F-ratio larger than that obtained 
by this analysis. For example, to test at an alpha level of 0.05, this probability would have to be 
less than 0.05 to make the F-ratio significant. Note that if the value is significant at the specified 
value of alpha, a star is placed to the right of the F-Ratio. 
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Power (Alpha=0.05) 
Power is the probability of rejecting the hypothesis that the means are equal when they are in fact 
not equal. Power is one minus the probability of type II error (β). The power of the test depends 
on the sample size, the magnitudes of the variances, the alpha level, and the actual differences 
among the population means.  

The power value calculated here assumes that the population standard deviation is equal to the 
observed standard deviation and that the differences among the population means are exactly 
equal to the difference among the sample means. 

High power is desirable. High power means that there is a high probability of rejecting the null 
hypothesis when the null hypothesis is false. This is a critical measure of precision in hypothesis 
testing.  

Generally, you would consider the power of the test when you accept the null hypothesis. The 
power will give you some idea of what actions you might take to make your results significant. If 
you accept the null hypothesis with high power, there is not much left to do. At least you know 
that the means are NOT different. However, if you accept the null hypothesis with low power, 
you can take one or more of the following actions:  

1. Increase your alpha level. Perhaps you should be testing at alpha = .05 instead of alpha 
=.01. Increasing the alpha level will increase the power. 

2. Increasing your sample size will increase the power of your test if you have low power. If 
you have high power, an increase in sample size will have little effect.  

3. Decrease the magnitude of the variance. Perhaps you can redesign your study so that 
measurements are more precise and extraneous sources of variation are removed.  

Kruskal-Wallis One-Way ANOVA on Ranks 
 
 Kruskal-Wallis One-Way ANOVA on Ranks 
 Hypotheses 
 Ho: All medians are equal. 
 Ha: At least two medians are different. 
  
 Test Results 
   Chi-Square Prob Decision 
 Method DF (H) Level  (0.05)  
 Not Corrected for Ties 2 11.26741 .003575 Reject Ho 
 Corrected for Ties 2 11.27082 .003569 Reject Ho 
  
 Number Sets of Ties 4 
 Multiplicity Factor 24 
  
 Group Detail 
   Sum of Mean 
 Group Count Ranks Rank Z-Value Median 
 YldA 13 229.50 17.65 -1.4941 554 
 YldB 16 279.00 17.44 -1.8342 546 
 YldC 14 437.50 31.25 3.3564 752 
   
This test is a nonparametric substitute for the one-way ANOVA when the assumption of 
normality is not valid. When in doubt about normality, play it safe and use this test. The 
assumptions for this test were given in the “Assumptions”  section at the beginning of this 
chapter. Two key assumptions that we remind you of is that the distributions are at least ordinal in 
nature and that they are identical, except for location. This means that ties (repeated values) are 
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not acceptable. When ties are present in your data, you should use the corrected version of this 
test. We next present the individual definitions of items on this report. 

Hypotheses 
The null hypothesis is that the medians are equal versus the alternative that at least one median is 
different from the rest.  

Method 
The results of two tests are presented. The first line gives the Kruskal-Wallis test with no 
correction for ties. The second line reports a modified Kruskal-Wallis test that has been modified 
to adjust for ties. If there are no ties, the results are identical. 

DF 
The degrees of freedom of the large sample Chi-square approximation to the Kruskal-Wallis test 
distribution. Note that the degrees of freedom are equal to the number of groups minus one. 

Chi-Square (H)  
The value of H, the uncorrected (for ties) Kruskal-Wallis test statistic. The formula for H is 
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The Kruskal-Wallis test corrected for ties is calculated by dividing H by a correction factor. The 
formula for the corrected version of H is 
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In both of the above formulas, N is the total sample size, ni is the sample size of the ith group, k is 
the number of groups, RRi is the sum of the ranks of the i  group, and t is the count of a particular 
tie. 

th

Prob Level 
The significance level of H assuming a Chi-square distribution. The probability of an H larger 
than that obtained by this analysis. For example, to test at an alpha level of 0.05, this probability 
would have to be less than 0.05 to make H significant. 

Decision(0.05) 
The decision about the null hypothesis based on this test. 

Number Sets of Ties 
This is the number of sets of tied values. If there are no ties, this number is zero. A set of ties is 
two or more observations with the same value. 

Multiplicity Factor 
This is the tie portion of the correction factor for H. 
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Means, Effects, and Plots Section 
  
 Means and Effects Section  
    Standard  
 Term Count Mean Error Effect 
 All 43 608.7209   609.7473 
 A:  
 YldA 13 549.3846 37.17356 -60.36264 
 YldB 16 557.5 33.50779 -52.24725 
 YldC 14 722.3571 35.82134 112.6099 
   
 Plots Section 
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Term 
The label for this line of the report. 

Count 
The number of observations in the mean. 

Mean 
The value of the sample mean. 

Standard Error 
The standard error of the mean. Note that the standard errors are simply the square root of the 
mean square of the error term for this term divided by the count. These standard errors are not the 
same as the simple standard errors calculated separately for each group. The standard errors 
reported here are those appropriate for use in testing multiple comparisons. 

Effect 
The component that this term contributes to the mean. For example, the mean of the first group is 
equal to the sum of the overall effect (from the “All” line) plus the effect of the first term. 

Plot of Means 
This plot displays the means for the data analyzed. Note how easily you can see patterns in the 
plot. 



   One-Way Analysis of Variance  210-23 

Multiple-Comparison Sections 
  
 Duncan's Multiple-Comparison Test 
  
 Response: YldA,YldB,YldC 
 Term A:  
  
 Alpha=0.050  Error Term=S (A)  DF=40  MSE=17964.36 
  
       Different 
 Group Count Mean From Groups 
 YldA 13 549.3846 YldC 
 YldB 16 557.5 YldC 
 YldC 14 722.3571 YldA, YldB 
  

This section presents the results of the multiple-comparison procedures selected. These reports all 
use a uniform format that will be described by considering Duncan’s Multiple-Comparison Test. 
The reports for the other procedures are similar. For more information on the interpretation of the 
various multiple-comparison procedures, turn to the section by that name. 
We next present the individual definitions of items on this report. 

Alpha 
The level of significance that you selected. 

Error Term 
The term in the ANOVA model that is used as the error term. 

DF 
The degrees of freedom of the error term. 

MSE 
The value of the mean square error. 

Group 
The label for this group. 

Count 
The number of observations in the mean. 

Mean 
The value of the sample mean. 

Different From Groups 
A list of those groups that are significantly different from this group according to this multiple-
comparison procedure. All groups not listed are not significantly different from this group. 
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Planned-Comparison Section 
This section presents the results of any planned comparisons that were selected. 
  
 Planned Comparison: A1 
  
 Response: YldA,YldB,YldC 
 Term A:  
  
 Alpha=0.050  Error Term=S (A)  DF=40  MSE=17964.36 
  
 Comparison Value=181.0879   T-Value=2.0331   Prob>|T|=.048716   Decision(0.05)=Reject 
 Comparison Std Error=89.06983 
  
   Comparison  
 Group Coefficient Count Mean 
 YldA -2 13 549.3846 
 YldB 1 16 557.5 
 YldC 1 14 722.3571 
  

Alpha 
The level of significance that you selected. 

Error Term 
The term in the ANOVA model that is used as the error term. 

DF 
The degrees of freedom of the error term. 

MSE 
The value of the mean square error. 

Comparison Value 
The value of the comparison. This is formed by the multiplying the Comparison Coefficient  
times the Mean for each group and summing. 

T-Value 
The t-test used to test whether the above Comparison Value is significantly different from zero. 
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where MSE is the mean square error, f  is the degrees of freedom associated with MSE, k is the 
number of groups, ci is the comparison coefficient for the ith group, Mi is the mean of the ith 
group, and ni is the sample size of the ith group. 

Prob>|T| 
The significance level of the above T-Value. The Comparison is statistically significant if this 
value is less than the specified alpha. 

Decision(0.05)  
The decision based on the specified value of the multiple-comparison alpha. 
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Comparison Standard Error 
This is the standard error of the estimated comparison value. It is the denominator of the T-Value 
(above). 

Group 
The label for this group. 

Comparison Coefficient 
The coefficient (weight) used for this group. 

Count 
The number of observations in the mean. 

Mean 
The value of the sample mean. 

Kruskal-Wallis Multiple-Comparison Z-Value Section 
 
 Kruskal-Wallis Multiple-Comparison Z-Value Test (Dunn's Test) 
   
 Variable YldA YldB YldC 
 YldA 0.0000 0.0462 2.8117 
 YldB 0.0462 0.0000 3.0063 
 YldC 2.8117 3.0063 0.0000 
   
 Regular Test: Medians significantly different if z-value > 1.9600 
 Bonferroni Test: Medians significantly different if z-value > 2.3940 
 

Z-Values 
The values in the table are appropriate for testing whether the medians of any two groups are 
significantly different. The formula for  (comparing group i to group j) is zij
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In the presence of ties, the adjusted formula is 
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where N is the total sample size, ni is the sample size of the ith group, t is the number of values in 
the combined sample that are tied at a given rank, and RRi is the sum of the ranks of the i  group. th
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The distribution of is normal with mean equal to zero and variance equal to one. If you are 
only making one or two tests, you would compare the value in the table to the Regular Test value, 

. If the computed  is greater than this value, the two groups are significantly different. 

zij

zα / 2 zij

However, if you are using all the tests from the table, you should use the Bonferroni Test value. 
This is a z-value that has been adjusted for multiple tests by dividing α / 2  by k(k-1)/2, making it 

. Note the k(k-1)/2 is the number of possible pairs of k groups. z k kα / ( ( ))−1

If you are making a specific number of tests, say m, that is less than all-possible pairs, you will 
have to manually make the correct adjustment by dividing α / 2  by m. This might happen if you 
are comparing each treatment group with a control group, in which case you would have k - 1 
tests. 

One-Way ANOVA Checklist 
This checklist, prepared by a professional statistician, is a flowchart of the steps you should 
complete to conduct a valid one-way ANOVA (or its nonparametric counterpart). You should 
complete these tasks in order. 

Step 1 – Data Preparation 

Introduction 
This step involves scanning your data for anomalies, data entry errors, typos, and so on. 

Sample Size 
The sample size (number of nonmissing rows) has a lot of ramifications. The one-way ANOVA 
was developed under the assumption that the sample sizes in each group are equal. In practice, 
this seldom happens, but the closer you can get to equal sample sizes the better.  

With regard to the combined sample size, the ANOVA may be performed on very small samples, 
such as 4 or 5 observations per group. However, in order to test assumptions and obtain reliable 
estimates of variation, you should attempt to obtain at least 30 individuals per group.  

Missing Values 
The number and pattern of missing values are always issues to consider. Usually, we assume that 
missing values occur at random throughout your data. If this is not true, your results will be 
biased since a particular segment of the population is underrepresented. If you have a lot of 
missing values, some researchers recommend comparing other variables with respect to missing 
versus nonmissing. If you find large differences in other variables, you should begin to worry 
about whether the missing values are cause for a systematic bias in your results. 
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Type of Data 
The mathematical basis of the F-test assumes that the data are continuous. Because of the 
rounding that occurs when data are recorded, all data are technically discrete. The validity of the 
assumption of the continuity of the data then comes down to determining when we have too much 
rounding. For example, most statisticians would not worry about human-age data that were 
rounded to the nearest year. However, if these data were rounded to the nearest ten years or 
further to only three groups (young, adolescent, and adult), most statisticians question the validity 
of the probability statements. Some studies have shown that the F-test is reasonably accurate 
when the data have only five possible values (most would call this discrete data). If your data 
contain fewer than five unique values, any probability statements made are tenuous. 

Outliers 
Generally, outliers cause distortion in F-tests. You must scan your data for outliers (the box plot 
is an excellent tool for doing this). If you have outliers, you have to decide if they are one-time 
occurrences or if they would occur in another sample. If they are one-time occurrences, you can 
remove them and proceed. If you know they represent a certain segment of the population, you 
have to decide between biasing your results (by removing them) or using a nonparametric test 
that can deal with them. Most would choose the nonparametric test. 

Step 2 – Setup and Run the Panel 

Introduction 
Now comes the fun part: running the program. NCSS is designed to be simple to operate, but it 
can still seem complicated. Before you run a procedure such as this for the first time, take a few 
minutes to read through the chapter again and familiarize yourself with the issues involved. 

Enter Variables 
The NCSS procedures were set with ready-to-run defaults. About all you have to do is select the 
appropriate variables (columns of data). 

Select All Plots 
As a rule, you should select all diagnostic plots, even though they may take a few extra seconds to 
generate. They add a great deal to your analysis of the data. 

Specify Alpha 
Most beginners at statistics forget this important step and let the alpha value default to the 
standard 0.05. You should make a conscious decision as to what value of alpha is appropriate for 
your study. The 0.05 default came about during the dark ages when people had to rely on printed 
probability tables and there were only two values available: 0.05 or 0.01. Now you can set the 
value to whatever is appropriate.  

A special note on setting the Multiple Comparison alpha. We suggest that you set this at 0.10 so 
that the individual tests are made at a more reasonable significance level. 
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Step 3 – Check Assumptions 

Introduction 
Once the output is displayed, you will be tempted to go directly to the probability of the F-test, 
determine if you have a significant result, and proceed to something else. However, it is very 
important that you proceed through the output in an orderly fashion. The first task is to determine 
if the assumptions are met by your data.  

Sometimes, when the data are nonnormal for all samples, a data transformation (like square roots 
or logs) might normalize the data. Frequently, when one sample is normal and the other is not, 
this transformation, or re-expression, approach works well. 

Random Sample 
The validity of this assumption depends upon the method used to select the sample. If the method 
used assures that each individual in the population of interest has an equal probability of being 
selected for this sample, you have a random sample. Unfortunately, you cannot tell if a sample is 
random by looking at it or statistics from it.  

Sample Independence 
The samples must be independent. For example, if you randomly divide a sample of individuals 
into two groups, you have met this requirement. However, if your population consists of cars and 
you assign the left tire to one group and the right tire to the other, you do not have independence. 
Here again, you cannot tell if the samples are independent by looking at them. You must consider 
the sampling methodology. 

Check Means Report 
You should check the Means and Effects Section first to determine if the Counts and the Means 
are reasonable. If you have selected the wrong variable, these values will alert you. 

Normality 
To validate this assumption, you should first look at the plots. Outliers will show up on the box 
plots and the probability plots. No data will be perfectly normal. After considering the plots, look 
at the Tests of Assumptions section to get numerical confirmation of what you see in the plots. 
Remember that the power of these normality tests is directly related to the sample size, so when 
the normality assumption is accepted, double check that your sample is large enough to give 
conclusive results. 

Equal Variance 
The equal variance assumption is important in determining which statistical test to use. Check the 
box plots for boxes with about the same widths. Confirm your conclusion by looking at the 
Equal-Variance Test (Modified Levene) line. 
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Step 4 – Choose the Appropriate Statistical Test 

Introduction 
You are now ready to determine which statistical procedures will be valid. 

Normal Data with Equal Variances 
Use the Analysis of Variance Section for hypothesis testing. 

Normal Data with Unequal Variances 
Try variance stabilizing transformations like the log or square root. If this does not work, you 
might try testing two groups at a time using the unequal variance two-sample t-tests. If you 
decide to make several t-tests, you should make appropriate adjustments to your significance 
level to avoid the multiplicity problem discussed in the Multiple Comparison section. The 
Kruskal-Wallis tests assumes that the variances are equal, so it cannot be used. 

Nonnormal Data with Equal Variances 
Use the Kruskal-Wallis Test for hypothesis testing. 

Nonnormal Data with Unequal Variances 
If you cannot find a variance-stabilizing transformation, you might test each pair of groups using 
the Kolmogorov-Smirnov test. Of course, the Kolmogorov-Smirnov test tests both the mean and 
variance. Since you already know that the variances are different from the Levene test, it is 
questionable whether this test will add new information. If you decide to make several 
Kolmogorov-Smirnov tests, you should make appropriate adjustments to your significance level 
to avoid the multiplicity problem discussed in the Multiple Comparison section. 

Step 5 – Interpret Findings 

Hypothesis Testing 
The interpretation of an analysis of variance table is rather easy. You simply look at the Prob>F 
value. If this value is less than your chosen significance level (say .05), you can declare that at 
least two of the means are significantly different. You then determine which means are different 
using planned comparisons or an appropriate paired-comparison procedure. With a list of 
significantly different means, you can view the plot of the means and discuss the meaning of your 
results. 

Step 6 – Record Your Results 
Finally, as you finish a test, take a moment to jot down what decisions you made and what you 
have found. Explain what you did, why you did it, what conclusions you reached, which outliers 
you deleted, areas for further investigation, and so on. 
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Chapter 211 

Analysis of 
Variance for 
Balanced Data 
Introduction 
This procedure performs an analysis of variance on up to ten factors. The experimental design 
must be of the factorial type (no nested or repeated-measures factors) with no missing cells. If the 
data are balanced (equal-cell frequency), this procedure yields exact F-tests. If the data are not 
balanced, approximate F-tests are generated using the method of unweighted means (UWM).  

The F-ratio is used to determine statistical significance. The tests are nondirectional in that the 
null hypothesis specifies that all means for a specified main effect or interaction are equal and the 
alternative hypothesis simply states that at least one is different. 

Studies have shown that the properties of UWM F-tests are very good if the amount of unbalance 
in the cell frequencies is small. Despite that relative accuracy, you might well ask, “If the results 
are not always exact, why provide the method?” The answer is that the general linear models 
(GLM) solution (discussed in the General Linear Models chapter) sometimes requires more 
computer time and memory than is available. When there are several factors each with many 
levels, the GLM solution may not be obtainable. In these cases, UWM provides a very useful 
approximation. When the design is balanced, both procedures yield the same results, but the 
UWM method is much faster. 

The procedure also calculates Friedman’s two-way analysis of variance by ranks. This test is the 
nonparametric analog of the F-test in a randomized block design. (See Help File for details.) 

Kinds of Research Questions 
A large amount of research consists of studying the influence of a set of independent variables on 
a response (dependent) variable. Many experiments are designed to look at the influence of a 
single independent variable (factor) while holding other factors constant. These experiments are 
called single-factor experiments and are analyzed with the one-way analysis of variance 
(ANOVA). A second type of design considers the impact of one factor across several values of 
other factors. This experimental design is called the factorial design.  

The factorial design is popular among researchers because it not only lets you study the 
individual effects of several factors in a single experiment, but it also lets you study their 
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interaction. Interaction is present when the response variable fails to behave the same at values of 
one factor when a second factor is varied. Since factors seldom work independently, the study of 
their interaction becomes very important. 

The Linear Model 
We begin with an infinite population of individuals with many measurable characteristics. These 
individuals are separated into two or more treatment populations based on one or more of these 
characteristics. A random sample of the individuals in each population is drawn. A treatment is 
applied to each individual in the sample and an outcome is measured. The data so obtained are 
analyzed using an analysis of variance table, which produces an F-test. 

A mathematical model may be formulated that underlies each analysis of variance. This model 
expresses the response variable as the sum of parameters of the population. For example, a linear 
mathematical model for a two-factor experiment is 

Y m a b ab eijk i j ij ijk= + + + +( )  

where i=1,2,...,I; j=1,2,...,J; and k=1,2,...,K. This model expresses the value of the response 
variable, Y, as the sum of five components:  

m  the mean. 

ai the contribution of the ith level of a factor A. 

bj the contribution of the jth level of a factor B. 

(ab)ij the combined contribution of the ith level of a factor A and the jth level of a factor B. 

eijk the contribution of the kth individual. This is often called the “error.” 

Note that this model is the sum of various constants. This type of model is called a linear model 
and becomes the mathematical basis for our discussion of the analysis of variance. Also note that 
this serves only as an example. Many linear models could be formulated for the two-factor 
experiment. 

Assumptions 
The following assumptions are made when using the F-test: 

1. The response variable is continuous. 

2. The eijk follow the normal probability distribution with mean equal to zero. 

3. The variances of the eijk are equal for all values of i, j, and k. 

4. The individuals are independent. 

Limitations 
There are few limitations when using these tests. Sample sizes may range from a few to several 
hundred. If your data are discrete with at least five unique values, you can assume that you have 
met the continuous variable assumption. Perhaps the greatest restriction is that your data comes 
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from a random sample of the population. If you do not have a random sample, the F-test will not 
work. 

The UWM procedure also requires that there are no missing cells. Because the concept of missing 
cells often gets confused with unbalanced data, we will give an example that discriminates 
between these two properties.  

Let’s assume that an experiment is designed to study the impact of education and region on 
income. Three regions are selected for this study. They are Boston, Chicago, and Denver. Two 
education levels are selected: high school and college. Hence, the experiment is a two-by-three 
factorial design with six treatment combinations (called “cells”). Suppose the researcher intends 
to sample ten individuals from each of the six treatment groups. If the experiment proceeds as 
planned, it will be balanced with no missing cells. 

As long as there are ten individuals in each of the six cells, the design is said to be “balanced.” 
Suppose that for one reason or another, two of the ten college people are lost from the Denver-
college group. The design is now “unbalanced.”  Hence, an unbalanced design is one which has a 
differing number of individuals in each treatment group. 

Suppose that instead of just two people, all ten individuals in the Denver-college group (cell) are 
lost from the study. Now the design has a missing cell.”  That is, one complete treatment 
combination is missing.  

Again, the UWM procedure is exact for a balanced design, approximate for an unbalanced design 
with no missing cells, and impossible for a design with missing cells. Unfortunately, designs that 
are confounded, such as Latin squares and fractional factorials, have missing cells, so they cannot 
be analyzed with this procedure. 

Multiple Comparison Procedures 
The multiple comparison procedures are discussed in the One-Way Analysis of Variance chapter. 

Friedman’s Rank Test 
Friedman’s test is a nonparametric analysis that may be performed on data from a randomized 
block experiment. In this test, the original data are replaced by their ranks. It is used when the 
assumptions of normality and equal variance are suspect. In a experiment with b blocks and k 
treatments, the Friedman test statistic, Q, is calculated as follows: 
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The data within each of the b blocks are assigned ranks. The ranks are summed for each of the k 
groups. This rank sum is denoted as Rj. The factor involving t in the denominator is a correction 
for ties. The symbol t represents the number of times a single value is found within a block. When 
the multiplicity   is included, the test is said to be corrected for ties. When this term is 

omitted, the test value is not corrected for ties. 
(t t3 −∑

This statistic is approximately distributed as a Chi-square with k-1 degrees of freedom.  
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The Q statistic is closely related to Kendall’s coefficient of concordance, W, using the formula: 

W = Q / b(k - 1)  

In order to run this procedure, the first factor must be the blocking (random) factor and the second 
must be the treatment (fixed) factor. 

Data Structure 
The data must be entered in a format that puts the response in one variable and the values of each 
of the factors in other variables. An example of the data for a randomized-block design is shown 
next.  

RNDBLOCK dataset 

Block Treatment Response 
1 1 123 
2 1 230 
3 1 279 
1 2 245 
2 2 283 
3 2 245 
1 3 182 
2 3 252 
3 3 280 
1 4 203 
2 4 204 
3 4 227 

 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
These panels specify the variables used in the analysis. 

Response Variables 

Response Variable(s) 
Specifies the response (dependent) variable to be analyzed. If you specify more than one variable 
here, a separate analysis is run for each variable. 

Factor Specification 

Factor Variable 
At least one factor variable must be specified. This variable’s values indicates how the values of 
the response variable should be categorized. Examples of factor variables are gender, age groups, 
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“yes” or “no” responses, and the like. Note that the values in the variable may be either numeric 
or text. The treatment of text variables is specified for each variable by the Data Type option on 
the database. 

Type 
This option specifies whether the factor is fixed or random. The selection influences the expected 
mean square, which in turn determines the denominator of the F-test.  

A fixed factor includes all possible levels, like male and female for gender, includes 
representative values across the possible range of values, like low, medium, and high 
temperatures, or includes a set of vlaues to which inferences will be limited, like New York, 
California, and Maryland. 

A random factor is one in which the chosen levels represent a random sample from the population 
of values. For example, you might select four classes from the hundreds in your state or you 
might select ten batches from an industrial process. The key is that a random sample is chosen. 

Comparisons 
Comparisons are only generated for fixed factors. These options let you specify any planned 
comparisons that you want to run on this factor. A planned comparison is formulated in terms of 
the means as follows: 

C wi ij
j

J

=
=
∑

1

mj  

In this equation, there are J levels in the factor, the means for each level of the factor are denoted 
mj, and wij represents a set of J weight values for the ith comparison. The comparison value, Ci, is 
tested using a t-test. Note that if the wij sum to zero across j, the comparison is called a “contrast” 
of the means. 

Comparisons may be specified by simply listing the weights. For example, suppose a factor has 
three levels (unique values). Further suppose that the first level represents a control group, the 
second a treatment at one dose, and the third a treatment at a higher dose. Three comparisons 
come to mind: compare each of the treatment groups of the control group and compare the two 
treatment groups to each other. These three comparisons would be 

Control vs. Treatment 1  -1,1,0 

Control vs. Treatment 2  -1,0,1 

Treatment 1 vs. Treatment 2  0,-1,1 

You might also be interested in comparing the control group with the average of both treatment 
groups. The weights for this comparison would be -2,1,1. 

When a factor is quantitative, it might be of interest to divide the response pattern into linear, 
quadratic, cubic, and similar components. If the sample sizes are equal and the factor levels are 
equally spaced, these so-called components of trend may be studied by the use of simple 
contrasts. For example, suppose a quantitative factor has three levels: 5, 10, and 15. A contrast to 
test the linear and quadratic trend components would be 

Linear trend   -1,0,1 

Quadratic trend   1,-2,1 

If the sample sizes for the groups are unequal (the design is unbalanced), adjustments must be 
made for the differing sample sizes. 
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NCSS will automatically generate some of the more common sets of contrasts or it will let you 
specify up to three custom contrasts yourself. The following common sets are designated by this 
option. 

• None 
No comparisons are generated. 

• Standard Set 
This option generates a standard set of contrasts in which the mean of the first level is 
compared to the average of the rest, the mean of the second group is compared to the average 
of those remaining, and so on.  

The following example displays the type of contrast generated by this option. Suppose there 
are four levels (groups) in the factor. The contrasts generated by this option are: 

-3,1,1,1  Compare the first-level mean with the average of the rest. 

0,-2,1,1  Compare the second-level mean with the average of the rest. 

0,0,-1,1  Compare the third-level mean with the fourth-level mean. 

• Polynomial 
This option generates a set of orthogonal contrasts that allow you to test various trend 
components from linear up to sixth order. These contrasts are appropriate even if the levels 
are unequally spaced or the group sample sizes are unequal. Of course, these contrasts are 
only appropriate for data that are at least ordinal. Usually, you would augment the analysis of 
this type of data with a multiple regression analysis. 

The following example displays the type of contrast generated by this option. Suppose there 
are four equally spaced levels in the factor and each group has two observations. The 
contrasts generated by this option are (scaled to whole numbers): 

-3,-1,1,3 Linear component. 

1,-1,-1,1 Quadratic component. 

-1,3,-3,1 Cubic component. 

• Linear Trend 
This option generates a set of orthogonal contrasts and retains only the linear component. 
This contrast is appropriate even if the levels are unequally spaced and the group sample sizes 
are unequal. See Orthogonal Polynomials above for more detail.  

• Linear-Quadratic Trend 
This option generates the complete set of orthogonal polynomials, but only the results for the 
first two (the linear and quadratic) are reported. 

• Linear-Cubic Trend 
This option generates the complete set of orthogonal polynomials, but only the results for the 
first three are reported. 

• Linear-Quartic Trend 
This option generates the complete set of orthogonal polynomials, but only the results for the 
first four are reported. 
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• Each with First 
This option generates a set of nonorthogonal contrasts appropriate for comparing each of the 
remaining levels with the first level. The following example displays the type of contrast 
generated by this option. Suppose there are four levels (groups) in the factor. The contrasts 
generated by this option are: 

-1,1,0,0  Compare the first- and second-level means. 

-1,0,1,0  Compare the first- and third-level means. 

-1,0,0,1  Compare the first- and fourth-level means. 

• Each with Last 
This option generates a set of nonorthogonal contrasts appropriate for comparing each of the 
remaining levels with the last level. The following example displays the type of contrast 
generated by this option. Suppose there are four levels (groups) in the factor. The contrasts 
generated by this option are: 

-1,0,0,1  Compare the first- and fourth-level means. 

0,-1,0,1  Compare the second- and fourth-level means. 

0,0,-1,1  Compare the third- and fourth-level means. 

• Custom 
This option indicates that the contrasts listed in the corresponding three boxes of the 
Comparison panel should be used. 

Custom Comparisons Tab 
This panel is used when the Comparison option of one or more factors is set to Custom. The 
Custom option means that the contrast coefficients are to be entered by the user. The boxes on 
this panel contain the user-supplied contrast coefficients. The first row is for factor one, the 
second row for factor two, and so on. 

Custom Comparisons 
The following options are only used if Comparisons is set to 'Custom' on the Variables tab. 

Custom (1-3) 
This option lets you write a user-specified comparison by specifying the weights of that 
comparison. Note that there are no numerical restrictions on these coefficients. They do not even 
have to sum to zero; however, this is recommended. If the coefficients do sum to zero, the 
comparison is called a “contrast.” The significance tests anticipate that only one or two of these 
comparisons are to be run. If you run several, you should make some type of Bonferroni 
adjustment to your alpha value. 

When you put in your own contrasts, you must be careful that you specify the appropriate number 
of weights. For example, if the factor has four levels, four weights must be specified, separated by 
commas. Extra weights are ignored. If not enough weights are specified, they are assumed to be 
zero.  

These comparison coefficients designate weighted averages of the level-means that are to be 
statistically tested. The null hypothesis is that the weighted average is zero. The alternative 
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hypothesis is that the weighted average is nonzero. The weights (comparison coefficients) are 
specified here.  

As an example, suppose you want to compare the average of the first two levels with the average 
of the last two levels in a six-level factor. You would enter “-1,-1,0,0,1,1.” 

As a second example, suppose you want to compare the average of the first two levels with the 
average of the last three levels in a six-level factor. The contrast would be 

-3,-3,0,2,2,2. 

Note that in each case, we have used weights that sum to zero. This is why we could not use ones 
in the second example. 

Reports Tab 
The following options control which plots and reports are displayed.  

Select Reports 

EMS Report ... Means Report 
Specify whether to display the indicated reports and plots. 

Select Plots 

Means Plot(s) 
Specify whether to display the indicated plots. 

Report Options 

Test Alpha 
The value of alpha for the statistical tests and power analysis. Usually, this number will range 
from 0.10 to 0.001. A common choice for alpha is 0.05, but this value is a legacy from the age 
before computers when only printed tables were available. You should determine a value 
appropriate for your particular study. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. 

Variable Names 
Indicate whether to display the variable names or the variable labels.  

Value Labels 
Indicate whether to display the data values or their labels.  

Multiple Comparison Tests 

Bonferroni Test (All-Pairs) ... Tukey-Kramer Confidence Intervals 
These options specify which MC tests and confidence intervals to display. 
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Tests for Two-Factor Interactions 
This option specifies whether multiple comparison tests are generated for two-factor interaction 
terms. When checked, the means of two-factor interactions will be tested by each active multiple 
comparison test. The multiple comparison test will treat the means as if they came from a single 
factor. For example, suppose factor A as two levels and factor B has three levels. The AB 
interaction would then have six levels. The active multiple comparison tests would be run on 
these six means.  

Care must be used when interpreting multiple comparison tests on interaction means. Remember 
that the these means contain not only the effects of the interaction, but also the main effects of the 
two factors. Hence these means contain the combined effects of factor A, factor B, and the AB 
interaction. You cannot interpret the results as representing only the AB interaction. 

Multiple Comparison Tests – Options 

MC Alpha 
Specifies the alpha value used by the multiple-comparison tests. 

MC Decimals 
Specify how many decimals to display in the multiple comparison sections. 

Means Plot Tab 
These options specify the plots of group means. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Y Scaling 
Specify the method for calculating the minimum and maximum along the vertical axis. Separately 
means that each plot is scaled independently. Uniform means that all plots use the overall 
minimum and maximum of the data. This option is ignored if a minimum or maximum is 
specified. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tick marks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 
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Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Connect Lines 
Click this box to connect the points for a particular factor. This makes it easier to spot patterns in 
the means. 

Plot Settings – Legend 

Show Legend 
Indicate whether the legend is to be displayed. 

Legend Text 
Indicate the title text of the legend. Note that if two factors are being plotted, {X} is replaced by 
the appropriate factor name. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Symbols Tab 
These options specify the symbols used in the plots of group means. 

Plotting Symbols 

Group (1-15)  
The symbols used to represent the levels of a factor on the means plots. Group 1 represents the 
first level, Group 2 represents the second level, and so on. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Analysis of a Randomized-Block Design 
This section presents an example of how to run an analysis of the data contained in the 
RNDBLOCK database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Analysis of Variance for Balanced Data window. 

1 Open the RNDBLOCK dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file RNDBLOCK.s0. 
• Click Open. 

2 Open the Analysis of Variance for Balanced Data window. 
• On the menus, select Analysis, then Analysis of Variance (ANOVA), then Analysis of 

Variance for Balanced Data. The Analysis of Variance for Balanced Data procedure 
will be displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Analysis of Variance for Balanced Data window, select the Variables tab. 
• Double-click in the Response Variables box. This will bring up the variable selection 

window. 
• Select Response from the list of variables and then click Ok. 
• Double-click in the Factor 1 Variable box. This will bring up the variable selection 

window. 
• Select Block from the list of variables and then click Ok. 
• Select Random in the Type box for Factor 1. 
• Double-click in the Factor 2 Variable box. This will bring up the variable selection 

window. 
• Select Treatment from the list of variables and then click Ok. 
• Select Fixed in the Type box for Factor 2. 
• Select Linear in the Comparisons box for Factor 2. 

4 Specify the reports. 
• On the Analysis of Variance for Balanced Data window, select the Reports tab. 
• Check the Tukey-Kramer Test option of the Multiple Comparison Tests. 
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5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
 
We will now document this output, one section at a time. 

Expected Mean Squares Section 
 

 Expected Mean Squares Section 
  
 Source  Term Denominator Expected 
 Term DF Fixed? Term Mean Square 
 A (Block) 2 No S S+bsA 
 B (Treatment) 3 Yes AB S+sAB+asB 
 AB 6 No S S+sAB 
 S 0 No   S 
   
 Note: Expected Mean Squares are for the balanced cell-frequency case. 
 

The Expected Mean Squares expressions are provided to show the appropriate error term for each 
factor. The correct error term for a factor is that term that is identical except for the factor being 
tested. 

Source Term 
The source of variation or term in the model. 

DF 
The degrees of freedom. The number of observations used by this term. 

Term Fixed?  
Indicates whether the term is “fixed” or “random.” 

Denominator Term 
Indicates the term used as the denominator in the F-ratio. 

Expected Mean Square 
This expression represents the expected value of the corresponding mean square if the design was 
completely balanced. “S” represents the expected value of the mean square error (experimental 
variance). The uppercase letters represent either the adjusted sum of squared treatment means if 
the factor is fixed, or the variance component if the factor is random. The lowercase letter 
represents the number of levels for that factor, and “s” represents the number of replications of 
the experimental layout. 

These EMS expressions are provided to determine the appropriate error term for each factor. The 
correct error term for a factor is that term whose EMS is identical except for the factor being 
tested.  

The appropriate error term for factor B is the AB interaction. The appropriate error term for AB is 
S (mean square error). Since there are zero degrees of freedom for S, the terms A and AB cannot 
be tested. 
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Analysis of Variance Table Section 
  
 Analysis of Variance Table 
 Source  Sum of Mean  Prob Power 
 Term DF Squares Square F-Ratio Level (Alpha=0.05) 
 A (Block) 2 10648.67 5324.333 
 B (Treatment) 3 4650.917 1550.306 1.09 0.421359 0.177941 
 AB 6 8507.333 1417.889 
 S 0 0 
 Total (Adjusted) 11 23806.92 
 Total 12 
 
 * Term significant at alpha = 0.05 
 

Source Term 
The source of variation. The term in the model. 

DF 
The degrees of freedom. The number of observations used by the corresponding model term.  

Sum of Squares 
This is the sum of squares for this term. It is usually included in the ANOVA table for 
completeness, not for direct interpretation. 

Mean Square 
An estimate of the variation accounted for by this term. The sum of squares divided by the 
degrees of freedom. 

F-Ratio 
The ratio of the mean square for this term and the mean square of its corresponding error term. 
This is also called the F-test value. 

Prob Level 
The significance level of the above F-ratio. The probability of an F-ratio larger than that obtained 
by this analysis. For example, to test at an alpha of 0.05, this probability would have to be less 
than 0.05 to make the F-ratio significant. Note that if the value is significant at the specified value 
of alpha, a star is placed to the right of the F-Ratio. 

Power (Alpha=0.05) 
Power is the probability of rejecting the hypothesis that the means are equal when they are in fact 
not equal. Power is one minus the probability of type II error (β). The power of the test depends 
on the sample size, the magnitudes of the variances, the alpha level, and the actual differences 
among the population means.  

The power value calculated here assumes that the population standard deviation is equal to the 
observed standard deviation and that the differences among the population means are exactly 
equal to the difference among the sample means. 

High power is desirable. High power means that there is a high probability of rejecting the null 
hypothesis when the null hypothesis is false. This is a critical measure of precision in hypothesis 
testing.  

Generally, you would consider the power of the test when you accept the null hypothesis. The 
power will give you some idea of what actions you might take to make your results significant. If 
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you accept the null hypothesis with high power, there is not much left to do. At least you know 
that the means are not different. However, if you accept the null hypothesis with low power, you 
can take one or more of the following actions:  

1. Increase your alpha level. Perhaps you should be testing at alpha = 0.05 instead of alpha 
= 0.01. Increasing the alpha level will increase the power. 

2. Increase your sample size, which will increase the power of your test if you have low 
power. If you have high power, an increase in sample size will have little effect.  

3. Decrease the magnitude of the variance. Perhaps you can redesign your study so that 
measurements are more precise and extraneous sources of variation are removed.  

Friedman’s Rank Test Section 
  
 Treatment Ranks Section 
  Number  Mean of Sum of 
 Treatment Blocks Median Ranks Ranks 
 1 3 230 2 6 
 2 3 245 3.333333 10 
 3 3 252 3 9 
 4 3 204 1.666667 5 
 
 Friedman Test Section 
  Friedman  Prob Concordance 
 Ties (Q) DF Level (W) 
 Ignored 3.400000 3 0.333965 0.377778 
 Correction 3.400000 3 0.333965 0.377778 
 
 Multiplicity 0 
 

Treatment 
The level of the treatment (fixed factor) whose statistics are reported on this line. 

Number Blocks 
The number of levels (categories) of the block variable (random factor). 

Median 
The median value of responses at this treatment level. 

Mean of Ranks 
The average of the ranks at this treatment level. 

Sum of Ranks 
The sum of the ranks at this treatment level. 

Ties 

• Ignored 
Statistics on this row are not adjusted for ties. 

• Correction 
Statistics on this row are adjusted for ties. 
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Friedman (Q) 
The value of Friedman’s Q statistic. This statistic is approximately distributed as a Chi-square 
random variable with degrees of freedom equal to k-1, where k is the number of treatments. The 
Chi-square approximation grows closer as the number of blocks is increased. 

DF 
The degrees of freedom. The degrees of freedom is equal to k-1, where k is the number of 
treatments. 

Prob Level 
The significance level of the Q statistic. If this value is less than a specified alpha level (often 
0.05), the null hypothesis of equal medians is rejected. 

Concordance (W) 
The value of Kendall’s coefficient of concordance, which measures the agreement between 
observers of samples. This value ranges between zero and one. A value of one indicates perfect 
concordance. A value of zero indicates no agreement or independent samples. 

Multiplicity 

The value of the correction factor for ties: ( )t t3 −∑ . 

Means, Effects, and Plots Sections 
  
 Means, Effects, and Plots 
    Standard  
 Term Count Mean Error Effect 
 All 12 229.4167   229.4167 
 A: Block 
 1 4 188.25 0 -41.16667 
 2 4 242.25 0 12.83333 
 3 4 257.75 0 28.33333 
 B: Treatment  
 1 3 210.6667 21.74005 -18.75 
 2 3 257.6667 21.74005 28.25 
 . . . . . 
 . . . . . 
 . . . . . 
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Term 
The label for this line of the report. 

Count 
The number of observations in the mean. 

Mean 
The value of the sample mean. 

Standard Error 
The standard error of the mean. Note that these standard errors are the square root of the mean 
square of the error term for this term divided by the count. These standard errors are not the 
same as the simple standard errors calculated separately for each group. The standard errors 
reported here are those appropriate for testing in multiple comparisons. 

Effect 
The additive component that this term contributes to the mean. 

Plot of Means 
These plots display the means for each factor and two-way interaction. Note how easily you can 
see patterns in the plots. 

Multiple-Comparison Sections 
 
 Tukey-Kramer Multiple-Comparison Test 
 
 Response: Response 
 Term B: Treatment 
  
 Alpha=0.050  Error Term=AB  DF=6  MSE=1417.889 Critical Value=4.895637 
  
       Different 
 Group Count Mean From Groups 
 1 3 210.6667  
 4 3 211.3333  
 3 3 238  
 2 3 257.6667  
   

These sections present the results of the multiple-comparison procedures selected. These reports 
all use a uniform format that will be described by considering Tukey-Kramer Multiple-
Comparison Test. The reports for the other procedures are similar. For more information on the 
interpretation of various multiple-comparison procedures, turn to the section by that name in the 
One-way Analysis of Variance chapter. 

Alpha 
The level of significance that you selected. 

Error Term 
The term in the ANOVA model that is used as the error term. 

DF 
The degrees of freedom of the error term. 
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MSE 
The value of the mean square error. 

Critical Value 
The value of the test statistic that is “just significant” at the given value of alpha. This value 
depends on which multiple-comparison procedure you are using. It is based on the t-distribution 
or the studentized range distribution. It is the value of t, F, or q in the corresponding formulas. 

Group 
The label for this group. 

Count 
The number of observations in the mean. 

Mean 
The value of the sample mean. 

Different From Groups 
A list of those groups that are significantly different from this group according to this multiple-
comparison procedure. All groups not listed are not significantly different from this group. 

Planned-Comparison Section 
This section presents the results of any planned comparisons that were selected. 
  
 Planned Comparison: B Linear Trend  
   
 Response: Response  
 Term B: Treatment  
   
 Alpha=0.050  Error Term=AB  DF=6  MSE=1417.889  
   
 Comparison Value=-3.950387   T-Value=0.1817   Prob>|T|=0.861794   Decision(0.05)=Do Not Reject 
 Comparison Standard Error=21.74005 
   
   Comparison     
 Group Coefficient Count Mean 
 1 -0.6708204 3 210.6667 
 2 -0.2236068 3 257.6667 
 3 0.2236068 3 238 
 4 0.6708204 3 211.3333 
 

Alpha 
The level of significance that you selected. 

Error Term 
The term in the ANOVA model that is used as the error term. 

DF 
The degrees of freedom of the error term. 

MSE 
The value of the mean square error. 
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Comparison Value 
The value of the comparison. This is formed by multiplying the comparison coefficient by the 
mean for each group and summing. 

T-Value 
The t-test used to test whether the above Comparison Value is significantly different from zero. 
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where MSE is the mean square error,  f  is the degrees of freedom associated with MSE, k is the 
number of groups, ci is the comparison coefficient for the ith group, Mi is the mean of the ith 
group, and ni is the sample size of the ith group. 

Prob>|T| 
The significance level of the above T-Value. The Comparison is statistically significant if this 
value is less than the specified alpha. 

Decision(0.05)  
The decision based on the specified value of the multiple-comparison alpha. 

Comparison Standard Error 
This is the standard error of the estimated comparison value. It is the denominator of the T-Value 
(above). 

Group 
The label for this group. 

Comparison Coefficient 
The coefficient (weight) used for this group. 

Count 
The number of observations in the mean. 

Mean 
The value of the sample mean. 



  212-1 

Chapter 212 

General Linear 
Models (GLM) 
Introduction 
This procedure performs an analysis of variance or analysis of covariance on up to ten factors 
using the general linear models approach. The experimental design may include up to two nested 
terms, making possible various repeated measures and split-plot analyses. 

Because the program allows you to control which interactions are included and which are 
omitted, it can analyze designs with confounding such as Latin squares and fractional factorials. 

Kinds of Research Questions 
A large amount of research consists of studying the influence of a set of independent variables on 
a response (dependent) variable. Many experiments are designed to look at the influence of a 
single independent variable (factor) while holding other factors constant. These experiments are 
called single-factor experiments and are analyzed with the one-way analysis of variance 
(ANOVA). A second type of design considers the impact of one factor across several values of 
other factors. This experimental design is called the factorial design.  

The factorial design is popular among researchers because it not only lets you study the 
individual effects of several factors in a single experiment, but it also lets you study their 
interaction. Interaction is present when the response variable fails to behave the same at values of 
one factor when a second factor is varied. Since factors seldom work independently, the study of 
their interaction becomes very important. 

This procedure will also analyze repeated-measures and split-plot designs. These designs are 
popular in many disciplines in which experiments are needed that take several measurements on 
an individual through time. Examples are pre-post type tests administered to various groups of 
individuals. 

Analysis of covariance (ANCOVA) is another design that may be analyzed using this procedure. 
ANCOVA is useful when you want to improve precision by removing various extraneous sources 
of variation from your study. 

The Linear Model 
We begin with an infinite population of individuals with many measurable characteristics. These 
individuals are (mentally) separated into two or more treatment populations based on one or more 
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of these characteristics. A random sample of the individuals in each population is drawn. A 
treatment is applied to each individual in the sample and an outcome is measured. The data so 
obtained are analyzed using an analysis of variance table that produces an F-test. 

A mathematical model may be formulated that underlies each analysis of variance. This model 
expresses the response variable as the sum of parameters of the population. For example, a linear 
mathematical model for a two-factor experiment is 

Y m a b ab eijk i j ij ijk= + + + +( )  

where i=1,2,...,I; j=1,2,...,J; and k=1,2,...,K. This model expresses the value of the response 
variable, Y, as the sum of five components:  

m  the mean. 

ai the contribution of the ith level of a factor A. 

bj the contribution of the jth level of a factor B. 

(ab)ij the combined contribution of the ith level of a factor A and the jth level of a factor B. 

eijk the contribution of the kth individual. This is often called the “error.” 

Note that this model is the sum of various constants. This type of model is called a linear model. 
It becomes the mathematical basis for our discussion of the analysis of variance. Also note that 
this serves only as an example. Many linear models could be formulated for the two-factor 
experiment. 

Assumptions 
The following assumptions are made when using the F-test. 

1. The response variable is continuous. 

2. The eijk follow the normal probability distribution with mean equal to zero. 

3. The variances of the eijk are equal for all values of i, j, and k. 

4. The individuals are independent. 

Limitations 
There are few limitations when using these tests. Sample sizes may range from a few to several 
hundred. If your data are discrete with at least five unique values, you can assume that you have 
met the continuous variable assumption. Perhaps the greatest restriction is that your data comes 
from a random sample of the population. If you do not have a random sample, the F-test will not 
work. 

When missing cells occur in your design, you must take special care to be sure that appropriate 
interaction terms are removed from the ANOVA model. 

Special restrictions apply when you are running an analysis with nested terms, as in repeated 
measures designs. First of all, you cannot have covariates with nested terms. Second, although the 
sample sizes of groups (the “between” factor) may be unequal, all data must be present for each 
nested factor. For example, if you are running a pre-post design, you must have both pre- and 
post- scores for each individual. You cannot include individuals that have only one or the other. 
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Multiple Comparison Procedures 
The multiple comparison procedures are discussed in the One-Way Analysis of Variance chapter. 

Data Structure 
The data must be entered in a format that puts the response in one variable and the values of each 
of the factors in other variables. An example of the data for a randomized-block design is shown 
next.  

RNDBLOCK dataset 

Block Treatment Response 
1 1 123 
2 1 230 
3 1 279 
1 2 245 
2 2 283 
3 2 245 
1 3 182 
2 3 252 
3 3 280 
1 4 203 
2 4 204 
3 4 227 

 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
These panels specify the variables used in the analysis and the model. 

Response Variables 

Response Variable(s) 
Specifies the response (dependent) variable to be analyzed. If you specify more than one variable 
here, a separate analysis is run for each variable. 

Covariate Specification 

Covariate(s) 
One or more covariates may be specified, causing an analysis of covariance (ANCOVA) to be 
run. Note that you cannot specify covariates if any of your factors are of the nested type. 
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Factor Specification 

Factor Variable 
At least one factor variable must be specified. This variable’s values indicate how the values of 
the response variable should be categorized. Examples of factor variables are gender, age groups, 
“yes” or “no” responses, etc. Note that the values in the variable may be either numeric or text. 
The treatment of text variables is specified for each variable by the Data Type option on the 
database. 

Type 
This option specifies whether the factor is fixed, random, or nested. 

A fixed factor  includes all possible levels, like male and female for gender, includes 
representative values across the possible range of values, like low, medium, and high 
temperatures, or includes a set of values to which inferences will be limited, like New York, 
California, and Maryland. 

A random factor is one in which the chosen levels represent a random sample from the 
population of values. For example, you might select four classes from the hundreds in your state 
or you might select ten batches from an industrial process. The key is that a random sample is 
chosen. In NCSS, a random factor is “crossed” with other random and fixed factors. Two factors 
are crossed when each level of one includes all levels of the other. 

A nested factor is a special type of random factor whose levels (values) are not repeated for all 
combinations of the factors before it. That is, if factor B is nested in factor A, each level of factor 
A has its own set of values for factor B.  

For example, suppose that factor A represents three fourth-grade classrooms of twenty students in 
a particular state. Further suppose that factor B represents the sixty children in these classrooms. 
If factors A and B were crossed, then all sixty children would somehow simultaneously be 
attending all three classrooms. However, if each classroom has a mutually exclusive set of twenty 
children, we say that children are nested within classrooms or B is nested within A. Notice that 
nesting occurs when each level of the first factor (the classrooms) contains separate levels of the 
second factor (the children). 

Note that nested factors should be numbered consecutively, just like random and fixed factors. In 
the preceding example, you would number the children from one to sixty. You cannot have two 
individuals with the same identification number. 

Comparisons 
Comparisons are only valid for fixed factors. This option lets you specify comparisons that you 
want to run on this factor. A comparison is formulated in terms of the means as follows: 

C wi ij
j

J

=
=
∑

1

mj  

In this equation, there are J levels in the factor, the means for each level of the factor are denoted 
mi, and wij represents a set of J weight values for the ith comparison. The comparison value, Ci, is 
tested using a t-test. Note that if the wij sum to zero across j, the comparison is called a “contrast” 
of the means. 

Comparisons may be specified by simply listing the weights. For example, suppose a factor has 
three levels (unique values). Further suppose that the first level represents a control group, the 
second a treatment at one dose, and the third a treatment at a higher dose. Three comparisons 
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come to mind: compare each of the treatment groups to the control group and compare the two 
treatment groups to each other. These three comparisons would be 

Control vs. Treatment 1  -1,1,0 

Control vs. Treatment 2  -1,0,1 

Treatment 1 vs. Treatment 2  0,-1,1 

You might also be interested in comparing the control group with the average of both treatment 
groups. The weights for this comparison would be -2,1,1. 

When a factor is quantitative, it might be of interest to divide the response pattern into linear, 
quadratic, cubic, or other components. If the sample sizes are equal and the factor levels are 
equally spaced, these so-called components of trend may be studied by the use of simple 
contrasts. For example, suppose a quantitative factor has three levels: 5, 10, and 15. Contrasts to 
test the linear and quadratic trend components would be 

Linear trend  -1,0,1 

Quadratic trend  1,-2,1 

If the sample sizes for the groups are unequal (the design is unbalanced), adjustments must be 
made for the differing sample sizes. 

NCSS will automatically generate some of the more common sets of contrasts, or it will let you 
specify up to three custom contrasts yourself. The following common sets are designated by this 
option. 

• None 
No comparisons are generated. 

• Standard Set 
This option generates a standard set of contrasts in which the mean of the first level is 
compared to the average of the rest, the mean of the second group is compared to the average 
of those remaining, and so on.  

The following example displays the type of contrast generated by this option. Suppose there 
are four levels (groups) in the factor. The contrasts generated by this option are: 

 -3,1,1,1  Compare the first-level mean with the average of the rest. 

 0,-2,1,1  Compare the second-level mean with the average of the rest. 

 0,0,-1,1  Compare the third-level mean with the fourth-level mean. 

• Polynomial 
This option generates a set of orthogonal contrasts that allow you to test various trend 
components from linear up to sixth order. These contrasts are appropriate even if the levels 
are unequally spaced or the group sample sizes are unequal. Of course, these contrasts are 
only appropriate for data that are at least ordinal. Usually, you would augment the analysis of 
this type of data with a multiple regression analysis. 

The following example displays the type of contrasts generated by this option. Suppose there 
are four equally spaced levels in the factor and each group has two observations. The 
contrasts generated by this option are (scaled to whole numbers): 

 -3,-1,1,3 Linear component. 



212-6  General Linear Models (GLM)  

 1,-1,-1,1 Quadratic component. 

 -1,3,-3,1 Cubic component. 

• Linear Trend 
This option generates a set of orthogonal contrasts and retains only the linear component. 
This contrast is appropriate even if the levels are unequally spaced and the group sample sizes 
are unequal. See Orthogonal Polynomials above for more detail.  

• Linear-Quadratic Trend 
This option generates the complete set of orthogonal polynomials, but only the results for the 
first two (the linear and quadratic) are reported. 

• Linear-Cubic Trend 
This option generates the complete set of orthogonal polynomials, but only the results for the 
first three are reported. 

• Linear-Quartic Trend 
This option generates the complete set of orthogonal polynomials, but only the results for the 
first four are reported. 

• Each with First 
This option generates a set of nonorthogonal contrasts appropriate for comparing each of the 
remaining levels with the first level. The following example displays the type of contrast 
generated by this option. Suppose there are four levels (groups) in the factor. The contrasts 
generated by this option are: 

 -1,1,0,0  Compare the first- and second-level means. 

 -1,0,1,0  Compare the first- and third-level means. 

 -1,0,0,1  Compare the first- and fourth-level means. 

• Each with Last 
This option generates a set of nonorthogonal contrasts appropriate for comparing each of the 
remaining levels with the last level. The following example displays the type of contrast 
generated by this option. Suppose there are four levels (groups) in the factor. The contrasts 
generated by this option are: 

 -1,0,0,1  Compare the first- and fourth-level means. 

 0,-1,0,1  Compare the second- and fourth-level means. 

 0,0,-1,1  Compare the third- and fourth-level means. 

• Custom 
This option indicates that the contrasts listed in the corresponding three boxes of the 
Comparison panel should be used. 
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Model Specification 
This section specifies the experimental design model. 

Which Model Terms 
A design in which main effect and interaction terms are included is called a saturated model. 
Often, it is useful to omit various interaction terms from the model. This option lets you specify 
which interactions to keep very easily. If the selection provided here is not flexible enough for 
your needs, you can specify custom here and enter the model directly. 

The options included here are as follows. 

• Full Model 
The complete, saturated model is analyzed. This option requires that you have no missing 
cells, although you can have an unbalanced design. Hence, you cannot use this option with 
Latin square or fractional factorial designs. 

• Up to 1-Way 
A main-effects only model is run. All interactions are omitted. 

• Up to 2-Way 
All main-effects and two-way interactions are included in the model. 

• Up to 3-Way 
All main-effects, two-way, and three-way interactions are included in the model. 

• Up to 4-Way 
All main-effects, two-way, three-way, and four-way interactions are included in the model. 

• Custom 
This option indicates that you want the Custom Model (given in the next box) to be used. 

• Write Model in ‘Custom Model’ Field 
When this option is checked, no analysis is performed when the procedure is run. Instead, a 
copy of the full model is stored in the Custom Model box. You can then delete selected terms 
from the model without having to enter all the terms you want to keep. 

Custom Model 
When Custom Model (see Which Model Terms above) is selected, the model itself is entered 
here. If all main effects and interactions are desired, you can enter the word “ALL” here. For 
complicated designs, it is usually easier to check the next option, Write Model in ‘Custom Model’ 
Field, and run the procedure. The appropriate model will be generated and placed in this box. 
You can then edit it as you desire. 

The model is entered using letters separated by the plus sign. For example, a three-factor factorial 
in which only two-way interactions are needed would be entered as follows: 

A+B+AB+C+AC+BC. 

A simple repeated-measures design would look like this: 

A+B(A)+C+AC+BC(A). 
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Custom Comparisons Tab 
This panel is used when the Comparison option of one or more factors is set to Custom. The 
Custom option means that the contrast coefficients are to be entered by the user. The boxes on 
this panel contain the user-supplied contrast coefficients. The first row is for factor one, the 
second row for factor two, and so on. 

Custom Comparisons 
The following options are only used if Comparisons is set to 'Custom' on the Variables tab. 

Custom (1-3) 
This option lets you write a user-specified comparison by specifying the weights of that 
comparison. Note that there are no numerical restrictions on these coefficients. They do not even 
have to sum to zero. However, this is recommended. If the coefficients do sum to zero, the 
comparison is called a contrast. The significance tests anticipate that only one or two of these 
comparisons are to be run. If you run several, you should make some type of Bonferroni 
adjustment to your alpha value. 

When you put in your own contrasts, you must be careful that you specify the appropriate number 
of weights. For example, if the factor has four levels, four weights must be specified, separated by 
commas. Extra weights are ignored. If too few weights are specified, the missing weights are set 
to zero.  

These comparison coefficients designate weighted averages of the level-means that are to be 
statistically tested. The null hypothesis is that the weighted average is zero. The alternative 
hypothesis is that the weighted average is nonzero. The weights (comparison coefficients) are 
specified here.  

As an example, suppose you want to compare the average of the first two levels with the average 
of the last two levels in a six-level factor. You would enter “-1,-1,0,0,1,1.” 

As a second example, suppose you want to compare the average of the first two levels with the 
average of the last three levels in a six-level factor. The contrast would be 

-3,-3,0,2,2,2. 

Note that in each case, we have used weights that sum to zero. This is why we could not use ones 
in the second example. 

Reports Tab 
The following options control which plots and reports are displayed.  

Select Reports 

EMS Report ... Means Report 
Specify whether to display the indicated reports. 
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Select Plots 

Means Plot(s) 
Specify whether to display the indicated plots. 

Report Options 

Test Alpha 
The value of alpha for the statistical tests and power analysis. Usually, this number will range 
from 0.10 to 0.001. A common choice for alpha is 0.05, but this value is a legacy from the age 
before computers when only printed tables were available. You should determine a value 
appropriate for your particular study. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. 

Variable Names 
Indicate whether to display the variable names or the variable labels.  

Value Labels 
Indicate whether to display the data values or their labels.  

Multiple Comparison Tests 

Bonferroni Test (All-Pairs) ... Tukey-Kramer Confidence Intervals 
These options specify which MC tests and confidence intervals to display. 

Tests for Two-Factor Interactions 
This option specifies whether multiple comparison tests are generated for two-factor interaction 
terms. When checked, the means of two-factor interactions will be tested by each active multiple 
comparison test. The multiple comparison test will treat the means as if they came from a single  

factor. For example, suppose factor A as two levels and factor B has three levels. The AB 
interaction would then have six levels. The active multiple comparison tests would be run on 
these six means.  

Care must be used when interpreting multiple comparison tests on interaction means. Remember 
that the these means contain not only the effects of the interaction, but also the main effects of the 
two factors. Hence these means contain the combined effects of factor A, factor B, and the AB 
interaction. You cannot interpret the results as representing only the AB interaction. 

Multiple Comparison Tests – Options 

MC Alpha 
Specifies the alpha value used by the multiple-comparison tests. 

MC Decimals 
Specify how many decimals to display in the multiple comparison sections. 
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Means Plot Tab 
These options specify the plots of group means. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Y Scaling 
Specify the method for calculating the minimum and maximum along the vertical axis. Separately 
means that each plot is scaled independently. Uniform means that all plots use the overall 
minimum and maximum of the data. This option is ignored if a minimum or maximum is 
specified. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tick marks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Connect Lines 
Click this box to connect the points for a particular factor. This makes it easier to spot patterns in 
the means. 

Plot Settings – Legend 

Show Legend 
Indicate whether the legend is to be displayed. 

Legend Text 
Indicate the title text of the legend. Note that if two factors are being plotted, {G} is replaced by 
the appropriate factor name. 
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Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Symbols Tab 
These options specify the symbols used in the plots of group means. 

Plotting Symbols 

Group (1-15)  
The symbols used to represent the levels of a factor on the means plots. Group 1 represents the 
first level, Group 2 represents the second level, and so on. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Running a GLM ANOVA 
This section presents an example of how to run an analysis of the data presented in Table 212.1. 
These data are contained in the RNDBLOCK database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the General Linear Models (GLM) window. 

1 Open the RNDBLOCK dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file RNDBLOCK.s0. 
• Click Open. 

2 Open the General Linear Models (GLM) window. 
• On the menus, select Analysis, then Analysis of Variance (ANOVA), then General 

Linear Models (GLM). The General Linear Models (GLM) procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the General Linear Models (GLM) window, select the Variables tab. 
• Double-click in the Response Variables box. This will bring up the variable selection 

window. 
• Select Response from the list of variables and then click Ok. 
• Double-click in the Factor 1 Variable box. This will bring up the variable selection 

window. 
• Select Block from the list of variables and then click Ok. 
• Select Random in the Type box for Factor 1. 
• Double-click in the Factor 2 Variable box. This will bring up the variable selection 

window. 
• Select Treatment from the list of variables and then click Ok. 
• Select Fixed in the Type box for Factor 2. 
• Select Linear in the Comparisons box for Factor 2. 

4 Specify the reports. 
• On the General Linear Models (GLM) window, select the Reports tab. 
• Check the Tukey-Kramer Test option of the Multiple Comparison Tests. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
 
We will now document this output, one section at a time. 



   General Linear Models (GLM)  212-13 

Expected Mean Squares Section 
 

 Expected Mean Squares Section 
  
 Source  Term Denominator Expected 
 Term DF Fixed? Term Mean Square 
 A (Block) 2 No S(AB) S+bsA 
 B (Treatment) 3 Yes AB S+sAB+asB 
 AB 6 No S(AB) S+sAB 
 S(AB) 0 No   S 
   
 Note: Expected Mean Squares are for the balanced cell-frequency case. 
 

The expected mean square expressions are provided to show the appropriate error term for each 
factor. The correct error term for a factor is that term that is identical except for the factor being 
tested. 

Source Term 
The source of variation or term in the model. 

DF 
The degrees of freedom, which is the number of observations used by this term. 

Term Fixed?  
Indicates whether the term is fixed or random. 

Denominator Term 
Indicates the term used as the denominator in the F-ratio. 

Expected Mean Square 
This expression represents the expected value of the corresponding mean square if the design was 
completely balanced. S represents the expected value of the mean square error (sigma). The 
uppercase letters represent either the adjusted sum of squared treatment means if the factor is 
fixed, or the variance component if the factor is random. The lowercase letter represents the 
number of levels for that factor, and s represents the number of replications of the experimental 
layout. 

These EMS expressions are provided to determine the appropriate error term for each factor. The 
correct error term for a factor is that term whose EMS is identical except for the factor being 
tested.  

In this example, the appropriate error term for factor B is the AB interaction. The appropriate 
error term for AB is S (mean square error). Since there are zero degrees of freedom for S, the 
terms A and AB cannot be tested. 
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Analysis of Variance Table Section 
  
 Analysis of Variance Table 
  
 Source  Sum of Mean  Prob Power 
 Term DF Squares Square F-Ratio Level (Alpha=0.05) 
 A (Blocks) 2 10648.67 5324.333 
 B (Treatment) 3 4650.917 1550.306 1.09 0.421359 0.177941 
 AB 6 8507.333 1417.889 
 S 0 0 
 Total (Adjusted) 11 23806.92 
 Total 12 
 
 * Term significant at alpha = 0.05 
 

Source Term 
The source of variation, which is the term in the model. 

DF 
The degrees of freedom, which is the number of observations used by the corresponding model 
term.  

Sum of Squares 
This is the sum of squares for this term. It is usually included in the ANOVA table for 
completeness, not for direct interpretation. 

Mean Square 
An estimate of the variation accounted for by this term; it is the sum of squares divided by the 
degrees of freedom. 

F-Ratio 
The ratio of the mean square for this term and the mean square of its corresponding error term. 
This is also called the F-test value. 

Prob Level 
The significance level of the above F-ratio, or the probability of an F-ratio larger than that 
obtained by this analysis. For example, to test at an alpha of 0.05, this probability would have to 
be less than 0.05 to make the F-ratio significant. Note that if the value is significant at the 
specified value of alpha, a star is placed to the right of the F-Ratio. 

Power (Alpha=0.05) 
Power is the probability of rejecting the hypothesis that the means are equal when they are in fact 
not equal. Power is one minus the probability of type II error (β). The power of the test depends 
on the sample size, the magnitudes of the variances, the alpha level, and the actual differences 
among the population means.  

The power value calculated here assumes that the population standard deviation is equal to the 
observed standard deviation and that the differences among the population means are exactly 
equal to the differences among the sample means. 

High power is desirable. High power means that there is a high probability of rejecting the null 
hypothesis when the null hypothesis is false. This is a critical measure of precision in hypothesis 
testing.  
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Generally, you would consider the power of the test when you accept the null hypothesis. The 
power will give you some idea of what actions you might take to make your results significant. If 
you accept the null hypothesis with high power, there is not much left to do. At least you know 
that the means are not different. However, if you accept the null hypothesis with low power, you 
can take one or more of the following actions:  

1. Increase your alpha level. Perhaps you should be testing at alpha = 0.05 instead of alpha 
= 0.01. Increasing the alpha level will increase the power. 

2. Increasing your sample size will increase the power of your test if you have low power. If 
you have high power, an increase in sample size will have little effect.  

3. Decrease the magnitude of the variance. Perhaps you can redesign your study so that 
measurements are more precise and extraneous sources of variation are removed.  

Means and Standard Errors Section, Plots Sections 
  
 Means and Standard Errors , and Plots Sections 
    Standard 
 Term Count Mean Error 
 All 12 229.4167   
 A: Blocks  
 1 4 188.25 0 
 2 4 242.25 0 
 3 4 257.75 0 
 B: Treatment  
 1 3 210.6667 21.74005 
 2 3 257.6667 21.74005 
 . . . . 
 . . . . 
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Term 
The label for this line of the report. 

Count 
The number of observations in the mean. 

Mean 
The value of the sample mean. 

Standard Error 
The standard error of the mean. Note that these standard errors are the square root of the mean 
square of the error term for this term divided by the count. These standard errors are not the same 
as the simple standard errors calculated separately for each group. The standard errors reported 
here are those appropriate for testing multiple comparisons.  



212-16  General Linear Models (GLM)  

Note that the standard errors for the means of Block are zero since there is no error term for this 
factor. This may be seen by looking at the Expected Mean Squares Report above. 

Plot of Means 
These plots display the means for each factor and two-way interactions. Note how easily you can 
see patterns in the plots. 

Multiple-Comparison Sections 
 
 Tukey-Kramer Multiple-Comparison Test 
 
 Response: Response 
 Term B: Treatment 
  
 Alpha=0.050  Error Term=AB  DF=6  MSE=1417.889 Critical Value=4.8956 
  
       Different 
 Group Count Mean From Groups 
 1 3 210.6667  
 4 3 211.3333  
 3 3 238  
 2 3 257.6667  
   

These sections present the results of the multiple-comparison procedures selected. These reports 
all use a uniform format that will be described by considering Tukey-Kramer Multiple-
Comparison Test. The reports for the other procedures are similar. For more information on the 
interpretation of the various multiple-comparison procedures, turn to the section by that name in 
the One-Way ANOVA chapter. 

Alpha 
The level of significance that you selected. 

Error Term 
The term in the ANOVA model that is used as the error term. 

DF 
The degrees of freedom for the error term. 

MSE 
The value of the mean square error. 

Critical Value 
The value of the test statistic that is “just significant” at the given value of alpha. This value 
depends on which multiple-comparison procedure you are using. It is based on the t-distribution 
or the studentized range distribution. It is the value of t, F, or q in the corresponding formulas. 

Group 
The label for this group. 

Count 
The number of observations in the mean. 
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Mean 
The value of the sample mean. 

Different from Groups 
A list of those groups that are significantly different from this group according to this multiple-
comparison procedure. All groups not listed are not significantly different from this group. 

Planned-Comparison Section 
This section presents the results of any planned comparisons that were selected. 
  
 Planned Comparison: B Linear Trend  
   
 Response: Response  
 Term B: Treatment  
   
 Alpha=0.050  Error Term=AB  DF=6  MSE=1417.889  
   
 Comparison Value=-3.950387   T-Value=0.1817   Prob>|T|=0.861794   Decision(0.05)=Do Not Reject 
 Comparison Standard Error=21.74005 
   
   Comparison     
 Group Coefficient Count Mean 
 1 -0.6708204 3 210.6667 
 2 -0.2236068 3 257.6667 
 3 0.2236068 3 238 
 4 0.6708204 3 211.3333 
 

Alpha 
The level of significance that you selected. 

Error Term 
The term in the ANOVA model that is used as the error term. 

DF 
The degrees of freedom of the error term. 

MSE 
The value of the mean square error. 

Comparison Value 
The value of the comparison. This is formed by multiplying the Comparison Coefficient  times 
the Mean for each group and summing. 

T-Value 
The t-test used to test whether the above Comparison Value is significantly different from zero. 
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where MSE is the mean square error,  f  is the degrees of freedom associated with MSE, k is the 
number of groups, ci is the comparison coefficient for the ith group, Mi is the mean of the ith 
group, and ni is the sample size of the ith group. 

Prob>|T| 
The significance level of the above T-Value. The Comparison is statistically significant if this 
value is less than the specified alpha. 

Decision(0.05)  
The decision based on the specified value of the multiple comparison alpha. 

Comparison Standard Error 
This is the standard error of the estimated comparison value. It is the denominator of the T-Value 
(above). 

Group 
The label for this group. 

Comparison Coefficient 
The coefficient (weight) used for this group. Note that for our example, the weights are 
appropriate for the linear-trend component of a set of orthogonal polynomials. 

Count 
The number of observations in the mean. 

Mean 
The value of the sample mean. 

GLM ANOVA Checklist 
This checklist, prepared by a professional statistician, is a flowchart of the steps you should 
complete to conduct a valid analysis. Since this topic is vast, this flowchart will give only a brief 
summary. You should consult appropriate statistical books in your field for further details. We 
recommend Winer (1990) and Keppel (1991) as good books to use, but there are many others 
available that are equally useful. 

Step 1 – Data Preparation 

Introduction 
This step involves scanning your data for anomalies, keypunch errors, typos, and so on. You 
would be surprised how often we hear of people completing an analysis, only to find that they had 
mistakenly selected the wrong variables. 

Sample Size 
The sample size (number of nonmissing rows) has a lot of ramifications. The analysis of variance 
was originally developed under the assumption that the sample sizes of each treatment 
combination are equal. In practice this seldom happens, but the closer you can get to equal sample 
sizes the better.  
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Missing Values 
The number and pattern of missing values are always issues to consider. Usually, we assume that 
missing values occur at random throughout your data. If this is not true, your results will be 
biased since a particular segment of the population is underrepresented.  

If you have missing values, it will be important to identify the degree of unbalance in your 
design. You should also check to see if there are any missing cells. If there are, you cannot run a 
full model. You will have to assume some interactions are zero and remove them from the 
ANOVA model. 

Type of Data 
The mathematical basis of the F-test assumes that the data are continuous. Because of the 
rounding that occurs when data are recorded, all data are technically discrete. The validity of 
assuming the continuity of the data then comes down to determining when we have too much 
rounding. For example, most statisticians would not worry about human-age data that was 
rounded to the nearest year. However, if these data were rounded to the nearest ten years or 
further to only three groups (young, adolescent, and adult), most statisticians question the validity 
of the probability statements. Some studies have shown that the F-test is reasonably accurate 
when the data have only five possible values (most would call this discrete data). If your data 
contain less than five unique values, any probability statements made are tenuous. 

Also, you should double-check to ensure that you are going to use the appropriate design. Our 
experience is that many researchers use a factorial design when they should be using a repeated 
measures design. Consider again the examples of each type of design and make sure you are 
using the correct one. 

Outliers 
Generally, outliers cause distortion in most popular statistical tests. You must scan your data for 
outliers (the box plot is an excellent tool for doing this). If you have outliers, you have to decide 
if they are one-time occurrences or if they would occur in another sample. If they are one-time 
occurrences, you can remove them and proceed. If you know they represent a certain segment of 
the population, you have to decide between biasing your results (by removing them) or leaving 
them in and invalidating the normality assumption. 

Step 2 – Setup and Run the GLM ANOVA Panel 

Introduction 
Now comes the fun part: running the program. NCSS is designed to be simple to operate, but it 
can still seem complicated. When you go to run a procedure such as this for the first time, take a 
few minutes to read through the chapter again and familiarize yourself with the issues involved. 

Enter Variables 
The templates are set with ready-to-run defaults. About all you have to do is select the 
appropriate variables (columns of data). 
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Select All Plots 
As a rule, you should select the means plots. They add a great deal to your ability to interpret the 
data. 

Specify Alpha 
Most beginners at statistics forget this important step and let the alpha value default to the 
standard 0.05. You should consciously decide  what value of alpha is appropriate for your study. 
The 0.05 default came about when people had to rely on printed probability tables and there were 
only two values available: 0.05 or 0.01. Now you can set the value to whatever is appropriate.  

A special note on setting the Multiple Comparison alpha. You will often want to reset this value 
to 0.10 so that the individual tests are made at a more reasonable significance level. 

Step 3 – Check Assumptions 

Introduction 
Testing the assumptions of normality and equal variance is often difficult in a multi-way analysis 
of variance. We suggest that you make several passes through your data using our one-way 
ANOVA program, studying each factor separately. We suggest this because the one-way 
ANOVA program displays extensive diagnostic information for checking equal variance and 
normality. Although this method does not account for the interactions among the factors, it is 
often the best you can do to assess the validity of your assumptions. 

Sometimes, the ANOVA model can be recoded so that you can run it through our regression 
program. When this is possible, you can analyze the residuals to assess normality and equal 
variance. 

Random Sample 
These statistical procedures were designed with the assumption that the sample population was 
selected randomly. The validity of this assumption depends on the method used to select the 
sample. If you have not used valid sampling techniques, the F-test will not work. 

Check Descriptive Statistics 
You should check the Means and Standard Errors Section first to determine if the Counts and the 
Means are reasonable. If you have selected the wrong variable, these values will alert you. 

Step 4 – Interpret Findings 

Introduction 
You are now ready to conduct your tests. The basic plan of attack for analyzing your output is as 
follows: 

1. Glance through the reports, checking the means, the F-tests, and so forth for obvious 
problems. 

2. Look at the power of the nonsignificant tests. Could the lack of significance be the result 
of a small sample size? 
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3. Determine which main effects and interactions are significant. 

4. Use care in interpreting a main effect when its interaction with another term is 
significant. 

5. Use planned comparisons, paired comparisons, and plots of means to view the 
experimental results and discuss what they reveal. 

Examples of Various Experimental Designs 
We will now present examples of how to run various popular types of experimental designs. 

Randomized-Block Design 
The randomized-block design is a very popular experimental design. The focus of the analysis is 
on a set of two or more treatments. A blocking variable is used to account for extraneous factors. 
Each block receives all treatments. These treatments are randomly assigned within the block. 

The data in the RNDBLOCK dataset show how to enter the data for this type of design. You 
should designate the block term as random and the treatment term as fixed. Set the Which Model 
Terms option to Up to 1-Way (removing the interaction term). In a typical randomized-block 
design, the interaction term becomes the error term, so it does not have to be fit separately. Doing 
this will reduce the amount of time needed to complete the calculations.  

Single-Factor Repeated-Measures Design 
The single-factor repeated-measures design is similar to the randomized-block design. In this 
design the individuals (analogous to the blocks) are measured over time. Unlike the randomized-
block design, however, the treatments are not applied in random order. Instead, the treatments are 
always applied in the same order. For example, you might conduct a pre-test, apply some 
treatment to the individuals, and conduct a post-test. You cannot apply the post-test first. 

The data in the RNDBLOCK dataset show how to enter the data for this type of design if you 
think of blocks as the individuals and treatments as time of measurement. 

It turns out that even though the randomization method is different, the analysis of this design is 
identical to that described above for the randomized-block design. The individuals become the 
blocks. This variable is designated random. The repeated-measures variable (the variable 
representing time) becomes the treatment. This variable is designated as fixed. Set the Which 
Model Terms option (Model Tab) to Up to 1-Way to omit the interaction term. 

Latin-Square Design 
Fractional-rep designs are known for their ability to provide insight about several factors with a 
minimum number of observations. This efficiency comes from an experimental setup that ignores 
many interaction terms. The Latin square is one such design. It may be analyzed with NCSS. The 
following table shows a set of Latin-square data from page 313 of Snedecor and Cochran (1972). 
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Latin-Square Data from Snedecor and Cochran 

 Column 
Row 1 2 3 4 5 
1 B:257 E:230 A:279 C:287 D:202 
2 D:245 A:283 E:245 B:280 C:260 
3 E:182 B:252 C:280 D:246 A:250 
4 A:203 C:204 D:227 E:193 B:259 
5 C:231 D:271 B:266 A:334 E:338 

 
The following table shows the data as it would be entered for analysis in NCSS. The Custom 
Model statement “A+B+C” would be used since many of the interactions cannot be estimated. 
The factors would be designated as fixed or random depending on the experimental situation. 
 

LATINSQR dataset 

Rows Columns Letters Yield 
 1 1 B 257 
 1 2 E 230 
 1 3 A 279 
 1 4 C 287 
 1 5 D 202 
 2 1 D 245 
 2 2 A 283 
 2 3 E 245 
 2 4 B 280 
 2 5 C 260 
 3 1 E 182 
 3 2 B 252 
 3 3 C 280 
 3 4 D 246 
 3 5 A 250 
 4 1 A 203 
 4 2 C 204 
 4 3 D 227 
 4 4 E 193 
 4 5 B 259 
 5 1 C 231 
 5 2 D 271 
 5 3 B 266 
 5 4 A 334 
 5 5 E 338 
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Repeated-Measures Design 
A Repeated Measures ANOVA is a particular type of three-factor design that uses two error 
terms. In this design, treatments are applied to experimental units of different sizes. For example, 
in an educational study, one treatment might be applied to whole classrooms. A second treatment 
might consist of the students’ responses to a pre-test and a post-test. Such a design employs two 
error terms. One error term is the between-classes error for testing the first factor. The other error 
term is the within-student error for testing the second factor. 

This procedure analyzes data from an experimental design represented by the following 
mathematical model: 

Yijkl = μ + Ai + Sij + Bk + ABik + eijkl 
In this model, A is the between-group treatment, Sij is the between-group error, B is the within-
subject treatment, and eijkl is the within-subject error. 

This is a specialized technique with strict assumptions. An advanced statistical text dealing with 
the topic should be consulted before the technique is employed. 

The data below illustrate how the data should be set up. An experiment was conducted to study 
the effects of exercise on heart rate. The subjects were randomly divided into three groups of six. 
The first group did not have a regular exercise plan. The second group exercised once a week. 
The third group exercised daily. Each subject’s heart rate was recorded when the experiment 
began and again at the end of ten weeks. These data are stored in a database called HEART. You 
might want to open this database and run the analysis yourself. 

 

HEART dataset 

Exercise Subject Time Heart Rate 
None 1 0 87 
None 1 10 89 
None 2 0 67 
None 2 10 65 
None 3 0 55 
None 3 10 58 
None 4 0 66 
None 4 10 68 
None 5 0 88 
None 5 10 90 
None 6 0 75 
None 6 10 73 
Weekly 7 0 84 
Weekly 7 10 78 
Weekly 8 0 78 
Weekly 8 10 72 
Weekly 9 0 64 
Weekly 9 10 53 
Weekly 10 0 73 
Weekly 10 10 65 
Weekly 11 0 84 
Weekly 11 10 82 
Weekly 12 0 55 
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HEART dataset (continued) 

Exercise Subject Time Heart Rate 
Weekly 12 10 53 
Daily 13 0 72 
Daily 13 10 55 
Daily 14 0 83 
Daily 14 10 72 
Daily 15 0 75 
Daily 15 10 63 
Daily 16 0 55 
Daily 16 10 49 
Daily 17 0 83 
Daily 17 10 68 
Daily 18 0 63 
Daily 18 10 54 

To run this analysis, you specify Heart Rate as the Response Variable, Exercise as Factor 1 
(designate it as fixed), Subject as Factor 2 (designate it as nested), and Time as Factor 3 
(designate it as fixed). Select the full model. When the analysis is complete, the following output 
is displayed. 

Repeated-Measure ANOVA Report for Heart Rate Data 
  
 Source  Sum of Mean  Prob Power 
 Term DF Squares Square F-Ratio Level (Alpha=0.05)  
 A: Exercise 2 331.1667 165.5833 0.61 0.555761 0.133134 
 B(A): Subject 15 4064.833 270.9889    
 C: Time 1 277.7778 277.7778 50.51 0.000004* 0.999998 
 AC 2 234.7222 117.3611 21.34 0.000041* 0.999793 
 BC(A) 15 82.5 5.5    
 S 0 0  
 Total (Adjusted) 35 4991 
 Total 36 
 * Term significant at alpha = 0.05 
  
 Means and Effects Section  
    Standard 
 Term Count Mean Error 
 All 36 69.83334   
 A: Exercise  
 Daily 12 66 4.752095 
 None 12 73.41666 4.752095 
 Weekly 12 70.08334 4.752095 
 C: Time  
 0 18 72.61111 .5527708 
 10 18 67.05556 .5527708 
 AC: Exercise,Time  
 Daily,0 6 71.83334 .9574271 
 Daily,10 6 60.16667 .9574271 
 None,0 6 73 .9574271 
 None,10 6 73.83334 .9574271 
 Weekly,0 6 73 .9574271 
 Weekly,10 6 67.16666 .9574271 
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Analysis of Covariance 
The analysis of covariance uses features from both analysis of variance and multiple regression. 
The usual one-way classification model in analysis of variance is 

Yij = μi + e1ij 
where Yij is the jth observation in the ith group, μi represents the true mean of the ith group, and eij 
are the residuals or errors in the above model (usually assumed to be normally distributed). 
Suppose you have measured a second variable with values Xij that is linearly related to Y. Further 
suppose that the slope of the relationship between Y and X is constant from group to group. You 
could then write the analysis of covariance model 

Yij = μi + ß(Xij-X..) + e2ij 
where X.. represents the overall mean of X. If X and Y are closely related, you would expect that 
the errors, e2ij, would be much smaller than the errors, e1ij, giving you more precise results.  

The analysis of covariance is useful for many reasons, but it does have the (highly) restrictive 
assumption that the slope is constant over all the groups. This assumption is often violated, which 
limits the technique’s usefulness. You will want to study more about this technique in statistical 
texts before you use it.  

Running an analysis of covariance is easy in NCSS. You fill out the procedure template as usual 
for an ANOVA. To change your ANOVA into an ANCOVA, you simply specify one or more 
covariates. We will now take you through an extended example showing how to run an Ancova 
as well as how to test the assumption of equal slopes. The following data give the home state, 
age, and IQ of thirty teenagers. The variables X1-X4 are for use in testing the Ancova assumption 
of equal slopes and they will be explained later. 

Suppose we wish to test for differences in IQ among the three states while controlling for age (the 
covariate). These data are contained in the ANCOVA database. You should open this database 
now if you want to follow along. 

 

ANCOVA dataset 

State Age IQ X1 X2 X3 X4 
Iowa  12  100 -1 -1 -12 -12 
Iowa  13  102 -1 -1 -13 -13 
Iowa  12   97 -1 -1 -12 -12 
Iowa  14   96 -1 -1 -14 -14 
Iowa  15  105 -1 -1 -15 -15 
Iowa  18  106 -1 -1 -18 -18 
Iowa  12  105 -1 -1 -12 -12 
Iowa  14  103 -1 -1 -14 -14 
Iowa  12   99 -1 -1 -12 -12 
Iowa  10   98 -1 -1 -10 -10 
Utah  14  104  0  2   0 28 
Utah  11   105  0  2   0  22  
Utah  12  106  0  2   0 24 
Utah  15  103  0  2   0 30 
Utah  17  102  0  2   0 34 
Utah  18   99  0  2   0 36 
Utah  19  107  0  2   0 38 
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ANCOVA dataset (continued) 

State Age IQ X1 X2 X3 X4 
Utah  16  105  0  2   0 32 
Utah  15  103  0  2   0 30 
Utah  14  103  0  2   0 28 
Texas  15  105  1 -1  15 -15 
Texas  16  106  1 -1  16 -16 
Texas  12  103  1 -1  12 -12 
Texas  13    99  1 -1  13 -13 
Texas  14   93  1 -1  14 -14 
Texas  11  104  1 -1  11 -11 
Texas  18  103  1 -1  18 -18 
Texas  19  100  1 -1  19 -19 
Texas  18  101  1 -1  18 -18 
Texas  16  104  1 -1  16 -16 

We begin by loading the ANCOVA database and the GLM ANOVA options panel. We specify IQ 
as the Response Variable, Age as the Covariate, and State as Factor 1. We run the procedure and 
after a few seconds, the analysis of covariance table is displayed. 

Analysis of Covariance Report 
  
 Analysis of Variance Table 
 
 Source  Sum of Mean  Prob Power 
 Term DF Squares Square F-Ratio Level (Alpha=0.05) 
 X(Age) 1 5.239314 5.239314 0.47 0.497230 0.101741 
 A: State 2 28.38448 14.19224 1.28 0.293886 0.253298 
 S 26 287.3607 11.05233 
 Total (Adjusted) 29 328.8 
 Total 30 
   

Notice that now, in addition to the test for factor A, we also have a test for the covariate. This test, 
the one along the line labeled “X(AGE),” tests the significance of the covariate. If it is not 
significant (as is the case in this example), analysis of covariance should not be used. However, if 
it is significant, you may proceed to the next F-test, the one dealing with factor A (STATE). This 
is the test that is usually desired in the analysis of covariance. It tests whether the adjusted means 
of the three states are different. The means are adjusted as if all three states had the same age. 
That is, the means for each state are adjusted to the average value of age. These adjusted  
means are shown in the Means and Effects report. If you run the analysis without the covariate, 
you'll notice that these means are different. 
Since the covariate (AGE) is not significant, you should stop here. However, for the sake of 
instruction, we will assume that the covariate is significant and proceed to test whether the slopes 
between IQ and AGE are the same in the three states. The following steps will lead you through 
this test: 

1. Construct a new contrast variable for each degree of freedom of the factor. In our current 
example, the three levels (states) of factor A yield two degrees of freedom, so we must 
create two contrast variables. These are shown in Table 212.5 as X1 and X2. 

2. Multiply each of these new variables by the covariate variable. In our example, 
X3=(X1)(Age) and X4=(X2)(Age).  
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3. Run another Ancova, using the same setup as before except now you fit the three 
covariates AGE, X3, and X4. Call these the Model2 results, and call the previous results 
with just the single covariate the Model1 results. 

Second Analysis of Covariance Report 
  
 Analysis of Variance Table 
 
 Source      Power 
 Term DF Sum of Squares Mean Square F-Ratio Prob>F (Alpha=0.05)  
 X(Age) 1 9.740934 9.740934 0.94 0.341886 0.153727 
 X(X3) 1 22.27164 22.27164 2.15 0.155572 0.290793 
 X(X4) 1 21.07455 21.07455 2.03 0.166672 0.277862 
 A: State 2 46.57466 23.28733 2.25 0.127408 0.412350 
 S 24 248.6402 10.36001 
 Total (Adjusted) 29 328.8 
 Total 30 
  

 
4. Finally, create the F-test for equality of slopes as follows. The formula is  

F SSE SSE k
MSEk m,

( )
=

/−1 2

2
 

 where k is the degrees of freedom of the factor (in our example, this is 2), m is the 
degrees of freedom of the mean square for error in model2, SSE1 and SSE2 are the sums 
of squares error for model1 and model2, and MSE2 is the mean square for error in 
model2. 

 The calculations for this example proceed as follows: 

F2,24 = [(287.3607-248.6402)/2]/10.36001 = 1.86875. 

 This F-ratio would then be compared against a tabulated 0.05 F-value, 3.403, which you 
could find in a statistics book. Since 1.86875 < 3.403, we would not reject the equality of 
slopes assumption in this case. 

One final note, you should generate a scatter plot, which shows the response variable on the 
vertical axis, the covariate on the horizontal axis, and uses different symbols for each group. The 
least squares trend line can also be displayed. This plot will let you visually assess the validity of 
the assumption of equal slope. 

Hierarchical-Classification Designs 
Snedecor and Cochran (1967), page 286, present an example of a hierarchical-classification 
design. In this example, four plants were selected at random, and three leaves were randomly 
selected from each plant. Two samples were taken from each leaf, and the amount of calcium in 
the sample was recorded. The data are displayed below. The data are stored in a database called 
PLANT. 
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PLANT dataset 

Row Plant Leaf Calcium 
1 1 1 3.28 
2 1 1 3.09 
3 1 2 3.52 
4 1 2 3.48 
5 1 3 2.88 
6 1 3 2.80 
7 2 4 2.46 
8 2 4 2.44 
9 2 5 1.87 
10 2 5 1.92 
11 2 6 2.19 
12 2 6 2.19 
13 3 7 2.77 
14 3 7 2.66 
15 3 8 3.74 
16 3 8 3.44 
17 3 9 2.55  
18 3 9 2.55 
19 4 10 3.78 
20 4 10 3.87 
21 4 11 4.07 
22 4 11 4.12 
23 4 12 3.31 
24 4 12 3.31 

To run this analysis, you specify Calcium as the Response Variable, Plant as Factor 1 (designate 
it as random), and Leaf as Factor 2 (designate it as nested). Select the full model. When the 
analysis is complete, the following output is displayed. 

Plant Data Example 
  
 Expected Mean Squares Section  
   
 Source  Term Denominator Expected 
 Term DF Fixed? Term Mean Square 
 A (Plant) 3 No B(A) S+sB+bsA 
 B(A) 8 No S(AB) S+sB 
 S(AB) 12 No   S 
   
 Note: Expected Mean Squares are for the balanced cell-frequency case.  
   
 Analysis of Variance Table  
 Source  Sum of Mean  Prob Power 
 Term DF Squares Square F-Ratio Level (Alpha=0.05)  
 A (Plant) 3 7.560346 2.520115 7.67 .009725*   
 B(A) 8 2.6302 .328775 49.41 .000000* 
 S(AB) 12 .07985 6.654167E-03 
 Total (Adjusted) 23 10.2704 
 Total 24 
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Chapter 213 

Analysis of Two-
Level Designs 
Introduction 
Several analysis programs are provided for the analysis of designed experiments. The GLM-
ANOVA and the Multiple Regression programs are often used. This chapter describes a program 
to analyze very particular designs: two-level factorials (with an optional blocking variable) in 
which the number of rows is a power of two (4, 8, 16, 32, 64, 128, etc.) and there are no missing 
values.  

Given that your data meet these restrictions, this program gives you a complete analysis 
including: 

1. Analysis of the design itself. 

2. List of confounding and aliasing patterns. 

3. Analysis of variance table. 

4. Tables of means and effects. 

5. Probability plots of residuals and effects. 

6. Two-way and cube plots of means and differences. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
These options specify the variables that will be used in the analysis. They also specify the type of 
analysis that will be performed. 

Response Variable 

Response Variable 
Specifies the response (dependent) variable to be analyzed. 
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Block Variable 

Block Variable 
An optional variable containing the levels of the blocking factor. Note that block sizes must be a 
power of two. 

Factor Specification 

Factor Variables 
At least two factor (categorical) variables must be specified. Each factor consists of a variable 
that contains a column of two unique values (two levels). The values may be text or numeric. 

Error Estimation Options 

Pooled Terms 
Often, two-level designs do not provide a direct estimate of the mean square error (MSE). The F-
tests in the analysis of variance require an estimate of the MSE, so this option lets you specify 
one.  

This option provides a list of term numbers (separated by commas) that represent the terms that 
should be pooled (averaged) to form the estimated MSE. These should be determined from the 
probability plot of the effects and from the Sorted Means and Effects report. This is a list of the 
terms whose effect is small in absolute value.  

This list is optional and may be left blank, in which case it will be ignored. Note that this list is 
also ignored when the Estimated MSE option is non-zero. 

Estimated MSE 
Often, two-level designs do not provide a direct estimate of the mean square error (MSE). The F-
tests in the analysis of variance require an estimate of the MSE, so this option lets you specify 
one.  

This option allows the direct specification of an MSE value. This value overrides the Pooled 
Terms option when it is nonzero. The degrees of freedom associated with the MSE are set to 99. 
This MSE value should be determined from the analysis of variance of previous experiments. 

This value is optional and may be left at zero, in which case it will be ignored. 

Error DF 
Enter a value for the error degrees of freedom. This value is only used when the 'Estimated MSE' 
is non-zero.  
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Reports Tab 
The following options control which plots and reports are displayed.  

Select Additional Reports 

Show Two-Way Tables 
Display the Two-Way Tables of Means and Effects. These reports are useful in analyzing the 
two-way interactions. 

Show Three-Way Tables 
Display the Three-Way Tables of Means and Effects. These reports are useful in analyzing the 
three-way interactions. 

Select Plots 

Show Probability Plots 
Specify whether to display probability plots of the residuals and effects. 

Show Means Plots 
Specify whether to display plots of the means for all factors and two-way interactions. 

Report Options 

Confounding Size 
Specify what order interactions are included in the report showing the confounding and aliasing 
patterns in the design.  

Alpha Level 
The value of alpha for the statistical tests. Usually, this number will range from 0.1 to 0.001. A 
common choice for alpha is 0.05, but this value is a legacy from the age before computers when 
only printed tables were available. You should determine a value appropriate for your particular 
study. 

Report Options – Decimal Places 

Decimals in Means 
Specify the number of decimal places to use when displaying means and effects. 

Decimals in Mean Squares 
Specify the number of decimal places to use when displaying mean squares. 
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Residual Plot, Effects Plot, and Means Plots Tabs 
These options control the appearance of the two probability plots and the means plots that may be 
generated. More details on their interpretation will be contained in annotated output section 
presented later. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Y Scaling 
Indicate whether the vertical scaling on all means plots should uniform across all plots. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Connect Line(s) 
Indicate whether to connect the means from the same factor with a line. 
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Plot Settings - Legend 

Show Legend 
Specify whether to show the legend. 

Legend Text 
Enter text here for the legend title. 

Titles 

Plot Title 
This is the text of the title. Press the button on the right of the field to specify the font of the text. 

Symbols Tab 
This section specifies the plot symbols. 

Plotting Symbols 

Group 1-15 
Specifies the plotting symbols used for each of the first fifteen groups. 

Storage Tab 
The residuals calculated for each row may be stored on the current database for further analysis. 
This option lets you designate where to store the residuals. 

Data Storage Variables 

Residuals 
If a variable is specified here, the residuals are automatically stored in that variable. Note that any 
previous values in the variable are automatically replaced. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Running the Analysis of a Two-Level 
Design 
This section presents an example of how to analyze data using this program. We will analyze the 
three-factor experiment given on page 320 of Box and Hunter (1978). These data are the results 
of a pilot plant study conducted to investigate the influence of temperature, concentration, and 
catalyst on chemical yield. The data are contained in the BOX320 database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Analysis of Two-Level Designs window. 

1 Open the Box320 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Box320.s0. 
• Click Open. 

2 Open the Analysis of Two-Level Designs window. 
• On the menus, select Analysis, then Design of Experiments, then Analysis of Two-

Level Designs. The Analysis of Two-Level Designs procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Analysis of Two-Level Designs window, select the Variables tab.  
• Double-click in the Response Variable box. This will bring up the variable selection 

window.  
• Select Yield from the list of variables and then click Ok. “Yield” will appear in the 

Response Variables box.  
• Double-click in the Factor Variables box. This will bring up the variable selection 

window.  
• Select Temp, Concentration, Catalyst from the list of variables and then click Ok. 

“Temp-Catalyst” will appear in the Factor Variables box.  

4 Specify the reports. 
• On the Analysis of Two-Level Designs window, select the Reports tab.  
• Select All in the Confounding Size list box. 
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5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Design Information Section 
  

Design Information Section 
 
Input Data 
Response: Yield 
Rows:  16 
Reps:  2 
Blocks:  None 
 
Factor Factor Level Level 
Symbol Name One Two 
A(1) Temp 160 180 
B(2) Concentration 20 40 
C(3) Catalyst 1 2 
 
Design 
2/1 replication of 3 factors. 

 

This section describes the experimental design of the data. 

Confounding / Alias Section 
  

Confounding / Alias Section 
 
Term Terms 
No. Confounded 
1 A 
2 B 
3 AB 
4 C 
5 AC 
6 BC 
7 ABC 

 

This section reports confounding and aliasing information for each term (degree of freedom). In 
the present example, a complete replication is given so there is no confounding. Hence, each 
degree of freedom is associated with only one term in the analysis of variance model. 
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Means and Effects Section 
  

Means and Effects Section 
 
Term Term   Estimated Standard 
No. Symbol Mean - Mean + Effect Error 
0 Grand Mean   64.25 0.71 
1 A (Temp) 52.75 75.75 23.00 1.41 
2 B (Concentration) 66.75 61.75 -5.00 1.41 
3 AB 63.50 65.00 1.50 1.41 
4 C (Catalyst) 63.50 65.00 1.50 1.41 
5 AC 59.25 69.25 10.00 1.41 
6 BC 64.25 64.25 0.00 1.41 
7 ABC 64.00 64.50 0.50 1.41 

 

This section reports on the estimation of the effects for each degree of freedom. 

Term No. 
This is an arbitrary identification number assigned to each degree of freedom in the model. This 
number is needed to correctly specify terms to be pooled as MSE. 

Term Symbol 
This is the letter that is assigned to each factor. Since we have three factors in this database, three 
letters (A, B, and C) are used. The names of the variables associated with a given letter are shown 
in parentheses. 

Mean - 
The average of all observations having the low value (-1) for this term. If you think of the low 
value as -1 and the high value as +1, then interaction terms (formed by multiplication) will also 
have only two possible values, -1 and +1. 

Mean +  
The average of all observations having the high value (+1) for this term. If you think of the low 
value as -1 and the high value as +1, then interaction terms (formed by multiplication) will also 
have only two possible values, -1 and +1. 

Estimated Effect 
The estimated effect value. This is equal to (Mean +) - (Mean -). 

Standard Error 
The estimated standard error of the above effect value. Note that this standard error only depends 
on the MSE, so it is constant for all terms. Remember, this value is not calculated from individual 
groups of data but from the MSE! 
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Sorted Means and Effects Section 
 

Sorted Means and Effects Section 
 
Term Term   Estimated Standard 
No. Symbol Mean - Mean + Effect Error 
0 Grand Mean   64.25 0.71 
1 A (Temp) 52.75 75.75 23.00 1.41 
5 AC 59.25 69.25 10.00 1.41 
2 B (Concentration) 66.75 61.75 -5.00 1.41 
4 C (Catalyst) 63.50 65.00 1.50 1.41 
3 AB 63.50 65.00 1.50 1.41 
7 ABC 64.00 64.50 0.50 1.41 
6 BC 64.25 64.25 0.00 1.41 

 

This is a sorted version of the report presented in the last section. The report is sorted by the 
absolute value of the Estimated Effect. This report is used with the Probability Plot of Effects to 
pick those effects that are not large enough to be important and thus can be pooled (averaged) 
into the MSE. 

Analysis of Variance Section 
 

Analysis of Variance Section 
 
Term Term  Mean  Prob Statistically 
No. Symbol DF Square F-Ratio Level Significant 
1 A (Temp) 1 2116.0000 264.50 0.000000 Yes 
2 B (Concentration) 1 100.0000 12.50 0.007670 Yes 
3 AB 1 9.0000 1.13 0.319813 No 
4 C (Catalyst) 1 9.0000 1.13 0.319813 No 
5 AC 1 400.0000 50.00 0.000105 Yes 
6 BC 1 0.0000 0.00 1.000000 No 
7 ABC 1 1.0000 0.13 0.732810 No 
 Error 8 8.0000 
 Total 15 2699.0000 

 

This section presents the analysis of variance table. 

Term No. 
The identification number of this degree of freedom. 

Term Symbol 
This is the symbol of this term. Refer to the Confounding / Alias Section for a list of all main 
effects and interactions associated with this term. 

DF 
The degrees of freedom. The number of observations used by the corresponding model term. 

Mean Square 
An estimate of the variation in the response accounted for by this term. The sum of squares 
divided by the degrees of freedom. 

F-Ratio 
The ratio of the mean square for this term and mean square error (MSE). This F-ratio tests the 
statistical significance of the effects associated with this term. 
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Prob Level  
The probability of obtaining an F-ratio larger than that obtained by the analysis. 

Statistically Significant  
If the probability level is less than the value of alpha that was set, the term is designated as being 
statistically significant (Yes). If it is not less than alpha, the term is not statistically significant 
(No). 

Two-Way Tables of Means and Effects 
  

Means and Effects of Concentration by Temp 
 
 Temp Temp 
Concentration 160 180 Effect Overall 
20 56.00 77.50 21.50 66.75 
40 49.50 74.00 24.50 61.75 
Effect -6.50 -3.50 1.50 -5.00 
Overall 52.75 75.75 23.00 64.25 

 

This report presents the two-way interaction means and effects. One report is displayed for each 
of the possible two-way interactions. 
The four means in the upper left-hand corner (56.0, 77.5, 49.5, 74.0) are the individual means. 
For example, 56.0 is the average of all rows in which the Temp was 160 and Concentration was 
20. 

The fourth column (Effect) is the estimated effect for that row. In the first, second, and fourth 
rows, this is the difference between the two previous columns. For example, 77.50-56.00 = 21.50. 
In the third row (Effect), the value (the effect of the interaction) is calculated as the difference 
between the two previous columns divided by 2. In this example, ((-3.50) - ( -6.50))/2 = 1.50. 

The fifth column (Overall) gives the mean or effect for this row averaged across all column 
values. Thus, 66.75 is the average of all rows in which the value of Concentration was 20. 
Finally, 64.25 is the average of all rows in the experiment. 

Three-Way Tables of Means 
 

Means and Effects of Concentration by Temp by Catalyst 
 
 Temp Temp Temp Temp 
 160 160 180 180 
 Catalyst Catalyst Catalyst Catalyst 
Concentration 1 2 1 2 
20 60.00 52.00 72.00 83.00 
40 54.00 45.00 68.00 80.00 

 

This report presents a three-way table of the means. For example, 60.00 is the average of all rows 
in which Temp was 160, Concentration was 20, and Catalyst was 1. 
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Probability Plots Section 
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A normal probability plot of the residuals is supplied to allow you to study the distribution of the 
residuals. This plot will not be displayed if the residuals are all zero (which often occurs in 
designs like fractional factorials). 
A normal probability plot of the effects is supplied to allow you to consider the relative sizes of 
the effects. If all terms are non-significant (and hence come from the normal distribution), these 
effects should fall along a straight line. When some of the effects are significant, they will fall off 
this line. The plot is useful for visually interpreting designs that do not supply an explicit estimate 
of the experimental error variance (such as fractional factorial designs). 

In our example, the first six points seem to fall along a straight line, while the final point falls off 
this line. This term is associated with Temp (factor A), as you can see from the Means and Effects 
report.  

Means Plots Section 
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These plots display the means for all one-way and two-way interaction terms. 



213-12  Analysis of Two-Level Designs  

Example 2 – Analysis of a Two-Level Design 
This section presents another example of how to analyze data using this program. We will 
analyze an eight-factor experiment given on page 402 of Box and Hunter (1978). These data are 
the results of an injection molding study. The data are contained in the BOX402 database. 

To run this example, open the BOX402 database and load the completed template Example2 
from the Template tab of the Analysis of Two-Level Designs window. Running this template will 
yield the following results.  

Design Information Section 
  

Design Information Section 
 
Input Data 
Response: Shrinkage 
Rows: 16 
Reps: 1 
Blocks: None 
 
Factor Factor Level Level 
Symbol Name One Two 
A(1) MoldTemp 1 2 
B(2) Moisture 1 2 
C(3) HoldPressure 1 2 
D(4) Thickness 1 2 
E(5) BoosterPressure 1 2 
F(6) CycleTime 1 2 
G(7) GateSize 1 2 
H(8) ScrewSpeed 1 2 
 
 
Design 
1/16 replication of 8 factors. 
 
Defining Contrast 
i = BCDE = ACDF = ABEF = ABCG = ADEG = BDFG = CEFG = ABDH = ACEH = BCFH =  
DEFH = CDGH = BEGH = AFGH = ABCDEFGH 
 
Design Construction 
Full model of the factors [ A B C D ]. 
The remaining factors are aliased with interactions  
of this reduced model as follows: 
E=BCD F=ACD G=ABC H=ABD  

 
 

Notice the Defining Contrast and the Design Construction reports. 
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Confounding / Alias Section 
  

Confounding / Alias Section 
 
Term Terms 
No. Confounded 
1 A+CDF+BEF+BCG+DEG+BDH+CEH+FGH 
2 B+CDE+AEF+ACG+DFG+ADH+CFH+EGH 
3 AB+EF+CG+DH 
4 C+BDE+ADF+ABG+EFG+AEH+BFH+DGH 
5 AC+DF+BG+EH 
6 BC+DE+AG+FH 
7 G+ABC+ADE+BDF+CEF+CDH+BEH+AFH 
8 D+BCE+ACF+AEG+BFG+ABH+EFH+CGH 
9 AD+CF+EG+BH 
10 BD+CE+FG+AH 
11 H+ABD+ACE+BCF+DEF+CDG+BEG+AFG 
12 CD+BE+AF+GH 
13 F+ACD+ABE+BDG+CEG+BCH+DEH+AGH 
14 E+BCD+ABF+ADG+CFG+ACH+DFH+BGH 
15 AE+BF+DG+CH 

 

This section reports confounding and aliasing information for each term (degree of freedom). 
Note that in this design, no two-way interactions are confounded with any of the main effects. 
Note, however, the all two-way interactions are confounded with each other. 

Sorted Means and Effects and Probability Plot Sections 
  

Means and Effects Section 
 
Term Term   Estimated Standard 
No. Symbol Mean - Mean + Effect Error 
0 Grand Mean   19.75 0.30 
4 C (HoldPressure) 17.00 22.50 5.50 0.59 
15 AE 17.45 22.05 4.60 0.59 
14 E (BoosterPressure) 21.65 17.85 -3.80 0.59 
11 H (ScrewSpeed)* 20.35 19.15 -1.20 0.59 
5 AC* 19.30 20.20 0.90 0.59 
1 A (MoldTemp)* 20.10 19.40 -0.70 0.59 
7 G (GateSize)* 19.45 20.05 0.60 0.59 
3 AB* 20.05 19.45 -0.60 0.59 
10 BD* 20.05 19.45 -0.60 0.59 
9 AD* 19.95 19.55 -0.40 0.59 
8 D (Thickness)* 19.90 19.60 -0.30 0.59 
12 CD* 19.90 19.60 -0.30 0.59 
6 BC* 19.85 19.65 -0.20 0.59 
2 B (Moisture)* 19.80 19.70 -0.10 0.59 
13 F (CycleTime)* 19.80 19.70 -0.10 0.59 
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From the probability plot you can see that three of the effects fall outside the range that would be 
expected if all effects come from the normal distribution. By looking at the Sorted Means and 
Effects report, we see that these three terms are numbers 4, 15, and 14. Hence, we decided to pool 
the rest of the terms to form an estimate of the experimental error variance (MSE) and rerun the 
program. We add the text 1,2,3,5,6,7,8,9,10,11,12,13 to the Pooled Terms option and rerun. The 
following analysis of variance table is produced. Note that without pooling these terms, the error 
DF would have been zero and no F-Ratios would have been generated. 

Analysis of Variance Section 
  

Analysis of Variance Section 
 
Term Term  Mean  Prob Statistically 
No. Symbol DF Square F-Ratio Level Significant 
1 A (MoldTemp)* 1 1.9600 1.39 0.260707 No 
2 B (Moisture)* 1 0.0400 0.03 0.868897 No 
3 AB* 1 1.4400 1.02 0.331610 No 
4 C (HoldPressure) 1 121.0000 86.02 0.000001 Yes 
5 AC* 1 3.2400 2.30 0.154993 No 
6 BC* 1 0.1600 0.11 0.741747 No 
7 G (GateSize)* 1 1.4400 1.02 0.331610 No 
8 D (Thickness)* 1 0.3600 0.26 0.622099 No 
9 AD* 1 0.6400 0.45 0.512767 No 
10 BD* 1 1.4400 1.02 0.331610 No 
11 H (ScrewSpeed)* 1 5.7600 4.09 0.065871 No 
12 CD* 1 0.3600 0.26 0.622099 No 
13 F (CycleTime)* 1 0.0400 0.03 0.868897 No 
14 E (BoosterPressure) 1 57.7600 41.06 0.000034 Yes 
15 AE 1 84.6400 60.17 0.000005 Yes 
 Error 12 1.4067 
 Total 15 280.2800 
 
Terms marked with an '*' have been pooled to form the error term. 

 

Now we see that HoldPressure, BoosterPressure, and at least one of the two-way interactions 
AE+BF+DG+CH are significant. 
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Chapter 214 

Repeated 
Measures Analysis 
of Variance 
Introduction 
This procedure performs an analysis of variance on repeated measures (within-subject) designs 
using the general linear models approach. The experimental design may include up to three 
between-subject terms as well as three within-subject terms. Box’s M and Mauchly’s tests of the 
assumptions about the within-subject covariance matrices are provided. Geisser-Greenhouse, 
Box, and Huynh-Feldt corrected probability levels on the within-subject F tests are given along 
with the associated test power. 

Repeated measures designs are popular because they allow a subject to serve as their own control. 
This improves the precision of the experiment by reducing the size of the error variance on many 
of the F-tests, but additional assumptions concerning the structure of the error variance must be 
made. 

This procedure uses the general linear model (GLM) framework to perform its calculations. 
Identical results can be achieved by using the GLM ANOVA program. The user input of this 
procedure is simply the GLM panel modified to allow a more direct specification of a repeated-
measures model. We refer you to the GLM ANOVA chapter for details on the calculations and 
interpretations of analysis of variance. We will concentrate here on providing information 
specific to repeated measures analysis. 

An Example 
This section will give an example of a repeated-measures experiment. An experiment was 
conducted to study the effects of four drugs upon reaction time to a set of tasks using five 
subjects.  

Subject Drug 1 Drug 2 Drug 3 Drug 4 
 1 30 28 16 34 
 2 14 18 10 22 
 3 24 20 18 30 
 4 38 34 20 44 
 5 26 28 14 30 
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Discussion 
One way of categorizing experimental designs is as between subject or within subject. Examples 
of between-subject designs are the common factorial designs in which the experimental units (the 
subjects) are assigned to separate treatment conditions. Usually, this assignment is done at 
random. The experimenter wants to know if the variability from subject to subject is smaller than 
the variability from treatment to treatment. The basic assumption is that the subjects are 
independent from one another. 

Within-subject designs are those in which multiple measurements are made on the same 
individual. Because the response to stimuli usually varies less within an individual than between 
individuals, the within-subject variability is usually less than (or at most equal to) the between-
subject variability. Reducing the underlying variability reduces the sample size which reduces 
cost. 

Disadvantages of Within-Subjects Designs 
The main advantage of within-subjects designs is in the reduced variability that is achieved by 
controlling from differences from one subject to the next. There are several disadvantages to this 
type of design: 

1.  Practice effect. In some experiments, subjects systematically improve as they practice the 
task being studies. In other cases, subjects may systematically get worse as the get 
fatigued or bored with the experimental task. Note that only the treatment administered 
first is immune to practice effects. Hence, experimenters often make some effort to 
balance the number of subjects receiving each treatment first. 

2.  Carryover effect. In many drug studies, it is important to “wash out” one drug completely 
before the next drug is administered. Otherwise, the influence of the first drug carries 
over into the response to the second drug. Note that practice effects refer to a general 
change in response because the task is repeated, but carryover effects refer to specific, 
lasting effects of a particular treatment. 

3.  Statistical analysis. The statistical model that justifies the analysis is very restrictive since 
the individual responses must have certain mathematical properties. Also, missing 
responses are much more difficult to deal with in this case. 

4.  Generalizability. Experimenters assume that differences between treatments are design 
independent. That is, if a completely random design was constructed, the same treatment 
differences would be observed. This is not always the case. 

Even in the face of all these disadvantages, repeated measures (within-subject) designs are 
popular in many areas of research. It is important that you recognize these problems going in, 
rather than learning of them later after the experiment has been conducted. 

Assumptions 
The following assumptions are made when using the F test to analyze a factorial experimental 
design. 

1. The response variable is continuous. 

2. The residuals follow the normal probability distribution with mean equal to zero and 
constant variance. 
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3. The subjects are independent. Since in a within-subject design, responses coming from 
the same subject are not usually independent, assumption three must be modified for 
responses within a subject. The independence between subjects is still assumed. 

4.  The within-subject covariance matrices are equal for all between-subject groups. In this 
type of experiment, the repeated measurements on a subject may be thought of as a 
multivariate response vector having a certain covariance structure. This assumption states 
that these covariance matrices are constant from group to group. This assumption is 
tested by Box’s M test. Of course, this assumption unnecessary in the single-group 
design. 

5.  All of the within-subject covariance matrices are circular. One way of defining circularity 
is that the variances of differences between any two measurements within a subject are 
constant. Since responses that are close together in time often have a higher correlation 
than those that are far apart, it is common for this assumption to be violated. This 
assumption is tested by Mauchly’s test and be studying the values of epsilon (defined 
below). The circularity assumption is not necessary when only two repeated measures are 
made. 

The program provides formal tests of these assumptions. However, these tests have their own 
assumptions which also may be violated, so a more common strategy is to assume that the 
circularity is violated and take appropriate action. NCSS does this for you automatically. 

Technical Details 
Other than reformatting the input panel, the main difference between this procedure and the GLM 
procedure is the inclusion of the Geisser-Greenhouse correction and associated tests of 
assumptions. Because of this, we will present only those results here. You can obtain a more 
general overview of analysis of variance in the One-Way Analysis of Variance and General 
Linear Models chapters. 

Covariance Matrix Assumptions 
The covariance matrix for a design with m subjects and k measurements per subject may be 
represented as 

[ ]Σ = σ ij  

Valid F tests in a repeated-measures design require that the covariance matrix is a type H matrix. 
A type H matrix has the circularity property that 

Σ = + +A A Ik' λ  

where  is the identity matrix of order k and Ik λ  is a constant.  

This property may also be defined as 

σ σ σ λii jj ij+ − =2 2  

One type of matrix that has this property is one which has compound symmetry. A matrix with 
this property has all elements on the main diagonal equal and all elements off the main diagonal 
equal. An example of a covariance matrix with compound symmetry is 
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An example of a type H matrix which does not have compound symmetry is 
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Note that if the diagonal elements are equal, which implies that the variation within each subject 
is constant, a type H matrix must have compound symmetry. 

Epsilon 
Epsilon is a measure of the extent to which a covariance matrix departs from circularity. It was 
developed by Box (see Winer(1991) or Kirk (1982)) and is estimated by 
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where the estimated covariance matrix is given by 

[ ]$Σ = sij  

and k is the number of levels of the within subject factor. 

For two- and three-way interaction terms, epsilon is estimated by 
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where Z = CSC’ and C is a contrast matrix appropriate for testing that interaction. 

This estimate of epsilon is biased, especially for large values of epsilon. To correct for this bias, 
Huynh and Feldt developed another estimate of epsilon, which is calculated as follows 
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where N is the total number of subjects and g is the number of levels of the between factors. 
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The range of epsilon is  

1
1

1
k −

≤ ≤ε  

When ε = 1, the matrix is circular. When ε =
−
1

1k
, the matrix differs maximally from 

circularity. 

Box’s estimator tends to underestimate epsilon and the Huynh-Feldt estimate tends to 
overestimate it. Simulation studies have found Box’s estimate to be the one that should be used to 
adjust the F tests. 

Geisser-Greenhouse Adjustment 
All F ratios of within subject factors and interactions require the assumption that the covariance 
matrix is of type H in order for the F ratio to follow the F distribution with degrees of freedom df1 
and df2. When the covariance matrix is not of type H, Geisser and Greenhouse suggested that the 
distribution of the F ratio be approximated by an F distribution with degrees of freedom 

( )ε df1 and ( )ε df2  where ε  is set at its minimum, that is,ε =
−
1

1k
.  

Box suggested that rather than use the minimum to adjust the degrees of freedom, ε  should be 
set at the Geisser-Greenhouse value, $ε . Realizing the $ε  is biased, Huynh and Feldt suggested 
that ~ε  be used. Simulation studies have shown that using Box’s adjustment consistently gives the 
most accurate significance levels.  

Mauchly’s Test of Compound Symmetry 
Mauchly (1940) developed a test to determine if a sample covariance matrix has compound 
symmetry. The formulas for Mauchly’s test statistic W, given in Huynh and Feldt (1970), are as 
follows 

( )W CSC CSC p p= ' / '/trace  

( ) ( ) ( ) ( )χ p p N g p p
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where g is the number of groups, N is the number of subjects, C is a contrast matrix with p rows 
suitable for testing a main effect or interaction, S is a k-by-k matrix of the pooled group 
covariances. Note that usually, p equals the degrees of freedom of the corresponding term. 
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Data Structure 
The data must be entered in a format that puts the response values in one variable and the values 
of each of the factors in other variables. We will first present an example of a single-group 
repeated measures design followed by an example of a design with one between factor and one 
within factor. 

Single-Group Repeated Measures Design Example – REACTION 
Database 
The experiment described in this example was conducted to study the effects of four drugs upon 
reaction time to a set of tasks. The five subjects were given extensive training in the tasks prior to 
the experiment so that there would be no carryover (learning) effect from one trial to the next. 
The five subjects were chosen at random from the population of interest. 

The order in which the drugs were administered was randomized separately for each subject. A 
sufficient time was allowed between trials to wash out the effect of the previous drug before 
administering the next drug. The results of this experiment are recorded in the REACTION 
database. This design is often referred to as a randomized block design. 

 

REACTION dataset 

Row Person Drug Test  Row Person Drug Test 
1 1 1 30  11 3 3 18 
2 1 2 28  12 3 4 30 
3 1 3 16  13 4 1 38 
4 1 4 34  14 4 2 34 
5 2 1 14  15 4 3 20 
6 2 2 18  16 4 4 44 
7 2 3 10  17 5 1 26 
8 2 4 22  18 5 2 28 
9 3 1 24  19 5 3 14 
10 3 2 20  20 5 4 30 

Heart Rate Data - EXERCISE Database 
The following dataset is an example of a one between-factor and one within-factor repeated 
measures design. An experiment was conducted to study the effects of exercise on heart rate. The 
subjects were randomly divided into three groups of six subjects each. The first group did not 
have a regular exercise plan. The second group exercised once a week. The third group exercised 
daily. Each subject’s heart rate was recorded when the experiment began, at the end of ten weeks, 
and at the end of twenty weeks. These data are stored in a database called EXERCISE. 
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EXERCISE dataset 

Row Exercise Subj Time Heart 
Rate  Row Exercise Subj Time Heart 

Rate 
1 0 - None 1 0 87  28 1 - Weekly 10 0 73 
2 0 - None 1 10 77  29 1 - Weekly 10 10 68 
3 0 - None 1 20 84  30 1 - Weekly 10 20 63 
4 0 - None 2 0 67  31 1 - Weekly 11 0 84 
5 0 - None 2 10 65  32 1 - Weekly 11 10 77 
6 0 - None 2 20 62  33 1 - Weekly 11 20 74 
7 0 - None 3 0 55  34 1 - Weekly 12 0 55 
8 0 - None 3 10 52  35 1 - Weekly 12 10 53 
9 0 - None 3 20 58  36 1 - Weekly 12 20 52 
10 0 - None 4 0 66  37 2 - Daily 13 0 72 
11 0 - None 4 10 70  38 2 - Daily 13 10 55 
12 0 - None 4 20 65  39 2 - Daily 13 20 53 
13 0 - None 5 0 88  40 2 - Daily 14 0 83 
14 0 - None 5 10 82  41 2 - Daily 14 10 72 
15 0 - None 5 20 85  42 2 - Daily 14 20 69 
16 0 - None 6 0 75  43 2 - Daily 15 0 75 
17 0 - None 6 10 72  44 2 - Daily 15 10 63 
18 0 - None 6 20 79  45 2 - Daily 15 20 65 
19 1 - Weekly 7 0 84  46 2 - Daily 16 0 55 
20 1 - Weekly 7 10 78  47 2 - Daily 16 10 49 
21 1 - Weekly 7 20 74  48 2 - Daily 16 20 51 
22 1 - Weekly 8 0 78  49 2 - Daily 17 0 83 
23 1 - Weekly 8 10 72  50 2 - Daily 17 10 76 
24 1 - Weekly 8 20 68  51 2 - Daily 17 20 72 
25 1 - Weekly 9 0 64  52 2 - Daily 18 0 63 
26 1 - Weekly 9 10 53  53 2 - Daily 18 10 54 
27 1 - Weekly 9 20 54  54 2 - Daily 18 20 55 

 

Missing Values 
There are two kinds of unbalance that can occur in repeated-measures designs. First, in multi-
group designs, there may be a different number of subjects in each group. This type of unbalance 
causes no problems in the F-tests. Second, some individuals may not have had all measurements. 
When this occurs, the program makes the additional assumption that the within-subject sample 
effects sum to zero. Every effort should be made to avoid missing values because of the 
additional assumptions that must be made. However, even when data are missing, meaningful 
conclusions can be drawn. 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Response Variables 

Response Variable(s) 
Specifies the response (measurement) variable to be analyzed. Only one variable is needed for an 
analysis. If you specify more than one variable, a separate analysis is run for each variable. 

Note that only one measurement is entered on each row. Hence, a repeated measurement design 
with five measurements per subject will require five rows per subject on the database. 

Subject Variable 

Subject Variable 
A single subject factor is required. In a repeated measures design, the subjects are categorized 
into one or more mutually exclusive groups and each subject is measured two or more times. This 
variable identifies the subject associated with the measurement. Each subject must be identified 
with a unique name or number. 

Between Factors 

Between Factor (1-3) 
From zero to three between factor variables may be specified. A Between Factor specifies a way 
of categorizing the subjects. Examples of between factors are gender, age groups, and blood type. 
If none are specified, a single-group repeated-measures analysis is run. 

Values in the variable may be either numeric or text.  

Random 
This option specifies whether the factor is fixed or random. These options control the 
denominator terms of the F-ratio values.  

A fixed factor includes all possible levels, like male and female for gender, includes 
representative values across the possible range of values, like low, medium, and high blood 
pressure, or includes a set of values to which inferences will be limited, like New York, 
California, and Maryland. 

A random factor is one in which the chosen levels represent a random sample from the 
population of values. For example, you might select four classes from the hundreds in your state 
or you might select ten batches from an industrial process. The key is that a random sample is 
chosen. In NCSS, a random factor is “crossed” with other random and fixed factors. Two factors 
are crossed when each level of one includes all levels of the other. 
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Within Factors 

Within Factor (1-3) 
At least one within factor variable must be specified. A Within Factor specifies a way of 
categorizing the measurements made on each subject. For example, a measurement may be made 
at one week, two weeks, and three weeks. Weeks would be the within factor. 

Random 
This option specifies whether the factor is fixed or random. Usually, within factors are fixed. 

Model Specification 
This section specifies the experimental design model. 

Which Model Terms 
A design in which all main effect and interaction terms are included is called a saturated model. 
Occasionally, it is useful to omit various interaction terms from the model—usually because some 
data values are missing. This option lets you specify which interactions to keep.  

The options included here are: 

• Full Model. Use all terms. 
The complete, saturated model is analyzed. All reports will be generated when this option is 
selected. 

• Full model except subject interactions combined with error. 
Some authors recommend pooling the interactions involving the subject factor into one error 
term to achieve more error degrees of freedom and thus more power in the F-tests. This 
option lets you do this. Note that the Geisser-Greenhouse corrections are not made in this 
case. 

• Use the Custom Model given below. 
This option indicates that you want the Custom Model (given in the next box) to be used. 

• Custom Model 
When a custom model (see Which Model Terms above) is selected, you will enter the actual 
model here. If all main effects and interactions are desired, you can enter the word “ALL” 
here. For complicated designs, it is usually easier to check the next option, Write Model in 
‘Custom Model’ Field, and run the procedure. The appropriate model will be generated and 
placed in this box. You can then delete the terms you do not want. 

The model is entered using letters separated by the plus sign. For example, a one-between 
factor and one-within factor repeated-measures design would look like this: 

A+B(A)+C+AC+BC(A). 

• Write model in ‘Custom Model’ field. 
When this option is checked, no analysis is performed when the procedure is run. Instead, a 
copy of the full model is stored in the Custom Model box. You can then delete selected terms 
from the model without having to enter all the terms you want to keep. 
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Comparisons Tab 
These panels specify the planned comparisons for the between and within factors. 

Between and Within Factor Planned 
Comparisons 

Comparison (1-3) 
This option lets you specify individual comparisons for each factor. Comparisons are only valid 
for fixed factors. A comparison is formulated in terms of the means as follows: 

C wi ij
j

J

=
=
∑

1

mj  

In this equation, there are J levels in the factor, the means for each level of the factor are denoted 
mi, and wij represents a set of J weight values for the ith comparison. The comparison value, Ci, is 
tested using a t-test. Note that if the wij sum to zero across j, the comparison is called a “contrast” 
of the means. 

Comparisons are specified by listing the weights. For example, suppose a factor has three levels. 
Further suppose that the first level represents a control group, the second a treatment at one dose, 
and the third a treatment at a higher dose. Three comparisons come to mind: compare each of the 
treatment groups to the control group and compare the two treatment groups to each other. These 
three comparisons would be 

Control vs. Treatment 1  -1,1,0 

Control vs. Treatment 2  -1,0,1 

Treatment 1 vs. Treatment 2  0,-1,1 

You might also be interested in comparing the control group with the average of both treatment 
groups. The weights for this comparison would be -2,1,1. 

When a factor is quantitative, it might be of interest to divide the response pattern into linear, 
quadratic, cubic, or other components. If the sample sizes are equal and the factor levels are 
equally spaced, these so-called components of trend may be studied by the use of simple 
contrasts. For example, suppose a quantitative factor has three levels: 5, 10, and 15. Contrasts to 
test the linear and quadratic trend components would be 

Linear trend  -1,0,1 

Quadratic trend  1,-2,1 

If the sample sizes for the groups are unequal (the design is unbalanced), adjustments must be 
made for the differing sample sizes. 

NCSS will automatically generate some of the more common sets of contrasts, or it will let you 
specify up to three custom contrasts yourself. The following common sets are designated by this 
option. 

• None 
No comparisons are generated. 
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• Standard Set 
This option generates a standard set of contrasts in which the mean of the first level is 
compared to the average of the rest, the mean of the second group is compared to the average 
of those remaining, and so on.  

The following example displays the type of contrast generated by this option. Suppose there 
are four levels (groups) in the factor. The contrasts generated by this option are: 

 -3,1,1,1  Compare the first-level mean with the average of the rest. 

 0,-2,1,1  Compare the second-level mean with the average of the rest. 

 0,0,-1,1  Compare the third-level mean with the fourth-level mean. 

• Polynomial 
This option generates a set of orthogonal contrasts that allow you to test various trend 
components from linear up to sixth order. These contrasts are appropriate even if the levels 
are unequally spaced or the group sample sizes are unequal. Of course, these contrasts are 
only appropriate for data that are at least ordinal. Usually, you would augment the analysis of 
this type of data with a multiple regression analysis. 

The following example displays the type of contrasts generated by this option. Suppose there 
are four equally spaced levels in the factor and each group has two observations. The 
contrasts generated by this option are (scaled to whole numbers): 

 -3,-1,1,3 Linear component. 

 1,-1,-1,1 Quadratic component. 

 -1,3,-3,1 Cubic component. 

• Linear Trend 
This option generates a set of orthogonal contrasts and retains only the linear component. 
This contrast is appropriate even if the levels are unequally spaced and the group sample sizes 
are unequal. See Orthogonal Polynomials above for more detail.  

• Linear-Quadratic Trend 
This option generates the complete set of orthogonal polynomials, but only the results for the 
first two (the linear and quadratic) are reported. 

• Linear-Cubic Trend 
This option generates the complete set of orthogonal polynomials, but only the results for the 
first three are reported. 

• Linear-Quartic Trend 
This option generates the complete set of orthogonal polynomials, but only the results for the 
first four are reported. 

• Each with First 
This option generates a set of nonorthogonal contrasts appropriate for comparing each of the 
remaining levels with the first level. The following example displays the type of contrast 
generated by this option. Suppose there are four levels (groups) in the factor. The contrasts 
generated by this option are: 
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 -1,1,0,0  Compare the first- and second-level means. 

 -1,0,1,0  Compare the first- and third-level means. 

 -1,0,0,1  Compare the first- and fourth-level means. 

• Each with Last 
This option generates a set of nonorthogonal contrasts appropriate for comparing each of the 
remaining levels with the last level. The following example displays the type of contrast 
generated by this option. Suppose there are four levels (groups) in the factor. The contrasts 
generated by this option are: 

 -1,0,0,1  Compare the first- and fourth-level means. 

 0,-1,0,1  Compare the second- and fourth-level means. 

 0,0,-1,1  Compare the third- and fourth-level means. 

• Custom 
This option indicates that the contrasts entered in the three boxes below it should be used. 
The specification of these three boxes is described next. 

Custom (1-3) 
These three boxes let you write a user-specified comparison by specifying the weights of that 
comparison. Note that there are no numerical restrictions on these coefficients. They do not even 
have to sum to zero. However, this is recommended. If the coefficients do sum to zero, the 
comparison is called a contrast. The significance tests anticipate that only one or two of these 
comparisons are to be run. If you run several, you should make some type of Bonferroni 
adjustment to your alpha value. 

When you put in your own contrasts, you must be careful that you specify the appropriate number 
of weights. For example, if the factor has four levels, four weights must be specified, separated by 
commas. Extra weights are ignored. If too few weights are specified, the missing weights are set 
to zero.  

These comparison coefficients designate weighted averages of the level-means that are to be 
statistically tested. The null hypothesis is that the weighted average is zero. The alternative 
hypothesis is that the weighted average is nonzero. The weights (comparison coefficients) are 
specified here.  

As an example, suppose you want to compare the average of the first two levels with the average 
of the last two levels in a six-level factor. You would enter “-1,-1,0,0,1,1.” 

As a second example, suppose you want to compare the average of the first two levels with the 
average of the last three levels in a six-level factor. The contrast would be “-3,-3,0,2,2,2." 

Note that in each case, we have used weights that sum to zero. This is why we could not use ones 
in the second example. 



   Repeated Measures Analysis of Variance  214-13 

Reports Tab 
The following options control which plots and reports are displayed.  

Select Reports 

EMS Report ... Means Report 
Specify whether to display the indicated reports. 

Select Plots 

Means Plot(s) and Subject Plot 
Specify whether to display the indicated plots. 

Report Options 

F-Test Alpha 
The value of alpha for the statistical tests and power analysis. Usually, this number will range 
from 0.10 to 0.001. A common choice for alpha is 0.05, but this value is a legacy from the age 
before computers when only printed tables were available. You should determine a value 
appropriate for your particular study. 

Assumptions Alpha 
This option specifies the value of alpha used in the tests of assumptions: Box’s M test and 
Mauchly’s test. Most statisticians recommend that these preliminary tests be carried out at a 
higher alpha (probability of rejecting a true null hypothesis) value such as 0.10 or 0.20. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. 

Variable Names 
Indicate whether to display the variable names or the variable labels.  

Value Labels 
Indicate whether to display the data values or their labels.  

Multiple Comparison Tests 

Bonferroni Test (All-Pairs) ... Tukey-Kramer Confidence Intervals 
These options specify which MC tests and confidence intervals to display. 

Tests for Two-Factor Interactions 
This option specifies whether multiple comparison tests are generated for two-factor interaction 
terms. When checked, the means of two-factor interactions will be tested by each active multiple 
comparison test. The multiple comparison test will treat the means as if they came from a single 
factor. For example, suppose factor A as two levels and factor B has three levels. The AB 
interaction would then have six levels. The active multiple comparison tests would be run on 
these six means.  
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Care must be used when interpreting multiple comparison tests on interaction means. Remember 
that the these means contain not only the effects of the interaction, but also the main effects of the 
two factors. Hence these means contain the combined effects of factor A, factor B, and the AB 
interaction. You cannot interpret the results as representing only the AB interaction. 

Multiple Comparison Tests – Options 

MC Alpha 
Specifies the alpha value used by the multiple-comparison tests. 

MC Decimals 
Specify how many decimals to display in the multiple comparison sections. 

Means Plot and Subject Plot Tabs 
These options specify the plots of group means and subject's responses across time. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Y Scaling (Means Plot) 
Specify the method for calculating the minimum and maximum along the vertical axis. Separately 
means that each plot is scaled independently. Uniform means that all plots use the overall 
minimum and maximum of the data. This option is ignored if a minimum or maximum is 
specified. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tick marks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 
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Connect Lines 
Click this box to connect the points for a particular factor. This makes it easier to spot patterns in 
the means. 

Plot Settings – Legend 

Show Legend 
Indicate whether the legend is to be displayed. 

Legend Text 
Indicate the title text of the legend. Note that if two factors are being plotted, {G} is replaced by 
the appropriate factor name or subject variable name. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. {G} is 
replaced by the name of the subject variable. Press the button on the right of the field to specify 
the font of the text. 

Symbols Tab 
These options specify the symbols used in the plots. 

Plotting Symbols 

Group (1-15)  
The symbols used to represent the levels of a factor. Group 1 represents the first level, Group 2 
represents the second level, and so on. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 
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Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Running Repeated Measures ANOVA 
This section presents an example of how to run an analysis of a typical repeated measures design 
with one between factor and one within factor. These data are contained in the EXERCISE 
database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Repeated Measures Analysis of Variance window. 

1 Open the EXERCISE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file EXERCISE.S0. 
• Click Open. 

2 Open the Repeated Measures Analysis of Variance window. 
• On the menus, select Analysis, then Analysis of Variance (ANOVA), then Repeated 

Measures Analysis of Variance. The Repeated Measures Analysis of Variance 
procedure window will be displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Repeated Measures Analysis of Variance window, select the Variables tab. 
• Double-click in the Response Variable(s) box. This will bring up the variable selection 

window. 
• Select HeartRate from the list of variables and then click Ok. 
• Double-click in the Subject Variable box. This will bring up the variable selection 

window. 
• Select Subject from the list of variables and then click Ok. 
• Double-click in the Between Factor 1 box. This will bring up the variable selection 

window. 
• Select Exercise from the list of variables and then click Ok. 
• Double-click in the Within Factor 1 box. This will bring up the variable selection 

window. 
• Select Time from the list of variables and then click Ok. 

4 Specify the planned comparison tests. 
• On the Repeated Measures Analysis of Variance window, select the Comparisons tab. 
• Set the Between Factor Planned Comparisons – Comparison 1 field to Each with 

First. This will generate the test of the no exercise group with the weekly exercise group 
and the no exercise group with the daily exercise group. 
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5 Specify the multiple comparison tests. 
• On the Repeated Measures Analysis of Variance window, select the Reports tab. 
• Check the Tukey-Kramer Test option of the Multiple Comparison Tests. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
We will now document this output, one section at a time. 

Expected Mean Squares Section 
 

 Expected Mean Squares Section 
  
 Source  Term Denominator Expected 
 Term DF Fixed? Term Mean Square 
 A: Exercise 2 Yes B(A) S+csB+bcsA 
 B(A): Subject 15 No S(ABC) S+csB 
 C: Time 2 Yes BC(A) S+sBC+absC 
 AC 4 Yes BC(A) S+sBC+bsAC 
 BC(A) 30 No S(ABC) S+sBC 
 S(ABC) 0 No  S 
 Note: Expected Mean Squares are for the balanced cell-frequency case. 
 

The expected mean square expressions are provided to show the appropriate error term for each 
factor. The correct error term for a factor is that term that is identical except for the factor being 
tested. 
Note that in the repeated measures model, there are two error terms that are used: the between 
error labeled B(A) and the within error labeled BC(A). 

Source Term 
The source of variation or term in the model. 

DF 
The degrees of freedom, which is the number of observations used by this term. 

Term Fixed?  
Indicates whether the term is fixed or random. 

Denominator Term 
Indicates the term used as the denominator in the F-ratio. This is the error term for this term. 

Expected Mean Square 
This expression represents the expected value of the corresponding mean square if the design was 
completely balanced. S represents the expected value of the mean square error (sigma). The 
uppercase letters represent either the adjusted sum of squared treatment means if the factor is 
fixed, or the variance component if the factor is random. The lowercase letter represents the 
number of levels for that factor, and s represents the number of replications of the experimental 
layout. 

These EMS expressions are provided to determine the appropriate error term for each factor. The 
correct error term for a factor is that term whose EMS is identical except for the factor being 
tested.  
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Analysis of Variance Table Section 
 
 Analysis of Variance Table 
  
 Source  Sum of Mean  Prob Power 
 Term DF Squares Square F-Ratio Level (Alpha=0.05) 
 A: Exercise 2 427.4445 213.7222 0.61 0.555040 0.133339 
 B(A): Subject 15 5234.556 348.9704    
 C: Time 2 547.4445 273.7222 36.92 0.000000* 1.000000 
 AC 4 191.4444 47.86111 6.45 0.000716* 0.977632 
 BC(A) 30 222.4444 7.414815    
 S 0   
 Total (Adjusted) 53 6623.333 
 Total 54 
 * Term significant at alpha = 0.05 
 

Source Term 
The source of variation, which is the term in the model. 

DF 
The degrees of freedom, which is the number of observations used by the corresponding model 
term.  

Sum of Squares 
This is the sum of squares for this term. It is usually included in the ANOVA table for 
completeness, not for direct interpretation. 

The sums of squares are calculated as follows. First, the sum of squares of each term that does not 
involve the subject factor is computed using the difference between two reduced models. For 
example, the sum of squares for A is computed as the difference between the sum of squares for 
the model A+C+AC and the sum of squares for the model C+AC. The sum of squares for C and 
AC is computed similarly. 

Next, the sum of squares of the subject factor is computed by treating the subjects as a one-way 
design, computing the subject sum of squares, and subtracting the sum of squares of all terms that 
occur before it in the model—in this case, the sum of squares of factor A. 

Next, the sum of squares of the BC(A) interaction is computed by treating this term as a one-way 
design, computing its sum of squares, and subtracting the sum of squares of all terms that occur 
before it in the model—in this case, the sum of squares for A, B(A), C, and AC. 

The computations are carried out in this manner to give reasonable tests in the cases when there 
are unequal numbers of subjects per group or some subjects have missing measurements. The 
results are similar to the Type III sum of squares computations given by SAS. 

Mean Square 
An estimate of the variation accounted for by this term. It is the sum of squares divided by the 
degrees of freedom. 

F-Ratio 
The ratio of the mean square for this term and the mean square of its corresponding error term. 
This is also called the F-test value. 
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Prob Level 
The significance level of the above F-ratio, or the probability of an F-ratio larger than that 
obtained by this analysis. For example, to test at an alpha of 0.05, this probability would have to 
be less than 0.05 to make the F-ratio significant. Note that if the value is significant at the 
specified value of alpha, a star is placed to the right of the F-Ratio. 

This F-ratio is only valid if all the assumptions are valid. You should study the results of the 
preliminary tests to determine if the assumptions hold. 

Power (Alpha=0.05) 
Power is the probability of rejecting the hypothesis that the means are equal when they are in fact 
not equal. Power is one minus the probability of type II error (β). The power of the test depends 
on the sample size, the magnitudes of the variances, the alpha level, and the actual differences 
among the population means.  

The power value calculated here assumes that the population standard deviation is equal to the 
observed standard deviation and that the differences among the population means are exactly 
equal to the differences among the sample means. 

High power is desirable. High power means that there is a high probability of rejecting the null 
hypothesis when the null hypothesis is false. This is a critical measure of precision in hypothesis 
testing.  

Generally, you would consider the power of the test when you accept the null hypothesis. The 
power will give you some idea of what actions you might take to make your results significant. If 
you accept the null hypothesis with high power, there is not much left to do. At least you know 
that the means are not different. However, if you accept the null hypothesis with low power, you 
can take one or more of the following actions:  

1. Increase your alpha level. Perhaps you should be testing at alpha = 0.05 instead of alpha 
= 0.01. Increasing the alpha level will increase the power. 

2. Increasing your sample size will increase the power of your test if you have low power. If 
you have high power, an increase in sample size will have little effect.  

3. Decrease the magnitude of the variance. Perhaps you can redesign your study so that 
measurements are more precise and extraneous sources of variation are removed.  

Probability Levels for F-Tests with Geisser-Greenhouse 
Adjustments 
 
 Probability Levels for F-Tests with Geisser-Greenhouse Adjustments 
     Lower Geisser Huynh 
     Bound Greenhouse Feldt 
    Regular Epsilon Epsilon Epsilon 
 Source   Prob Prob Prob Prob 
 Term DF F-Ratio Level Level Level Level 
 A: Exercise 2 0.61 0.555040    
 B(A): Subject 15      
 C: Time 2 36.92 0.000000* 0.000021* 0.000000* 0.000000* 
 AC 4 6.45 0.000716* 0.009496* 0.000755* 0.000716* 
 BC(A) 30      
 S 0   
 
This table presents the F ratios from the analysis of variance table with probability levels 
computed using the three Geisser-Greenhouse adjustments. These are explained in detail below. 
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Note that no adjustments are made to between-subjects terms (A in this example). Also note that 
in designs involving two or three within factors, different adjustment factors are computed for 
each term. The values of epsilon are shown in the Covariance Matrix Circularity report. 

Source Term 
The source of variation, which is the term in the model. 

F-Ratio 
The F-ratio is repeated from Analysis of Variance Table. 

Regular Prob Level 
The probability level is repeated from Analysis of Variance Table. 

Lower-Bound Epsilon Prob Level 
This is the probability level of the corresponding F-ratio using the minimum epsilon. This 
correction involves multiplying both the numerator and denominator degrees of freedom by the 
minimum epsilon and then calculating the probability level. Since this epsilon is a value between 
zero and one, the impact of this adjustment is to reduce the degrees of freedom.  

This adjustment is made to correct for a non-circular covariance matrix. Simulation studies have 
shown these probability levels to be too conservative and so we do not recommend its use. 
Usually, the Geisser-Greenhouse epsilon is used instead. 

Geisser-Greenhouse Epsilon Prob Level 
This is the probability level of the corresponding F-ratio using the Geisser-Greenhouse epsilon. 
This adjustment involves multiplying both the numerator and denominator degrees of freedom by 
the Geisser-Greenhouse epsilon and then calculating the probability level. Since this epsilon is a 
value between zero and one, the impact of this adjustment is to reduce the degrees of freedom. 

This adjustment is made to correct for non-circularity in the covariance matrix. Box suggested 
that rather than using the theoretical minimum value of the Geisser-Greenhouse epsilon, you 
should use the value estimated by the data. 

Simulation studies have shown this adjustment to give very accurate probability levels. We 
recommend its use. 

Huynh-Feldt Epsilon Prob Level 
This is the probability level of the corresponding F-ratio using the Huynh- Feldt version of the 
Geisser-Greenhouse correction. This correction involves multiplying both the numerator and 
denominator degrees of freedom by their epsilon and then calculating the probability level. Since 
this epsilon is a value between zero and one, the impact of this adjustment is to reduce the 
degrees of freedom. 

This adjustment is made to correct for non-circularity in the covariance matrix. Huynh and Feldt 
showed that Geisser-Greenhouse estimate of epsilon was biased so they developed a less biased 
version. When this estimate is greater than one, it is set equal to one. 

Simulation studies have shown this adjustment to give accurate probability levels, but not as 
accurate as Geisser-Greenhouse correction. Hence, we recommend the Geisser-Greenhouse 
correction. 
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Strategy for the Geisser-Greenhouse Adjustment 
Kirk (1982) recommends the following three step testing strategy. 

1.  Check the Regular Prob Level. If this probability level is not significant (if it is not lower 
than 0.05, say), stop and declare the F not significant. If this F is significant, proceed to 
step 2. 

2.  Check the Lower-Bound Prob Level. If this probability is significant (less than 0.05, say), 
stop and declare the F significant. If this F is not significant, proceed to step 3. 

3.  Check the Geisser-Greenhouse Prob Level. If this probability is significant, stop and 
declare the F significant. If this probability level is not significant, declare the F as not 
significant. 

Power Values for F-Tests with Geisser-Greenhouse Adjustments 
 
 Power Values for F-Tests with Geisser-Greenhouse Adjustments 
     Lower Geisser Huynh 
     Bound Greenhouse Feldt 
    Regular Epsilon Epsilon Epsilon 
 Source   Power Power Power Power 
 Term DF F-Ratio (Alpha=0.05) (Alpha=0.05) (Alpha=0.05) (Alpha=0.05) 
 A: Exercise 2 0.61 0.133339    
 B(A): Subject 15      
 C: Time 2 36.92 1.000000 0.999890 1.000000 1.000000 
 AC 4 6.45 0.977632 0.834571 0.976634 0.977632 
 BC(A) 30      
 S 0   
 

This table presents the F ratios from the analysis of variance table with the associated power 
values. The definition of power is discussed above in the Analysis of Variance section. This table 
lets you compare the statistical power of the four tests. 
Note how the power decreases as the more conservative tests are used. Since the Geisser-
Greenhouse is the most conservative test, it has the lowest power. 

Source Term 
The source of variation, which is the term in the model. 

F-Ratio 
The F-ratio is repeated from Analysis of Variance Table. 

Regular Power (Alpha=0.05 
This gives the power. The definition of power and how it is calculating was provided in the 
Analysis of Variance Table section. 

Lower-Bound Epsilon Power (Alpha=0.05) 
This gives the power when the Lower-Bound correction is used. 

Geisser-Greenhouse Power Epsilon (Alpha=0.05) 
This gives the power when the Geisser-Greenhouse correction is used. 

Huynh Feldt Epsilon Power (Alpha=0.05) 
This gives the power when the Huynh Feldt correction is used. 
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Box's M Test for Equality of Between-Group Covariance Matrices 
Section 
 
 Box's M Test for Equality of Between-Group Covariance Matrices 
         Covariance 
 Source    F Prob Chi2 Prob Matrices 
 Term Box's M DF1 DF2 Value Level Value Level Equal? 
 BC(A) 16.94 12.0 1090.4 0.99 0.457845 12.05 0.441998 Okay 
 

This section presents the results of a preliminary test to determine if the data meet the assumption 
of equal covariance matrices across groups. This test is discussed in detail in the Equality of 
Covariance Matrices chapter. Since the test depends heavily on the assumption of multivariate 
normality, when the data fail to pass the test, it may or may not be because of the covariances 
matrices are unequal.  
When your data fail this test, one remedy is to transform the response variable by taking the 
square root, the logarithm, or the inverse. Often, a power transformation such as these will correct 
both non-normality and unequal variance. Of course, after applying such a variance stabilizing 
transformation, you have to discuss your results in the transformed metric—you cannot discussed 
the means in the original (untransformed) metric. 

Note that this test requires the number of subjects per group to be greater than the number of 
levels of the within-subject factor(s). 

Source Term 
This is the term whose covariance matrices are being tested. The factor in parentheses represents 
the term(s) forming the groups, the first factor listed (B in this example) is the subject factor, and 
the rest of the factors are used to form the multivariate response. In this example, factor C, which 
has three levels, becomes the multivariate response vector. If more than one factor is listed here, 
they are combined into one single factor to form the multivariate response vector. 

Box’s M 
This is the value of Box’s M statistic used to test the equality of the covariance matrices. 

DF1 
The numerator degrees of freedom of the approximate F-distribution used to evaluate Box’s M 
statistic. This value need not be an integer. This value is also the degrees of freedom of the 
approximate Chi-square statistic. 

DF2 
The denominator degrees of freedom of the approximate F-distribution used to evaluate Box’s M 
statistic. This value need not be an integer.  

F Value 
The value of the approximate F-test used to evaluate Box’s M statistic.  

Prob Level 
The probability level of the Box’s M statistic based on an F-distribution approximation. If this 
value is less than a chosen significance value, such as 0.10, you must assume that the covariance 
matrices are not equal and take appropriate action.  

Chi2 Value 
The value of the approximate Chi-square test used to evaluate Box’s M statistic.  
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Prob Level 
The probability level of the Box’s M statistic based on a Chi-square approximation. If this value 
is less than a chosen significance value, such as 0.10, you must assume that the covariance 
matrices are not equal and take appropriate action.  

Covariance Matrices Equal? 
Using the value of the Assumption Alpha contained on the Reports tab panel, this provides the 
result of the test. 

Covariance Matrix Circularity Section 
 
 Covariance Matrix Circularity Section 
  Lower Geisser Huynh Mauchly    Covariance 
 Source Bound Greenhouse Feldt Test Chi2  Prob Matrix 
 Term Epsilon Epsilon Epsilon Statistic Value DF Level Circularity? 
 BC(A) 0.500000 0.989629 1.000000 0.989521 0.1 2.0 0.928911 Okay 
 
 Note: Mauchly's statistic actually tests the more restrictive assumption that the pooled covariance matrix  
 has compound symmetry. 
 

This section provides an analysis of the circularity (sometimes called the sphericity) assumption 
that is required for all of the within-subject F tests. The formulas are given in the Technical 
Details at the beginning of the chapter. You can often correct circularity problems by taking the 
logarithm of the responses. 
Some statisticians believe you should ignore this test since it relies heavily on the multivariate 
normality of your data. They suggest that you routinely use Box’s Geisser-Greenhouse correction 
which corrects for this problem. 

Source Term 
This is the term whose covariance matrix is being tested for circularity. The factor in parentheses 
represents the term(s) forming the groups, the first factor listed (B in this example) is the subject 
factor, and the rest of the factors are used to form the multivariate response. In this example, 
factor C, which has three levels, becomes the multivariate response vector. If more than one 
factor is listed, they are combined into one single factor to form the multivariate response vector. 

Lower Bound Epsilon 
This is the minimum value of epsilon. The maximum value is one. This value is used to adjust the 
F-test by multiplying it times both the numerator and denominator degrees of freedom when 
calculating the probability levels. 

Geisser Greenhouse Epsilon 
This is the estimate of epsilon that was suggested by Box. It serves as an index of the severity of 
non-circularity. Values of epsilon near one indicate that the covariance matrix is circular. Values 
of epsilon near the minimum (the Lower Bound Epsilon) indicate that the covariance matrix 
assumption is violated. 

This value is used to adjust the F-test by multiplying it times both the numerator and denominator 
degrees of freedom when calculating the probability levels. 

Huynh Feldt Epsilon 
This is an estimate of epsilon that was suggested by Huynh and Feldt to correct for bias found it 
the Geisser Greenhouse estimate. This estimate is always greater than or equal to the Geisser-
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Greenhouse estimate. It is possible for this value to be greater than one. When this happens, the 
value is set equal to one. 

Epsilon serves as an index of the severity of non-circularity. Values near one indicate that the 
covariance matrix is circular. Values near the minimum (the Lower Bound Epsilon) indicate that 
the covariance matrix assumption is violated. 

This value is used to adjust the F-test by multiplying it times both the numerator and denominator 
degrees of freedom when calculating the probability levels. 

Mauchly Test Statistic 
This is the value of Mauchly’s test statistic. It tests the assumption that the pooled covariance 
matrix has compound symmetry. Compound symmetry is slightly more restrictive than 
circularity. The value of this statistic ranges from zero to one. 

Chi2 Value 
This chi-square value is used to test the significance of the Mauchly test statistic. 

DF 
This is the degrees of freedom of the chi-square approximation of Mauchly’s test statistic. 

Prob Level 
This is the significance level of the chi-square test. When this value is small (0.10 or less), the 
data fail Mauchly’s test for compound symmetry. 

Covariance Matrix Circularity? 
This field indicates whether the data passed or failed Mauchly’s test. 

Means, Standard Errors, and Plots Sections 
  
 Means and Standard Errors Section 
    Standard 
 Term Count Mean Error 
 All 54 68.11111  
 A: Exercise 
 0 - None 18 71.61111 4.403095 
 1 - Weekly 18 68 4.403095 
 2 - Daily 18 64.72222 4.403095 
 C: Time 
 0 18 72.61111 0.641821 
 10 18 66 0.641821 
 20 18 65.72222 0.641821 
 AC: Exercise,Time 
 0 - None,0 6 73 1.111667 
 0 - None,10 6 69.66666 1.111667 
 0 - None,20 6 72.16666 1.111667 
 1 - Weekly,0 6 73 1.111667 
 1 - Weekly,10 6 66.83334 1.111667 
 1 - Weekly,20 6 64.16666 1.111667 
 2 - Daily,0 6 71.83334 1.111667 
 2 - Daily,10 6 61.5 1.111667 
 2 - Daily,20 6 60.83333 1.111667 
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Term 
The label for this line of the report. 

Count 
The number of observations in the mean. 

Mean 
The value of the sample mean. 

Standard Error 
The standard error of the mean. Note that these standard errors are the square root of the mean 
square of the error term for this term divided by the count. These standard errors are not the same 
as the simple standard errors calculated separately for each group. The standard errors reported 
here are those appropriate for testing multiple comparisons.  

Plot of Means 
These plots display the means for each factor and two-way interaction. Note how easily you can 
see patterns in the plots. 
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Multiple Comparison Section 
 
 Tukey-Kramer Multiple-Comparison Test 
 
 Response: HeartRate 
 Term A: Exercise 
 
 Alpha=0.050  Error Term=B(A)  DF=15  MSE=348.9704 Critical Value=3.673397 
 
    Different 
 Group Count Mean From Groups 
 2 - Daily 18 64.72222  
 1 - Weekly 18 68  
 0 - None 18 71.61111  
 
 Tukey-Kramer Multiple-Comparison Test 
 
 Response: HeartRate 
 Term C: Time 
 
 Alpha=0.050  Error Term=BC(A)  DF=30  MSE=7.414815 Critical Value=3.486436 
 
    Different 
 Group Count Mean From Groups 
 20 18 65.72222 0 
 10 18 66 0 
 0 18 72.61111 20, 10 
  

These sections present the results of the multiple-comparison procedures selected. These reports 
all use a uniform format that will be described by considering Tukey-Kramer Multiple-
Comparison Test. The reports for the other procedures are similar. For more information on the 
interpretation of the various multiple-comparison procedures, turn to the section by that name in 
the One-Way ANOVA chapter. 

Alpha 
The level of significance that you selected. 

Error Term 
The term in the ANOVA model that is used as the error term. 

DF 
The degrees of freedom for the error term. 

MSE 
The value of the mean square error. 

Critical Value 
The value of the test statistic that is “just significant” at the given value of alpha. This value 
depends on which multiple-comparison procedure you are using. It is based on the t-distribution 
or the studentized range distribution. It is the value of t, F, or q in the corresponding formulas. 

Group 
The label for this group. 

Count 
The number of observations in the mean. 
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Mean 
The value of the sample mean. 

Different from Groups 
A list of those groups that are significantly different from this group according to this multiple-
comparison procedure. All groups not listed are not significantly different from this group. 

Planned Comparison Section 
This section presents the results of any planned comparisons that were selected. 
  
 Planned Comparison: A: 0 - None vs. 1 - Weekly  
   
 Response: HeartRate 
 Term A: Exercise 
 
 Alpha=0.050  Error Term=B(A)  DF=15  MSE=348.9704 
 
 Comparison Value=-3.611111   T-Value=0.5799196   Prob>|T|=0.570578   Decision(0.05)=Do Not Reject 
 Comparison Standard Error=6.226916 
 
  Comparison   
 Group Coefficient Count Mean 
 0 - None -1 18 71.61111 
 1 - Weekly 1 18 68 
 2 - Daily 0 18 64.72222 
 
 Planned Comparison: 0 - None vs. 2 - Daily 
 
 Response: HeartRate 
 Term A: Exercise 
 
 Alpha=0.050  Error Term=B(A)  DF=15  MSE=348.9704 
 
 Comparison Value=-6.888889   T-Value=1.106308   Prob>|T|=0.286021   Decision((0.05)=Do Not Reject 
 Comparison Standard Error=6.226916 
 
  Comparison   
 Group Coefficient Count Mean 
 0 - None -1 18 71.61111 
 1 - Weekly 0 18 68 
 2 - Daily 1 18 64.72222 
  

Alpha 
The level of significance that you selected. 

Error Term 
The term in the ANOVA model that is used as the error term. 

DF 
The degrees of freedom of the error term. 

MSE 
The value of the mean square error. 

Comparison Value 
The value of the comparison. This is formed by multiplying the Comparison Coefficient  times 
the Mean for each group and summing. 
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T-Value 
The t-test used to test whether the above Comparison Value is significantly different from zero. 
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where MSE is the mean square error,  f  is the degrees of freedom associated with MSE, k is the 
number of groups, ci is the comparison coefficient for the ith group, Mi is the mean of the ith 
group, and ni is the sample size of the ith group. 

Prob>|T| 
The significance level of the above T-Value. The Comparison is statistically significant if this 
value is less than the specified alpha. 

Decision(0.05)  
The decision based on the specified value of the multiple comparison alpha. 

Comparison Standard Error 
This is the standard error of the estimated comparison value. It is the denominator of the T-Value 
(above). 

Group 
The label for this group. 

Comparison Coefficient 
The coefficient (weight) used for this group.  

Count 
The number of observations in the mean. 

Mean 
The value of the sample mean. 
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Example 2 – Single-Group Repeated-Measures Design 
This section presents an example of how to analyze a single-group repeated measures design. The 
dataset was given at the beginning of the chapter and is contained in the REACTION database.  

You may follow along here by making the appropriate entries or load the completed template 
Example2 from the Template tab of the Repeated Measures Analysis of Variance window. 

1 Open the REACTION dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file REACTION.S0. 
• Click Open. 

2 Open the Repeated Measures Analysis of Variance window. 
• On the menus, select Analysis, then Analysis of Variance (ANOVA), then Repeated 

Measures Analysis of Variance. The Repeated Measures Analysis of Variance 
procedure window will be displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Repeated Measures Analysis of Variance window, select the Variables tab. 
• Double-click in the Response Variable(s) box. This will bring up the variable selection 

window. 
• Select Test from the list of variables and then click Ok. 
• Double-click in the Subject Variable box. This will bring up the variable selection 

window. 
• Select Person from the list of variables and then click Ok. 
• Clear the value in the Between Factor 1 box.  
• Double-click in the Within Factor 1 box. This will bring up the variable selection 

window. 
• Select Drug from the list of variables and then click Ok. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
 
The output will appear as follows: 



214-30  Repeated Measures Analysis of Variance  

Single-Group Repeated Measures Output 
 

 Repeated Measures ANOVA Report 
  
Database Reaction.S0 
Response Test 
 
Expected Mean Squares Section 
Source  Term Denominator Expected 
Term DF Fixed? Term Mean Square 
A: Person 4 No S(AB) S+bsA 
B: Drug 3 Yes AB S+sAB+asB 
AB 12 No S(AB) S+sAB 
S(AB) 0 No  S 
Note: Expected Mean Squares are for the balanced cell-frequency case. 
 
Analysis of Variance Table 
Source  Sum of Mean  Prob Power 
Term DF Squares Square F-Ratio Level (Alpha=0.05) 
A: Person 4 680.8 170.2    
B: Drug 3 698.2 232.7333 24.76 0.000020* 0.999998 
AB 12 112.8 9.4    
S 0   
Total (Adjusted) 19 1491.8 
Total 20 
* Term significant at alpha = 0.05 
 
Probability Levels for F-Tests with Geisser-Greenhouse Adjustments 
    Lower Geisser Huynh 
    Bound Greenhouse Feldt 
   Regular Epsilon Epsilon Epsilon 
Source   Prob Prob Prob Prob 
Term DF F-Ratio Level Level Level Level 
A: Person 4      
B: Drug 3 24.76 0.000020* 0.007620* 0.000649* 0.000020* 
AB 12      
S 0   
 
Power Values for F-Tests with Geisser-Greenhouse Adjustments Section 
    Lower Geisser Huynh 
    Bound Greenhouse Feldt 
   Regular Epsilon Epsilon Epsilon 
Source   Power Power Power Power 
Term DF F-Ratio (Alpha=0.05) (Alpha=0.05) (Alpha=0.05) (Alpha=0.05) 
A: Person 4      
B: Drug 3 24.76 0.999998 0.953259 0.998877 0.999998 
AB 12      
S 0   
 
 
Covariance Matrix Circularity Section 
 Lower Geisser Huynh Mauchly    Covariance 
Source Bound Greenhouse Feldt Test Chi2  Prob Matrix 
Term Epsilon Epsilon Epsilon Statistic Value DF Level Circularity? 
AB 0.333333 0.604874 1.000000 0.186495 4.6 5.0 0.470366 Okay 
 
Note: Mauchly's statistic actually tests the more restrictive assumption that the pooled covariance matrix  
has compound symmetry. 
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Means and Standard Error Section 
   Standard 
Term Count Mean Error 
All 20 24.9  
A: Person 
1 4 27 0 
2 4 16 0 
3 4 23 0 
4 4 34 0 
5 4 24.5 0 
 
B: Drug 
1 5 26.4 1.371131 
2 5 25.6 1.371131 
3 5 15.6 1.371131 
4 5 32 1.371131 
AB: Person,Drug 
1,1 1 30 0 
1,2 1 28 0 
1,3 1 16 0 
1,4 1 34 0 
2,1 1 14 0 
2,2 1 18 0 
2,3 1 10 0 
2,4 1 22 0 
3,1 1 24 0 
3,2 1 20 0 
3,3 1 18 0 
3,4 1 30 0 
4,1 1 38 0 
4,2 1 34 0 
4,3 1 20 0 
4,4 1 44 0 
5,1 1 26 0 
5,2 1 28 0 
5,3 1 14 0 
5,4 1 30 0 
 
Plots Section 
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Our only comment about this output is to note that the Box’s M test section was omitted because 
there is only one group.  
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Chapter 220 

Mixed Models 
Introduction 
The Mixed Models procedure analyzes results from a wide variety of experimental designs in 
which the outcome (response) is continuous, including  

• Two-sample designs (replacing the t-test) 
• One-way layout designs (replacing one-way ANOVA) 
• Factorial designs (replacing factorial GLM) 
• Split-plot designs (replacing split-plot GLM) 
• Repeated-measures designs (replacing repeated-measures GLM) 
• Cross-over designs (replacing GLM) 
• Designs with covariates (replacing GLM) 

The Mixed Models procedure can be used to test and estimate means (including pair-wise 
comparisons among levels), compare models, estimate variance-covariance matrix components, 
and produce graphs of means and repeated measurements of subjects. Examples are given in this 
chapter of models with only between-subjects factors, only within-subjects factors, and both 
between- and within-subjects factors. Analysis of covariance examples and multiple comparisons 
examples are also included. 

Why Use a Mixed Model? 
As stated above, mixed models have several advantages over traditional linear models. Just a few 
are listed here. 

• Specifying More Appropriate Variance-Covariance Structures for Longitudinal 
Data: The ability to fit complex covariance patterns provides more appropriate fixed 
effect estimates and standard errors.  

• Analysis Assuming Unequal Group Variances: Different variances can be fit for each 
treatment group. 

• Analysis of Longitudinal Data with Unequal Time Points: Mixed models allow for the 
analysis of data in which the measurements were made at random (varying) time points. 

• Analysis of Longitudinal Data with Missing Response Data: Problems caused by 
missing data in repeated measures and cross-over trials are eliminated. 

• Greater Flexibility in Modeling Covariates: Covariates can be modeled as fixed or 
random and more accurately represent their true contribution in the model. 

Mixed models are particularly useful in medical studies where a wide variety of factors influence 
the response to a treatment of interest. For example, suppose that an experimental treatment is 
being administered to a group of patients desiring to lose weight. Traditional statistical 
methodologies (e.g., ANOVA, multiple regression, etc.) require that the treatments be given at 
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the same time intervals for all patients in the group in order for the statistical analysis and 
conclusions to be accurate. What would happen if patients were not all able to receive the 
treatment at the same time intervals or if some patients missed some treatments? Traditional 
statistical approaches would no longer be valid since there are random events or components 
entering into the experiment. This is where mixed models techniques become useful. A mixed 
model would allow us to make inferences about the treatment by modeling and estimating the 
random components. Furthermore, mixed models allow us to make greater use of incomplete 
data, such as that obtained from patients who drop out or miss scheduled treatments. Traditional 
methods would exclude such individuals from the analysis, losing valuable information.  

What is a Mixed Model? 
In a general linear model (GLM), a random sample of the individuals in each population is drawn. 
A treatment is applied to each individual in the sample and an outcome is measured. The data so 
obtained are analyzed using an analysis of variance table that produces an F-test.  

A mathematical model may be formulated that underlies each analysis of variance. This model 
expresses the response variable as the sum of parameters of the population. For example, a linear 
model for a two-factor experiment could be 

ijkijjiijk eabbaY ++++= )(μ  

where i = 1, 2, ... , I (the number of levels of factor 1),  j = 1, 2, ..., J  (the number of levels of 
factor 2), and k = 1, 2, ... , K  (the number of subjects in the study). This model expresses the 
value of the response variable, Y, as the sum of five components:  

μ the mean. 

ai the contribution of the ith level of a factor A. 

bj the contribution of the jth level of a factor B. 

(ab)ij the combined contribution (or interaction) of the ith level of a factor A and the jth level 
of a factor B. 

eijk the contribution of the kth individual. This is often called the “error.” 

In this example, the linear model is made up of fixed effects only. An effect is fixed if the levels in 
the study represent all levels of the factor that are of interest, or at least all levels that are 
important for inference (e.g., treatment, dose, etc.).  

The following assumptions are made when using the F-test in a general linear model. 

1. The response variable is continuous. 

2. The individuals are independent. 

3. The eijk follow the normal probability distribution with mean equal to zero. 

4. The variances of the eijk are equal for all values of i, j, and k. 

The Linear Mixed Model (or just Mixed Model) is a natural extension of the general linear model. 
Mixed models extend linear models by allowing for the addition of random effects, where the 
levels of the factor represent a random subset of a larger group of all possible levels (e.g., time of 
administration, clinic, etc.). For example, the two-factor linear model above could be augmented 
to include a random block effect such as clinic or doctor since the clinic or doctor may be 
assumed to be a random realization from a distribution of clinics or doctors. Covariates 



Mixed Models  220-3 

(continuous) and/or nested effects can also be included in the mixed model to improve the 
accuracy of the fixed effect estimates. The general form of the mixed model in matrix notation is 

y = Xβ + Zu + ε 

where 

y  vector of responses 

X known design matrix of the fixed effects 

β unknown vector of fixed effects parameters to be estimated 

Z  known design matrix of the random effects 

u  unknown vector of random effects 

ε  unobserved vector of random errors 

We assume 

u ~ N(0,G) 

ε ~ N(0,R) 

Cov[u, ε] = 0 

where 

G variance-covariance matrix of u 

R variance-covariance matrix of the errors ε 

The variance of y, denoted V, is 

        V  = Var[y] 

     = Var[Xβ + Zu + ε] 

     = 0 + Var[Zu + ε] 

     = ZGZ' + R 

In order to test the parameters in β, which is typically the goal in mixed model analysis, the 
unknown parameters (β, G, and R) must be estimated. Estimates for β require estimates of G and 
R. In order to estimate G and R, the structure of G and R must be specified. Details of the 
specific structures for G and R are discussed later. 

The following assumptions are made when using the F-test in a mixed model. 

1. The response variable is continuous. 

2. The individuals are independent. 

3. The random error follows the normal probability distribution with mean equal to zero. 

A distinct (and arguably the most important) advantage of the mixed model over the general 
linear model is flexibility in random error and random effect variance component modeling (note 
that the equal-variance assumption of the general linear model is not necessary for the linear 
mixed model). Mixed models allow you to model both heterogeneous variances and correlation 
among observations through the specification of the covariance matrix structures for u and ε. You 
should be careful to build an appropriate covariance structure for the model, since the hypothesis 
tests, confidence intervals, and treatment mean estimates are all affected by the covariance 
structure of the model. The variance matrix estimates are obtained using maximum likelihood 
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(ML) or, more commonly, restricted maximum likelihood (REML). The fixed effects in the 
mixed model are tested using F-tests. More details of random factor estimation and fixed factor 
estimation and testing are given later in this chapter.  

Types of Mixed Models 
Several general mixed model subtypes exist that are characterized by the random effects, fixed 
effects, covariate terms, and covariance structure they involve. These include fixed effects 
models, random effects models, covariance pattern models, and random coefficients models.  

Fixed Effects Models 
A fixed effects model is a model where only fixed effects are included in the model. An effect (or 
factor) is fixed if the levels in the study represent all levels of interest of the factor, or at least all 
levels that are important for inference (e.g., treatment, dose, etc.). No random components are 
present. The general linear model is a fixed effects model. Fixed effects models can include 
covariates and/or interactions. The two-factor experiment example above gives an example of a 
fixed effects model. The fixed effects can be estimated and tested using the F-test. Fixed effects 
are specified as the Fixed Factors Model on the Variables tab.  

Note: If only one response is recorded for each subject, there is no within-subject correlation to 
be modeled in variance-covariance matrix. If more than one response is measured for each 
subject, you could use repeated measures ANOVA or use a random-coefficients mixed model. 

Random Effects Models 
A random effects model is a model with only random terms in the model. An effect (or factor) is 
random if the levels of the factor represent a random subset of a larger group of all possible levels 
(e.g., patients represent the population as a whole). Random effects are specified in the Subject 
(Random) Model box on the Variables tab. The random effects are not tested, but estimates are 
given.  

Note: If only one response is recorded for each subject, there is no within-subject correlation to 
be modeled in variance-covariance matrix. If more than one response is measured for each 
subject, you could use repeated measures ANOVA or use a random coefficients mixed model. 

Longitudinal Data Models 
Longitudinal data arises when more than one response is measured on each subject in the study. 
Responses are often measured over time at fixed or random intervals. An interval is fixed if the 
measurements are made a pre-specified time intervals, e.g. measuring heart rate after 2 hours, 4 
hours, and 6 hours after drug administration. An interval is random if the response measurements 
are made at random time points, e.g. measuring heart rate at the start of a race and after each 
runner finishes (presumably at differing time points). Various covariance structures can be 
employed to model the variance and correlation among repeated measurements or the relationship 
with time can be investigated. The manner in which the longitudinal data is modeled gives rise to 
two different mixed model subtypes: covariance pattern models and random coefficients models. 

Covariance Pattern Models 
If the covariance and correlation between repeated measurements is taken into account (i.e. 
modeled), the model is called a covariance pattern model. The covariance pattern model is 
usually appropriate if the repeated measurements occur at fixed intervals and the relationship with 
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time in not of particular interest. More information is given later in the chapter about the different 
covariance patterns that can be fit.  

The repeated or residual covariance pattern is specified in the Repeated Variance Pattern box on 
the Variables tab.  

Random Coefficients Models 
It is often important in a study to determine the relationship between the response and time. This 
is often done by including the measurement time as a covariate in the model, with a 
corresponding slope, say βt. It is plausible and likely that the slope will vary with subject, so it 
might be useful to model a separate intercept and slope for each subject in the study. This is done 
by fitting the subject variable as the intercept and the subject*time interaction as the slope for 
each patient. These two terms could reasonably be assumed to arise at random from a distribution 
and, thus, would be specified as random effects. This gives rise to what is called a random 
coefficients model.  

A random coefficients model is one in which the subject term and a subject*time interaction term 
are both included as random effects in the model. This type of model is different from an ordinary 
random effects model because when we fit a straight line, the estimates of the slope and intercept 
are not independent. Thus, the subject and subject*time effects in the model are correlated. The 
random effects model must be adapted to this situation to allow for correlation among these 
random effects. This is done using the bivariate normal distribution. The bivariate random effect 
becomes 
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The random coefficients model is usually used if the relationship with time is of interest or if the 
repeated measurements do not occur at fixed intervals. Random coefficient effects are specified in 
the Random Factor box on the Variables tab. Other fixed and random effects, besides time, can 
also be specified in the random coefficients model. 

Examples 
Because of the large number of options, attempting to enter the appropriate model in the Mixed 
Models procedure can be intimidating. A number of examples at the end of the chapter are 
provided with the hope that one of the examples is similar enough to your scenario that it will 
guide you in selecting the options that are appropriate. The examples can also serve as a tutorial, 
beginning with the simplest two-group modeling in Example 2 (Example 1 is used for annotation) 
and continuing into more complex models. 

Several of the examples also provide comparisons to analyses using classical procedures. For 
example, Example 3 compares the classical one-way analysis using the One-Way ANOVA 
procedure to the equivalent analysis using the Mixed Models procedure. 
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The examples at the end of this chapter are categorized in two ways.  

1. The number of between-subject and within-subject factors 

2. The experimental design or analysis method used 

A brief explanation of between-subject factors and within-subject factors precedes the table of 
examples. 

Between-Subject Factors 
Between-subject factors are those factors for which several subjects are assigned to (or sampled 
from) each level. If 12 subjects are randomly assigned to 3 treatment groups (4 subjects per 
group), treatment is a between-subject factor. 

Within-Subject Factors 
Within-subject factors are those in which the subject’s response is measure at several time points. 

Within-subject factors are those factors for which multiple levels of the factor are measured on 
the same subject. If each subject is measured at the low, medium, and high level of the treatment, 
treatment is a within-subject factor.  

Example Overview 
Example 1 has one within-subject factor and one between-subject factor, as well as a covariate. 
For Example 1, the output is annotated in detail. The remaining examples show the set-up and 
basic analysis. 

Example Design/Analysis 
Number of 
Between-
Subject 
Factors 

Number of 
Within-
Subject 
Factors 

Number of 
Covariates 

1 Repeated Measures (+ Annotation) 1 1 1 
2a Two-Group T-Test (Equal Variance) 1 0 0 
2b Two-Group T-Test (Unequal Variance) 1 0 0 
2c Two-Group T-Test (+ Covariate) 1 0 1 
3a One-Way (Equal Variance) 1 0 0 
3b One-Way (Unequal Variance) 1 0 0 
4 One-Way (+ Covariate) 1 0 1 
5 Factorial (+ Covariate) 2 0 1 
6 RCBD 0 1 0 
7 Complex Split-Plot 1 2 2 
8 Cross-Over 0 2 1 
9 Repeated Measures (Unequal Time Points) 1 0 1 



Mixed Models  220-7 

Random versus Repeated Error Formulation  
The general form of the linear mixed model as described earlier is 

y = Xβ + Zu + ε 

u ~ N(0,G) 

ε ~ N(0,R) 

Cov[u, ε] = 0 

V = ZGZ' + R 

The specification of the random component of the model specifies the structure of Z, u, and G. 
The specification of the repeated (error or residual) component of the model specifies the 
structure of ε and R. Except in very complicated designs, it is recommended that only one of the 
two components be specified. That is, if the random component includes one or more terms, the 
repeated pattern should be the diagonal (basic) pattern. If the repeated pattern is more 
complicated than a diagonal, there should not be a random component. There are exceptions, but 
the resulting covariance structure should be carefully considered in such cases. 

Specifying the random component of the model will suffice for most factorial, split-plot, and 
ANCOVA designs and for longitudinal designs with irregular time values. The repeated 
component of the model should be used for longitudinal analyses with a fixed number of time 
points (e.g., 1 hour, 2 hours, 4 hours, 8 hours), and where there are no, or very few, missing 
values.  

In some scenarios, specifying a repeated pattern results in the same covariance parameter 
formulation as a random component. For example, specifying compound symmetry for the 
repeated pattern with no random component will result in the sample within-subject variance 
matrix as specifying Subject as the random factor and Diagonal for the repeated pattern. The 
examples of this chapter can be used to see the random and repeated specification for several 
common analyses. 

Determining the Correct Model of the Variance-Covariance of Y  

Akaike Information Criterion (AIC) for Model Assessment 
Akaike information criterion (AIC) is tool for assessing model fit (Akaike, 1973, 1974). The 
formula is  

pLAIC 22 +×−=  
where L is the (ML or REML) log-likelihood and p depends on the type of likelihood selected. If 
the ML method is used, p is the total number of parameters. If the REML method is used, p is the 
number of variance component parameters. 

The formula is designed so that a smaller AIC value indicates a “better” model. AIC penalizes 
models with larger numbers of parameters. That is, if a model with a much larger number of 
parameters produces only a slight improvement in likelihood, the values of AIC for the two 
models will suggest that the more parsimonious (limited) model is still the “better” model. 

As an example, suppose a researcher would like to determine the appropriate variance-covariance 
structure for a longitudinal model with four equal time points. The researcher uses REML as the 
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likelihood type. The analysis is run five times, each with a different covariance pattern, and the 
AIC values are recorded as follows. 

 

Pattern Number of 
Parameters -2 log-likelihood AIC 

Diagonal 1 214.43 216.43 

Compound Symmetry 2 210.77 214.77 

AR(1) 2 203.52 207.52 

Toeplitz 4 198.03 206.03 

Unstructured 7 197.94 211.94 

 

The recommended variance-covariance structure among these five is the Toeplitz pattern, since it 
results in the smallest AIC value.  

What to Do When You Encounter a Variance Estimate that is Equal to Zero 
It is possible that a mixed models data analysis results in a variance component estimate that is 
negative or equal to zero. This is particularly true in the case of random coefficients models. 
When this happens, the component that has a variance estimate equal to zero should be removed 
from the random factors model statement (or, if possible, the repeated pattern should be 
simplified to ‘diagonal’), and the analysis should be rerun.  

As an example, suppose a researcher would like to analyze a dataset using a random coefficients 
model. The data consists of sixty subjects, each of which received one of three treatments. The 
weight of each subject was measured at the beginning of the study and 6, 12 18, 24, and 30 days 
after administration of the treatment. The fixed and random factors models are entered as follows: 

Fixed Factors Model: Day Trt Day*Trt 

Random Factors Model: Subject Subject*Day 

Repeated (Time) Variance Pattern: Diagonal 

The mixed models analysis results in the following variance component parameter estimates: 
 
Random Component Parameter Estimates (G Matrix) 
 
Component Parameter Estimated Model 
Number Number Value Term 
1 1 0.000000 Subject 
1 2 0.031682 Subject*Day 
 
Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter Estimated Parameter 
Number Number Value Type 
1 1 12.914745 Diagonal (Variance) 
 
******************** RUN ABORTED BECAUSE OF ZERO PARAMETER ***************** 
Error Explanation: 
One or more of the above parameter estimates is zero. 
The corresponding term should not be included in the model.  
The term must be removed from the model and then the problem rerun  
in order to obtain the rest of the reports and charts. 
******************************************************************************************************* 
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The estimated value for the Subject random component is equal to zero and should be removed 
from the analysis. Re-running the analysis without the Subject component in the random factors 
model results in the following parameter estimates: 

 
Random Component Parameter Estimates (G Matrix) 
 
Component Parameter Estimated Model 
Number Number Value Term 
1 1 0.030111 Subject*Day 
 
Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter Estimated Parameter 
Number Number Value Type 
1 1 12.517215 Diagonal (Variance) 
 

The variance estimates for the other parameters changed slightly after removing Subject from the 
random factors model. 

Fixed Effects 
A fixed effect (or factor) is a variable for which levels in the study represent all levels of interest, 
or at least all levels that are important for inference (e.g., treatment, dose, etc.). The fixed effects 
in the model include those factor for which means, standard errors, and confidence intervals will 
be estimated and tests of hypotheses will be performed. Other variables for which the model is to 
be adjusted (that are not important for estimation or hypothesis testing) may also be included in 
the model as fixed factors. Fixed factors may be discrete variables or continuous covariates.  

The correct model for fixed effects depends on the number of fixed factors, the questions to be 
answered by the analysis, and the amount of data available for the analysis. When more than one 
fixed factor may influence the response, it is common to include those factors in the model, along 
with their interactions (two-way, three-way, etc.). Difficulties arise when there are not sufficient 
data to model the higher-order interactions. In this case, some interactions must be omitted from 
the model. It is usually suggested that if you include an interaction in the model, you should also 
include the main effects (i.e. individual factors) involved in the interaction even if the hypothesis 
test for the main effects in not significant. 

Covariates 
Covariates are continuous measurements that are not of primary interest in the study, but 
potentially have an influence on the response. Two types of covariates typically arise in mixed 
models designs: subject covariates and within-subject covariates. They are illustrated in the 
following example.  

A study is conducted to determine the effect of two drugs on heart rate in mice. Each mouse 
receives each drug and a placebo with a washout period between treatments. The weight of each 
mouse is measured prior to the first treatment. The systolic blood pressure of each mouse is also 
measured immediately before each treatment. Although potentially an important factor, order of 
treatment is not considered in this example.  
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Mouse IWeight Treatment BP HR 
1 18 Placebo 154 392 
1 18 Drug A 167 378 
1 18 Drug B 184 365 
2 26 Placebo 166 402 
2 26 Drug A 189 396 
2 26 Drug B 177 397 
3 22 Placebo 185 408 
3 22 Drug A 163 402 
3 22 Drug B 183 407 
4 19 Placebo 167 411 
4 19 Drug A 179 400 
4 19 Drug B 172 392 
5 15 Placebo 175 384 
5 15 Drug A 168 391 
5 15 Drug B 176 386 
. . . . . 
. . . . . 
. . . . . 

 

In this example, initial weight (IWeight) and blood pressure (BP) are covariates. IWeight is a 
subject covariate because it is measured only once for each subject. BP is a within-subject 
covariate since it is measured on each subject for each treatment. 

The Mixed Models procedure permits the user to make comparisons of fixed-effect means at 
specified values of covariates. For example, researchers could compare the two treatments to the 
placebo for IWeight = 20 and BP = 180, even when those values of the covariates do not appear 
in the actual data set.  

Commonly, investigators wish to make comparisons of levels of a factor at several values of 
covariates. In this example, the researchers might want to compare the two treatments to the 
placebo at IWeight = 18, 23, and 26, and at BP = 160, 175, and 190. Caution should be exercised 
when making comparisons at multiple covariate values. The result in this case is 3 × 3 = 9 sets of 
comparisons and, therefore, 3 × 9 = 27 tests (3 pair wise treatment comparisons × 9 sets = 27 
tests) for the Bonferroni adjustment of the p-value. After accounting for multiple testing, finding 
significant differences will require large sample sizes and/or extreme differences in means since 
the raw p-value would have to be less than 0.00185 in order to declare significance at the 0.05 
level (0.05/27 = 0.00185). 
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Time as a Fixed Effects Factor vs. Time as a Covariate 
Time is an essential measurement in many mixed model designs. In some analyses, time may be 
considered a fixed factor, while in others it is covariate. A couple of examples illustrate this 
distinction.  

Time as a Fixed Effects Factor 
Researchers wish to compare the extent to which rashes develop following administration of 
different doses of an anti-fungal cream. Fifteen individuals are divided into three groups, with 
each group receiving a different dose of the cream: low, medium, or high. The surface area of the 
resulting rash is measured at four time points: 1 hour, 2 hours, 4 hours, and 8 hours. 

 

Dose Subject Time Rash 
Low 1 1 4.2 
Low 1 2 3.5 
Low 1 4 2.1 
Low 1 8 6.8 
Low 2 1 3.4 
Low 2 2 5.2 
Low 2 4 9.7 
Low 2 8 6.5 
Low 3 1 4.1 
Low 3 2 6.8 
Low 3 4 7.1 
Low 3 8 2.3 

. . . . 

. . . . 

. . . . 
High 15 1 6.4 
High 15 2 8.2 
High 15 4 9.4 
High 15 8 8.5 

 

In this example, the time points are very structured (every subject is measured at the same time 
points) and the relationship between the size of the rash and time is not likely to be linear (the 
relationship will likely increase and then decrease). These two aspects of the study would 
generally lead the researcher to include Time as a fixed effects factor rather than as a covariate. 
If, however, the relationship were linear (or could be made linear by a suitable transformation), 
time could be considered a covariate. The next example examines the case where Time must be 
considered a covariate. 
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Time as a Covariate 
Three diets are compared for recently hatched chicks for their effect on growth. One hundred 
forty-seven chicks are randomly divided into three diets: low soybean protein, high soybean 
protein, and high fishmeal protein. Weights of chicks are measured at unequal times for two 
months after beginning the diet. 

 

Diet Chick Time Weight 
Low Soy 1 5 64 
Low Soy 1 11 69 
Low Soy 1 24 74 
Low Soy 1 45 101 
Low Soy 2 16 72 
Low Soy 2 51 143 
Low Soy 3 3 57 
Low Soy 3 29 81 
Low Soy 3 33 83 
Low Soy 3 46 126 
Low Soy 3 55 155 
Low Soy 4 8 72 

. . . . 

. . . . 

. . . . 
High Fish 146 52 145 
High Fish 147 16 78 
High Fish 147 33 97 
High Fish 146 52 145 

 

In this example, if Time were considered a fixed-effects factor, each time point would be a 
different level of the factor, yielding too many levels. The appropriate approach in this example is 
to include Time as a covariate and examine the linear relationship (perhaps following a 
transformation) between Time and Weight. In this example, the nature of the design requires that 
Time be a covariate.  

Common experiments in which time should be included as a covariate are experiments involving 
human subjects that don’t report on schedule. 

Using a Time Variable When Time is Not Measured in the 
Study 
Many designs (e.g., factorial, split-plot, ANCOVA) for which the use of mixed models is 
recommended do not have time as a measured variable. In such cases, it can still be useful to 
include a time variable as an ordering variable. This is particularly important when the dataset 
itself is not ordered, when there are missing values, and when the specified covariance structure is 
complex. An example of a design where time is included only for ordering purposes is a cross-
over design. 
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A Model-Building Strategy 
There are three main components of a mixed model:  

• The Fixed Effects Component. The fixed effects component of the model consists of the 
fixed factors, the covariates, and the interactions of fixed factors and covariates. The 
strength of evidence for the true effect of each fixed effects term is given by the 
probability level of the corresponding F-test. 

• The Random (Subject) Component. The random factors include all random factors and 
(possibly) interactions of random factors with fixed factor variables or covariates. The 
importance of each random term is more subjective. Inclusion or exclusion of a random 
term is often decided by comparing the magnitude of the estimates. Relatively small 
estimates may, in some cases, be removed from the model. The meaning of ‘relatively 
small’ is beyond the scope of this manual. 

• The Covariance Pattern of Repeated Measurements. The covariance pattern indicates 
the pattern of the residual error of repeated measurements. Specific patterns are shown in 
detail later in this chapter. The pattern should usually be Diagonal if a random model is 
specified. Patterns can be compared by examining the AIC value for each pattern. A 
separate run is required for each pattern. 

The underlying goal in building a mixed model should be finding the simplest model that best fits 
the observed data. A reasonable top-down strategy for building a model might include the 
following steps: 

1. Specify all the fixed effects, covariates, and potentially important interactions in the 
Fixed Effects Model. 

2. Specify either the Random Model or the Repeated Covariance Pattern as the 
circumstances dictate. 

3. Run the model. 

4. Compare the random terms to see if any are clearly negligible (e.g., less than 20 times 
smaller than the others). 

5. Re-run the model excluding the negligible random terms. 

6. Examine the fixed effects terms F-tests tests. Iteratively remove interaction terms from 
the fixed effects model that have large probability levels until all are below, say, 0.20. 

7. If a Repeated Covariance Pattern is of interest, re-run the analysis several times with 
different patterns, comparing the AIC values. Keep the pattern with the lowest AIC value. 

8. Run the final model with comparisons of interest and specific covariate values. 

This strategy is one among many that could be used in refining a mixed model. In some cases, 
regulations may dictate the terms that may or may not be included in the model, which leaves 
little or no room for refinement. The order of steps given here is subjective, but perhaps gives a 
feel for the considerations that should be made in determining a good model. The discussion near 
the end of Example 1 involving model refinement for a specific example may also be helpful. 
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Multiple Comparisons of Fixed Effect Levels 
If there is evidence that a fixed factor of a mixed model has difference responses among its levels, 
it is usually of interest to perform post-hoc pair-wise comparisons of the least-squares means to 
further clarify those differences. It is well-known that p-value adjustments need to be made when 
multiple tests are performed (see Hochberg and Tamhane, 1987, or Hsu, 1996, for general 
discussion and details of the need for multiplicity adjustment). Such adjustments are usually made 
to preserve the family-wise error rate (FWER), also called the experiment-wise error rate, of the 
group of tests. FWER is the probability of incorrectly rejecting at least one of the pair-wise tests.  

Family-Wise Error Rate (FWER) Control – Bonferroni Adjustment 
The Bonferroni p-value adjustment produces adjusted p-values (probability levels) for which the 
FWER is controlled strictly (Westfall et al, 1999). The Bonferroni adjustment is applied to all m 
unadjusted (raw) p-values ( jp ) as 

( )1,min~
jj mpp = . 

That is, each p-value is multiplied by the number of tests in the set (family), and if the result is 
greater than one, it is set to the maximum possible p-value of one. 

The Bonferroni adjustment is generally considered to be a conservative method for 
simultaneously comparing levels of fixed effects. 

In the following example, four levels of a fixed factor are compared (all pairs): A, B, C, and D. 

 

Multiple Comparison Example – Main Effects 

Test Raw        
P-value 

Bonferroni Adjusted 
P-value 

A vs B 0.01435 0.08610 
A vs C 0.00762 0.04572 
A vs D 0.00487 0.02922 
B vs C 0.34981 1.00000 
B vs D 0.06062 0.36372 
C vs D 0.71405 1.00000 

 

In this example, the adjustments are based on m = 6 tests. 

Multiple Comparisons for the Interaction of Two Main Effects 
When examining a fixed effect interaction using post-hoc (or planned) multiple comparison tests, 
a useful method is to compare all levels of one factor at each level of the other factor. This 
method is termed ‘slicing’. For example, if the interaction of Time and Treatment is significant, 
comparing the treatment levels at each time point could aid in understanding the nature of the 
interaction.  
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Multiple Comparison Example – Interaction 

Time Test Raw        
P-value 

Bonferroni Adjusted 
P-value 

1 hour A vs B 0.25186 1.00000
1 hour A vs C 0.00118 0.02124
1 hour A vs D 0.13526 1.00000
1 hour B vs C 0.07275 1.00000
1 hour B vs D 0.12994 1.00000
1 hour C vs D 0.08068 1.00000
5 hours A vs B 0.11279 1.00000
5 hours A vs C 0.01779 0.32022
5 hours A vs D 0.18634 1.00000
5 hours B vs C 0.07291 1.00000
5 hours B vs D 0.05254 0.94572
5 hours C vs D 0.03883 0.69894
10 hours A vs B 0.14701 1.00000
10 hours A vs C 0.02798 0.50364
10 hours A vs D 0.15722 1.00000
10 hours B vs C 0.13614 1.00000
10 hours B vs D 0.10642 1.00000
10 hours C vs D 0.16751 1.00000

 

In this example, the adjustments are based on m = 18 tests. It can be seen from this example that 
minimizing the number of tests enhances the power to detect significant differences. 

Multiple Comparisons for Several Covariate Levels 
When more than one covariate value is specified for ‘Compute Means at these Values’ on the 
Covariates tab, the number of test used in the Bonferroni adjustment can increase dramatically. 
The number of tests for the Bonferroni adjustment is computed as 

Number of Tests = Number of Comparisons per Set × Number of Covariate Sets 

As an example, suppose that an experiment has two covariates, and a single fixed treatment factor 
with three levels: Control, T1, and T2. If ‘All Pairs’ were selected as the comparison on the 
Comparisons tab, then the number of comparisons per set would be three (T1 – Control, T2 – 
Control, and T2 – T1). Suppose that the researcher desired to compute the hypothesis tests at two 
values for the first covariate and four values for the second. The number of covariate sets would 
be 2 × 4 = 8. Therefore, the number of tests used in the Bonferroni adjustment to conserve the 
overall error-rate would be 3 × 8 = 24. The raw p-value would have to be less than 0.05/24 = 
0.00208 in order to declare significance at the 0.05 level.  

This example illustrates that care must be taken when specifying the covariate values at which the 
means and analyses will be computed. As more covariate values are specified, the number of tests 
in the adjustment increases making it more and more difficult to find differences that are 
significant. 
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Mixed Model Technical Details 
As stated previously, the general form of the linear mixed model is 

y = Xβ + Zu + ε 

where 

y  vector of responses 

X known design matrix of the fixed effects 

β unknown vector of fixed effects parameters to be estimated 

Z  known design matrix of the random effects 

u  unknown vector of random effects 

ε  unobserved vector of random errors 

We assume 

u ~ N(0,G) 

ε ~ N(0,R) 

Cov[u, ε] = 0 

where 

G variance-covariance matrix of u 

R variance-covariance matrix of the errors ε 

The variance of y, denoted V, is 

        V  = Var[y] 

     = Var[Xβ + Zu + ε] 

     = 0 + Var[Zu + ε] 

     = ZGZ' + R 

In order to test the parameters in β, which is typically the goal in mixed model analysis, the 
unknown parameters (β, G, and R) must be estimated. Estimates for β require estimates of G and 
R. In order to estimate G and R, the structure of G and R must be specified. Structures for G and 
R are discussed later. 

Individual Subject Formulation 
Because of the size of the matrices that are involved in mixed model analysis, it is useful for 
computational purposes to reduce the dimensionality of the problem by analyzing the data one 
subject at a time. Because the data from different subjects are statistically independent, the log-
likelihood of the data can be summed over the subjects, according to the formulas below. Before 
we look at the likelihood functions, we examine the linear mixed model for a particular subject:  

yi = Xiβ + Ziui + εi,    i = 1, …, N 

where 

yi ni×1 vector of responses for subject i.  
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Xi ni×p design matrix of fixed effects for subject i (p is the number of columns in X). 

β p×1 vector of regression parameters. 

Zi ni×q design matrix of the random effects for subject i. 

ui q×1 vector of random effects for subject i which has means of zero and covariance matrix 
Gsub. 

εi  ni×1 vector of errors for subject i with zero mean and covariance Ri. 

ni number of repeated measurements on subject i. 

N  number of subjects. 

The following definitions will also be useful. 

ei  vector of residuals for subject i (ei = yi - Xiβ). 

Vi  Var[yi] = ZiGsubZi' + Ri 

To see how the individual subject mixed model formulation relates to the general form, we have 
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Likelihood Formulas 
Rather than maximizing the likelihood function, it is convenient (for theoretical and practical 
reasons beyond the scope of this manual) to minimize -2 times the log likelihood function rather 
than maximize the likelihood function itself. There are two types of likelihood estimation 
methods that are generally considered in mixed model estimation: maximum likelihood (ML) and 
restricted maximum likelihood (REML). REML is generally favored over ML because the 
variance estimates using REML are unbiased for small sample sizes, whereas ML estimates are 
unbiased only asymptotically (see Littell et al., 2006 or Demidenko, 2004). Both estimation 
methods are available in NCSS.  

Maximum Likelihood 
The general form -2 log-likelihood ML function is  

( ) ( )π2lnln,2 1
TML N,L +′+=− − eVeVRGβ  

The equivalent individual subject form is  

( ) ( ) ( )π2lnln,2
1

1
T

i
iiiiML NeVeVRGβ ∑

=

− +′+=−
N

,L  

where NT  is the total number of observations, or 

∑
=

=
N

i
iT nN

1
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Restricted Maximum Likelihood 
The general form -2 log-likelihood REML function is  

( ) ( ) ( )π2lnlnln,2 11 pN,L TREML −+′+′+=− −− XVXeVeVRGβ  

The equivalent individual subject form is  

( ) [ ] ( ) ( π2lnlnln,2
1 1

11 pN,L T

N

i

N

i
iiiiiiiREML −+′+′+=− ∑ ∑

= =

−− XVXeVeVRGβ )  

where, again, NT  is the total number of observations, or 

∑
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i
iT nN
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and p is the number of columns in X or Xi. 

The G Matrix 
The G matrix is the variance-covariance matrix for the random effects u. Typically, when the G 
matrix is used to specify the variance-covariance structure of y, the structure for R is simply σ2I. 
Caution should be used when both G and R are specified as complex structures, since large 
numbers of sometimes redundant covariance elements can result.  

The G matrix is made up of N symmetric Gsub matrices, 
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The dimension of Gsub is q × q, where q is the number of random effects for each subject. 

Structures of Gsub 
There are two commonly used structures for the elements of the Gsub matrix: diagonal and 
unstructured. 

       Diagonal Gsub         Unstructured Gsub 
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The diagonal Gsub should be used when there is no covariance between parameters, such as in the 
random effects models. The unstructured Gsub is typically used when you want to include 
covariances, such as in random coefficients models. 
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The R Matrix 
The R matrix is the variance-covariance matrix for errors, ε. When the R matrix is used to specify 
the variance-covariance structure of y, the Gsub matrix is not used. 

The full R matrix is made up of N symmetric R sub-matrices, 
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where  are all of the same structure, but, unlike the Gsub matrices, differ 
according to the number of repeated measurements on each subject. 

NRRRR ,,,, 321 L

When the R matrix is specified in NCSS, it is assumed that there is a fixed, known set of repeated 
measurement times. (If the repeated measurement times are random, specification of the Gsub 
matrix with R = σ2I should be used instead for specifying covariance structure.) Thus, the 
differences in the dimensions of the R sub-matrices occur only when some measurements for a 
subject are missing. 

As an example, suppose an R sub-matrix is of the form 
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where there are five time points at which each subject is intended to be measured: 1 hour, 2 hours, 
5 hours, 10 hours, and 24 hours. If the first subject has measurements at all five time points, then 
n1 = 5, and the sub-matrix is identical to RSub above, and R1 = RSub. 

Suppose the second subject is measured at 1 hour, 5 hours, and 24 hours, but misses the 2-hour 
and 10-hour measurements. The R2 matrix for this subject is 
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For this subject, n2 = 3. That is, for the case when the time points are fixed, instead of having 
missing values in the R sub-matrices, the matrix is collapsed to accommodate the number of 
realized measurements. 
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Structures of R 
There are many possible structures for the sub-matrices that make up the R matrix. The RSub 
structures that can be specified in NCSS are shown below. 

Diagonal 
Homogeneous Heterogeneous Correlation 
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Compound Symmetry 
Homogeneous Heterogeneous Correlation 
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AR(1) 
Homogeneous Heterogeneous 
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Toeplitz 
Homogeneous Heterogeneous 
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Toeplitz(2) 
Homogeneous Heterogeneous 
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Note: This is the same as Banded(2). 
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Toeplitz(3) 
Homogeneous Heterogeneous   
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Toeplitz(4) and Toeplitz(5) 
Toeplitz(4) and Toeplitz(5) follow the same pattern as Toeplitz(2) and Toeplitz(3), but with the 
corresponding numbers of bands. 
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Note: This is the same as Toeplitz(1). 

Banded(3) 
Homogeneous Heterogeneous Correlation 
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Banded(4) and Banded (5) 
Banded(4) and Banded(5) follow the same pattern as Banded(2) and Banded(3), but with the 
corresponding numbers of bands. 
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Unstructured 
Homogeneous Heterogeneous 
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Partitioning the Variance-Covariance Structure with Groups 
In the case where it is expected that the variance-covariance parameters are different across group 
levels of the data, it may be useful to specify a different set of R or G parameters for each level of 
a group variable. This produces a set of variance-covariance parameters that is different for each 
level of the chosen group variable, but each set has the same structure as the other groups. 

Partitioning the G Matrix Parameters 
Suppose the structure of G is specified to be diagonal. If Gsub has four parameters then 
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If there are twenty subjects, then 
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The total number of variance parameters is four. 

Suppose now that there are two groups of ten subjects, and it is believed that the four variance 
parameters of the first group are different from the four variance parameters of the second group.  
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We now have 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

2
14

2
13

2
12

2
11

1

σ
σ

σ
σ

G , and  . 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

2
24

2
23

2
22

2
21

2

σ
σ

σ
σ

G

If the first ten subjects are in Group 1, then the G matrix becomes 
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with eight variance parameters, rather than four. 

Partitioning the R Matrix Parameters 
Suppose the structure of R in a study with four time points is specified to be Toeplitz:  
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If there are sixteen subjects then  
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The total number of variance-covariance parameters is four: and ,,, 21
2 ρρσ 3 ρ . 

Suppose now that there are two groups of eight subjects, and it is believed that the four variance 
parameters of the first group are different from the four variance parameters of the second group. 
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We now have 
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The total number of variance-covariance parameters is now eight. 

It is easy to see how quickly the number of variance-covariance parameters increases when R  or 
G is partitioned by groups. 

Repeated Measures Complication in Partitioning R 
When partitioning the variance-covariance parameters into groups in some less-common 
repeated-measures designs, more than one group can occur within a subject. Re-examining the R 
partitioning example above, suppose instead that all sixteen subjects are measured four times: 
twice with Treatment A, and twice with Treatment B. For the sake of this example, assume that 
the first eight subjects receive A, A, B, B and the second eight receive B, B, A, A. The covariance 
parameters across treatments but within a subject are assumed to be zero, and the R sub-matrices 
for the first eight subjects become 
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and for the last eight subjects, 
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The total number of variance-covariance parameters is only four: and ,,, A
2
B

2
A ρσσ Bρ . 

In general, when we attempt to divide the variance-covariance parameters into groups with a 
repeated-measures design, the covariance of residuals within a subject, but across treatments, is 
assumed to be zero. 
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Estimating and Testing Fixed Effects Parameters 
The estimation phase in the analysis of a mixed model produces variance and covariance 
parameter estimates of the elements of G and R, giving R̂  and , and hence, . The REML 
and ML solutions for β  are given by 

Ĝ V̂
ˆ

( ) yVXXVXβ 111 ˆˆˆ −−− ′′=  

with estimated variance-covariance 

( ) ( ) 11ˆˆvarˆ −−′==Σ XVXβ  

See, for example, Brown and Prescott (2006), Muller and Stewart (2006), or Demidenko (2004) 
for more details of the estimating equations.  

Hypothesis tests and confidence intervals for β are formed using a linear combination matrix (or 
vector) L. 

L Matrix Details 
L matrices specify linear combinations of β corresponding to means or hypothesis tests of 
interest. Essentially, the L matrix defines the mean or test. The number of columns in each L 
matrix is the same as the number of elements of β. For estimating a particular mean, the L matrix 
consists of a single row. For hypothesis tests, the number of rows of L varies according to the 
test. Below are some examples of L matrices that arise in common analyses: 

L Matrix for Testing a Single Factor (Food with 4 levels) in a Single-Factor 
Model 
No. Effect Food L1 L2 L3 
1 Intercept     
2 Food HighIron 1.0000 1.0000 1.0000 
3 Food LowIron -1.0000   
4 Food None  -1.0000  
5 Food Salicyl   -1.0000 

L Matrix for a Single Mean (LowIron) of a Single Factor (4 levels) in a 
Single-Factor Model 
No. Effect Food L1 
1 Intercept  1.0000 
2 Food HighIron  
3 Food LowIron 1.0000 
4 Food None  
5 Food Salicyl  
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L Matrix for Testing a Single Factor (Drug – 3 levels) in a Two-Factor Model 
with Interaction 
No. Effect Drug Time L1 L2 
1 Intercept     
2 Drug Kerlosin  1.0000 1.0000 
3 Drug Laposec  -1.0000  
4 Drug Placebo   -1.0000 
5 Time  0.5   
6 Time  1   
7 Time  1.5   
8 Time  2   
9 Time  2.5   
10 Time  3   
11 Drug*Time Kerlosin 0.5 0.1667 0.1667 
12 Drug*Time Kerlosin 1 0.1667 0.1667 
13 Drug*Time Kerlosin 1.5 0.1667 0.1667 
14 Drug*Time Kerlosin 2 0.1667 0.1667 
15 Drug*Time Kerlosin 2.5 0.1667 0.1667 
16 Drug*Time Kerlosin 3 0.1667 0.1667 
17 Drug*Time Laposec 0.5 -0.1667  
18 Drug*Time Laposec 1 -0.1667  
19 Drug*Time Laposec 1.5 -0.1667  
20 Drug*Time Laposec 2 -0.1667  
21 Drug*Time Laposec 2.5 -0.1667  
22 Drug*Time Laposec 3 -0.1667  
23 Drug*Time Placebo 0.5  -0.1667 
24 Drug*Time Placebo 1  -0.1667 
25 Drug*Time Placebo 1.5  -0.1667 
26 Drug*Time Placebo 2  -0.1667 
27 Drug*Time Placebo 2.5  -0.1667 
28 Drug*Time Placebo 3  -0.1667 

L Matrix for Testing a Covariate in a One-Factor (3 levels) Model with a 
Covariate 
No. Effect Drug L1 
1 Intercept   
2 Drug Kerlosin  
3 Drug Laposec  
4 Drug Placebo  
5 Weight  1.0000 
6 Drug*Weight Kerlosin 0.3333 
7 Drug*Weight Laposec 0.3333 
8 Drug*Weight Placebo 0.3333 
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Kenward and Roger Fixed Effects Hypothesis Tests 
Hypothesis tests have the general form 

H0: Lβ = 0 

where L is a linear contrast matrix of rank h corresponding to the desired comparisons to be made 
in the hypothesis test. Let d be the denominator degrees of freedom and q be the number of 
variance-covariance parameters, which is the dimension of W (defined below). 

The Kenward and Roger (1997) test statistic for testing H0 is 

( ) βLL*LCLβF dh,
ˆˆ 1−′′′=

h
λ

 

where 

CSCPPQWCCC* rssrrs

q

r

q

s
rs

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −−+= ∑∑

= = 4
12

1 1

 

( ) 11 −−′= XVXC  

∑
=

′=′=
N

i 1
i

1-
isi

1-
iri

1-
ii

1-
s

1-
r

1-
rs XVVVVVXXVVVVVXQ &&&&  

∑
=

′−=′−=
N

i 1
i

1-
iri

1-
ii

1-
r

1-
r XVVVXXVVVXP &&  

∑
=

−− ′=′=
N

i 1

11
i

1-
irsi

1-
iirsrs XVVVXXVVVXS &&&&  

1−= HW  

{ } { }rsrsH Hessian=  

r
r

VV
σ∂

∂
=&  

sr
rs

VV
σσ ∂∂

∂
=

2
&&   

( ) LLLCLT 1−′′=  

)tr()tr(
1 1

1 CTCPCTCPW sr

q

r

q

s
rs∑∑

= =

=a ,      )tr(
1 1

2 CCTCPTCPW sr

q

r

q

s
rs∑∑

= =

=a

h
aaa

2
6 21

3
+

= , 
1

21
−

⎟
⎠
⎞

⎜
⎝
⎛ −=

h
ae , 

( ) ( )⎭
⎬
⎫

⎩
⎨
⎧

−−
+

=
33

2
32

31

11
12

acac
ac

h
v  

( )gh
gc

−+
=

1231 , ( )gh
ghc
−+

−
=

1232 , ( )gh
ghc

−+
−+

=
123

2
3 , 24 2e

vc =  



Mixed Models  220-29 

( ) ( )
( ) 2

21

2
41

ah
ahahg

+
+−+

=  

1
24

4 −
+

+=
hc

hd , ( )2d-e
d

=λ  

Kenward and Roger Fixed Effects Confidence Intervals 
Confidence intervals for linear combinations of β are formed as 

LLCtβL m ′± 2/,
ˆ

α  

where  is the 1-α/2 percentile of the t distribution with m degrees of freedom, with 2/,αmt

C and m defined above. 

Solution Algorithms 

Methods for Finding Likelihood Solutions (Newton-Raphson, 
Fisher Scoring, MIVQUE, and Differential Evolution)  
There are four techniques in the Mixed Models procedure for determining the maximum 
likelihood or restricted maximum likelihood solution (optimum): Newton-Raphson, Fisher 
Scoring, MIVQUE, and Differential Evolution. 

The general steps for the Newton-Raphson, Fisher Scoring, and Differential Evolution techniques 
are (let θ be the overall covariance parameter vector): 

1. Roughly estimate θ according to the specified structure for each. 

2. Evaluate the likelihood of the model given the data and the estimates of θ. 

3. Improve upon the estimates of θ using a search algorithm. (Improvement is defined as an 
increase in likelihood.) 

4. Iterate until maximum likelihood is reached, according to some convergence criterion. 

5. Use the final θ estimates to estimate β. 
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Newton-Raphson and Fisher Scoring 
The differences in the techniques revolve around the initial estimates in Step 1, and the 
improvements in estimates made in Step 3. For the Newton-Raphson and Fisher Scoring 
techniques, Step 3 occurs as follows: 

3a.  With the estimated θ, compute the gradient vector g, and the Hessian matrix H. 
3b.  Compute d = -H-1g. 
3c.  Let λ = 1. 
3d.  Compute new estimates for θ, iteratively, using θi = θi-1+ λd. 
3e.  If θi is a valid set of covariance parameters and improves the likelihood, continue to 3f. 

Otherwise, reduce λ  by half and return to Step 3d. 
3f.  Check for convergence. If the convergence criteria (small change in -2log-likelihood) are 

met, stop. If the convergence criteria are not met, go back to Step 3a. 
 

The gradient vector g, and the Hessian matrix H, used for the Newton-Raphson and Fisher 
Scoring techniques for solving the REML equations are shown in the following table: 

 

REML Gradient (g) and Hessian (H) 

Technique Gradient (g) Hessian (H) 
Newton-Raphson g1 + g2 + g3 H1 + H2 + H3 

Fisher Scoring g1 + g2 + g3 -H1 + H3 

 

The gradient vector g, and the Hessian matrix H, used for the Newton-Raphson and Fisher 
Scoring techniques for solving the ML equations are shown in the following table: 

 

ML Gradient (g) and Hessian (H) 

Technique Gradient (g) Hessian (H) 
Newton-Raphson g1 + g2 H1 + H2 

Fisher Scoring g1 + g2 -H1 

 

where g1, g2, g3, H1, H2, and H3 are defined as in Wolfinger, Tobias, and Sall (1994). 
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Likelihoods 
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See Wolfinger, Tobias, and Sall (1994), page 1299, for details. 

MIVQUE  
The MIVQUE estimates of θ in REML estimation are found by solving 

231 )( gθHH −=+− . 

The MIVQUE estimates of θ in ML estimation are found by solving 

21 gθH −=− . 

See Wolfinger, Tobias, and Sall (1994), page 1306, for details. 

Differential Evolution  
The differential evolution techniques used in the Mixed Models procedure for the ML and REML 
optimization are described in Price, Storn, and Lampinen (2005). 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
These panels specify the variables used in the analysis, the solution type, and the model. 

Response Variable 

Response Variable 
This variable contains the numeric responses (measurements) for each of the subjects. There is 
one measurement per subject per time point. Hence, all responses are in a single column 
(variable) of the spreadsheet. 

Subject Variable 

Subject Variable 
This variable contains an identification value for each subject. Each subject must have a unique 
identification number (or name). In a repeated measures design, several measurements are made 
on each subject. 

Time Variable 

Time Variable 
This variable contains the time at which each measurement is made. If this variable is omitted, the 
time values are assigned sequentially with the first value being '1', the next value being '2', and so 
on. 

Factor Variables 

Factor (Categorical) Variables 
Designate any factor (categorical or class) independent variables here. These variables can then 
be used in the model portion of the Fixed and Random specifications. Note that placing a variable 
here does NOT automatically include it in a model. 

By categorical we mean that the variable has only a few unique values (text or numeric) which 
are used to identify the categories. Capitalization is ignored when determining unique text values. 

Covariate Variables 

Covariate (Continuous) Variables 
Designate any numeric (continuous) independent variables here. When these variables are 
included in the Fixed Model statement, the technique is known as Analysis of Covariance (or 
ANCOVA). 

'Numeric' means that the values are at least ordinal. Nominal variables should be specified as 
Categorical, even though their values may be numeric. 
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When Covariates are specified, the options on the Covariates tab should be specified for them. 

Options 

Likelihood Type 
Specify the type of likelihood equation to be solved. The options are: 

• MLE 
The 'Maximum Likelihood' solution has become less popular. 

• REML (recommended) 
The 'Restricted Maximum Likelihood' solution is recommended. It is the default in other 
software programs (such as SAS). 

Solution Method 
Specify the method to be used to solve the likelihood equations. The options are: 

• Newton-Raphson 
This is an implementation of the popular 'gradient search' procedure for maximizing the 
likelihood equations. Whenever possible, we recommend that you use this method.  

• Fisher-Scoring 
This is an intermediate step in the Newton-Raphson procedure. However, when the Newton-
Raphson fails to converge, you may want to stop with this procedure. 

• MIVQUE 
This non-iterative method is used to provide starting values for the Newton-Raphson method. 
For large problems, you may want to investigate the model using this method since it is much 
faster. 

• Differential Evolution 
This grid search technique will often find a solution when the other methods fail to converge. 
However, it is painfully slow--often requiring hours to converge--and so should only be used 
as a last resort. 

• Read in from a Variable 
Use this option when you want to use a solution from a previous run or from another source. 
The solution is read in from the variable selected in the 'Read Solution From' variable. 

Read Solution From (Variable) 
This optional variable contains the variance-covariance parameter values of a solution that has 
been found previously. The order of the parameter values is the same as on the parameter reports. 

This option is useful when problem requires a great deal of time to solve. Once you have 
achieved a solution, you can reuse it by entering this variable here and setting the 'Solution 
Method' option to 'Read in from a Variable'. 

Write Solution To (Variable) 
Select an empty variable into which the solution is automatically stored. Note that any previous 
information in this variable will be destroyed. 
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This option is useful when problem requires a great deal of time to solve. Once you have 
achieved a solution, you can then reuse it by entering this variable in the 'Read Solution From' 
variable box and setting the 'Solution Method' option to 'Read in from a Variable'. 

Force Covariance to be Positive 
When checked, this option forces all covariances (and correlations) in the Random Components 
(off-diagonal elements of the G matrix) and Repeated Components (off-diagonal elements of the 
R matrix) to be non-negative. When this option is not checked, some covariances can be negative. 

It usually makes good sense to force these covariances (and thus the corresponding correlations) 
to be positive. However, occasionally you may want to allow negative covariances. 

Fixed Effects Model 

Model 
Specify the statistical model for fixed effects here. Statistical hypothesis tests will be generated 
for each term in this model. Variables for which hypothesis tests are to be performed should be 
included in this model statement. You may also include variables in this model that are solely to 
be used for adjustment and not important for inference or hypothesis testing. For categorical 
factors, each term represents a set of indicator variables in the expanded design matrix.  

The components of this model come from the variables listed in the Factor and Covariate 
variables. If you want to use them, they must be listed there.  

Syntax 
In the examples that follow each syntax description, 'A', 'B', 'C', and 'D' represent variable names. 
We will assume that A, B, and C are categorical variables, and D is a covariate.  

1. Specify main effects by specifying their variable names on the database, separated by 
blanks or the '+' (plus) sign.  

A+B  Main effects for A and B only 

A B C Main effects for A, B, and C only 

A B D Main effects for A and B, plus the covariate effect of D 

2. Specify interactions and cross products using an asterisk (*) between variable names, 
such as Fruit*Nuts or A*B*C. When an interaction between a discrete factor and a 
covariate is specified, a cross-product is generated for each value of the factor. For 
covariates, higher order (e.g. squared, cubic) terms may be added by repeating the 
covariate name. If D is a covariate, D*D represents the covariate squared, and D*D*D 
represents the covariate cubed, etc. Only covariates should be repeated. Note that 
categorical terms should not be squared or cubed. That is, if A is a categorical variable, 
you would not include A*A nor A*A*A in your model. 

A+B+A*B  Main effects for A and B plus the AB interaction 

A+B+C+A*B+A*C+B*C+A*B*C Full model for factors A, B, and C 

A+B+C+A*D  Main effects for A, B, and C plus the interaction 
of A with the covariate D 

A+D+D*D  Main Effect for A plus D and the square of D  

A+B*B  Not valid since B is categorical and cannot be 
squared 
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3. Use the '|' (bar) symbol as a shorthand technique for specifying large models quickly.  

A|B = A+B+A*B 

A|B|C = A+B+C+A*B+A*C+B*C+A*B*C  

A|B C D*D = A+B+A*B+C+D*D  

A|B C|D = A+B+A*B+C+D+C*D  

4. You can use parentheses for multiplication.  

(A+B)*(C+D) = A*C+A*D+B*C+B*D 

(A+B)|C = A+B+C+(A+B)*C = A+B+C+A*C+B*C 

5. Use the '@' (at) symbol to limit the order of interaction terms in the model. The 
maximum term order can also be limited using the ‘Max Term Order’ function. 

A|B|C @2 = A+B+C+A*B+A*C+B*C 

A|B|D|D (Max Term Order=2) = A+B+D+A*B+A*D+B*D+D*D 

Intercept 
Check this box to include the intercept in the model. Under most circumstances, you will want to 
include an intercept term in your model. 

Random Model (Subject Terms Only) 
This section defines the random effects in the mixed model. Every term in the random model 
must have the Subject variable in the term. This random component can be used in specifying 
traditional variance component models as well as random coefficient models. Additional random 
components may be specified on the More Models tab. Hierarchical models with two levels of 
hierarchy can not be specified in the Mixed Models procedure. For example, if a study involves 
repeated measurements on randomly selected patients from randomly selected hospitals, only 
Patient or Hospital can be selected as the subject variable; and the random model can consist only 
of terms with the chosen variable in each term. 

The purpose of this model is to define the structures of the Z and G matrices in the mixed model, 
as well as the random effects in the model. The Z matrix for random effects is comparable in 
function to X (or design) matrix for fixed effects. The G matrix is formed to correspond to the 
random effects in Z. For more information, see the discussion on random effects earlier in this 
chapter. 

Model 
Specify the random component of the model here. Every term in the random model must have the 
Subject variable in the term. For a Random Effects model, enter the subject variable here, e.g. 
'Subject'. For a Random Coefficients model, enter the subject variable and the subject variable 
times the time variable, e.g. 'Subject  Subject*Time'. 

Try to keep this model as simple as possible. 

Groups 
Specify a grouping variable here. A new set of parameters for this component will be generated 
for each unique value of this variable.  

WARNING: because this option can quickly double or triple the number of variance parameters 
in the model, extreme care must be exercised when using this option. 
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Covariances 
If this box is checked, the G-matrix (covariance matrix) will include covariances for each pair of 
variance components (diagonal element of the G-matrix). If the box is not checked, all off-
diagonal elements will be set to zero (the G-matrix will be diagonal). 

This option is commonly checked when you are fitting a random coefficients model. 

Repeated (Time) Covariance Pattern 
The repeated component is used to specify the R matrix in the mixed model. At least a diagonal 
pattern should always be used. 

Pattern 
Specify the type of R (error covariance) matrix to be generated. This represents the relationship 
between observations from the same subject. The R structures that can be specified in NCSS are 
shown below. The usual type is the 'Diagonal' matrix. 

The options are: 

• Unused 
No repeated component is used. 

• Diagonal 
Homogeneous Heterogeneous  
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• AR(1) 
Homogeneous Heterogeneous 
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• AR(Time Diff) 
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• Toeplitz (All) 
Homogeneous Heterogeneous 
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• Toeplitz(2) 
Homogeneous Heterogeneous   
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Note: This is the same as Banded(2). 

• Toeplitz(3) 
Homogeneous Heterogeneous  
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• Toeplitz(4) and Toeplitz(5) 
Toeplitz(4) and Toeplitz(5) follow the same pattern as Toeplitz(2) and Toeplitz(3), but with 
the corresponding numbers of bands. 
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• Banded(2) 
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Note: This is the same as Toeplitz(1). 

• Banded(3) 
Homogeneous Heterogeneous 
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• Banded(4) and Banded (5) 
Banded(4) and Banded(5) follow the same pattern as Banded(2) and Banded(3), but with the 
corresponding numbers of bands. 

• Unstructured 
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Groups 
Specify a grouping variable here. A new set of parameters for this component will be generated 
for each unique value of this variable.  

WARNING: because this option can quickly double or triple the number of variance parameters 
in the model, extreme care must be exercised when using this option. 
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Comparisons Tab 
This panel is used to specify multiple comparisons or custom contrasts for factor variables. 

Multiple Comparisons – Default 
Factor Comparisons 
This section allows the user to specify the default factor comparison, along with other factor 
comparisons. 

Comparison 
The Default Comparison is used for all factors that are not specified under Factor Variable (and 
when Comparisons are selected under the Reports tab). For interactions, these comparisons are 
run for each category of the second factor. Possible choices are: 

• First versus Each 
The multiple comparisons are each category tested against the first category. This option 
would be used when the first category is the control (standard) category. Note: the first is 
determined alphabetically. 

• 2nd versus Each 
The multiple comparisons are each category tested against the second category. This option 
would be used when the second category is the control (standard) category. 

• 3rd versus Each 
The multiple comparisons are each category tested against the third category. This option 
would be used when the third category is the control (standard) category. 

• Last versus Each 
The multiple comparisons are each category tested against the last category. This option 
would be used when the last category is the control (standard) category. 

• Baseline versus Each 
The multiple comparisons are each category tested against the baseline category. This option 
would be used when the baseline category is the control (standard) category. The baseline 
category is entered to the right. 

• Ave versus Each 
The multiple comparisons are each category tested against the average of the other categories. 

• All Pairs 
The multiple comparisons are each category tested against every other category.  

Baseline 
Enter the level of all factor variables not specified under Factor Variable to which comparisons 
will be made. The Default Baseline is used only when Default Comparison is set to 'Baseline vs 
Each'. 

The value entered here must be one of the levels of all factor variables not specified under Factor 
Variable. The entry is not case sensitive, and values should be entered without quotes. 



220-40  Mixed Models 

Multiple Comparisons – User-
Specified Factor Comparisons 

Factor Variable 
Specify settings for a particular factor variable here. All factors that are not specified here use the 
DEFAULT settings at the top. 

Note that any variables specified here that are not specified as factors are ignored. 

Comparison 
The Default Comparison is used for all factors that are not specified under Factor Variable (and 
when Comparisons by Design are selected under the Reports tab). For interactions, these 
comparisons are run for each category of the second factor. Possible choices are shown above. 

Baseline 
Enter the level of the corresponding Factor Variable to which comparisons will be made. The 
Baseline is used only when Comparison is set to 'Baseline vs Each'. The value entered here must 
be one of the levels of the Factor Variable. The entry is not case sensitive and values should not 
be entered with quotes. 

Custom 
This option specifies the weights of a comparison. It is used when the Comparison is set to 
'Custom'. 

NOTE: There are no numerical restrictions on these coefficients. They do not even have to sum to 
zero. However, this is recommended. If the coefficients do sum to zero, the comparison is called a 
CONTRAST. The significance tests anticipate that only one or two of these comparisons are run. 
If you run several, you should make some type of Bonferroni adjustment to your alpha value. 

Specifying the Weights 
When you put in your own contrasts, you must be careful that you specify the appropriate number 
of weights. For example, if the factor has four levels, four weights must be specified, separated by 
blanks or commas. Extra weights are ignored. If too few weights are specified, the missing 
weights are assumed to be zero.  

These comparison coefficients designate weighted averages of the level-means that are to be 
statistically tested. The null hypothesis is that the weighted average is zero. The alternative 
hypothesis is that the weighted average is nonzero. The weights (comparison coefficients) are 
specified here in this box.  

As an example, suppose you want to compare the average of the first two levels with the average 
of the last two levels in a six-level factor. You would enter -1 -1 0 0 1 1. 

As a second example, suppose you want to compare the average of the first two levels with the 
average of the last three levels in a six-level factor. The custom contrast would be -3 -3 0 2 2 2. 

Note that in each example, weights were used that sum to zero. Ones were not used in the second 
example because the result would not sum to zero. 
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Comparisons Using a User-Specified 
Contrast (L) Matrix 

L-Matrix Variables 
Specify one or more variables (columns) containing a contrast matrix that you want to test. This 
allows you to test any contrast you want. The layout of the contrast matrix is identical to the 
layout that is displayed when the L-Matrices are output. Hence, we suggest you first run an 
analysis, output the L-Matrices, and then use these output L-matrices as a template.  

Note: Only one L-matrix can be entered at a time. If you want create multiple tests, you will have 
to do multiple runs. 

Covariates Tab 
This panel is used to define the covariate values at which means and comparisons of other factors 
will be computed. 

Covariate Variable Settings – Default 
Factor Comparisons 
This section allows the user to specify the default covariate value(s) at which means of other 
factors will be computed. 

Compute Means at these Values 
This is the value (or values) used for each covariate that is not specified under Covariate Variable 
below. Means and comparisons are computed at this value. 

Covariate Variable Settings – User-
Specified Covariate Settings 
This section allows the user to specify the covariate value(s) at which means and comparisons of 
other factors will be computed. 

Covariate Variable 
Specify a Covariate Variable for which means and comparisons will be computed at a specific 
value. Covariates specified here must be in the Covariate Variables list of the Variables tab. 

Compute Means at these Values 
Specify one or more values of the corresponding Covariate Variable at which means and planned 
comparisons will be calculated. A separate analysis is calculated for each value entered here. 
When more than one Covariate Variable is specified, a separate analysis is carried out for each 
combination of covariate values. 
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Reports Tab 
The following options control which plots and reports are displayed.  

Select Reports 

Run Summary Report 
Check this box to obtain a summary of the likelihood type, the model, the iterations, the resulting 
likelihood/AIC, and run time. 

Variance Estimates Report 
Check this box to obtain estimates of random and repeated components of the model. 

Hypothesis Tests Report 
Check this box to obtain F-Tests for all terms in the Fixed (Means) Specification (see Variables 
tab). 

L-Matrices – Terms Report 
Check this box to obtain L matrices for each term in the model. Each L matrix describes the 
linear combination of the betas that is used to test the corresponding term in the model. 

Caution: Selecting this option can generate a very large amount of output, as the L matrices can 
be very numerous and lengthy. 

Comparisons by Fixed Effects Report 
Check this box to obtain planned comparison tests, comparing levels of the fixed effects. Details 
of the comparisons to be made are specified under the Comparisons and Covariates tabs. When 
more than one covariate value is specified under the Covariates tab, the comparisons are grouped 
such that for each fixed effect, comparisons for all covariate(s) values are displayed. 

Compare to Comparisons by Covariate Values. 

Comparisons by Covariate Values Report 
Check this box to obtain planned comparison tests, comparing levels of the fixed effects. Details 
of the comparisons to be made are specified under the Comparisons and Covariates tabs. When 
more than one covariate value is specified under the Covariates tab, the comparisons are grouped 
such that for each value of the covariate(s), a new set of comparisons is displayed. 

Compare to Comparisons by Fixed Effects. 

L-Matrices – Comparisons Report 
Check this box to obtain L matrices for each planned comparison. Each L matrix describes the 
linear combination of the betas that is used to test the corresponding comparison. 

Caution: Selecting this option can generate a very large amount of output, as the L matrices can 
be very numerous and lengthy. 

Means by Fixed Effects Report 
Check this box to obtain means and confidence limits for each fixed effect level. When more than 
one covariate value is specified under the Covariates tab, the means are grouped such that for 
each fixed effect, means for all covariate(s) values are displayed. 

Compare to Means by Covariate Values. 
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Means by Covariate Values Report 
Check this box to obtain means and confidence limits for each fixed effect level. When more than 
one covariate value is specified under the Covariates tab, the means are grouped such that for 
each value of the covariate(s), a new set of means is displayed. 

Compare to Means by Fixed Effects. 

L-Matrices – LS Means Report 
Check this box to obtain L matrices for each least squares mean (of the fixed effects). Each L 
matrix describes the linear combination of the betas that is used to generate the least squares 
mean. 

Caution: Selecting this option can generate a very large amount of output, as the L matrices can 
be very numerous and lengthy. 

Fixed Effects Solution Report 
Check this box to obtain estimates, P-values and confidence limits of the fixed effects and 
covariates (betas). 

Asymptotic VC Matrix Report 
Check this box to obtain the asymptotic variance-covariance matrix of the random (and repeated) 
components of the model.. 

Vi Matrices (1st 3 Subjects) Report 
Check this box to display the Vi matrices of the first three subjects. 

Hessian Matrix Report 
Check this box to obtain the Hessian matrix. The Hessian matrix is directly associated with the 
variance-covariance matrix of the random (and repeated) components of the model. 

Select Plots 

Means Plots 
Check this box to obtain plots of means for each fixed effects term of the model. Details of the 
appearance of the plots are specified under the Means Plots and Symbols tabs. 

Subject Plots 
Check this box to obtain plots of the repeated values for each subject. Plots comparing main 
effects for each subject are also given. The repeated values for each subject are ordered according 
to the order the values appear in the data set. Details of the appearance of the plots are specified 
under the Subject Plots and Symbols tabs. 

Report Options 

Alpha 
Specify the alpha value (significance level) used for F-tests, T-tests, and confidence intervals. 
Alpha is the probability of rejecting the null hypothesis of equal means when it is actually true. 
Usually, an alpha of .05 is used. Typical choices for alpha range between .001 and .200. 
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Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. 

Show Notes 
Indicate whether to show the notes at the end of reports. Although these notes are helpful at first, 
they may tend to clutter the output. This option lets you omit them. 

Report Options – Decimal Places 

Effects/Betas ... Covariates 
Specify the number of digits after the decimal point to display on the output of values of this type. 
Note that this option in no way influences the accuracy with which the calculations are done. 

Enter 'General' to display all digits available. The number of digits displayed by this option is 
controlled by whether the PRECISION option is SINGLE or DOUBLE. 

Maximization Tab 
This tab controls the Newton-Raphson, Fisher-Scoring, and Differential Evolution likelihood-
maximization algorithms.  

Newton-Raphson / Fisher-Scoring 
Options 

Max Fisher Scoring Iterations 
This is the maximum number of Fisher Scoring iterations that occur in the maximum likelihood 
finding process. When Solution Method (Variables tab) is set to 'Newton-Raphson', up to this 
number of Fisher Scoring iterations occur before beginning Newton-Raphson iterations. 

Max Newton-Raphson Iterations 
This is the maximum number of Newton-Raphson iterations that occur in the maximum 
likelihood finding process. When Solution Method (Variables tab) is set to 'Newton-Raphson', 
Fisher-scoring iterations occur before beginning Newton-Raphson iterations. 

Lambda 
Each parameter's change is multiplied by this value at each iteration. Usually, this value can be 
set to one. However, it may be necessary to set this value to 0.5 to implement step-halving: a 
process that is necessary when the Newton-Raphson diverges.  

Note: this parameter only used by the Fisher-Scoring and Newton-Raphson methods. 

Convergence Criterion 
This procedure uses relative Hessian convergence (or the Relative Offset Orthogonality 
Convergence Criterion) as described by Bates and Watts (1981). 

Recommended: The default value, 1E-8, will be adequate for many problems. When the routine 
fails to converge, try increasing the value to 1E-6. 
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Differential Evolution Options 

Crossover Rate 
This value controls the amount of movement of the differential evolution algorithm toward the 
current best. Larger values accelerate movement toward the current best, but reduce the chance of 
locating the global maximum. Smaller values improve the chances of finding the global, rather 
than a local, solution, but increase the number of iterations until convergence. 

RANGE: Usually, a value between .5 and 1.0 is used.  

RECOMMENDED: 0.9. 

Mutation Rate 
This value sets the mutation rate of the search algorithm. This is the probability that a parameter 
is set to a random value within the parameter space. It keeps the algorithm from stalling on a local 
maximum.   

RANGE: Values between 0 and 1 are allowed.  

RECOMMENDED: 0.9 for random coefficients (complex) models or 0.5 for random effects 
(simple) models. 

Minimum Relative Change 
This parameter controls the convergence of the likelihood maximizer. When the relative change 
in the likelihoods from one generation to the next is less than this amount, the algorithm 
concludes that it has converged. The relative change is |L(g+1) - L(g)| / L(g) where L(g) is 
absolute value of the likelihood at generation 'g'. Note that the algorithm also terminates if the 
Maximum Generations are reached or if the number of individuals that are replaced in a 
generation is zero. The value 0.00000000001 (ten zeros) seems to work well in practice. Set this 
value to zero to ignore this convergence criterion. 

Solutions/Iteration 
This is the number of trial points (solution sets) that are used by the differential evolution 
algorithm during each iteration. In the terminology of differential evolution, this is the population 
size.  

RECOMMENDED: A value between 15 and 25 is recommended. More points may dramatically 
increase the running time. Fewer points may not allow the algorithm to converge. 

Max Iterations 
Specify the maximum number of differential evolution iterations used by the differential 
evolution algorithm. A value between 100 and 200 is usually adequate.  For large datasets, i.e., 
number of rows greater than 1000, you may want to reduce this number. 

Other Options 

Max Retries 
Specify the maximum number of retries to occur. During the maximum likelihood search process, 
the search may lead to an impossible combination of variance-covariance parameters (as defined 
by a matrix of variance-covariance parameters that is not positive definite). When such a 
combination arises, the search algorithm will begin again. Max Retries is the maximum number 
of times the process will re-start to avoid such combinations. 
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Zero (Algorithm Rounding) 
This cutoff value is used by the least-squares algorithm to lessen the influence of rounding error. 
Values lower than this are reset to zero. If unexpected results are obtained, try using a smaller 
value, such as 1E-32. Note that 1E-5 is an abbreviation for the number 0.00001. 

RECOMMENDED: 1E-10 or 1E-12. 

RANGE: 1E-3 to 1E-40. 

Variance Zero 
When an estimated variance component (diagonal element) is less than this value, the variance is 
assumed to be zero and all reporting is terminated since the algorithm has not converged properly. 

To correct this problem, remove the corresponding term from the Random Factors Model or 
simplify the Repeated Variance Pattern. Since the parameter is zero, why would you want to keep 
it? 

RECOMMENDED: 1E-6 or 1E-8. 

RANGE: 1E-3 to 1E-40. 

Correlation Zero 
When an estimated correlation (off-diagonal element) is less than this value, the correlation is 
assumed to be zero and all reporting is terminated since the algorithm has not converged properly. 

To correct this problem, remove the corresponding term from the Random Factors Model or 
simplify the Repeated Variance Pattern. Since the parameter is zero, why would you want to keep 
it? 

RECOMMENDED: 1E-6 or 1E-8. 

RANGE: 1E-3 to 1E-40. 

More Models Tab 
This tab allows the user to specify random and repeated model components in addition to those 
specified on the Variables tab. 

More Random Models (Subject Only) 

Model 
Specify the random (subject) component of the model here. For a Random Effects model, enter 
the subject variable here, e.g. 'Subject'. For a Random Coefficients model, enter the subject 
variable and the subject variable times the time variable, e.g. 'Subject  Subject*Time'. 

Every term of a random model must include the Subject variable as part of the term. 

In general, random models should be as simple as possible. 

Groups 
Specify a grouping variable here. A new set of parameters for this component will be generated 
for each unique value of this variable.  

WARNING: because this option can quickly double or triple the number of variance parameters 
in the model, extreme care must be exercised when using this option. 
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Covariances 
If this box is checked, the G-matrix (covariance matrix) will include covariances for each pair of 
variance components (diagonal element of the G-matrix). If the box is not checked, all off-
diagonal elements will be set to zero (the G-matrix will be diagonal). 

This option is commonly checked when you are fitting a random coefficient model. 

More Repeated Covariance Patterns 

Pattern 
Specify the type of R (error covariance) matrix to be generated. The usual type is the 'Diagonal' 
matrix. 

Groups 
Specify a grouping variable here. A new set of parameters for this component will be generated 
for each unique value of this variable.  

WARNING: because this option can quickly double or triple the number of variance parameters 
in the model, extreme care must be exercised when using this option. 

Means Plot Tab 
These options specify the plots of group means. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Y Scaling 
Specify the method for calculating the minimum and maximum along the vertical axis. Separately 
means that each plot is scaled independently. Uniform means that all plots use the overall 
minimum and maximum of the data. This option is ignored if a minimum or maximum is 
specified. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tick marks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 
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Means Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Connect All Points 
Check this box to connect the points on the plot with a line. The line is drawn sequentially, using 
the order of the rows on the database. 

Symbol Radius % 
Reduce (or increase) the radius of all plot symbols by this percentage amount. This option was 
added so that you can quickly resize all of the plot symbols with a single change. The value must 
be a number between 1 and 1000. 

Plot Settings – Legend 

Show Legend 
Indicate whether the legend is to be displayed. 

Legend Text 
Indicate the title text of the legend. Note that if two factors are being plotted, {G} is replaced by 
the appropriate factor name. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Plot Subtitle 
This is the text of the plot subtitle. This is usually used to display covariate values on the plot. 

Subject Plots Tab 
These options specify the subject plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 
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Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tick marks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Subject Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Plot Settings – Plot Grouped by 
Subject 
These options control the settings of the first subject plot, which is grouped by subject. 

Connect All Points 
Check this box to connect the points on the plot with a line. The line is drawn sequentially, using 
the order of the rows on the database. 

Symbol Radius % 
Reduce (or increase) the radius of all plot symbols by this percentage amount. This option was 
added so that you can quickly resize all of the plot symbols with a single change. The value must 
be a number between 1 and 1000. 

Plot Settings – Plots Grouped by 
Factor 
These options control the settings of the other subject plots, which are grouped by factor. 

Connect All Points 
Check this box to connect the points on the plot with a line. The line is drawn sequentially, using 
the order of the rows on the database. 

Symbol Radius % 
Reduce (or increase) the radius of all plot symbols by this percentage amount. This option was 
added so that you can quickly resize all of the plot symbols with a single change. The value must 
be a number between 1 and 1000. 

Plot Settings – Legend 

Show Legend 
Indicate whether the legend is to be displayed. 
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Legend Text 
Indicate the title text of the legend. Note that if two factors are being plotted, {G} is replaced by 
the appropriate factor name. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. The 
character {G} is replaced by the appropriate factor name. Press the button on the right of the field 
to specify the font of the text. 

Symbols Tab 
These options specify the symbols used in the plots. 

Plotting Symbols 

Group (1-15)  
The symbols used to represent the levels of a factor on the means plots. Group 1 represents the 
first level, Group 2 represents the second level, and so on. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Longitudinal Design (One Between-Subject 
Factor, One Within-Subject Factor, One Covariate) 
This example has two purposes:  

1. Acquaint the reader with the output for all output options. In only this example, each 
heading of each section of the output is described in detail. 

2. Describe a typical analysis of a longitudinal design. A portion of this example involves 
the comparison of options for the Repeated Variance Pattern. There is some discussion as 
the output is presented and annotated, with a fuller discussion of model refinement and 
covariance options at the end of this example.  

In a longitudinal design, subjects are measured more than once, usually over time. This example 
presents the analysis of a longitudinal design in which there is one between-subjects factor, one 
within-subjects factor (Time), and a covariate. Two drugs (Kerlosin and Laposec) are compared 
to a placebo for their effectiveness in reducing pain following a surgical eye procedure. A 
standard pain measurement for each patient is measured at 30 minute intervals following surgery 
and administration of the drug (or placebo). Six measurements, with the last at Time = 3 hours, 
are made for each of the 21 patients (7 per group). A blood pressure measurement of each 
individual at the time of pain measurement is measured as a covariate. The researchers wish to 
compare the drugs at the covariate value of 140. 

PAIN Dataset 

Drug Patient Time Cov Pain 
Kerlosin 1 0.5 125 68 
Kerlosin 1 1 196 67 
Kerlosin 1 1.5 189 61 
Kerlosin 1 2 135 57 
Kerlosin 1 2.5 128 43 
Kerlosin 1 3 151 37 
Kerlosin 2 0.5 215 75 
Kerlosin 2 1 151 68 
Kerlosin 2 1.5 191 62 
Kerlosin 2 2 212 47 
Kerlosin 2 2.5 127 46 
Kerlosin 2 3 133 42 
. . . . . 
. . . . . 
. . . . . 
Placebo 21 2 129 73 
Placebo 21 2.5 216 68 
Placebo 21 3 158 70 
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The following plot shows the relationship among all variables except the covariate. 
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To run the analysis using the Mixed Models procedure, you can enter the values according to the 
instructions below (beginning with Step 3) or load the completed template Example 1 from the 
Template tab of the Mixed Models window. 

1 Open the PAIN dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file PAIN.s0. 
• Click Open. 

2 Open the Mixed Models window. 
• On the menus, select Analysis, then Mixed Models. The Mixed Models procedure will 

be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Mixed Models window, select the Variables tab.  
• Double-click in the Response Variable text box. This will bring up the variable selection 

window.  
• Select Pain from the list of variables and then click Ok. ‘Pain’ will appear in the 

Response Variable box.  
• Double-click in the Subject Variable text box. This will bring up the variable selection 

window.  
• Select Patient from the list of variables and then click Ok. ‘Patient’ will appear in the 

Subject Variable box. 
• Select Time for the Time Variable text box.  
• Select Drug, Time for the Factor (Categorical) Variables text box.  
• Select Cov for the Covariate (Continuous) Variables text box.  

4 Specify the model. 
• Enter Drug Time Drug*Time Cov Drug*Cov Time*Cov Drug*Time*Cov under 

Model for the Fixed Effects Model.  
• Enter Patient under Model for the Random Model (Subject Terms Only).  
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5 Specify the likelihood options. 
• Leave the Likelihood as REML and the Solution Method as Newton-Raphson.  

6 Specify the comparisons. 
• On the Mixed Models window, select the Comparisons tab.  
• Select Drug as the first Factor Variable. Select All Pairs for the Comparison. 
• Select Time as the second Factor Variable. Select Baseline vs Each for the 

Comparison. Enter 0.5 for Baseline. 

7 Specify the covariate. 
• On the Mixed Models window, select the Covariates tab.  
• Select Cov as a Covariate Variable. Enter 140 for Compute Means at these values.  

8 Specify the reports. 
• On the Mixed Models window, select the Reports tab.  
• Check all report and plot checkboxes except L Matrices – Comparisons and L Matrices 

– LS Means.  

9 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Run Summary Section 
 

Run Summary Section 
 
Parameter Value 
Likelihood Type Restricted Maximum Likelihood 
Fixed Model DRUG+TIME+COV+DRUG*TIME+DRUG*COV+TIME*COV+ 
   DRUG*T ME*COV I
Random Model PATIENT 
Repeated Model Diagonal 
 
Number of Rows 126 
Number of Subjects 21 
 
Solution Type Newton-Raphson 
Fisher Iterations  4 of a possible 10 
Newton Iterations  1 of a possible 40 
Max Retries 1  0
Lambda 1 
 
Log Likelihood -369.16 
-2 Log Likelihood 738.31 
AIC (Smaller Better) 742.31 
 
Convergence Normal 
Run Time (Seconds) 8.515625 

 

This section provides a summary of the model and the iterations toward the maximum log 
likelihood. 

Likelihood Type 
This value indicates that restricted maximum likelihood was used rather than maximum 
likelihood. 
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Fixed Model 
The model shown is that entered as the Fixed Factors Model of the Variables tab. The model 
includes fixed terms and covariates. 

Random Model 
The model shown is that entered as the Random Factors Model of the Variables tab.  

Repeated Model 
The pattern shown is that entered as the Repeated (Time) Variance Pattern of the Variables tab.  

Number of Rows 
The number of rows processed from the database.  

Number of Subjects 
The number of unique subjects from the database.  

Solution Type 
The solution type is method used for finding the maximum (restricted) maximum likelihood 
solution. Newton-Raphson is the recommended method. 

Fisher Iterations 
Some Fisher-Scoring iterations are used as part of the Newton-Raphson algorithm. The ‘4 of a 
possible 10’ means four Fisher-Scoring iterations were used, while ten was the maximum that 
were allowed (as specified on the Maximization tab). 

Newton Iterations 
The ‘1 of a possible 40’ means one Newton-Raphson iteration was used, while forty was the 
maximum allowed (as specified on the Maximization tab). 

Max Retries 
The maximum number of times that lambda was changed and new variance-covariance 
parameters found during an iteration was ten. If the values of the parameters result in a negative 
variance, lambda is divided by two and new parameters are generated. This process continues 
until a positive variance occurs or until Max Retries is reached. 

Lambda 
Lambda is a parameter used in the Newton-Raphson process to specify the amount of change in 
parameter estimates between iterations. One is generally an appropriate selection. When 
convergence problems occur, reset this to 0.5.  

If the values of the parameters result in a negative variance, lambda is divided by two and new 
parameters are generated. This process continues until a positive variance occurs or until Max 
Retries is reached. 

Log Likelihood 
This is the log of the likelihood of the data given the variance-covariance parameter estimates. 
When a maximum is reached, the algorithm converges. 

-2 Log Likelihood 
This is minus 2 times the log of the likelihood. When a minimum is reached, the algorithm 
converges. 
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AIC 
The Akaike Information Criterion is used for comparing covariance structures in models. It gives 
a penalty for increasing the number of covariance parameters in the model. 

Convergence 
‘Normal’ convergence indicates that convergence was reached before the limit. 

Run Time (Seconds) 
The run time is the amount of time used to solve the problem and generate the output. 

Random Component Parameter Estimates (G Matrix) 
 

Random Component Parameter Estimates (G Matrix) 
 
Component Parameter Estimated Model 
Number Number Value Term 
1 1 1.6343 Patient 

 

This section gives the random component estimates according to the Random Factors Model 
specifications of the Variables tab. 

Component Number 
A number is assigned to each random component. The first component is the one specified on the 
variables tab. Components 2-5 are specified on the More Models tab. 

Parameter Number 
When the random component model results in more than one parameter for the component, the 
parameter number identifies parameters within the component. 

Estimated Value 
The estimated value 1.6343 is the estimated patient variance component. 

Model Term 
Patient is the name of the random term being estimated. 

Repeated Component Parameter Estimates (R Matrix) 
 

Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter Estimated Parameter 
Number Number Value Type 
1 1 23.5867 Diagonal (Variance) 

 

This section gives the repeated component estimates according to the Repeated Variance Pattern 
specifications of the Variables tab.  

Component Number 
A number is assigned to each repeated component. The first component is the one specified on 
the variables tab. Components 2-5 are specified on the More Models tab. 
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Parameter Number 
When the repeated pattern results in more than one parameter for the component, the parameter 
number identifies parameters within the component. 

Estimated Value 
The estimated value 23.5867 is the estimated residual (error) variance. 

Parameter Type 
The parameter type describes the structure of the R matrix that is estimated, and is specified by 
the Repeated Component Pattern of the Variables tab. 

Term-by-Term Hypothesis Test Results 
 

Term-by-Term Hypothesis Test Results 
 
Model  Num Denom Prob 
Term F-Value DF DF Level 
Drug 1.82 2 89.0 0.1677 
Time 0.98 5 88.4 0.4358 
Cov 3.30 1 87.1 0.0726 
Drug*Time 0.86 10 87.0 0.5708 
Drug*Cov 0.77 2 86.8 0.4662 
Time*Cov 1.22 5 88.5 0.3078 
Drug*Time*Cov 1.07 10 87.0 0.3947 
 
These F-Values test Type-III (adjusted last) hypotheses. 

 

This section contains a F-test for each component of the Fixed Component Model according to 
the methods described by Kenward and Roger (1997). 

Model Term 
This is the name of the term in the model. 

F-Value 
The F-Value corresponds to the L matrix used for testing this term in the model. The F-Value is 
based on the F approximation described in Kenward and Roger (1997). 

Num DF 
This is the numerator degrees of freedom for the corresponding term. 

Denom DF 
This is the approximate denominator degrees of freedom for this comparison as described in 
Kenward and Roger (1997). 

Prob Level 
The Probability Level (or P-value) gives the strength of evidence (smaller Prob Level implies 
more evidence) that a term in the model has differences among its levels, or a slope different from 
zero in the case of covariate. It is the probability of obtaining the corresponding F-Value (or 
greater) if the null hypothesis of equal means (or no slope) is true. 
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Individual Comparison Hypothesis Test Results 
 

Individual Comparison Hypothesis Test Results 
Covariates: Cov=140.00 
 Comparison    Raw Bonferroni 
Comparison/ Mean  Num Denom Prob Prob 
Covariate(s) Difference F-Value DF DF Level Level 
Drug  43.18 2 32.8 0.0000  
Drug: Kerlosin - Laposec -3.47 4.23 1 37.7 0.0467 0.1402 [3] 
Drug: Kerlosin - Placebo -13.60 78.75 1 28.9 0.0000 0.0000 [3] 
Drug: Laposec - Placebo -10.13 39.47 1 33.8 0.0000 0.0000 [3] 
Time  46.51 5 82.3 0.0000  
Time: 0.5 - 1 2.81 1.36 1 87.0 0.2467 1.0000 [5] 
Time: 0.5 - 1.5 8.19 20.23 1 82.7 0.0000 0.0001 [5] 
Time: 0.5 - 2 11.30 29.22 1 79.6 0.0000 0.0000 [5] 
Time: 0.5 - 2.5 21.26 122.12 1 83.6 0.0000 0.0000 [5] 
Time: 0.5 - 3 22.26 152.66 1 81.0 0.0000 0.0000 [5] 
Drug*Time  5.38 10 81.1 0.0000  
Drug = Kerlosin, Time: 0.5 - 1 7.04 3.70 1 86.3 0.0578 0.8674 [15] 
Drug = Kerlosin, Time: 0.5 - 1.5 10.05 9.45 1 84.9 0.0028 0.0426 [15] 
Drug = Kerlosin, Time: 0.5 - 2 19.70 19.57 1 77.8 0.0000 0.0005 [15] 
Drug = Kerlosin, Time: 0.5 - 2.5 34.29 118.81 1 80.8 0.0000 0.0000 [15] 
(report continues) 
 

This section shows the F-tests for comparisons of the levels of the fixed terms of the model 
according to the methods described by Kenward and Roger (1997). The individual comparisons 
are grouped into subsets of the fixed model terms. 

Comparison/Covariate(s) 
This is the comparison being made. The first line is ‘Drug’. On this line, the levels of drug are 
compared when the covariate is equal to 140. The second line is ‘Drug: Placebo – Kerlosin’. On 
this line, Kerlosin is compared to Placebo when the covariate is equal to 140. 

Comparison Mean Difference 
This is the difference in the least squares means for each comparison. 

F-Value 
The F-Value corresponds to the L matrix used for testing this comparison. The F-Value is based 
on the F approximation described in Kenward and Roger (1997). 

Num DF 
This is the numerator degrees of freedom for this comparison.  

Denom DF 
This is the approximate denominator degrees of freedom for this comparison as described in 
Kenward and Roger (1997). 

Raw Prob Level 
The Raw Probability Level (or Raw P-value) gives the strength of evidence for a single 
comparison, unadjusted for multiple testing. It is the single test probability of obtaining the 
corresponding difference if the null hypothesis of equal means is true. 

Bonferroni Prob Level 
The Bonferroni Prob Level is adjusted for multiple tests. The number of tests adjusted for is 
enclosed in brackets following each Bonferroni Prob Level. For example, 0.8674 [15] signifies 
that the probability the means are equal, given the data, is 0.8674, after adjusting for 15 tests. 
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Least Squares (Adjusted) Means 
 

Least Squares (Adjusted) Means 
Covariates: Cov=140.00 
   95.0% 95.0%  
  Standard Lower Upper  
  Error Conf. Limit Conf. Limit  
Name Mean of Mean for Mean for Mean DF 
Intercept 
Intercept 64.11 0.66 62.78 65.45 33.5 
Drug 
Kerlosin 58.43 1.14 56.11 60.74 32.9 
Laposec 61.89 1.24 59.38 64.40 42.3 
Placebo 72.02 1.03 69.91 74.14 24.8 
Time 
0.5 75.08 1.39 72.32 77.85 89.8 
1 72.27 1.99 68.32 76.22 89.9 
1.5 66.89 1.22 64.46 69.32 89.3 
2 63.79 1.63 60.55 67.02 90.0 
2.5 53.82 1.37 51.09 56.55 89.7 
3 52.82 1.20 50.43 55.22 89.2 
Drug*Time 
Kerlosin, 0.5 76.07 2.60 70.90 81.23 89.8 
Kerlosin, 1 69.02 2.64 63.78 74.26 90.0 
Kerlosin, 1.5 66.02 2.05 61.94 70.10 89.2 
Kerlosin, 2 56.36 3.78 48.85 63.88 89.9 
Kerlosin, 2.5 41.78 1.90 38.00 45.55 88.6 
Kerlosin, 3 41.30 1.99 37.34 45.27 89.0 
Laposec, 0.5 69.44 2.37 64.73 74.15 89.8 
Laposec, 1 71.92 5.00 61.99 81.85 89.5 
Laposec, 1.5 62.50 2.18 58.17 66.82 89.4 
Laposec, 2 62.48 2.28 57.96 67.01 89.8 
Laposec, 2.5 53.42 1.97 49.50 57.34 88.9 
Laposec, 3 51.59 2.21 47.20 55.98 89.6 
Placebo, 0.5 79.74 2.25 75.27 84.22 89.6 
Placebo, 1 75.87 1.91 72.08 79.67 88.6 
Placebo, 1.5 72.16 2.13 67.93 76.39 89.3 
Placebo, 2 72.52 2.09 68.37 76.67 89.3 
Placebo, 2.5 66.27 3.08 60.14 72.39 90.0 
Placebo, 3 65.58 2.05 61.50 69.65 89.1 

 

This section gives the adjusted means for the levels of each fixed factor when Cov = 140. 

Name 
This is the level of the fixed term that is estimated on the line. 

Mean 
The mean is the estimated least squares (adjusted or marginal) mean at the specified value of the 
covariate. 

Standard Error of Mean 
This is the standard error of the mean. 

95.0% Lower (Upper) Conf. Limit for Mean 
These limits give a 95% confidence interval for the mean. 

DF 
The degrees of freedom used for the confidence limits are calculated using the method of 
Kenward and Roger (1997). 
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Means Plots 
 

Means Plots 
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These plots show the means broken up into the categories of the fixed effects of the model. Some 
general trends that can be seen are those of pain decreasing with time and lower pain for the two 
drugs after two hours. 

Subject Plots 
 

Subject Plots 
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Each set of connected dots of the Subject plots show the repeated measurements on the same 
subject. The second plot is perhaps the most telling, as it shows a separation of pain among drugs 
after 2 hours. 

Solution for Fixed Effects 
 

Solution for Fixed Effects 
 
     95.0% 95.0%  
  Effect Effect  Lower Upper  
Effect Effect Estimate Standard Prob Conf. Limit Conf. Limit  
No. Name (Beta) Error Level of Beta of Beta DF 
1 Intercept 66.8296 7.4693 0.0000 51.9900 81.6692 89.8 
2 (Drug="Kerlosin") 
  -9.4849 11.9162 0.4282 -33.1595 14.1898 89.7 
3 (Drug="Laposec") 
  -16.5164 14.6176 0.2615 -45.5591 12.5264 89.5 
4 (Drug="Placebo") 
  0.0000 0.0000     
5 (Time=0.5) 23.0382 12.0137 0.0584 -0.8336 46.9099 88.8 
6 (Time=1) -4.9520 10.5394 0.6396 -25.9029 15.9988 86.2 
7 (Time=1.5) 16.5033 12.3512 0.1850 -8.0451 41.0518 87.2 
8 (Time=2) 10.8739 14.7800 0.4640 -18.5236 40.2714 82.9 
9 (Time=2.5) 3.0828 12.5528 0.8066 -21.8933 28.0589 81.0 
10 (Time=3) 0.0000 0.0000     
11 Cov -0.0089 0.0461 0.8467 -0.1004 0.0826 89.6 
(report continues) 
 

This section shows the model estimates for all the model terms (betas). 
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Effect No. 
This number identifies the effect of the line. 

Effect Name 
The Effect Name is the level of the fixed effect that is examine on the line. 

Effect Estimate (Beta) 
The Effect Estimate is the beta-coefficient for this effect of the model. For main effects terms the 
number of effects per term is the number of levels minus one. An effect estimate of zero is given 
for the last effect(s) of each term. There may be several zero estimates for effects of interaction 
terms. 

Effect Standard Error 
This is the standard error for the corresponding effect. 

Prob Level 
The Prob Level tests whether the effect is zero. 

95.0% Lower (Upper) Conf. Limit of Beta 
These limits give a 95% confidence interval for the effect. 

DF 
The degrees of freedom used for the confidence limits and hypothesis tests are calculated using 
the method of Kenward and Roger (1997). 

Asymptotic Variance-Covariance Matrix of Variance Estimates 
 

Asymptotic Variance-Covariance Matrix of Variance Estimates 
 
Parm G(1,1) R(1,1) 
G(1,1) 4.5645 -2.6362 
R(1,1) -2.6362 15.0707 

 

This section gives the asymptotic variance-covariance matrix of the variance components of the 
model. Here, the variance of the Patient variance component is 4.5645. The variance of the 
residual variance is 15.0707. 

Parm 
Parm is the heading for both the row variance parameters and column variance parameters. 

G(1,1) 
The two elements of G(1,1) refer to the component number and parameter number of the 
covariance parameter in G. 

R(1,1) 
The two elements of R(1,1) refer to the component number and parameter number of the 
covariance parameter in R. 
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Estimated Vi Matrix of Subject = X 
 

Estimated Vi Matrix of Subject = 1 
       
Vi 1 2 3 4 5 6 
1 25.2210 1.6343 1.6343 1.6343 1.6343 1.6343 
2 1.6343 25.2210 1.6343 1.6343 1.6343 1.6343 
3 1.6343 1.6343 25.2210 1.6343 1.6343 1.6343 
4 1.6343 1.6343 1.6343 25.2210 1.6343 1.6343 
5 1.6343 1.6343 1.6343 1.6343 25.2210 1.6343 
6 1.6343 1.6343 1.6343 1.6343 1.6343 25.2210 
 
 
Estimated Vi Matrix of Subject = 2 
       
Vi 1 2 3 4 5 6 
1 25.2210 1.6343 1.6343 1.6343 1.6343 1.6343 
2 1.6343 25.2210 1.6343 1.6343 1.6343 1.6343 
3 1.6343 1.6343 25.2210 1.6343 1.6343 1.6343 
4 1.6343 1.6343 1.6343 25.2210 1.6343 1.6343 
5 1.6343 1.6343 1.6343 1.6343 25.2210 1.6343 
6 1.6343 1.6343 1.6343 1.6343 1.6343 25.2210 
 
 
Estimated Vi Matrix of Subject = 3 
       
Vi 1 2 3 4 5 6 
1 25.2210 1.6343 1.6343 1.6343 1.6343 1.6343 
2 1.6343 25.2210 1.6343 1.6343 1.6343 1.6343 
3 1.6343 1.6343 25.2210 1.6343 1.6343 1.6343 
4 1.6343 1.6343 1.6343 25.2210 1.6343 1.6343 
5 1.6343 1.6343 1.6343 1.6343 25.2210 1.6343 
6 1.6343 1.6343 1.6343 1.6343 1.6343 25.2210 

 

This section gives the estimated variance-covariance matrix for each of the first three subjects. 

1 – 6  
Each of the 6 levels shown here represents one of the time values. That is 1 is for 0.5 hours, 2 is 
for 1 hour, 3 is for 1.5 hours, and so on. The number 25.2210 is calculated by adding the two 
variance estimates together, 1.6343 + 23.5867 = 25.2210. 

Hessian Matrix of Variance Estimates 
 

Hessian Matrix of Variance Estimates 
   
Parm G(1,1) R(1,1) 
G(1,1) 0.2437 0.0426 
R(1,1) 0.0426 0.0738 

 

The Hessian Matrix is directly related to the asymptotic variance-covariance matrix of the 
variance estimates. 

Parm 
Parm is the heading for both the row variance parameters and column variance parameters. 

G(1,1) 
The two elements of G(1,1) refer to the component number and parameter number of the 
covariance parameter in G. 
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R(1,1) 
The two elements of R(1,1) refer to the component number and parameter number of the 
covariance parameter in R. 

L Matrices 
 

L Matrix for Drug 
      
No. Effect Drug Time L1 2 L
1 Intercept     
2 Drug Kerlosin  1.0000 .0000 1
3 Drug Laposec  -1.0000  
4 Drug Placebo   -1.0000 
5 Time  0.5   
6 Time  1   
7 Time  1.5   
8 Time  2   
9 Time  2.5   
10 Time  3   
11 Cov     
12 Drug*Time Kerlosin 0.5 0.1667 0.1667 
13 Drug*Time Kerlosin 1 0.1667 0.1667 
14 Drug*Time Kerlosin 1.5 0.1667 0.1667 
15 Drug*Time Kerlosin 2 0.1667 0.1667 
16 Drug*Time Kerlosin 2.5 0.1667 0.1667 
17 Drug*Time Kerlosin 3 0.1667 .1667 0
18 Drug*Time Laposec 0.5 -0.1667  
19 Drug*Time Laposec 1 -0.1667  
20 Drug*Time Laposec 1.5 -0.1667  
21 Drug*Time Laposec 2 -0.1667  
22 Drug*Time Laposec 2.5 -0.1667  
23 Drug*Time Laposec 3 -0.1667  
24 Drug*Time Placebo 0.5  -0.1667 
25 Drug*Time Placebo 1  -0.1667 
26 Drug*Time Placebo 1.5  -0.1667 
27 Drug*Time Placebo 2  -0.1667 
28 Drug*Time Placebo 2.5  -0.1667 
29 Drug*Time Placebo 3  -0.1667 
. . . . . . 
. . . . . . 
. . . . . . 
 
(report continues with several pages of output) 

 

The L matrices are used to form a linear combination of the betas corresponding to a specific 
hypothesis test or mean estimate. The L matrix in this example is used for testing whether there is 
a difference among the three levels of Drug. 

No. 
This number is used for identifying the corresponding beta term. 

Effect 
This column gives the model term. 

Factor Variables (e.g. Drug, Time) 
These columns identify the level of each fixed effect to which the coefficients of the L matrix of 
the same line correspond. 
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L1, L2, L3, … 
L1, L2, L3, … are a group of column vectors that combine to form an L matrix. The L matrix in 
this example is used for testing whether there is a difference among the three levels of Drug. 

Discussion of Example 1 Results 
The output shown for this example to this point has been for the full model with all interactions. 
It has been shown to illustrate the several sections of output that are available. In practice, when 
dealing with covariates, this model should be refined before making conclusions concerning the 
two drugs in question. The original F-test results are repeated below. 
 

Term-by-Term Hypothesis Test Results 
 
Model  Num Denom Prob 
Term F-Value DF DF Level 
Drug 1.82 2 89.0 0.1677 
Time 0.98 5 88.4 0.4358 
Cov 3.30 1 87.1 0.0726 
Drug*Time 0.86 10 87.0 0.5708 
Drug*Cov 0.77 2 86.8 0.4662 
Time*Cov 1.22 5 88.5 0.3078 
Drug*Time*Cov 1.07 10 87.0 0.3947 
 
These F-Values test Type-III (adjusted last) hypotheses. 

 

Using a hierarchical step-down approach to model improvement, we begin by removing the 
highest order term, the three-way interaction (F-Value = 1.07, Prob Level = 0.3947). The F-test 
results for this new model are as follows. 
 

Term-by-Term Hypothesis Test Results 
 
Model  Num Denom Prob 
Term F-Value DF DF Level 
Drug 4.17 2 96.8 0.0183 
Time 1.34 5 98.0 0.2531 
Cov 1.77 1 98.9 0.1866 
Drug*Time 7.44 10 84.1 0.0000 
Drug*Cov 2.23 2 92.4 0.1129 
Time*Cov 2.37 5 98.0 0.0450 
 
These F-Values test Type-III (adjusted last) hypotheses. 

 

Since all interaction Prob Levels are now quite small, this model appears to be reasonable. Some 
researchers might argue to continue refinement by removing the Drug*Cov interaction (F-Value 
= 2.23, Prob Level = 0.1129). Such an argument is also reasonable, but this is not the course that 
is pursued here, since a moderately low prob level indicates there may be a mild Drug*Cov 
interaction effect. 
The dominant prob level is the one associated with the Drug*Time interaction (F-Value = 7.44, 
Prob Level = 0.0000). This interaction can be clearly seen in the following scatter plot of the 
individual subjects. Note that the Placebo group does not decrease as rapidly as the Kerlosin 
group. 
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This interaction can be examined in greater detail by comparing the three levels of Drug at each 
time point (at the covariate value of 140). 
 

Individual Comparison Hypothesis Test Results 
Covariates: Cov=140.00 
 Comparison    Raw Bonferroni 
Comparison/ Mean  Num Denom Prob Prob 
Covariate(s) Difference F-Value DF DF Level Level 
Time = 0.5, Drug: Kerlosin - Laposec 6.16 4.33 1 100.0 0.0400 0.7206 [18] 
Time = 0.5, Drug: Kerlosin - Placebo -1.05 0.13 1 100.0 0.7205 1.0000 [18] 
Time = 0.5, Drug: Laposec - Placebo -7.21 6.37 1 100.0 0.0132 0.2370 [18] 
Time = 1, Drug: Kerlosin - Laposec 1.47 0.25 1 100.0 0.6161 1.0000 [18] 
Time = 1, Drug: Kerlosin - Placebo -7.29 6.21 1 99.9 0.0144 0.2583 [18] 
Time = 1, Drug: Laposec - Placebo -8.75 8.15 1 100.0 0.0052 0.0943 [18] 
Time = 1.5, Drug: Kerlosin - Laposec 2.35 0.72 1 99.9 0.3987 1.0000 [18] 
Time = 1.5, Drug: Kerlosin - Placebo -5.28 3.68 1 99.8 0.0578 1.0000 [18] 
Time = 1.5, Drug: Laposec - Placebo -7.63 7.57 1 99.9 0.0070 0.1267 [18] 
Time = 2, Drug: Kerlosin - Laposec -2.48 0.63 1 100.0 0.4277 1.0000 [18] 
Time = 2, Drug: Kerlosin - Placebo -14.12 19.44 1 100.0 0.0000 0.0005 [18] 
Time = 2, Drug: Laposec - Placebo -11.64 17.64 1 99.8 0.0001 0.0010 [18] 
Time = 2.5, Drug: Kerlosin - Laposec -11.05 16.57 1 99.7 0.0001 0.0017 [18] 
Time = 2.5, Drug: Kerlosin - Placebo -27.11 70.10 1 100.0 0.0000 0.0000 [18] 
Time = 2.5, Drug: Laposec - Placebo -16.06 26.37 1 100.0 0.0000 0.0000 [18] 
Time = 3, Drug: Kerlosin - Laposec -10.80 15.65 1 99.8 0.0001 0.0026 [18] 
Time = 3, Drug: Kerlosin - Placebo -25.19 84.92 1 99.8 0.0000 0.0000 [18] 
Time = 3, Drug: Laposec - Placebo -14.40 27.54 1 99.8 0.0000 0.0000 [18] 

 
The first Bonferroni-adjusted significant difference among levels of treatment occurs at Time = 2 
hours. At Time = 2, the Kerlosin and Laposec means are significantly different from the Placebo 
mean (Bonferroni Prob Levels = 0.0005 and 0.0010, respectively), but not from each other 
(Bonferroni Prob Level = 1.0000). At times 2.5 hours and 3 hours all levels of Drug are 
significantly different, with Kerlosin showing the greatest pain reduction. 
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Repeated and Random Component Specification  
Another issue that should be considered from the beginning of the analysis is the covariance 
structure of the repeated measurements over time. The specification to this point involved both 
random (G) and the repeated (R) components of the model. The G and the R matrices are used to 
form the complete variance-covariance matrix of all the responses using the formula V = ZGZ' + 
R. The G and the R used to this point have the form 
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where G has dimension 21 by 21 and R has dimension 126 by 126. The resulting variance-
covariance matrix, V = ZGZ' + R, has the form  
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where each 6 by 6 block corresponds to a single patient. The full dimension of this matrix is 6*21 
= 126 by 126. 

The estimates of  and  for the model without the three-way interaction are 0.7063 and 
24.6291, as shown in the output below. 

2
Sσ 2σ

 
Random Component Parameter Estimates (G Matrix) 
 
Component Parameter Estimated Model 
Number Number Value Term 
1 1 0.7063 Patient 

 
Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter Estimated Parameter 
Number Number Value Type 
1 1 24.6291 Diagonal (Variance) 
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The resulting 6 by 6 matrix for each subject (as shown in the output) is  
 

Estimated Vi Matrix of Subject = 1 
       
Vi 1 2 3 4 5 6 
1 25.3354 0.7063 0.7063 0.7063 0.7063 0.7063 
2 0.7063 25.3354 0.7063 0.7063 0.7063 0.7063 
3 0.7063 0.7063 25.3354 0.7063 0.7063 0.7063 
4 0.7063 0.7063 0.7063 25.3354 0.7063 0.7063 
5 0.7063 0.7063 0.7063 0.7063 25.3354 0.7063 
6 0.7063 0.7063 0.7063 0.7063 0.7063 25.3354 

 

The number 25.3354 comes from adding 0.7063 and 24.6291. 

Using Compound Symmetry as the Repeated Pattern Rather than Using a Random 
Component 
An alternative specification that yields the same results is to remove the Random Component of 
the Model (Patient) and change the Repeated (Time) Covariance Pattern to Compound 
Symmetry. In this case, there is no G matrix and the R matrix has the form 
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The true dimension of R is still 126 by 126 with 21 of the above matrices along the diagonal. The 
Repeated Component output becomes 
 

Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter Estimated Parameter 
Number Number Value Type 
1 1 25.3349 Diagonal (Variance) 
1 1 0.0279 Off-Diagonal (Correlation) 

 

Here, the estimate of  is 25.3349 and the estimate of ρ is 0.0279.  2σ
The V matrix now has the form  
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and the estimated block for each subject using the compound symmetry specification is 
 

Estimated Vi Matrix of Subject = 1 
       
Vi 1 2 3 4 5 6 
1 25.3349 0.7067 0.7067 0.7067 0.7067 0.7067 
2 0.7067 25.3349 0.7067 0.7067 0.7067 0.7067 
3 0.7067 0.7067 25.3349 0.7067 0.7067 0.7067 
4 0.7067 0.7067 0.7067 25.3349 0.7067 0.7067 
5 0.7067 0.7067 0.7067 0.7067 25.3349 0.7067 
6 0.7067 0.7067 0.7067 0.7067 0.7067 25.3349 

 

which is identical (to rounding error) to the previous result using random and repeated component 
specification. 

Other Repeated Patterns (AR(1)) 
It is natural to expect that the covariances of measurements made closer together in time are more 
similar than those at more distant times. Several covariance pattern structures have been 
developed for such cases. A complete list of the available structures in the Mixed Models 
procedure is given elsewhere in the chapter. Here, we will examine one of the more common 
structures: AR(1). 

Using the AR(1) covariance pattern, there are only two parameters,  and ρ , but the coefficient 
of  decreases exponentially as observations are farther apart. The R matrix has the form 
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The true dimension of R is 126 by 126 with 21 of the above matrices along the diagonal.  

The Repeated Component output becomes 
 

Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter Estimated Parameter 
Number Number Value Type 
1 1 25.3371 Diagonal (Variance) 
1 1 0.0659 Off-Diagonal (Correlation) 

 

Here, the estimate of  is 25.3371 and the estimate of ρ is 0.0659. 2σ
The estimated block for each subject using the AR(1) specification is 
 

Estimated Vi Matrix of Subject = 1 
       

Vi 1 2 3 4 5 6 
1 25.3371 1.6692 0.1100 0.0072 0.0005 0.0000 
2 1.6692 25.3371 1.6692 0.1100 0.0072 0.0005 
3 0.1100 1.6692 25.3371 1.6692 0.1100 0.0072 
4 0.0072 0.1100 1.6692 25.3371 1.6692 0.1100 
5 0.0005 0.0072 0.1100 1.6692 25.3371 1.6692 
6 0.0000 0.0005 0.0072 0.1100 1.6692 25.3371 
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The estimates of the covariance parameters using this formulation are closer to 0 as the time 
between measurements increases.  
The AIC value may be used to compare the various covariance structures. The AIC value for the 
AR(1) specification is 725.77. The AIC value for the compound symmetry (and random 
component) specification is 725.94. A smaller AIC value indicates a better model. Thus, the 
AR(1) specification provides a slight improvement over the compound symmetry (and random 
component) specification. 

Example 2a – Two-Sample T-Test Assuming Equal 
Variance (One Between-Subject Factor, No Within-
Subject Factors, No Covariates) 
Examples 2a and 2b show how the use of the Mixed Models procedure gives the same results as 
the corresponding two-sided test in the Two-Sample T-Test procedure. Example 2c shows the 
extension to include a covariate in a two-sample test, which cannot be done using the Two-
Sample T-Test procedure.  

One of the simplest, yet very commonly used, designs is the two-group design. In this design, 
subjects are randomly assigned to, or randomly drawn from, one of two groups. A response is 
measured, and the means are compared. The common technique for analysis in this scenario is the 
two-sample (two-group) T-test. The data set-up for this design is two variables. 

TWOSAMPLE Dataset 

Response Treatment 
121 Treatment 
105 Treatment 
115 Treatment 
130 Treatment 
134 Treatment 
136 Treatment 
122 Treatment 
114 Treatment 
. . 
. . 
. . 
190 Placebo 
186 Placebo 
183 Placebo 
175 Placebo 

 

Using the T-Test – Two-Sample procedure, the two groups would be compared by entering 
Response as the Response Variable and Treatment as the Group Variable. An excerpt of the 
output appears as follows. 
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Output Excerpt – Two-Sample T-Test Procedure  
 
 Equal-Variance T-Test Section 
 
 Alternative  Prob Reject H0  
 Hypothesis T-Value Level at .050  
 Difference <> 0 2.6278 0.012941 Yes  
 
The equivalence of means is rejected (Prob Level = 0.012941) at the 0.05 alpha level. 

The corresponding analysis in the Mixed Models procedure is similar, but an additional subject 
variable must be added. The subject variable identifies the subject to which each row belongs. 
When there are no repeated measurements, a subject variable may be created quickly by clicking 
any cell in a blank variable, selecting Fill from the Edit menu, and clicking on Fill. 

Two-Sample T-Test Example Dataset – TWOSAMPLE2 

Response Treatment Subject 
121 Treatment 1 
105 Treatment 2 
115 Treatment 3 
130 Treatment 4 
134 Treatment 5 
136 Treatment 6 
122 Treatment 7 
114 Treatment 8 
. . . 
. . . 
. . . 
190 Placebo 32 
186 Placebo 33 
183 Placebo 34 
175 Placebo 35 

 

To run the analysis in the Mixed Models procedure, you may enter the values according to the 
instructions below (beginning with Step 3) or load the completed template Example 2a from the 
Template tab of the Mixed Models window.  

1 Open the TWOSAMPLE2 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file TWOSAMPLE2.s0. 
• Click Open. 

2 Open the Mixed Models window. 
• On the menus, select Analysis, then Mixed Models. The Mixed Models procedure will 

be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  
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3 Specify the variables. 
• On the Mixed Models window, select the Variables tab.  
• Double-click in the Response Variable text box. This will bring up the variable selection 

window.  
• Select Response from the list of variables and then click Ok. ‘Response’ will appear in 

the Response Variable box.  
• Double-click in the Subject Variable text box. This will bring up the variable selection 

window.  
• Select Subject from the list of variables and then click Ok. ‘Subject’ will appear in the 

Subject Variable box. 
• Make sure there is no entry in the Time Variable box.  
• Select Treatment for the Factor (Categorical) Variables text box.  

4 Specify the model. 
• Enter Treatment under Model for the Fixed Effects Model.  

5 Specify the reports. 
• Leave all reports and plots at their default values.  

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Mixed Models Output 
 

Repeated Component Parameter Estimates (R Matrix) 
 
Component Paramter  Estimated Parameter 
Number Number  Value Type 
1 1  288.5088 Diagonal (Variance) 
 
Term-by-Term Hypothesis Test Results 
 
Model  Num Denom Prob 
Term F-Value DF DF Level 
Treatment 6.91 1 33.0 0.0129 

 

The Prob Level (0.0129) for the Treatment term is the same as the one given by the Two-Sample 
T-Test procedure. The estimate of the residual variance is 288.5088, which is the square of the 
standard deviation from the Two-Sample T-Test procedure. 
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Example 2b – Two-Sample T-Test Assuming Unequal 
Variance (One Between-Subject Factor, No Within-
Subject Factors, No Covariates) 
We now examine the TWOSAMPLE dataset without assuming equal variance among the two 
groups. The mean response is to be compared for a treatment and placebo. 

TWOSAMPLE Dataset 

Response Treatment 
121 Treatment 
105 Treatment 
115 Treatment 
130 Treatment 
134 Treatment 
136 Treatment 
122 Treatment 
114 Treatment 
. . 
. . 
. . 
190 Placebo 
186 Placebo 
183 Placebo 
175 Placebo 

 

The assumption of equal variance in this example is probably not a good one, as evidenced by the 
dot plot and equal variance tests shown below. The dot plot is obtained using the Dot Plots 
procedure, while the assumption tests are from the Two-Sample T-Test procedure. 

 
Dot Plot Section 
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Tests of Assumptions Section 
 
Assumption Value Probability Decision(.050) 
Variance-Ratio Equal-Variance Test 7.4226 0.000296 Reject equal variances 
Modified-Levene Equal-Variance Test 11.8596 0.001579 Reject equal variances 
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The variance of the placebo group is much larger than that of the treatment group. The Aspin-
Welch Unequal-Variance T-test should be used in place of the traditional T-test. An equivalent 
option is allowing for a separate variance for each group in the Mixed Models procedure.  

Using the T-Test – Two-Sample procedure, the two groups would be compared by entering 
Response as the Response Variable and Treatment as the Group Variable. An excerpt of the 
output appears as follows. 

Unequal Variance Output Excerpt – Two-Sample T-Test 
Procedure  
 
 Aspin-Welch Unequal-Variance Test Section 
  
 Alternative  Prob Reject H0  
 Hypothesis T-Value Level at .050  
 Difference <> 0 2.8107 0.009801 Yes  
 
 
The corresponding analysis in the Mixed Models procedure is similar, but an additional subject 
variable must be added. The subject variable identifies the subject to which each row belongs. 
When there are no repeated measurements, a subject variable may be created quickly by clicking 
any cell in a blank variable, selecting Fill from the Edit menu, and clicking on Fill. 

Two-Sample T-Test Example Dataset – TWOSAMPLE2 

Response Treatment Subject 
121 Treatment 1 
105 Treatment 2 
115 Treatment 3 
130 Treatment 4 
134 Treatment 5 
136 Treatment 6 
122 Treatment 7 
114 Treatment 8 
. . . 
. . . 
. . . 
190 Placebo 32 
186 Placebo 33 
183 Placebo 34 
175 Placebo 35 
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To run the analysis in the Mixed Models procedure, you may enter the values according to the 
instructions below (beginning with Step 3) or load the completed template Example 2b from the 
Template tab of the Mixed Models window. The difference in setup from Example 2a is the 
additional model specification in Step 4. 

1 Open the TWOSAMPLE2 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file TWOSAMPLE2.s0. 
• Click Open. 

2 Open the Mixed Models window. 
• On the menus, select Analysis, then Mixed Models. The Mixed Models procedure will 

be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Mixed Models window, select the Variables tab.  
• Double-click in the Response Variable text box. This will bring up the variable selection 

window.  
• Select Response from the list of variables and then click Ok. ‘Response’ will appear in 

the Response Variable box.  
• Double-click in the Subject Variable text box. This will bring up the variable selection 

window.  
• Select Subject from the list of variables and then click Ok. ‘Subject’ will appear in the 

Subject Variable box. 
• Make sure there is no entry in the Time Variable box.  
• Select Treatment for the Factor (Categorical) Variables text box.  

4 Specify the model. 
• Enter Treatment under Model for the Fixed Effects Model.  
• Enter Treatment in Groups for the Repeated (Time) Covariance Pattern.  

5 Specify the reports. 
• Leave all reports and plots at their default values.  

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Mixed Models Output 
 

Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter Group Estimated Parameter 
Number Number Number Value Type 
1 1 1 475.5436 Diagonal (Variance) 
1 1 2 64.0666 Diagonal (Variance) 
 
Term-by-Term Hypothesis Test Results 
 
Model  Num Denom Prob 
Term F-Value DF DF Level 
Treatment 7.90 1 23.5 0.0098 
 

The Prob Level (0.0098) is the same as the one given by the Aspin-Welch Unequal Variance test 
of the Two-Sample T-Test procedure. The two variance estimates, 475.5436 and 64.0666, 
correspond to the placebo and treatment groups, respectively, and are the squares of the 
individual group standard deviations given in the Two-Sample T-Test procedure. 
Examples 2a and 2b would likely be run using the Two-Sample T-Test procedure rather than the 
Mixed Models procedure. These examples are provided as an introduction to running the Mixed 
Models procedure for a simple case, as well as to show the flexibility of the Mixed Models 
procedure. Example 2c shows the extension of a two-sample test to the inclusion of a covariate. 
The Two-Sample T-Test procedure does not permit the inclusion of a covariate.  
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Example 2c – Two-Sample T-Test with a Covariate (One 
Between-Subject Factor, No Within-Subject Factors, One 
Covariate) 
The two-sample analyses shown in Examples 2a and 2b would likely be carried out using the T-
Test – Two-Sample procedure rather than the Mixed Models procedure because the T-Test 
procedure is easier to use and gives more specific output. However, when a covariate is measured 
for each subject there is no way to incorporate this into a simple T-test. The analysis becomes 
analysis of covariance, or ANCOVA. The General Linear Models or Multiple Regression 
procedures could be used, but in those, equal variances must be assumed. The flexibility we need 
for this analysis can only be achieved using the Mixed Models procedure. Adding a covariate 
only adds a couple of steps to the analysis without a covariate. The TWOSAMPLE2 dataset with 
the addition of a covariate, blood pressure (BP), becomes the TWOSAMPLECOV dataset. 

TWOSAMPLECOV Dataset 

Response Treatment Subject BPcov 
121 Treatment 1 110 
105 Treatment 2 104 
115 Treatment 3 128 
130 Treatment 4 136 
134 Treatment 5 96 
136 Treatment 6 124 
122 Treatment 7 111 
114 Treatment 8 102 
. . . . 
. . . . 
. . . . 
190 Placebo 32 103 
186 Placebo 33 133 
183 Placebo 34 114 
175 Placebo 35 126 

 

A scatter plot of the two groups is obtained from the Scatter Plots procedure. 
 
Scatter Plot Section 
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To run the analysis in the Mixed Models procedure, you may enter the values according to the 
instructions below (beginning with Step 3) or load the completed template Example 2c from the 
Template tab of the Mixed Models window.  

1 Open the TWOSAMPLECOV dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file TWOSAMPLECOV.s0. 
• Click Open. 

2 Open the Mixed Models window. 
• On the menus, select Analysis, then Mixed Models. The Mixed Models procedure will 

be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Mixed Models window, select the Variables tab.  
• Double-click in the Response Variable text box. This will bring up the variable selection 

window.  
• Select Response from the list of variables and then click Ok. ‘Response’ will appear in 

the Response Variable box.  
• Double-click in the Subject Variable text box. This will bring up the variable selection 

window.  
• Select Subject from the list of variables and then click Ok. ‘Subject’ will appear in the 

Subject Variable box. 
• Make sure there is no entry in the Time Variable box.  
• Select Treatment for the Factor (Categorical) Variables text box.  
• Select BPcov for the Covariate (Continuous) Variables text box.  

4 Specify the model. 
• Enter Treatment BPcov under Model for the Fixed Effects Model.  
• Enter Treatment in Groups for the Repeated (Time) Covariance Pattern.  

5 Specify the reports. 
• Leave all reports and plots at their default values.  

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Mixed Models Output Excerpt 
 

Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter Group Estimated Parameter 
Number Number Number Value Type 
1 1 1 475.0776 Diagonal (Variance) 
1 1 2 61.4903 Diagonal (Variance) 
 
Term-by-Term Hypothesis Test Results 
 
Model  Num Denom Prob 
Term F-Value DF DF Level 
Treatment 7.71 1 23.2 0.0107 
BPcov 1.55 1 18.7 0.2279 

 
Least Squares (Adjusted) Means 
Covariates: BPcov=117.86 
   95.0% 95.0%  
  Standard Lower Upper  
  Error Conf. Limit Conf. Limit  
Name Mean of Mean for Mean for Mean DF 
Intercept 
Intercept 151.33 2.69 145.78 156.88 23.2 
Treatment 
Placebo 158.79 5.00 148.29 169.30 18.0 
Treatment 143.87 1.96 139.67 148.07 14.3 

 

There is not strong evidence of a relationship between BPcov and Response (Prob Level = 
0.2279). The difference in Treatment levels (Placebo and Treatment) is still seen (Prob Level = 
0.0107). Because BPcov has little or no effect on the Response, the variance estimates for each 
group are similar to those obtain with including the covariate. Least squares adjusted means are 
given for the mean value of the covariate.  
Comparisons and/or least square means could be obtained for any value of the covariate by 
specifying the desired value under the Covariates tab of the Mixed Models procedure. Specifying 
a covariate value of BPcov = 130 gives the following output.  

 
Individual Comparison Hypothesis Test Results 
Covariates: BPcov=130.00 
 Comparison    Raw Bonferroni 
Comparison/ Mean  Num Denom Prob Prob 
Covariate(s) Difference F-Value DF DF Level Level 
Treatment  7.71 1 23.2 0.0107  
Treatment: Placebo - Treatment 14.92 7.71 1 23.2 0.0107 0.0107 [1] 
 
These F-Values test Type-III (adjusted last) hypotheses. 
 
Least Squares (Adjusted) Means 
Covariates: BPcov=130.00 
   95.0% 95.0%  
  Standard Lower Upper  
  Error Conf. Limit Conf. Limit  
Name Mean of Mean for Mean for Mean DF 
Intercept 
Intercept 153.53 3.22 146.97 160.09 30.9 
Treatment 
Placebo 160.99 5.28 150.02 171.95 21.1 
Treatment 146.07 2.70 140.34 151.79 16.2 
 

The F-test (F-Value = 7.71, Prob Level = 0.0107) is the same as the test for Treatment since the 
lines are assumed parallel in the fixed model. Thus, the F-test would be the same for any value of 
BPcov, unless the fixed model were changed to include the interaction Treatment*BPcov. 
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The least squares adjusted means (160.99 and 146.07) are adjusted to the covariate value of 130.  

Example 3a – One-Way ANOVA Design Assuming Equal 
Variance (One Between-Subject Factor, No Within-
Subject Factors, No Covariates) 
In a one-way layout design, two or more (usually three or more) groups are compared. Similar to 
the two-sample design, one column contains the response while another column identifies the 
groups. In this example, four plant food mixtures (salicylic acid, low iron, high iron, and no food) 
are compared in their ability to promote growth in beans. Twenty-eight plots are used in the 
experiment. The response is the weight of the beans harvested from the plot. 

BEAN Dataset 

Food Plot Weight 
Salicyl 1 256 
Salicyl 2 284 
Salicyl 3 255 
Salicyl 4 214 
Salicyl 5 283 
Salicyl 6 277 
Salicyl 7 263 
LowIron 8 293 
LowIron 9 326 
LowIron 10 313 
LowIron 11 319 
LowIron 12 321 
. . . 
. . . 
. . . 
None 26 238 
None 27 259 
None 28 243 

 

This dataset could be analyzed using the One-Way Analysis of Variance procedure. The four 
groups would be compared by entering Weight as the Response Variable and Food as the Factor 
Variable. 

Output Excerpt – One-Way ANOVA Procedure  
 

Analysis of Variance Table 
Source  Sum of Mean  Prob  
Term DF Squares Square F-Ratio Level  
A: Food 3 64812.39 21604.13 20.68 0.000001*  
S(A) 24 25068.57 1044.524 
Total (Adjusted) 27 89880.96 
Total 28 
* Term significant at alpha = 0.05 

 

The equivalence of means is rejected (F-Ratio = 20.68, Prob Level = 0.000001) at the 0.05 alpha 
level. 
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To run the analysis in the Mixed Models procedure, you may enter the values according to the 
instructions below (beginning with Step 3) or load the completed template Example 3a from the 
Template tab of the Mixed Models window. 

1 Open the BEAN dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file BEAN.s0. 
• Click Open. 

2 Open the Mixed Models window. 
• On the menus, select Analysis, then Mixed Models. The Mixed Models procedure will 

be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Mixed Models window, select the Variables tab.  
• Double-click in the Response Variable text box. This will bring up the variable selection 

window.  
• Select Weight from the list of variables and then click Ok. ‘Weight’ will appear in the 

Response Variable box.  
• Double-click in the Subject Variable text box. This will bring up the variable selection 

window.  
• Select Plot from the list of variables and then click Ok. ‘Plot’ will appear in the Subject 

Variable box. 
• Make sure there is no entry in the Time Variable box.  
• Select Food for the Factor (Categorical) Variables text box.  

4 Specify the model. 
• Enter Food under Model for the Fixed Effects Model.  

5 Specify the comparisons. 
• On the Mixed Models window, select the Comparisons tab.  
• Select All Pairs under Comparison for Default Factor Comparisons.  

6 Specify the reports. 
• Leave all reports and plots at their default values.  

7 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 



Mixed Models  220-81 

Mixed Models Output 
 

Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter Estimated Parameter 
Number Number Value Type 
1 1 1044.5237 Diagonal (Variance) 
 
 
Term-by-Term Hypothesis Test Results 
 
Model  Num Denom Prob 
Term F-Value DF DF Level 
Food 20.68 3 24.0 0.0000 
 
These F-Values test Type-III (adjusted last) hypotheses. 
 
Individual Comparison Hypothesis Test Results 
 Comparison    Raw Bonferroni 
Comparison/ Mean  Num Denom Prob Prob 
Covariate(s) Difference F-Value DF DF Level Level 
Food  20.68 3 24.0 0.0000  
Food: HighIron - LowIron 59.29 11.78 1 24.0 0.0022 0.0131 [6] 
Food: HighIron - None 121.71 49.64 1 24.0 0.0000 0.0000 [6] 
Food: HighIron - Salicyl 110.00 40.54 1 24.0 0.0000 0.0000 [6] 
Food: LowIron - None 62.43 13.06 1 24.0 0.0014 0.0083 [6] 
Food: LowIron - Salicyl 50.71 8.62 1 24.0 0.0072 0.0434 [6] 
Food: None - Salicyl -11.71 0.46 1 24.0 0.5042 1.0000 [6] 

 

The overall F-test (F-Value = 20.68, Prob Level = 0.0000) comparing the means indicates there is 
strong evidence for differences among means. The individual comparison tests, with appropriate 
Bonferroni adjustments for multiple testing, indicate there are differences in means among all 
levels except between None and Salicylic acid. 
The overall F-test (F-Value = 20.68, Prob Level = 0.0000) is identical to the one that results from 
the One-Way ANOVA procedure. If equal variances can reasonably assumed, the One-Way 
ANOVA procedure gives more detailed information than this procedure and should be used 
instead. However, for the case of unequal variances among groups, there is no way to use the 
One-Way Analysis of Variance procedure to analyze this dataset, except possibly with a 
transformation. In this example, the issue of unequal variances is important since the test for 
equal variance is rejected (see below). 
The following output is generated from the One-Way Analysis of Variance and Dot Plots 
procedures. 
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Tests of Assumptions Section 
 Test Prob Decision 
Assumption Value Level (0.05) 
Modified-Levene Equal-Variance Test 6.2834 0.002667 Reject 

 

It appears HighIron group has a much larger variance than the other groups. 
Comparing the levels of Food assuming different variance within each group using the Mixed 
Models procedure is shown in the next example. 

Example 3b – One-Way ANOVA Design Assuming 
Unequal Variance (One Between-Subject Factor, No 
Within-Subject Factors, No Covariates) 
In this example, four plant food mixtures (salicylic acid, low iron, high iron, and no food) are 
compared in their ability to promote growth in beans. Twenty-eight plots are used in the 
experiment. The response is the weight of the beans harvested from the plot. This example differs 
from the previous example in that the assumption of equal variances between groups is removed. 

BEAN Dataset 

Food Plot Weight 
Salicyl 1 256 
Salicyl 2 284 
Salicyl 3 255 
Salicyl 4 214 
Salicyl 5 283 
Salicyl 6 277 
Salicyl 7 263 
LowIron 8 293 
LowIron 9 326 
LowIron 10 313 
LowIron 11 319 
LowIron 12 321 
. . . 
. . . 
. . . 
None 26 238 
None 27 259 
None 28 243 

 

In this example, there is no way to use the One-Way Analysis of Variance procedure to analyze 
this dataset if unequal variances are assumed. The issue of unequal variances is important since 
an equal variance test is rejected (See the plots and equal variance test of the BEAN data below). 
The following output is generated from the One-Way Analysis of Variance and Dot Plots 
procedures. 
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Tests of Assumptions Section 
 Test Prob Decision 
Assumption Value Level (0.05) 
Modified-Levene Equal-Variance Test 6.2834 0.002667 Reject 

 

It appears HighIron group has a much larger variance than the other groups. 
To run the analysis in the Mixed Models procedure, you may enter the values according to the 
instructions below (beginning with Step 3) or load the completed template Example 3b from the 
Template tab of the Mixed Models window. The only difference in specification from the 
previous example is the additional entry in Step 4. 

1 Open the BEAN dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file BEAN.s0. 
• Click Open. 

2 Open the Mixed Models window. 
• On the menus, select Analysis, then Mixed Models. The Mixed Models procedure will 

be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Mixed Models window, select the Variables tab.  
• Double-click in the Response Variable text box. This will bring up the variable selection 

window.  
• Select Weight from the list of variables and then click Ok. ‘Weight’ will appear in the 

Response Variable box.  
• Double-click in the Subject Variable text box. This will bring up the variable selection 

window.  
• Select Plot from the list of variables and then click Ok. ‘Plot’ will appear in the Subject 

Variable box. 
• Make sure there is no entry in the Time Variable box.  
• Select Food for the Factor (Categorical) Variables text box.  

4 Specify the model. 
• Enter Food under Model for the Fixed Effects Model.  
• Enter Food in Groups for the Repeated (Time) Covariance Pattern.  
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5 Specify the comparisons. 
• On the Mixed Models window, select the Comparisons tab.  
• Select All Pairs under Comparison for Default Factor Comparisons.  

6 Specify the reports. 
• Leave all reports and plots at their default values.  

7 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Mixed Models Output 
 

Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter Group Estimated Parameter 
Number Number Number Value Type 
1 1 1 3174.2381 Diagonal (Variance) 
1 1 2 123.2857 Diagonal (Variance) 
1 1 3 290.6667 Diagonal (Variance) 
1 1 4 589.9048 Diagonal (Variance) 
 
 
Term-by-Term Hypothesis Test Results 
 
Model  Num Denom Prob 
Term F-Value DF DF Level 
Food 27.13 3 10.8 0.0000 
 
 
Individual Comparison Hypothesis Test Results 
 Comparison    Raw Bonferroni 
Comparison/ Mean  Num Denom Prob Prob 
Covariate(s) Difference F-Value DF DF Level Level 
Food  27.13 3 10.8 0.0000  
Food: HighIron - LowIron 59.29 7.46 1 6.5 0.0317 0.1899 [6] 
Food: HighIron - None 121.71 29.93 1 7.1 0.0009 0.0054 [6] 
Food: HighIron - Salicyl 110.00 22.50 1 8.2 0.0014 0.0083 [6] 
Food: LowIron - None 62.43 65.90 1 10.3 0.0000 0.0001 [6] 
Food: LowIron - Salicyl 50.71 25.24 1 8.4 0.0009 0.0053 [6] 
Food: None - Salicyl -11.71 1.09 1 10.8 0.3192 1.0000 [6] 
 

The overall F-test comparing the means indicates there is strong evidence for differences among 
means. The individual comparison tests indicate there are differences in means among all levels 
except between None and Salicylic acid. 
The Repeated Component Parameter Estimates section shows a different residual variance 
estimate for each of the four groups. The first variance estimate (3174.2381), corresponding to 
the high iron food mixture, is much larger than the others. 



Mixed Models  220-85 

Example 4 – ANCOVA Design (One Between-Subject 
Factor, No Within-Subject Factors, One Covariate) 
In this example, three weight loss treatments (and a placebo) are compared. Twenty-four patients 
are randomly assigned to the three treatments and the placebo. Weight loss is the response. The 
weight of each participant before treatment is measured as a covariate. The researchers wish to 
compare the levels of Treatment at low (190 lbs.), medium (230 lbs.), and high (270 lbs.) values 
of initial weight. 

WEIGHTLOSS Dataset 

Trt Patient IWeight Loss 
TrtA 1 197 3 
TrtA 2 245 4 
TrtA 3 233 9 
TrtA 4 239 -2 
TrtA 5 258 3 
TrtA 6 190 4 
TrtB 7 221 14 
TrtB 8 231 16 
TrtB 9 224 13 
TrtB 10 183 9 
TrtB 11 275 26 
TrtB 12 254 20 
. . . . 
. . . . 
. . . . 
Placebo 19 187 5 
Placebo 20 192 -1 
Placebo 21 250 2 
Placebo 22 236 6 
Placebo 23 221 3 
Placebo 24 206 1 

 

A scatter plot of the data is shown below. 
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This analysis could be run using the Multiple Regression procedure by entering Loss as the 
Dependent Variable, IWeight as a Numeric Independent Variable and Trt as a Categorical 
Independent Variable. The Default Contrast Type is set to Standard Set. The Custom Model is 
Trt|Iweight.  

Output Excerpt – Multiple Regression Procedure  
 

Analysis of Variance Detail Section 
Model   Sum of Mean  Prob Power 
Term DF R2 Squares Square F-Ratio Level (5%) 
Intercept 1  4592.667 4592.667 
Model 7 0.9682 4695.169 670.7384 69.613 0.0000 1.0000 
IWeight 1 0.0631 306.1491 306.1491 31.774 0.0000 0.9995 
Trt 3 0.0331 160.7248 53.57495 5.560 0.0083 0.8710 
IWeight*Trt 3 0.0822 398.6192 132.8731 13.790 0.0001 0.9990 
Error 16 0.0318 154.1646 9.635287 
Total(Adjusted) 23 1.0000 4849.333 210.8406 

 

The significant IWeight*Trt interaction (F-Ratio = 13.790, Prob Level = 0.0001) indicates there 
are differences among the slopes of the treatment groups. These results will be compared to those 
of the Mixed Models procedure in the output and discussion that follows. 
To run the analysis in the Mixed Models procedure, you may enter the values according to the 
instructions below (beginning with Step 3) or load the completed template Example 4 from the 
Template tab of the Mixed Models window. 

1 Open the WEIGHTLOSS dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file WEIGHTLOSS.s0. 
• Click Open. 

2 Open the Mixed Models window. 
• On the menus, select Analysis, then Mixed Models. The Mixed Models procedure will 

be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Mixed Models window, select the Variables tab.  
• Double-click in the Response Variable text box. This will bring up the variable selection 

window.  
• Select Loss from the list of variables and then click Ok. ‘Loss’ will appear in the 

Response Variable box.  
• Double-click in the Subject Variable text box. This will bring up the variable selection 

window.  
• Select Patient from the list of variables and then click Ok. ‘Patient’ will appear in the 

Subject Variable box. 
• Make sure there is no entry in the Time Variable box.  
• Select Trt for the Factor (Categorical) Variables text box.  
• Select IWeight for the Covariate (Continuous) Variables text box.  
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4 Specify the model. 
• Enter Trt IWeight Trt*IWeight under Model for the Fixed Effects Model.  

5 Specify the reports. 
• Leave all reports and plots at their default values.  

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Mixed Models Output 
 

Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter Estimated Parameter 
Number Number Value Type 
1 1 9.6353 Diagonal (Variance) 
 
Term-by-Term Hypothesis Test Results 
 
Model  Num Denom Prob 
Term F-Value DF DF Level 
Trt 5.56 3 16.0 0.0083 
IWeight 31.77 1 16.0 0.0000 
Trt*IWeight 13.79 3 16.0 0.0001 
 
Individual Comparison Hypothesis Test Results 
Covariates: IWeight=227.83 
 Comparison    Raw Bonferroni 
Comparison/ Mean  Num Denom Prob Prob 
Covariate(s) Difference F-Value DF DF Level Level 
Trt  89.78 3 16.0 0.0000  
Trt: Placebo - TrtA -0.49 0.06 1 16.0 0.8022 1.0000 [3] 
Trt: Placebo - TrtB -12.69 43.24 1 16.0 0.0000 0.0000 [3] 
Trt: Placebo - TrtC -26.61 186.07 1 16.0 0.0000 0.0000 [3] 
 
These F-Values test Type-III (adjusted last) hypotheses. 
 
Least Squares (Adjusted) Means 
Covariates: IWeight=227.83 
   95.0% 95.0%  
  Standard Lower Upper  
  Error Conf. Limit Conf. Limit  
Name Mean of Mean for Mean for Mean DF 
Intercept 
Intercept 12.95 0.66 11.54 14.35 16.0 
Trt 
Placebo 3.00 1.45 -0.07 6.07 16.0 
TrtA 3.49 1.27 0.80 6.18 16.0 
TrtB 15.69 1.28 12.98 18.39 16.0 
TrtC 29.61 1.31 26.84 32.39 16.0 
 

The Term-by-Term Hypothesis Test Results are identical to those given in the Multiple 
Regression procedure output. 
The Prob Level for the interaction Trt*IWeight confirms what is seen in the scatter plot: the 
slopes differ for the different treatments. Two important sections of the output that are available 
in the Mixed Models procedure that are not available in the Multiple Regression procedure are 
mean comparisons and least squares (adjusted) means at specific values of the covariates.  



220-88  Mixed Models 

The Individual Comparison Hypothesis Tests of the preceding output, however, are not very 
useful. They compare the placebo to each of the treatments at the mean of the covariate (IWeight 
= 227.83). To better understand the nature of the interaction, it is useful to compare the placebo to 
the three treatments at various values of the covariate. Some caution should be exercised with the 
number of values that are chosen because the probability levels (P-values) are adjusted according 
to the number of comparisons that are tested. Generally a low, medium, and high value of the 
covariate should suffice. 
The researchers wished to compare the levels of Treatment at low (190 lbs.), medium (230 lbs.), 
and high (270 lbs.) values of initial weight. Such values should be chosen prior to collecting the 
data or at least before looking at the results. Comparisons and means at these values of the 
covariate are output by selecting the Covariate tab, selecting IWeight under Covariate Variable, 
and entering 190 230 270 under Compute Means at these Values. The relevant output is shown in 
the section that follows. 

 
Individual Comparison Hypothesis Test Results 
Covariates: IWeight=190.00 
 Comparison    Raw Bonferroni 
Comparison/ Mean  Num Denom Prob Prob 
Covariate(s) Difference F-Value DF DF Level Level 
Trt  11.30 3 16.0 0.0003 0.0009 [3] 
Trt: Placebo - TrtA -1.94 0.43 1 16.0 0.5219 1.0000 [9] 
Trt: Placebo - TrtB -6.71 5.26 1 16.0 0.0357 0.3215 [9] 
Trt: Placebo - TrtC -15.22 29.96 1 16.0 0.0001 0.0005 [9] 
 
These F-Values test Type-III (adjusted last) hypotheses. 
 
Individual Comparison Hypothesis Test Results 
Covariates: IWeight=230.00 
 Comparison    Raw Bonferroni 
Comparison/ Mean  Num Denom Prob Prob 
Covariate(s) Difference F-Value DF DF Level Level 
Trt  94.27 3 16.0 0.0000 0.0000 [3] 
Trt: Placebo - TrtA -0.41 0.04 1 16.0 0.8394 1.0000 [9] 
Trt: Placebo - TrtB -13.03 43.69 1 16.0 0.0000 0.0001 [9] 
Trt: Placebo - TrtC -27.26 188.32 1 16.0 0.0000 0.0000 [9] 
 
These F-Values test Type-III (adjusted last) hypotheses. 
 
Individual Comparison Hypothesis Test Results 
Covariates: IWeight=270.00 
 Comparison    Raw Bonferroni 
Comparison/ Mean  Num Denom Prob Prob 
Covariate(s) Difference F-Value DF DF Level Level 
Trt  79.33 3 16.0 0.0000 0.0000 [3] 
Trt: Placebo - TrtA 1.12 0.07 1 16.0 0.7907 1.0000 [9] 
Trt: Placebo - TrtB -19.35 24.24 1 16.0 0.0002 0.0014 [9] 
Trt: Placebo - TrtC -39.30 112.97 1 16.0 0.0000 0.0000 [9] 
 
These F-Values test Type-III (adjusted last) hypotheses. 
 
Least Squares (Adjusted) Means 
Covariates: IWeight=190.00 
   95.0% 95.0%  
  Standard Lower Upper  
  Error Conf. Limit Conf. Limit  
Name Mean of Mean for Mean for Mean DF 
Intercept 
Intercept 7.96 1.06 5.72 10.19 16.0 
Trt 
Placebo 1.99 1.90 -2.03 6.01 16.0 
TrtA 3.93 2.27 -0.88 8.73 16.0 
TrtB 8.70 2.23 3.98 13.42 16.0 
TrtC 17.21 2.03 12.90 21.52 16.0 
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Least Squares (Adjusted) Means 
Covariates: IWeight=230.00 
   95.0% 95.0%  
  Standard Lower Upper  
  Error Conf. Limit Conf. Limit  
Name Mean of Mean for Mean for Mean DF 
Intercept 
Intercept 13.23 0.67 11.81 14.65 16.0 
Trt 
Placebo 3.06 1.51 -0.14 6.26 16.0 
TrtA 3.47 1.28 0.76 6.17 16.0 
TrtB 16.09 1.27 13.40 18.78 16.0 
TrtC 30.32 1.29 27.58 33.06 16.0 
 
Least Squares (Adjusted) Means 
Covariates: IWeight=270.00 
   95.0% 95.0%  
  Standard Lower Upper  
  Error Conf. Limit Conf. Limit  
Name Mean of Mean for Mean for Mean DF 
Intercept 
Intercept 18.51 1.24 15.88 21.14 16.0 
Trt 
Placebo 4.13 3.30 -2.87 11.13 16.0 
TrtA 3.00 2.53 -2.35 8.36 16.0 
TrtB 23.48 2.13 18.96 27.99 16.0 
TrtC 43.43 1.66 39.90 46.96 16.0 

 

Examination of the individual comparison hypothesis tests shows that the mean difference from 
the placebo for those with a higher initial weight is greater than the mean difference for those 
with a lower initial weight, with the exception of Treatment A, for which there is no significant 
improvement in weight loss over the placebo. 
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Example 5 – Factorial Design (Two Between-Subject 
Factors, No Within-Subject Factors, One Covariate) 
In a factorial design, more than one fixed factor is analyzed in a single experiment. One variable 
contains the response and two or more other variables identify the groups. In this example, a 
study is conducted to determine the effect of a growth hormone on trout growth at fish hatcheries. 
Twelve fish are compared in the study. Each of the 12 fish receives a different combination of 
hormone dose (none, low, or high) and amount of fish food (Level 1, Level 2, Level 3, or Level 
4). The response is increase in weight after 3 weeks in the tank. The length of each fish prior to 
treatment is measured as a covariate. 

FISH Dataset 

Fish Food Hormone Length Wtdiff 
1 Level1 None 5.4 1.408 
2 Level1 Low 6.2 2.808 
3 Level1 High 5.7 4.407 
4 Level2 None 5.3 1.813 
5 Level2 Low 2.9 2.618 
6 Level2 High 4.5 4.708 
7 Level3 None 6.1 2.786 
8 Level3 Low 5.4 5.247 
9 Level3 High 5.6 5.551 
10 Level4 None 5.0 2.971 
11 Level4 Low 4.8 5.618 
12 Level4 High 5.1 5.563 

 

A scatter plot of the data is shown below. 
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This analysis could be run using the Multiple Regression procedure by entering Wtdiff as the 
Dependent Variable, Length as a Numeric Independent Variable, and Food and Hormone as 

pe is set to Standard Set. The Custom 

O

Categorical Independent Variables. The Default Contrast Ty
Model is Food+Hormone+Length+Hormone*Length. 

utput Excerpt – Multiple Regression Procedure  
 

Analysis of Variance Detail Section 
Model   Sum of Mean  Prob Power 
Term DF R2 Squares Square F-Ratio Level (5%) 
Intercept 1  172.5057 172.5057 
Model 8 0.9426 25.00806 3.126008 6.155 0.0813 0.5013 
Food 3 0.3088 8.192474 2.730825 5.377 0.1003 0.4209 
Hormone 2 0.0042 0.1111072 5.555359E-02 0.109 0.8998 0.0571 
Length 1 0.0002 5.378415E-03 5.378415E-03 0.011 0.9245 0.0506 
Hormone*Length 2 0.0028 7.335056E-02 3.667528E-02 0.072 0.9319 0.0547 
Error 3 0.0574 1.523545 0.5078484 
Total(Adjusted) 11 1.0000 26.53161 2.411964 

 

None of the terms of the model are significant in this example. However, the model can be 
d 

edure, you may enter the values according to the 
instructions below (beginning with Step 3) or load the completed template Example 5 from the 

dels window. 

window, select Open. 
ta subdirectory of your NCSS directory. 

• Click on the file FISH.s0. 

odels window. 
ill 

• On the menus, select File, then New Template. This will fill the procedure with the 

xed Models window, select the Variables tab.  
ion 

ariable box.  

‘Fish’ will appear in the Subject 

• Select Food and Hormone for the Factor (Categorical) Variables text box.  
r the Covariate (Continuous) Variables text box.  

refined. These results will be compared to those of the Mixed Models procedure in the output an
discussion that follows. 
To run the analysis in the Mixed Models proc

Template tab of the Mixed Mo

1 Open the FISH dataset. 
• From the File menu of the NCSS Data 
• Select the Da

• Click Open. 

2 Open the Mixed M
• On the menus, select Analysis, then Mixed Models. The Mixed Models procedure w

be displayed.  

default template.  

3 Specify the variables. 
• On the Mi
• Double-click in the Response Variable text box. This will bring up the variable select

window.  
• Select Wtdiff from the list of variables and then click Ok. ‘Wtdiff’ will appear in the 

Response V
• Double-click in the Subject Variable text box. This will bring up the variable selection 

window.  
• Select Fish from the list of variables and then click Ok. 

Variable box. 
• Make sure there is no entry in the Time Variable box.  

• Select Length fo
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4 Specify the model. 
• Enter Food Hormone Length Hormone*Length under Model for the Fixed Effects 

ons. 
sons tab.  

• Select All Pairs under Comparison for Default Factor Comparisons.  

es.  

t Run Procedure. Alternatively, just click the Run button (the 
left-most button on the button bar at the top). 

M

Model.  

5 Specify the comparis
• On the Mixed Models window, select the Compari

6 Specify the reports. 
• Leave all reports and plots at their default valu

7 Run the procedure. 
• From the Run menu, selec

ixed Models Output 
 

Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter Estimated Parameter 
Number Number Value Type 
1 1 0.5078 Diagonal (Variance) 
 
 
Term-by-Term Hypothesis Test Results 
 
Model  Num Denom Prob 
Term F-Value DF DF Level 
Food 5.38 3 3.0 0.1003 
Hormone 0.11 2 3.0 0.8998 
Length 0.01 1 3.0 0.9245 
Hormone*Length 0.07 2 3.0 0.9319 
 
These F-Values test Type-III (adjusted last) hypotheses. 
 

None of the factors are significant in this example. The model should be refined before examining 
the remainder of the output. It is evident that the length of the fish prior to treatment has little 
effect on the response, or at least with this small sample size the effect of length is not detectable. 
Removing the two non-signficant terms associated with the length covariate and re-running the 
analysis gives the output that follows. 
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Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter  Estimated Parameter 
Number Number  Value Type 
1 1  0.3076 Diagonal (Variance) 
 
Term-by-Term Hypothesis Test Results 
 
Model  Num Denom Prob 
Term F-Value DF DF Level 
Food 9.09 3 6.0 0.0119 
Hormone 26.49 2 6.0 0.0011 
 
These F-Values test Type-III (adjusted last) hypotheses. 

 
 

Individual Comparison Hypothesis Test Results 
 Comparison    Raw Bonferroni 
Comparison/ Mean  Num Denom Prob Prob 
Covariate(s) Difference F-Value DF DF Level Level 
Food  9.09 3 6.0 0.0119  
Food: Level1 - Level2 -0.17 0.14 1 6.0 0.7172 1.0000 [6] 
Food: Level1 - Level3 -1.65 13.33 1 6.0 0.0107 0.0641 [6] 
Food: Level1 - Level4 -1.84 16.56 1 6.0 0.0066 0.0395 [6] 
Food: Level2 - Level3 -1.48 10.71 1 6.0 0.0170 0.1020 [6] 
Food: Level2 - Level4 -1.67 13.62 1 6.0 0.0102 0.0613 [6] 
Food: Level3 - Level4 -0.19 0.17 1 6.0 0.6904 1.0000 [6] 
 
Hormone  26.49 2 6.0 0.0011  
Hormone: High - Low 0.98 6.30 1 6.0 0.0459 0.1376 [3] 
Hormone: High - None 2.81 51.44 1 6.0 0.0004 0.0011 [3] 
Hormone: Low - None 1.83 21.73 1 6.0 0.0035 0.0104 [3] 

 

With the removal of the covariate terms, the results now show strong evidence of differences 
between levels of Food (F-Value = 9.09, Prob Level = 0.0119) and Hormone dose (F-Value = 
26.49, Prob Level = 0.0011). Individual comparisons indicate evidence that the Level 1 mean is 
different from the Level 4 mean (Bonferroni Prob Level = 0.0395). The High and the Low levels 
of Hormone are significantly different (Bonferroni Prob Levels = 0.0011 and 0.0104, 
respectively) from the level None. 
Similar results can be obtained using the General Linear Models procedure. However, the 
General Linear Models procedure would not allow the user to model different variances among 
groups, if this were desired. 
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Example 6 – Randomized Complete Block Design (No 
Between-Subject Factors, One Within-Subject Factor, No 
Covariates) 
In a study to compare 3 treatments, three patients from each of 14 doctors are randomly assigned 
to each of the three treatments. A single response is measured for each patient following 
treatment. The result is a randomized complete block design with 14 blocks (doctors). The goal is 
to determine whether there are any differences among the three treatments. The data are 
contained in the RCBD data set. 

RCBD Dataset 

Doctor Patient Trt Response 
1 1 A 57 
1 2 B 64 
1 3 C 86 
2 4 A 85 
2 5 B 65 
2 6 C 91 
3 7 A 24 
3 8 B 35 
3 9 C 84 
4 10 A 68 
4 11 B 87 
4 12 C 76 
. . . . 
. . . . 
. . . . 
13 37 A 49 
13 38 B 28 
13 39 C 94 
14 40 A 32 
14 41 B 33 
14 42 C 84 

 

A plot showing the 3 patients for each doctor is shown below. 
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Because there are no covariates, this analysis could be run using the Repeated Measures Analysis 
of Variance procedure by entering Response as the Response Variable, Doctor as the Subject 
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Variable, and Trt as Within Factor 1. The Model Specification is Full model except subject 
interactions combined with error. 

Output Excerpt – Repeated Measures Analysis of Variance 
Procedure  
 

Analysis of Variance Table 
Source  Sum of Mean  Prob Power 
Term DF Squares Square F-Ratio Level (Alpha=0.05) 
A: Doctor 13 4232.119 325.5476 1.83 0.091201  
B: Trt 2 12507.19 6253.595 35.23 0.000000* 1.000000 
S 26 4614.81 177.4927 
Total (Adjusted) 41 21354.12 
Total 42 
* Term significant at alpha = 0.05 

 

The difference in Treatment levels is highly significant (F-Ratio = 35.23, Prob Level = 
0.000000). These results will be compared to those of the Mixed Models procedure in the output 
and discussion that follows. 
To run the analysis using the Mixed Models procedure, you may enter the values according to the 
instructions below (beginning with Step 3) or load the completed template Example 6 from the 
Template tab of the Mixed Models window. 

1 Open the RCBD dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file RCBD.s0. 
• Click Open. 

2 Open the Mixed Models window. 
• On the menus, select Analysis, then Mixed Models. The Mixed Models procedure will 

be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Mixed Models window, select the Variables tab.  
• Double-click in the Response Variable text box. This will bring up the variable selection 

window.  
• Select Response from the list of variables and then click Ok. ‘Response’ will appear in 

the Response Variable box.  
• Double-click in the Subject Variable text box. This will bring up the variable selection 

window.  
• Select Doctor from the list of variables and then click Ok. ‘Doctor’ will appear in the 

Subject Variable box. 
• Make sure there is no entry in the Time Variable box.  
• Select Trt for the Factor (Categorical) Variables text box.  

4 Specify the model. 
• Enter Trt under Model for the Fixed Effects Model.  
• Enter Doctor under Model for the Random Model (Subject Terms Only).  
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5 Specify the comparisons. 
• On the Mixed Models window, select the Comparisons tab.  
• Select All Pairs under Comparison for Default Factor Comparisons.  

6 Specify the reports. 
• Leave all reports and plots at their default values.  

7 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Mixed Models Output 
 

Random Component Parameter Estimates (G Matrix) 
 
Component Parameter Estimated Model 
Number Number Value Term 
1 1 49.3517 Doctor 
 
Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter Estimated Parameter 
Number Number Value Type 
1 1 177.4927 Diagonal (Variance) 
 
Term-by-Term Hypothesis Test Results 
 
Model  Num Denom Prob 
Term F-Value DF DF Level 
Trt 35.23 2 26.0 0.0000 
 
Individual Comparison Hypothesis Test Results 
 
 Comparison    Raw Bonferroni 
Comparison/ Mean  Num Denom Prob Prob 
Covariate(s) Difference F-Value DF DF Level Level 
Trt  35.23 2 26.0 0.0000  
Trt: A - B -1.86 0.14 1 26.0 0.7153 1.0000 [3] 
Trt: A - C -37.50 55.46 1 26.0 0.0000 0.0000 [3] 
Trt: B - C -35.64 50.10 1 26.0 0.0000 0.0000 [3] 
 
Subject Plots 
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The results of this test match those of the Repeated Measures ANOVA procedure (F-Value = 
35.23, Prob Level = 0.0000). All the reports indicate that the mean response for Treatment C is 
much higher than A and B (the Bonferroni Prob Levels for A vs. C and B vs. C are both 
extremely small). 
The second subject plot seems to indicate that the variation within responses of Treatment C is 
considerably smaller than the variation within Treatments A and B. This can be accounted for by 
entering Trt for Groups in the Repeated Variance Pattern on the Variables tab. 

 
Random Component Parameter Estimates (G Matrix) 
 
Component Parameter  Estimated Model 
Number Number  Value Term 
1 1  8.1829 Doctor 
 
Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter Group Estimated Parameter 
Number Number Number Value Type 
1 1 1 273.4668 Diagonal (Variance) 
1 1 2 298.3705 Diagonal (Variance) 
1 1 3 77.7942 Diagonal (Variance) 
 
 
Term-by-Term Hypothesis Test Results 
 
Model  Num Denom Prob 
Term F-Value DF DF Level 
Trt 41.30 2 17.2 0.0000 

 

The conclusions do not change when the unequal variance is accounted for, but the estimated 
variances are indeed quite different across treatments. The estimated variances for Treatments A 
and B are 273.4668 and 298.3705, respectively, while the estimated variance for Treatment C is 
only 77.7942. These tests based on unequal variance assumptions are more accurate than those 
where equal variances were assumed.  
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Example 7 – Complex Split-Plot Design (One Between-
Subject Factor, Two Within-Subject Factors, Two 
Covariates) 
In a standard split-plot design, plots are randomized to a between-plot treatment and are also sub-
divided, with each sub-division receiving a different within-plot treatment. This example involves 
a more complex split-design with an additional within-plot factor and two covariates. 

In a study to compare the effectiveness of 3 tutoring methods, 84 students (42 male, 42 female) 
are randomly assigned to 14 tutors (7 graduates, 7 undergraduates) in groups of 6 (3 male, 3 
female).  Each tutor uses a different tutoring method for each student according to the scheme 
below. A pre-exam is administered to each student before the semester of tutoring begins. IQ is 
also obtained for each student. The response is the score on an exam taken at the end of the 
semester. 

TUTOR Dataset 

Educ Tutor Student Method Gender Preexam IQ Exam 
Undergr 1 1 A M 45 117 70 
Undergr 1 2 A F 35 113 84 
Undergr 1 3 B M 68 94 95 
Undergr 1 4 B F 47 103 77 
Undergr 1 5 C M 25 100 78 
Undergr 1 6 C F 24 95 88 
Undergr 2 7 A M 16 96 80 
Undergr 2 8 A F 38 99 75 
Undergr 2 9 B M 59 98 77 
Undergr 2 10 B F 75 105 82 
Undergr 2 11 C M 65 106 76 
Undergr 2 12 C F 45 98 94 
. . . . . . . . 
. . . . . . . . 
. . . . . . . . 
Grad 14 79 A M 27 109 77 
Grad 14 80 A F 36 104 81 
Grad 14 81 B M 24 79 84 
Grad 14 82 B F 27 99 72 
Grad 14 83 C M 33 93 75 
Grad 14 84 C F 39 109 63 

 

The only procedure that can be used to incorporate all the variables of this analysis in a single 
model is the Mixed Models procedure. 
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To run the analysis using the Mixed Models procedure, you may enter the values according to the 
instructions below (beginning with Step 3) or load the completed template Example 7 from the 
Template tab of the Mixed Models window. 

1 Open the TUTOR dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file TUTOR.s0. 
• Click Open. 

2 Open the Mixed Models window. 
• On the menus, select Analysis, then Mixed Models. The Mixed Models procedure will 

be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Mixed Models window, select the Variables tab.  
• Double-click in the Response Variable text box. This will bring up the variable selection 

window.  
• Select Exam from the list of variables and then click Ok. ‘Exam’ will appear in the 

Response Variable box.  
• Double-click in the Subject Variable text box. This will bring up the variable selection 

window.  
• Select Tutor from the list of variables and then click Ok. ‘Tutor’ will appear in the 

Subject Variable box. 
• Make sure there is no entry in the Time Variable box.  
• Select Educ, Method, and Gender for the Factor (Categorical) Variables text box.  
• Select Preexam and IQ for the Covariate (Continuous) Variables text box.  

4 Specify the model. 
• Enter Educ Method Gender Preexam IQ under Model for the Fixed Effects Model.  
• Enter Tutor under Model for the Random Model (Subject Terms Only).  

5 Specify the reports. 
• Leave all reports and plots at their default values.  

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Mixed Models Output 
 

Random Component Parameter Estimates (G Matrix) 
 
Component Parameter Estimated Model 
Number Number Value Term 
1 1 0.8116 Tutor 
 
Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter Estimated Parameter 
Number Number Value Type 
1 1 79.4848 Diagonal (Variance) 
 
 
Term-by-Term Hypothesis Test Results 
 
Model  Num Denom Prob 
Term F-Value DF DF Level 
Educ 0.68 1 14.3 0.4241 
Method 1.00 2 65.8 0.3747 
Gender 0.21 1 65.4 0.6455 
Preexam 0.05 1 76.1 0.8194 
IQ 1.07 1 77.0 0.3049 
 

There is no statistical evidence of differences among the levels of Education, Method, or Gender 
(all Prob Levels > 0.05).  
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Example 8 – Cross-Over Design (No Between-Subject 
Factors, Two Within-Subject Factors, One Covariate) 
In a basic two-level cross-over design, each subject receives both treatments, but (approximately) 
half receive the two treatments in the opposite order. In this example, researchers are comparing 
two drugs for their effect on heart rate in rats. Each rat is given both drugs, with a short washout 
period between drug administrations, but the order of the drugs is reversed in half of the rats. An 
initial heart rate (IHR) measurement is taken immediately before administration of each of the 
drugs. 

CROSS Dataset 

Rat Period Trtcross IHR HR 
1 1 Drug A 389 357 
1 2 Drug B 383 381 
2 1 Drug B 372 409 
2 2 Drug A 390 385 
3 1 Drug A 396 386 
3 2 Drug B 372 377 
4 1 Drug B 389 376 
4 2 Drug A 398 385 
5 1 Drug A 404 396 
5 2 Drug B 378 370 
6 1 Drug B 394 394 
6 2 Drug A 392 366 
. . . . . 
. . . . . 
. . . . . 
18 1 Drug B 382 381 
18 2 Drug A 396 380 
19 1 Drug A 380 391 
19 2 Drug B 387 392 
20 1 Drug B 408 403 
20 2 Drug A 391 371 

 

To run the analysis, you may enter the values according to the instructions below (beginning with 
Step 3) or load the completed template Example 8 from the Template tab of the Mixed Models 
window. 

1 Open the CROSS dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file CROSS.s0. 
• Click Open. 

2 Open the Mixed Models window. 
• On the menus, select Analysis, then Mixed Models. The Mixed Models procedure will 

be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  
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3 Specify the variables. 
• On the Mixed Models window, select the Variables tab.  
• Double-click in the Response Variable text box. This will bring up the variable selection 

window.  
• Select HR from the list of variables and then click Ok. ‘HR’ will appear in the Response 

Variable box.  
• Double-click in the Subject Variable text box. This will bring up the variable selection 

window.  
• Select Rat from the list of variables and then click Ok. ‘Rat’ will appear in the Subject 

Variable box. 
• Make sure there is no entry in the Time Variable box.  
• Select Period and Trtcross for the Factor (Categorical) Variables text box.  
• Select IHR for the Covariate (Continuous) Variables text box.  

4 Specify the model. 
• Enter Trtcross Period IHR under Model for the Fixed Effects Model.  
• Enter Rat under Model for the Random Model (Subject Terms Only).  

5 Specify the reports. 
• Leave all reports and plots at their default values.  

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Mixed Models Output 
 

Random Component Parameter Estimates (G Matrix) 
 
Component Parameter Estimated Model 
Number Number Value Term 
1 1 6.9397 Rat 
 
Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter Estimated Parameter 
Number Number Value Type 
1 1 189.6138 Diagonal (Variance) 
 
Term-by-Term Hypothesis Test Results 
 
Model  Num Denom Prob 
Term F-Value DF DF Level 
Trtcross 3.99 1 20.6 0.0592 
Period 0.49 1 17.5 0.4932 
IHR 2.00 1 35.6 0.1659 

 

The F-test for Trtcross is nearly significant (F-value = 3.99, Prob Level = 0.0592) at the 0.05 
level. There appears to be no period effect (F-value = 0.49, Prob Level = 0.4932) nor relationship 
between the initial heart rate (F-value = 3.99, Prob Level = 0.0592) and the response heart rate. 
The advantages of using mixed models in cross-over designs are usually more pronounced when 
there is missing data. Missing values often occur in cross-over designs when subjects fail to 
appear for the second treatment. Another advantage of mixed models in cross-over designs over 
conventional analyses occurs when there are three or more treatments involved. In such cases, the 
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cross-over design may be considered a repeated measures design, and specific covariate patterns 
can be used to model the similarity in repeated measurements. That is, measurements that are 
taken closer together may be expected to vary more similarly, while measurements at distant 
periods may not. The Mixed Models procedure provides greater flexibility in modeling options 
for such situations. 

Example 9 – Random Coefficients Model (One Between-
Subject Factor, No Within-Subject Factors, One 
Covariate, Unequal Time Points, Missing Data) 
Researchers would like to determine the effect of a new hair loss treatment. Eighteen men are 
randomly divided into two groups. One group receives the placebo (shampoo without treatment), 
the other group receives the hair loss treatment (shampoo with treatment). The participants are 
asked to shampoo daily and return to the lab after every two months for one year. At each visit, 
participants are given a hair re-growth score. As is sometimes the case with human subjects, the 
return visits were not as scheduled. Some participants returned before or after the scheduled two 
month period, while some others dropped out of the study. 

HAIR Dataset 

Treatment Individual Time Regrowth 
Placebo 1 2 14 
Placebo 1 4 5 
Placebo 1 7 3 
Placebo 1 9 7 
Placebo 1 12 8 
Placebo 2 2 6 
Placebo 2 4 3 
Placebo 3 2 5 
Placebo 3 5 2 
Placebo 3 10 4 
Placebo 4 2 7 
Placebo 4 4 9 
. . . . 
. . . . 
. . . . 
Trt 17 6 7 
Trt 17 12 3 
Trt 18 2 7 
Trt 18 4 10 
Trt 18 6 14 
Trt 18 8 17 
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To run the analysis, you may enter the values according to the instructions below (beginning with 
Step 3) or load the completed template Example 9 from the Template tab of the Mixed Models 
window. 

1 Open the HAIR dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file HAIR.s0. 
• Click Open. 

2 Open the Mixed Models window. 
• On the menus, select Analysis, then Mixed Models. The Mixed Models procedure will 

be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Mixed Models window, select the Variables tab.  
• Double-click in the Response Variable text box. This will bring up the variable selection 

window.  
• Select Regrowth from the list of variables and then click Ok. ‘Regrowth’ will appear in 

the Response Variable box.  
• Double-click in the Subject Variable text box. This will bring up the variable selection 

window.  
• Select Individual from the list of variables and then click Ok. ‘Individual’ will appear in 

the Subject Variable box. 
• Select Time for the Time Variable box.  
• Select Treatment for the Factor (Categorical) Variables text box.  
• Select Time for the Covariate (Continuous) Variables text box.  

4 Specify the model. 
• Enter Treatment Time Treatment*Time under Model for the Fixed Effects Model.  
• Enter Individual Individual*Time under Model for the Random Model (Subject 

Terms Only).  
• Check the box next to Covariances under Random Model (Subject Terms Only).  

5 Specify the reports. 
• Leave all reports and plots at their default values.  

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Mixed Models Output 
 

Random Component Parameter Estimates (G Matrix) 
 
Component Parameter  Estimated Model 
Number Number  Value Term 
1 1  16.6318 Individual 
1 2  1.8015 Individual*Time 
1 3  -4.2599 Individual, Individual*Time 
 
 
Repeated Component Parameter Estimates (R Matrix) 
 
Component Parameter  Estimated Parameter 
Number Number  Value Type 
1 1  5.9013 Diagonal (Variance) 
 
 
Term-by-Term Hypothesis Test Results 
 
Model  Num Denom Prob 
Term F-Value DF DF Level 
Treatment 0.20 1 13.6 0.6585 
Time 7.74 1 12.3 0.0162 
Treatment*Time 9.50 1 12.3 0.0093 
 
These F-Values test Type-III (adjusted last) hypotheses. 
 
 
 
Individual Comparison Hypothesis Test Results 
Covariates: Time=6.00 
 Comparison    Raw Bonferroni 
Comparison/ Mean  Num Denom Prob Prob 
Covariate(s) Difference F-Value DF DF Level Level 
Treatment  18.72 1 15.1 0.0006  
Treatment: Placebo - Trt -11.84 18.72 1 15.1 0.0006 0.0006 [1] 
 
These F-Values test Type-III (adjusted last) hypotheses. 
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The significant Treatment*Time interaction (F-Value = 9.50, Prob Level = 0.0093) indicates that 
the differences between the Treatment and the Placebo are different at different times. If 
comparisons are made at times 2, 7, and 12, the results are 
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Individual Comparison Hypothesis Test Results 
 
 Comparison    Raw Bonferroni 
Comparison/ Mean  Num Denom Prob Prob 
Covariate(s) Difference F-Value DF DF Level Level 
Treatment: Placebo - Treatment 
Time=2.00 -3.21 3.93 1 14.4 0.0669 0.2007 [3] 
Time=7.00 -14.00 17.56 1 14.5 0.0008 0.0025 [3] 
Time=12.00 -24.80 13.89 1 13.2 0.0025 0.0074 [3] 
 
 

There is strong evidence that the difference in means increases as time increases. 
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Chapter 230 

Circular Data 
Analysis 
Introduction 
This procedure computes summary statistics, generates rose plots and circular histograms, 
computes hypothesis tests appropriate for one, two, and several groups, and computes the circular 
correlation coefficient for circular data. 

Angular data, recorded in degrees or radians, is generated in a wide variety of scientific research 
areas. Examples of angular (and cyclical) data include daily wind directions, ocean current 
directions, departure directions of animals, direction of bone-fracture plane, and orientation of 
bees in a beehive after stimuli.  

The usual summary statistics, such as the sample mean and standard deviation, cannot be used 
with angular values. For example, consider the average of the angular values 1 and 359. The 
simple average is 180. But with a little thought, we might conclude that 0 is a better answer. 
Because of this and other problems, a special set of techniques have been developed for analyzing 
angular data. This procedure implements many of those techniques. 
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Technical Details 
Suppose a sample of n angles is to be summarized. It is assumed that these angles 
are in degrees. Fisher (1993) and Mardia & Jupp (2000) contain definitions of various summary 
statistics that are used for angular data. These results will be presented next. Let 

a a an1 2, ,...,
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To interpret these quantities it may be useful to imagine that each angle represents a vector of 
length one in the direction of the angle. Suppose these individual vectors are arranged so that the 
beginning of the first vector is at the origin, the beginning of the second vector is at the end of the 
first, the beginning of the third vector is at the end of the second, and so on. We can then imagine 
a single vector  that will stretch from the origin to the end of the last observation.  

ra

R1 , called the resultant length, is the length of 
ra . R1  is the mean resultant length of . Note 

that

ra
R1  varies between zero and one and that a value of R1  near one implies that there was little 

variation in values of the angles. 

The mean direction,θ , is a measure of the mean of the individual angles. θ  is estimated byT . 1

The circular variance, V, measures the variation in the angles about the mean direction. V varies 
from zero to one. The formula for V is 

V =  R1 1−  

The circular standard deviation, v, is defined as 

( )v =  R− 2 1ln  

The circular dispersion, used in the calculation of confidence intervals, is defined as 

δ =
T

R
1
2

2
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−
 

The skewness is defined as 
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1
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The kurtosis is defined as 
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Correction for Grouped Data 
When the angles are grouped, a multiplicative correction for R may be necessary. The corrected 
value is given by 

R  =  gRp p
*  

where 

( )
g =  J

J
π
π
/

sin /
 

Here J is the number of equi-sized arcs. Thus, for monthly data, J would be 12. 

Confidence Interval for the Mean Direction 
Upton & Fingleton (1989) page 220 give a confidence interval for the mean direction when no 
distributional assumption is made as 

( )T   z1
1

2± −sin $/α σ  

where 

( )
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−n H
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1
4 2  
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T a Ti i
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n1 2 2 2 21 1
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∑∑ a  

Circular Uniform Distribution 
Uniformity refers to the situation in which all values around the circle are equally likely. The 
probability distribution on a circle with this property is the circular uniform distribution, or 
simply, the uniform distribution. The probability density function is given by 

( ) f a =
1

360
 

The probability between any two points is given by 

( ) a a a a a a a aPr | ,1 2 1 2 2 1
2 12
360

< ≤ ≤ + =
−π  

Tests of Uniformity 
Uniformity refers to the situation in which all values around the circle are equally likely. 
Occasionally, it is useful to perform a statistical test of whether a set of data do not follow the 
uniform distribution. Several tests of uniformity have been developed. Note that when any of the 
following tests are rejected, we can conclude that the data were not uniform. However, when the 
test is not rejected, we cannot conclude that the data follow the uniform distribution. Rather, we 
do not have enough evidence to reject the null hypothesis of uniformity. 
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Rayleigh Test 
The Rayleigh test, discussed in Mardia & Jupp (2000) pages 94-95, is the score test and the 
likelihood ratio test for uniformity within the von Mises distribution family. The Rayleigh test 
statistic is 2 2nR . For large samples, the distribution of this statistic under uniformity is a chi-
square with two degrees of freedom with an error of approximation of ( )O n−1 . A closer 

approximation to the chi-square with two degrees of freedom is achieved by the modified 
Rayleigh test. This test, which has an error of ( )O n−2 , is calculated as follows. 

S
n

nR nR* = −⎛
⎝⎜

⎞
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+1 1
2

2
2

2
4

 

Modified Kuiper's Test 
The modified Kuiper's test, Mardia & Jupp (2000) pages 99-103, was designed to test uniformity 
against any alternative. It measures the distance between the cumulative uniform distribution 
function and the empirical distribution function. It is accurate for samples as small as 8. The test 
statistic, V, is calculated as follows 

V V n
nn= + +⎛
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Published critical values of V are 

V Alpha 
1.537 0.150 
1.620 0.100 
1.747 0.050 
1.862 0.025 
2.001 0.010 

This table was used to create an interpolation formula from which the alpha values are calculated. 

Watson Test 
The following uniformity test is outlined in Mardia & Jupp pages 103-105. The test is conducted 
by calculating U 2  and comparing it to a table of values. If the calculated value is greater than the 
critical value, the null hypothesis of uniformity is rejected. Note that the test is only valid for 
samples of at least eight angles. 

The calculation of U 2 is as follows  

U u i
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u
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2
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where 

u
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1 , u
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i
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( )
( )=

360
 

a a a a n(1) ( ) ( ) ( )≤ ≤ ≤ ≤2 3 L  are the sorted angles. Note that maximum likelihood estimates of 
κ and θ  are used in the distribution function. Mardia & Jupp (2000) present a table of critical 
values that has been entered into NCSS. When a value of U 2  is calculated, the table is 
interpolated to determine its significance level. 

Published critical values of U 2  are 

U 2  Alpha 
0.131 0.150 
0.152 0.100 
0.187 0.050 
0.221 0.025 
0.267 0.010 

Von Mises Distributions 
The Von Mises distribution takes the role in circular statistics that is held by the normal 
distribution in standard linear statistics. In fact, it is shaped like the normal distribution, except 
that its tails are truncated. 

The probability density function is given by 

( ) ( ) ( )[ ] f a
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π κ
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2 0

 

where  (the modified Bessel function of the first kind and order p) is defined by ( ) I xp
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The parameterθ is the mean direction and the parameterκ is the concentration parameter. 

The distribution is unimodal. It is symmetric about A. It appears as a normal distribution that is 
truncated at plus and minus 180 degrees. Whenκ is zero, the von Mises distribution reduces to 
the uniform distribution. Asκ gets large, the von Mises distribution approaches the normal 
distribution. 
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Point Estimation 
The maximum likelihood estimate of θ  is the sample mean direction. That is, .  $θ = T1

The maximum likelihood of κ is the solution to 

( ) A R1 κ =  

where 

( ) ( )
( )

 A x
I x
I x1

1

0

= . 

That is, the MLE of κ  is given by 

( ) A Rκ * = −
1

1  

This can be approximated by (see Fisher (1993) page 88 and Mardia & Jupp (2000) pages 85-86) 
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This estimate is very biased. This bias is corrected by using the following modified estimator. 
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Test for a Specified Mean Direction of Von Mises Data 
There are several different hypothesis tests that have been proposed for testing H0 0:θ θ=  
versus H1: 0θ θ≠ , whereθ0 is a specific value of the mean direction. The tests presented here 
require the additional assumption that the data follow the Von Mises distribution, at least 
approximately.  

It will be useful to adopt the following notation. 

( )C  =  
n

ai
i

n
* cos1

0
1

−
=
∑ θ  

( )S  =  
n

ai
i

n
* sin1

0
1

−
=
∑ θ  

[ ] [ ]R  =  S C* * 2 2
+ *  



   Circular Data Analysis  230-7 

Score Test 
The score test, given by Mardia & Jupp (2000) page 123, is computed as 

( ) ( ) n
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2
=

$

$
*  

For large n,  follows the chi-square distribution with one degree of freedom. χS
2

Likelihood Ratio Test 
The likelihood ratio test, given by Mardia & Jupp (2000) page 122, is computed as 

( ) ( )[ ]
( )

( )
( )
( )

χL

n R C

C
n C

n

n nC n

C

R
n C

 2

2 2

2

3

2 2

2

2

4

2
5 2

2

3

1

1
5 2

=

−

−
≥ ≤

+ +

−

−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ≥ >

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

* *

*

*

*

*

*

*

/

log /

if and

if and

3

3

 

The test statistic, , follows a chi-square distribution with one degree of freedom. χL
2

Watson & Williams Test 
The Watson and Williams test, given by Mardia & Jupp (2000) page 123, is computed as 

( ) ( )
F R C

R n
C  =

−
− −

≥
* *

*
*

/
/

1 1
5 6if  

The test statistic, F, follows an F distribution with one and n-1 degrees of freedom. 

Stephens Test 
This test, given by Fisher (1993) pages 93-94, is computed as 

( )
( )

 E
T

n R
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−sin

/ $

1 0

1

θ

κ
 

If $κ ≥ 2 , E follows the standard normal distribution. 

Confidence Interval for Mean Direction assuming Von Mises 
A general confidence interval for θ  was given above. When the data can be assumed to follow a 
von Mises distribution, a more appropriate interval is given by Mardia & Jupp (2000) page 124 
and Upton & Fingleton (1989) page 269. This confidence interval is given by 
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Test for a Specified Concentration of Von Mises Data 
Suppose you want to test a one-sided hypothesis concerning κ , given that the data come from a 
Von Mises distribution and that the mean direction parameter is unknown. Fisher (1993) page 95 
suggests the following procedure when $κ ≥ 2 . 

When testing κ κ= 0  versus κ κ< 0 , reject the null hypothesis if 
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These tests are based on the result that 
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Confidence Interval for Concentration of Von Mises 
An approximate confidence interval for κ  when $κ > 2 was given by Mardia & Jupp (2000) 
pages 126-127 as 
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Goodness of Fit Tests for the Von Mises Distribution 

Stephens Test 
The following goodness-of-fit test, published by Lockhart & Stephens (1985) as a modification of 
the Watson test for the circle, is outlined in Fisher (1993) page 84. The test is conducted by 
calculating U 2  and comparing it to a table of values. If the calculated value is greater than the 
critical value, the null hypothesis of Von Misesness is rejected. Note that the test is only valid for 
samples of at least 20 angles. 

The calculation of U 2 is as follows  
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( )$ ( ) ( )p F a Ti i= −κ 1  

a a a a n(1) ( ) ( ) ( )≤ ≤ ≤ ≤2 3 L  are the sorted angles and ( )F aκ θ− is the cumulative distribution 
function of the von Mises distribution. Note that maximum likelihood estimates of κ and θ  are 
used in the distribution function. Lockhart & Stephens (1985) present a table of critical values 
that has been entered into NCSS. When a value of U 2  is calculated, the table is interpolated to 
determine its significance level. 

Cox Test 
Mardia & Jupp (2000) pages 142-143 present a von Mises goodness-of-fit test that was originally 
given by Cox (1975). 

The test statistic, C, is distributed as a chi-squared variable with two degrees of freedom under the 
null hypothesis that the data follow the von Mises distribution. It is calculated as follows.  

( ) ( )
C s

nv
s

nv
c

c

s

s

= +
2 2

$ $κ κ
 

where 

( ) ( )s a T nc i
i

n

= − −
=
∑ cos $2 1

1
2α κ  

( )s as i
i

n

= −
=
∑ sin 2 1

1

T  

( ) [ ]
( )

v xc =
+

− −
+ −
+ −

1
2

2 2
1 2

4
2
2 1 3 1 2

2

2 1
2

α α
α α α α

α α
/ /

/
 



230-10  Circular Data Analysis  
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Multi-Group Tests 
Three multi-group tests are available for testing hypotheses about two or more groups. The 
nonparametric uniform-scores test tests whether the distributions of the groups are identical. The 
Watson-Williams F test tests whether a set of mean directions are equal given that the 
concentrations are unknown, but equal, given that the groups each follow a von Mises 
distribution. The concentration homogeneity test tests whether the concentration parameters are 
equal, given that the groups each follow a von Mises distribution. 

Mardia-Watson-Wheeler Uniform-Scores Test 
Suppose you have g populations following any common distribution from which random samples 
are taken and you wish to test whether these distributions are equal. Fisher (1993) page 122 and 
Mardia & Jupp (2000) pages 156-157 present a nonparametric test that is calculated as follows 
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 ijγ  are the circular ranks of the 

corresponding angles. The circular ranks are calculated using 

 
r

nij
ijγ

π
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2
 

where the  are the ranks of the corresponding .  rij  aij

If all  are greater than 10, the distribution of  is approximately distributed as a chi-square 
with 2g-2 degrees of freedom. 

 ni  Wg

Since ranks are used in this test, ties become an issue. We have adopted the strategy of applying 
average ranks. Note that little has been done to test the adoption of this strategy within the realm 
of circular statistics. 

Watson-Williams High Concentration F Test 
Suppose you have g Von Mises populations from which random samples are taken and you wish 
to test whether their mean directions are equal. That is, you wish to test the null hypothesis 

 H g0 1 2: ...θ θ θ= = =  

Mardia & Jupp (2000) pages 134-135 present the Watson-William High-Concentration F Test 
that is calculated as follows 
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where  $κ is the maximum likelihood estimate of the concentration based on R and 
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The distribution of  is approximately distributed as an F with g-1 and n-1 degrees of freedom 
when the assumptions that

 FWW

 gκ κ κ1 2= = =...  and that the distributions are Von Mises are made. 

The approximation also requires that $κ ≥ 1. 

Multi-Group Concentration Homogeneity Test 
Suppose you have g groups from which random samples are taken and you wish to test whether 
the concentrations are equal. That is, you wish to test the null hypothesis 

 H g0 1 2: ...κ κ κ= = =  

Mardia & Jupp (2000) page 139 presents such a test. It is divided into three cases. 

Case I. R < 0 45.  
U1 is approximately distributed as a chi-square with g-1 degrees of freedom 
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Case II. 0 45 0 70. .≤ ≤R  
U2 is approximately distributed as a chi-square with g-1 degrees of freedom 
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Case III. R > 0 70.  
U3 is approximately distributed as a chi-square with g-1 degrees of freedom 
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Circular Correlation Measure 
This section discusses a measure of the correlation between two circular variables presented by 
Jammalamadaka and SenGupta (2001). Suppose a sample of n pairs of angles 

is available. The circular correlation coefficient is calculated as ( , ),( , ),...,( , )a a a a a an n11 21 12 22 1 2
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where is the mean direction of the first circular variable and T  is the mean direction of 
second.  

T1 1, 2 1,

The significance of this correlation coefficient can be test using the fact the  is approximately 
distributed as a standard normal, where 
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Data Structure 
The data consist of one or more variables. Each variable contains a set of angular values. The 
rows may be separated into groups using the unique values of an optional grouping variable. An 
example of a dataset containing circular data is CIRCULAR1.S0. Missing values are entered as 
blanks (empty cells). 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
These options specify the variables that will be used in the analysis.  

Data Variables 

Data Variables 
Specify one or more variables that contain the angular values. The values in these variables must 
be of the type specified in 'Data Type'. 

If more than one variable is specified, the format of the reports depend on whether a 'Grouping 
Variable' is used. If a 'Grouping Variable' is specified, a separate set of reports is generated for 
each data variable. If no 'Grouping Variable' is specified, each of these variables are treated as a 
different group in a single set of reports. 

Data Type 
Specify the type of circular data that is contained in the Data Variables. Note that all variables 
must be of the same data type. The possible data types are 

• Angle (0 to 360) 
Data are in the range 0 to 360 degrees. Negative values are converted to positive values by 
subtracting them from 360 (e.g. -20 becomes 340). Data outside 0 to 360 are converted to this 
range by subtracting (or adding) 360 until the value is in this range. 

• RADIAN (0 to 2 pi) 
Data are in the range 0 to 2pi radian. Negative values are converted to positive values by 
subtracting them from 2pi. 

• AXIAL (0 to 180) 
Data are bidirectional. Axial data are converted to angular data by multiplying by two. Axial 
data may be in the full 0-360 range. 

• Compass 
Text data representing the 16 points of the compass are entered. Values are converted into 
degrees using the recodes: N = 0, E = 90, S = 180, W = 270. Two and three letters may be 
used. For example, 'NNW' is north by north-west. 

• Time (0-24) 
Time of day values between 0 and 24 may be entered. 

• Weekday 
Integers representing the days of the week are entered. The relationship is 1 = Monday, 2 = 
Tuesday, ..., 7 = Sunday. The integers are converted to degrees using 1 = 180/7, 2 = 
180/7+360/7, and so on. 
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• Month of Year 
Integers representing the months of the year are entered. The relationship is 1 = January, 2 = 
February, ..., 12 = December. The integers are converted to degrees using 1 = 180/12, 2 = 
180/12+360/12, and so on. 

Grouping Variable 

Grouping Variable 
This optional variable separates the values of the Data Variables into groups. A separate analysis 
is then generated for each group. 

Note that when a grouping variable is specified, the correlations are not generated. 

Grouping Correction Factor 
When the same data values occur repeatedly, a correction factor is suggested for the calculation 
of R bar. This correction factor depends on the number of unique values, which is entered here. If 
'0' is entered, no correction factor is used. 

Options – Hypothesized Values 

Hypothesized Theta  
This optional parameter specifies the hypothesized value of theta (mean direction) under the null 
hypothesis. A set of hypotheses tests are conducted to determine if the data support this 
hypothesized value. 

Note that this is a single-group test. If there are several groups, a separate test is provided for each 
group. 

Hypothesized Kappa  
This optional parameter specifies the hypothesized value of kappa (concentration) under the null 
hypothesis. A hypothesis test is conducted to determine if the data support this hypothesized 
value. 

Note that this is a single-group test. If there are several groups, a separate test is provided for each 
group. 

Options – Confidence Coefficient 

Confidence Coefficient 
Specify the value of confidence coefficient for the confidence intervals. 
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Reports Tab 
The options on this panel control which reports and plots are displayed.  

Select Reports 

Summary Reports ... Correlations 
Select these options to display the indicated reports.  

Select Plots 

Rose Plot (Combined) and Rose Plots (Individual) 
Select these options to display the indicated plots.  

Report Options 

Show Notes 
This option controls whether the available notes and comments that are displayed at the bottom of 
each report. This option lets you omit these notes to reduce the length of the output. 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports were formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option applies to the Group Variable(s). It lets you select whether to display data values, 
value labels, or both. Use this option if you want the output to automatically attach labels to the 
values (like 1=Yes, 2=No, etc.). See the section on specifying Value Labels elsewhere in this 
manual.  

Report Options – Decimal Places 

Mean and Probability Decimals 
Specify the number of digits after the decimal point to display on the output of values of this type. 
Note that this option in no way influences the accuracy with which the calculations are done. 

Enter 'All' to display all digits available. The number of digits displayed by this option is 
controlled by whether the PRECISION option is SINGLE or DOUBLE. 
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Plot Options 1 Tab 
The options on this panel control the appearance of the plots. 

Plot Contents 

Objects on Plot 
This setting controls which objects are displayed on the plots. The possible settings are 

• Raw Data 
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• Circular Histogram 
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• Raw Data & Rose Plot 
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Display Type 

Group Display Type 
Specify whether the group are 'Stacked' or 'Side-by-Side'. 

• Stacked 
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• Side-by-Side 
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Plot Setup 

Data Direction on Plot 
This option indicates whether the orientation of the plot is in a 'Clockwise' or 'Counter-Clockwise' 
direction. 

Angular Offset on Plot 
This option lets you indicate the position of 0 degrees by entering an offset angle. On the default 
circle, 0 degrees is on the right (east), 90 degrees is at the top (north), 180 degrees is on the left 
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(west), and 270 degrees is at the bottom (south). This option lets you add an 'offset' to each angle 
which moves the position of 0 degrees around the circle. 

The offset must be between 0 and 360 degrees. 
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Histogram and Rose Plot Bins 
Specify the number of bins (bars) to be displayed on the circular histogram or rose plot. A 
reasonable value is 20. This will cause each bin to have a width of 360/20 = 18 degrees. 

Data Bins 
Specify the number of positions around the circle at which data values will be plotted. The 
recommended value is 180. 

Percent Inside Circle 
Imagine that that plotting surface is a circle. This parameter sets the percent of the overall radius 
that is devoted to the rose plot (or histogram). That is, it is the percent of the plot that is inside the 
circle. 100 minus this amount is the percentage devoted to the plotting of the raw data outside the 
circle. 

Percent Histogram Base 
Imagine that the plotting surface is a circle. This parameter specifies the percent of the radius of 
this circle that is devoted to the base of the histogram. 

A good value is '10'. 

Rose Petal Width 
This option is for the rose plot only, when the Group Display Type is set to 'Stacked'. It is the 
percent of the bin width that is used for the petal. The remaining space is empty (blank). 

A good value is '50'. 

Radius of Mean Symbol 
Specify the radius of the symbols used to represent the mean directions on the plot. The typical 
value is 100.  

Enter '0' if you do not want the mean displayed on the plot. 
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Legend 

Show Legend 
Indicate whether the legend is to be displayed. 

Legend Text 
Indicate the title text of the legend. Note that if two factors are being plotted, {G} is replaced by 
the appropriate grouping variable's name. 

Titles – Combined Plot and Individual 
Plot Titles 

Title Line 1 and Title Line 2 
This is the text of the title(s). The characters {Y}, {S}, and {G} are replaced by appropriate 
variable names, an internal phrase, and the grouping variable's name, respectively. Press the 
button on the right of the field to specify the font of the text. 

Plot Options 2 Tab 
The options on this panel control the appearance of the plots. 

Circular Axes – Outside Circle 
These options control the outside axis of the plots. 

Show 
Check this option to display the outside (main) circular axis on the plots. 

Axis Line 
This option controls the format of the outside circular axis line. Click on the arrow button to the 
right to edit the settings. 

Circular Axes – Interior Circle(s) 
These options control the interior axes of the plots. 

Number 
This is the number of circular axes (shown as circles on the plots). The recommended value is 2. 

Axis Line 
This option controls the format of the interior circular axis lines. Click on the arrow button to the 
right to edit the settings. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed along each axis. 



   Circular Data Analysis  230-21 

Radial Axes 
These options control the radial axes (spokes) of the plots. 

Number 
This is the number of radial axes. The recommended value is 4 

Axis Line 
This option controls the format of the radial axis lines. Click on the arrow button to the right to 
edit the settings. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed along each axis. 

Reference Number Offset 
The reference numbers of the radial axes may be offset slightly for a better plot. This parameter 
controls the amount of this offset as a percentage of the overall circular radius. Values near 100 
print near the edge of the circle. Values near zero print towards the center of the circle. The 
recommended value is 92. 

Plot Colors 
These options control the colors used in the plots. 

Background and Interior Color 
These options specify the plot background and interior colors. Click the button at the right to 
change the colors. 

Plotting Symbols 
These options control the symbols used in the plots. 

Symbol (1-15)  
The symbols used to represent the groups. Symbol 1 represents the first group, Variable 2 
represents the second group, and so on. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Analysis of Circular Data 
This section presents an example of how to run this procedure. The data are wind directions of 
two groups. The data are found in the CIRCULAR1.S0 database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Circular Data Analysis window. 

1 Open the CIRCULAR1 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Circular1.s0. 
• Click Open. 

2 Open the Circular Data window. 
• On the menus, select Analysis, then Descriptive Statistics, then Circular Data 

Analysis. The Circular Data Analysis procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Circular Data window, select the Variables tab. (This is the default.)  
• Double-click in the Data Variables text box. This will bring up the variable selection 

window.  
• Select Wind from the list of variables and then click Ok. “Wind” will appear in the Data 

Variables box.  
• Double-click in the Grouping Variable text box. This will bring up the variable 

selection window.  
• Select Group from the list of variables and then click Ok. “Group” will appear in the 

Paired Variables box.  
• Set Hypothesized Theta to 40.  
• Set Hypothesized Kappa to 2.  

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

 

The following reports and charts will be displayed in the Output window. 
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Summary Statistics Section 
 
    Mean  Circular   
  Sample Mean Resultant Circular Standard Circular Von Mises 
  Size Direction Length Variance Deviation Dispersion Concentration 
 Group (N) (Theta) (R bar) (V) (v) (Delta) (Kappa) 
 1 10 41.5869 0.9324 0.0676 21.4299 0.1449 5.5452 
 2 10 42.6725 0.9599 0.0401 16.3991 0.0768 9.1850 
 

Group 
This is the group (or variable) presented on this line. 

Sample Size 
This is the number of nonmissing values in this group. 

Mean Direction 
This is estimated mean direction, T . 1

Mean Resultant Length 
This is the estimated mean resultant length, R1 .  It is a measure of data concentration. An R1  
close to zero implies low data concentration. An R1 close to one implies high data concentration. 

Circular Variance 
The circular variance, V, is a measure of variation in the data. Note that V R= −1 1 . 

Circular Standard Deviation 

The circular standard deviation is ( )v =  R− 2 1ln . Note that it is not the square root of the 

circular variance. 

Circular Dispersion 

The circular dispersion, δ =
T

R
1
2

2

1
2

−
, is another measure of variation.  

Von Mises Concentration 
This is the estimated concentration parameter of the von Mises distribution, κ .  

Mean Direction Section 
 
    Lower 95.0% Upper 95.0% Standard   
  Sample Mean Confidence Confidence Error of   
  Size Direction Limit Limit Mean   
 Group (N) (Theta) of Theta of Theta Direction   
 1 10 41.5869 27.9417 55.2321 6.8964   
 2 10 42.6725 32.7516 52.5934 5.0365   
 

This report provides the large sample confidence interval for the mean direction as described by 
Upton & Fingleton (1989) page 220. Note that this interval does not require the assumption that 
the data come from the von Mises distribution. 
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Variation Statistics Section 
 
    Circular     
  Sample Circular Standard Circular    
  Size Variance Deviation Dispersion Skewness Kurtosis  
 Group (N) (V) (v) (Delta) (s) (k)  
 1 10 0.0676 21.4299 0.1449 -0.0795 -1.7244  
 2 10 0.0401 16.3991 0.0768 -4.8582 5.4248  
 

This report provides measures of data variation and dispersion which were defined in the 
Statistical Summary Report. It also provides measures of the skewness and kurtosis of the data. 

Skewness 
This is a measure of the skewness (lack of symmetry about the mean) in the data. Symmetric, 
unimodal datasets have a skewness value near zero.  

Kurtosis 
This is a measure of the kurtosis (peakedness) in the data. Von Mises datasets have a kurtosis 
near zero. 

Von Mises Distribution Estimation Section 
 
    Lower 95.0% Upper 95.0%  Lower 95.0% Upper 95.0% 
  Sample Mean Confidence Confidence Von Mises Confidence Confidence 
  Size Direction Limit Limit Conc. Limit Limit 
 Group (N) (Theta) of Theta of Theta (Kappa) of Kappa of Kappa 
 1 10 41.5869 29.1135 54.0603 5.5452 2.3222 8.4051 
 2 10 42.6725 33.2995 52.0455 9.1850 3.0227 13.2191 
 

This report provides estimates and confidence intervals of the parameters (mean direction and 
concentration) of the von Mises distribution that best fits the data. Note that the von Mises 
distribution is a symmetric, unimodal distribution. You should check the rose plot or circular 
histogram to determine if the data are symmetric. 

The formulas used in the estimation and confidence intervals were given earlier in this chapter. 
They come from Mardia & Jupp (2000). 

Trigonometric Moments Section 
 
   Mean Mean Mean Mean     
 Group N Cos(a) Sin(a) Cos(2a) Sin(2a) R bar 2R bar Theta 2Theta 
 1 10 0.6974 0.6189 0.0903 0.7426 0.9324 0.7481 41.5869 83.0670 
 2 10 0.7057 0.6506 0.1085 0.8516 0.9599 0.8585 42.6725 82.7373 
 

This report provides summary statistics that are used in other calculations. 

Mean Cos(a) 

This is ( )C  =  
n

ai
i

n

1
1

1 cos
=
∑ .  
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Mean Sin(a) 

This is ( )S  =  
n

ai
i

n

1
1

1 sin
=
∑ .  

Mean Cos(2a) 
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Mean Sin(2a) 
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R bar 

This is ( )R  =  
n

n C S1 1
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1
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+ .  

2R bar 
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n C S2 2
2

2
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+ .  

Theta, 2 Theta 
This is calculated using the following formula with p set to 1 and then 2, respectively. 
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Multiple-Group Hypothesis Tests Section 
 
 Null 
 Hypothesis Test Test Prob Reject H0 
 (H0) Name Statistic Level at 0.05 Level 
 Equal Distributions Uniform Scores Test 6.7392 0.0344 Yes 
 Equal Directions Watson-Williams F Test 0.0147 0.9047 No 
 Equal Concentrations Concentration Homogeneity Test 0.5717 0.4496 No 
 
 Notes: 
 These statistics test various hypotheses about the parameters of von Mises distributions. 
 They require that each group follow the von Mises distribution. 
 The Uniform Scores test requires samples of at least 10. 
 The Watson-Williams F-test assumes that all kappa's are equal and that their average is > 1. 
 

This report provides tests for three hypotheses about the features of several von Mises datasets. 
That is, it provides a test of whether the distributions are identical, whether the mean directions 
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are identical, and whether the concentrations are identical. These tests are documented in the 
Technical Details section of this chapter. 

Two-Group Hypothesis Tests Section 
 
  Equal Distributions Equal Directions Equal Concentrations 
 First Second Test Prob Test Prob Test Prob 
 Group Group Statistic Level Statistic Level Statistic Level 
 1 2 6.7392 0.0344 0.0147 0.9047 0.5717 0.4496 
 
 Notes: 
 These statistics test various hypotheses about the parameters of von Mises distributions. 
 They require that each group follow the von Mises distribution. 
 Equal distributions tested by the Mardia-Watson-Wheeler uniform scores test. Requires all Ni > 10. 
 Equal directions tested by the Watson-Williams F test. Assumes Von Mises data with equal kappa's, all > 1. 
 Equal concentrations tested by concentration homogeneity test. Assumes Von Mises data. 
 

This report provides the same three tests as the Multiple-Group Hypothesis Tests Section, taken 
two groups at a time. It allows you to pinpoint where differences occur. 

Tests for a Specified Mean Direction Assuming Von Mises Data –  
Test Statistic & Prob Levels 
 
 Tests for a Specified Mean Direction Assuming Von Mises Data - Test Statistics - Wind 
 
   Actual H0 Score Likelihood Watson & Stephens 
  Sample Mean Mean Test Ratio Williams Test 
  Size Direction Direction Z CS F Z 
 Group (N) (Theta) (Theta0) Value Value Value Value 
 1 10 41.5869 40.0000 0.0409 0.0470 0.0476 0.0397 
 2 10 42.6725 40.0000 0.1949 0.2266 0.2341 0.1917 
  
 Notes: 
 These procedures test whether the mean direction is equal to a specified value, when kappa (concentration) is 

unknown. 
 They assume that the data follow the von Mises distribution. 
 The Score Test requires a large sample size. 
 The Likelihood Ratio Test requires a sample size of at least 5. 
 The Watson & Williams Test requires a large value of kappa. 
 The Stephens Test requires kappa to be greater than 2. 
 
 Tests for a Specified Mean Direction Assuming Von Mises Data - Probability Levels - Wind 
 
   Actual H0 Score Likelihood Watson & Stephens 
  Sample Mean Mean Test Ratio Williams Test 
  Size Direction Direction Prob Prob Prob Prob 
 Group (N) (Theta) (Theta0) Level Level Level Level 
 1 10 41.5869 40.0000 0.8398 0.8284 0.8321 0.8422 
 2 10 42.6725 40.0000 0.6589 0.6340 0.6400 0.6615 
 
 Notes: 
 This report gives the probability levels of the test statistics displayed in the previous report. 
 Although the probability levels of four tests are given, you should use only one of these. 
 

This section reports the results of four tests of the hypothesis that the mean direction of a 
particular group is equal to a specific value. These are two-sided tests. They were documented 
earlier in this chapter. 
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The first table gives the values of the test statistics. The second table gives the probability levels. 
The null hypothesis is rejected when the probability level is less than 0.05 (or some other 
appropriate cutoff). 

Tests for a Specified Concentration Assuming Von Mises Data  
 
      Prob Prob  
  Sample Actual H0  Level of Level of  
  Size Concentration Concentration Chi-Square (H1:Kappa (H1:Kappa  
 Group (N) (Kappa) (Kappa0) Value < Kappa0) > Kappa0)  
 1 10 5.5452 2.0000 2.2756 0.0137 0.9863  
 2 10 9.1850 2.0000 1.3518 0.0019 0.9981  
 
 Notes: 
 These statistics test whether the kappa (concentration) parameter is equal to the specified value. 
 The tests require that the estimated kappa is > 2. 
 

This section reports the results of two, one-sided tests of the hypothesis that the concentration 
parameter of each group is equal to a specific value. They were documented earlier in this 
chapter. 

The first probability level is for testing the null hypothesis that kappa is greater than or equal to 
kappa0. The second probability level is for test the null hypothesis that kappa is less than or equal 
to kappa0. 

Uniform Distribution Goodness-of-Fit Tests  
 
   Rayleigh's Rayleigh's Kuiper's Kuiper's Watson's Watson's 
  Sample Test Test Test Test Test Test 
  Size Statistic Prob Statistic Prob Statistic Prob 
 Group (N) (S*) Level (V) Level (U2) Level 
 1 10 20.2993 0.0000 2.7145 0.0000 0.5657 0.0001 
 2 10 21.7499 0.0000 2.8088 0.0000 0.6788 0.0000 
 
 Notes: 
 The tests in this report assess the goodness-of-fit of the uniform distribution. 
 The Rayleigh test requires samples of at least 20. 
 The Kuiper and Watson tests require samples of at least 8. 
 

This section reports the results of three goodness-of-fit tests for the uniform distribution. They 
were documented earlier in this chapter. 

These tests may be viewed as testing whether the data are distributed uniformly around the circle. 
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Von Mises Distribution Goodness-of-Fit Tests  
 
   Watson's Watson's Cox's Cox's   
  Sample Test Test Test Test   
  Size Statistic Prob Statistic Prob   
 Group (N) (U2) Level (S) Level   
 1 10 0.0340 0.5000 0.4030 0.8175   
 2 10 0.1282 0.0322 2.9309 0.2310   
 
 Notes: 
 The tests in this report assess the goodness-of-fit of the von Mises distribution. 
 Both tests require samples of at least 20. 
 

This section reports the results of two goodness-of-fit tests for the von Mises distribution. They 
were documented earlier in this chapter. Several hypothesis tests assume that the data follow a 
von Mises distribution. These tests allow you to check the accuracy of this assumption. 
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These plots show the distribution of the data around the circle. Although the rose plot is popular, 
it distorts the counts so that the emphasis is on the larger bins. For this reason, we prefer the 
circular histograms. 
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Circular Histograms 
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The circular histograms are generated by setting the Objects on Plot to 'Raw Data & Histogram' 
under the Plot Options tab.  Notice that no exact emphasis is placed on the bins with larger 
counts. 
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Chapter 235 

Cross-Over 
Analysis Using    
T-Tests 
Introduction 
This procedure analyzes data from a two-treatment, two-period (2x2) cross-over design. The 
response is assumed to be a continuous random variable that follows the normal distribution.  

In the two-period cross-over design, subjects are randomly assigned to one of two groups. One 
group receives treatment R followed by treatment T. The other group receives treatment T 
followed by treatment R. Thus, the response is measured at least twice on each subject. 

Cross-over designs are used when the treatments alleviate a condition, rather than effect a cure. 
After the response to one treatment is measured, the treatment is removed and the subject is 
allowed to return to a baseline response level. Next, the response to a second treatment is 
measured. Hence, each subject is measured twice, once with each treatment. 

Examples of the situations that might use a cross-over design are the comparison of anti-
inflammatory drugs in arthritis and the comparison of hypotensive agents in essential 
hypertension. In both of these cases, symptoms are expected to return to their usual baseline level 
shortly after the treatment is stopped.  

Equivalence 
Cross-over designs are popular in the assessment of equivalence. In this case, the effectiveness of 
a new treatment formulation (drug) is to be compared against the effectiveness of the currently 
used (reference) formulation. When showing equivalence, it is not necessary to show that the new 
treatment is better than the current treatment. Rather, the new treatment need only be shown to be 
as good as the reference so that it can be used in its place.  

Advantages of Cross-Over Designs 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment into the study may 
be easier because each patient will receive both treatments. 
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Disadvantages of Cross-Over Designs 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. It may be difficult to separate the treatment 
effect from the time effect and the carry-over effect of the previous treatment. 

The design cannot be used when the treatment (or the measurement of the response) alters the 
subject permanently. Hence, it cannot be used to compare treatments that are intended to effect a 
cure. 

Because subjects must be measured at least twice, it may be more difficult to keep patients 
enrolled in the study. It is arguably simpler to measure a subject once than to obtain their 
measurement twice. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 

Technical Details 

Cross-Over Analysis 
In the discussion that follows, we summarize the presentation of Chow and Liu (1999). We 
suggest that you review their book for a more detailed presentation. 

The general linear model for the standard 2x2 cross-over design is 

( ) ( )Y S P F C eijk ik j j k j k ijk= +μ + + + +−, ,1

Sik Pj

)F

F if k j
j

R

 

where i represents a subject (1 to ), j represents the period (1 or 2), and k represents the 
sequence (1 or 2). The  represent the random effects of the subjects. The  represent the 

effects of the two periods. The  represent the effects of the two formulations (treatments). In 

the case of the 2x2 cross-over design 

nk

( j k,

( )F
F if kj k

T
, =

=
≠⎨

⎩

⎧

( )C j k−1,

C if j kR

 

where the subscripts R and T represent the reference and treatment formulations, respectively. 

The  represent the carry-over effects. In the case of the 2x2 cross-over design 

=

( )C C if j k
otherwise

j k T− =
=

= =⎨
⎪

⎩
⎪

, ,2 2
0

⎧ ,2 1
 

where the subscripts R and T represent the reference and treatment formulations, respectively.  
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Assuming that the average effect of the subjects is zero, the four means from the 2x2 cross-over 
design can be summarized using the following table. 

Sequence Period Period
RT P F P F C
TR P F P F C

R T

T R

1 2
1
2

11 1 21 2

12 1 22 2

( )
( )

μ μ μ μ
μ μ μ μ

= + + = + + +
= + + = + + +

R

T

 

where , , and P P1 2 0+ = F FT R+ = 0 C CT R+ = 0. 

Carryover Effect 
The 2x2 cross-over design should only be used when there is no carryover effect from one period 
to the next. The presence of a carryover effect can be studied by testing whether C CT R= = 0 
using a t test. This test is calculated as follows 

T C
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c
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+

$

$σ 1 1
1 2
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− −

− ⋅
==
∑∑ k k  

U Y Yik i k i k= +1 2  

The null hypothesis of no carryover effect is rejected at the α  significance level if  

T tc n n> + −α / ,2 21 2
. 

A ( )%1100 α−  confidence interval for C C CT R= −  is given by 

( )$ $/ ,C t
n nn n u± ++ −α σ2 2

1 2
1 2

1 1
. 

Treatment Effect 
The presence of a treatment (drug) effect can be studied by testing whether  using a t 
test. This test is calculated as follows 

F FT R= = 0

T F

n n

d

d

=
+

$

$σ 1 1
1 2
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where 
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The null hypothesis of no drug effect is rejected at the α  significance level if  

T td n n> + −α / ,2 21 2
. 

A ( )%1100 α−  confidence interval for F F FT R= −  is given by 

( )$ $/ ,F t
n nn n d± ++ −α σ2 2

1 2
1 2

1 1
. 

Period Effect 
The presence of a period effect can be studied by testing whether P P1 2 0= =  using a t test. This 
test is calculated as follows 
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The null hypothesis of no drug effect is rejected at the α  significance level if  

T tP n n> + −α / ,2 21 2
. 
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A ( )%1100 α−  confidence interval for P P P= −2 1  is given by 

( )$ $/ ,P t
n nn n d± ++ −α σ2 2

1 2
1 2

1 1
. 

Bioequivalence 
The t test of formulations (treatments) may be thought of as a preliminary assessment of 
bioequivalence. However, this t test investigates whether the two treatments are different. It does 
not assess whether the two treatments are the same—bioequivalent. That is, failure to reject the 
hypothesis of equal means does not imply bioequivalence. In order to establish bioequivalence, 
different statistical tests must be used.  

Before discussing these tests, it is important to understand that, unlike most statistical hypothesis 
tests, when testing bioequivalence, you want to establish that the response to the two treatments is 
the same. Hence, the null hypothesis is that the mean responses are different and the alternative 
hypothesis is that the mean responses are equal. This is just the opposite from the usual t test. 
This is why bioequivalence testing requires the special statistical techniques discussed here. 

When using a cross-over design to test for bioequivalence, a washout period between the first and 
second periods must be used that is long enough to eliminate the residual effects of the first 
treatment from the response to the second treatment. Because of this washout period, there is no 
carryover effect. Without a carryover effect, the general linear model reduces to 

( )Y S P Fijk ik j j k ijke= + + + +μ ,  

There are many types of bioequivalence. The 2x2 cross-over design is used to assess average 
bioequivalence. Remember that average bioequivalence is a statement about the population 
average. It does not make reference to the variability in responses to the two treatments. The 1992 
FDA guidance uses the  rule which allows an average response to a test formulation to vary 
up to 20% from the average response of the reference formulation. This rule requires that ratio of 
the two averages 

± 20

μ μT / R  be between 0.8 and 1.2 (80% to 120%). Another way of stating this is 
that the μT  is within 20% of μR . The FDA requires that the significance level be 0.10 or less. 

Several methods have been proposed to test for bioequivalence. Although the program provides 
several methods, you should select only the one that is most appropriate for your work. 

Confidence Interval Approach 
The confidence interval approach, first suggested by Westlake (1981), states that bioequivalence 
may be concluded if a ( ) %10021 ×− α  confidence interval for the difference RT μμ −  or ratio 

RT μμ /  is within acceptance limits (α  is usually set to 0.05). If the ± 20  rule is used, this means 
that the confidence interval for the difference must be between -0.2 and 0.2. Likewise, the 
confidence interval for the ratio must be between 0.8 and 1.2 (or 80% and 120%). Several 
methods have been suggested for computing the above confidence interval. The program provides 
the results for five of these. Perhaps the best of the five is the one based on Fieller’s Theorem 
since it makes the fewest, and most general, assumptions about the distribution of the responses. 
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Classic (Shortest) Confidence Interval of the Difference 

( ) ( )L Y Y t
n nT R n n d1 2

1 2
1 2

1 1
= − − ++ −α σ, $  

( ) ( )U Y Y t
n nT R n n d1 2

1 2
1 2

1 1
= − + ++ −α σ, $  

Classic (Shortest) Confidence Interval of the Ratio 
A confidence interval for the ratio may be calculated from the confidence interval on the 
difference using the formula 

( )L L YR2 1 1 100%= + ×/  

( )U U YR2 1 1 100%= + ×/  

Westlake’s Symmetric Confidence Interval of the Difference 
First, compute values of  and  so that k1 k2

1 2
1 2

2
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2− = + −∫α T dn n
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k

t  

Next, compute  using Δ
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2
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1 1

1 1 2
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σ

σ

T

T

 

Finally, conclude bioequivalence if 

Δ < 0 2. μR  

Westlake’s Symmetric Confidence Interval of the Ratio 
A confidence interval for the ratio may be calculated from the confidence interval on the 
difference using the formula 

( )L YR4 1 100%= − + ×Δ /  

( )U YR4 1 100%= + ×Δ /  

Confidence Interval of the Ratio Based on Fieller’s Theorem 
Both the classic and Westlake’s confidence interval for the ratio do not take into account the 
variability of YR  and the correlation between YR  and Y YT − R . Locke (1984) provides formulas 
using Fieller’s theorem that does take into account the variability of YR . This confidence interval 
is popular not only because it takes into account the variability of YR , but also the intersubject 
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variability. Also, it only assumes that the data are normal, but not that the group variances are 
equal as do the other two approaches. 

The ( ) %10021 ×− α  confidence limits for δ μ μ= T / R  are the roots of the quadratic equation 

( ) ( ) ( )Y Y t S S ST R n n TT TR RR− − − + =+ −δ ω δ δα
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Additionally, in order for the roots of the quadratic equation to be finite positive real numbers, the 
above values must obey the conditions 

Y
S

tR

RR
n nω α> + −, 1 2 2  

and 

Y
S

tT

TT
n nω α> + −, 1 2 2  

Interval Hypotheses Testing Approach 
Schuirmann (1981) introduced the idea of using an interval hypothesis to test for average 
bioequivalence using the following null and alternative hypotheses 

H orT R L T R0: Uμ μ θ μ μ θ− ≤ − ≥  

Ha L T R U:θ μ μ θ< − <  

where θL  and θU  are limits selected to insure bioequivalence. Often these limits are set at 20% 
of the reference mean. These hypotheses can be rearranged into two one-sided hypotheses as 
follows 

H versus HT R L a T R01 1: : Lμ μ θ μ μ θ− ≤ − >  

H versus HT R U a T R02 2: : Uμ μ θ μ μ θ− ≥ − <  

The first hypothesis test whether the treatment response is too low and the second tests whether 
the treatment response is too high. If both null hypotheses are rejected, you conclude that the 
treatment drug is bioequivalent to the reference drug. 
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Schuirmann’s Two One-Sided Tests Procedure 
Schuirmann’s procedure is to conduct two one-sided tests, each at a significance level of α . If 
both tests are rejected, the conclusion of bioequivalence is made at the α  significance level. That 
is, you conclude that μT  and μR  are average equivalent at the α  significance level if  

( )T
Y Y

n n
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d

n n=
− −

+
> + −

θ

σ
α

$
,1 1

1 2

21 2
 

and 
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Y Y

n n

tU
T R U

d

n n=
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+
> − + −
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σ
α

$
,1 1

1 2

21 2
 

Wilcoxon-Mann-Whitney Two One-Sided Tests Procedure 
When the normality assumption is suspect, you can use the nonparametric version of 
Schuirmann’s procedure, known as the Wilcoxon-Mann-Whitney two one-sided tests procedure. 
This rather complicated procedure is described on pages 110 - 115 of Chow and Liu (1999) and 
we will not repeat their presentation here.  

Anderson and Hauck’s Test 
Unlike Schuirman’s test, Anderson and Hauck (1983) proposed a single procedure that evaluates 
the null hypothesis of inequivalence versus the alternative hypothesis of equivalence. The 
significance level of the Anderson and Hauck test is given by  

( ) ( )α δ= − − − −Pr $ Pr $t tAH AH δ

dt
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Data Structure 
The data for a cross-over design is entered into three variables. The first variable contains the 
sequence number, the second variable contains the response in the first period, and the third 
variable contains the response in the second period. Note that each row of data represents the 
complete response for a single subject. 

Chow and Liu (1999) give the following data on page 73. We will use these data in our examples 
to verify the accuracy of our calculations. These data are contained in the database called 
ChowLiu73.S0.  

 

CHOWLIU73 dataset 

Sequence Period 1 Period 2 
1 74.675 73.675 
1 96.400 93.250 
1 101.950 102.125 
1 79.050 69.450 
1 79.050 69.025 
1 85.950 68.700 
1 69.725 59.425 
1 86.275 76.125 
1 112.675 114.875 
1 99.525 116.250 
1 89.425 64.175 
1 55.175 74.575 
2 74.825 37.350 
2 86.875 51.925 
2 81.675 72.175 
2 92.700 77.500 
2 50.450 71.875 
2 66.125 94.025 
2 122.450 124.975 
2 99.075 85.225 
2 86.350 95.925 
2 49.925 67.100 
2 42.700 59.425 

 

Validation 
Chow and Liu (1999) use the above dataset throughout their book. Except for some obvious 
typographical errors that exist in their book, our results match their results exactly. We have also 
tested the algorithm against examples in other texts. In all cases, NCSS matches the published 
results. 
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Procedure Options 
This section describes the options available in this procedure. To find out more about using a 
procedure, turn to the Procedures chapter. 

Following is a list of the procedure’s options. 

Variables Tab 
The options on this panel specify which variables to use.  

Sequence Variable 

Sequence Group Variable 
Specify the variable containing the sequence number. The values in this column should be either 
1 (for the first sequence) or 2 (for the second sequence). 

In the case of a bioequivalence study, the program assumes that the reference drug is 
administered first in sequence 1 and second in sequence 2. 

Period Variables 

Period 1 Variable 
Specify the variable containing the responses for the first period of the cross-over trial, one 
subject per row. 

Period 2 Variable 
Specify the variable containing the responses for the second period of the cross-over trial, one 
subject per row. 

Treatment Labels 

Label 1 
This is the one-letter label given to the first treatment. This identifies the treatment that occurs 
first in sequence 1. In an equivalence trial, this is the label of the reference formulation. Common 
choices are R or A. 

Label 2 
This is the one-letter label given to the second treatment. This identifies the treatment that occurs 
second in sequence 1. In an equivalence trial, this is the label of the treatment formulation. 
Common choices are T or B. 

Alpha Levels 

Cross-Over Alpha Level 
This is the value of alpha used in the cross-over reports. One minus alpha is the confidence level 
of the confidence intervals in the cross-over reports. For example, setting alpha to 0.05 results in 
a 95% confidence interval.  
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A value of 0.05 is commonly used. For the preliminary tests, using 0.10 is common. You should 
not be afraid to use other values since 0.05 became popular in pre-computer days when it was the 
only value available. Typical values range from 0.001 to 0.20.  

Equivalence Alpha Level 
This is the value of alpha used in the equivalence reports. One minus alpha is the confidence level 
of the confidence intervals in the equivalence reports. For example, setting alpha to 0.05 results in 
a 95% confidence interval.  

You should not be afraid to use values other than 0.05 since this value became popular in pre-
computer days when it was the only value available. Typical values range from 0.001 to 0.20.  

Equivalence Limits 

Upper Equivalence Limit 
Specify the upper limit of the range of equivalence. Differences between the two treatment means 
greater than this amount are considered to be bioinequivalent. Note that this should be a positive 
number.  

If the % box is checked, this value is assumed to be a percentage of the reference mean. If the % 
box is not checked, this value is assumed to be the value of the difference. 

Lower Equivalence Limit 
Specify the lower limit of the range of equivalence. Differences between the two treatment means 
less than this amount are considered to be bioinequivalent. Note that this should be a negative 
number.  

If the % box is checked, this value is assumed to be a percentage of the reference mean. If the % 
box is not checked, this value is assumed to be the value of the difference. 

If you want symmetric limits, enter “-UPPER LIMIT” here and the negative of the Upper 
Equivalence Limit will be used. 

Reports Tab 
The options on this panel control the reports and plots.  

Select Reports 

Cross-Over Summary Report … Written Explanations 
Each of these options indicates whether to display the indicated reports.  

Written Explanations 
Indicate whether to display the written explanations and interpretations that can be displayed 
following each report and plot.  

Select Plots 

Means Plot … Probability Plots 
Each of these options indicates whether to display the indicated plots.  
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Report Options 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option applies to the Group Variable(s). It lets you select whether to display data values, 
value labels, or both. Use this option if you want the output to automatically attach labels to the 
values (like 1=Yes, 2=No, etc.). See the section on specifying Value Labels elsewhere in this 
manual.  

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports were formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Report Options – Decimal Places 

Mean ... Test Decimals 
Specify the number of digits after the decimal point to display on the output of values of this type. 
Note that this option in no way influences the accuracy with which the calculations are done. 

Means Plot to Period Plot Tabs 
The options on this panel control the appearance of various plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 
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Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Connect Treatments and Connect Subjects 
This option lets you specify whether you want to connect the points with a line. 

Plot Settings – Legend 

Show Legend 
Indicate whether the legend is to be displayed. 

Legend Text 
Indicate the title text of the legend. Note that if two factors are being plotted, {G} is replaced by 
the appropriate grouping variable's name. 

Titles 

Plot Title 
This option contains the text of the plot title. The characters {Y} and {X} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 

Probability Plot Tab 
The options on this panel control the appearance of the probability plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 
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Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} are replaced by the name of the variable. Press the 
button on the right of the field to specify the font of the text. 

Symbols Tab 

Plotting Symbols 

Subject (1-15)  
The symbols used to represent the subjects on the Profile Plot. Subject 1 represents the first 
subject, Subject 2 represents the second subject, and so on. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Cross-Over Analysis and Validation 
This section presents an example of how to run an analysis of data from a 2x2 cross-over design. 
Chow and Liu (1999) page 73 provide an example of data from a 2x2 cross-over design. These 
data were shown in the Data Structure section earlier in this chapter. On page 77, they provide the 
following summary of the results of their analysis. 

 

Effect MVUE Variance 95% CI T P-Value 
Carryover -9.59 245.63 (-42.10, 22.91) -0.612 0.5468 
Treatment -2.29 13.97 (-10.03, 5.46) -0.613 0.5463 
Period -1.73 13.97 (-9.47, 6.01) -0.464 0.6474 

 

We will use the data found the CHOWLIU73 database. You may follow along here by making 
the appropriate entries or load the completed template Example1 from the Template tab of the 
Cross-Over Analysis Using T-Tests window.  

1 Open the CHOWLIU73 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file CHOWLIU73.s0. 
• Click Open. 

2 Open the Cross-Over Analysis Using T-Tests window. 
• On the menus, select Analysis, then T-Tests, then Cross-Over Analysis Using T-Tests. 

The Cross-Over Analysis Using T-Tests procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Cross-Over Analysis Using T-Tests window, select the Variables tab. 
• Double-click in the Sequence Group Variable box. This will bring up the variable 

selection window. 
• Select Sequence from the list of variables and then click Ok. The phrase “Sequence” will 

appear in the Period 2 Variable box. 
• Double-click in the Period 1 Variable box. This will bring up the variable selection 

window. 
• Select Period1 from the list of variables and then click Ok. The phrase “Period1” will 

appear in the Period 1 Variable box. Remember that you could have entered a “2” here 
signifying the second variable on the dataset. 

• Double-click in the Period 2 Variable box. This will bring up the variable selection 
window. 

• Select Period2 from the list of variables and then click Ok. The phrase “Period2” will 
appear in the Period 2 Variable box. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top of the window). 
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The following reports and charts will be displayed in the Output window. 

Cross-Over Analysis Summary Section 
 
     Lower 95.0%  Upper 95.0%  
 Estimated Standard T Value Prob Confidence Confidence 
Parameter Effect Error (DF=22) Level Limit Limit 
Treatment -2.29 3.73 -0.61 0.5463 -10.03 5.45 
Period -1.73 3.73 -0.46 0.6474 -9.47 6.01 
Carryover -9.59 15.67 -0.61 0.5468 -42.09 22.91 
 
Interpretation of the Above Report 
The two treatment means in a 2x2 cross-over study are not significantly different at the 0.0500 
significance level (the actual significance level was 0.5463). The design had 12 subjects in 
sequence 1 (RT) and 12 subjects in sequence 2 (TR). The average response to treatment R was 
82.56 and the average response to treatment T was 80.27. 
 
A preliminary test failed to reject the assumption of equal period effects at the 0.0500 
significance level (the actual significance level was 0.6474). A preliminary test failed to 
reject the assumption of equal carryover effects at the 0.0500 significance level (the actual 
significance level was 0.5468). 
 

This report summarizes the results of the analysis. The Treatment line presents the results of the t-
test of whether the treatments are different. The Period line presents the results of a preliminary 
test of the assumption that the period effects are equal. The Carryover line presents the results of 
a preliminary test of the assumption that there is no carryover effect. This is a critical assumption. 
If the carryover effect is significant, you should not be using a cross over design. 

Note that the values in this report match the values from page 77 of Chow and Liu which 
validates this part of the program. 

Parameter 
These are the items being tested. Note that the Treatment line is the main focus of the analysis. 
The Period and Carryover lines are preliminary tests of assumptions. 

Estimated Effect 
These are the estimated values of the corresponding effects. Formulas for the three effects were 
given in the Technical Details section earlier in this chapter.  

Standard Error 
These are the standard errors of each of the effects. They provide an estimate of the precision of 
the effect estimate. The formulas were given earlier in the Technical Details section of this 
chapter. 

T Value (DF=xx) 
These are the test statistics calculated from the data that are used to test whether the effect is 
different from zero.  

The DF is the value of the degrees of freedom. This is two less than the total number of subjects 
in the study. 

Prob Level 
This is the probability level (p-value) of the test. If this value is less than the chosen significance 
level, then the corresponding effect is said to be significant. For example, if you are testing at a 
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significance level of 0.05, then probabilities that are less than 0.05 are statistically significant. 
You should choose a value appropriate for your study. 

Some authors recommend that the tests of assumptions (Period and Carryover) should be done at 
the 0.10 level of significance. 

Upper and Lower Confidence Limits 
These values provide a ( )1 100− %×α  confidence interval for the estimated effect. 

Interpretation of the Above Report 
This section provides a written interpretation of the above report. 

Cross-Over Analysis Detail Section 
 
    Least Squares Standard Standard 
Seq. Period Treatment Count Mean Deviation Error 
1 1 R 12 85.82 15.69 4.53 
2 2 R 12 79.30 25.20 7.27 
1 2 T 12 81.80 19.71 5.69 
2 1 T 12 78.74 23.21 6.70 
1 Difference (T-R)/2 12 -2.01 6.42 1.85 
2 Difference (T-R)/2 12 0.28 11.22 3.24 
1 Total R+T 12 167.63 33.23 9.59 
2 Total R+T 12 158.04 42.93 12.39 
. . R 24 82.56  4.28 
. . T 24 80.27  4.39 
1 . . 24 83.81   
2 . . 24 79.02   
. 1 . 24 82.28  4.04 
. 2 . 24 80.55  4.62 
 
Interpretation of the Above Report 
This report shows the means and standard deviations of various subgroups of the data. The least 
squares mean of treatment R is 82.56 and of treatment T is 80.27. Note that least squares means 
are created by taking the simple average of their component means, not by taking the average of 
the raw data. For example, if the mean of the 20 subjects in period 1 sequence 1 is 50.0 and 
the mean of the 10 subjects in period 2 sequence 2 is 40.0, the least squares mean is (50.0 + 
40.0)/2 = 45.0. That is, no adjustment is made for the unequal sample sizes. Also note that the 
standard deviation and standard error of some of the subgroups are not calculated. 
 

This report provides the least squares means of various subgroups of the data. 

Seq. 
This is the sequence number of the mean shown on the line. When the dot (period) appears in this 
line, the results displayed are created by taking the simple average of the appropriate means of the 
two sequences.  

Period 
This is the period number of the mean shown on the line. When the dot (period) appears in this 
line, the results displayed are created by taking the simple average of the appropriate means of the 
two periods.  

Treatment 
This is the treatment (or formulation) of the mean shown on the line. When the dot (period) 
appears in this line, the results displayed are created by taking the simple average of the 
appropriate means of the two treatments.  
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When the entry is (T-R)/2, the mean is computed on the quantities created by dividing the 
difference in each subject’s two scores by 2. When the entry is R+T, the mean is computed on the 
sums of the subjects two scores. 

Count 
The count is the number of subjects in the mean.  

Least Squares Mean 
Least squares means are created by taking the simple average of their component means, not by 
taking a weighted average based on the sample size in each component. For example, if the mean 
of the 20 subjects in period 1 sequence 1 is 50.0 and the mean of the 10 subjects in period 2 
sequence 2 is 40.0, the least squares mean is (50.0 + 40.0)/2 = 45.0. That is, no adjustment is 
made for the unequal sample sizes. Since least squares means are used in all subsequent 
calculations, these are the means that are reported. 

Standard Deviation 
This is the estimated standard deviation of the subjects in the mean.  

Standard Error 
This is the estimated standard error of the least squares mean.  

Equivalence Based on the Confidence Interval of the Difference 
 
Equivalence Based on the Confidence Interval of the Difference 
 Lower Lower 90.0%  Upper 90.0%  Upper Equivalent  
 Equivalence Confidence Confidence Equivalence at the 5.0%   
Test Type Limit Limit Limit Limit Sign. Level?  
Shortest C.I. -16.51 -8.70 4.12 16.51 Yes 
Westlake C.I. -16.51 -7.41 7.41 16.51 Yes 
Note: Westlake's k2 = -1.37 and k1 = 2.60. 
 
Interpretation of the Above Report 
Average bioequivalence of the two treatments has been found at the 0.0500 significance level 
using the shortest confidence interval of the difference approach since both confidence limits, 
-8.70 and 4.12, are between the acceptance limits of -16.51 and 16.51. This experiment used a 
2x2 cross-over design with 12 subjects in sequence 1 and 12 subjects in sequence 2. 
 
Average bioequivalence of the two treatments has been found at the 0.0500 significance level 
using Westlake's confidence interval of the difference approach since both confidence limits, 
-7.41 and 7.41, are between the acceptance limits of -16.51 and 16.51. This experiment used a 
2x2 cross-over design with 12 subjects in sequence 1 and 12 subjects in sequence 2. 
 

This report provides the results of two tests for bioequivalence based on confidence limits of the 
difference between the means of the two formulations.  

Test Type 
This is the type of test reported on this line. The mathematical details of each test were described 
earlier in the Technical Details section of this chapter. 

Lower and Upper Equivalence Limit 
These are the limits on bioequivalence. As long as the difference between the treatment 
formulation and reference formula is inside these limits, the treatment formulation is 
bioequivalent. These values were set by you. They are not calculated from the data. 
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Lower and Upper Confidence Limits 
These are the confidence limits on the difference in response to the two formulations computed 
from the data. Note that the confidence coefficient is ( )1 2 100%− ×α . If both of these limits are 
inside the two equivalence limits, the treatment formulation is bioequivalent to the reference 
formulation. Otherwise, it is not. 

Equivalent at the 5.0% Sign. Level? 
This column indicates whether bioequivalence can be concluded. 

Equivalence Based on the Confidence Interval of the Ratio 
 
 Lower Lower 90.0%  Upper 90.0%  Upper Equivalent  
 Equivalence Confidence Confidence Equivalence at the 5.0%   
Test Type Limit Limit Limit Limit Sign. Level?  
Shortest C.I. 80.00 89.46 104.99 120.00 Yes 
Westlake C.I. 80.00 91.02 108.98 120.00 Yes 
Fieller's C.I. 80.00 90.06 104.92 120.00 Yes 
 
Interpretation of the Above Report 
Average bioequivalence of the two treatments has been found at the 0.0500 significance level 
using the shortest confidence interval of the ratio approach since both confidence limits, 
89.46 and 104.99, are between the acceptance limits of 80.00 and 120.00. This experiment used a 
2x2 cross-over design with 12 subjects in sequence 1 and 12 subjects in sequence 2. 
 
Average bioequivalence of the two treatments has been found at the 0.0500 significance level 
using Westlake's confidence interval of the ratio approach since both confidence limits, 91.02 
and 108.98, are between the acceptance limits of 80.00 and 120.00. This experiment used a 2x2 
cross-over design with 12 subjects in sequence 1 and 12 subjects in sequence 2. 
 
Average bioequivalence of the two treatments has been found at the 0.0500 significance level 
using Fieller's confidence interval of the ratio approach since both confidence limits, 90.06 
and 104.92, are between the acceptance limits of 80.00 and 120.00. This experiment used a 2x2 
cross-over design with 12 subjects in sequence 1 and 12 subjects in sequence 2. 
 

This report provides the results of three tests for bioequivalence based on confidence limits of the 
ratio of the mean responses to the two formulations.  

Test Type 
This is the type of test report on this line. The mathematical details of each test were described 
earlier in the Technical Details section of this chapter. 

Lower and Upper Equivalence Limit 
These are the limits on bioequivalence in percentage form. As long as the percentage of the 
treatment formulation of the reference formula is between these limits, the treatment formulation 
is bioequivalent. These values were set by you. They are not calculated from the data. 

Lower and Upper Confidence Limits 
These are the confidence limits on the ratio of mean responses to the two formulations computed 
from the data. Note that the confidence coefficient is ( )1 2 100%− ×α . If both of these limits are 
inside the two equivalence limits, the treatment formulation is bioequivalent to the reference 
formulation. Otherwise, it is not. 

Equivalent at the 5.0% Sign. Level? 
This column indicates whether bioequivalence can be concluded. 



235-20  Cross-Over Analysis Using T-Tests  

Equivalence Based on Schuirmann’s Two One-Sided Hypothesis 
Tests 

 
 Lower Upper 5.0%   Equivalent  
 Test Test Cutoff  at the 5.0%   
Test Type T Value T Value T Value DF Sign. Level?  
Schuirmann's 2 1-Sided Tests 3.81 -5.04 1.72 22 Yes 
 
Interpretation of the Above Report 
Average bioequivalence of the two treatments was found at the 0.0500 significance level using 
Schuirmann's two one-sided t-tests procedure. The probability level of the t-test of whether 
the treatment mean is not too much lower than the reference mean is 0.0005. The probability 
level of the t-test of whether the treatment mean is not too much higher than the reference 
mean is 0.0000. Since both of these values are less than 0.0500, the null hypothesis of average 
bioinequivalence was rejected in favor of the alternative hypothesis of average bioequivalence. 
This experiment used a 2x2 cross-over design with 12 subjects in sequence 1 and 12 subjects in 
sequence 2. 
 

This report provides the results of Schuirmann’s two one-sided hypothesis tests procedure.  

Test Type 
This is the type of test reported on this line. The mathematical details of this test were described 
earlier in the Technical Details section of this chapter. 

Lower and Upper Test T Value 
These are the values of T  and , the two one-sided test statistics. L TU

5% Cutoff T Value 
This is the T value that marks significance or non-significance. If the absolute values of both T  
and  are greater than this value, the treatment formulation is bioequivalent. Otherwise, it is 
not. This T value is based on the degrees of freedom and on 

L

TU

α . 

DF 
This is the value of the degrees of freedom. In this case, the value of the degrees of freedom is 

. n n1 2 2+ −

Equivalent at the 5.0% Sign. Level? 
This column indicates whether bioequivalence is concluded. 
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Equivalence Based on Two One-Sided Wilcoxon-Mann-Whitney 
Tests 

 
 Lower Lower Upper Upper Equivalent  
 Sum Prob Sum Prob at the 5.0%   
Test Type Ranks Level Ranks Level Sign. Level?  
2 1-Sided MW Tests 207.00 0.0002 91.00 0.0001 Yes 
 
Interpretation of the Above Report 
Average bioequivalence of the two treatments was found at the 0.0500 significance level using 
the nonparametric version of Schuirmann's two one-sided tests procedure which is based on the 
Wilcoxon-Mann-Whitney test. The probability level of the test of whether the treatment mean is 
not too much lower than the reference mean is 0.0002. The probability level of the test of 
whether the treatment mean is not too much higher than the reference mean is 0.0001. Since both 
of these values are less than 0.0500, the null hypothesis of average bioinequivalence was 
rejected in favor of the alternative hypothesis of average bioequivalence. This experiment used 
a 2x2 cross-over design with 12 subjects in sequence 1 and 12 subjects in sequence 2. 
 

This report provides the results of the nonparametric version of Schuirmann’s two one-sided 
hypothesis tests procedure.  

Test Type 
This is the type of test reported on this line. The mathematical details of this test were described 
earlier in the Technical Details section of this chapter. 

Lower and Upper Sum Ranks 
These are sum of the ranks for the lower and upper Mann-Whitney tests. 

Lower and Upper Prob Level 
These are the upper and lower significance levels of the two one-sided Wilcoxon-Mann-Whitney 
tests. Bioequivalence is indicated when both of these values are less than a given level of α . 

Equivalent at the 5.0% Sign. Level? 
This column indicates whether bioequivalence is concluded. 

Equivalence Based on Anderson and Hauck’s Hypothesis Test 
 
    Equivalent 
   Prob at the 5.0%  
Test Type Pr(-TL) Pr(TU) Level Sign. Level? 
Anderson and Hauck's Test 0.0005 0.0000 0.0005 Yes 
 
Interpretation of the Above Report 
Average bioequivalence of the two treatments was found at the 0.0500 significance level using 
Anderson and Hauck's test procedure. The actual probability level of the test was 0.0005. This 
experiment used a 2x2 cross-over design with 12 subjects in sequence 1 and 12 subjects in 
sequence 2. 
 

This report provides the results of Anderson and Hauck’s hypothesis test procedure.  

Test Type 
This is the type of test reported on this line. The mathematical details of this test were described 
earlier in the Technical Details section of this chapter. 
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Pr(-TL) and Pr(TU) 
These values are subtracted to obtain the significance level of the test. 

Prob Level 
This is the significance level of the test. Bioequivalence is indicated when this value is less than a 
given level of α . 

Equivalent at the 5.0% Sign. Level? 
This column indicates whether bioequivalence is concluded. 

Plot of Sequence-by-Period Means 
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The sequence-by-period means plot shows the mean responses on the vertical axis and the periods 
on the horizontal axis. The lines connect like treatments. The distance between these lines 
represents the magnitude of the treatment effect.  
If there is no period, carryover, or interaction effects, two horizontal lines will be displayed. The 
tendency for both lines to slope up or down represents period and carryover effects. The tendency 
for the lines to cross represents period-by-treatment interaction. This is also a type of carryover 
effect. 

Plot of Subject Profiles 
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The profile plot displays the raw data for each subject. The response variable is shown along the 
vertical axis. The two sequences are shown along the horizontal axis. The data for each subject is 
depicted by two points connected by a line. The subject’s response to the reference formulation is 
shown first followed by their response to the treatment formulation. Hence, for sequence 2, the 
results for the first period are shown on the right and for the second period on the left.  

This plot is used to develop a feel for your data. You should view it first as a tool to check for 
outliers (points and subjects that are very different from the majority). Note that outliers should 
be removed from the analysis only if a reason can be found for their deletion. Of course, the first 
step in dealing with outliers is to double-check the data values to determine if a typing error 
might have caused them. Also, look for subjects whose lines exhibit a very different pattern from 
the rest of the subjects in that sequence. These might be a signal of some type of data-recording 
or data-entry error.  

The profile plot allows you to assess the consistency of the responses to the two treatments across 
subjects. You may also be able to evaluate the degree to which the variation is equal in the two 
sequences. 

Plot of Sums and Differences 
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The sums and differences plot shows the sum of each subject’s two responses on the horizontal 
axis and the difference between each subject’s two responses on the vertical axis. Dot plots of the 
sums and differences have been added above and to the right, respectively.  

Each point represents the sum and difference of a single subject. Different plotting symbols are 
used to denote the subject’s sequence. A horizontal line has been added at zero to provide an easy 
reference from which to determine if a difference is positive (favors treatment R) or negative 
(favors treatment T).  

The degree to which the plotting symbols tend to separate along the horizontal axis represents the 
size of the carryover effect. The degree to which the plotting symbols tend to separate along the 
vertical axis represents the size of the treatment effect.  

Outliers are easily detected on this plot. Outlying subjects should be reviewed for data-entry 
errors and for special conditions that might have caused their responses to be unusual. Outliers 
should not be removed from an analysis just because they are different. A compelling reason 
should be found for their removal and the removal should be well documented. 
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Period Plot  
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The Period Plot displays a subject’s period 1 response on the horizontal axis and their period 2  
response on the vertical axis. The plotting symbol is the sequence number. The plot is used to 
find outliers and other anomalies.  

Probability Plots  
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These plots show the differences (P1-P2) on the vertical axis and values on the horizontal axis 
that would be expected if the differences were normally distributed. The first plot shows the 
differences for sequence 1 and the second plot shows the differences for sequence 2.  

If the assumption of normality holds, the points should fall along a straight line. The degree to 
which the points are off the line represents the degree to which the normality assumption does not 
hold. Since the normality of these differences is assumed by the t-test used to test for a difference 
between the treatments, these plots are useful in assessing whether that assumption is valid.  

If the plots show a pronounced pattern of non-normality, you might try taking the square roots or 
the logs of the responses before beginning the analysis.  
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Chapter 240 

Nondetects 
Analysis 
Introduction 
This procedure computes summary statistics, generates EDF plots, and computes hypothesis tests 
appropriate for two or more groups for data with nondetects (left-censored) values. Following the 
recommendation of Helsel (2005), pp. 77-78, the methods for this procedure are valid only if 
fewer than 50% of the values are nondetects (left-censored).  

Nondetects analysis is the analysis of data in which one or more of the values cannot be measured 
exactly because they fall below one or more detection limits. Detection limits often arise in 
environmental studies because of the inability of instruments to measure small concentrations. 
Some examples of sampling scenarios that lead to datasets with nondetects values are finding 
pesticide concentrations in water, determining chemical composition of soils, or establishing the 
number of particulates of a compound in the air.  

A common practice for dealing with values which fall below the detection threshold is 
substitution. Often, each value which is below the detection limit is substituted with one half the 
detection limit. Summary statistics and comparisons are then carried out using standard 
techniques (means, confidence intervals, t-tests, ANOVA, etc.) with the substituted data. Helsel 
(2005) warns of the potential data analysis biases that result if nondetects values are substituted. 
He particularly warns about the arbitrariness of substituting one half the detection limit (or zero, 
or the detection limit). Alternatively, techniques based on survival analysis methods have been 
developed for appropriate use of the information contained in the nondetected observations. The 
general approach is to convert the nondetects data (left-censored) to survival data (right-
censored), use the survival analysis techniques on the newly created survival data, and then 
convert the survival summaries back to original scale (In NCSS, these conversions are performed 
automatically). The resulting summary statistics and hypothesis tests are analogs to the common 
techniques, but which appropriately account for nondetected observations. For example, medians 
are used rather than means, EDF plots replace box plots and histograms, and logrank tests are 
used instead of two-sample t-tests and ANOVA. 

The technical details of survival analysis are found in the Kaplan-Meier Survival Curves chapter. 
For a complete account of nondetects analysis, we suggest the book by Helsel (2005). 
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Technical Details 

Flipping Constant 
To convert nondetects data to the format of survival data, each response, including nondetected 
values, must be subtracted from a suitable flipping constant. The flipping constant can be any 
number which is larger than the maximum of the nondetects data. The resulting right-censored 
data are 

Flip M xi i= − , 

where M is the flipping constant and the xi are the original observations.  

For example, consider the first 10 of 25 dioxin concentrations (fg/cubic meter) with lower 
detection limit 50 fg/cubic meter (these data can be found in the DIOXIN dataset):  

 

DIOXIN dataset (subset) 

Dioxin 
391 
724 
603 
50 
482 
656 
50 
797 
190 
444 

 

A suitable flipping constant is any value larger then the maximum value. Suppose M = 1000 is 
arbitrarily chosen as the flipping constant. The flipped data would then become 

 
Dioxin          M – Dioxin Flip 
 

391          1000 – 391 609 
724          1000 – 724 276 
603          1000 – 603 397 
<50          1000 – <50 >950 
482          1000 – 482 518 
656          1000 – 656 344 
<50          1000 – <50 >950 
797          1000 – 797 203 
190          1000 – 190 810 
444          1000 – 444 556 
.           .  . 
.           .  . 
.           .  . 
 
 
The flipped data is now in the survival data format. 
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Once the data are converted to the survival data format, the nonparametric Kaplan-Meier methods 
can be used for estimating summary statistics (i.e., median, quantiles, standard errors, confidence 
limits), and for group comparisons. The summary statistics of location (i.e., median, quantiles, 
and confidence limits) are converted back to the original scale using the same flipping constant 
M. For example, to convert the median of the survival data to the median of the original units, the 
formula 

Median M SurvivalMedian= −  

is used. For the Dioxin data, the survival median (of the flipped data) is 556 fg/cubic meter. The 
median on the original scale would then be Median = 1000 – 556 = 444 fg/cubic meter. The 
standard error statistics for the flipped survival data are the same as those of the original scale, 
and need not be converted. All of the calculations involving conversion and re-conversion based 
on the flipping constant are done automatically in NCSS. 

The Empirical Distribution Function (EDF) 
The empirical distribution function (EDF) provides an approximation of the true cumulative 
distribution function of the measured response. It is useful for viewing or obtaining sample 
percentiles (quantiles) for each of the observed responses. The EDF is produced using the 
Kaplan-Meier product-limit estimator (estimated survival distribution) of the flipped data. The 
resulting survival distribution is then converted to the EDF by re-subtracting all values from the 
flipping constant. We now examine the technical details of the estimation of the survival 
distribution. 

Hypothesis Tests 
This section presents methods for testing that the distribution functions of two or more 
populations are equal. The null hypothesis is that the distribution functions of all populations are 
equal at all values greater than the minimum observed value. The alternative hypothesis is that at 
least two of the distribution functions are different at some value greater than the observed 
minimum value. 

Five different choices of tests are available in NCSS to test the above hypotheses. The tests differ 
in the manner in which different responses are weighted. The most commonly used test is the 
logrank test, which has equal weighting. The other four tests shift the heaviest weighting to the 
larger or smaller responses. Although five tests are displayed, only one should be used. Because 
of the different weighting patterns, they will often give quite different results. The test that will be 
used should be justified and designated before viewing the data or test results.  

The following table describes the weighting scheme for each of these tests. 

Test Comments 
Logrank This is the most commonly used test and the one we recommend.  
 Equal weights across all times are used.  

Gehan Places very heavy weight on large responses. 

Tarone-Ware Places heavy weight on small responses. 

Peto-Peto Places a little more weight on large responses. 

Modified Peto-Peto Places a little more weight on large responses. 



240-4  Nondetects Analysis  

Data Structure 
Nondetects datasets are specified using up to four components: the response value (e.g., 
concentration or amount), an optional indicator of whether or not each observation was detected, 
an optional group specification, and an optional frequency (count) specification. If no detection 
indicator is included, all response values represent detected responses. If there is no group 
specification, a single group is assumed. If the frequency (count) variable is omitted, all counts 
are assumed to be one. 

Sample Dataset 
The table below shows a dataset (fictitious) reporting sediment arsenic concentrations for three 
different regions of a lake. A single sample was taken from each of twenty randomly selected 
locations of each region. In this dataset, the response is the concentration of arsenic in mg/Kg 
(dry weight). The instruments used in the study to determine arsenic concentration are unable to 
detect concentrations below 10 mg/Kg. A value of zero in the ANondet column indicates arsenic 
was detected. A value of one in the ANondet column indicates arsenic was not detected. These 
data are contained in the ARSENIC dataset. 

 

ARSENIC dataset (subset) 

Arsenic ANondet Region 
14 0 1 
10 1 1 
31 0 1 
26 0 1 
10 1 1 
. . . 
. . . 
. . . 
15 0 2 
10 1 2 
25 0 2 
21 0 2 
27 0 2 
. . . 
. . . 
. . . 
29 0 2 
26 0 2 
18 0 3 
26 0 3 
. . . 
. . . 
. . . 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Response Variable 

Response Variable 
The values of this variable represent either the magnitude of a detected observations or detection 
limits, depending on the corresponding values of the Nondetection (Censor) Variable.  

The values in this variable must be greater than zero. If the value is missing or non-positive, it is 
not used during the estimation phase. 

Nondetection Variable 

Nondetection (Censor) Variable 
The values in this variable indicate whether the value of the Response Variable represents a 
nondetected (censored) observation or a detected observation. When a particular value of this 
variable indicates a Nondetect, the corresponding value of the Response Variable represents a 
lower detection limit.  

These values may be text or numeric. The interpretation of these codes is specified by the 
'Detected' and 'Not Detected' (Censored) options to the right of this option. 

Only two values are used, the Detected value and the Not Detected value. The Unknown Censor 
option specifies what is to be done with values that do not match either the Detected value or the 
Not Detected value.  

Rows with missing values (blanks) in this variable are omitted from the estimation phase, but 
results are shown in any reports that output predicted values. 

Detected 
When this value is encountered under the Nondetection (Censor) Variable it indicates that the 
value under the Response Variable was observed or detected. The value may be a number or a 
letter.  

We suggest the letter 'D' or the number '0' when you are in doubt as to what to use. 

A detected observation is one in which the value was measured exactly; for example, the 
concentration was such that the instrument was able to measure it. 

Not Detected 
When this value is encountered under the Nondetection (Censor) Variable it indicates that the 
value under the Response Variable was not actually observed (i.e., a nondetect) but represents a 
lower detection limit. That is, the observation is left-censored, and the actual value of the 
response is something below the detection limit.  

The value may be a number or a letter. We suggest the letter 'N' or the number '1' when you are in 
doubt as to what to use. 
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A nondetect is a response in which the value was not measured exactly; for example, the 
concentration was such that the instrument was not able to measure it. 

Unknown Censor 
This option specifies what the program is to assume about observations whose Nondetection 
(Censor) Variable value is not equal to either the Detected code or the Not Detected code. Note 
that observations with missing Nondetection (Censor) values are always treated as missing. 

• Not Detected 
Observations with unknown Nondetection (Censor) Variable values are assumed to be 
nondetects (censored). 

• Detected 
Observations with unknown Nondetection (Censor) Variable values are assumed to be 
detected. 

• Missing 
Observations with unknown Nondetection (Censor) Variable values are assumed to be 
missing and those rows are omitted from the analysis. 

Frequency Variable 

Frequency Variable 
Specify an optional variable containing the number of observations (cases) represented by each 
row.  

If this variable is left blank, each row of the database is assumed to represent one observation. 

Group Variable 

Group Variable 
An optional categorical (grouping) variable may be specified. If it is used, a separate analysis is 
conducted for each unique value of this variable. A variable must be entered here to generate log 
rank test comparisons. 

Options 

Alpha Level 
This is the value to which probability levels are compared for testing hypotheses. Also, one minus 
alpha is the confidence level used for confidence intervals. For example, if you specify 0.04 here, 
then 96% confidence limits will be calculated. 

A value of .05 is historically the most commonly used. For hypothesis testing, this value 
represents a 1 in 20 chance of falsely rejecting the null hypothesis. For confidence intervals, this 
corresponds to a chance of 1 out of 20 of creating an interval that does not contain the true 
parameter. Now, values other than 0.05 are often recommended or required by journals or 
institutions. Typical values range from 0.001 to 0.20. 
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Confidence Limits 
This option specifies the method used to estimate the confidence limits. The options are:  

• Linear 
This is the classical method, which uses Greenwood’s estimate of the variance. 

• Log Transform 
This method uses the logarithmic transformation of Greenwood’s variance estimate. It 
produces better limits than the Linear method and has better small sample properties. 

• ArcSine 
This method uses the arcsine square-root transformation of Greenwood’s variance estimate to 
produce better limits. 

Reports Tab 
The following options control which reports and plots are displayed. 

Select Reports 

Data Summary Section ... Logrank Test Detail 
Specify whether to display the indicated reports. 

Specific Responses 
Specify a list of values for which cumulative proportions are to be calculated. These values are 
used only if the 'Specific Response Detail' box is checked. 

Numbers are separated by blanks or commas. Specify sequences with a colon, putting the 
increment inside parentheses. For example: 5:25(5) means 5 10 15 20 25.  

Use '(10)' alone to specify ten, equal-spaced values between zero and the maximum. 

Only positive values may be entered here. 

Quantiles 
Specify a list of quantiles (percentiles) for which the estimated response is to be calculated. These 
values are used only if the 'Quantiles of Responses' box is checked.  

Numbers are separated by blanks or commas in this list. Specify sequences with a colon, putting 
the increment inside parentheses. For example: 5:25(5) means 5 10 15 20 25 and 1:5(2),10:20(2) 
means 1 3 5 10 12 14 16 18 20. 

All values in the list must be between 0 and 100. 

Select Plots 

EDF Plot 
Specify whether to display the indicated plot. 
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Select Plots – Plots Displayed 

Individual-Group Plots 
When checked, this option specifies that a separate chart of each designated type is displayed. 

Combined Plot 
When checked, this option specifies that a chart combining all groups is to be displayed. 

Report Options 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. Single precision is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option lets you select whether to display only values, only value labels, or both for values of 
the group variable. Use this option if you want to automatically attach labels to the values of the 
group variable (such as 1=Male, 2=Female, etc.). See the section on specifying Value Labels 
elsewhere in this manual.  

Report Options – Decimal Places 

Response ... Chi-Square Decimals 
This option specifies the number of decimal places shown on reported values. 

Plot Options – Plot Arrangement 

Two Plots Per Line 
When unchecked, one large plot is displayed per line. When checked, two smaller plots are 
displayed per line. 

EDF Plots Tab 
The following options control the EDF plots that are displayed. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 
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Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tick marks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Censor Tickmarks 
This option indicates the size of the tickmarks (if any) showing where the nondetected (censored) 
points fall on the EDF curve. The values are at a scale of 1000 equals one inch. 

We recommend that you use ‘0’ to indicate no marks or ‘100’ to display the marks. 

Plot Settings – Plot Contents 
These options control objects that are displayed on all plots. 

Function Line 
Indicate whether to display the EDF curve on the plots. 

C.L. Lines 
Indicate whether to display the confidence limits of the estimated function on the plots. 

Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies legend label. If {G} is entered here, {G} is replaced by the name of the group variable. 

Titles 

Title Line 1 and 2 
These are the text lines of the titles. The characters {X}, {G}, and {Z} are replaced by appropriate 
names. The color or font of the text may be specified here by pressing the button to the right of 
the field. 
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Lines Tab 
These options specify the attributes of the lines used for each group in the EDF plots. 

Plotting Lines 

Line 1 - 15 
These options specify the color, width, and pattern of the lines used in the plots of each group. 
The first line is used by the first group, the second line by the second group, and so on. These line 
attributes are provided to allow the various groups to be indicated on black-and-white printers. 

Clicking on a line box (or the small button to the right of the line box) will bring up a window 
that allows the color, width, and pattern of the line to be changed. 

Storage Tab 
These options let you specify if, and where on the database, various statistics are stored. 

Warning: If statistics are stored into columns which already contain data, any data in these 
columns is replaced by the new statistics data. Be careful not to specify variables that contain 
important data. 

Data Storage Options 

Storage Option 
This option controls whether the values indicated below are stored on the database when the 
procedure is run. 

• Do not store data 
No data are stored even if they are checked. 

• Store in empty columns only 
The values are stored in empty columns only. Columns containing data are not used for data 
storage, so no data can be lost. 

• Store in designated columns 
Beginning at the First Storage Variable, the values are stored in this column and those to the 
right. If a column contains data, the data are replaced by the storage values. Care must be 
used with this option because it cannot be undone. 

Store First Variable In 
The first item is stored in this variable. Each additional item that is checked is stored in the 
variables immediately to the right of this variable.  

Leave this value blank if you want the data storage to begin in the first blank column on the right-
hand side of the data. 

Warning: Any existing data in these variables is automatically replaced. 
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Data Storage Options – Select Items 
to Store 

Response Group ... UCL of P(R) 
Indicate whether to store these values, beginning at the variable indicated by the Store First 
Variable In option.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Analysis of Data with Nondetects 
This section presents an example of how to analyze a typical set of nondetects data. Twenty-five 
air quality locations were randomly chosen to determine dioxin concentration (fg/cubic meter). 
The lower detection limit of the measurement instrument is 50 fg/cubic meter. Four of the 25 
concentrations were not detected, and thus, are known only to be less than 50.  

The data used are recorded in the DIOXIN dataset.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Nondetects Analysis window. 

1 Open the DIOXIN dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file DIOXIN.S0. 
• Click Open. 

2 Open the Nondetects Analysis window. 
• On the menus, select Analysis, then Nondetects, then Nondetects Analysis. The 

Nondetects Analysis procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  
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3 Specify the variables. 
• On the Nondetects Analysis window, select the Variables tab.  
• Set the Response Variable to Dioxin.  
• Set the Nondetection (Censor) Variable to DNondet.  
• Set Detected to 0. 
• Set Not Detected to 1.  

4 Specify the reports. 
• Select the Reports tab.  
• Set the Specific Responses box to 100:500(100).  

5 Adjust the plots. 
• Select the EDF Plots tab.  
• Under Vertical Axis, click on Tick Label Settings. 
• Change Decimals to 2. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Data Summary Section 
 
 Data Summary Section 
   
    Type Rows Count Minimum Maximum 
    Detected 21 21 94 801  
    Not Detected 4 4 50 50  
    Total 25 25 50 801  
 
 
    Data Summary Section: Response Quartiles 
 
  Lower Upper 
    Quartile Estimate 95.0% C.L. 95.0% C.L. 
    First (Q1) 190.000 50.000 438.000  
    Median (Q2) 444.000 199.000 603.000  
    Third (Q3) 603.000 455.000 724.000 
      

This report displays a summary of the amount of data that were analyzed and the three quartiles. 
Scan this report to determine if there were any obvious data errors by double checking the counts 
and the minimum and maximum responses. 

Specific Response Detail: Estimated Cumulative Proportion 
 

 Cumulative Standard Lower Upper  
Response Proportion Error 95.0% C.L. 95.0% C.L. Cum. 
(R) P(R) of P(R) for P(R) for P(R) Count 
100.000 0.2000 0.0800 0.0432 0.3568 5  
200.000 0.3200 0.0933 0.1371 0.5029 8  
300.000 0.3200 0.0933 0.1371 0.5029 8  
400.000 0.4400 0.0993 0.2454 0.6346 11  
500.000 0.6000 0.0980 0.4080 0.7920 15 

 

This report displays the Kaplan-Meier cumulative proportions at the specified responses. The 
standard error and confidence limits are also shown.  
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Response (R) 
This is the specific response being reported on this line. The response values were specified in the 
Specific Responses box under the Reports tab. 

Cumulative Proportion P(R) 
This is the estimated proportion of responses less than the specified response (R).  

Standard Error of P(R) 
This is the estimated standard error, the square root of the variance estimate given by 
Greenwood’s formula.  

Lower and Upper Confidence Limits for S(T) 
The lower and upper confidence limits provide a pointwise confidence interval for the cumulative 
proportion at each response. These limits are constructed so that the probability that the true 
proportion lies between them is α−1 .  

Three difference confidence intervals are available. All three confidence intervals perform 
similarly for large samples. The linear (Greenwood) interval is the most commonly used. 
However, the log-transformed and the arcsine-square intervals behave better in small to moderate 
samples, so they are recommended. The formulas for these limits are given in the Kaplan-Meier 
Survival Curves chapter and are not repeated here. 

Cumulative Count 
This value is the number of less than or equal to the specified response (R).  

Quantiles of Responses 
 

  Lower Upper 
Proportion Estimated 95.0% C.L. 95.0% C.L. 
of Response Quantile Quantile Quantile 
0.0500  50.000 126.000  
0.1000  50.000 190.000  
0.1500  50.000 329.000  
0.2000 126.000 50.000 336.000  
0.2500 190.000 50.000 438.000  
0.3000 199.000 50.000 444.000  
0.3500 329.000 94.000 455.000  
0.4000 391.000 126.000 482.000  
0.4500 438.000 190.000 537.000  
0.5000 444.000 199.000 603.000  
0.5500 455.000 336.000 603.000  
0.6000 537.000 391.000 626.000  
0.6500 557.000 438.000 656.000  
0.7000 603.000 444.000 724.000  
0.7500 603.000 455.000 724.000  
0.8000 656.000 537.000 764.000  
0.8500 724.000 557.000 797.000  
0.9000 764.000 603.000 801.000  
0.9500 797.000 626.000 801.000 
    

This report displays the estimated quantiles for various response proportions. For example, it 
gives the median response if it can be estimated. 

Proportion of Response 
This is the response proportion that is reported on this line. The proportion values were specified 
in the Quantiles box under the Reports tab. 
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Estimated Quantile 
This is the response value corresponding to the response proportion. For example, this table 
estimates that 65% of the concentrations are less than or equal to 557 fg/m3. 

Lower and Upper Confidence Limits on Quantiles 
These values provide a pointwise ( )%1100 α−  confidence interval for the estimated quantiles. 
For example, if the proportion of response 0.50, this provides a confidence interval for the median 
survival time. 

Three methods are available for calculating these confidence limits. The method is designated 
under the Variables tab in the Confidence Limits box. The formulas for these confidence limits 
are given in the Kaplan-Meier Survival Curves chapter and are not repeated here.  

Because of censoring, estimates and confidence limits are not available for all response 
proportions. 

Response Detail 
 

 Cumulative Standard Lower Upper   
Response Proportion Error 95.0% C.L. 95.0% C.L. Cum.  
(R) P(R) of P(R) for P(R) for P(R) Count Count 
<50.000     4 4 
94.000 0.1600 0.0733 0.0163 0.3037 5 1 
126.000 0.2000 0.0800 0.0432 0.3568 6 1 
190.000 0.2400 0.0854 0.0726 0.4074 7 1 
199.000 0.2800 0.0898 0.1040 0.4560 8 1 
329.000 0.3200 0.0933 0.1371 0.5029 9 1 
336.000 0.3600 0.0960 0.1718 0.5482 10 1 
391.000 0.4000 0.0980 0.2080 0.5920 11 1 
438.000 0.4400 0.0993 0.2454 0.6346 12 1 
444.000 0.4800 0.0999 0.2842 0.6758 13 1 
455.000 0.5200 0.0999 0.3242 0.7158 14 1 
482.000 0.5600 0.0993 0.3654 0.7546 15 1 
537.000 0.6000 0.0980 0.4080 0.7920 16 1 
557.000 0.6400 0.0960 0.4518 0.8282 17 1 
603.000 0.6800 0.0933 0.4971 0.8629 19 2 
626.000 0.7600 0.0854 0.5926 0.9274 20 1 
656.000 0.8000 0.0800 0.6432 0.9568 21 1 
724.000 0.8400 0.0733 0.6963 0.9837 22 1 
764.000 0.8800 0.0650 0.7526 1.0000 23 1 
797.000 0.9200 0.0543 0.8137 1.0000 24 1 
801.000 0.9600 0.0392 0.8832 1.0000 25 1 

 

This report displays the Kaplan-Meier product-limit distribution values along with confidence 
limits. The formulas used are given in the Kaplan-Meier Survival Curves chapter.  

Response (R) 
This is the response being reported on this line. The response are the unique responses that 
occurred in the data.  

Note that observations which are nondetects are marked with a less than sign (<). Estimated 
proportions are not calculated for nondetects observations.  

Cumulative Proportion P(R) 
This is the estimated proportion of responses less than the response (R).  

Standard Error of S(T) 
This is the estimated standard error, the square root of the variance estimate given by 
Greenwood’s formula. 
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Lower and Upper Confidence Limits for S(T) 
The lower and upper confidence limits provide a pointwise confidence interval for the cumulative 
proportion at each response. These limits are constructed so that the probability that the true 
proportion lies between them is α−1 .  

Three difference confidence intervals are available. All three confidence intervals perform 
similarly for large samples. The linear (Greenwood) interval is the most commonly used. 
However, the log-transformed and the arcsine-square intervals behave better in small to moderate 
samples, so they are recommended. The formulas for these limits are given in the Kaplan-Meier 
Survival Curves chapter and are not repeated here. 

Cumulative Count 
This value is the number of less than or equal to the specified response (R). 

Count 
This is the number of observations with this specific response value. 

EDF Plot 
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This plot shows the empirical distribution function (EDF). If there are several groups, a separate 
line is drawn for each group.  
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Example 2 – Group Comparisons with Nondetects 
The research purpose of this example is comparing sediment arsenic concentrations for three 
different regions of a lake. A single sample was taken from each of twenty randomly selected 
locations of each region. The response is the concentration of arsenic in mg/Kg (dry weight). The 
instruments used in the study to determine arsenic concentration are unable to detect 
concentrations below 10 mg/Kg. 

The data used are recorded in the variables Arsenic, ANondet, and Region of the ARSENIC 
dataset.  

You may follow along here by making the appropriate entries or load the completed template 
Example2 from the Template tab of the Nondetects Analysis window. 

1 Open the ARSENIC dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file ARSENIC.S0. 
• Click Open. 

2 Open the Nondetects Analysis window. 
• On the menus, select Analysis, then Nondetects, then Nondetects Analysis. The 

Nondetects Analysis procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Nondetects Analysis window, select the Variables tab.  
• Set the Response Variable to Arsenic.  
• Set the Nondetection (Censor) Variable to ANondet.  
• Set the Group Variable to Region.  

4 Specify the reports. 
• On the Nondetects Analysis window, select the Reports tab.  
• Check the Logrank Test Summary box.  
• Check the Logrank Test Detail box. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Logrank Tests Section 
 
Hypotheses 
H0: Distribution Functions are Equal Among Groups 
HA: At Least One Group Distribution Functions Differs 
 
   Prob Reject H0 
Test Name Chi-Square DF Level (Alpha = 0.05) 
Logrank 26.680 2 0.0000 Yes 
Gehan-Wilcoxon 35.265 2 0.0000 Yes 
Tarone-Ware 32.241 2 0.0000 Yes 
Peto-Peto 35.479 2 0.0000 Yes 
Mod. Peto-Peto 35.589 2 0.0000 Yes 
 
 
Multiple Pairwise Tests Section 
Hypotheses 
H0: Distribution Functions are Equal 
HA: Distribution Functions Differ 
 
Group Pair Tested: 1 vs. 2     Bonferroni  
     Adjusted  
   Prob Reject H0 Prob Reject H0 
Test Name Chi-Square DF Level (Alpha =0.05) Level (Alpha =0.05) 
Logrank 0.374 1 0.5409 No 1.0000 No 
Gehan-Wilcoxon 0.326 1 0.5683 No 1.0000 No 
Tarone-Ware 0.389 1 0.5327 No 1.0000 No 
Peto-Peto 0.267 1 0.6055 No 1.0000 No 
Mod. Peto-Peto 0.265 1 0.6069 No 1.0000 No 
 
Group Pair Tested: 1 vs. 3     Bonferroni  
     Adjusted  
   Prob Reject H0 Prob Reject H0 
Test Name Chi-Square DF Level (Alpha =0.05) Level (Alpha =0.05) 
Logrank 16.239 1 0.0001 Yes 0.0002 Yes 
Gehan-Wilcoxon 19.657 1 0.0000 Yes 0.0000 Yes 
Tarone-Ware 18.787 1 0.0000 Yes 0.0000 Yes 
Peto-Peto 19.418 1 0.0000 Yes 0.0000 Yes 
Mod. Peto-Peto 19.457 1 0.0000 Yes 0.0000 Yes 
 
Group Pair Tested: 2 vs. 3     Bonferroni  
     Adjusted  
   Prob Reject H0 Prob Reject H0 
Test Name Chi-Square DF Level (Alpha =0.05) Level (Alpha =0.05) 
Logrank 15.978 1 0.0001 Yes 0.0002 Yes 
Gehan-Wilcoxon 20.474 1 0.0000 Yes 0.0000 Yes 
Tarone-Ware 19.109 1 0.0000 Yes 0.0000 Yes 
Peto-Peto 20.391 1 0.0000 Yes 0.0000 Yes 
Mod. Peto-Peto 20.453 1 0.0000 Yes 0.0000 Yes 
 
Notes: 
The most commonly used test is the Logrank test. 

 

This report gives the results of the five logrank type tests that are provided by this procedure. We 
strongly suggest that you select the test that will be used before viewing this report. We 
recommend Logrank test. 
The tests are divided into two groups: overall tests and pairwise tests. The overall tests test for 
significant differences between groups, but do not indicate which groups are different from each 
other. The pairwise tests indicate which groups have significantly different distribution functions. 
Adjusted probability levels should be used to account for multiplicity of tests. 

Chi-Square 
This is the chi-square value of the test. Each of these tests is approximately distributed as a chi-
square in large samples. 
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DF 
This is the degrees of freedom of the chi-square distribution associated with each test. It is one 
less than the number of groups being compared in a particular test. 

Prob Level 
This is the significance level of the test. If this value is less than than chosen significance level 
(often 0.05), the test is significant, indicating evidence of a difference in distribution functions. 
For pairwise tests the Bonferroni adjusted probability level should be used to account for multiple 
testing. 

Reject H0 
This is an indicator based on the comparison of the probability level to the specified alpha. ‘Yes’ 
indicates rejection of the null hypothesis (evidence that the true distribution functions are 
different). ‘No’ indicates the null hypothesis should not be rejected (not sufficient evidence that 
the true distribution functions are different). 

Bonferroni Adjusted Prob Level 
When more than two groups are compared, the number of pairwise comparisons is greater than 
one. Bonferroni adjusted probability levels account for the multiplicity of hypothesis tests. The 
Bonferroni adjustment to the probability level is made by multiplying the given probability level 
by the number of tests that are performed (with a ceiling of 1.0). In this example, three pairwise 
comparisons are made. Thus, each probability level is multiplied by three. Any adjusted 
probability level greater than one is set to one. The Bonferroni adjusted probability level for the 
last two longrank tests in this example appears to be only two times the base probability level. 
This is due to rounding. If more decimal places are specified, it is seen that the adjusted 
probability levels are three times the base probability levels. 

Logrank Test Detail Section 
 

Logrank Test Detail Section 
  Standard Standardized 
Group Z-Value Error Z-Value 
1 -7.561 3.398 -2.225 
2 -4.484 3.380 -1.327 
3 12.044 2.340 5.146 
Probability Level was 0.0000 
 
Gehan-Wilcoxon Test Detail Section 
  Standard Standardized 
Group Z-Value Error Z-Value 
1 -349.000 132.199 -2.640 
2 -270.000 132.219 -2.042 
3 619.000 104.394 5.929 
Probability Level was 0.0000 
 
Tarone-Ware Test Detail Section 
  Standard Standardized 
Group Z-Value Error Z-Value 
1 -51.277 20.460 -2.506 
2 -35.076 20.428 -1.717 
3 86.353 15.249 5.663 
Probability Level was 0.0000 
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Peto-Peto Test Detail Section 
  Standard Standardized 
Group Z-Value Error Z-Value 
1 -5.568 2.114 -2.634 
2 -4.453 2.114 -2.106 
3 10.021 1.684 5.949 
Probability Level was 0.0000 
 
Mod. Peto-Peto Test Detail Section 
  Standard Standardized 
Group Z-Value Error Z-Value 
1 -5.452 2.065 -2.640 
2 -4.377 2.066 -2.119 
3 9.830 1.650 5.959 
Probability Level was 0.0000 
 

This report gives the details of each of the five logrank tests that are provided by this procedure. 
We strongly suggest that you select the test that will be used before viewing this report. We 
recommend that you use the Logrank test. 

Group 
This is the group reported on this line. 

Z-Value 
The details of the z-value are given in the Kaplan-Meier Survival Curves chapter and are not 
repeated here.  

Standard Error 
This is the standard error of the above z-value. It is used to standardize the z-values. 

Standardized Z-Value 
The standardized z-value is created by dividing the z-value by its standard error. This provides an 
index number that will usually very between -3 and 3. Extreme values represent groups that are 
quite different from the typical group, at least at some response values. 

Example 3 – Validation of Summary Statistics using 
Helsel (2005) 
This section presents validation of nondetects analysis summary statistics. Helsel (2005) presents 
an example on pages 103-113 involving lead concentrations. These data are contained in the 
LEAD dataset. 

On page 108, Helsel (2005) finds the median to be 1 – 0.984483 = 0.015517. The first and third 
quartiles are 1 – 0.985714 = 0.014286 and 1 – 0.975472 = 0.024528, respectively. The 
cumulative proportion for a lead concentration of 0.034 is 0.777778. The (B-C Sign) 95% 
confidence interval for the median lead concentration is presented on page 112 as (0.014, 0.019). 

You may follow along here by making the appropriate entries or load the completed template 
Example3 from the Template tab of the Nondetects Analysis window. 

1 Open the LEAD dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file LEAD.S0. 
• Click Open. 
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2 Open the Nondetects Analysis window. 
• On the menus, select Analysis, then Nondetects, then Nondetects Analysis. The 

Nondetects Analysis procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Nondetects Analysis window, select the Variables tab.  
• Set the Response Variable to Lead.  
• Set the Nondetection (Censor) Variable to LNondet.  

4 Specify the reports. 
• On the Nondetects Analysis window, select the Reports tab.  
• Uncheck all reports except the Data Summary Section and Response Detail.  
• Change Decimal Places - Response to 6. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Output 
 

Data Summary Section 
 
    Type Rows Count Minimum Maximum 
    Detected 12 12 1.372549E-02 0.2689655  
    Not Detected 15 15 0.02 0.02  
    Total 27 27 1.372549E-02 0.2689655  
 
 
    Data Summary Section: Response Quartiles 
 
  Lower Upper 
    Quartile Estimate 95.0% C.L. 95.0% C.L. 
    First (Q1) 0.014286 0.013725 0.018644  
    Median (Q2) 0.015517 0.014286 0.018644  
    Third (Q3) 0.024528 0.015517 0.106061  

 
 
Response Detail 
 
 Cumulative Standard Lower Upper   
Response Proportion Error 95.0% C.L. 95.0% C.L. Cum.  
(R) P(R) of P(R) for P(R) for P(R) Count Count 
0.013725 0.0000    1 1 
0.014286 0.1759 0.1539 0.0000 0.4776 2 1 
0.015517 0.3519 0.1813 0.0000 0.7073 3 1 
0.018644 0.5278 0.1660 0.2024 0.8531 4 1 
<0.020000     19 15 
0.023529 0.7037 0.0879 0.5315 0.8759 20 1 
0.024528 0.7407 0.0843 0.5754 0.9060 21 1 
0.033962 0.7778 0.0800 0.6210 0.9346 22 1 
0.049153 0.8148 0.0748 0.6683 0.9613 23 1 
0.106061 0.8519 0.0684 0.7179 0.9858 24 1 
0.174074 0.8889 0.0605 0.7703 1.0000 25 1 
0.177049 0.9259 0.0504 0.8271 1.0000 26 1 
0.268966 0.9630 0.0363 0.8917 1.0000 27 1 
 

You can check this table to see that the results are the same as those of Helsel (2005). 
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Example 4 – Validation of Group Comparison Statistics 
using Helsel (2005) 
This section presents validation of the group comparison statistics. Helsel (2005) presents an 
example of results for comparing concentrations among three groups. These data are contained in 
the CONCENTRATION dataset. 

The results for the overall test for determining difference in concentration patterns across groups 
is found on page 180. The log rank test results in a chi-square statistic of 16.2794 with probability 
level 0.000. The Gehan (Wilcoxon) test gives a chi-square statistic of 16.0761 with probability 
level 0.000. The results of the individual group comparison Gehan (Wilcoxon) tests are given on 
page 181. For comparing the low group to the medium group, the chi-square value is 0.68890 
with probability level 0.407. For comparing the low group to the high group, the chi-square value 
is 7.09906 with probability level 0.008. For comparing the medium group to the high group, the 
chi-square value is 11.5275 with probability level 0.001. 

These data can be run in this procedure to see that NCSS gets the same results. You may follow 
along here by making the appropriate entries or load the completed template Example4 from the 
Template tab of the Nondetects Analysis window 

1 Open the CONCENTRATION dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file CONCENTRATION.S0. 
• Click Open. 

2 Open the Nondetects Analysis window. 
• On the menus, select Analysis, then Nondetects, then Nondetects Analysis. The 

Nondetects Analysis procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Nondetects Analysis window, select the Variables tab.  
• Set the Response Variable to Conc.  
• Set the Nondetection (Censor) Variable to CNondet.  
• Set the Group Variable to Group.  

4 Specify the reports. 
• On the Nondetects Analysis window, select the Reports tab.  
• Uncheck all reports except the Logrank Test Summary report.  

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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 Output 
 

Logrank Tests Section 
Hypotheses 
H0: Distribution Functions are Equal Among Groups 
HA: At Least One Group Distribution Functions Differs 
 
   Prob Reject H0 
Test Name Chi-Square DF Level (Alpha = 0.05) 
Logrank 16.280 2 0.0003 Yes 
Gehan-Wilcoxon 16.076 2 0.0003 Yes 
Tarone-Ware 16.669 2 0.0002 Yes 
Peto-Peto 16.359 2 0.0003 Yes 
Mod. Peto-Peto 16.369 2 0.0003 Yes 
 
 
Multiple Pairwise Tests Section 
Hypotheses 
H0: Distribution Functions are Equal 
HA: Distribution Functions Differ 
 
Group Pair Tested: High vs. Low     Bonferroni  
     Adjusted  
   Prob Reject H0 Prob Reject H0 
Test Name Chi-Square DF Level (Alpha =0.05) Level (Alpha =0.05) 
Logrank 7.360 1 0.0067 Yes 0.0200 Yes 
Gehan-Wilcoxon 7.099 1 0.0077 Yes 0.0231 Yes 
Tarone-Ware 7.282 1 0.0070 Yes 0.0209 Yes 
Peto-Peto 7.385 1 0.0066 Yes 0.0197 Yes 
Mod. Peto-Peto 7.378 1 0.0066 Yes 0.0198 Yes 
 
Group Pair Tested: High vs. Medium     Bonferroni  
     Adjusted  
   Prob Reject H0 Prob Reject H0 
Test Name Chi-Square DF Level (Alpha =0.05) Level (Alpha =0.05) 
Logrank 11.398 1 0.0007 Yes 0.0022 Yes 
Gehan-Wilcoxon 11.528 1 0.0007 Yes 0.0021 Yes 
Tarone-Ware 11.931 1 0.0006 Yes 0.0017 Yes 
Peto-Peto 11.454 1 0.0007 Yes 0.0021 Yes 
Mod. Peto-Peto 11.470 1 0.0007 Yes 0.0021 Yes 
 
Group Pair Tested: Low vs. Medium     Bonferroni  
     Adjusted  
   Prob Reject H0 Prob Reject H0 
Test Name Chi-Square DF Level (Alpha =0.05) Level (Alpha =0.05) 
Logrank 1.125 1 0.2888 No 0.8663 No 
Gehan-Wilcoxon 0.689 1 0.4065 No 1.0000 No 
Tarone-Ware 0.796 1 0.3723 No 1.0000 No 
Peto-Peto 1.109 1 0.2923 No 0.8769 No 
Mod. Peto-Peto 1.092 1 0.2961 No 0.8884 No 
 
Notes: 
The most commonly used test is the Logrank test. 
 

You can check this table to see that the results are the same as those of Helsel (2005). 
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Chapter 250 

Xbar R (Variables) 
Charts 
Introduction 
This procedure generates various control charts useful for monitoring the average and variability 
of a process. The Xbar, EWMA, Moving Average, Individuals, Range, Standard deviation, and 
CUSUM charts are available. Various reports and a Capability Analysis are also available. A 
robust estimation method is available for automatically removing measurements that are outside 
the control limits from the calculation of the mean and standard deviation.  

Variables Control Charts 
Suppose we have a scatter plot with a response variable on the vertical axis and a representation 
of time (such as hours, shifts, days, weeks, or months) on the horizontal axis. This scatter plot 
shows the nature of the response over time. For example, we might see trends, shifts, sudden 
jumps, and so on. If we add horizontal limit lines to the plot to indicate standards, the scatter plot 
becomes a control chart. When the plots fall inside these limits lines, the process yielding the 
response is said to be in control. When the process yields responses that are outside these limits, 
the process is said to be out-of-control.  

The limit lines set a range of ‘normal behavior.’ They are based on past experience with the 
process and give a frame of reference for judging current outcomes. Because of natural variation 
in the process, the responses will not be exactly the same. They will bounce up and down. As 
long as the response stays within the limits, we need take no corrective action. However, once a 
measurement occurs outside the limits, we must investigate the cause and take appropriate 
corrective action.  

Dr. Walter A. Shewart was the first to make the distinction between controlled and uncontrolled 
variation. While working at the Bell Telephone Laboratories in the 1920’s, he developed the 
control chart as a simple tool to separate the two forms of variation. Japan made extensive use of 
control charts. Their extraordinary success has led to the increasing use of control charts 
throughout the world. The power of control charts comes from their ability to signal the presence 
of assignable causes and provide a basis for improving the process. 
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Although there are many forms of control charts, they can be categorized as either variables or 
attributes control charts. Here, the term variable means that the data can take on any value. It 
does not have to be a whole number. A person’s weight or height are examples of variables data. 
Attributes, on the other hand, are things that can be counted, such as the number of students in a 
class or the number of scratches on a new car. It doesn’t make sense to talk about a half a scratch. 
The scratch either exists or it doesn’t. If you can put things in categories such as good or bad, 
acceptable or not acceptable, then they are attributes data. 

The most popular variables charts are usually referred to as Xbar-R charts. An Xbar-R chart is 
actually two plots, the Xbar plot and the R plot. The Xbar plot is a plot of averages on a control 
chart. The R plot is a plot of ranges of groups or responses across time. Often, these plots are 
shown together, with the range plot on the bottom. This allows both patterns to be studied 
together across time. An example of the  Xbar - R chart is given in the following figure. 
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Finding the Appropriate Control Limits 
Once we understand that a control chart is simply a plot of some measurement across time with 
appropriate limits shown as horizontal lines, the only question is how to these limits should be 
determined. The answer to this question depends on the situation. For example, stock brokers use 
control charts routinely to determine when to buy and sell stocks. Unknowingly, they are using 
control charts. Each company sets its buy and sell limits in a different way, hoping to cash in on 
the movement of the stock. 

In quality control work, these control limits are set to meet the needs of the people monitoring a 
process. By considering the past statistical behavior of the process, we can set the limits so that 
few false alarms are given. Typically, the statistical behavior of the process is represented by its 
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average and standard deviation. Statistical theory is used to set the limits so that, on the average, 
only about 3 in 1000 false alarms (saying a process is out-of-control when it is not) are generated.  

The formulas given in a later section give the mathematical details on how to set the limits for 
different types of measurements. 

Comparison of Control Charts 
Several types of control charts have been developed for the many situations that occur in practice. 
The first control charts were done by hand without the aid of computers or even calculators. 
Hence, techniques were developed that were easy to do by hand. With the advent of computers, 
more complex statistical techniques became available that have better properties.  

How should we compare these techniques? What makes one charting procedure better than 
another? Various aspects of this question occur. For example, one way to compare two charting 
procedures is to investigate the average run length (ARL) after a known change in the process has 
occurred until an out-of-control signal is given. The ARL is the number of time periods that occur 
between the time a change actually occurs and the time an out-of-control signal is given by the 
chart. 

It turns out that different charting procedures can have very different ARL’s. The Xbar chart was 
developed to detect shifts in the process mean of about three sigmas (standard deviations). When 
a one sigma shift occurs, the ARL of the Xbar chart is about 6.3. The CUSUM chart, an 
alternative to the Xbar chart, has an ARL of only 3.2. When a mean shift of only one sigma is of 
interest to us, the CUSUM is obviously a better procedure. 

There are many aspects to consider when choosing an appropriate charting procedure. We have 
already talked about the ARL. Another is the cost of sampling. Some procedures require larger 
subgroup sizes (the number of items measured at a particular point in time). Some procedures 
detect trends and patterns better than others. You will have to investigate which chart (or charts) 
is best for your situation. 

Many books have been written about the pros and cons of the various control charts that are 
available. The following table gives a few of the advantages and disadvantages of the control 
charts that are available in this module. 
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Chart Focuses 
on 

Subgroup 
Sample 
Size 

Advantages Disadvantages 

Xbar Average Two and above Does a good job at detecting 
sudden, large jumps in the 
process average. 
Simple to understand. 
Popular. Used often so there 
is a large body of knowledge 
about its use. 

Slow to detect drifts in the 
average. 
Not good at detecting small 
changes in the process 
average. 

Individuals Average One Does a reasonable job at 
detecting sudden jumps in 
the average. 
Simple and popular. 

Slow to detect drifts in the 
average.Not good at 
detecting small changes in 
the process average. 
Relies heavily on the 
normality assumption. 

EWMA Average One and above Good at detecting slow 
shifts in the process average. 
Can be effectively used with 
small group sizes. 

Not responsive to sudden 
jumps. 
Requires the setting of a 
subjective parameter. 

Moving Average Average One and above Good at detecting slow 
shifts in the process average. 
Can be effectively used with 
small group sizes. 

Not responsive to sudden 
jumps. 
Not as effective as the 
EWMA chart. 

CUSUM Average One and above Detects small changes in the 
process average much 
sooner than the Xbar chart. 
Is less likely to give false 
out-of-control signals. 

Not as good at detecting 
larger jumps. 
Somewhat more 
complicated. 

R Variability Two and above Good at detecting sudden 
jumps. 
Easy to compute and 
understand. 

Ignores a lot of information 
about the variability, 
especially when the 
subgroup size is large.  

S Variability Two and above Good at detecting sudden 
jumps. 
Uses all information 
available about the 
variability contained in the 
data. 
Theoretically optimal 
estimate of the variability in 
many situations. 

Somewhat harder to 
compute and understand. 

Moving Range Variability One Only variability chart 
available when the subgroup 
size is one. 

Ranges are no longer 
independent. Relies heavily 
on the normality 
assumption. 
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Formulas for Constructing Control Charts 
Suppose we have k subgroups, each of size n. Let xij represent the measurement in the jth sample 
of the ith subgroup. Often we set n to 5 and require k to be at least 25. Three statistics are routinely 
computed for each subgroup: 

The subgroup mean 
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These three statistics are then plotted on the Xbar chart, the R chart, and the s chart, respectively. 

Estimating Sigma 
Control limits must established for each of these statistics. These require an estimate of the 
process mean, μx (mu), and the process variability, σx (sigma). Although a known estimate of μx 
may be supplied by the user, it is usually estimated by the average of the averages, ‘x double bar’ 
(also known as the grand mean): 
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There are four methods available for estimating σx. First, it may be supplied by the user based on 
other information available to him. More frequently, however, it is estimated by one of the 
following methods: 

Method 1: Estimating Sigma from the Ranges 
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Unfortunately, the calculation of E(R) requires the knowledge of the underlying distribution of 
the xij’s. Making the assumption that the xij’s follow the normal distribution with constant mean 
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and variance, we can derive values for d2 through the use of numerical integration. These values 
are used in the program. It is important to note that the normality assumption is used and that the 
accuracy of this estimate requires that this assumption be valid. 

Method 2: Estimating Sigma from the Standard Deviations 
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Again, the calculation of E(s) requires the knowledge of the underlying distribution of the xij’s. 
Making the assumption that the xij’s follow the normal distribution with constant mean and 
variance, we can derive values for c4 from the following formula. It is important to note that the 
normality assumption is used and that the accuracy of this estimate requires that this assumption 
be valid. If the data come from the normal distribution, we can show that 
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Method 3: Estimating Sigma from the Mean Square Error 
When the underlying data follow the normal distribution, the best estimate of σx from a 
theoretical point of view is obtained by calculating the mean square error from a one-way 
ANOVA in which the subgroups are the treatments. The estimated value of σx is  

$σ x MSE=  
Unfortunately, although this is the best estimate of σx, it is the least frequently used. Since 
charting techniques were done by hand, the complexity of the calculations discouraged most from 
using it. However, now that we have computer programs to do the calculations for us, there is no 
excuse for using one of the inferior estimates! 

Method 4: Estimating Sigma when n = 1 
When n is one, we cannot calculate RRi or si  since these require at least two measurements. In this 
case, we could use the standard deviation of all k measurements. Unfortunately, this method does 
not approximate the within-subgroup variation. Rather, it combines the within and the between 
subgroup variation. The common procedure is to use the ranges of successive pairs of 
observations. Hence, the range of the first and second is computed, the range of the second and 
third is computed, and so on. The average of these approximate ranges is used to estimate σx. 
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Xbar Chart Limits 
The lower and upper control limits for the Xbar chart are calculated using the formula 

LCL x m
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where m  is a multiplier (usually set to three) chosen to reduce the possibility of false alarms 
(signaling an out-of-control situation when the process is in control). 

Xbar Chart Limits when n=1 
When the subgroup size is one, the control limits become 

LCL x m x= − $σ  

UCL x m x= + $σ  

where $σ x is based on the moving ranges as described above. 

Range (R) Chart Limits 
The lower and upper control limits for the range chart are calculated using the formula 

LCL R mde x= − 3 $σ  

UCL R mde x= + 3 $σ  
where m  is a multiplier (usually set to three) chosen to reduce the possibility of false alarms and 
d3 is a constant (which depends on n) which is calculated from the following relationship by 
numerical integration based on the assumption of normality. 

d R

x
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The value of RRe is R  if  σx is estimated from the data or by d2σx if σx is supplied by the user. 

Range Chart Limits when n=1 
The moving ranges of size two replace the usual ranges in the formulas above. All calculations 
remain the same after this substitution, except that there are only k-1 ranges to plot. 

Sigma (S) Chart Limits 
The lower and upper control limits for the sigma (standard deviation) chart are calculated using 
the formula 

LCL mfs x= −$ $σ σ1  

UCL mfs x= +$ $σ σ1  
where m  is a multiplier (usually set to three), f1 is a constant which, based on the assumption of 
normality, is given by the formula 
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f c1 4
21= −  

The value of $σ s is s  if  σx is estimated from the data, or c4σx if σx is supplied by the user. 

EWMA Chart Limits 
The lower and upper control limits for the exponentially weighted moving-average (EWMA) 
chart are calculated using the formula 
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where m  is a multiplier (usually set to three) and π is smoothing constant. The values plotted are 
obtained from the original x i ’s using the exponential smoothing operation given by 

( )e x ei i= + − −π π1 1i  

The value of e0 is set to the grand mean. 

Note that the values of limits change with each successive subgroup. Fortunately, the value of the 
radical stabilizes after i passes five or six. 

Moving Average Chart Limits 
The lower and upper control limits for the moving-average chart are calculated using the formula 
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where m  is a multiplier (usually set to three) and wi is the number of rows used in this average. 
Note that the value of wi changes during the first few rows and then stays constant. The values 
plotted are obtained from the original x i ’s by taking the average of the last wi rows (including 
the current row). 

CUSUM Charts 
The CUSUM chart has been shown to detect small shifts in the process average much quicker 
than the Xbar chart. In fact, it can be shown to be better than the Xbar chart in many ways. Until 
recently, however, a cumbersome procedure using the so-called V-mask was necessary. Now, 
however, a charting procedure similar to the Xbar chart is available. 

In NCSS we use the CUSUM procedure presented by Ryan (1989). This procedure may be 
summarized as follows: 

1. Calculate all statistics as if you were going to generate an Xbar chart. 
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2. Calculate the zi  using the formula 

  z
x x

i
i

x
=

−
$σ

 

3. Calculate the lower and upper cumulative sums as follows 

( )[ ]S z KLi i Li= − − − + −max ,0 1S  

( )[ ]S z K SHi i Hi= − + −max ,0 1  

4. Plot SHi  and SLi  on a control chart. The control limits are chosen as plus or minus h. 
Often, K is set to 0.5 (for detecting one-sigma shifts in the mean) and h is set to 5. 

5. When an out-of-control situation is detected, the corresponding sum is reset to an 
appropriate starting value. Usually, the starting value is zero. Occasionally, however, a 
“fast initial restart” (FIR) value of h/2 is used. 

Runs Tests 
The strength of control charts comes from their ability to detect sudden changes in a process that 
result from the presence of assignable causes. Unfortunately, the Xbar chart is poor at detecting 
drifts (gradual trends) in the process. For example, there might be a positive trend in the last ten 
subgroups, but until a value goes above the upper control limit, the chart gives no indication that a 
change has taken place in the process.  

Runs tests are ways to check your control charts for unnatural patterns that are most likely caused 
by assignable causes. Years ago, statisticians referred to these patterns as runs and the term stuck, 
although today many people refer to them as “pattern tests” or “out-of-control” tests. The 
presence of any of these patterns means your process has probably changed, so you will need to 
find the problem and fix it. 

The application of the runs tests is the same for all control charts. However, the interpretation of 
the results depends on which control chart you are using. We shall discuss some of the important 
differences as we go.  

In order to perform the tests, the control chart is divided into six equal zones (three on each side 
of the centerline). Since the control limit is three sigma limits (three standard deviations of the 
mean) in width, each zone is one sigma wide and is labeled A, B, or C, with the C zone being the 
closest to the centerline. There is a lower zone A and an upper zone A. The same is true for B and 
C. The runs tests look at the pattern in which points fall in these zones. 

We will now discuss each of the runs tests available in NCSS. 

Test 1: Any Single Point Beyond Zone A 
We have already discussed this runs test, although we did not call it that at the time. It is simply a 
point beyond the three-sigma control limit. This is the main test for an unnatural pattern. Since 
there is less than a 0.3% chance of this occurring naturally, it is a strong indication of an 
assignable cause. 

In a range chart, a point above the upper-control limit indicates that the piece-to-piece variation 
has suddenly increased. Check for worn parts or variation in the raw material. 

In the Xbar chart, a point beyond either control limit indicates a serious change in the process. 
Check points before and after the occurrence to see if this is an isolated case or part of a trend. 
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Test 2: Two of Three Successive Points in Zone A or Beyond 
This usually indicates a shift in the process average. Note that the two points have to be in the 
same Zone A, upper or lower. They cannot be on both sides of the centerline. The third point can 
be anywhere. 

Test 3: Four of Five Successive Points in Zone B or Beyond 
This usually indicates a shift in the process average. Note that the odd point can be anywhere. 

Test 4: Eight Successive Points in Zone C or Beyond 
All eight points must be on one side of the centerline. This is another indication of a shift in the 
process average. 

Test 5:  Fifteen Successive Points Fall in Zone C on Either Side of the 
Centerline 
Although this pattern might make you think that the variation in your process has suddenly 
decreased, this is usually not the case. It is usually an indication of stratification in the sample. 
This happens when the samples come from two distinct distributions having different means. 
Perhaps there are two machines that are set differently. Try to isolate the two processes and check 
each one separately. 

Test 6: Eight of Eight Successive Points Outside of Zone C 
This usually indicates a mixture of processes. This can happen when two supposedly identical 
production lines feed a single production or assembly process. You must separate the processes to 
find and correct the assignable cause. 

There are, of course, many other sets of runs tests that have been developed. You should watch 
your data for trends, zig-zags, and other nonrandom patterns. Any of these conditions could be an 
indication of an assignable cause and would warrant further investigation. 

Two questions that inevitably arise in any discussion of runs tests are: “What is the probability 
that the runs tests will not detect a problem that really exists?” and “What is the probability that a 
runs test will tell me I have a problem when I really don’t?”  The first question is difficult to 
answer because there are so many potential problems that it is virtually impossible to estimate the 
probability of occurrence for each of them. The best we can say is that over the years, control 
charts have been extremely successful in finding assignable causes. The companies that have used 
the charts and have found and corrected the problems that the charts have indicated have usually 
gained an edge on their competition. 

The second question (that of false alarms) is easier to answer because the tests are structured to 
minimize the occurrence of false out-of-control conditions. With the exception of range charts 
with small sample sizes, the probability of getting a false alarm for any individual test is 
relatively small. It does exist, however, and for any given point on an Xbar chart with only 
common causes, there is about a 2% chance of getting a false indication of an out-of-control 
condition. The probability of a false alarm at any point on a range chart with a sample size of 5 is 
about 2.7%. These are acceptable probabilities for most people, but keep in mind that on an Xbar-
R chart with a large number of samples (40 or more), you run a very good chance of having at 
least one false alarm. 
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If you are using a sample size of two, be careful!  The probability of a false alarm at any point is 
nearly 23%. Any time you get an out-of-control signal, make sure you understand the cause. You 
can avoid a lot of false alarms by making the sample size four or five. You may also want to 
ignore the runs tests and concentrate on only those points that go beyond the three-sigma control 
limits. 

Capability Analysis 
In all of our discussion of process performance, we have not yet mentioned the word 
specification. If you are manufacturing a product or even providing a service, you may be 
concerned about this omission. After all, it is the specification that the customer will check your 
product against, not the control limits. So you may be asking, “What good are control limits if 
they are not related to the specifications?” The answer to that question is the subject of this 
section. 

After you have assured yourself that the process is stable and you have identified and removed all 
the assignable causes, the process will be in statistical control. Since the remaining variation is 
due to common causes only, the process is doing the best that can be expected. But is “the best” 
good enough? To find the answer to this question, you have to perform a capability analysis. 

The basic idea of a capability analysis is to compare the process output with the specifications to 
determine whether the process can be expected to produce items that will be within the 
specification limits. If you enter the process specifications (or other requirements), NCSS will 
calculate the process capability for you. 

In order to see how the process capability works, let’s consider a typical hamburger restaurant. 
The owner is concerned about the weight of the hamburgers because if they are too small, the 
customers complain, and if they are too big, he loses money. He therefore directs the restaurant 
manager to make sure that all hamburgers are within one-half ounce of the advertised weight of 4 
ounces. Hence the lower specification limit is 3.5 ounces and the upper specification limit is 4.5 
ounces. 

From previously created control charts, the manager knows that the process is in statistical 
control. If he made a histogram of the weights of a week’s production of hamburgers, he would 
create a chart that would be close to the familiar bell curve. Suppose the mean hamburger weight 
is 4.1 ounces. 

Before computers were available, it was often difficult to calculate the percentage of items that 
would fall outside of the specifications, so a number of shortcuts were developed. One of these 
shortcuts is called the capability index. Actually, there are two versions of the capability index, 
which are generally labeled Cp and Cpk. Cp evaluates the process spread relative to the 
specifications and Cpk evaluates the process location relative to the specifications.  

Although the percentage of items produced outside of specification may be more meaningful for 
decision making, there are a lot of people that still prefer to use one of the capability indexes. If 
your main customer is one of these people, you will have to use an index yourself, so let’s 
examine them briefly to see how they are used. 

In order to find out what the process can do, we must first remove all assignable causes. If your 
process is not in statistical control, you cannot get a good estimate of the process capability. In 
order to get around this problem, you can make an estimate of the process capability without 
assignable causes by removing the data samples that fail any of the runs tests and then calculating 
the process capability. This is not as good an estimate as if the actual causes themselves were 
removed, but it is better than leaving the out-of-control points in. 
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Cp is the difference between the two specification limits divided by six-sigma. Mathematically, 
the equation is 

Cp USL LSL
=

−
6σ

 

Large values of Cp are wanted, while small values are unwanted. The selection of the ‘6’ in the 
denominator is so that when the grand mean is just equal to the target value and the underlying 
distribution is normal, a Cp = 1 indicates that only 0.27% of the process output will be outside 
specifications. This amounts to 27 out of 10,000. 

Unfortunately, a Cp  of one does not guarantee the 0.27%. All it guarantees is that when the 
normality assumption is correct, there will never be less than 0.27% outside specifications! As 
you can guess, the use of Cp has dropped off in more recent years. The problem is that it does not 
take into account the true center of the process output. If you look at the above formula, you 
realize that it is possible for Cp to be one, yet none of the process is inside specifications! 

The Cp index has generally been replaced by the Cpk index because the Cpk index tries to take 
into account the process average as well as the process variability. The theoretical definition of 
Cpk is 
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or, upon using a little algebra, 

( )
Cpk

USL LSL
d

Cpx= −
− +⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
1

1
2μ

 

where d = USL-LSL. 

When Cpk is greater than one, the process is said to be capable. An index smaller than one 
indicates a problem that needs attention. Because some processes produce an output that does not 
fit a Gaussian distribution, quality experts sometimes use a Cpk value of 1.33 to indicate a 
capable process. This more conservative value corresponds to plus or minus four-sigma limits 
instead of the more common three-sigma limits. 

Actually, the most useful information from the capability study could be the estimate of the 
percentage of items that will fall outside the specification limits. As mentioned earlier, it used to 
be very difficult to calculate this number. But, with computers doing the work for us, it is now 
quite easy. NCSS calculates the percentage above the upper specification and the percentage 
below the lower specification and labels these values as “% Outside Spec.”  You can decide what 
is an acceptable threshold for this value in order for your process to be termed capable. If the 
process follows a Gaussian distribution, the % Outside Spec would have to be less than 0.3% total 
to correspond to Cpk being greater than one. 

Because the calculation of Cp and Cpk depend on the characteristics of a normal distribution, it is 
important to know if your data are normal. Normal does not mean that your data are regular or 
standard. The question is really whether your individual measurements fit the bell shaped curve 
of a normal distribution. NCSS tests the distribution of underlying data to see how well it fits a 
normal (or Gaussian) distribution. 

The test is called a chi-square test for normality. It makes a histogram by dividing the distribution 
into a number of regions and then counting the number of items in each region. It then compares 
this actual count with the number that is expected if the distribution is normal. The test uses these 
differences to calculate a chi-square value. 
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A small chi-square value (below some threshold value), means the data are well approximated by 
the normal distribution. A large chi-square value (above the threshold value) means that the data 
are not normally distributed. The chi-square threshold value depends on the number of data 
samples and the desired confidence level of the answer (the default is 95%). If the value of chi-
square is above the threshold value, NCSS tells you to reject the hypothesis that the data follow a 
normal distribution. 

If your data do not follow a normal distribution, be careful when interpreting the capability index. 
You could have more parts out of spec than what the index value would lead you to expect. 
Under these circumstances, you may want to use a value greater than one to indicate a capable 
process. Some people suggest using 1.33, which corresponds to limits of plus or minus 4-sigma. 

Because some people prefer to use a confidence level other than 95%, NCSS provides both the 
actual chi-square value and the probability that a chi-square value equal to or greater than this 
could have come from normally distributed data. 

The sensitivity of the chi-square test depends on the number of individual measurements in the 
data base. When there are fewer than 200 points in the test, the test may not properly reject the 
hypothesis of normality. However, the larger the data base, the more sensitive is the test, so that 
for large data bases (more than 200 points) even small deviations from normality will be detected. 

Your control charts will be valid even if your data are not normal. This is because control charts 
are based on samples of measurements which are then averaged. As long as the sample size is 
three or greater, these averages will form a distribution that is close enough to Gaussian to make 
valid control charts regardless of the underlying individual distribution. 

Although the chi-square test is of interest to statisticians, many times a quick look at a chart of the 
distribution will let you see if you have problems with the shape of the distribution. NCSS fits a 
normal curve to the histogram of your individual data to show you what your distribution looks 
like. From this, you can easily judge for yourself if there are any problems with your data. 

Issues in Using Control Charts 
We would like to point out several decisions that must be made when using a control chart. We 
will not make these decisions for you. However, these are issues that you must deal with when 
adopting and using any control charting technique. The answers to the following questions are 
important. If you want help with these questions, we suggest that you obtain a book on the subject 
such as Ryan (1989) or Montgomery (1991). Such books will give you a much better background 
in the techniques of control charting. 

Subgroup Size 
How many items per subgroup? Originally, four or five items were recommended. Nowadays, ten 
or twenty are not uncommon. What difference does it make? What about unequal subgroup sizes? 

Dealing with Out-of-Control Points 
How do you deal with out-of-control points once they have been detected? Should they be 
included or excluded in the process average and standard deviation? 

Control Limit Multiple 
I understand that most people use 3-sigma limits. What is so magic about 3? Are there situations 
where 3.1-sigma limits are more appropriate? How about 2-sigma limits? 
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Startup Time 
I understand that I should have about 25 periods of in-control readings before I pay much 
attention to the control chart. Is 25 subgroups enough for my situation? Should I have more or 
less? 

Normality Assumption 
I hear a lot of discussion about the importance of having a measurement that is normally 
distributed. How important is this? How do I check this? How non-normal does a process have to 
be before I have to choose a different procedure? 

Runs Tests 
I hear of all kinds of tests for pattern detection. Which runs tests (if any) are appropriate for my 
situation? Are they really useful, or do they just add extra work? 

Data Structure 
The data in the table below illustrate how control chart data are entered into NCSS. Each row 
gives the five responses for a particular subgroup. It is the average and range of each row that is 
charted. These data represent fifty subgroups of five samples. The data are contained in the file 
named QATEST. Only the first eight rows of the data are shown here. 

 

QATEST dataset (subset) 

S1 S2 S3 S4 S5 
2  3  5 
8 8 7 7 9 
6 2 2 4 3 
5 6 7 6 10 
48 2 6 5 0 
28 2 1 5 13 
7 4 5 4 8 
 0 5 7 3 
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Procedure Options 
This section describes the options available in this procedure. To find out more about using a 
procedure, turn to the Procedures chapter. 

Variables Tab 
This panel specifies the variables that will be used in the analysis. 

Variables 

Data Variables 
These are the variables to be analyzed, one for each sample. Each row represents a complete 
subgroup. For example, if your procedure is to take five samples per subgroup, you would enter 
the five values in five variables across a row. 

If only one variable is given, NCSS automatically generates an individuals chart with a moving-
range of size 2. 

Label Variable 
An optional variable containing row labels that you use to document your output. You can use 
dates (like Jan-23-95) as labels. Here is how. First, enter your dates using the standard date 
format (like 06/20/93). In the Variable Info screen, change the format of the date variable to 
something like mmm-dd-yyyy or mm-dd-yy. The labels will be displayed as labels. Without 
changing the variable format, the dates will be displayed as long integer values.  

Specify Rows in Calculations 

Specification Method 
This option specifies how the rows that are used in the calculations are specified.  

• All Rows 
All rows are used. 

• First Row - Last Row 
The first and last row is specified. 

• First N Rows 
The first N rows on the dataset are used. The value of N is specified below. 

• Last N Rows 
The last N rows on the dataset are used. The value of N is specified below. 

• Row List 
The rows used by in calculations are specified by the Row List box below. 

First Row 
This option designates the first row to be used. Rows before this row are ignored. This option is 
only used when Specification Method is set to First Row - Last Row. 
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Last Row 
This option designates the last row to be used. Rows after this row are ignored. This option is 
only used when Specification Method is set to First Row - Last Row. 

N 
This option designates the value of N. This option is only used when Specification Method is set 
to First N Rows or Last N Rows. 

Row List 
Specify sets of rows to be used in calculations. A separate set of calculations will be carried out 
for each set. Example (with three sets): 1-50, 75-150, 175-Last. Note that Specification Method 
must be set to Row List. 

Rows that are not included in this list will still be plotted if they are included in the list of charted 
rows. 

Specify Rows in Charts 

Specification Method 
This option specifies how the rows that are used in the charts are specified.  

• All Rows 
All rows are used. 

• First Row - Last Row 
The first and last row is specified. 

• First N Rows 
The first N rows on the dataset are used. The value of N is specified below. 

• Last N Rows 
The last N rows on the dataset are used. The value of N is specified below. 

First Row 
This option designates the first row to be used. Rows before this row are ignored. This option is 
only used when Specification Method is set to First Row - Last Row. 

Last Row 
This option designates the last row to be used. Rows after this row are ignored. This option is 
only used when Specification Method is set to First Row - Last Row. 

N 
This option designates the value of N. This option is only used when Specification Method is set 
to First N Rows or Last N Rows. 

Select Chart Attributes 

Mean Line 
Specifies whether to display a horizontal line representing the mean on the charts. 
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Primary Control Limits 
Specifies whether to display horizontal lines representing the primary control limits on the charts. 

Secondary Control Limits 
Specifies whether to display horizontal lines representing the secondary control limits on the 
charts. 

Trend Line 
Specifies whether to display a trend line on the charts. 

Runs 
Specifies whether to add a label identifying those subgroups which failed a particular runs test. 

Row Labels 
Specifies whether to label each row along the horizontal axis using the values in the Label 
Variable or the row number. 

Spec Limits on Chart 
Specifies whether to display horizontal lines representing the specification limits on the charts. 

Spec Limits on Histogram 
Specifies whether to display lines representing the specification limits on the histogram. 

Zones 
Specifies whether to display horizontal lines representing the six horizontal zones. 

Individual Data 
Specifies whether to display the individual data values. Typically, you would not show the 
individual values on a control chart since the control limits are for the average values, not the 
individual values. Occasionally, you might want to display the individual values with the 
specification limits on a time plot. This option will let you do that. Again, the control limits do 
not apply to the data values. 

Use Runs Tests 
Specifies whether to use the runs tests in determining out-of-control points. 

Label Out-of-Control Rows 
Specifies whether to label rows that fall outside the control limits. If a Label Variable is used, the 
label specified there is used. Otherwise, the row number of the out-of-control point is given. 

Options Tab 
The next few options determine the type of chart that you want displayed. 

General Chart Options 

Primary Multiplier 
This option specifies the multiplier of sigma for the primary control limits. Usually, the famous 3-
sigma limits are desired, so the multiplier is 3.   
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Secondary Multiplier 
This option specifies the multiplier of sigma for the optional, secondary control limits. Usually, 
the secondary limits are ignored by setting this value to 0. Occasionally, a value of 2 is used. 

Label Mean and Control Limits 
Specifies whether to show the values of the mean (center) and controls limits on the right of the 
chart. You can also add optional headings like LCL= or Mean= with the option “Yes-Labels.” 

Robust Options 
You can have NCSS scan your data and remove out-of-control subgroups from the calculation of 
the mean and standard deviation. Usually, you would perform this manually by repeatedly 
removing out-of-control subgroups. Occasionally, you will want to obtain the final result without 
the manual intervention. These options define the automatic procedure that you want to use. 

Caution: Accepted SPC procedure is to only remove out-of-control subgroups from the 
calculations if an assignable cause for the out-of-control situation can be found and corrected. If 
the problem cannot be found and corrected, you should not remove the out-of-control subgroup. 
Hence, you should be careful about using this automated procedure, since it does not require you 
to find assignable causes for the out-of-control points. 

Robust Iterations 
This option specifies the number of robust iterations (cycles through the data looking for out-of-
control subgroups) that you want. Usually, one or two should be sufficient.  

If you want to skip the robust estimation entirely, enter a 0 here.  

Robust Multiplier 
This option specifies a control limit multiplier to be used during the robust estimation. Usually, 
you would enter a 3 here. Occasionally, you might want to adjust this value slightly.  

Rows Skipped 
If you print out individual row labels along the horizontal axis and you have many rows, the 
labels may over-write each other. This option lets you skip x number of labels. For example, if 
you only wanted to display every other label, you would enter a 1 here. If you only wanted to 
display every fifth label, you would enter a 4 here. 

Xbar Chart Options 

Fixed Xbar Type 
A fixed value for Xbar (the mean) can be input as a constant or as the first row in a specified 
variable. This option specifies where to find the fixed mean value. It specifies which of the 
following two places to look for the fixed mean value.  

Xbar Constant 
This option lets you specify a fixed value for Xbar (the mean). It requires the appropriate 
selection of Constant in the last option. 

Xbar Variable 
This option lets you specify a fixed value for Xbar (the mean). To use this, you would enter the 
fixed value of the mean as the first value in this variable on the database. This might be 
convenient when several databases (each with different means) are being run. It requires the 
appropriate selection of Variable in the above option. 
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R (Range) Chart Options 

Range Chart Type 
This option specifies whether an R chart (based on ranges) or an S chart (based on standard 
deviations) should be used. The R chart is more popular because the ranges are easier to compute 
by hand, but the S chart has better theoretical properties.  

Sigma From 
This option specifies the method used to estimate sigma.  

• Data 
Sigma is estimated from either the average of the subgroup ranges or the average of the 
subgroup standard deviations, depending on the selection in the Range Chart Type option. 

• Mean Square Error 
Sigma is estimated using the mean square error. If the data follow the normal distribution, 
this estimate has the best theoretical properties.  

• Fixed Value 
Sigma is not estimated from the data. Rather, the value of sigma is specified by the user. Use 
this if you want to use a certain value of sigma. 

Fixed Sigma Type 
A fixed value for sigma (the standard deviation) can be input as a constant or as the first row in a 
specified variable. This option specifies where to find the fixed sigma value. It specifies which of 
the following two places to look for the fixed sigma value.  

Sigma Constant 
This option lets you specify a fixed value for sigma (the standard deviation). It requires the 
appropriate selection of Constant in the last option. 

Sigma Variable 
This option lets you specify a fixed value for sigma (the standard deviation). To use this, you 
would enter the fixed value of the sigma as the first value in this variable on the database. This 
might be convenient when several databases (each with different sigmas) are being run. It 
requires the appropriate selection of Variable in the above option.  

EWMA Option 

EWMA Parameter 
This specifies the value of the smoothing parameter, π, in the EWMA chart. Typically, a value 
between 0.15 and 0.30 is used.  

Moving Average Option 

Moving Average Width 
This specifies the number of rows averaged in each moving average. The moving average used 
the designated number of rows, going back from the current row. The xbar value of the current 
row is included in the moving average. At the beginning of the series, a reduced number of rows 
is used (since they are all that is available). 
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Spec Limits 

Lower Specification Limit 
This option lets you specify the optional lower specification limit for display on your charts and 
for use in the capability analysis. 

Upper Specification Limit 
This option lets you specify the optional upper specification limit for display on your charts and 
for use in the capability analysis. 

Target Specification 
This option lets you specify the optional target specification for display on your charts.  

Capability Section Option 

Alpha Level 
This option specifies the value of alpha used in the confidence limits that are displayed in the 
capability analysis. Typically, this value is set to 0.05. 

Reports Tab 
The following options control the format of the reports. 

Specify Reports 

Chart Summary Section - Capability Analysis Section 
Each of these options controls the display of the corresponding report. 

Specify Charts 

Xbar Chart - Capability Histogram 
Each of these options controls the display of the corresponding chart. 

Report Options 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Page Title 
This option specifies a title to appear at the top of each page. 
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Plot Subtitle 
This option specifies a subtitle to appear at the top of each plot. 

Xbar Charts Tab 
This panel sets the options used to define the appearance of the xbar chart. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Xbar Chart Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Titles 

Plot Title 
This is the text of the title. The characters {Y}, {X}, and {G} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 
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R Charts Tab 
This panel sets the options used to define the appearance of the range or s chart. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

R Chart Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Show Lower Limit 
This check box indicates whether to display the lower limit on the range chart. Often, only the 
upper limit is of interest. 

Titles 

Plot Title 
This is the text of the title. The characters {Y}, {X}, and {G} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 
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CUSUM Tab 
This panel sets the options used to define the appearance of the CUSUM chart. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

CUSUM Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Threshold Limit (h) 
Specify value of the threshold limit, h. Typically, a 5 is used here.  

Reference Value (K) 
Specify value of the reference value, K. Typically, a 0.5 is used here.  

Restart Method 
Specify the method used to restart the sum once an out-of-control signal has been received. 
Usually, the sum is reset to zero. Occasionally, you might want to restart the sum at h/2, by 
selecting the FIR option.  

Titles 

Plot Title 
This is the text of the title. The characters {Y}, {X}, and {G} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 



250-24  Xbar R (Variables) Charts  

Label (Y and X) 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum (Y) 
This option specifies the minimum value displayed on the vertical (Y) axis. If left blank, it is 
calculated from the data. 

Maximum (Y) 
This option specifies the maximum value displayed on the vertical (Y) axis. If left blank, it is 
calculated from the data. 

Tick Marks - Ref. Numbers (Y and X) 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Y Major Ticks - Y Minor Ticks 
These options set the number of major and minor tickmarks displayed on the vertical axis. 

Y Grid Lines 
This check box indicates whether the grid lines that emanate from the vertical axis should be 
displayed. 

Histogram Tab 
This panel sets the options used to define the appearance of the histogram. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 
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Histogram Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Note that this plot is a special version of the scatter plot, so it uses a scatter plot style file, not the 
histogram style file as you might think. 

Show Normal Line 
Specify whether to display the normal (gaussian) density line on the histogram.  

Number Line Values 
Specify the number of increments to use to make the normal density line. 

Titles 

Plot Title 
This is the text of the title. The characters {Y}, {X}, and {G} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Symbols - Lines Tab 
This panel specifies the plotting symbols and lines used on the charts. 

Symbols 

Out of Control 
Specify the symbol used to display the out-of-control points. Click the button on the right to 
display the symbol modification window. 

In Control 
Specify the symbol used to display the in-control points. Click the button on the right to display 
the symbol modification window. 

Data Value 
Specify the symbol used to display the data values. Click the button on the right to display the 
symbol modification window. 

Lines 

Connecting Line - Histogram Line 
These options specify the color, width, and style of the various lines that make up the control 
chart. 
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Storage Tab 
The options on this panel control the automatic storage of the means and ranges on the current 
database.  

Storage Variables 

Store Means in Variable 
You can automatically store the means of each row into the variable specified here. 

Warning: Any data already in this variable is replaced. Be careful not to specify variables that 
contain important data. 

Store Ranges (Sigmas) in Variable 
You can automatically store the range (or standard deviation) of each row into the variable 
specified here. The choice of whether the range or the standard deviation is stored in this variable 
depends on which type of R chart was selected. 

Warning: Any data already in this variable is replaced. Be careful not to specify variables that 
contain important data. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Running an Analysis using Xbar R Charts 
This section presents an example of how to run an analysis. The data used are found in the 
QATEST database. We will analyze the variables S1 through S5 on this database. In order to do a 
capability analysis, we will set the specification limits to 1.0 and 14.0. (Note that these limits are 
not necessary for the Xbar-R charts.)  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Xbar R (Variables) Charts window. 

1 Open the QATEST dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file QATEST.s0. 
• Click Open. 

2 Open the Xbar R (Variables) Charts window. 
• On the menus, select Graphics, then Quality Control Charts, then Xbar R (Variables) 

Charts. The Xbar R (Variables) Charts procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Xbar R (Variables) Charts window, select the Variables tab.  
• Double-click in the Data Variables text box. This will bring up the variable selection 

window.  
• Select S1 through S5 from the list of variables and then click Ok. “S1-S5” will appear in 

the Data Variables box.  

4 Specify the specification limits. 
• On the Xbar R (Variables) Charts window, select the Options tab.  
• Enter 1.0 in the Lower Spec Limit text box. 
• Enter 14.0 in the Upper Spec Limit text box. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Xbar-R and Range Charts 
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This plot displays an Xbar chart on the top and an R (range) chart on the bottom. The overall 
mean (center-line) and 3-sigma limits are shown. These limits widen a little at the end because a 
missing value in batch 44 caused the sample size to be reduced from five to four. NCSS 
automatically adjusts for this change in sample size. 
Notice that row 5 is outside the 3-sigma limits on the Xbar chart. The next report gives the 
numerical details of the charts and lists those rows that failed at least one of the control tests. 

Control Limits Section 
 

 Control Limits Section 
 
 Control  
 Limit Xbar Range Sigma 
 Lower 0.9261222 -1.287481 0 
 Upper 11.14705 19.00748 0 
 

This section displays the values of the lower and upper control limits for the two charts. Note that 
since the S chart was not run in this example, the control limits are both zero. 
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Estimation Summary Section 
 

 Estimation Summary Section 
 
 Estimate of  
 Sigma Mean Range Sigma-bar Sigma 
 User Specified 0 0 0 0 
 Mean Square Error 6.036585 8.86 3.611263 4.618599 
 Ranges* 6.036585 8.86 3.611263 3.809114 
 Standard Deviations 6.036585 8.86 3.611263 3.841828 
  
 Number of Rows               50 
 

This report gives the numerical details of the Xbar-R chart analysis. We’ll now define each of the 
numbers appearing on the report. 

Estimate of Sigma 
There are four different estimates of sigma (σx) that may be selected. This report gives each of 
them along with the values that were used in their calculation. Note that the actual estimate of 
sigma is given in the last column under the heading “Sigma.” 

User Specified This is used if a value of sigma was specified by the user. 

Mean Square Error This is the estimate of sigma that is calculated from the mean squared error 
of the data. This is the most efficient estimate of sigma when a process is in control in that it 
makes the best use of all information. 

Ranges This estimate of sigma is based on the average of all the ranges. This is the most popular 
estimate of sigma. The star (*) by the word “Ranges” indicates that this is the estimate that was 
used in the current chart. 

Standard Deviations This estimate of sigma is based on the average of all sample standard 
deviations. 

Mean 
This gives the grand mean: the average of the subgroup xbars. 

Range 
This is the average of the ranges. 

Sigma-bar 
This is the average of the standard deviations. 

Sigma 
This is the estimated value of σx. 

Out-of-Control List 
 

 Out-of-Control List 
 
 Row Mean Range Row Label Reason 
 5 12.2 48 5 Xbar: beyond control limits 
 6 9.8 27 6 Range: beyond control limits 
 

This report provides a list of the rows that failed one of the runs tests (including being outside the 
control limits. The Reason column names the particular runs test that was failed. 
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Capability Analysis Section 
 
 Capability Analysis Section 
 Parameter Lower Center Upper 
 3-Sigma Limits -5.390758 6.036585 17.46393 
 4-Sigma Limits -9.199872 6.036585 21.27304 
 Specification Limits 1   14 
 Specification z-Values -1.322246   2.090621 
 Percent Outside Specification 3.252033  2.439024 
 Capacities 0.440749  0.696874 
 Cp Index 0.518452 0.568811 0.619112 
 Cpk Index 0.383108 0.440749 0.498389 
 Count = 246   Sigma = 3.809114  Alpha Level = 0.050000  
 

This report provides a capability analysis of the data. The aim of a capability analysis is to test 
whether the process is capable of meeting the design specifications. 

3-Sigma Limits 
These are the estimated values of the 3-sigma limits. The grand mean, x double bar, is given in 
the center column. 

4-Sigma Limits 
These are the estimated values of the 4-sigma limits. 

Specification Limits 
These are the specification limits that you entered. 

Specification z-Values 
These are the z-values of the specification limits calculated using the formula:   

z spec x
spec

x
=

−
$σ

 

Here ‘spec’ refers to the upper or lower specification limit. 

Percent Outside Specification 
This is the percent of the individual sample values that were outside the specification limits. The 
first number is the percent that are less than the lower specification limit. The second number is 
the percent that are above the upper specification limit. 

Capacities 
These are the absolute values of the above z-values divided by three. These values are used in the 
calculation of Cpk. 

Cp 
This is the difference between the two z-values divided by six. When this number is greater than 
one, the process is said to be ‘capable.’  

Cp USL LSL

x
=

−
6 $σ

 

Also included are upper and lower confidence limits for the Cp value using the following 
equations 

Cp Cp
nlower
n=
−
−χ α1 2

2

1
, /  
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Cp Cp
nupper
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−

− −χ α1 1 2
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, /  

Cpk 
This is the minimum of the two Capacities. When this measure is greater than one (some people 
use 1.33) the process is said to be ‘capable.’  

( )
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σ̂3

,min −−
=  

Also included are upper and lower confidence limits for the Cpk value using the following 
equations 
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Count 
This is the number of values used in the analysis. Normally, all values are included in this 
analysis. If you want to restrict the values used to those subgroups that are in control, you must 
use the runs tests and robust estimation procedures. 

Sigma 
This is the estimated standard deviation of the underlying process. 

Alpha 
This is value of α used in the confidence intervals of Cp and Cpk. 

Frequency Distribution and Normality Test 
 
 Frequency Distribution and Normality Tests 
 
 Lower Upper Actual Normal Diff. Actual Normal Diff. Chi-Sqr 
 Boundary Boundary Count Count Count Percent Percent Percent Amount 
   -3.486201 0.0 1.5 -1.5 0.0 0.6 -.6 .00 
 -3.486201 0.322913 8.0 14.9 -6.9 3.3 6.1 -2.8 4.33 
 0.322913 4.132028 87.0 59.5 27.5 35.4 24.2 11.2 12.75 
 4.132028 7.941143 72.0 94.2 -22.2 29.3 38.3 -9.0 5.23 
 7.941143 11.75026 63.0 59.5 3.5 25.6 24.2 1.4 .21 
 11.75026 15.55937 13.0 14.9 -1.9 5.3 6.1 -.8 .01 
 15.55937   3.0 1.5 1.5 1.2 0.6 0.6 .00 
 Total   246.0 246.0 0.0 100.0 100.0 0.0 22.53 
   
 Normality: Chi-Square = 22.53   Prob Level = 0.000013.   Normality hypothesis is rejected. 
 Normality: Shapiro-Wilk = 0.77   Prob Level = 0.000000.   Normality hypothesis is rejected. 
 Normality: Anderson-Darling = 5.79  Prob Level = 0.000000.   Normality hypothesis is rejected. 
 

This table summarizes the multinomial Chi-square test for normality as applied to the individual 
data points. It tests the normality of the underlying data, not of the Xbar’s. The Chi-square 
amounts are displayed so that you can see where the largest contributions to the Chi-square 
values come from. Note that the Chi-square test requires expected group sizes of 5 or more. 
Because of this, NCSS automatically combines groups that have expected counts less than 5. 



250-32  Xbar R (Variables) Charts  

The Chi-square test and rejection probability is shown at the bottom of the report. 

In addition to the Chi-square normality test, the Shapiro-Wilk and the Anderson-Darling 
normality tests are also displayed (see discussion in the Descriptive Statistics chapter for details). 
These tests are recommended over the older Chi-square test. 

Capability Histogram 
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This chart displays a histogram of the data with a normal curve overlaid. It allows you to visually 
check whether the data follow the normal distribution. Note that even if the data are not normally 
distributed, if the subgroup size is at least five, the Xbar chart is valid. This is based on the 
central limit theorem, which states that averages of samples are approximately normally 
distributed regardless of the underlying individual distribution. 
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Example 2 – Individuals and Moving Range Charts 
We will now run an example of an Individuals and Moving Range Chart. These are run on a 
single variable, so we will run this example on S1.  

You may follow along here by making the appropriate entries or load the completed template 
Example2 from the Template tab of the Xbar R (Variables) Charts window. 

1 Open the QATEST dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file QATEST.s0. 
• Click Open. 

2 Open the Xbar R (Variables) Charts window. 
• On the menus, select Graphics, then Quality Control Charts, then Xbar R (Variables) 

Charts. The Xbar R (Variables) Charts procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Xbar R (Variables) Charts window, select the Variables tab.  
• Double-click in the Data Variables text box. This will bring up the variable selection 

window.  
• Select S1 from the list of variables and then click Ok. “S1” will appear in the Data 

Variables box.  

4 Specify the specification limits. 
• On the Xbar R (Variables) Charts window, select the Options tab.  
• Enter 1.0 in the Lower Spec Limit text box. 
• Enter 14.0 in the Upper Spec Limit text box. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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The charts and reports of the Individuals and Moving Range charts appear about the same as 
before, so we will not repeat all the definitions here.  
We wish to emphasize again that since the individuals chart is not based on averages, it cannot 
use the central limit theorem to assume normality. Instead, you must check the normality of your 
data very carefully before you can validate the use of this method. 
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Example 3 – EWMA Charts 
We will now run an example of a EWMA chart using the variables S1 through S5.  

You may follow along here by making the appropriate entries or load the completed template 
Example3 from the Template tab of the Xbar R (Variables) Charts window. 

1 Open the QATEST dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file QATEST.s0. 
• Click Open. 

2 Open the Xbar R (Variables) Charts window. 
• On the menus, select Graphics, then Quality Control Charts, then Xbar R (Variables) 

Charts. The Xbar R (Variables) Charts procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Xbar R (Variables) Charts window, select the Variables tab.  
• Double-click in the Data Variables text box. This will bring up the variable selection 

window.  
• Select S1 through S5 from the list of variables and then click Ok. “S1-S5” will appear in 

the Data Variables box.  

4 Specify which reports and charts. 
• On the Xbar R (Variables) Charts window, select the Reports tab.  
• Check EWMA Xbar Chart. 
• Check EWMA R (Range) Chart. 
• All of the other reports should not be checked. 

5 Show both limits. 
• On the Xbar R (Variables) Charts window, select the R Charts tab. 
• Check the Show Lower Limit option. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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The charts and reports of the EWMA procedure appear about the same as before, so we will not 
repeat all the definitions here. Note, though, the characteristic widening of the first few limits. 
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Example 4 – CUSUM Charts 
We will now run an example of a CUSUM chart using the variables S1 through S5.  

You may follow along here by making the appropriate entries or load the completed template 
Example4 from the Template tab of the Xbar R (Variables) Charts window.  

1 Open the QATEST dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file QATEST.s0. 
• Click Open. 

2 Open the Xbar R (Variables) Charts window. 
• On the menus, select Graphics, then Quality Control Charts, then Xbar R (Variables) 

Charts. The Xbar R (Variables) Charts procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Xbar R (Variables) Charts window, select the Variables tab.  
• Double-click in the Data Variables text box. This will bring up the variable selection 

window.  
• Select S1 through S5 from the list of variables and then click Ok. “S1-S5” will appear in 

the Data Variables box.  

4 Specify which reports and charts. 
• On the Xbar R (Variables) Charts window, select the Reports tab.  
• Check CUSUM Chart. 
• All of the other reports should not be checked. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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The charts and reports of the CUSUM procedure appear about the same as before, so we will not 
repeat all the definitions here. 

SPC Fundamentals 
This section gives a brief introduction to SPC. We will explain what SPC is, how to use it, and 
what you can gain from it. If you need more detailed information on SPC, you should consult one 
of the many textbooks on SPC. We recommend Ryan (1989), Montgomery (1991), or DeVor 
(1992). 

The use of statistics to help understand and control processes is certainly not a new idea.  SPC has 
long been recognized as an extremely powerful tool to diagnose problems in quality and 
productivity. Recently, however, two events have occurred to enhance SPC’s popularity.  First, 
consumers throughout the world are becoming less tolerant of poor quality. A company that gains 
a reputation for good quality can actually charge a premium for its products and still gain market 
share. It also has a much easier time introducing new products that sell. Second, recent advances 
in computer hardware and software have simplified or eliminated the tedious calculations that 
formerly had to be done by hand. 

SPC is based on the premise that there is variation in everything we do. There is no perfect 
process. Even the most sophisticated, numerically-controlled, machine varies slightly each time it 
repeats a process. The power of SPC comes from its ability to determine how much of the 
variation is from natural (common) causes that are inherent to the process and how much is from 
external (assignable) causes. This vital information helps determine the adequacy of the process 
and provides insight into how the process can be improved. 

Variation 
Before we plunge into the depths of SPC, we need to discuss the concept of variation. Remember, 
we said earlier that there is variation in everything. No matter how hard we try to make things 
identical, they always turn out a little different. For example, a restaurant may advertise a 
“quarter-pound” hamburger, but any specific hamburger will probably not weigh exactly 4 
ounces.  
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If we were to select 100 hamburgers at random and weigh them, we would find that each has a 
slightly different weight. If we were to construct a histogram of the weights of the hamburgers, 
we would find that most of them are very close to four ounces, but some are a little larger and 
some a little smaller. This pattern of weights is called a frequency distribution. By studying the 
shape of the distribution, we can gain a lot of useful information about the process.  

One particular pattern that seems to appear quite often in nature is called the normal or Gaussian 
distribution. It is called the Gaussian distribution after Karl Gauss, a German mathematician who 
wrote an equation to describe the pattern. Because of its distinctive bell shape, it is often referred 
to as a “bell curve.” The term normal is misleading because it implies that it is the most common 
or acceptable pattern. 

Although patterns similar to the Gaussian distribution are very common, they are by no means the 
only patterns that you will encounter. The process variation can form some pretty strange shapes. 
Frequency distributions are often characterized by their location and spread.  

The location of the distribution is often described by an average value called the mean. If the 
distribution is normal, the mean is the location of the peak value of the curve. If we were to 
randomly select one item from a normal distribution, it would be just as likely to fall above the 
mean as below it. 

The spread or variation of a distribution is measured by what mathematicians call a standard 
deviation. If the distribution is normal, one standard deviation is the distance from the mean along 
the X-axis that includes about 34% of the data values in the distribution. If we measure one 
standard deviation on each side of the mean, we would include about 68% of the total data values. 
Two standard deviations on each side would take in over 95% and three standard deviations 
would include essentially all (more than 99%) of the data values in the distribution. 

Another measure of the distribution spread or variation is the range. This is simply the separation 
between the largest and smallest value in the distribution. In other words, find the largest value 
and subtract the smallest value from it to get the range. Although the range works well when 
we’re dealing with only a few data values, it does not describe the spread of a large number of 
items very well. For a normal distribution, the theoretical range is infinite. 

Causes of Variation 
The causes of data variation can be grouped into two categories, common and assignable. 
Common causes are those that we cannot control unless we change the process itself. They are 
random in nature and an inherent part of the process. They are sometimes referred to as natural or 
system causes. 

Assignable causes, on the other hand, are those that can be linked to a specific, correctable 
phenomenon. Variations due to assignable causes (sometimes called special causes) tend to 
distort the usual distribution curve and prevent the process from operating at its best. If assignable 
causes are present, the shape of the process distribution will vary with time. 

Steps to Create a Variables Control Chart 
A control chart is only one of many tools of an effective quality program. In order to get the most 
out of a control chart, other elements of quality improvement—such as strong management, 
commitment to quality, and willingness to change—must also be in place. 

In order to create effective Xbar-R charts, you should follow these steps: 
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1. Decide What to Measure. 
This may sound easy, but watch out for traps. Remember, your goal is to control and, perhaps, 
improve the process. Therefore, you should measure something that is significant to the process. 
When it changes, it should signal a change in the process that is important to know. For example, 
a slight change in paint thickness may not be as important as a change in the yield strength of a 
metal. You can’t afford to measure everything, so you should concentrate your measurement 
efforts where they will do the most good. You can find some good candidates for measurement 
by considering known problem areas. Look at scrap or rework, for example, and measure the 
parameters that seem to have the most effect on the problem. 

You should also choose something that is relatively easy to measure. The appearance of your 
product is important but may be difficult to measure directly. Instead, you may have to decide 
what characteristics add to the appearance and then measure those. For example, the surface 
roughness and color both effect appearance and can be measured. 

2. Gather Data. 
First, you need to decide how many items (the sample size) you will measure in each sample and 
how often you will measure them. The larger the sample size, the more sensitive the control chart 
will be to a shift in the mean. Usually, a sample size of three to five is adequate. If you measure 
fewer than this, you may not be able to detect significant shifts in the process mean. Samples 
larger than five or six are more expensive, so you must balance cost with sensitivity. It is 
extremely important to choose the sample size so that all the pieces in the sample are produced 
under the same production conditions and within a very short time interval so that any variation 
within the sample is due only to common causes. 

There is another reason why the sample size is important. Control charts are based on the 
properties of Gaussian distributions. Unfortunately, the distribution of items you are working with 
may not be remotely Gaussian. But when you sample several items from a distribution of any 
shape and plot the average of each sample, the distribution of the averages resembles a Gaussian 
distribution. The larger the sample size, the closer this distribution of means approaches to the 
Gaussian. Shewart found that even for sample sizes as small as four, the distribution of sample 
means was close to Gaussian. 

How often you sample (the sample frequency) depends on the process you are trying to control. 
You need to sample often enough to catch changes as they occur, but sampling too often can be 
expensive. If you have a good idea of what can change and how quickly it can change, you can 
use this information to determine how often to take your samples. Unfortunately, many times we 
don’t know what to expect, so initially you may want to sample at short time intervals to catch 
any quick changes. If you find the process is relatively stable, you can lengthen the  sampling 
interval. For well behaved processes, sampling frequencies of one per hour, two per shift, or even 
one per day may be adequate. 

People often ask how many samples are needed to detect a problem. There are two aspects to this 
question. The first is related to the process. You need to continue sampling and testing for a 
sufficient period to allow any assignable causes that might be working on your process to show 
up. The second aspect is statistical in nature. You need enough samples to determine the 
characteristics of the distribution of sample means to find out if the process is stable, and, if 
stable, to make good estimates of the process mean and spread. Usually, 25 or more samples will 
be adequate as long as these samples contain at least 100 items. In other words, 25 samples of 
five tests each would be good. 
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3. Chart the Data. 
As you gather data, enter it into the NCSS database. If your data come from an automated tool or 
from another data file, use the NCSS import capability to transfer data into the program. 

4. Analyze the Data. 
As you analyze the charts, it’s probably best to begin with the range chart. Once you have found 
and corrected the assignable causes in the range chart, examine the Xbar chart in the same 
manner. You begin with the range chart because the range data are used to calculate the Xbar 
control limits. An out-of-control range point could cause the Xbar control limits to be too wide to 
detect out-of-control Xbar values. 

The first place to look on the chart is for points outside the control limits. If the process has no 
assignable causes perturbing it, the sample means and ranges should vary by chance only. This 
means that the values on the control chart will form a fairly random pattern centered about the 
grand mean. A point would very rarely lie beyond the control limit unless something has changed 
in the process. As we mentioned previously, a point beyond the control limit is an almost certain 
indication of an assignable cause. 

Next, look for trends/patterns. If the sample means and ranges vary by chance only, there should 
be no obvious pattern to the points on the control chart. On any given length of the chart, there 
should be about as many points above the centerline as below it and the line connecting the 
sample means should be fairly jagged as it moves from one point to another. Some nonrandom 
patterns that you might see include obvious trends, cycles, and clusters of points. Many of these 
unusual patterns can be detected through a series of tests called runs tests, discussed in detail 
earlier. Even if none of the points go beyond the control limits, the presence of any of these 
nonrandom patterns indicates that an assignable cause is changing the process. 

5. Find and Correct Assignable Causes. 
When you detect an assignable cause, analyze the process operation to find the cause. Correct the 
condition and prevent it from happening again. This problem-solving step is frequently very 
difficult and time consuming, but it is very important. The control chart itself can give you some 
very valuable clues as to when the problem began that may help you correlate the problem to a 
known change in the process. However, you will often have to draw on other tools, such as Pareto 
charts or cause and effect diagrams to find the problem. Don’t overlook help from people 
involved in the process. They know the process better than anyone else and want to do the best 
job possible. They can be a great source of process improvements. 

Once you have corrected a special cause, go back to the NCSS database and remove the 
subgroups that were affected by the special cause and rerun the analysis to calculate a new mean 
and control limits. Unless you know that a single value is in error, remove the entire sample, not 
just individual points that appear to be out of place. The importance of this step goes beyond just 
throwing away “bad data.”  If the points are not removed, they will cloud the rest of the analysis, 
making it impossible to get a good estimate of the amount of variation due to common causes. By 
removing the points, we will have a better “baseline” to use to detect future special causes when 
they occur. 
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Chapter 251 

Attribute Charts 
Introduction 
This procedure generates attribute control charts, including the p-, np-, c-, and u-charts. Attribute 
charts are useful for displaying count data such as the number of defectives or the number of 
defects on a certain item.  

Attribute Control Charts 
Suppose we have a scatter plot with the number of defects on the vertical axis and time (such as 
hours, shifts, days, weeks, or months) on the horizontal axis. This scatter plot shows the nature of 
the number of defects over time. For example, we might see trends, shifts, sudden jumps, and so 
on. If we add horizontal limit lines to the plot to indicate standards, the scatter plot becomes a 
control chart. When the plots fall inside these limits lines, the process yielding the response is 
said to be in control. When the process yields responses that are outside these limits, the process 
is said to be out of control.  

The limit lines set a range of “normal behavior.” They are based on past experience with the 
process and give a frame of reference for judging current outcomes. Because of natural variation 
in the process, the responses will not be exactly the same. They will bounce up and down. As 
long as the response stays within the limits, we need take no corrective action. However, once a 
measurement occurs outside the limits, we must investigate the cause and take appropriate 
corrective action.  

Although there are many forms of control charts, they can be categorized as either variables or 
attributes control charts. Here, the term variable means that the data can take on any value. It does 
not have to be a whole number. A person’s weight or height are examples of variables data. 
(Variables charts are discussed in the chapter by that title.) Attributes, on the other hand, are 
things that can be counted, such as the number of defectives in a sample of 100 items or the 
number of scratches on a new car. It doesn’t make sense to talk about a half a scratch. The scratch 
either exists or it doesn’t. If you can put things in categories such as good or bad, acceptable or 
not acceptable, then they are attributes data. 

P-Chart 
The charted value is the fraction defective in a sample of n items. Probability calculations are 
based on the binomial distribution. 

NP-Chart 
The charted value is the number defective in a sample of n items per time period. The chart is 
very confusing if the sample size, n, is not constant from period to period. Probability calculations 
are based on the binomial distribution. 
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C-Chart 
The charted value is the number of defects on an item. Probability calculations are based on the 
Poisson distribution. 

U-Chart 
The charted value is the average number of defects on n items. Probability calculations are based 
on the Poisson distribution. 

Formulas for Attribute Control Charts 
Once we understand that a control chart is simply a plot of some measurement across time with 
appropriate limits shown as horizontal lines, the only question is how to determine these limits. 
The answer to this question depends on the situation. The following formulas give the 
mathematical details on how to set the limits for different types of measurements. 

Suppose we have k sets of samples. Let ni represent the sample size of the ith sample. Let ri 
represent the number of defectives (the number with the attribute of interest). 

P-Chart Calculations 
The value plotted is 
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The control limits for the ith sample are 
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where m is the multiplier, which is usually set to three. 

NP-Chart Calculations 
The value plotted is ri. The center line is 
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The control limits for the ith sample are 
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where m is the multiplier, which is usually set to three. 

C-Chart Calculations 
The value plotted is ri. The center line is 
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The control limits for the ith sample are 
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where m is the multiplier, which is usually set to three. 

U-Chart Calculations 
In this chart ri  represents the number of defects per item, and ni represents the number of items. 
The value plotted is 
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The control limits for the ith sample are 
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Runs Tests 
Runs tests are discussed in the chapter on Variables Charts. Please turn to that chapter for further 
details. 

Data Structure 
The data given below show how a set of attribute data is entered into NCSS. Each row gives the 
sample size (Count) and the number of defectives (Rejects). Twenty-seven rows of data are in the 
QATEST database. Only the first eight rows are shown here. 
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QATEST dataset (subset) 

Count Reject 
100 1 
99 2 
100 2 
100 1 
100 1 
100 0 
100 2 
100 0 

 

Procedure Options 
This section describes the options available in this procedure. To find out more about using a 
procedure, turn to the Procedures chapter. 

Variables Tab 
This panel specifies the variables that will be used in the analysis. 

Variables 

Sample Size Variable 
This option specifies the variable containing the sample size, ni. It is required for the P-, NP-, and 
U-charts.  

Defects/Defectives Variable 
This option specifies the variable containing the number of defectives for the P- and NP-charts or 
the number of defects for the C- and U-charts. It is the value of ri.  

Label Variable 
An optional variable containing row labels that you may use to document your output. You can 
use dates (like Jan-23-95) as labels. First, enter your dates using the standard date format (like 
06/20/93). In the Variable Info screen, change the format of the date variable to something like 
mmm-dd-yyyy or mm-dd-yy. The labels will be displayed as labels. Without changing the variable 
format, the dates will be displayed as long integer values. 

Specify Rows in Calculations 

Specification Method 
This option specifies how the rows that are used in the calculations are specified.   

• All Rows 
All rows are used. 
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• First Row - Last Row 
The first and last row is specified. 

• First N Rows 
The first N rows on the dataset are used. The value of N is specified below. 

• Last N Rows 
The last N rows on the dataset are used. The value of N is specified below. 

• Row List 
The rows used by in calculations are specified by the Row List box below. 

First Row 
This option designates the first row to be used. Rows before this row are ignored. This option is 
only used when Specification Method is set to First Row - Last Row. 

Last Row 
This option designates the last row to be used. Rows after this row are ignored. This option is 
only used when Specification Method is set to First Row - Last Row. 

N 
This option designates the value of N. This option is only used when Specification Method is set 
to First N Rows or Last N Rows. 

Row List 
Specify sets of rows to be used in calculations. A separate set of calculations will be carried out 
for each set. Example (with three sets): 1-50, 75-150, 175-Last. Note that Specification Method 
must be set to Row List. 

Rows that are not included in this list will still be plotted if they are included in the list of charted 
rows. 

Chart Type 

Chart Type 
This option specifies the type of chart that is to be displayed. Possible charts are P, NP, C, and U. 

Specify Rows in Charts 

Specification Method 
This option specifies how the rows that are used in the charts are specified. 

• All Rows 
All rows are used. 

• First Row - Last Row 
The first and last row is specified. 
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• First N Rows 
The first N rows on the dataset are used. The value of N is specified below. 

• Last N Rows 
The last N rows on the dataset are used. The value of N is specified below. 

First Row 
This option designates the first row to be used. Rows before this row are ignored. This option is 
only used when Specification Method is set to First Row - Last Row. 

Last Row 
This option designates the last row to be used. Rows after this row are ignored. This option is 
only used when Specification Method is set to First Row - Last Row. 

N 
This option designates the value of N. This option is only used when Specification Method is set 
to First N Rows or Last N Rows. 

Select Chart Attributes 

Mean Line 
Specifies whether to display a horizontal line representing the mean on the charts. 

Primary Control Limits 
Specifies whether to display horizontal lines representing the primary control limits on the charts. 

Secondary Control Limits 
Specifies whether to display horizontal lines representing the secondary control limits on the 
charts. 

Trend Line 
Specifies whether to display a trend line on the charts. 

Runs 
Specifies whether to add a label identifying those rows that failed a particular runs test. 

Row Labels 
Specifies whether to label each row along the horizontal axis using the values in the Label 
Variable or the row number. 

Spec Limits 
Specifies whether to display horizontal lines representing the specification control limits on the 
charts. 

Zones 
Specifies whether to display horizontal lines representing the six horizontal zones. 

Use Runs Tests 
Specifies whether to use the runs tests in determining out-of-control points. 
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Label Out-of-Control Rows 
Specifies whether to label rows that fall outside the control limits. If a Label Variable is used, the 
label specified there is used. Otherwise, the row number of the out-of-control point is given. 

Options Tab 
This panel controls the calculation of the attribute chart. 

General Chart Options 

Primary Multiplier 
This option specifies the multiplier of sigma for the primary control limits. Usually, the famous 3-
sigma limits are desired, so the multiplier is 3.  

Secondary Sigma Multiplier 
This option specifies the multiplier of sigma for the optional, secondary control limits. Usually, 
the secondary limits are ignored by setting this value to 0. Occasionally, a value of 2 is used. 

Label Mean/CLs 
Specifies whether to show the values of the mean and controls limits on the right of the chart. 
You can also add optional headings like LCL= or Mean= with the option “Yes-Labels.” 

Robust Options 
You can have NCSS scan your data and remove out-of-control rows from the calculations. 
Usually, you would perform this manually by repeatedly removing out-of-control rows. 
Occasionally you will want to obtain the final result without the manual intervention. These 
options define the automatic procedure that you want to use.  

Caution: Accepted SPC procedure is to only remove out-of-control rows from the calculations if 
an assignable cause for the out-of-control situation can be found and corrected. If a cause cannot 
be found and corrected, you should not remove the out-of-control row. Hence, you should be 
careful about using this automated procedure, since it does not require you to find assignable 
causes for the out-of-control points.  

Robust Iterations 
This option specifies the number of robust iterations (cycles through the data looking for out-of-
control subgroups) that you want. Usually, one or two should be sufficient.  

If you want to skip the robust estimation entirely, enter a 0 here. 

Robust Multiplier 
This option specifies the control limit multiplier to be used during the robust estimation. Usually 
you would enter a 3 here. Occasionally you might want to adjust this value slightly. 

Rows Skipped 
If you print out individual row labels along the horizontal axis and you have many rows, the 
labels may overwrite each other. This option lets you skip x number of labels. For example, if you 
only wanted to display every other label, you would enter a 1 here. If you only wanted to display 
every fifth label, you would enter a 4 here. 
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Xbar Chart Options 

Fixed P or C Type 
A fixed value for P (or C) can be input as a constant or as the first row in a specified variable. 
This option specifies where to find the fixed value. It specifies which of the following two option 
boxes contain the fixed mean value. 

P or C Constant 
This option lets you specify a fixed value for P (or C). It requires the appropriate selection of 
Constant in the last option. 

P or C Variable 
This option lets you specify a fixed value for P (or C). To use this, you would enter the fixed 
value as the first value in this variable on the data base. This might be convenient when several 
databases (each with different fixed values) are being run. It requires the appropriate selection of 
Variable in the above option. 

Specification Limits 

Lower Specification Limit 
This option lets you specify the optional lower specification limit for display on your charts. 

Upper Specification Limit 
This option lets you specify the optional upper specification limit for display on your charts. 

Reports Tab 
The following options control the format of the reports. 

Specify Reports 

Chart Summary Section 
This option controls the display of this report. 

Exception Section 
This option controls the display of this report. 

Specify Charts 

Attribute Chart 
This option controls the display of the attribute chart. 

Report Options 

Precision 
This allows you to specify the precision of numbers in the report. A single-precision number will 
show seven-place accuracy, while a double-precision number will show thirteen-place accuracy. 
Note that the reports are formatted for single precision. If you select double precision, some 
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numbers may run into others. Also note that all calculations are performed in double precision 
regardless of which option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Page Title 
This option specifies a title to appear at the top of each page. 

Plot Subtitle 
This option specifies a subtitle to appear at the top of each plot. 

Charts Tab 
This panel sets the options used to define the appearance of the chart. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Attribute Chart Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 
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Titles 

Plot Title 
This is the text of the title. The characters {Y}, {X}, and {G} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Symbols-Lines Tab 
This panel specifies the plotting symbols and lines used on the charts. 

Symbols 

Out of Control 
Specify the symbol used to display the out-of-control points. Click the button on the right to 
display the symbol modification window. 

In Control 
Specify the symbol used to display the in-control points. Click the button on the right to display 
the symbol modification window. 

Lines 

Connecting Line - Zone Lines 
These options specify the color, width, and style of the various lines that make up the control 
chart. 

Storage Tab 
This panel controls the automatic storage of the proportions (or average defects) on the current 
database. 

Storage Variable 

Store P Values in Variable 
You can automatically store the proportion defective (or average defects) of each row into the 
variable specified here. Warning: Any data already in this variable is replaced. Be careful not to 
specify variables that contain important data. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Creating an Attribute Chart 
This section presents an example of how to generate a P-chart. The data used are found in the 
QATEST database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Attribute Charts window. 

1 Open the QATEST dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file QATEST.s0. 
• Click Open. 

2 Open the Attribute Charts window. 
• On the menus, select Graphics, then Quality Control Charts, then Attribute Charts. 

The Attribute Charts procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Attribute Charts window, select the Variables tab.  
• Double-click in the Sample Size Variable text box. This will bring up the variable 

selection window.  
• Select COUNT from the list of variables and then click Ok. “COUNT” will appear in the 

Sample Size Variables box.  
• Double-click in the Defects/Defectives Variable text box. This will bring up the variable 

selection window.  
• Select REJECT from the list of variables and then click Ok. “REJECT” will appear in 

the Defects/Defectives Variable box.  

4 Specify the chart. 
• On the Attribute Charts window, select the Charts tab.  
• Enter 0 in the Minimum text box. 
• Press the Tick Label Settings… button under Vertical Axis. This will bring up the 

Settings of Tick Label Settings window. 
• Select 3 in the Decimals list box. 
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5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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This plot displays a P-chart that shows the fraction defective over time. 

Control Limits Section 
 
 Control Limits Section 
 
 Control  
 Limit Proportion 
 Lower 0.000000 
 Upper 0.052510 
 

This section displays the values of the lower and upper control limits. 



   Attribute Charts  251-13 

Estimation Summary Section 
 
 Estimation Summary Section 
 
 Type Variables Total Mean 
 Samples COUNT 2694 99.777778 
 Defects REJECT 41 1.518519 
   
 Type Proportion 
 User Specified 0 
 Data* 0.015219 
 Robust 0.015219 
   
 Number of Rows 27 
 

This report gives the numerical details of the analysis. We’ll now define each of the numbers 
appearing on the report. 

Samples 
This line gives the sample size variable’s name, the total, and the average. 

Defects 
This line gives the defects variable’s name, the total, and the average. 

Proportion 
This column gives the estimated proportion for each estimation method. 

User Specified This is used if a fixed proportion was specified by the user. 

Data This is the estimate of the proportion defective that is calculated from the data. The star (*) 
by the word “Data” indicates that this is the estimate that was used in the current chart. 

Robust This is the estimated proportion when the robust estimation method is used. 

Out-of-Control List 
 
 Out-of-Control List 
 
 Row Proportion Row Label Reason 
 11 .060000 11 beyond control limits 
 

This report provides a list of the rows that failed one of the runs tests (including being outside the 
control limits). The Reason column names the particular runs test that was failed. 
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Chapter 252 

Levey-Jennings 
Charts 
Introduction 
This procedure generates Levey-Jennings control charts on single variables. It finds out-of-
control points using the Westgard rules.  

Levey-Jennings Control Charts 
The Levey-Jennings control chart is a special case of the common Shewart Xbar (variables) chart 
in which there is only a single stream of data and sigma is estimated using the standard deviation 
of those data. The formula for the standard deviation s is 
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Control limits are 

( )L L x mlow high, = m s  

where m is usually 1, 2, or 3. 

Westgard Rules 
Individual values are tested to determine if they are in, or out, of control using a set of five rules 
called the Westgard rules after their originator. They are specified in Westgard et al. (1981). These 
rules indicate which rows in a variable (column of numbers) are ‘out-of-control’. When any of these 
rules is violated, the process behind the numbers is ‘out-of-control’ and should be stopped and 
investigated. 
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The Westgard Rules are 

1S3: One value beyond 3*sigma from the mean. 

2S2: Two consecutive values either greater than, or less than, 2*sigma from the mean. 

RS4: A difference between consecutive values greater than 4*sigma. 

4S1: Four consecutive values greater than, or less than, 1*sigma from the mean. 

10X: Ten consecutive values all greater than, or less than, the mean.  

Data Structure 
The data are entered in a single variable (column) of the spreadsheet. As an example, you can 
look at the WESTGARD.S0 database. Often, variables are entered as pairs, but this is not 
necessary.  

Procedure Options 
This section describes the options available in this procedure. To find out more about using a 
procedure, turn to the Procedures chapter. 

Variables Tab 
This panel specifies the variables that will be used in the analysis. 

Variables 

Data Variables 
These are the variables to be analyzed. A separate chart is generated for the values in each 
variable. Note that the rows represent the way the data were received through time. That is, row 
one gives the first value obtained, row two gives the second value, and so on. 

Label Variable 
An optional variable containing row labels for the horizontal axis of the chart.  

You can use dates (like Jan-23-95) as labels. First, enter your dates using the standard date format 
(like 06/20/93). In the Variable Info screen, change the format of the date variable to something 
like mmm-dd-yyyy or mm-dd-yy. The labels will be displayed as labels. Without changing the 
variable format, the dates will be displayed as long integer values.  

Specify Rows in Calculations 

Specification Method 
This option specifies how the rows that are used in the calculations are specified.  

• All Rows 
All rows are used. 
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• First Row - Last Row 
The first and last row is specified. 

• First N Rows 
The first N rows on the dataset are used. The value of N is specified below. 

• Last N Rows 
The last N rows on the dataset are used. The value of N is specified below. 

• Row List 
The rows used by in calculations are specified by the Row List box below. 

First Row 
This option designates the first row to be used. Rows before this row are ignored. This option is 
only used when Specification Method is set to First Row - Last Row. 

Last Row 
This option designates the last row to be used. Rows after this row are ignored. This option is 
only used when Specification Method is set to First Row - Last Row. 

N 
This option designates the value of N. This option is only used when Specification Method is set 
to First N Rows or Last N Rows. 

Row List 
Specify sets of rows to be used in calculations. A separate set of calculations will be carried out 
for each set. Example (with three sets): 1-50, 75-150, 175-Last. Note that Specification Method 
must be set to Row List. 

Rows that are not included in this list will still be plotted if they are included in the list of charted 
rows. 

Specify Rows in Charts 

Specification Method 
This option specifies how the rows that are used in the charts are specified.  

• All Rows 
All rows are used. 

• First Row - Last Row 
The first and last row is specified. 

• First N Rows 
The first N rows on the dataset are used. The value of N is specified below. 

• Last N Rows 
The last N rows on the dataset are used. The value of N is specified below. 
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First Row 
This option designates the first row to be used. Rows before this row are ignored. This option is 
only used when Specification Method is set to First Row - Last Row. 

Last Row 
This option designates the last row to be used. Rows after this row are ignored. This option is 
only used when Specification Method is set to First Row - Last Row. 

N 
This option designates the value of N. This option is only used when Specification Method is set 
to First N Rows or Last N Rows. 

Select Chart Attributes 

Mean Line 
Specifies whether to display a horizontal line representing the mean. 

Sigma Limits 
Specifies whether to display horizontal lines representing the control limits for each multiple. 

Trend Line 
Specifies whether to display a trend line on the charts. 

Row Labels 
Specifies whether to label each row along the horizontal axis using the values in the Label 
Variable or the row number. 

Spec Limits 
Specifies whether to display horizontal lines representing the specification limits. 

Use Westgard Rule 
Specify whether to include rows that violate this rule on the plot and in the exceptions report. 

The codes are: 

• 1S3 
1 value beyond 3*sigma from the mean. 

• 2S2 
2 consecutive values >, or <, 2*sigma from the mean. 

• RS4 
A difference between consecutive values > 4*sigma. 

• 4S1 
4 consecutive values >, or <, 1*sigma from the mean. 

• 10X 
10 consecutive values >, or <, the mean. 
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Options Tab 
These options determine the type of chart that you want displayed. 

General Chart Options 

1-Sigma, 2-Sigma, and 3-Sigma Multipliers 
This option specifies the multiplier of sigma for each set of control limits. Usually, the multipliers 
are set to 1, 2, and 3.  

Label Mean and Control Limits 
Specifies whether to show the values of the mean (center) and controls limits on the right of the 
chart. You can also add optional headings like LCL= or Mean= with the option “Yes-Labels.” 

Rows Skipped in Labels 
If you print out individual row labels along the horizontal axis and you have many rows, the 
labels may over-write each other. This option lets you skip x number of labels. For example, if 
you only wanted to display every other label, you would enter a 1 here. If you only wanted to 
display every fifth label, you would enter a 4 here. 

Mean Options 

Mean From 
This option specifies how the mean is determined. Usually, it is calculated from the data. But 
occasionally, a fixed value is used. Select Data to calculate the mean from the data, Constant to 
use the value in the Mean Constant box, or Variable to read the mean from a specific variable on 
the database. 

Mean Constant 
This value is used as the value of the mean when Mean From is set to Constant.  

Mean Variable 
Values in the rows of this variable (column) are used as the value of the means when Mean From 
is set to Variable. 

Note that the value in row one is used for the variable in column 1 of the spreadsheet, the value in 
row two is used for the variable in column 2, and so on. If you have selected variables number 10 
and 15 as your Data Variables, then rows 10 and 15 will contain the values of the fixed values of 
the means of these variables.  

Sigma Options 

Sigma From 
This option specifies how sigma is determined. Usually, it is calculated from the data. But 
occasionally, a fixed value is used. Select Data to calculate sigma from the data, Constant to use 
the value in the Sigma Constant box, or Variable to read sigma from a specific variable on the 
database. 

Sigma Constant 
This value is used as the value of sigma when Sigma From is set to Constant.  
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Sigma Variable 
Values in the rows of this variable (column) are used as the value of the sigma when Sigma From 
is set to Variable. 

Note that the value in row one is used for the variable in column 1 of the spreadsheet, the value in 
row two is used for the variable in column 2, and so on. If you have selected variables number 10 
and 15 as your Data Variables, then rows 10 and 15 will contain the values of the fixed values of 
sigma of these variables.  

Specification Limits 

Lower and Upper Spec Limit 
These options specify specification limits for display on the Levey-Jennings chart. 

Target Spec 
This option specifies an optional target specification for display on the Levey-Jennings chart.  

Reports Tab 
The following options control the format of the reports. 

Specify Reports 

Numeric Reports – Out-of-Control List 
Each of these options control the display of the corresponding report. 

Specify Charts 

Levey-Jennings Chart 
This option controls the display of the Levey-Jennings chart. 

Report Options 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Decimal Places 
Set the number of decimal places displayed on the reports. For example, selected 2 here instructs 
the program to display the value 1.2362142 as 1.24. 

Single displays an unformatted, seven-digit number. Double displays an unformatted, fourteen-
digit number. 
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Page Title 
This option specifies a title to appear at the top of each page. 

Levey-Jennings Charts Tab 
This panel sets the options used to define the appearance of the Levey-Jennings control chart. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Attribute Chart Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Titles 

Plot Title 
This is the text of the title. The characters {Y}, {X}, and {G} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Top Title 2 
Enter text to appear as the second title line at the top of the plot. Enter {M} to cause the mean, 
standard deviation, and coefficient of variation to be displayed. 
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Bottom Title 2 
Enter text to appear as the second title line at the bottom of the plot. Enter {M} to cause the 
mean, standard deviation, and coefficient of variation to be displayed. 

Symbols - Lines Tab 
This panel specifies the plotting symbols and lines used on the charts. 

Symbols 

Out of Control 
Specify the symbol used to display the out-of-control points. Click the button on the right to 
display the symbol modification window. 

In Control 
Specify the symbol used to display the in-control points. Click the button on the right to display 
the symbol modification window. 

Lines 

1-Sigma Lines - Specification Lines 
These options specify the color, width, and style of the various lines that make up the control 
chart. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Creating a Levey-Jennings Control Chart 
This section presents an example of how to generate a Levey-Jennings control chart. The data are 
found in the WESTGARD database.  We will analyze the variable Test3 on this database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Levey-Jennings Charts window. 

1 Open the WESTGARD dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file WESTGARD.S0. 
• Click Open. 

2 Open the Levey-Jennings Charts window. 
• On the menus, select Graphics, then Quality Control Charts, then Levey-Jennings 

Charts. The Levey-Jennings Charts procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Levey-Jennings Charts window, select the Variables tab.  
• Set the Data Variables box to Test3.  

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Levey-Jennings Control Chart 
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This plot displays the Levey-Jennings control chart. The overall mean (center-line) and three sets 
of control limits are shown. Notice that three rows are out of control. The next report gives the 
numerical details of the charts and lists those rows that failed at least one of the control tests. 

Numerical Reports 
 

Descriptive Statistics Section for Test3 
 
Rows Used in    Row 
Calculations Mean SD CV% Count 
1-28 252.32 9.65 3.83 28 
 
Control Limits Section for Test3 
Rows Used in  Lower Upper Lower Upper 
Calculations Mean 3-Sigma 3-Sigma 2-Sigma 2-Sigma 
1-28 252.32 223.36 281.28 233.01 271.63 
 
Out-of-Control List for Test3 
Row Value Reason 
11 277 2S2: 2 consecutive values >, or <, 2 sigma 
  10X: 10 consecutive values >, or <, mean 
12 233 RS4: consecutive difference > 4 sigma 
28 246 10X: 10 consecutive values >, or <, mean 

 

The Descriptive Statistic section displays the values of the calculated mean, standard deviation, 
and coefficient of variation (which is expressed as a percentage). The Control Limits section 
displays the 2-sigma and 3-sigma control limits. The Out-of-Control List gives a list of all rows 
that failed at least one of the Westgard rules. 
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Chapter 253 

Pareto Charts 
Introduction 
An Italian economist, Vilfredo Pareto (1848-1923), noticed a great inequality in the distribution 
of wealth. A few people owned most of the wealth. J. M. Juran found that this same phenomenon 
of the “vital few and the trivial many” applied to many areas of SPC. He is credited with coining 
the terms “Pareto chart” and “Pareto analysis” to represent this phenomenon. 

In quality control, Pareto analysis refers to the tendency for the bulk of the quality problems to be 
due to a few of the possible sources. Hence, by isolating and correcting the major problem areas, 
you obtain the greatest increase in quality. The Pareto chart is a graphic display that emphasizes 
the Pareto principle using a bar graph in which the bars are arranged in decreasing magnitude. 

NCSS provides two Pareto chart styles as well as a numerical report. 

Pareto Charts 
The following plot shows a Pareto chart depicting the number of defective board-feet (in 100’s) 
from ten different mills. Notice that three mills account for almost 80% of the defective product. 
Obviously, efforts should be concentrated on correcting defects in these three mills. 
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Data Structure 
The table below shows the data for the above Pareto chart. It gives the number of defective board-
feet (in 100’s) from ten different mills (labeled A - J). These data are contained on the QATEST 
database. 

 

QATEST dataset (subset) 

Label Feet 
A 6 
B 2 
C 57 
D 13 
E 7 
F 3 
G 36 
H 1 
I 42 
J 4 

Procedure Options 
This section describes the options available in this procedure. To find out more about using a 
procedure, turn to the Procedures chapter. 

Variables Tab 
This panel specifies the variables that will be used in the analysis. 

Data and Label Variables 

Data Variables 
This (required) option specifies which variables on the database contain the actual data values. If 
more than one variable is specified, the number of charts generated depends on the status of the 
Data Item option (described below).  

Note that all data must be positive for the Pareto Chart. Negative values are ignored. 

Chart Arrangement 
This option specifies the way in which the data are to be arranged on the Pareto chart.  

• Each Row 
This option causes a separate chart to be generated for each of the Data Variables specified 
(see above). Labels may be set using the Label Variable option (see above). Each row of data 
becomes a bar on the Pareto chart. Note that the Category Variable is ignored when this 
option is used. 
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• Total By Variable 
This option causes one chart to be constructed using all of the Data Variables specified (see 
above). The total for each variable becomes a bar on the Pareto chart. Note that the Category 
Variable and the Label Variable are ignored when this option is used.  

• Average By Variable 
This option causes one chart to be constructed using all of the Data Variables specified (see 
above). The average for each variable becomes a bar on the Pareto chart. Note that the 
Category Variable and the Label Variable are ignored when this option is used. 

• Total By Category 
This option causes one chart to be constructed for each of the Data Variables specified (see 
above). The average of the Data Variable for each unique value of the Category Variable 
becomes a bar on the Pareto chart. Note that the Label Variable is ignored when this option is 
used. 

• Average By Category 
This option causes one chart to be constructed for each of the Data Variables specified (see 
above). The average of the Data Variable for each unique value of the Category Variable 
becomes a bar on the Pareto chart. Note that the Label Variable is ignored when this option is 
used.  

Label Variable 
An optional variable containing labels for the individual data values may be entered here. Note 
that this option is only used when a single variable is analyzed. You can use dates (like Jan-23-
95) as labels. Here is how. First, enter your dates using the standard date format (like 06/20/93). 
In the Variable Info screen, change the format of the date variable to something like mmm-dd-
yyyy or mm-dd-yy. The labels will be displayed as labels. Without changing the variable format, 
the dates will be displayed as long integer values. 

Category Specification 

Category Variable 
An optional categorical (grouping) variable may be specified. If it is used, the Data Variable 
variable will be summed (or averaged) by the values of this variable. Hence, this must be a 
discrete variable.  

Minimum Value 
Values on the Pareto chart less than or equal to this value are lumped together into one category. 
This combined category is labeled using the Other Category Label.  

Below Minimum Category Label 
This option specifies the label to be displayed for the combined value when the MinimumValue is 
used.  
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Specify Rows 

Row Specification Method 
This option specifies how the rows that are used in the calculations and displayed on the charts 
are specified.  

• All Rows 
All rows are used. 

• First Row - Last Row 
The first and last row is specified. 

• First N Rows 
The first N rows on the dataset are used. The value of N is specified below. 

• Last N Rows 
The last N rows on the dataset are used. The value of N is specified below. 

Specify Rows – First Row / Last Row 
Details 

First Row 
This option designates the first row to be used. Rows before this row are ignored. This option is 
only used when Row Specification Method is set to First Row - Last Row. 

Last Row 
This option designates the last row to be used. Rows after this row are ignored. This option is 
only used when Row Specification Method is set to First Row - Last Row. 

Specify Rows – N Details 

N 
This option designates the value of N. This option is only used when Row Specification Method 
is set to First N Rows or Last N Rows. 

Pareto Chart Bars 

Label Position 
This option specifies if and where the percentage value should be displayed. 

Pareto Chart Bars - Fill 

Color 
This option specifies the color of the interior portion of the bars. 

Pattern 
This option specifies the pattern of the interior portion of the bars. 
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Pareto Chart Bars - Outline 

Color 
This option specifies the color of the edge of the bars. 

Width 
This option specifies the width of the edge of the bars. 

Pareto Chart Bars - Width 

Select Bar Width Parameter 
This option lets you designate whether to specify the bar width using the actual amount or the 
percent of space between the bars. 

Amount 
When the Select Bar Width Parameter is set to Amount, the option gives the width of the bars. 

Percent Empty Space 
When the Select Bar Width Parameter is set to Percent Empty Space, the option gives the percent 
of the total space that is to be between the bars. 

Cumulative Line 

Symbol 
This option specifies the color, size, and type of plotting symbol used in the cumulative Pareto 
chart.  

Line Width 
This option specifies the width of the cumulative line. 

Reports Tab 
The options on this panel control the format of the reports. 

Select Charts 

Regular Chart 
This option specifies whether to display the regular pareto chart. 

Cumulative Chart 
This option specifies whether to display the cumulative pareto chart. 

Select Reports 

Numeric Report 
This option specifies whether to display the numeric report. 
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Report Options 

Precision 
This option specifies the precision of numbers in the report. A single-precision number will show 
seven-place accuracy, while a double-precision number will show thirteen-place accuracy. Note 
that the reports are formatted for single precision. If you select double precision, some numbers 
may run into others. Also note that all calculations are performed in double precision regardless 
of which option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Page Title 

Page Title 
This option specifies a title to appear at the top of each page. 

Pareto Chart Tab 
This panel sets the options used to define the appearance of the chart. 

Vertical and Horizontal Axes 

Label (Y and X) 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Maximum (Y) 
This option specifies the maximum value displayed on the vertical (Y) axis. If left blank, it is 
calculated from the data. Note that the minimum value is always set to zero. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the vertical axis. 

Show Grid Lines 
This check box indicates whether the grid lines that emanate from the vertical axis should be 
displayed. 

Tick Label Settings 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Pareto Chart Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 
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Titles 

Plot Title 
This is the text of the title. The characters {Y}, {X}, and {G} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Creating a Pareto Chart 
This section presents an example of how to generate a Pareto chart. The data used are shown in 
the table at the beginning of the chapter and are found in the QATEST database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Pareto Charts window. 

1 Open the QATEST dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file QATEST.s0. 
• Click Open. 

2 Open the Pareto Charts window. 
• On the menus, select Graphics, then Quality Control Charts, then Pareto Charts. The 

Pareto Charts procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Pareto Charts window, select the Variables tab.  
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• Double-click in the Data Variables text box. This will bring up the variable selection 
window.  

• Select FEET from the list of variables and then click Ok. “FEET” will appear in the Data 
Variables box.  

• Double-click in the Row Label Variable text box. This will bring up the variable 
selection window.  

• Select Label from the list of variables and then click Ok. “Label” will appear in the 
Label Variable box.  

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Pareto Chart 
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This plot displays the typical descending bar chart. Note that the scale on the left is in terms of the 
individual items (mills). 

Cumulative Pareto Chart 
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This section displays the cumulative Pareto chart. Note that this version of the Pareto chart 
combines the bar chart version with a line representing the cumulative total for each bar. The 
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cumulative percentage is displayed above the plotting symbol. For example, we see that 79% of 
the defects are caused by mills C, I, and G. 

Pareto Numeric Report 
 

 Pareto Numeric Report 
 
   Cumulative  Cumulative 
 Label FEET FEET Percent Percent 
 A 6 6 3.51 3.51 
 B 2 8 1.17 4.68 
 C 57 65 33.33 38.01 
 D 13 78 7.60 45.61 
 E 7 85 4.09 49.71 
 F 3 88 1.75 51.46 
 G 36 124 21.05 72.51 
 H 1 125 .58 73.10 
 I 42 167 24.56 97.66 
 J 4 171 2.34 100.00 
 

This report gives the numerical details of the analysis. 

Example 2 – Using Several Variables 
This section presents an example of how to generate a Pareto chart of the total for several 
variables. The data used are the values of S1 - S5 found in the QATEST database. Suppose, for 
the moment, that these five variables represent the fifty daily numbers of defects produced by 
each of five shifts.   

You may follow along here by making the appropriate entries or load the completed template 
Example2 from the Template tab of the Pareto Charts window. 

1 Open the QATEST dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file QATEST.s0. 
• Click Open. 

2 Open the Pareto Charts window. 
• On the menus, select Graphics, then Quality Control Charts, then Pareto Charts. The 

Pareto Charts procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Pareto Charts window, select the Variables tab.  
• Double-click in the Data Variables text box. This will bring up the variable selection 

window.  
• Select S1 through S5 from the list of variables and then click Ok. “S1-S5” will appear in 

the Data Variables box.  
• Select Total By Variable from the Chart Arrangement list box.  
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4 Specify the reports. 
• On the Pareto Charts window, select the Reports tab.  
• Click Regular Chart so that it is not checked. 
• Click Numeric Report so that it is not checked. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Pareto Chart 
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Notice that a somewhat uniform defect rate in the five shifts is reflected here by almost identical 
bars and by an almost straight cumulative line. 
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Chapter 254 

R & R Study 
Introduction 
A repeatability and reproducibility (R & R) study (sometimes called a gauge study) is conducted 
to determine if a particular measurement procedure is adequate. If the measurement variation is 
small relative to the actual process variation, the measurement procedure is adequate. If it is not, 
the measurement procedure must be improved before it can satisfactorily monitor the process. For 
example, if your manufacturing specifications are in millimeters, but your measuring device 
provides readings only in centimeters, you are trouble.  

R & R studies separate process variation into that due to the measurement procedure and that due 
to the production process itself. The measurement variation is further divided into that due to the 
appraiser (reproducibility) and that due to the measuring device (repeatability). 

It is important to emphasize that an R & R study is concerned with the precision of the 
measurement process. Data for R & R studies come from experiments especially designed for that 
purpose and that purpose only! Do not attempt to combine these studies with other experiments 
that you are conducting. 

Several booklets are available that discuss R & R studies in detail. We recommend Barrentine 
(1991) and AIAG (1995). Although both of these concentrate on the “control chart” approach, 
they mention the analysis of variance approach—which we use here. The AIAG booklet states 
that the control chart approach is to be used only when software to analyze your data with the 
analysis of variance approach is not available. 

Data Structure 
Burdick and Larsen (1997) discuss an R & R study conducted to determine the capability of a 
procedure for monitoring the chemical content of a large tank. Ten samples are taken from the 
tank. A random sample of three operators is selected for the study. Each operator measures the 
chemical content of each of the ten samples three times using the same measurement device. The 
operator’s measurements are made in random order. It is assumed that the operators are 
experienced so that no learning occurs during the study. The ninety values of acid concentration 
are recorded in the RRSTUDY dataset and displayed in the following table. Note that the results 
of a particular trial (a measurement by each of the three operators) are recorded a single row. 
Since each sample is measured three times by each operator, the results for each sample use three 
rows of the dataset.  

An alternate way of entering these data is given at the end of this chapter. 
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RRSTUDY dataset 

Sample Op1 Op2 Op3 
1 67 66 69 
1 68 68 67 
1 68 68 68 
2 67 67 67 
2 66 67 66 
2 66 68 66 
3 68 70 68 
3 68 70 68 
3 67 68 68 
4 67 70 67 
4 67 68 68 
4 67 70 68 
5 68 70 69 
5 68 70 68 
5 68 70 69 
6 69 71 70 
6 68 70 70 
6 69 70 70 
7 67 68 68 
7 67 68 68 
7 67 68 69 
8 75 75 75 
8 74 75 75 
8 74 75 75 
9 67 69 68 
9 67 68 68 
9 67 69 68 
10 66 68 66 
10 66 66 66 
10 66 66 66 

Missing Values 
Missing values are not allowed in this analysis. The confidence limits are based on formulas for 
experiments in which no data are missing. If you have missing values, you should resolve them 
by removing the measurements for the sample with the missing data from the analysis. The 
bottom line is this—make sure you do not allow missing values! 
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The Analysis of Variance Approach to R & R 
The analysis of variance model of this experimental design is  

Y P O POijk i j ij ijkE= + + + +μ ( )  

where i=1,…,I; j=1,…,J; k=1,…,K; I=10; J=3; K=3; and Pi, Oj, (PO)ij, Eijk are jointly 
independent normal random variables with means of zero an a n σ P

2 ,σO
2 σ PO

2 , and σ E
2 , 

respectively. These variances are often referred to as variance components. We let S represent 
samples (parts), O represent the operators (appraisers), and E represent the random

d v ria ces
the 

 error. 

O
2
E

 ,

In terms of this model, repeatability is , reproducibility is , and the total 
variability associated with the measurement procedure is , which may be 
called the R & R value. The process (sample-to-sample) variability is represented by . A ratio 
that compares process variability to measurement variability is  

σ E
2 γ σ σ1

2 2= +O P

γ σ σ σ2
2 2= + +O PO

σ P
2

δ σ
σ σ σ

=
+ +

P

O PO

2

2 2
E
2  

Several indices have been devised to summarize the results of such an R & R study. Many are 
based on the above quantities. For example, the automotive group defines the signal-to-noise ratio 
as 

SNR P

O PO E

= =
+ +

δ σ
σ σ σ

2

2 2 2  

and the number of distinct product categories that can be reliably distinguished by the 
measurement procedure as 

Distinct Categories P

O PO E

= =
+ +

2 2 2

2 2δ σ
σ σ σ 2  

Two popular measures that compare the measurement variance to the tolerance, where tolerance 
is the difference between the upper specification limit (USL) and lower specification limit (LSL), 
are the measurement error ratio  

M
USL LSL

O PO E=
+ +
−

×
3

100%
2 2 2σ σ σ

 

and the precision-to-tolerance ratio (P/T)  

PT
USL LSL

O PO E=
+ +
−

×
6

100%
2 2 2σ σ σ

 

All of these quantities are estimated in the analysis of variance approach with confidence 
intervals as well as point estimates. 

The goal of the analysis is to estimate these quantities and determine if they fall within previously 
set guidelines. 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Variables 

Sample (Part) Variable 
The values in this variable identify which sample (part) is represented on each row. The values 
may be numbers or text. 

Appraiser (Operator) Variable 
This variable is optional and is only used when a single Measurement Variable is specified. When 
this option is blank, you must specify at least two Measurement Variables.  

The values in this variable identify which appraiser (operator) is represent on each row. The 
values may be numbers or text. 

Measurement Variable(s) 
The one or more variables specified here contain the measurements (scores). When only one 
measurement variable is specified, you must specify an Appraiser Variable. When multiple 
measurement variables are specified, you must leave the Appraiser Variable blank. 

When more than one variable is specified, each variable contains the results for a particular 
appraiser. Each row represents the measurements of a part or sample on one trial. If you have 
multiple trials, you will have multiple rows. 

Specification Limits 

Lower Spec Limit 
This optional value is the lower specification limit. These limits are not control limits but the 
actual specification limits set by the manufacturer. They are used by the program to determine the 
tolerance, which is calculated using the formula: tolerance = Upper Spec Limit - Lower Spec 
Limit. It is not necessary to enter this value if you do not want to calculate statistics that involve 
the tolerance. 

Upper Spec Limit 
This optional value is the upper specification limit. These limits are not control limits but the 
actual specification limits set by the manufacturer. They are used by the program to determine the 
tolerance, which is calculated using the formula: tolerance = Upper Spec Limit - Lower Spec 
Limit. It is not necessary to enter this value if you do not want to calculate statistics that involve 
the tolerance. 

Target Spec 
This optional value specifies the target value of the item being studied. This value is used to 
calculate the deviation from target in the Means Report. It may be omitted.    
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Sigma Multiplier 

Sigma Multiplier 
The multiplier of the standard deviation that defines the percent of the normal distribution that is 
compared to the tolerance or the process variability. This value establishes the magnitude of the 
range of the measurement variable.  

The most common value used is 5.15. This value is used because the mean plus or minus (5.15)/2 
sigma contains 99.0% of the area under the normal distribution curve. Other popular choices are 
6.00 sigma which contains 99.7% and 4.00 sigma which contains 95.0%. 

Reports Tab 
The following options control which plots and reports are displayed.  

Specify Reports 

EMS Report – Means Report 
Specify whether to display the indicated report. 

Specify Plots 

Means Plots – Residual Plots 
Specify whether to display the indicated plots. 

Plot Legend 

Show Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies legend label. A {G} is replaced by the word ‘Appraiser.’ 

Report Options 

Confidence Level 
The value of confidence coefficient (in percentage terms) for the confidence intervals. Usually, 
this number will range from 90 to 99.9. A common choice for confidence limits of variance 
components is 90. You should determine a value appropriate for your particular study. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, whereas the double precision will display thirteen-place accuracy. 

Variable Names 
Indicate whether to display the variable names or the variable labels.  
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Value Labels 
Indicate whether to display the data values or their labels.  

Appraiser Label 
This options specifies the phrase used in the output reports to represent the appraisers or 
operators. This option is only used when several Measurement Variables are specified. 

Decimal Places 

Percents - Variances 
These options let you specify the number of decimal places displayed in the reports. Select 
‘General’ if you want to see the most digits possible. Your selection here does not change the 
precision of the calculations. All calculations use double precision. These options simply impact 
the format of the number as it is printed. 

Means Plot Tab 
These options specify the three means plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Scaling 
This option specifies whether the vertical axes of the three means plots are uniformly or 
separately scaled. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 
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Means Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Connect Line(s) 
Click this box to connect the points for a particular factor. This makes it easier to spot patterns in 
the means. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} are replaced by the word ‘Measurement.’ Press the 
button on the right of the field to specify the font of the text. 

Data Plot Tab 
These options specify the data plots.  

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Scaling 
This option specifies whether the vertical axes of the three means plots are uniformly or 
separately scaled. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 
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Data Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} are replaced by the word ‘Measurement.’ Press the 
button on the right of the field to specify the font of the text. 

Residual Plot Tab 
These options specify the residual plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Scaling 
This option specifies whether the vertical axes of the three means plots are uniformly or 
separately scaled. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 
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Resid Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} are replaced by the word ‘Measurement’ and the 
characters {Z} are replaced by the name of the group of data being plotted. Press the button on the 
right of the field to specify the font of the text. 

Symbols Tab 
These options specify the attributes of the symbols used for each appraiser in the plots. 

Plotting Symbols 

Group 1 - 15 
These options specify the symbols used in the plot of each appraiser. The first symbol is used by 
the first appraiser, the second symbol by the second appraiser, and so on. These symbols are 
provided to allow the various appraisers to be easily identified, even on black and white printers. 

Clicking on a symbol box (or the small button to the right of the symbol box) will bring up a 
window that allows the color, width, and pattern of the line to be changed. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Running an R & R Study 
This section presents an example of how to run an R & R study of the data that were displayed 
earlier in this chapter. These data are contained in the RRSTUDY database. In this example, ten 
chemical samples were selected for analysis. Each of three operators measured each of the ten 
samples three times. Each row contains one of the three trials for a particular sample. A trial 
consists of a measurement by each operator. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the R & R Study window. 

1 Open the RRSTUDY dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file RRSTUDY.S0. 
• Click Open. 

2 Open the R & R Study window. 
• On the menus, select Analysis, then Quality Control, then R & R Study. The R & R 

Study procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the R & R Study window, select the Variables tab. 
• Double-click in the Sample (Part) Variable box. This will bring up the variable 

selection window. 
• Select Sample from the list of variables and then click Ok. 
• Double-click in the Measurement Variable(s) box. This will bring up the variable 

selection window. 
• Select Op1, Op2, Op3 from the list of variables and then click Ok. 
• Enter 48 in the Lower Spec Limit box. 
• Enter 88 in the Upper Spec Limit box. Note that 88-48 = 40 which is the tolerance. 
• Enter 68 in the Target Spec box. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Data Summary Section 
 
 Data Summary Section  
 Item Actual Count Expected Count 
 Total Values 90 90 
 Sample 10 
 Operators 3 
 Replicates 3 
 
This section presents a summary of the number of data values analyzed. In order for the analysis 
to be valid, the Actual Count must match the Expected Count in the Total Values row. When this 
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occurs, the design (data matrix) is said to be balanced. All of the formulas used are for balanced 
data matrices only. 

Total Values 
The number of nonmissing data values in the dataset. If the design is balanced, the entry on this 
line equals the product of the entries on the next three lines. 

Samples  
The number of samples (parts) found in the dataset. 

Appraisers  
The number of appraiser (operator) variables selected. 

Replicates  
The number of times an operator measured the same part. 

Expected Mean Square and Variance Component Section 
 
 Expected Mean Square and Variance Component Section 
 Source  Expected Variance Lower 90% Upper 90% 
 Term DF Mean Square Component Conf. Limit Conf. Limit 
 Sample (P) 9 R+3(PO)+9(P) 5.615638 2.948817 15.33656 
 Operators (O) 2 R+3(PO)+30(O) 0.3563786 0.1016096 7.389713 
 Interaction (PO) 18 R+3(PO) 0.1251029 2.385001E-02 0.3455315 
 Replicates (R) 60 R 0.3444445 0.2613323 0.4785284 
 
The expected mean square expressions and variance components are for each term in the analysis 
of variance model. 

Source Term 
The source of variation or term in the model. 

DF 
The degrees of freedom. The number of observations “used” by this term. 

Expected Mean Square 
This is the symbolic value of the mean square for the term in the ANOVA model assuming 
balanced data (equal group counts). “P” represents . “O” represents .“PO” represents 

.“R” represents . 
σ P

2 σO
2

σ PO
2 σ E

2

Variance Component 
This is the expected value of corresponding variance in the ANOVA model assuming balanced 
data (equal group counts). Hence, the estimate of is 5.615638 and the estimate of  is 
0.1251029. The formulas used for these estimates are 

σ P
2 σ PO

2

σO
O PMS MS

IK
2 =

− O  

σ P
P PMS MS

JK
2 =

− O  



254-12  R & R Study  

σ PO
PO EMS MS

K
2 =

−
 

σ E EMS2 =  

where represents the mean square of term Q in an analysis of variance table. MSQ

Lower (and Upper) Conf. Limit 
These are the lower and upper confidence limits (interval estimate) of the variance components. 
The formulas used are found in Burdick and Larsen (1997). They are given as follows: 

Confidence Interval for  is  σO
2

Lower
MS MS G MS H MS G MS MS

IKO
O PO O O PO PO O PO O=
− − + +2 2 2 2

, PO  

Upper
MS MS H MS G MS H MS MS

IKO
O PO O O PO PO O PO O PO=
− + + +2 2 2 2

,  

Confidence Interval for  is  σ P
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and is the F distribution with an area equal to F n nq rα , , α to the right. The confidence level of these 

intervals is )%21(100 α− . The subscripts q and r refer to the terms O, P, PO, and E. The n’s are 
given by 

n IS = −1 

n JO = −1 

( )( )n I JSO = − −1 1  

( )n IJ KE = −1  

Analysis of Variance Section 
   
 Analysis of Variance Section  
   
 Source  Sum of Mean  Prob 
 Term DF Squares Square F-Ratio Level 
 Sample 9 461.3445 51.26049 71.22 0.000000 
 Operators 2 22.82222 11.41111 15.85 0.000107 
 Interaction 18 12.95556 0.7197531 2.09 0.017450 
 Replicates 60 20.66667 0.3444445 
 Total (Adjusted) 89 517.7889 
 Total 90 
 

Source Term 
The source of variation. The term in the model. 

DF 
The degrees of freedom. The number of observations “used” by the corresponding model term.  

Sum of Squares 
This is the sum of squares for this term. It is usually included in the ANOVA table for 
completeness, not for direct interpretation. 

Mean Square 
An estimate of the variation accounted for by this term. The sum of squares divided by the 
degrees of freedom. 
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F-Ratio 
The ratio of the mean square for this term and the mean square of its corresponding error term. 
This is also called the F-test value. 

Prob Level 
The significance level of the above F-ratio. The probability of an F-ratio larger than that obtained 
by this analysis. For example, to test at an alpha level of 0.05, this probability would have to be 
less than 0.05 to make the F-ratio significant. Note that if the value is significant at the specified 
value of alpha, a star is placed to the right of the F-Ratio. 

Variance Section 
 
 Variance Section 
     Lower 90% Upper 90%  
   % Total Standard Conf. Limit Conf. Limit % Total 
 Term Variance Variance Deviation of Std Dev of Std Dev Std Dev 
 Sample 5.615638 87.1782 2.3697 1.7172 3.9162 93.3693 
 Operators 0.356379 5.5325 0.5970 0.3188 2.7184 23.5212 
 Interaction 0.125103 1.9421 0.3537 0.1544 0.5878 13.9360 
 Reproducibility 0.481481 7.4746 0.6939 0.4349 2.7415 27.3397 
 Repeatability 0.344444 5.3472 0.5869 0.5112 0.6918 23.1241 
 R and R 0.825926 12.8218 0.9088 0.7443 2.8044 35.8076 
 Total Variation 6.441564 100.0000 2.5380 1.9394 4.2947 100.0000 
   
This report presents estimates of the variance and standard deviation of various terms of interest 
in an R & R study. 

Term 
These are the names of the variance terms being estimated. The first few terms were discussed 
above in the Expected Mean Square and Variance Component Report. “Sample” refers to , the 
variability between samples (parts). “Operators” refers to , the variability between appraisers 
(operators). “Interaction” refers to , the interaction variation. “Repeatability”  refers to , 
the variability that occurs when one appraiser measures the same sample over and over. 

σ P
2

σO
2

σ PO
2 σ E

2

“Reproducibility” refers to the variation among appraisers which is . “R and R” 
refers to the sum of Reproducibility and Repeatability which is . “Total 
Variation” is the sum of all four sources of variation . 

γ σ σ1
2 2= +O PO

O

O

γ σ σ σ2
2 2 2= + +E O P

σ σ σ σ σT E P O P
2 2 2 2 2= + + +

Variance 
These are the estimated values of the variances of the terms listed above. The formulas for the 
first four terms were given in the Expected Mean Square and Variance Component Report. The 
formulas for the last three items are as follows. 

( )
$

( )
γ 1

1
=

+ − −MS I MS I MS
IK

O PO E  

( )
$

( )
γ 2

1 1
=

+ − + −MS I MS I K MS
IK

O PO E  



  R & R Study  254-15 

( )( ) ( ) ( )
( )( ) ( ) ( )

( ) ( )
( )( )
( )( )

$σT
P O

PO

E

MS
I J

MS
I J

I J I J
I J

MS

I J
I J

MS

2
2 2 2 21 1 1 1

1 1 1 1
1 1

1 1 1
1 1

=
− −

+
− −

+
− − − − − −

− −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
− − −
− −

⎡

⎣
⎢

⎤

⎦
⎥

 

% Total Variance 
This shows the percentage that each variance is of the Total Variation variance. 

Standard Deviation 
This is the square root of the variance. 

Lower (and Upper) 90% Conf. Limit 
These are the lower and upper confidence limits (interval estimate) for the standard deviation 
shown in the previous column. The formulas used are found by taking the square root of the 
corresponding variance confidence limits found in Burdick and Larsen (1997). The values of the 
first four terms were given in the Expected Mean Square and Variance Component Report. The 
formulas for the last three items are as follows. 
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Confidence Interval for R and R, , is  σ σ σO PO
2 2+ + E

2

Lower VLRRγ γ
2 2= −$  

Upper VURRγ γ
2 2= +$  

where 
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Confidence Interval for Total Variation, , is  σ σ σ σP O PO
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% Total Std Dev 
This column gives the percentage that each standard deviation is of the total standard deviation. 
Because the total standard deviation is not equal to the sum of the individual standard deviations 
(it is the variances that are summed), these percentages may total to more than 100. 
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Percent of Process Variation R & R Section 
 
 Percent of Process Variation R & R Section 
  Lower 90% 5.15 Upper 90% % Total Percent 
 Term Conf. Limit Std Dev Conf. Limit Variation Contribution 
 Sample 8.8436 12.2041 20.1684 93.3693 87.1782 
 Operator 1.6416 3.0744 13.9998 23.5212 5.5325 
 Interaction 0.7953 1.8215 3.0273 13.9360 1.9421 
 Reproducibility 2.2395 3.5735 14.1187 27.3397 7.4746 
 Repeatability 2.6327 3.0225 3.5626 23.1241 5.3472 
 R and R 3.8332 4.6803 14.4425 35.8076 12.8218 
 Total Variation 9.9877 13.0708 22.1175 100.0000 100.0000 
 
 Since the % R & R value is greater than 30%, the measurement system is not acceptable. 
 Identify the measurement problems and correct them. 
   
This report gives components of the process variation scaled by multiplying by the Sigma 
Multiplier value (which defaults to 5.15). This multiplication puts all values in same metric as the 
specification limits so they can be compared directly. For example, the variability that occurs 
when the same appraiser measures the same sample twice adds between 2.6327 and 3.5626 to the 
measurement standard deviation. Hence, by comparing these values, we can see the relative 
impact of each source of variation. 

Term 
These are the names of the terms being displayed. All of these terms have been defined 
previously.  

Lower (and Upper) 90% Conf. Limit 
These are the lower and upper confidence limits (interval estimate) for the standard deviation 
shown in between these two columns. The formulas used are found by taking the square root of 
the corresponding variance confidence limits found in Burdick and Larsen (1997). The values are 
multiplied by the Sigma Multiplier as discussed above. 

5.15 Std Dev 
This is the square root of the variance associated with each term multiplied by the Sigma 
Multiplier (5.15 is the default). 

% Total Variation 
This is 100 times the ratio of this term’s standard deviation to the total variation’s standard 
deviation. One of the key statistics to look at is whether the R and R value in this column is small 
enough. If the R and R value is less than 10%, the measurement procedure is deemed excellent. 
When it is less than 20%, it is deemed adequate. When it is less than 30%, it is marginal. When 
the R and R value is greater than 30%, it should not be used for process monitoring. 

Percent Contribution 
This is 100 times the ratio of this term’s variance to the total variation’s variance.  
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Percent of Tolerance R & R Section 
 
 Percent of Tolerance R & R Section 
  Lower 90% 5.15 Upper 90% Percent 
 Term Conf. Limit Std Dev Conf. Limit Tolerance 
 Sample 8.8436 12.2041 20.1684 30.5103 
 Operator 1.6416 3.0744 13.9998 7.6860 
 Interaction 0.7953 1.8215 3.0273 4.5539 
 Reproducibility 2.2395 3.5735 14.1187 8.9338 
 Repeatability 2.6327 3.0225 3.5626 7.5563 
 R and R 3.8332 4.6803 14.4425 11.7009 
 Total Variation 9.9877 13.0708 22.1175 32.6771 
 
 Upper Spec Limit 88 
 Lower Spec Limit 48 
 Tolerance 40 
 
 Since the % R & R value is between 10% and 20%, the measurement system is acceptable. 
   
This report is similar to the last report, except that the denominator of the percentages in the last 
column is the tolerance rather than the total variation. 

Term 
These are the names of the terms being displayed. All of these terms have been defined 
previously.  

Lower (and Upper) 90% Conf. Limit 
These are the lower and upper confidence limits (interval estimate) for the standard deviation 
shown in between these two columns. The formulas used are found by taking the square root of 
the corresponding variance confidence limits found in Burdick and Larsen (1997). The values are 
multiplied by the Sigma Multiplier as discussed above. 

5.15 Std Dev 
This is the square root of the variance associated with each term multiplied by the Sigma 
Multiplier (5.15 is the default). 

Percent Tolerance 
This is 100 times 5.15 times the ratio of this term’s standard deviation to the tolerance. One of the 
key statistics to look at is whether the R and R value in this column is small enough. If the R and 
R value is less than 10%, the measurement procedure is deemed excellent. When it is less than 
20%, it is deemed adequate. When it is less than 30%, it is marginal. When the R and R value is 
greater than 30%, it should not be used for process monitoring. 

Upper (Lower) Spec Limits and Tolerance 
The upper and lower specification limits are specified by the user. The tolerance is the upper 
specification limit minus the lower specification limit. 
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R & R Indices Section 
 
 R & R Indices Section 
  Lower 90%  Upper 90% 
 Index Conf. Limit Value Conf. Limit 
 Distinct Categories 1.1924 3.6876 6.2979 
 Signal-to-Noise Ratio 0.8431 2.6075 4.4533 
 Measurement Error 5.5823 6.8160 21.0328 
 Precision-to-Tolerance 11.1647 13.6321 42.0655 
 
 Since the lower confidence limit of Distinct Categories is less than 3,  
 the measurement process may be inadequate. 
 Since the upper confidence limit of Measurement Error is less than 25%,  
 measurement error can be ignored in decision making. 
 
This report gives values with confidence limits for four indices that have been found useful in 
analyzing R & R data. You will have to decide whether to use the point estimate (the Value) or 
the interval estimate (the Confidence Limits) when making decisions. 

The first three statistics on this report are based on the ratio 
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Confidence limits for this ratio are given below. 

Single-to-Noise Ratio 
This index is given by the formula 
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2  

As you can see, it is the ratio of the sample-to-sample standard deviation and the measurement (R 
and R) variation. As a manufacturer, we are really interested in the sample-to-sample variability. 
The measurement standard deviation estimates the noise that is added to the sample-to-sample 
variability by the approximate nature of the measurement system. 

The Measurement Systems Analysis Reference Manual (AGIG 1995) recommend that this value 
exceed 2.12. 

Distinct Categories 
This index is the number of distinct product categories that can be reliably distinguished by the 
measurement procedure. Its formula is 

Distinct Categories P

O PO E

= =
+ +

2 2 2

2 2
$ $

$ $ $
δ σ

σ σ σ 2  

The Measurement Systems Analysis Reference Manual (AGIG 1995) recommend that this value 
exceed 3. 

Measurement Error 
This index compares the measurement standard deviation to the tolerance, where tolerance is the 
difference between the upper specification limit (USL) and lower specification limit (LSL). The 
value is calculated using the formula 
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A rule-of-thumb is that this value should be less than 25% in order for the measurement system to 
be deemed adequate. 

Precision-to-Tolerance 
A slightly different version of the Measurement Error index is the Precision-to-Tolerance ratio 
(P/T) which is defined as 
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Confidence Limits for Ratio 
The first three statistics on this report are function of the ratio 
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The formulae for confidence limits of this statistic are given by Burdick and Larsen (1997). They 
are included here for easy reference. The approximate 100 1 2( )− α  confidence limits are 
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Means and Bias Section 
 
 Means and Bias Section  
  
    Deviation 
 Term Count Mean From Target 
 Overall 90 68.589 0.589 
 Sample 
 1 9 67.667 -0.333 
 2 9 66.667 -1.333 
 3 9 68.333 0.333 
 4 9 68.000 0.000 
 5 9 68.889 0.889 
 6 9 69.667 1.667 
 7 9 67.778 -0.222 
 8 9 74.778 6.778 
 9 9 67.889 -0.111 
 10 9 66.222 -1.778 
 Operators 
 Op1 30 67.967 -0.033 
 Op2 30 69.200 1.200 
 Op3 30 68.600 0.600 
 Sample, Operators 
 1,Op1 3 67.667 -0.333 
 1,Op2 3 67.333 -0.667 
 1,Op3 3 68.000 0.000 
 2,Op1 3 66.333 -1.667 
 2,Op2 3 67.333 -0.667 
 2,Op3 3 66.333 -1.667 
 3,Op1 3 67.667 -0.333 
 3,Op2 3 69.333 1.333 
 3,Op3 3 68.000 0.000 
 4,Op1 3 67.000 -1.000 
 4,Op2 3 69.333 1.333 
 4,Op3 3 67.667 -0.333 
 5,Op1 3 68.000 0.000 
 5,Op2 3 70.000 2.000 
 5,Op3 3 68.667 0.667 
 6,Op1 3 68.667 0.667 
 6,Op2 3 70.333 2.333 
 6,Op3 3 70.000 2.000 
 7,Op1 3 67.000 -1.000 
 7,Op2 3 68.000 0.000 
 7,Op3 3 68.333 0.333 
 8,Op1 3 74.333 6.333 
 8,Op2 3 75.000 7.000 
 8,Op3 3 75.000 7.000 
 9,Op1 3 67.000 -1.000 
 9,Op2 3 68.667 0.667 
 9,Op3 3 68.000 0.000 
 10,Op1 3 66.000 -2.000 
 10,Op2 3 66.667 -1.333 
 10,Op3 3 66.000 -2.000 
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The main purpose of this report is to acquaint you with the data and allow you to quickly find 
outliers. We will discuss more about outliers below. 

Term 
The label for this line of the report. 

Count 
The number of observations in the mean. 

Mean 
The value of the sample mean. 

Bias 
This is the difference between the mean and the Target Spec. 

Plots Section 
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This section displays various plots of means, the original data, and residuals. You should look 
through these plots for unexpected patterns, trends, and outliers. 

The plots of the means let you analyze the systematic variation in your data. For example, you 
can see whether one appraiser was very different from the rest. You can also determine whether 
certain samples were extremely different from the others. 

The data plots let you see the original data. In these plots, you will be able to quickly find outliers 
(which often turn out to be data entry errors) and unusual patterns. This plot will give you a good 
feel for the variation in your data. 

The residual plots show the deviation between each data value and the sample (part) mean for that 
value. This lets you view the measurement error.  

Example 2 – Analysis of Variance Data  
In this example, the RRSTUDY database has been reformatted to match the more typical data 
format necessary to run an analysis of variance on the data. The difference is that the operator 
factor is explicitly represented as a variable and only one measurement is given per row. This 
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format requires ninety rows instead of thirty.  The first six rows are displayed here. The complete 
dataset is contained in the RRSTUDY1 database. 

 

RRSTUDY1 dataset (subset) 

Sample Operator Measurement 
1 Op1 67 
1 Op1 68 
1 Op1 68 
2 Op1 67 
2 Op1 66 
2 Op1 66 

 

You may follow along here by making the appropriate entries or load the completed template 
Example2 from the Template tab of the R & R Study window. 

1 Open the RRSTUDY1 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file RRSTUDY1.S0. 
• Click Open. 

2 Open the R & R Study window. 
• On the menus, select Analysis, then Quality Control, then R & R Study. The R & R 

Study procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the R & R Study window, select the Variables tab. 
• Double-click in the Sample (Part) Variable box. This will bring up the variable 

selection window. 
• Select Sample from the list of variables and then click Ok. 
• Double-click in the Appraiser (Operator) Variable box. This will bring up the variable 

selection window. 
• Select Operator from the list of variables and then click Ok. 
• Double-click in the Measurement Variable(s) box. This will bring up the variable 

selection window. 
• Select Measurement from the list of variables and then click Ok. 
• Enter 48 in the Lower Spec Limit box. 
• Enter 88 in the Upper Spec Limit box. Note that 88-48 = 40 which is the tolerance. 
• Enter 68 in the Target Spec box. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
 

Since the same data are being analyzed, the reports are the same as in Example 1. 
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Chapter 260 

Two-Level Designs 
Introduction 
This program generates a 2k factorial design for up to seven factors. It allows the design to be 
blocked and replicated. The design rows may be output in standard or random order. The output 
of this program will be to the current database with the data from the specified design. Hence, this 
particular program does not analyze data, it generates it. 

When blocking is specified, the program checks to see if the design is listed on page 408 of Box 
and Hunter (1978). If it is one of the designs specified there, the indicated confounding pattern is 
used. If not, the blocks are confounded using the standard procedure in which highest-order 
interactions are confounded first, so long as they do not cause main effects to be confounded with 
blocks. The blocking pattern is reported by the analysis program, so it is not reported by this 
program.  

Experimental Design 
Experimental design is the planning of an efficient, reliable, and accurate technical study. The 
range of application of experimental design principles is as broad as science and industry. One 
person may be planning a long-term agricultural experiment, while another may have eight hours 
to rectify a production problem. How can we expect that the same methods are appropriate in all 
situations? 

Of course, we cannot. Through the years, researchers and statisticians working together have 
outlined the basic steps necessary to conduct an effective investigation. These steps form an 
experimental strategy that seems to work well in many settings. 

The experimental design modules lend you, the investigator, a hand with the planning and 
analysis of your investigation. Once you have determined the scope of your investigation, the 
design modules will provide a data collection plan that will minimize the amount of data 
collected and maximize the amount of conclusive information available. They will also provide a 
statistical analysis of your experimental results after the data have been collected. 

The experimental design chapters will not attempt to teach you the principles of experimental 
design. There are many excellent books and pamphlets on this subject. The focus of the manual 
will be to remind you of the basic principles of experimental design and then explain where and 
how the program can help in your study. We suggest that you consult one or two of the following 
texts for detailed coverage of experimental design: Box, Hunter, and Hunter (1978), Davies 
(1956), Lawson (1987), or Montgomery (1984). 
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The Role of Statistics in Science 
Statistics has been called the science of science. The scientific method consists of developing a 
theory or hypothesis, determining the consequences of this theory, and then comparing these 
consequences with facts (already available or determined from experimentation). When facts are 
found that contradict the theory, the theory must be modified, the consequences again determined, 
and all facts reconsidered. 

The field of statistics is used in two phases of the scientific method. First, statistical design 
principles are used in the planning phase to determine an efficient and accurate method for 
collecting data (facts). Second, statistical analysis techniques are used to determine if the data are 
compatible with the proposed theory. Tools are provided for both of these phases in our statistical 
package. 

Experimental Design Definitions 

Alias 
Two terms are aliased if their levels are identical throughout the design (except possibly for a 
difference in sign). Aliasing occurs in designs that are less than one full replication. The two 
terms are completely confounded with one another. It is impossible to determine from the data if 
an effect is due to the first, second, or both terms. 

Blocking 
A block refers to a batch of runs conducted together. For example, a block may be the 
experiments run on a particular day, or the experiments conducted on a particular batch of 
material. 

Confounding 
Two terms are confounded when their influences on the response variable cannot be separated. 
Confounding usually occurs when blocks are equated to high-order interactions. 

Experiment (Run) 
An action to at least one of the items being studied which has an observable outcome. Each run 
produces one observation (value) of the response variable. 

Experimental Design 
The collection of experiments to be completed during an investigation or study. 

Experimental Error 
The influence on the response of all independent variables not included in the study. This error is 
a fact of life, since it is usually impossible to control every independent variable that might 
influence the response.  
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Factorial Designs 
A factorial design consists of all combinations of factor levels of two or more factors. The 
designs we generate all have factors with two, three, or five levels. Most of the designs are 
two-level designs. Since the total number of factor-level combinations is the product of the 
number of levels of each factor, these two-level designs are known as 2k factorial designs (where 
k is the number of factors). 

The two levels of each factor are often referred to as the high and the low levels. For example, if 
one of the factors were agitation at 100 rpm and 200 rpm, then 100 would be the low level and 
200 would be the high level. 

The designs produced by this program are orthogonal. This means that an equal amount of 
information is provided about the influence of each factor. It also means that there is no 
overlapping of information. The study clearly shows the unique influence of each factor. 

One of the greatest strengths of the factorial experiment is that it allows the study of several 
factors at once, rather than only one factor at a time. Since each factor is paired with all possible 
combinations of the other factors, the researcher is confident that the measured effect of the factor 
is valid under a broad range of conditions. 

Independent Variable (Factor) 
A variable whose influence on the response variable is being studied by deliberately varying it 
from run to run. 

Interaction 
The interaction among factors refers to that part of the change in the response from run to run that 
may be accounted for by a specific combination of two or more factors. Another way of 
explaining interaction is that the average effect of one factor depends on the level of another 
factor. 

The order of an interaction is the number of factors in the interaction. Hence AB is a second-order 
interaction and ABCD is a fourth-order interaction. 

The Taylor’s series expansion of a function is often used to justify the assumption that 
higher-order interactions are less significant (smaller influence on the response) than are main 
effects and low-order interactions. 

Levels 
A factor (independent variable) is set at different values or levels during an experiment. 

Main Effect 
The change in the average response as a factor is varied is called the main effect of that factor. In 
a factor with two levels, the main effect is the average of all runs at the high level of the factor 
minus the average of all runs at the low level of the factor. 

Response or Dependent Variable 
The variable whose value is observed at the completion of each run. 
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Replication 
This is the number of times an experiment is repeated at identical factor levels. You must have 
some replication to determine the underlying (error) variability that occurs in the experiment. One 
rep refers to the running of every possible factor combination.  Designs may be partially 
replicated (a few treatment settings are repeated), fractionally replicated (less than one complete 
replication), or completely replicated. It should be obvious that each time a run is repeated, the 
precision of the experimental results is increased. 

Two-Level Factorial Designs 
All of the designs provided are factorial designs. Two-level designs are those in which all factors 
have only two values. This may seem like a severe restriction, but in many studies, this is all that 
is needed. 

Factorial designs allow you to fit linear (as opposed to quadratic) models with all possible 
interactions. The number of runs is often quite large, so the runs are often grouped together in 
blocks. 

Fractional Factorial Designs 
Fractional factorial designs are constructed by taking well-chosen subsets of a complete factorial 
design. Fractional factorials are useful because they require much fewer runs, although they do 
not allow the separation of main effects from high-order interactions. 

This program gives two-level fractional factorial designs. These are usually defined as one-half 
rep, one-quarter rep, etc. They may be run all at once or in blocks. 

Screening Designs 
Screening designs are used in the initial phases of a study when you wish to investigate the main 
effects of several factors (up to 31) simultaneously.  These designs allow you to determine which 
factors warrant closer investigation and which may be ignored. 

Screening designs allow the investigation of main effects only. They use a small fraction of the 
total runs that would be needed for a complete factorial design. 

Many of the Taguchi designs are really screening designs. 

Response Surface Designs 
The program provides Central Composite and Box-Behnken response surface designs. These 
designs provide for factors with more than two levels. 
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Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Data Storage Variables 

Simulated Response Variable 
This optional variable will contain a computer-simulated response value for each row. These 
values may be used as the response variable in an analysis of variance or regression analysis to 
check that the analysis of this design provides the answers that you are looking for. The values 
themselves are from a uniform random-number generator that generates numbers between 0 and 
1000. 

Block Variable 
The variable to contain the block identification numbers. The blocks are numbered from one to B, 
where B is the number of blocks. This variable is optional. If this option is left blank, no blocks 
will be generated. 

First Factor Variable 
This is where the group of variables that is to contain your design begins. The K-1 variables after 
this variable are also filled with data. The number of variables used is determined by the number 
of Factor Values boxes that contain data. 

Warning: The program fills these variables with data, so any previous data will be lost. 

Data Storage Variables – Storage 
Options 

Sort Order 
The order of the generated rows. The rows may be in random or standard order.  

• Random 
The rows are randomly ordered (random blocks and random rows within blocks). Use this 
option when the order of application to experimental units is governed by the row number. 

• Standard 
The rows are not randomly ordered. Instead, they are placed in standard order. Use this 
option when you want to quickly see the structure of the design. 
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Experimental Setup 

Replications 
The number of replications (repeats) of the entire experiment. 

Block Size 
The number of experiments (runs) per block. This determines the number of blocks. This number 
must be a power of 2 (2, 4, 8, 16, etc.) 

Factor Values 
Each factor has two possible values (levels) which are specified here. These are the values that 
will be written to the database. The first value is used to represent the low value. The second 
value represents the high value. You may use both text and numeric values. 

The number of variables created depends on how many of these boxes have values in them. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Two-Level Design 
This section presents an example of how to generate an experimental design using this program. 
CAUTION: since the purpose of this routine is to generate (not analyze) data, you should 
always begin with an empty database. 

In this example, we will show you how to generate a five-factor design in blocks of eight runs 
each. You may follow along here by making the appropriate entries or load the completed 
template Example1 from the Template tab of the Two-Level Designs window. 

1 Open a new (empty) dataset. 
• From the File menu of the NCSS Data window, select New. 
• Click the Ok button. 

2 Open the Two-Level Designs window. 
• On the menus, select Analysis, then Design of Experiments, then Two-Level Designs. 

The Two-Level Designs procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the design parameters. 
• On the Two-Level Designs window, select the Design tab.  
• Enter 1 in the Simulated Response Variable box.  
• Enter 2 in the Block Variable box.  
• Enter 3 in the First Factor Variable box.  
• Select Standard in the Sort Order box.  
• Select 1 in the Replications box.  
• Select 8 in the Block Size box.  
• Set the first Factor Value box to 1 2. 
• Set the second Factor Value box to 10 20. 
• Set the third Factor Value box to Low High. 
• Set the fourth Factor Value box to -1 1. 
• Set the fifth Factor Value box to 0 1. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Sample Design Data 
 
 C1 C2 C3 C4 C5 C6 C7 
 871 1 1 10 Low -1 0 
 175 1 2 20 Low -1 0 
 484 1 2 10 High 1 0 
 332 1 1 20 High 1 0 
 146 1 2 10 High -1 1 
 571 1 1 20 High -1 1 
 878 1 1 10 Low 1 1 
 649 1 2 20 Low 1 1 
 953 2 2 10 Low -1 0 
 127 2 1 20 Low -1 0 
 533 2 1 10 High 1 0 
 966 2 2 20 High 1 0 
 404 2 1 10 High -1 1 
 817 2 2 20 High -1 1 
 588 2 2 10 Low 1 1 
 680 2 1 20 Low 1 1 
 870 3 2 10 High -1 0 
 838 3 1 20 High -1 0 
 511 3 1 10 Low 1 0 
 202 3 2 20 Low 1 0 
 686 3 1 10 Low -1 1 
 503 3 2 20 Low -1 1 
 427 3 2 10 High 1 1 
 968 3 1 20 High 1 1 
 99 4 1 10 High -1 0 
 381 4 2 20 High -1 0 
 695 4 2 10 Low 1 0 
 711 4 1 20 Low 1 0 
 476 4 2 10 Low -1 1 
 683 4 1 20 Low -1 1 
 740 4 1 10 High 1 1 
 972 4 2 20 High 1 1 
 

Notice that the simulated response data is placed in variable C1, C2 contains the four block 
indices, and variables C3 through C7 contain the generated design values. 
You would now proceed with your experiment, obtain the real response values, and analyze the 
data using one of the analysis of variance routines or the Analysis of Two-Level Designs 
procedure. 
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Chapter 261 

Fractional 
Factorial Designs 
Introduction 
This program generates two-level fractional-factorial designs of up to sixteen factors with 
blocking. Reports show the aliasing pattern that is used. The design rows may be output in 
standard or random order.  

When generating a design, the program first checks to see if the design is among those listed on 
page 410 of Box and Hunter (1978). These designs are especially good. If the requested design is 
not listed in the above book, the design pattern is determined using the standard procedure in 
which the highest-order interactions are confounded first, and so on. The program makes certain 
that main effects are not aliased with each other. 

An introduction to experimental design is presented in Chapter 83 on Two-Level Factorial 
Designs and will not be repeated here. 

Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Data Storage Variables 

Simulated Response Variable 
This optional variable will contain a computer-simulated response value for each row. These 
values may be used as the response variable in an analysis of variance or regression analysis to 
check that the analysis of this design provides the answers that you are looking for. The values 
themselves are from a uniform random-number generator that generates numbers between 0 and 
1000. 

Block Variable 
The variable to contain the block identification numbers. The blocks are numbered from one to B, 
where B is the number of blocks. This variable is optional. If this option is left blank, no blocks 
will be generated.  
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First Factor Variable 
This is where the group of variables that is to contain your design begins. The K-1 variables after 
this variable are also filled with data. The number of variables used is determined by the number 
of Factor Values boxes that contain data. 

Warning: The program fills these variables with data, so any previous data will be lost. 

Data Storage Variables – Storage 
Options 

Sort Order 
The order of the generated rows. The rows may be in random or standard order.  

• Random 
The rows are randomly ordered (random blocks and random rows within blocks). Use this 
option when the order of application to experimental units is governed by the row number. 

• Standard 
The rows are not randomly ordered. Instead, they are placed in standard order. Use this 
option when you want to quickly see the structure of the design. 

Experimental Setup 

Runs 
The desired size (number of rows) of the experiment. This number must be a power of two. This 
number determines what fraction of a complete replicate is run. For example, suppose you are 
contemplating an experiment with seven factors and have budget for sixteen runs. A full 
replication would take 27 = 128 runs. Hence, this design is a 1/8th rep (note that 16/128 = 1/8). 

Block Size 
The number of experiments (runs) per block. This determines the number of blocks. This number 
must be a power of 2 (2, 4, 8, 16, etc.). Of course, the block size must be less than or equal to one 
half the number of runs.  

Factor Values 
Each factor has two possible values (levels) which are specified here. These are the values that 
will be written to the database. The first value is used to represent the low value. The second 
value represents the high value. You may use both text and numeric values. 

The number of variables created depends on how many of these boxes have values in them. 
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Reports Tab 
These options designate the variables to contain the design and the values that will be placed in 
those variables. 

Select Reports 

Design Info Report 
Specifies whether to display this report. 

Aliases Report 
Specifies whether to display this report. 

Report Options 

Aliases 
One of the reports shows the confounding pattern among the columns of the design. However, 
when several factors are confounded, the number of terms aliased with each other gets huge. This 
option lets you limit the amount of information that the program displays.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Fractional Factorial Design 
This section presents an example of how to generate an experimental design using this program. 
CAUTION: since the purpose of this routine is to generate data, any existing data will be 
replaced. For this reason, you should begin with an empty database. 

In this example, we will show you how to generate a six-factor design using sixteen runs 
separated in blocks of four runs each. You may follow along here by making the appropriate 
entries or load the completed template Example1 from the Template tab of the Fractional 
Factorial Designs window. 

1 Open a new (empty) dataset. 
• From the File menu of the NCSS Data window, select New. 
• Click the Ok button. 

2 Open the Fractional Factorial Designs window. 
• On the menus, select Analysis, then Design of Experiments, then Fractional Factorial 

Designs. The Fractional Factorial Designs procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the design parameters. 
• On the Fractional Factorial Designs window, select the Design tab.  
• Enter 1 in the Simulated Response Variable box.  
• Enter 2 in the Block Variable box.  
• Enter 3 in the First Factor Variable box.  
• Select 16 in the Runs box.  
• Select 4 in the Block Size box.  
• Set six of the Factor Values boxes equal to -1, 1. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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1/4 Rep of a Six-Factor Design in Blocks of 4 Runs 
  
 C1 C2 C3 C4 C5 C6 C7 C8 
 30.7 1 -1 -1 1 1 1 -1 
 52.4 1 1 1 -1 -1 -1 1 
 32.8 1 -1 -1 -1 -1 -1 -1 
 73.9 1 1 1 1 1 1 1 
 
 42.6 2 -1 1 -1 -1 1 1 
 7.9 2 -1 1 1 1 -1 1 
 65.9 2 1 -1 -1 -1 1 -1 
 70.6 2 1 -1 1 1 -1 -1 
 
 10.6 3 -1 -1 1 -1 1 1 
 96.6 3 -1 -1 -1 1 -1 1 
 51.1 3 1 1 1 -1 1 -1 
 15.6 3 1 1 -1 1 -1 -1 
 
 16.5 4 1 -1 -1 1 1 1 
 53.8 4 -1 1 1 -1 -1 -1 
 5.4 4 -1 1 -1 1 1 -1 
 60.6 4 1 -1 1 -1 -1 1 
 

Notice that the simulated response data is placed in variable C1, C2 contains the four block 
indices, and variables C3 through C8 contain the generated design values. 
Note that since we selected the random order, your data will not appear in the same order as this 
example. 

You would now proceed with your experiment, obtain the real response values, and analyze the 
data using one of the analysis of variance programs or the Analysis of Two-Level Design 
program. 

Design Information Section 
  

Design Information Section 
 
Design: 
1/4 replication of 6 factors in 4 blocks of 4 experiments. 
 
Defining Contrast: 
i = ABCE = BCDF = ADEF 
 
Design Construction: 
Generate a reduced model of the factors [ A B C D ]. 
The remaining factors are aliased with interactions  
of this reduced model as follows: 
E = ABC 
F = BCD 
 
Blocking Section 
 
Block: 
Blocks were generated by confounding them with the  
following interactions from the reduced model: 
ABCD, CD 

 

This report provides technical information about the design that was generated. 
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Aliases Section 
  

One-Factor Aliases Section 
 
A+BCE+ABCDF+DEF 
B+ACE+CDF+ABDEF 
C+ABE+BDF+ACDEF 
D+ABCDE+BCF+AEF 
E+ABC+BCDEF+ADF 
F+ABCEF+BCD+ADE 
 
Two-Factor Interaction Aliases Section 
AB+CE+ACDF+BDEF 
AC+BE+ABDF+CDEF 
AD+BCDE+ABCF+EF 
AE+BC+ABCDEF+DF 
AF+BCEF+ABCD+DE 
BC+AE+DF+ABCDEF 
BD+ACDE+CF+ABEF 
BE+AC+CDEF+ABDF 
BF+ACEF+CD+ABDE 
CD+ABDE+BF+ACEF 
CE+AB+BDEF+ACDF 
CF+ABEF+BD+ACDE 
DE+ABCD+BCEF+AF 
DF+ABCDEF+BC+AE 
EF+ABCF+BCDE+AD 

 

This report lists the aliases of the main effects and low-order interactions. The number of aliases 
listed is controlled by the Aliases Shown option. This report provides technical information about 
the design that was generated. 
From the first line of the report, we find that factor A (factor 1) is confounded with interactions 
BCE, DEF, and ABCDF. If any of the three-factor interactions are known to be real, this design 
would not be useful. 

Note that no two-factor interactions (like AB or CD) are aliased with the main effects. 
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Chapter 262 

Balanced 
Incomplete Block 
Designs 
Introduction 
This module generates balanced incomplete block designs. Designs for up to ten treatments are 
available. 

In order to make precise measurements of treatment means, uniform experimental conditions 
should be maintained when comparing a number of treatments. This insures that differences 
among the treatment means result from the application of the treatment and not from some 
extraneous factor. To achieve this, experimental trials are often grouped together into blocks. In 
such designs, conditions are kept constant within the blocks and allowed to vary between the 
blocks. The best known design of this type is the randomized block design. In this design, all 
treatments are present in each block. 

Occasionally, the size of convenient blocks will not accommodate all the treatments of interest. 
For example, suppose you wanted to test four types of automobile tires for wear. An obvious 
choice for a block would be an automobile. You might select ten automobiles for the study. 
Assuming that the tires were rotated among the four positions, this experiment would control for 
differences in tire wear due to the type of automobile and the terrain that each traveled. However, 
what would you do if you wanted to test six types of tires. You could redesign the automobile, or 
you could adopt a balanced incomplete block design. 

In a balanced incomplete block design, the treatments are assigned to the blocks so that every pair 
of treatments occurs together in a block the same number of times. This achieves the balance that 
is described in the title of the procedure. The balance means that all differences between 
treatments are measured with equal precision.  

Following is an example of how four treatments are assigned to blocks with a natural size of three 
experimental units. Four blocks are required for this balanced incomplete block design. 

Block Treatment 
1 A B C 
2 A B D 
3 A C D 
4 B C D 
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Note that each treatment occurs three times in this experimental layout. Also note that each pair 
of treatments occurs twice. These are the basic properties of the balanced incomplete designs. 

Box, Hunter, and Hunter (1978) point out the following rules when using such designs. 

1.  Randomly assign the numbers to the blocks. 

2.  Randomly assign the letters to the treatments. 

3.  Randomly assign the treatments within the blocks. 

4.  Randomly group blocks as replicates. A replicate is a complete set of all treatments. 

If you take these steps, this design can be used effectively in those situations in which the block 
size and the number of treatments do not match. 

Design Limits 
These designs were taken from Cochran and Cox (1992). We have included designs with up to 
ten treatments. The following table shows what block sizes are available for each number of 
treatments. 

Number of Treatments Block Sizes Available 
4 2, 3 
5 2, 3, 4 
6 2, 3, 4, 5 
7 2, 3, 4, 6 
8 2, 4, 7 
9 2, 4, 5, 6, 8 
10 2, 3, 4, 5, 6, 9 
Note that some block sizes are not available for certain numbers of treatments. 

Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Data Storage Variables 

Store Trial Response In 
This optional variable will contain a computer-simulated response value for each row that is 
generated. These values may be used as the response variable in an analysis of variance or 
regression analysis to check that the analysis of this design provides the answers that you are 
looking for. The values themselves are from a uniform random-number generator that generates 
numbers between 0 and 1000. 
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Store First Factor In 
The block identification numbers of each row of the design are stored in this variable. The 
treatment identification numbers (or letters) are stored in the variable immediately to the right. 

Warning: The program fills these variables with data, so any previous data will be lost. 

Experimental Setup 

Block Size 
This option contains the size of the blocks. That is, this is the number of experimental units that 
are contained in each block. 

Treatment Values 
The values used to represent the treatments are specified here. These values may be letters, digits, 
words, or numbers. The list is delimited by blanks or commas. The number of treatments is 
implied by the number of items in this list. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Balanced Incomplete Block Design 
This section presents an example of how to generate a balanced incomplete block design using 
this program. CAUTION: since the purpose of this routine is to generate (not analyze) data, 
you should always begin with an empty database. 

In this example, we will show you how to generate a design with four treatments in blocks of two 
experimental units each. You may follow along here by making the appropriate entries or load the 
completed template Example1 from the Template tab of the Balanced Incomplete Block Designs 
window. 

1 Open a new (empty) dataset. 
• From the File menu of the NCSS Data window, select New. 
• Click the Ok button. 

2 Open the Balanced Incomplete Block Designs window. 
• On the menus, select Analysis, then Design of Experiments, then Balanced Incomplete 

Block Designs. The Balanced Incomplete Block Designs procedure window will be 
displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the design parameters. 
• On the Balanced Incomplete Block Designs window, select the Design tab.  
• Set Block Size to 2.  
• Set Treatment Values to 1 2 3 4.  

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

BIBD with Four Treatments in Blocks of Two 
  
 C1 C2 C3 
 150 1 1 
 980 1 2 
 893 2 3 
 378 2 4 
 940 3 1 
 140 3 3 
 72 4 2 
 116 4 4 
 154 5 1 
 469 5 4 
 418 6 2 
 324 6 3 
 

Three variables are filled with data. The first variable contains the random response variable. The 
numbers in this column are random. Yours will not match those displayed here. The second 
variable, C2, contains the block identification number. The third variable, C3, contains the 
treatment number. 
We note that this design calls for six blocks of two experimental units each. 
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To use this design, you would follow the randomization rules discussed earlier to obtain your 
experimental layout. After running your experiment, you would replace the random values in C1 
with those obtained from your experiment. You would then analyze the data using the GLM 
procedure following the instructions for the randomized block design. You would specify blocks 
(C2) as Random and treatment (C3) as Fixed. The response variable would be C1. On the Model 
window of the GLM ANOVA procedure, you would set Which Model Terms to ‘Up to 1-Way.’ 
This forces the program to treat the block-by-treatment interaction as the error term. 

Analysis of Variance Table 
  
 Expected Mean Squares Section 
 Source  Term Denominator Expected 
 Term DF Fixed? Term Mean Square 
 A (C2) 5 No S(AB) S+bsA 
 B (C3) 3 Yes S(AB) S+asB 
 S(AB) 3 No  S 
 Note: Expected Mean Squares are for the balanced cell-frequency case. 
 
 Analysis of Variance Table 
 Source  Sum of Mean  Prob Power 
 Term DF Squares Square F-Ratio Level (Alpha=0.05) 
 A (C2) 5 489979.6 97995.91 0.41 0.820890  
 B (C3) 3 132675.3 44225.08 0.18 0.900707 0.057179 
 S 3 719385.8 239795.3 
 Total (Adjusted) 11 1256687 
 Total 12 
 * Term significant at alpha = 0.05 
 

Since you are using random numbers for the response, the values of the sum of squares, mean 
squares, and F-ratios will not match those displayed here. However, the number of degrees of 
freedom will match. 
Also note that the Expected Mean Square values are generated for a complete model. Since the 
balanced incomplete model is not complete, these values are incorrect. 
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Chapter 263 

Latin Square 
Designs 
Introduction 
This module generates Latin Square and Graeco-Latin Square designs. Designs for from three to 
ten treatments are available. 

Latin Square designs are similar to randomized block designs, except that instead of the removal 
of one blocking variable, these designs are carefully constructed to allow the removal of two 
blocking factors. They accomplish this while reducing the number of experimental units needed 
to conduct the experiment. 

Following is an example of a four treatment Latin Square. The experimental layout is as follows: 

 Columns 
Rows Col1  Col2  Col3  Col4 
Row 1 A B C D 
Row 2 B C D A 
Row 3 C D A B 
Row 4 D A B C 

 

In the above table, the four treatments are represented by the four letters: A, B, C, and D. The 
letters are arranged so that each letter occurs only once within each row and each column. Notice 
that a simple random design would require 4 x 4 x 4 = 64 experimental units. This Latin Square 
needs only 16 experimental units—a reduction of 75%! 

The influence of a fourth factor may also be removed from the design by introducing a second set 
of letters, this time lower case. This design is known as the Graeco-Latin Square. 

 Columns 
Rows Col1  Col2  Col3  Col4 
Row 1 Aa Bb Cc Dd 
Row 2 Bd Ca Db Ac 
Row 3 Cb Dc Ad Ba 
Row 4 Dc Ad Ba Cb 

 

Four factors at four levels each would normally require 256 experimental units, but this design 
only requires 16—a reduction in experimental units of almost 94%! 
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The Graeco-Latin Square is formed by combining to orthogonal Latin Squares. Graeco-Latin 
Squares are available for all numbers of treatments except six. 

Latin Square Assumptions 
It is important to understand the assumptions that are made when using the Latin Square design. 
The large reduction in the number of experimental units needed by this design occurs because it 
assumptions the magnitudes of the interaction terms are small enough that they may be ignored. 
That is, the Latin Square design is a main effects only design. Another way of saying this is that 
the treatments, the row factor, and the column factor affect the response independently of one 
another. 

Assuming that there are no interactions is quite restrictive, so before you use this design you 
should be able to defend this assumption. In practice, the influence of the interactions is averaged 
into the experimental error of the analysis of variance table. We say that the experimental error is 
inflated. This results in a reduced F-ratio for testing the treatment factor, and a reduced F-ratio 
lessens the possibility of achieving statistical significance. 

Randomization 
Probability statements made during the analysis of the experimental data require strict attention to 
the randomization process. The randomization process is as follows: 

1.  Randomly select a design from the set of orthogonal designs available. 

2.  Randomly assign levels of the row factor to the rows. 

3.  Randomly assign levels of the column factor to the columns. 

4.  Randomly assign treatments to the treatment letters (or numbers as the case may be). 

Orthogonal Sets 
These designs were taken from Rao, Mitra, and Matthai (1966). We have included designs with 
up to ten treatments. The number of available squares depends on the number of treatments. The 
following table shows the number of orthogonal squares stored within this procedure. 

Number of Treatments Number of Orthogonal Designs 
3 2 
4 3 
5 4 
6 1 
7 6 
8 7 
9 8 
10 2 

Graeco-Latin Squares are generated by combining two of the available orthogonal squares. Note 
that there are no six-level Graeco-Latin Squares. 
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Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Data Storage Variables 

Store Trial Response In 
This optional variable will contain a computer-simulated response value for each row that is 
generated. These values may be used as the response variable in an analysis of variance or 
regression analysis to check that the analysis of this design provides the answers that you are 
looking for. The values themselves are from a uniform random-number generator that generates 
numbers between 0 and 1000. 

Store First Factor In 
The row values are stored in this variable. The column values are stored in the variable 
immediately to the right. The treatment values are stored in the variable immediately to the right 
of the column variable. If specified, the values of the second treatment are stored in the variable 
immediately to the right of the first treatment variable. 

Warning: The program fills these variables with data, so any previous data will be replaced. 

Experimental Setup 

Row Values 
The values used to represent the rows are specified here. These values may be letters, digits, 
words, or numbers. The list is delimited by blanks or commas. The number of rows is implied by 
the number of items in this list. The number of row, column, and treatment values must be equal. 
From three to ten values are allowed. 

Column Values 
The values used to represent the columns are specified here. These values may be letters, digits, 
words, or numbers. The list is delimited by blanks or commas. The number of rows is implied by 
the number of items in this list. The number of row, column, and treatment values must be equal. 
From three to ten values are allowed. 

Treatment 1 Values 
The values used to represent the treatments are specified here. These values may be letters, digits, 
words, or numbers. The list is delimited by blanks or commas. The number of rows is implied by 
the number of items in this list. The number of row, column, and treatment values must be equal. 
From three to ten values are allowed. 

Treatment 2 Values 
The values used to represent the second set of treatments are specified here. These values may be 
letters, digits, words, or numbers. The list is delimited by commas. The number of rows is 
implied by the number of items in this list. The number of row, column, and treatment values 
must be equal. From three to ten values are allowed. 
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Note that this value is left blank unless you want to generate a Graeco-Latin Square. 

Experimental Setup – Orthogonal 
Designs 

Orthogonal Design Number I 
Select one of the available orthogonal designs. The number of available orthogonal designs is 
given in the table in Orthogonal Sets section above. Good scientific protocol requires that you 
randomly choose which of these designs is used. 

Orthogonal Design Number II 
This option is only used when the Treatment 2 Values box is non-blank (when you are generating 
a Graeco-Latin Square). Select a second of the available orthogonal designs to be combined with 
the first in forming a Graeco-Latin Square. The value here must be different from the value 
specified in Orthogonal Design I. Good scientific protocol requires that you randomly choose 
which of these designs is used. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Latin Square Design 
This section presents an example of how to generate a Latin Square design using this program. 
CAUTION: since the purpose of this routine is to generate (not analyze) data, you should 
begin with an empty database. 

In this example, we will show you how to generate a design with four treatments. You may 
follow along here by making the appropriate entries or load the completed template Example1 
from the Template tab of the Latin Square Designs window. 

1 Open a new (empty) dataset. 
• From the File menu of the NCSS Data window, select New. 
• Click the Ok button. 

2 Open the Latin Square Designs window. 
• On the menus, select Analysis, then Design of Experiments, then Latin Square 

Designs. The Latin Square Designs procedure window will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the design parameters. 
• On the Latin Square Designs window, select the Design tab.  
• Set Row Values to R1 R2 R3 R4.  
• Set Column Values to C1 C2 C3 C4.  
• Set Treatment 1 Values to A B C D.  

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Four-Level Latin Square Design 
  
 C1 C2 C3 C4 
 996 R1 C1 A 
 838 R1 C2 B 
 134 R1 C3 C 
 216 R1 C4 D 
 747 R2 C1 B 
 754 R2 C2 A 
 121 R2 C3 D 
 295 R2 C4 C 
 641 R3 C1 C 
 936 R3 C2 D 
 237 R3 C3 A 
 208 R3 C4 B 
 362 R4 C1 D 
 639 R4 C2 C 
 781 R4 C3 B 
 876 R4 C4 A 
 

Four variables are filled with data. The first variable contains the random response variable. The 
numbers in this column were selected at random. Yours will not match those displayed here. The 
second variable, C2, contains the row value. The third variable, C3, contains the column value. 
The fourth variable, C4, contains the treatment letter. 
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To use this design, you would follow the randomization rules discussed earlier to obtain your 
experimental layout. After running your experiment, you would replace the random values in C1 
with those obtained from your experiment. You would then analyze the data using the GLM 
procedure. You would specify Factor 1 (C2) as Fixed (or Random as the case may be), Factor 2 
(C3) as Fixed (or Random as the case may be), and treatment (C4) as Fixed. The response 
variable would be C1.  

On the Model window of the GLM ANOVA procedure, you would set Which Model Terms to 
‘Up to 1-Way.’ This forces the program to combine all interaction terms into an error term. The 
results will be similar to this. 

Analysis of Variance Table 
  
 Expected Mean Squares Section 
 Source  Term Denominator Expected 
 Term DF Fixed? Term Mean Square 
 A (C2) 3 Yes S(ABC) S+bcsA 
 B (C3) 3 Yes S(ABC) S+acsB 
 C (C4) 3 Yes S(ABC) S+absC 
 S(ABC) 6 No  S 
 Note: Expected Mean Squares are for the balanced cell-frequency case. 
 
 Analysis of Variance Table 
 Source  Sum of Mean  Prob Power 
 Term DF Squares Square F-Ratio Level (Alpha=0.05) 
 A (C2) 3 80425.69 26808.56 0.33 0.806088 0.071380 
 B (C3) 3 614617.2 204872.4 2.50 0.156199 0.239479 
 C (C4) 3 284915.2 94971.73 1.16 0.399286 0.131679 
 S 6 491094.4 81849.06 
 Total (Adjusted) 15 1471053 
 Total 16 
 * Term significant at alpha = 0.05 
 

Since you are using random numbers for the response, the values of the sum of squares, mean 
squares, and F-ratios will not match those displayed here. However, the number of degrees of 
freedom will match. 
Note that only six degrees of freedom are available for the error term (S). This is a severe 
limitation of a Latin Square design with only four-levels. Often, you would replicate the 
experiment to obtain more error degrees of freedom. 

Also note that the Expected Mean Square values are generated from the complete model 
assumption. Since the Latin Square is not complete (does not include all row-by-column-by-
treatment combinations), these values are incorrect. The actual expected mean squares in this case 
would be S+4A, S+4B, and S+4C, respectively. 
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Chapter 264 

Response Surface 
Designs 
Introduction 
Response-surface designs are the only designs provided that allow for more than two levels. 
There are two general types of response-surface designs. The central-composite designs give five 
levels to each factor. The Box-Behnken designs give three levels to each factor.  

The Central-Composite designs build upon the two-level factorial designs by adding a few center 
points and star points. A factor's five values are: -a, -1, 0, 1, and a. The value of a is determined 
by the number of factors in such a way that the resulting design is orthogonal. For example, if you 
are going to use either four or five factors, the value of a is 2.00. 

The actual values of the levels are determined from these five values as follows: 

1. The low-level value is assigned to -1. 

2. The high-level value is assigned to 1. 

3. The average of these two values is assigned to 0. 

4. The values of -a and a are used to find the minimum and the maximum values. 

For example, suppose we entered 50 for the low-level and 60 for the high level. Further, suppose 
there were four factors in the experiment. The levels would be 

Coded Level Actual Level 
-a 45 
-1 50 
0 55 
1 60 
a 65 
 
The values of a depend on the number of factors in the design: 

Factors  Value of a 
2 1.41 
3 1.73 
4 2.00 
5 2.00 
6 2.24 
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The Box-Behnken designs have two differences from the central-composite designs. First, they 
usually use fewer runs. Second, they only use three levels while the central-composite designs use 
five. 

The actual values of the levels are determined in the same manner as the central-composite 
designs, except that the value of a is ignored. 

Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Data Storage Variables 

Simulated Response Variable 
This optional variable will contain a computer-simulated response value for each row. These 
values may be used as the response variable in an analysis of variance or regression analysis to 
check that the analysis of this design provides the answers that you are looking for. The values 
themselves are from a uniform random-number generator that generates numbers between 0 and 
100. 

Block Variable 
The variable to contain the block identification numbers. The blocks are numbered from one to B, 
where B is the number of blocks. This variable is optional. If this option is left blank, no blocks 
will be generated.  

First Factor Variable 
This is where the group of variables that is to contain your design begins. The K-1 variables after 
this variable are also filled with data. The number of variables used is determined by the number 
of Factor Values boxes that contain data. Up to six variables may be used. 

Warning: The program fills these variables with data, so any previous data will be lost. 

Data Storage Variables – Storage 
Options 

Sort Order 
The order of the generated rows. The rows may be in random or standard order.  

• Random 
The rows are randomly ordered (random blocks and random rows within blocks). Use this 
option when the order of application to experimental units is governed by the row number. 

• Standard 
The rows are not randomly ordered. Instead, they are placed in standard order. Use this 
option when you want to quickly see the structure of the design. 
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Experimental Setup 

Design Type 
Specify whether to generate a central-composite or a Box-Behnken design. This selection controls 
the number of runs generated as well as the block size (if a blocking variable is present). 

Experimental Setup – Factor Values 

Factor Values 
Each factor has three or five possible values (levels). The values associated with -1 and 1 are 
entered here.  

If a Box-Behnken design was selected, the resulting three values will be -1,0,1. For example, if 
you entered 10 20 here, the resulting values would be 10, 15, and 20. 

If a central-composite design was selected, the resulting five values will be -a, -1, 0, 1, a. For 
example, if you had four factors and entered 50 60 here, the resulting values would be 45, 50, 55, 
60, and 65. 

These are the values that will be written to the database. You can only use numeric values. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Response Surface Design 
This section presents an example of how to generate an experimental design using this program. 
CAUTION: since the purpose of this routine is to generate (not analyze) data, you should 
always begin with an empty database. 

In this example, we will show you how to generate a three-factor central composite design with 
blocks. You may follow along here by making the appropriate entries or load the completed 
template Example1 from the Template tab of the Response Surface Designs window. 
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1 Open a new (empty) dataset. 
• From the File menu of the NCSS Data window, select New. 
• Click the Ok button. 

2 Open the Response Surface Designs window. 
• On the menus, select Analysis, then Design of Experiments, then Response Surface 

Designs. The Response Surface Designs procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the design parameters. 
• On the Response Surface Designs window, select the Design tab.  
• Enter 1 in the Simulated Response Variable box.  
• Enter 2 in the Block Variable box.  
• Enter 3 in the First Factor Variable box.  
• Select Standard in the Sort Order list box.  
• Select Central-Composite in the Design Type list box.  
• Set three of the Factor Values boxes equal to -1 1. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Three-Factor Response-Surface Design 
  
 C1 C2 C3 C4 C5 
 415 1 -1 -1 -1 
 767 1 1 -1 -1 
 905 1 -1 1 -1 
 848 1 1 1 -1 
 135 1 -1 -1 1 
 366 1 1 -1 1 
 80 1 -1 1 1 
 655 1 1 1 1 
 970 1 0 0 0 
 343 1 0 0 0 
 955 1 0 0 0 
 865 2 -1.73 0 0 
 85 2 1.73 0 0 
 15 2 0 -1.73 0 
 140 2 0 1.73 0 
 964 2 0 0 -1.73 
 84 2 0 0 1.73 
 384 2 0 0 0 
 188 2 0 0 0 
 599 2 0 0 0 
 

Note that there are three replicates of the center points in each block. Note the star points 
represented by -1.73 and 1.73. 
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Chapter 265 

Screening 
Designs 
Introduction 
Screening designs are used to find the important factors from a large number (up to 31) of two-
level factors. When the number of runs is 4, 8, 16, or 32 (powers of 2), the design is a regular 
fractional replication. When the number of runs is 12, 20, 24, or 28, the design used is a Plackett-
Burman design. 

This program uses the screening designs given in Lawson (1987). These designs make it possible 
to evaluate each main effect, although these are aliased with several interactions. 

When you analyze the data from these designs, it is simplest to use our Multiple Regression 
routine. The Analysis of Two-Level Designs program can be used to analyze designs in which the 
number of runs is a power of 2 (the non-Plackett Burman designs). 

Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Data Storage Variables 

Simulated Response Variable 
This optional variable will contain a computer-simulated response value for each row that is 
generated. These values may be used as the response variable in an analysis of variance or 
regression analysis to check that the analysis of this design provides the answers that you are 
looking for. The values themselves are from a uniform random-number generator that generates 
numbers between 0 and 1000. 

First Factor Variable 
This is where the group of variables that is to contain your design begins. The K-1 variables after 
this variable are also filled with data. The number of variables generated depends on the number 
of Factor Value boxes that contain data. 

Warning: The program fills these variables with data, so any previous data will be lost. 
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Data Storage Variables – Storage 
Options 

Sort Order 
The order of the generated rows. The rows may be in random or standard order.  

Experimental Setup 

Runs 
The desired size (number of rows) of the experiment. This number must be 4, 8, 12, 16, 20, 24, 
28, or 32. This number determines which design is generated. 

• Random 
The rows are randomly ordered (random blocks and random rows within blocks). Use this 
option when the order of application to experimental units is governed by the row number. 

• Standard 
The rows are not randomly ordered. Instead, they are placed in standard order. Use this 
option when you want to quickly see the structure of the design. 

Experimental Setup – Factor Values 

Factor Values 
Each factor has two possible values (levels), which are specified here. These are the values that 
will be written to the database. The first value is used to represent the low value. The second 
value represents the high value. You may use both text and numeric values, although we 
recommend that you stick with numeric values since these may be used in the regression 
program. 

Enter a pair of values separated by a blank or comma, such as ‘-1 1’ or ‘0 1.’ 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 



 Screening Designs  265-3 

Example 1 – Screening Design 
This section presents an example of how to generate an experimental design using this program. 
CAUTION: since the purpose of this routine is to generate (not analyze) data, you should 
always begin with an empty database. 

In this example, we will show you how to generate a six-factor design using 16 runs. You may 
follow along here by making the appropriate entries or load the completed template Example1 
from the Template tab of the Screening Designs window. 

1 Open a new (empty) dataset. 
• From the File menu of the NCSS Data window, select New. 
• Click the Ok button. 

2 Open the Screening Designs window. 
• On the menus, select Analysis, then Design of Experiments, then Screening Designs. 

The Screening Designs procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the design parameters. 
• On the Screening Designs window, select the Design tab.  
• Enter 1 in the Simulated Response Variable box.  
• Enter 2 in the First Factor Variable box.  
• Select Standard in the Sort Order list box.  
• Set six of the Factor Values boxes equal to -1 1. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Six-Factor Screening Design in Sixteen Runs 
  
 C1 C2 C3 C4 C5 C6 C7 
 653 -1 -1 -1 -1 -1 -1 
 730 1 -1 -1 -1 1 1 
 867 -1 1 -1 -1 1 1 
 785 1 1 -1 -1 -1 -1 
 732 -1 -1 1 -1 1 -1 
 725 1 -1 1 -1 -1 1 
 433 -1 1 1 -1 -1 1 
 690 1 1 1 -1 1 -1 
 459 -1 -1 -1 1 -1 1 
 470 1 -1 -1 1 1 -1 
 672 -1 1 -1 1 1 -1 
 798 1 1 -1 1 -1 1 
 909 -1 -1 1 1 1 1 
 49 1 -1 1 1 -1 -1 
 398 -1 1 1 1 -1 -1 
 481 1 1 1 1 1 1 
 

Usually, you would specify the number of runs as close to the number of variables as possible, 
while still leaving some degrees of freedom for an estimate of error. 
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Chapter 266 

Taguchi Designs 
Introduction 
Taguchi experimental designs, often called orthogonal arrays (OA’s), consist of a set of fractional 
factorial designs which ignore interaction and concentrate on main effect estimation. This 
program module generates the most popular set of Taguchi designs.  

Taguchi uses the following convention for naming the orthogonal arrays: La(b^c) where a is the 
number of experimental runs, b is the number of levels of each factor, and c is the number of 
variables. Designs can have factors with several levels, although two and three level designs are 
the most common. The L18 design is perhaps the most popular. 

When a design is generated, the levels of each factor are stored in the current database--replacing 
any data that is already there. No output reports are generated by this procedure. 

Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Data Storage Variables 

Simulated Response Variable 
This optional variable will contain a computer-simulated response value for each row that is 
generated. These values may be used as the response variable in an analysis of variance or 
regression analysis to check that the analysis of this design provides the answers that you are 
looking for. The values themselves are from a uniform random-number generator that generates 
numbers between 0 and 1000. 

First Factor Variable 
This is where the group of variables that is to contain your design begins. The K-1 variables after 
this variable are also filled with data, where K is the number of variables specified. 

Warning: The program fills these variables with data, so any previous data will be lost. 
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Experimental Setup 

Design Type 
This option designates the particular design that is to be generated. The available choices are: 

• L4   2^3 
This design consists of up to 3 factors at 2 levels each. There are 4 rows. 

• L8   2^7 
This design consists of up to 7 factors at 2 levels each. There are 8 rows. 

• L12  2^11 
This design consists of up to 11 factors at 2 levels each. There are 12 rows. 

• L16  2^15 
This design consists of up to 15 factors at 2 levels each. There are 16 rows. 

• L32  2^31 
This design consists of up to 31 factors at 2 levels each. There are 32 rows. 

• L64  2^63 
This design consists of up to 63 factors at 2 levels each. There are 64 rows. 

• L9   3^4 
This design consists of up to 4 factors at 3 levels each. There are 9 rows. 

• L27  3^13 
This design consists of up to 13 factors at 3 levels each. There are 27 rows. 

• L27' 3^22 
This design consists of up to 22 factors at 3 levels each. There are 27 rows. 

• L16' 4^5 
This design consists of up to 5 factors at 4 levels each. There are 16 rows. 

• L25  5^6 
This design consists of up to 6 factors at 5 levels each. There are 25 rows. 

• L18  2^1 x 3^7 
This design consists of one factor at 2 levels and up to 7 factors at 3 levels each. There are 18 
rows. 

• L36  2^3 x 3^13 
This design consists of up to 3 factors at 2 levels and up to 13 factors at 3 levels each. There 
are 36 rows. 

• L36' 2^11 x 3^12 
This design consists of up to 11 factors at 2 levels and up to 12 factors at 3 levels each. There 
are 36 rows. 
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• L54  2^1 x 3^25 
This design consists of one factor at 2 levels and up to 25 factors at 3 levels each. There are 
54 rows. 

• L32' 2^1 x 4^9 
This design consists of one factor at 2 levels and up to 9 factors at 4 levels each. There are 32 
rows. 

• L50  2^1 x 5^11 
This design consists of one factor at 2 levels and up to 11 factors at 5 levels each. There are 
50 rows. 

Experimental Setup – Factor 
Specification 

2 Level Factors…5 Level Factors 
The number of variables of this type (number of levels) that are generated. For example, if you 
selected L36 2^3 x 3^13 as the Design Type, you could specify up to three two-level factors and 
up to thirteen three-level factors. You would enter the number of two-level factors in the 2-Level 
Factors box and the number of three-level factors in the 3-Level Factors box. Entries in the 
unused boxes (such as 4-Level and 5-Level in this example) are ignored. If you ask for more than 
the maximum allowed, the maximum will be used. 

Warning: The program fills these variables with data, so previous data may be lost. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Taguchi Design 
This section presents an example of how to generate an experimental design using this program. 
CAUTION: since the purpose of this routine is to generate (not analyze) data, you should 
always begin with an empty database. 

In this example, we will show you how to generate an L18 design. You may follow along here by 
making the appropriate entries or load the completed template Example1 from the Template tab 
of the Taguchi Designs window. 

1 Open a new (empty) dataset. 
• From the File menu of the NCSS Data window, select New. 
• Click the Ok button. 

2 Open the Taguchi Designs window. 
• On the menus, select Analysis, then Design of Experiments, then Taguchi Designs. The 

Taguchi Designs procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the design parameters. 
• On the Taguchi Designs window, select the Design tab.  
• Enter 1 in the Simulated Response Variable box.  
• Enter 2 in the First Factor Variable box.  
• Select L18  2^1 x 3^7 in the Design Type list box.  
• Enter 1 in the 2-Level Factors box.  
• Enter 7 in the 3-Level Factors box.  

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Taguchi L18 Design 
  
 C1 C2 C3 C4 C5 C6 C7 C8 C9 
 705 1 1 1 1 1 1 1 1 
 533 1 1 2 2 2 2 2 2 
 579 1 1 3 3 3 3 3 3 
 289 1 2 1 1 2 2 3 3 
 301 1 2 2 2 3 3 1 1 
 774 1 2 3 3 1 1 2 2 
 14 1 3 1 2 1 3 2 3 
 760 1 3 2 3 2 1 3 1 
 814 1 3 3 1 3 2 1 2 
 709 2 1 1 3 3 2 2 1 
 45 2 1 2 1 1 3 3 2 
 414 2 1 3 2 2 1 1 3 
 862 2 2 1 2 3 1 3 2 
 790 2 2 2 3 1 2 1 3 
 373 2 2 3 1 2 3 2 1 
 961 2 3 1 3 2 3 1 2 
 871 2 3 2 1 3 1 2 3 
 56 2 3 3 2 1 2 3 1 
 

This shows the data that were generated in the dataset. You can use the Find/Replace facility of 
the spreadsheet if you want to change the values from 1, 2, 3 to something more meaningful. 
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Chapter 267 

D-Optimal Designs 
Introduction 
This procedure generates D-optimal designs  for multi-factor experiments with both quantitative 
and qualitative factors. The factors can have a mixed number of levels. Hence, you could use this 
procedure to design an experiment with two quantitative factors having three levels each and a 
qualitative factor having seven levels. 

D-optimal designs are constructed to minimize the generalized variance of the estimated 
regression coefficients. In the multiple regression setting, the matrix X is often used to represent 
the data matrix of independent variables. D-optimal designs minimize the overall variance of the 
estimated regression coefficients by maximizing the determinant of X’X. Designs that are D-
optimal have been shown to be nearly optimal for several other criterion that have been proposed 
as well. 

When would you use D-optimal designs? When you have a limited budget and cannot run a 
completely replicated factorial design. For example, suppose you want to study the response to 
three factors: A with three levels, B with four levels, and C with eight levels. One complete 
replication of this experiment would require 3 x 4 x 8 = 96 points (we use the word ‘point’ to 
mean an experimental unit). Suppose you can afford only 20 points. Which 20 of the 96 possible 
should you use? The D-optimal design algorithm provides a reasonable choice. 

D-Optimal Design Overview 
This section provides a brief overview of how the D-optimal design algorithm works. It will 
provide a general understanding of what the algorithm is trying to accomplish so that you can 
make intelligent choices for the various options. 

Suppose you are studying the influence of height and weight on blood pressure. If you believe 
that a linear (straight line) relationship exists, you will only need to look at two height values and 
two weight values. An experiment designed to study this relationship would require four 
treatment combinations. However, if you decide that the relationship may be curvilinear, you will 
have to include at least three levels for each factor which results in nine treatment combinations. 
Clearly, the appropriate experimental design depends on the anticipated functional relationship 
between the response variable and the factors of interest.  

The D-optimal algorithm works as follows. First, specify an approximate mathematical model 
which defines the functional form of the relationship between the response (Y) and the 
independent variables (the factors). Next, generate a set of possible candidate points based on this 
model. Finally, from these candidates select the subset that maximizes the determinant of the X’X 
matrix. This is the D-optimal design. The details of this algorithm are given in Atkinson and 
Donev (1992). 
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The number of possible designs grows rapidly as the complexity of the model increases. This 
number is usually so large that an exhaustive search of all possible designs for a given sample 
size is not feasible.  

The D-optimal algorithm begins with a randomly selected set of points. Points in and out of the 
current design are exchanged until no exchange can be found that increases the determinant of 
X’X. To cut down on the running time, the number of points considered during any one iteration 
may be limited. 

Unfortunately, this method does not guarantee that the global maximum is found. To overcome 
this, the algorithm is repeated several times in hopes that at least one iteration leads to the global 
maximum. For this reason 50 or 100 random starting sets are needed. (During the testing of the 
algorithm, we found that some designs required 500 starts to obtain the global maximum.) 

Factor Scaling 
This algorithm deals with both quantitative (continuous) and qualitative (discrete) factors. The 
levels of quantitative factors are scaled so that the minimum value is -1 and the maximum value 
is 1. Qualitative factors are included as a set of variables. For example, suppose that a qualitative 
variable has four values. Three independent variables are created to represent this factor: 

Original X1 X2 X3 
1 -10 0 0 
2 0 -1 0 
3 0 0 -1 
4 1 1 1 
As you can see, each of these variables compares a separate group with the last group. Also note 
that the number of generated variables is always one less than the number of levels.  

Duplicates (Replicates) 
The measurement of experimental error is extremely important in the analysis of an experiment. 
In most cases, if an estimate of experimental error is not available, the data from the experiment 
cannot be analyzed. One of the best estimates of experiment error comes from points that are 
duplicates (often called replicates) of each other. Since D-optimal designs are often used in 
situations with limited budgets, the experimenter is often tempted to ignore the need for 
duplicates and instead add points with additional treatment combinations. The tenth 
commandments for experimental design should be “Thou shalt have at least four duplicates in an 
experiment.”  

Unfortunately, the D-optimal design algorithm ignores the need for duplicates. Instead, you have 
to add them after the experimental design has be found. So what you do is set aside at least four 
points from the algorithm. For example, suppose you have budget for 20 design points. You 
would tell the program that you have only 16 points. The algorithm would find the best 16 point 
design. You would then duplicate four of the resulting design points to provide an estimate of 
experimental error. We recommend that you spread these duplicates out across the experiment so 
you can have some indication as to whether the magnitude of the experimental error is constant 
across all treatment settings.  
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Specifying a Model  
Selecting an appropriate model is subjective by nature. Often, you will know very little about the 
true functional form of the relationship between the response and the factor variables. A common 
approach is to assume that a second-order Taylor-series approximation will work fairly well. You 
are assuming that the true function may be approximated by parabolic surface in the 
neighborhood of interest. Cutting down on the complexity of the model reduces the number of 
points that must be added to the experimental design. 

When dealing with qualitative factors, you generally limit the model to first order interactions. 
Higher order interactions may be studied later when a complete experiment can be run. 

Augmenting an Existing Design  
Occasionally, you will want to add more points to an existing experimental design. This may be 
accomplished by forcing the algorithm to include points that are read from the spreadsheet. The 
D-optimal algorithm will pick the most useful additional points from the list of candidate points. 
One of the attractive features of the D-optimal design algorithm is that you can refine the model 
as your knowledge of it increases. 

Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Data Storage Variables 

Simulated Response Variable 
This optional variable will contain a random response value for each row in the design. These 
values may be used as the response variable in an analysis of variance or regression analysis to 
check that the analysis of this design will provide the answers that you are looking for. The values 
themselves are from a uniform random-number generator that generates numbers between 0 and 
1000. 

First Factor Variable 
If the Input Data Type is set to Factor Values, the final design is stored in a set of contiguous 
columns of the spreadsheet, beginning with this column. Be careful not to overwrite existing data. 
If you have four factors, the design will be stored in this variable and the next three to the right. 
Existing data will be lost! 

If the Input Data Type is set to Expanded Matrix, an index is stored in this variable that represents 
whether the row is used in the design. If the row is not in the optimum design, a zero is stored. If 
the row is in the optimum design, the number of times it occurs is stored here. 
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First Expanded Variable 
This option specifies the first variable in which to store the expanded version of the selected 
design. The rest of the expanded design variables will be stored in the variables to the right. Use 
this option if you want to output the expanded design matrix for use in the multiple regression 
procedure. 

Warning: The program fills these variables with data, so existing data will be replaced. 

Data Storage Variables – Storage 
Options 

Rename Factor Variables with Factor Labels 
The names of the factors that were used in the model statement are used to rename the variables 
in which the design is stored. 

Clear Existing Data 
Clear all existing data in the design variables before writing the new design data. This is 
especially useful if you are experimenting with several designs of different sizes. You will not be 
warned that data is being lost. The data will be cleared and the new design written automatically. 

Experimental Setup 

N Per Block 
This option specifies the required sample size. If you are not using blocks, enter a single number 
giving the total sample size. The sample size must be large enough to fit the designated model. If 
it is not large enough, you will be shown the minimum number of points necessary. 

If you are using blocks, enter the sample size for each block, separated by blanks or commas. 
These sample sizes do not have to be equal, although they usually are. For example, if you have 
three blocks, you might enter 8,8,12 which would give an overall sample size of 28. The first 
block will have 8 points, the second 8 points, and the third 12 points. 

You must be careful when specifying blocks when you also have forced design points. In this 
case, the first few blocks are matched with the forced design points. The size of the blocks must 
match the number of forced points. For example, suppose you have already run two blocks of 
four each and you want to augment this with three blocks of six each. You would have eight 
forced points. The entry in this field would be 4,4,6,6,6. If you entered 4,3,7,6,6 an error would 
occur because the forced points cannot be assigned exactly to one or more blocks. The bottom 
line is, you cannot force partial blocks into the design. 

Input Variables (Candidate and Forced) 
When specified, these variables contain either a set of points to be forced into the final design, a 
set of candidate points from which the design is to be selected, or both. The data must be arranged 
so that the forced points are located at the top of the spreadsheet followed by any candidate 
points. When candidate points are specified, no additional candidate points are generated. If you 
want to force points in the design and choose the rest from among those generated by the model 
statement, the total number of rows in these variables must equal the total number of forced rows 
specified below. 

Note that these variables are matched with the factors specified in the model after those factors 
have been sorted. 
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Qualitative factors must be entered using positive integers (1, 2, 3, etc.). You cannot use any 
other identifiers. If you have data entered using some other scheme (such as A, B, C, etc.), you 
will have to recode the values so that they are positive integers. 

Quantitative factors must be scaled so that the minimum value is -1 and the maximum value is 1. 
For example, suppose an existing design has a factor whose values are 10, 15, and 20. Here the 
minimum is 10 and the maximum is 20. You would transform these using the formula  

Scaled = (Original + Original - Max - Min) / (Max - Min) 

Since, in this example, Max = 20 and Min = 10, the transformation reduces to New = (Original + 
Original - 30)/10 = Original /5 - 3. You would create a new variable using the transformation 
Original /5-3. This transformation would give 10/5 - 3 = -1, 15/5 - 3 = 0, and 20/5 - 3 = 1. That is, 
the new variable would contain -1’s, 0’s, and 1’s instead of 10’s, 15’s, and 20’s. 

Number Duplicates 
It is very important to have duplicates of at least some of the design points to provide an estimate 
of experimental error. This option designates the number of duplicates to be generated. The first 
design point is duplicated, then the second, and so on. Even though this option is convenient, we 
recommend that you pick appropriate points for duplication by looking at scatter plots of the 
design. 

If your design includes blocking, you should not create duplicates since that will give erroneous 
block sizes. Rather, you should manually create duplicates. 

Input Data Type 
If you have Input Variables specified, this option specifies the type of data contained in those 
variables. Two types of data are possible. 

• Factor Values 
Specifies that the input data contains indices of each factor. An expanded design matrix will 
be generated from these factor indices using the designated model. This is the more common 
data type. 

• Expanded Matrix 
Specifies that the input dataset contains the expanded design matrix. That is, the quadratic, 
cubic, and interaction terms have been created. The model statement is not used. You would 
use this option when you want to specify the candidate design set in more detail than is 
allowed by the program. The expanded matrix must include the intercept (a column of one’s) 
if one is to be included in the model. 

Forced Points 
The number of rows in the Input Variables that should be forced into the final design. These rows 
must be located at the top of the database, before any candidate points. If the number of forced 
points is equal to the number of points read in, the generated design matrix is used. Otherwise, the 
additional rows are used as candidate points and no other rows are generated. 

Optimize the Design for this Model 
Your design is optimized for the model specified here. Specify main effects (factors) with names 
consisting of one or more letters, such as A B C. Specify interactions using an asterisk (*), such 
as A*B. You can use the bar (|) symbol (see examples below) as a shorthand method to specify a 
complete model. You can use parentheses. You can separate terms with blanks or the '+' (plus) 



267-6  D-Optimal Designs  

sign. Duplicate terms are removed during the evaluation of the model. Note that the main effects 
are always sorted in alphabetical order. 

Some examples will help to indicate how the model syntax works: 

C + B + A + B*A + C*A = A+B+C+A*B+A*C (Note the sorting!) 

A|B = A+B+A*B 

B|A = A+B+A*B 

A|B A*A B*B = A+B+A*B+A*A+B*B 

A|A|B|B (Max Term Order=2) = A+B+A*B+A*A+B*B 

A|B|C  =  A+B+C+A*B+A*C+B*C+A*B*C 

(A+B)*(C+D)  = A*C+A*D+B*C+B*D 

(A+B)|C = A+B+C+(A+B)*C 

 =  A+B+C+A*C+B*C 

You can experiment with various expressions by viewing the Model Terms report. 

For quantitative factors, each term represents a single variable in the expanded design matrix. For 
qualitative variables, each term represents a set of variables in the expanded design matrix.  

Note that qualitative terms should not be squared or cubed. That is, if A is a qualitative factor, 
you would not include A*A or an A*A*A in your model. 

Max Term Order 
This option specifies that maximum number of factors that can occur in an interaction term. For 
example, A*B*C is a third order interaction term and if this option were set to 2, the A*B*C 
would be removed from the model. 

This option is particularly useful when used with the bar notation to remove unwanted terms. 

Qualitative Factors and Levels 
List any qualitative factors here followed by the number of levels given in parenthesis. Factors in 
the model which do not appear here are assumed to be quantitative (continuous). For example, 
you might enter A(5),B(4),C(7) to indicate three qualitative factors, one with five levels, the next 
with four levels, and the third with seven levels. Of course, the names used here must match the 
names used in the model statement. 

Max Iterations 
Specify the number of times the algorithm is started with a new random design. Often 50 or 100 
iterations are necessary and 500 is not unheard of. As the number of Inclusion Points and 
Removal Points are increased (see below), the number of iterations may be decreased. 

We suggest that you increase this value until the optimal design is found on several iterations as 
reported in the Determinant Analysis report. 

Inclusion Points 
This is the number of candidate points considered for addition during an iteration. Instead of 
considering all candidate points, only this many are used. A value between 1 and Nc-1 (where Nc 
is the number of candidate points) may be used. Usually, a value near Nc/2 is adequate. 
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Removal Points 
This is the number of points currently in the design that will be considered for removal during a 
particular iteration. A value between 1 and N (the desired sample size) is used. Setting this value 
smaller than N speeds up the search, but reduces the possibility of finding the optimal design.  

Include Intercept 
This option specifies whether to include the intercept in the expanded design matrix. Usually, the 
intercept is left out of mixture designs. The intercept is automatically deleted in designs with 
more than one block. 

Reports Tab 
This panel specifies the reports that will be generated. 

Select Reports 

Factor Report - Expanded Design Matrix Report 
These options control which reports are displayed. Some of the reports may be fairly lengthy, so 
you will often want to omit them. 

Report Options 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Decimal Places 
Specify the number of decimal places shown when displaying the design. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 
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Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – D-Optimal Design with 10 Points, 3 Factors 
This section presents an example of how to generate a D-optimal design using this program. 
CAUTION: since the purpose of this routine is to generate (not analyze) data, you should 
begin with an empty database. 

In this example, we will show you how to generate a 10-point design for a study involving three 
quantitative factors. We want the design optimized to estimate a second-order response surface 
model.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the D-Optimal Designs window. 

1 Open a new (empty) dataset. 
• From the File menu of the NCSS Data window, select New. 
• Click the Ok button. 

2 Open the D-Optimal Designs window. 
• On the menus, select Analysis, then Design of Experiments, then D-Optimal Designs. 

The D-Optimal Designs procedure window will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template. 

3 Specify the design and data storage. 
• On the D-Optimal Designs window, select the Design tab.  
• Set the Simulated Response Variable to 1.  
• Set the First Factor Variable to 2.  
• Set the First Expanded Variable to 6.  
• Check Rename Factor Variables with Factor Labels. 
• Check Clear Existing Data. 
• Set Optimize the Design for this Model to A|A|B|B|C|C.  
• Set Max Term Order to 2. 

4 Specify the reports. 
• On the D-Optimal Designs window, select the Reports tab.  
• Check Candidate Points Report.  
• Check Expanded Design Matrix Report. 
• Set Decimal Places to 0. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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10-Point, 3 Factor D-Optimal Design 
  
 C1 A B C C5 Int’t Ax Bx Cx A_A A_B A_C B_B B_C C_C 
 160 -1 -1 -1  1 -1 -1 -1 1 1 1 1 1 1 
 878 1 -1 -1  1 1 -1 -1 1 -1 -1 1 1 1 
 163 0 0 -1  1 0 0 -1 0 0 0 0 0 1 
 435 -1 1 -1  1 -1 1 -1 1 -1 1 1 -1 1 
 926 1 1 -1  1 1 1 -1 1 1 -1 1 -1 1 
 466 1 0 0  1 1 0 0 1 0 0 0 0 0 
 988 0 1 0  1 0 1 0 0 0 0 1 0 0 
 431 1 -1 1  1 1 -1 1 1 -1 1 1 -1 1 
 766 -1 0 1  1 -1 0 1 1 0 -1 0 0 1 
 713 1 1 1  1 1 1 1 1 1 1 1 1 1 
 

Several variables in the spreadsheet are filled with data. The first variable (C1) contains the 
random response variable. Your values will not match those displayed here. The second, third, 
and fourth variables (A, B, and C) contain the actual design. You would replace the -1’s with the 
corresponding factor’s minimum value, the 1’s with the maximum value, and the 0’s with the 
average of the two. 
The variables from Intercept to C_C contain the expanded design matrix. Each variable is 
generated by multiplying the appropriate factor values. For example, in the first row, A_B is 
found by multiplying the value for A, which is -1, by the value for B, which is also -1. The result 
is 1. The intercept is set to one for all rows. The expanded matrix is usually saved so that the 
design can be analyzed using multiple regression. 

To use this design, you would randomly assign these ten points to the ten experimental units.  

Factor Section 
  

 Number 
Name Values Type Value1 Value2 Value3   
A 3 Quantitative -1.0000 0.0000 1.0000   
B 3 Quantitative -1.0000 0.0000 1.0000   
C 3 Quantitative -1.0000 0.0000 1.0000   
 
A total of 27 observations will be needed for one replication. 

 

This report summarizes the factors that were included in the design. The last line of this report 
gives the number of observations required for one complete replication of the experiment. This 
value is the product of the number of levels for each factor. 

Name 
The symbol(s) used to represent the factor. 

Number Values 
The number of values (levels) generated for each factor. For qualitative factors, this value was set 
in the Qualitative Factors and Levels box of the Design panel. For quantitative factors, this value 
is one more that the highest exponent used with this term. For example, if the model includes an 
A*A and nothing of a higher order, this value will be three. 

Type 
A factor is either quantitative or qualitative. 



267-10  D-Optimal Designs  

Value1 - Value 3 
These columns list the individual values that are used as the levels of each factor when generating 
the expanded design matrix based on the model. Notice that the smallest is always -1 and the 
largest is always 1. 

When the expanded design matrix is input directly, these values should be ignored. 

Model Terms Section 
  

Variables  
Needed Term 
1 A 
1 B 
1 C 
1 A*A 
1 A*B 
1 A*C 
1 B*B 
1 B*C 
1 C*C 
9 Model Total 

 

This report shows the terms generated by your model. You should check this report carefully to 
make sure that the generated model matches what you wanted. The last line of the report gives the 
total number of degrees of freedom (except for the intercept) required for your model. This 
number plus one is the minimum size of the D-optimal design for this model. 

Variables Needed 
The number of degrees of freedom (expanded design variables) required for this term. 

Term 
The name of each term.  

D-Optimal Design 
  

Original Factors   
Row A B C 
1 -1 -1 -1 
3 1 -1 -1 
5 0 0 -1 
7 -1 1 -1 
9 1 1 -1 
13 -1 0 0 
17 0 1 0 
20 0 -1 1 
25 -1 1 1 
27 1 1 1 

 

This report gives the points in the D-optimal design.  

Original Row 
This is the row number of the point from the list of candidate points. It is only useful in those 
cases in which you provided the list of candidate points manually. 
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Factors (A B C) 
These are the values of the factors. For example, the first row sets A, B, and C to -1. Remember 
that these are scaled values. You would transform them back into their original metric using the 
formula: 

Original = (Scaled(Max - Min) + Max + Min)/2 

For example, suppose the original metric for factor A is minimum = 10 and maximum =20. The 
original values would be calculated as follows: 

Scaled Formula Original 
-1 (-1(20-10)+20+10)/2 10 
0 (0(20-10)+20+10)/2 15 
1 (1(20-10)+20+10)/2 20 

The values 10, 15, and 20 represent the three levels of factor A that are used in the design. They 
would replace the -1, 0, and 1 displayed in this report. 

Determinant Analysis Section 
  

 Determinant D- Percent of 
Rank of X'X Efficiency Maximum 
1 1327104 40.95 100.00 
2 1327104 40.95 100.00 
3 1048576 40.00 79.01 
4 1048576 40.00 79.01 
5 1048576 40.00 79.01 
6 1048576 40.00 79.01 
7 1048576 40.00 79.01 
8 921600 39.49 69.44 
9 921600 39.49 69.44 
10 802816 38.95 60.49 
11 802816 38.95 60.49 
12 802816 38.95 60.49 
13 802816 38.95 60.49 
14 802816 38.95 60.49 
15 802816 38.95 60.49 
16 746496 38.66 56.25 
17 589824 37.76 44.44 
18 589824 37.76 44.44 
19 589824 37.76 44.44 
20 589824 37.76 44.44 
 
The maximum was achieved on 2 of 30 iterations. 

 

This report shows the largest twenty determinants. The main purpose of this report is to let you 
decide if enough iterations have been run so that a global maximum has been found. Unless the 
maximum value was achieved on at least five iterations, you should double the number of 
iterations and rerun the procedure. 
In this example, the top value occurred on only two iterations. In practice we would probably try 
another 200 iterations to find out if this is the global maximum.  

Rank 
Only the top twenty are shown on this report. The values are sorted by the determinant. 
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Determinant of X’X 
This is the value of the determinant of X’X which is the statistic that is being maximized. This 
value is sometimes called the generalized variance of the regression coefficients. Since this value 
occurs in the denominator of the variance of each regression coefficient, maximizing it has the 
effect of reducing the variance of the estimated regression coefficients. 

D-Efficiency 
D-efficiency is the relative number of runs (expressed as a percent) required by a hypothetical 
orthogonal design to achieve the same determinant value. It provides a way of comparing designs 
across different sample sizes. 
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where p is the total number of degrees of freedom in the model and N is the number of points in 
the design. 

Percent of Maximum 
This is the percentage that the determinant on this row is of the best determinant found. 

Individual Degree of Freedom Section 
  

  Diagonal of Diagonal of 
Number Name X'X X'X Inv 
1 Intercept 10.0000 0.861111 
2 A 7.0000 0.250000 
3 B 8.0000 0.166667 
4 C 8.0000 0.166667 
5 A*A 7.0000 0.722222 
6 A*B 6.0000 0.250000 
7 A*C 6.0000 0.250000 
8 B*B 8.0000 0.861111 
9 B*C 7.0000 0.194444 
10 C*C 8.0000 0.861111 
 
Determinant  1327104 
D-Efficiency  40.95345 
Trace  4.583333 
A-Efficiency  21.81818 

 

This report shows the diagonal elements of the X’X and its inverse. Since the variance of each 
term is proportional to diagonal elements from the inverse of X’X, the last column of this report 
lets you compare those variances. From this report you can determine if the coefficients will be 
estimated with the relative precision that is desired. 
For example, we can see from this example that them main effects will be estimated with the 
greatest precision—usually a desirable quality in a design. 

Number 
An arbitrary sequence number. 

Name 
The name of the term. 
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Diagonal of X’X 
The diagonal element of this term in the X’X matrix. 

Diagonal of X’X Inv 
The diagonal element of this term in the X’X inverse matrix. See the discussion above for an 
understanding of how this value might be interpreted. 

Determinant 
This is the value of the determinant of X’X which is the statistic that is being maximized. This 
value is sometimes called the generalized variance of the regression coefficients. Since this value 
occurs in the denominator of the variance of each regression coefficient, maximizing it has the 
effect of reducing the variance of the estimated regression coefficients. 

D-Efficiency 
D-efficiency is the relative number of runs (expressed as a percent) required by a hypothetical 
orthogonal design to achieve the same determinant value. It provides a way of comparing designs 
across different sample sizes. 
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where p is the total number of degrees of freedom in the model and N is the number of points in 
the design. 

Trace 
This is the value of the trace of X’X-inverse which is associated with A-optimality.  

A-Efficiency 
D-efficiency is the relative number of runs (expressed as a percent) required by a hypothetical 
orthogonal design to achieve the same trace value. It provides a way of comparing designs across 
different sample sizes. 
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where p is the total number of degrees of freedom in the model and N is the number of points in 
the design. 
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Candidate Points Section 
  
Original Factors   
Row A B C 
1 -1 -1 -1 
2 0 -1 -1 
3 1 -1 -1 
4 -1 0 -1 
5 0 0 -1 
6 1 0 -1 
7 -1 1 -1 
8 0 1 -1 
9 1 1 -1 
10 -1 -1 0 
11 0 -1 0 
12 1 -1 0 
13 -1 0 0 
14 0 0 0 
15 1 0 0 
16 -1 1 0 
17 0 1 0 
18 1 1 0 
19 -1 -1 1 
20 0 -1 1 
21 1 -1 1 
22 -1 0 1 
23 0 0 1 
24 1 0 1 
25 -1 1 1 
26 0 1 1 
27 1 1 1 
 

This report gives a list of candidate points from which the D-optimal design points were selected.  

Original Row 
This is an arbitrary identification number. 

Factors (A B C) 
These are the values of the factors. For example, the first row sets A, B, and C to -1. Remember 
that these are scaled values. You would transform them back into their original metric using the 
formula: 

Original = (Scaled(Max - Min) + Max + Min)/2 

For example, suppose the original metric for factor A is minimum = 10 and maximum =20. The 
original values would be calculated as follows: 

Scaled Formula Original 
-1 (-1(20-10)+20+10)/2 10 
0 (0(20-10)+20+10)/2 15 
1 (1(20-10)+20+10)/2 20 

The values 10, 15, and 20 represent the three levels of factor A. They would replace the -1, 0, and 
1 displayed in this report. 
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Expanded Design Matrix Section 
  

 Variable       
Row Intercept A B C A*A A*B A*C B*B B*C C*C 
1 1 -1 -1 -1 1 1 1 1 1 1 
2 1 0 -1 -1 0 0 0 1 1 1 
3 1 1 -1 -1 1 -1 -1 1 1 1 
4 1 -1 0 -1 1 0 1 0 0 1 
5 1 0 0 -1 0 0 0 0 0 1 
6 1 1 0 -1 1 0 -1 0 0 1 
7 1 -1 1 -1 1 -1 1 1 -1 1 
8 1 0 1 -1 0 0 0 1 -1 1 
9 1 1 1 -1 1 1 -1 1 -1 1 
10 1 -1 -1 0 1 1 0 1 0 0 
11 1 0 -1 0 0 0 0 1 0 0 
12 1 1 -1 0 1 -1 0 1 0 0 
13 1 -1 0 0 1 0 0 0 0 0 
14 1 0 0 0 0 0 0 0 0 0 
15 1 1 0 0 1 0 0 0 0 0 
16 1 -1 1 0 1 -1 0 1 0 0 
17 1 0 1 0 0 0 0 1 0 0 
18 1 1 1 0 1 1 0 1 0 0 
19 1 -1 -1 1 1 1 -1 1 -1 1 
20 1 0 -1 1 0 0 0 1 -1 1 
21 1 1 -1 1 1 -1 1 1 -1 1 
22 1 -1 0 1 1 0 -1 0 0 1 
23 1 0 0 1 0 0 0 0 0 1 
24 1 1 0 1 1 0 1 0 0 1 
25 1 -1 1 1 1 -1 -1 1 1 1 
26 1 0 1 1 0 0 0 1 1 1 
27 1 1 1 1 1 1 1 1 1 1 
    

This report gives a list of candidate points expanded so that each individual term may be seen. 
The report is useful to show you how the expanded matrix looks. Each variable is generated by 
multiplying the appropriate factor values. For example, in the first row, A_B is found by 
multiplying the value for A, which is -1, by the value for B, which is also -1. The result is 1. The 
intercept is set to one for all rows. 
If you want to constrain the design space, you could cut and paste these values back into the 
spreadsheet and then eliminate points that cannot occur. 

Scatter Plots of Design 
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Finally, we ran the D-optimal design through the Scatter Plot procedure so that we could visually 
see how the design values are placed. It might be useful to create a 3-D scatter plot since we are 
dealing with three factors. Unfortunately, we have found that the 3-D plot is only useful 
interactively—motion is necessary to gain insights from the plot. Since this is not possible in the 
documentation, we suggest that you experiment with this on your own.  
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From these three scatter plots, we can see the configuration of the points fairly well. It appears 
that the B*C term is missing two points while the A*B and A*C terms are missing only one. 
Using this information, we would want to arrange our factors in such a way that the B*C term is 
the least likely to have an interaction. 

Example 2 – Two Factors 
This section presents an example of how to generate and analyze a D-optimal design involving 
two factors. Suppose we want to study the effect of two factor variables, A and B, on a response 
variable, Y. A and B happen to be quantitative variables and there is reason to believe that a 
second-order response surface design will work well. A full replication of this design requires 
nine points. In addition, four more are required to provide an estimate of experimental error. 
However, we can only afford eight. We will create a D-optimal design with six of the 
experimental units and use the remaining two as duplicates to provide the estimate of 
experimental error.  

We want to analyze the response surface for values of A between 10 and 20 and values of B 
between 1 and 3.  

You may follow along here by making the appropriate entries or load the completed template 
Example2 from the Template tab of the D-Optimal Designs window. 

1 Open a new (empty) dataset. 
• From the File menu of the NCSS Data window, select New. 
• Click the Ok button. 

2 Open the D-Optimal Designs window. 
• On the menus, select Analysis, then Design of Experiments, then D-Optimal Designs. 

The procedure window will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the design and data storage. 
• On the D-Optimal Designs window, select the Design tab.  
• Set the Simulated Response Variable to 1.  
• Set the First Factor Variable to 2.  
• Set the First Expanded Variable to 5.  
• Check Rename Factor Variables with Factor Labels. 
• Check Clear Existing Data. 
• Set N Per Block to 6. 
• Set Optimize the Design for this Model to A|A|B|B.  
• Set Max Term Order to 2. 

4 Specify the reports. 
• On the D-Optimal Designs window, select the Reports tab.  
• Set Decimal Places to 0. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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6-Point, 2 Factor D-Optimal Design 
  
 C1 A B 

896 -1 -1 
372 0 -1  
323 1 -1 
770 0 0 
218 -1 1 
446 1 1 

 

Variables A and B give the design. The Determinant Analysis Section showed that the maximum 
was achieved on 25 of the 30 iterations. Hence, we assume that the algorithm converged to the 
global maximum. 
Next, we add the two duplicates to the design. When only a few duplicates are available, we like 
to have them in the middle, so we will duplicate the two rows having zero values. We choose 
random numbers for the two new response values. The resulting design appears as follows. 

6-Point Design with Two Duplicates  
  
 C1 A B 

896 -1 -1 
372 0 -1  
374 0 -1  
323 1 -1 
770 0 0 
774 0 0 
218 -1 1 
446 1 1 

 

Next, we change the factor values back to their original scale. Factor A went from 10 to 20 and 
factor B went from 1 to 3. We call the two new variables A1 and B1. While we are at it, we also 
create other variables of the expanded design matrix. The resulting database appears as follows. 

6-Point Design in Expanded Form  
  

C1 A B A1 B1 A1_B1 A1_A1 B1_B1 
896 -1 -1 10 1 10 100 1 
372 0 -1 15 1 15 225 1 
374 0 -1 15 1 15 225 1 
323 1 -1 20 1 20 400 1 
770 0 0 15 2 30 225 4 
774 0 0 15 2 30 225 4 
218 -1 1 10 3 30 100 9 
446 1 1 20 3 60 400 9 
 

We could continue this exercise by running these data through the multiple regression program 
and paying particular attention to the Multicollinearity Section and the Eigenvalues of Centered 
Correlations Section. When we did this, we found that multicollinearity seemed to be a problem 
in the original scale, but not in the -1 to 1 scale used by the D-optimal algorithm.  
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Plot of Design  
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In order to better understand the design, we look at a scatter plot of the two factors. Remember 
that this began as a six-point design. We can see from this plot that the optimum configuration 
puts points at each corner and in the middle—just what we would expect. Viewing the design 
configuration is extremely important.  
Remember that we duplicated the two center points of this design. 

Example 3 – Three Factors with Blocking 
This section presents an example of how to generate and analyze a D-optimal design involving 
three factors with blocking.  

Suppose we want to study the effect of three quantitative factor variables (A, B, and C) on a 
response variable. There is reason to believe that a second-order response surface design will 
work well. A full replication of this design requires twenty-seven experimental units. The 
manufacturing process that we are studying produces items in batches of four at a time. Because 
of this and the limited budget available for this study, we decide to use three batches (which we 
will call ‘Blocks’) of four points each. 

You may follow along here by making the appropriate entries or load the completed template 
Example3 from the Template tab of the D-Optimal Designs window. 

1 Open a new (empty) dataset. 
• From the File menu of the NCSS Data window, select New. 
• Click the Ok button. 

2 Open the D-Optimal Designs window. 
• On the menus, select Analysis, then Design of Experiments, then D-Optimal Designs. 

The procedure window will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  
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3 Specify the design and data storage. 
• On the D-Optimal Designs window, select the Design tab.  
• Set the Simulated Response Variable to 1.  
• Set the First Factor Variable to 2.  
• Check Rename Factor Variables with Factor Labels. 
• Check Clear Existing Data. 
• Set N Per Block to 4,4,4. 
• Set Optimize the Design for this Model to A|B|C A*A B*B C*C.  
• Set Max Term Order to 2. 
• Set Max Iterations to 100. 
• Set Inclusion Points to 45. This is approximately (3)(3)(3)(3)/2 which is the number of 

blocks times the product of the number of levels in each factor, all divided by two. 
• Set Removal Points to 11. This is one less than the total number of points desired. 

4 Specify the reports. 
• On the D-Optimal Designs window, select the Reports tab.  
• Set Decimal Places to 0. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

12-Point, 3 Factor D-Optimal Design with Blocking 
  

C1 A B C Blocks 
194 -1 -1 -1 2 
221 1 -1 -1 1 
615 -1 0 -1 3 
191 -1 1 -1 1 
629 1 1 -1 2 
505 0 -1 0 3 
244 -1 0 0 2 
113 -1 -1 1 1 
680 1 -1 1 3 
150 0 0 1 2 
166 -1 1 1 3 
241 1 1 1 

 

Variables A, B, C, and Blocks give the design. The Determinant Analysis Section showed that the 
maximum was achieved on 12 of the 100 iterations. Hence, we assume that the algorithm 
converged to the global maximum.  
In order to visually analyze the design, we generate the scatter plots for each pair of variables in 
the design. 
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Plot of Design 
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We can see from these plots that each of the interactions seems to be well represented—only a 
few points are missing from each and none of these are on the corners. The design seems pretty 
good. We decide to use the interactions with blocks as the measure of experimental error, so no 
other duplicates are need. 
As a exercise, try adding one more block to this experiment. You will notice that each of the two-
way interaction plots are completely full. 

Example 4 – Adding Points to an Existing Design 
This section presents an example of how to augment additional points to an existing design. 

Suppose a standard three factor design has been run. Each factor has two levels. The design was 
blocked into two blocks of four points each. The design values are contained in the DOPT3.S0 
database. This design allows only first-order (linear) terms to be fit.  

Suppose that you wish to add more points to the design so that a second-order response surface 
may be fit. Specifically, suppose you want to add one more block of four points to extend the 
model from first to second order. What four points should be added? 

You may follow along here by making the appropriate entries or load the completed template 
Example4 from the Template tab of the D-Optimal Designs window. 

1 Open DOPT3.S0. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data directory. 
• Select the file DOPT3.S0. 
• Click the Ok button. 

2 Open the D-Optimal Designs window. 
• On the menus, select Analysis, then Design of Experiments, then D-Optimal Designs. 

The procedure window will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  
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3 Specify the design and data storage. 
• On the D-Optimal Designs window, select the Design tab.  
• Set the First Factor Variable to 5.  
• Check Rename Factor Variables with Factor Labels. 
• Check Clear Existing Data. 
• Set N Per Block to 4,4,4. 
• Set Input Variables (Candidate and Forced) to A-C. 
• Set Forced Points to 8. 
• Set Optimize the Design for this Model to A|B|C A*A B*B C*C.  
• Set Max Term Order to 2. 
• Set Max Iterations to 30. 
• Set Inclusion Points to 5.  
• Set Removal Points to 5. 

4 Specify the reports. 
• On the D-Optimal Designs window, select the Reports tab.  
• Set Decimal Places to 0. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Augmented D-Optimal Design with Blocking 
  

 A B C Blocks 
 -1 -1 -1 1 
 1 1 -1 1 
 1 -1 1 1 
 -1 1 1 1 
 1 -1 -1 2 
 -1 1 -1 2 
 -1 -1 1 2 
 1 1 1 2 
 -1 0 -1 3 
 0 1 -1 3 
 1 -1 0 3 
 0 0 0 3 
 

Variables A, B, C, and Blocks give the design. The new block is shown as the last four rows of 
the design.  
The Determinant Analysis Section showed that the maximum was achieved on 9 of the 30 
iterations. Hence, we assume that the algorithm converged to the global maximum.  

In order to visually analyze the design, we generate the scatter plots for each pair of variables in 
the design. 
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Plot of Design 
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We set the plotting symbols in the scatter plots so that the new points are displayed as squares. It 
is interesting to see where these points were added. 

Example 5 – Mixture Design 
This section presents an example of how to generate a mixture design. Mixture designs are useful 
in situations in which the factors are constrained to sum to a total. The interest is in the 
proportions of each factor, not the absolute amounts. For example, the proportions of the 
components of a chemical solution must sum to one. 

Suppose that you wish to design a first-order mixture experiment for a chemical that has three 
components (which we will label as A, B, and C). In this case, you will not code the factor levels 
from -1 to 1. Rather, the factor levels will be coded from zero to one. Because of this constraint, 
the intercept will not be fit in this model. 

In this particular case, we will constrain the design space by only entering certain points in the list 
of candidate points. The candidate points are contained in the database named 
DOPT_MIXED.S0. The following plots show the design space for each pair of factors. 
Remember that these factors are constrained so that the missing factor is equal to one minus the 
sum of the other two. Hence, if A is 0.7 and B is 0.2, then C must be 0.1. 
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The task for the algorithm is to pick the ten best points from the thirteen that are shown here. 
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You may follow along here by making the appropriate entries or load the completed template 
Example5 from the Template tab of the D-Optimal Designs window. 

1 Open DOPT_MIXED.S0. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data directory. 
• Select the file DOPT_MIXED.S0. 
• Click the Ok button. 

2 Open the D-Optimal Designs window. 
• On the menus, select Analysis, then Design of Experiments, then D-Optimal Designs. 

The procedure window will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the design and data storage. 
• On the D-Optimal Designs window, select the Design tab.  
• Set the First Factor Variable to 4.  
• Check Rename Factor Variables with Factor Labels. 
• Check Clear Existing Data. 
• Set N Per Block to 10. 
• Set Input Variables (Candidate and Forced) to 1-3. 
• Set Forced Points to 0. 
• Set Optimize the Design for this Model to A|B|C.  
• Set Max Term Order to 2. 
• Set Max Iterations to 30. 
• Set Inclusion Points to 5.  
• Set Removal Points to 5. 
• Remove the check from the Include Intercept check box. 

4 Specify the reports. 
• On the D-Optimal Designs window, select the Reports tab.  
• Set Decimal Places to 4. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Mixture Design  
  

Original  Factors   
Row A B C 
1 0.7000 0.1000 0.2000 
2 0.2000 0.6000 0.2000 
3 0.7000 0.2000 0.1000 
4 0.2000 0.2000 0.6000 
5 0.3000 0.6000 0.1000 
6 0.3000 0.1000 0.6000 
8 0.2000 0.4000 0.4000 
9 0.5000 0.1000 0.4000 
11 0.5000 0.4000 0.1000 
13 0.4000 0.3000 0.3000 
 

Columns A, B, and C give the design. The original row from the candidate list is shown as the 
first column of the report. 
The Determinant Analysis Section showed that the maximum was achieved on 30 of the 30 
iterations. Hence, we assume that the algorithm converged to the global maximum.  

In order to visually analyze the design, we generate the scatter plots for each pair of variables in 
the design. 

Plot of Design  
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It is interesting to compare these plots with those produced earlier to see which points were kept 
by the algorithm. 

Example 6 – Qualitative Factors 
This section presents an example of how to design an experiment with qualitative and quantitative 
factors.  

Suppose your experimental situation involves two quantitative variables, A and B, and a 
qualitative variable C that has five possible levels. You want to fit a second-order response 
surface to the quantitative variables. Also, you want to fit all two-way interactions among these 
factors. You have budget for an 18-point design (you will add four duplicates later).  

You may follow along here by making the appropriate entries or load the completed template 
Example6 from the Template tab of the D-Optimal Designs window. 

1 Open a new (empty) dataset. 
• From the File menu of the NCSS Data window, select New. 
• Click the Ok button. 
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2 Open the D-Optimal Designs window. 
• On the menus, select Analysis, then Design of Experiments, then D-Optimal Designs. 

The procedure window will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the data storage. 
• On the D-Optimal Designs window, select the Design tab.  
• Set the First Factor Variable to 1.  
• Check Rename Factor Variables with Factor Labels. 
• Check Clear Existing Data. 
• Set N Per Block to 18. 
• Set Optimize the Design for this Model to A|B|C A*A B*B.  
• Set Max Term Order to 2. 
• Set Qualitative Factors and Levels to C(5). 
• Set Max Iterations to 30. 
• Set Inclusion Points to 20.  
• Set Removal Points to 18. 
• Remove the check from the Include Intercept check box. 

4 Specify the reports. 
• On the D-Optimal Designs window, select the Reports tab.  
• Set Decimal Places to 0. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Design with Qualitative Factors  
 
Original  Factors   
Row A B C 
1 -1 -1 1 
3 1 -1 1 
5 0 0 1 
9 1 1 1 
11 0 -1 2 
16 -1 1 2 
18 1 1 2 
19 -1 -1 3 
21 1 -1 3 
25 -1 1 3 
27 1 1 3 
28 -1 -1 4 
33 1 0 4 
34 -1 1 4 
38 0 -1 5 
40 -1 0 5 
42 1 0 5 
44 0 1 5 
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Columns A, B, and C give the design. Notice that column C simply gives the level for factor C—
it was not rescaled. Also note that the levels of factor C are numbered arbitrarily. This means that 
only the pattern is important, not the particular level. For example, in this solution, there are only 
three level 2’s and three level 4’s. In the next solution, there might be three level 3’s and three 
level 4’s.  
The Determinant Analysis Section showed that the maximum was achieved on 5 of the 30 
iterations. Hence, we assume that the algorithm converged to the global maximum.  

In order to visually analyze the design, we generate the scatter plots for each pair of variables in 
the design. 

Plot of Design  
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It is interesting to note that all nine positions were filled for the interaction of the two quantitative 
factors, A and B. However, some points were omitted for the AC interaction and the BC 
interaction. 
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Chapter 268 

Design Generator 
Introduction 
This program generates factorial, repeated measures, and split-plots designs with up to ten 
factors. The design is placed in the current database. 

Crossed Factors 
Two factors are crossed if all levels of one factor occur with each level of the second factor. No 
distinction needs to be made as to whether a factor is random or fixed. Factorial and randomized 
block designs are examples of designs that contain crossed factors. 

Nested Factors 
In the repeated measures and split-plot designs, at least one of the factors is nested in another 
factor. A factor is nested when all levels of this factor do not occur with each level of another 
factor. For example, suppose a study is being made to compare the heart rate of males and 
females. Five males and five females are selected. One factor in the study would be gender with 
two levels: male and female. Another factor would be individual with ten levels: P1, P2, …, and 
P10. Since five of the ten individuals are in the males group and the other five individuals are in 
the females group, individuals are nested within gender. 

The basic structure of repeated measures and split-plot designs is identical. The difference 
between the two is in the way the factor levels are assigned within the individual factor. Consider 
an exercise study in which heart rate readings are to be made on an individual at five different 
points in time. If the amounts of exercise is assigned at random before each reading, the design is 
a split plot. If the amounts of exercise follow the same pattern for each individual, the design is a 
repeated measures.  
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Procedure Options 
This section describes the options available in this procedure. 

Design Tab 
This panel specifies the parameters that will be used to create the design values. 

Data Storage Variables 

Store Trial Response In 
This optional variable will contain a computer-simulated response value for each row that is 
generated. These values may be used as the response variable in an analysis of variance or 
regression analysis to check that the analysis of this design provides the answers that you are 
looking for. The values themselves are from a uniform random-number generator that generates 
numbers between 0 and 1000. 

Store First Factor In 
The first factor is stored in this variable. Each additional factor that is specified is stored in the 
variables immediately to the right of this variable. A factor is specified when values are entered 
into its Factor Values box. 

Warning: The program fills these variables with data, so any previous data will be replaced. 

Experimental Setup 

Factor (1 to 12) Values 
The values used to represent the rows are specified here. These values may be letters, digits, 
words, or numbers. The list is delimited by blanks or commas. The number of levels of a factor 
corresponds to the number of values that are listed here. 

To specify a nested factor, use the word Nested followed by the number of levels within a group. 
For example, entering ‘Nested 4’ signifies a design in which four individuals are placed in each 
group. The number of groups is found by crossing the factors before the nested factor. 

An easy way to replicate a design is to specify a nested factor as the last factor with the number of 
replicates specified as the number of levels. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Three-by-Four Factorial Design with Three 
Replicates 
This section presents an example of how to degenerate a three-by-four factorial design with three 
replicates per treatment combination. To run this example, take the following steps. CAUTION: 
since the purpose of this routine is to generate (not analyze) data, you should always begin 
with an empty database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Design Generator window. 

1 Open a new (empty) dataset. 
• From the File menu of the NCSS Data window, select New. 
• Click the Ok button. 

2 Open the Design Generator window. 
• On the menus, select Analysis, then Design of Experiments, then Design Generator. 

The Design Generator procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the design parameters. 
• On the Design Generator window, select the Design tab.  
• Enter 1 2 3 in the Factor 1 Values (A) box.  
• Enter 1 2 3 4 in the Factor 2 Values (B) box.  
• Enter Nested 3 in the Factor 3 Values (C) box.  

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Three-by-Four Design with Three Replicates 
 
 C1 C2 C3 C4 
 436 1 1 1 
 965 1 1 2 
 409 1 1 3 
 425 1 2 4 
 19 1 2 5 
 247 1 2 6 
 720 1 3 7 
 265 1 3 8 
 424 1 3 9 
 504 1 4 10 
 785 1 4 11 
 819 1 4 12 
 771 2 1 13 
 689 2 1 14 
 802 2 1 15 
 298 2 2 16 
 985 2 2 17 
 339 2 2 18 
 224 2 3 19 
 163 2 3 20 
 250 2 3 21 
 216 2 4 22 
 830 2 4 23 
 886 2 4 24 
 711 3 1 25 
 194 3 1 26 
 57 3 1 27 
 967 3 2 28 
 430 3 2 29 
 404 3 2 30 
 579 3 3 31 
 200 3 3 32 
 585 3 3 33 
 620 3 4 34 
 131 3 4 35 
 190 3 4 36 
 

Notice that the simulated response is placed in variable C1, C2 contains the three values for factor 
1, C2 contains the four values of factor 2, and C3 contains the value of the nested factor. When 
these data are analyzed, C3 will be ignored. 
You would now proceed with your experiment, obtain the real response values, and analyze the 
data using either the Analysis of Variance procedure or the GLM procedure. The output will 
appear as follows.  
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ANOVA for 3-by-4 Factorial 
  
 Expected Mean Squares Section 
 Source  Term Denominator Expected 
 Term DF Fixed? Term Mean Square 
 A (C2) 2 Yes S(AB) S+bsA 
 B (C3) 3 Yes S(AB) S+asB 
 AB 6 Yes S(AB) S+sAB 
 S(AB) 24 No  S 
 Note: Expected Mean Squares are for the balanced cell-frequency case. 
 
 Analysis of Variance Table 
 Source  Sum of Mean  Prob Power 
 Term DF Squares Square F-Ratio Level (Alpha=0.05) 
 A (C2) 2 83609.72 41804.86 0.59 0.563864 0.113222 
 B (C3) 3 200053.6 66684.55 0.94 0.438592 0.181412 
 AB 6 832589.6 138764.9 1.95 0.113775 0.521955 
 S 24 1709695 71237.28 
 Total (Adjusted) 35 2825948 
 Total 36 
 * Term significant at alpha = 0.05 
 

Of course, your F-Ratios will be different because you are using a different set of random 
numbers. However, you will be able to see the number of degrees of freedom that are associated 
with each factor. 

Example 2 – Randomized Block Design 
This section presents an example of how to degenerate a randomized block design with three 
blocks and four treatments. To run this example, take the following steps. CAUTION: since the 
purpose of this routine is to generate (not analyze) data, you should always begin with an 
empty database. 

You may follow along here by making the appropriate entries or load the completed template 
Example2 from the Template tab of the Design Generator window. 

1 Open a new (empty) dataset. 
• From the File menu of the NCSS Data window, select New. 
• Click the Ok button. 

2 Open the Design Generator window. 
• On the menus, select Analysis, then Design of Experiments, then Design Generator. 

The Design Generator procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the design parameters. 
• On the Design Generator window, select the Design tab.  
• Enter 1 2 3 in the Factor 1 Values (A) box.  
• Enter A B C D in the Factor 2 Values (B) box.  
• Make sure that the Factor 3 Values (C) box is blank. 
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4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Randomized Block Design 
 
 C1 C2 C3 
 319 1 A 
 622 1 B 
 768 1 C 
 600 1 D 
 985 2 A 
 126 2 B 
 997 2 C 
 943 2 D 
 119 3 A 
 481 3 B 
 911 3 C 
 514 3 D 
 

Notice that the simulated response is placed in variable C1, C2 contains the three values for the 
blocks, and C3 contains the value of the treatment.  
It is important to remember that when you use this design, you must randomly assign treatments 
to the four letters and randomly assign the physical blocks to the three block numbers. 

You would now proceed with your experiment, obtain the real response values, and analyze the 
data using the GLM procedure. You would specify blocks (C2) as random and treatment (C3) as 
fixed. You would set the Which Model Terms option of the Model tab to Up to 1-Way. After 
running the analysis, the output appears as follows.  

ANOVA for Randomized Block Design 
  
 Expected Mean Squares Section 
 Source  Term Denominator Expected 
 Term DF Fixed? Term Mean Square 
 A (C2) 2 No S(AB) S+bsA 
 B (C3) 3 Yes S(AB) S+asB 
 S(AB) 6 No  S 
 Note: Expected Mean Squares are for the balanced cell-frequency case. 
 
 Analysis of Variance Table 
 Source  Sum of Mean  Prob Power 
 Term DF Squares Square F-Ratio Level (Alpha=0.05) 
 A (C2) 2 140324.7 70162.34 0.79 0.495026  
 B (C3) 3 431012.9 143671 1.62 0.280672 0.211531 
 S 6 531277.3 88546.22 
 Total (Adjusted) 11 1102615 
 Total 12 
 
 * Term significant at alpha = 0.05 
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Example 3 – Repeated Measures Design 
This section presents an example of how to degenerate a repeated measures design with three 
groups, two individuals per group, and two treatments which we will label ‘Pre’ and ‘Post.’ To 
run this example, take the following steps. CAUTION: since the purpose of this routine is to 
generate (not analyze) data, you should always begin with an empty database. 

You may follow along here by making the appropriate entries or load the completed template 
Example3 from the Template tab of the Design Generator window. 

1 Open a new (empty) dataset. 
• From the File menu of the NCSS Data window, select New. 
• Click the Ok button. 

2 Open the Design Generator window. 
• On the menus, select Analysis, then Design of Experiments, then Design Generator. 

The Design Generator procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the design parameters. 
• On the Design Generator window, select the Design tab.  
• Enter 1 2 3 in the Factor 1 Values (A) box.  
• Enter Nested 2 in the Factor 2 Values (B) box.  
• Enter Pre Post in the Factor 3 Values (C) box.  

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Repeated Measures Design 
 
 C1 C2 C3 C4 
 560 1 1 Pre 
 701 1 1 Post 
 874 1 2 Pre 
 5 1 2 Post 
 353 2 3 Pre 
 26 2 3 Post 
 43 2 4 Pre 
 319 2 4 Post 
 196 3 5 Pre 
 390 3 5 Post 
 520 3 6 Pre 
 433 3 6 Post 
 

Notice that the simulated response is placed in variable C1. Variable C2 contains the three group 
values which are sometimes referred to as the Between factor. Variable C3 contains the 
identification numbers of the six individuals required for this design. Notice that each individual 
is placed in only one group (C2). Variable C4 contains the pre-post labels. The design is ready for 
analysis by the GLM procedure.  
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You would now proceed with your experiment, obtain the real response values, and analyze the 
data using the GLM procedure. You would specify variable (C2) as fixed, variable (C3), as 
nested, and variable C4 as fixed. After running the analysis, the output appears as follows.  

ANOVA for Repeated Measures Design 
  
 Expected Mean Squares Section 
 Source  Term Denominator Expected 
 Term DF Fixed? Term Mean Square 
 A (C2) 2 Yes B(A) S+csB+bcsA 
 B(A) 3 No S(ABC) S+csB 
 C (C4) 1 Yes BC(A) S+sBC+absC 
 AC 2 Yes BC(A) S+sBC+bsAC 
 BC(A) 3 No S(ABC) S+sBC 
 S(ABC) 0 No  S 
  S 
 Note: Expected Mean Squares are for the balanced cell-frequency case. 
 
 Analysis of Variance Table 
 Source  Sum of Mean  Prob Power 
 Term DF Squares Square F-Ratio Level (Alpha=0.05) 
 A (C2) 2 246267.2 123133.6 5.26 0.104519 0.227807 
 B(A) 3 70225.5 23408.5    
 C (C4) 1 37632 37632 0.31 0.617203 0.057865 
 AC 2 98376.5 49188.25 0.40 0.699505 0.063179 
 BC(A) 3 365667.5 121889.2    
 S 0 0  
 Total (Adjusted) 11 818168.7 
 Total 12 
 * Term significant at alpha = 0.05 
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3D scatter plot, 140-10, 170-1 

depth, 170-8 
elevation, 170-7 
perspective, 170-6 
projection method, 170-8 
rotation, 170-7 

3D surface plot, 140-10, 171-1 
depth, 171-7 
elevation, 171-6 
perspective, 171-6 
projection method, 171-7 
rotation, 171-7 

A 
Ability data points 

item response analysis, 506-4 
Abs transformation, 119-7 
Absolute residuals 

multiple regression, 305-78 
Accelerated testing 

parametric survival regression, 
566-1 

Access exporting, 116-1 
Access importing, 115-1 
Accuracy 

double-precision, 102-4 
Accuracy, 101-2 
Active colors, 180-3 
Add output to log, 106-2 
Adding a datasheet, 103-2 
Additive constant, 585-4 

descriptive statistics, 200-5 
tolerance intervals, 585-4 

Additive seasonality 
exponential smoothing, 467-1 

Adjacent values 
box plot, 152-2 

Adjusted average distance 

medoid partitioning, 447-13 
Adjusted R-squared 

linear regression, 300-46 
A-efficiency 

D-optimal designs, 267-13 
AIC 

mixed models, 220-7 
Poisson regression, 325-24 

Akaike information criterion 
mixed models, 220-7 
Poisson regression, 325-24 

Algorithms 
hierarchical cluster analysis, 450-

2 
Alias 

two level designs, 260-2 
two-level designs, 213-7 

All possible regressions, 312-1 
Alone lambda 

discriminant analysis, 440-13 
Alpha 

Cronbach’s, 401-6, 505-2 
hierarchical clustering, 445-8 
multiple regression, 305-32 

Alpha Four exporting, 116-1 
Alpha level of C.I.’s 

linear regression, 300-26 
Alpha of assumptions 

linear regression, 300-26 
Alphas 

Cox regression, 565-9, 565-38 
Amplitude 

spectral analysis, 468-1 
Analysis of covariance 

GLM, 212-25 
Analysis of two-level designs, 213-1 
Analysis of variance, 211-2 

balanced data, 211-1 
GLM, 212-1 
linear regression, 300-46 
one-way, 210-1 
repeated measures, 214-1 

ANCOVA 
GLM, 212-25 
mixed models, 220-1 
multiple regression, 305-86 

ANCOVA dataset, 212-25, 305-86 
ANCOVA example 

mixed models, 220-85 
And 

if-then transformation, 120-2 
Anderson and Hauck’s test 

cross-over analysis using t-tests, 
235-8 

Anderson-Darling test 
descriptive statistics, 200-22 
linear regression, 300-49 

Andrew’s sine 
multiple regression, 305-26 

Angular data, 230-1 
ANOVA 

balanced data, 211-1 
multiple regression, 305-49 

ANOVA balanced 
assumptions, 211-2 

ANOVA detail report 
multiple regression, 305-50 

Answer variable 
item response analysis, 506-2 

Appraisal models 
hybrid, 487-1 

Appraisal ratios, 485-1 
Appraisal variables, 485-2 
Appraisers 

R & R, 254-11 
AR order (P) 

automatic ARMA, 474-8 
Arc sine transformation, 119-17 
Arc tangent transformation, 119-17 
ArCosh transformation, 119-17 
ArcSine-square root hazard 

Weibull fitting, 550-4 
Area charts, 140-1, 141-1 
Area under curve, 390-1 

ROC curves, 545-26 
ARIMA 

automatic ARMA, 474-1 
Box-Jenkins, 470-1, 471-1 

ARMA 
theoretical, 475-1 

ARMA model 
Box Jenkins, 470-2 

Armitage proportion trend test 
cross tabulation, 501-5 

Armitage test 
cross tabulation, 501-16 

ARSENIC dataset, 240-16 
Arsine transformation, 119-17 
ArSinh transformation, 119-17 
ArTan transformation, 119-17 
ArTanh transformation, 119-17 
ASCII dataset, 12-1 
ASCII delimited exporting, 116-1 
ASCII files 
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importing fixed format, 115-3 
ASCII fixed format exporting, 116-1 
Aspin-Welch, 206-2 
ASSESS dataset, 487-11 
Assessment models 

hybrid appraisal, 487-1 
Assignable causes 

presence of, 250-9 
Association 

partial and marginal, 530-5 
Assumption tests 

linear regression, 300-48 
Assumptions 

analysis of variance, 210-2 
Kruskal-Wallis test, 210-2 
linear regression, 300-3 
multiple regression, 305-6 
one-sample t-test, 205-2 
one-way ANOVA, 210-28 
t-test, 205-22 
two-sample t-test, 206-18, 206-27 
two-sample t-tests, 206-1 

Asymmetric-binary variables 
fuzzy clustering, 448-5 
hierarchical clustering, 445-7 
medoid partitioning, 447-2 

Asymmetry 
probability plots, 144-3 

Attribute chart, 251-1 
AUC, 390-1 

ROC curves, 545-1, 545-6 
AUC dataset, 390-2, 390-6 
AUC1 dataset, 390-2 
Autocorrelation, 472-1 

multiple regression, 305-7 
residuals, 305-53 
type of, 300-56 

Autocorrelation function 
Box Jenkins, 470-1 

Autocorrelation plot, 472-8 
ARIMA, 471-12 
automatic ARMA, 474-12 

Automatic ARMA, 474-1 
Autoregressive parameters 

ARIMA, 471-3 
theoretical ARMA, 475-1 

Average absolute percent error 
multiple regression, 305-45 

Average difference plot 
t-test, 205-20 

Average distance 
medoid partitioning, 447-13 

Average silhouette 
fuzzy clustering, 448-9 
medoid partitioning, 447-13 

Average squared loadings 
canonical correlation, 400-4 

Average transformation, 119-15 
Axis-line settings window, 184-1 

B 
Backcasting 

exponential smoothing, 465-2, 
466-3, 467-3 

Backward links 
double dendrograms, 450-2 
hierarchical clustering, 445-3 

Balanced incomplete block designs, 
262-1 

Band 
linear regression, 300-6 

Bar charts, 140-1, 141-1 
depth, 141-13 
elevation, 141-13 
gap between bars, 141-14 
gap between sets of bars, 141-15 
perspective, 141-12 
projection method, 141-14 
rotation, 141-13 

Barnard’s test of difference 
two proportions, 515-14 

Bartlett test 
factor analysis, 420-14 
principal components analysis, 

425-17 
T2, 410-10 

Bartlett’s test, 402-1 
Baseline 

area under curve, 390-3 
Baseline cumulative survival 

Cox regression, 565-38 
Baseline survival 

Cox regression, 565-8 
Basic palette, 180-2 
Basics, 1-1 
BBALL dataset, 445-5, 445-12, 446-

2, 446-6, 447-6, 447-12 
BEAN dataset, 220-79, 220-82 
Best model 

all possible regressions, 312-4 
Beta 

hierarchical clustering, 445-8 
BETA dataset, 551-2, 551-11 
Beta distribution 

probablility calculator, 135-1 
simulation, 122-3 

Beta distribution fitting, 551-1 
Beta trace 

PC regression, 340-14 
BetaProb transformation, 119-8 
BetaValue transformation, 119-8 
Between subject 

repeated measures, 214-2 
Bias 

R & R, 254-22 
BIB designs, 262-1 
Bimodal data 

simulation, 122-23 
Binary diagnostic tests 

clustered samples, 538-1 
paired samples, 536-1 
two independent samples, 537-1 

Binary response variables, 320-1 
Binary test 

1-sample binary diagnostic test, 
535-1 

BINCLUST dataset, 538-3, 538-7 
Binomial distribution 

probablility calculator, 135-2 
simulation, 122-5 

BinomProb transformation, 119-8 
BinomValue transformation, 119-8 
Binormal 

ROC curves, 545-2 
Bioequivalence 

cross-over analysis using t-tests, 
235-5 

Bisquare weights 
linear regression, 300-14 

Bivariate normal distribution 
probablility calculator, 135-2 

Biweight 
Weibull fitting, 550-17 

Biweight estimator of scale, 200-22 
Biweight kernel 

Kaplan-Meier, 555-9 
Weibull fitting, 550-35 

Blackwelder test 
correlated proportions, 520-5 

Bleasdale-Nelder model 
curve fitting, 351-5 
growth curves, 360-3 

Block size 
balanced incomplete block 

designs, 262-3 
fractional factorial designs, 261-2 

Block variable 
fractional factorial designs, 261-1 
response surface designs, 264-2 

Blocking 
two level designs, 260-2 

BMDP exporting, 116-1 
BMT dataset, 555-43 
Bonferroni 

one-way ANOVA, 210-4 
Bonferroni adjustment 

mixed models, 220-14 
Bonferroni C.I.’s 

T2, 405-9, 410-9 
Bootstrap 

linear regression, 300-42 
Bootstrap C.I. method 

linear regression, 300-30 
two proportions, 515-28 

Bootstrap C.I.’s 
multiple regression, 305-31 

Bootstrap confidence coefficients 
linear regression, 300-30 

Bootstrap histograms 
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linear regression, 300-31, 300-44, 
305-42 

multiple regression, 305-75 
Bootstrap percentile type 

linear regression, 300-30 
two proportions, 515-28 

Bootstrap report 
multiple regression, 305-74 

Bootstrap retries 
linear regression, 300-30 
two proportions, 515-28 

Bootstrap sample size 
linear regression, 300-29 
two proportions, 515-28 

Bootstrap sampling method 
linear regression, 300-30 

Bootstrapping 
curve fitting, 351-14 
linear regression, 300-22 
multiple regression, 305-21 
t-test, 205-3 
two-sample t-test, 206-3 

Bootstrapping example 
multiple regression, 305-72, 305-

76 
Box plot 

adjacent values, 152-2 
fences, 152-6 
interquartile range, 152-1 
whiskers, 152-5 

Box plot style file, 152-13 
Box plots, 140-5, 152-1 

multiple comparisons, 152-2 
Box’s M, 214-1 
Box’s M test, 402-1, 402-7 

Hotelling’s T2, 410-2 
repeated measures, 214-22 
T2, 410-10 

BOX320 dataset, 213-6 
BOX402 dataset, 213-12 
Box-Behnken designs, 264-1 
Box-Jenkins 

ARIMA, 471-1 
automatic ARMA, 474-1 

Box-Jenkins analysis, 470-1 
Box-Pierce-Ljung statistic 

automatic ARMA, 474-12 
Box's M test 

MANOVA, 415-5 
BRAIN WEIGHT dataset, 2-2 
Breslow ties 

Cox regression, 565-6 

C 
C.I.method 

multiple regression, 305-41 
Calibration 

linear regression, 300-6, 300-41 

Caliper matching, 123-4 
Caliper radius, 123-5 
Candidate points 

D-optimal designs, 267-14 
Canonical correlation, 400-1 
Canonical variate 

MANOVA, 415-13 
Capability analysis 

Xbar R, 250-11 
Capacities 

Xbar R, 250-30 
Carryover effect 

cross-over analysis using t-tests, 
235-3 

Cascade, 106-5 
Categorical IV’s 

Cox regression, 565-20 
logistic regression, 320-20 
multiple regression, 305-29 
Poisson regression, 325-9 

Categorical variables 
multiple regression, 305-3, 305-

87 
Cauchy distribution 

simulation, 122-5 
Cbar 

logistic regression, 320-15 
C-chart, 251-2 
Cell edit box, 103-10 
Cell reference, 103-10 
Censor variable 

parametric survival regression, 
566-4 

Censored 
Cox regression, 565-17 
Kaplan-Meier, 555-15 
Weibull fitting, 550-11 

Censored regression, 566-1 
Centering 

Cox regression, 565-19 
Central moments 

descriptive statistics, 200-11 
Central-composite designs, 264-1 
Centroid 

double dendrograms, 450-2 
hierarchical clustering, 445-3 

Charts 
pareto, 253-1 
variables, 250-1 

Checklist 
one sample tests, 205-21 
one-way ANOVA, 210-26 
two-sample tests, 206-25 

Chen’s method 
two proportions, 515-20 

Chi 
loglinear models, 530-20 

Chi-square 
cross tabulation, 501-10 
frequency tables, 500-11 
Poisson regression, 325-26 

Chi-square distribution 
probablility calculator, 135-2 

Chi-square test 
cross tabulation, 501-1 
two proportions, 515-6 

Chi-square test example, 16-1 
CHOWLIU73 dataset, 235-9, 235-15 
Circular correlation, 230-12 
Circular data analysis, 230-1 
Circular histogram, 230-17 
Circular histograms, 230-1 
Circular statistics, 230-1 
Circular uniform distribution, 230-3 
CIRCULAR1 dataset, 230-22 
Circularity 

repeated measures, 214-3, 214-23 
Clear, 103-5 
Cluster analysis 

double dendrograms, 450-1 
K-means, 446-1 

Cluster centers 
K-means clustering, 446-1 

Cluster cutoff 
hierarchical clustering, 445-8 

Cluster means 
K-means clustering, 446-8 

Cluster medoids section 
fuzzy clustering, 448-9 
medoid partitioning, 447-14 

Cluster randomization 
clustered binary diagnostic, 538-1 

Cluster variables 
K-means clustering, 446-3 

Clustering 
centroid, 445-7 
complete linkage, 445-7 
flexible strategy, 445-7 
fuzzy, 448-1 
group average, 445-7 
hierarchical, 445-1 
median, 445-7 
medoid, 447-1 
regression, 449-1 
simple average, 445-7 
single linkage, 445-7 
Ward’s minimum variance, 445-7 

Cochran’s Q test 
meta analysis of hazard ratios, 

458-4 
meta-analysis of correlated 

proportions, 457-4 
meta-analysis of means, 455-3 
meta-analysis of proportions, 

456-4 
Cochran’s test 

two proportions, 515-7 
Cochrane-Orcutt procedure, 306-1 
COD 

appraisal ratios, 485-8 
descriptive statistics, 200-20 
hybrid appraisal models, 487-17 
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Code cross-reference, 310-7 
Coefficient alpha 

item analysis, 505-2 
Coefficient of dispersion 

appraisal ratios, 485-8 
descriptive statistics, 200-18 
hybrid appraisal models, 487-17 

Coefficient of variation 
descriptive statistics, 200-18 
linear regression, 300-38 
multiple regression, 305-45 

Coefficients 
regression, 305-47 
stepwise regression, 311-8 

Collate transformation, 119-12 
COLLETT157 dataset, 565-55 
COLLETT266 dataset, 320-73 
COLLETT5 dataset, 555-42 
Collinearity 

MANOVA, 415-5 
Color 

mixer, 180-2 
model, 180-2 
wheel, 180-3 

Color selection window, 180-1 
Column widths, 103-15 
Communality 

factor analysis, 420-3, 420-12, 
420-16 

principal components analysis, 
425-16 

Communality iterations 
factor analysis, 420-8 

Comparables 
sales price, 486-1 

COMPARABLES dataset, 486-10 
Competing risks 

cumulative incidence, 560-1 
Complete linkage 

double dendrograms, 450-2 
hierarchical clustering, 445-3 

Compound symmetry 
repeated measures, 214-3 

CONCENTRATION dataset, 240-21 
Concordance 

Kendall’s coefficient, 211-15 
Condition number 

multiple regression, 305-58 
PC regression, 340-13 
ridge regression, 335-17 

Conditional tests 
two proportions, 515-5 

Confidence band 
linear regression, 300-6, 300-33, 

300-60 
Confidence coefficient 

multiple regression, 305-32 
T2, 410-5 

Confidence interval 
descriptive statistics, 200-13 
multiple regression, 305-14 

Poisson regression, 325-26 
Confidence intervals 

Cox regression, 565-11 
curve fitting, 350-4 
linear regression, 300-6 
T2, 405-9, 410-9 
two proportions, 515-18 

Confidence intervals of odds ratio 
two proportions, 515-23 

Confidence intervals of ratio 
two proportions, 515-21 

Confidence limits, 200-2 
linear regression, 300-33 
Nelson-Aalen hazard, 550-4 

Confounding 
two level designs, 260-2 

Confounding size, 213-3 
Constant distribution 

simulation, 122-6 
Constraint section 

linear programming, 480-5 
Constraints 

linear programming, 480-1 
Contains transformation, 119-17 
Contaminated normal simulation, 

122-21 
Continuity correction 

two proportions, 515-7 
Contour plots, 140-11, 172-1 

response surface regression, 330-
19 

Contrast type 
multiple regression, 305-29 
Poisson regression, 325-9 

Contrast variables 
multiple regression, 305-4 

Control charts 
attribute, 251-1 
formulas, 250-5 
Xbar R, 250-1 

Control limits 
Xbar R, 250-2 

Cook’s D 
linear regression, 300-20, 300-62, 

300-63, 300-65, 300-66 
multiple regression, 305-20, 305-

64 
Cook’s distance 

logistic regression, 320-15 
Cophenetic correlation 

hierarchical clustering, 445-14 
Cophenetic correlation coefficient, 

445-4 
Copy, 103-4 
Copy output, 106-3 
Copying data, 7-2 
COR 

correspondence analysis, 430-14 
Correlation, 300-1 

canonical, 400-1 
confidence limits, 300-12 

cross, 473-1 
linear regression, 300-2, 300-11, 

300-45 
Pearson, 300-45 
Spearman, 300-45 
Spearman rank, 401-1 
Spearman’s rank, 300-12 

Correlation coefficient 
linear regression, 300-9 

Correlation coefficient distribution 
probablility calculator, 135-3 

Correlation matrices 
factor analysis, 420-5 
principal components analysis, 

425-8 
Correlation matrix, 401-1 
Correlation matrix report 

multiple regression, 305-46 
Correlations 

medoid partitioning, 447-10 
partial, 401-3 
principal components analysis, 

425-17 
Correlogram 

autocorrelation, 472-1 
CORRES1 dataset, 430-6, 430-10, 

430-16 
Correspondence analysis, 430-1 

eigenvalues, 430-12 
CorrProb transformation, 119-8 
CorrValue transformation, 119-8 
Cos transformation, 119-17 
Cosh transformation, 119-17 
Cosine transformation, 119-17 
Cost benefit analysis 

ROC curves, 545-22 
Count tables, 500-1 
Count transformation, 119-15 
Covariance 

analysis of, 212-25 
multiple regression, 305-86 

Covariance matrices, 402-1 
Covariance matrix 

repeated measures, 214-3 
Covariance pattern models 

mixed models, 220-5 
Covariates 

GLM, 212-3 
mixed models, 220-9 
response surface regression, 330-

5 
CovRatio 

linear regression, 300-21, 300-63 
multiple regression, 305-20, 305-

64 
Cox model 

Cox regression, 565-1 
Cox proportional hazards regression 

model, 565-1 
Cox regression, 565-1 
Cox test 

 



  Index-5 

circular data, 230-9 
Cox-Mantel logrank test 

Kaplan-Meier, 555-41 
COXREG dataset, 565-51 
COXSNELL dataset, 123-23 
Cox-Snell residual 

parametric survival regression, 
566-19 

Cox-Snell residuals 
Cox regression, 565-13, 565-39 
nondetects regression, 345-13 

Cp 
all possible regressions, 312-8 
multiple regression, 305-55 
Xbar R, 250-12 

Cp variable plot 
all possible regressions, 312-10 

Cpk 
Xbar R, 250-12, 250-31 

Cramer’s V 
cross tabulation, 501-14 

Creating a database, 2-1 
Creating a new database 

tutorial, 101-2 
Creating data 

simulation, 122-1 
Cronbach’s alpha 

item analysis, 505-2, 505-6 
Cronbachs alpha 

correlation matrix, 401-6 
CROSS dataset, 220-101 
Cross tabulation, 501-1 

summarized data, 16-1 
Cross-correlations, 473-1 
Crossed factors 

design generator, 268-1 
Crossover analysis, 220-1 
Cross-over analysis using t-tests, 

235-1 
Crossover data example 

mixed models, 220-101 
Crosstabs, 501-1 
CsProb transformation, 119-9 
CsValue transformation, 119-9 
CTR 

correspondence analysis, 430-14 
Cubic fit 

curve fitting, 351-2 
Cubic terms 

response surface regression, 330-
7 

Cum transformation, 119-7 
Cumulative hazard 

Cox regression, 565-2 
Cumulative hazard function 

Kaplan-Meier, 555-2 
Weibull fitting, 550-2 

Cumulative incidence analysis, 560-
1 

Cumulative survival 
Cox regression, 565-2 

Curve equivalence 
curve fitting, 351-16 

Curve fitting, 351-1 
introduction, 350-1 

Curve inequality test 
curve fitting, 351-32 

Custom model 
Cox regression, 565-26 
multiple regression, 305-34 

CUSUM chart, 250-4, 250-8 
CUSUM Charts, 250-37 
Cut, 103-4 
Cut output, 106-3 
Cycle-input variable 

decomposition forecasting, 469-5 

D 
D’Agostino kurtosis 

descriptive statistics, 200-24 
D’Agostino kurtosis test 

linear regression, 300-49 
D’Agostino omnibus 

descriptive statistics, 200-25 
D’Agostino omnibus test 

linear regression, 300-49 
D’Agostino skewness 

descriptive statistics, 200-23 
D’Agostino skewness test 

linear regression, 300-49 
DAT exporting, 116-1 
Data 

entering, 2-1 
estimating missing, 118-1 
importing, 12-1 
numeric, 102-1 
printing, 2-7, 103-3, 117-1 
saving, 2-6 
simulation, 15-1 
simulation of, 122-1 
text, 102-1 

Data features, 200-1 
Data imputation, 118-1 
Data matching 

caliper, 123-4 
caliper radius, 123-5 
distance calculation method, 123-

3 
forced match variable, 123-4 
full (variable), 123-3 
greedy, 123-1, 123-2 
optimal, 123-1, 123-2 
propensity score, 123-2 
standardized difference, 123-15 

Data orientation 
bar charts, 141-2 

Data report, 103-6, 117-1 
Data screening 

T2 alpha, 118-3 

Data screening, 118-1 
Data screening, 200-3 
Data simulator, 122-1 
Data stratification, 124-1 
Data transformation, 3-1 
Data type, 102-10 
Data window, 1-4, 7-1 
Database, 102-1 

clearing, 2-9 
creating, 2-1, 101-2 
Excel compatible, 102-1 
exporting, 115-1, 116-1 
introduction, 101-1 
limits, 102-1 
loading, 2-1, 2-10, 7-1 
opening, 101-3 
printing, 2-7 
S0, 102-1 
s0 and s1 files, 2-6 
S0-type, 2-9 
S0Z (zipped), 102-1 
S0Z-type, 2-9 
saving, 101-2 
size, 102-1 
sorting, 103-6 
subsets, 14-1 

Database/spreadsheet comparison, 
102-4 

Databases 
merging two, 104-1 

Dataset 
2BY2, 320-62 
ANCOVA, 212-25, 305-86 
ARSENIC, 240-16 
ASCII, 12-1 
ASSESS, 487-11 
AUC, 390-2, 390-6 
AUC1, 390-2 
BBALL, 445-5, 445-12, 446-2, 

446-6, 447-6, 447-12 
BEAN, 220-79, 220-82 
BETA, 551-2, 551-11 
BINCLUST, 538-3, 538-7 
BMT, 555-43 
BOX320, 213-6 
BOX402, 213-12 
BRAIN WEIGHT, 2-2 
CHOWLIU73, 235-9, 235-15 
CIRCULAR1, 230-22 
COLLETT157, 565-55 
COLLETT266, 320-73 
COLLETT5, 555-42 
COMPARABLES, 486-10 
CONCENTRATION, 240-21 
CORRES1, 430-6, 430-10, 430-

16 
COXREG, 565-51 
COXSNELL, 123-23 
CROSS, 220-101 
DCP, 345-2, 345-9 
DIOXIN, 240-2, 240-11 
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DOPT_MIXED, 267-22 
DOPT3, 267-20 
DRUGSTUDY, 501-19 
DS476, 315-2, 315-9, 385-2, 385-

9 
EXAMS, 450-12 
EXERCISE, 214-6, 214-16 
FANFAILURE, 550-49 
FISH, 220-90 
FISHER, 143-14, 144-15, 150-8, 

151-13, 152-12, 153-8, 154-8, 
170-2, 170-9, 173-7, 402-2, 
402-5, 440-4, 440-10, 440-20, 
440-22 

FNREG1, 360-15, 380-7 
FNREG2, 365-11 
FNREG3, 163-4, 370-6, 375-8 
FNREG4, 371-6, 376-8 
FNREG5, 351-30 
FRUIT, 141-1, 141-17 
FUZZY, 448-3, 448-8 
HAIR, 220-103 
HEART, 212-23 
HOUSING, 306-4, 306-10 
INTEL, 465-7, 466-9, 471-7, 

473-5 
IQ, 305-27, 305-43, 305-72, 305-

76, 305-79 
ITEM, 505-2, 505-5, 506-2, 506-

6 
KLEIN6, 555-45 
KOCH36, 325-7, 325-21 
LACHIN91, 320-71 
LATINSQR, 212-22 
LEAD, 240-19 
LEE91, 570-4, 570-15 
LEUKEMIA, 320-18, 320-34, 

320-57 
LINREG1, 300-24, 300-37 
LOGLIN1, 530-7, 530-11 
LP, 480-2, 480-4 
LUNGCANCER, 565-15, 565-

31, 565-48 
MAMMALS, 3-1, 4-1, 10-1 
MAMMALS1, 5-1, 6-1 
MANOVA1, 410-3, 410-6, 415-

5, 415-10 
MARUBINI, 560-3, 560-9 
MDS2, 435-6, 435-10 
MDS2, 435-15 
METACPROP, 457-6, 457-14 
METAHR, 458-6, 458-12 
MLCO2, 470-11 
MOTORS, 566-3, 566-11 
NC CRIMINAL, 320-64, 320-68 
NONDETECTS, 240-4 
ODOR, 330-3, 330-11 
PAIN, 220-51 
PCA2, 420-5, 420-11, 425-9, 

425-15 
PCA2, 118-4 

PET, 538-11 
PIE, 142-6 
PLANT, 212-27 
POISREG, 325-37 
POLITIC, 13-1, 14-1 
PREPOST, 305-87 
PROPENSITY, 123-5, 123-12, 

124-4 
QATEST, 250-14, 250-27, 250-

33, 250-35, 250-37, 251-3, 
251-11, 253-2, 253-7, 253-9 

RCBD, 220-94 
REACTION, 214-29 
REACTION, 214-6 
READOUT105, 550-47 
REGCLUS, 449-2, 449-5 
RESALE, 117-4, 151-14, 155-1, 

155-7, 201-1, 201-11, 201-12, 
201-14, 201-15, 201-17, 201-
19, 201-21, 305-81, 500-1, 
500-9, 500-10, 500-12, 500-
14, 501-1, 501-8, 501-11, 
501-17 

RIDGEREG, 335-7, 335-15, 340-
3, 340-11 

RMSF, 545-3 
RNDBLOCK, 211-4, 211-11, 

212-3, 212-12 
ROC, 545-19 
RRSTUDY, 254-1, 254-10 
RRSTUDY1, 254-24 
SALES, 467-9, 469-9 
SALESRATIO, 485-1, 485-6, 

486-4 
SAMPLE, 101-3, 161-20, 162-5, 

171-9, 172-7, 200-4, 200-10, 
205-12, 206-12, 210-16, 310-
3, 310-6, 311-3, 311-6, 312-2, 
312-6, 400-8, 401-2, 401-5, 
585-8 

SERIESA, 470-8, 474-7 
SMOKING, 525-2, 525-5 
SUNSPOT, 468-9, 472-7 
SURVIVAL, 555-14, 555-37, 

575-1, 575-5 
SUTTON 22, 456-6, 456-14 
SUTTON30, 455-6, 455-13 
T2, 405-3, 405-5, 405-10 
TIMECALC, 580-3 
TUTOR, 220-98 
TWOSAMPLE, 220-69, 220-72 
TWOSAMPLE2, 220-70, 220-73 
TWOSAMPLECOV, 220-76 
WEIBULL, 550-12, 550-27, 550-

44, 552-3, 552-12, 555-27 
WEIBULL2, 144-17 
WEIGHTLOSS, 220-85 
WESTGARD, 252-9 
ZHOU 175, 545-33 
ZINC, 345-15 

Datasheet, 101-1 

Datasheets, 102-1 
Date formats, 102-8 
Date function transformations, 119-6 
Day format, 102-8 
Day transformation, 119-6 
DB, 115-1 
Dbase importing, 115-1 
DBF exporting, 116-1 
DBF importing, 115-1 
DCP dataset, 345-2, 345-9 
Death density 

life-table analysis, 570-3 
Decision variables 

linear programming, 480-1 
Decomposition forecasting, 469-1 
Default template, 105-1 
Defects/defectives variable, 251-4 
D-efficiency 

D-optimal designs, 267-12 
Degrees of freedom 

factor analysis, 420-14 
two-sample t-test, 206-13 

Delta 
cluster goodness-of-fit, 445-4 
loglinear models, 530-8 
Mantel-Haenszel test, 525-4 

Dendrogram 
hierarchical clustering, 445-15 

Dendrograms, 445-1 
double, 450-1, 450-3 

Density trace 
histograms, 143-1 
histograms – comparative, 151-2 
violin plot, 154-1 

Dependent variable 
linear regression, 300-25 
multiple regression, 305-1 
Poisson regression, 325-8 

Depth 
3D scatter plot, 170-8 
3D surface plot, 171-7 
bar charts, 141-13 

Derivatives 
Weibull fitting, 550-16 

Descriptive statistics, 4-1, 200-1 
additive constant, 200-5 
Anderson-Darling test, 200-22 
central moments, 200-11 
COD, 200-20 
coefficient of dispersion, 200-18 
coefficient of variation, 200-18 
confidence interval, 200-13 
D’Agostino kurtosis, 200-24 
D’Agostino omnibus, 200-25 
D’Agostino skewness, 200-23 
dispersion, 200-16 
EDF, 200-7 
Fisher's g1, 200-18 
Fisher's g2, 200-18 
geometric mean, 200-14 
harmonic mean, 200-14 
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Histogram, 200-25 
interquartile range, 200-17 
IQR, 200-17 
Kolmogorov-Smirnov, 200-23 
kurtosis, 200-18 
Lilliefors' critical values, 200-23 
MAD, 200-20 
Martinez-Iglewicz, 200-22 
mean, 200-13 
mean absolute deviation, 200-20 
mean deviation, 200-20 
mean-deviation, 200-20 
median, 200-14 
mode, 200-15 
moment, 200-11 
Normal probability plot, 200-26 
normality, 200-21 
normality tests, 200-21 
percentile type, 200-6 
Probability plot, 200-26 
quartiles, 200-21 
range, 200-17 
Shapiro-Wilk test, 200-22 
skewness, 200-17 
Skewness test, 200-24 
standard deviation, 200-16 
standard error, 200-13 
Stem-leaf plot, 200-27 
trim-mean, 200-19 
trimmed, 200-19 
trim-std dev, 200-19 
unbiased Std Dev, 200-17 
variance, 200-15 

Descriptive statistics report 
multiple regression, 305-45 

Descriptive tables, 201-1 
Design generator, 268-1 
Designs 

analysis of, 213-1 
Box-Behnken, 264-1 
central-composite, 264-1 
design generator, 268-1 
factorial, 260-3 
fractional factorial, 261-1 
Plackett-Burman, 265-1 
response surface, 264-1 
screening, 265-1 
Taguchi, 266-1 
two-level factorial, 260-1, 268-1 

Determinant 
D-optimal designs, 267-13 

Determinant analysis 
D-optimal designs, 267-11 

Deviance 
Cox regression, 565-10 
logistic regression, 320-8 
Poisson regression, 325-4, 325-5 

Deviance residuals 
Cox regression, 565-14, 565-40 
logistic regression, 320-13 
Poisson regression, 325-31 

Deviance test 
Poisson regression, 325-3 

DFBETA 
logistic regression, 320-14 

DFBETAS 
linear regression, 300-21, 300-63 
multiple regression, 305-20, 305-

65 
DFCHI2 

logistic regression, 320-15 
DFDEV 

logistic regression, 320-15 
Dffits 

linear regression, 300-63 
DFFITS 

linear regression, 300-20 
multiple regression, 305-19, 305-

64 
Diagnostic test 

1-sample binary diagnostic test, 
535-1 

2-sample binary diagnostic, 537-
1 

paired binary diagnostic, 536-1 
DIF exporting, 116-1 
Differencing 

ARIMA, 471-2 
autocorrelation, 472-2 
Box Jenkins, 470-7 
spectral analysis, 468-4 

Differential evolution 
hybrid appraisal models, 487-2 
Weibull fitting, 550-11 

Digamma 
beta distribution fitting, 551-12 

Dimensions 
multidimensional scaling, 435-4 

DIOXIN dataset, 240-2, 240-11 
Directional test 

meta analysis of hazard ratios, 
458-3 

meta-analysis of correlated 
proportions, 457-4 

meta-analysis of proportions, 
456-4 

Disabling the filter, 121-4 
Discriminant analysis, 440-1 

logistic regression, 320-1 
Discrimination parameter 

item response analysis, 506-8 
Dispersion 

descriptive statistics, 200-16 
Dissimilarities 

medoid partitioning, 447-1 
multidimensional scaling, 435-4 

Distance 
multidimensional scaling, 435-2 

Distance calculation 
medoid partitioning, 447-2 

Distance calculation method 
data matching, 123-3 

Distance method 
fuzzy clustering, 448-5 
hierarchical clustering, 445-8 

Distances 
medoid partitioning, 447-10 

Distinct categories 
R & R, 254-3, 254-19 

Distribution 
circular uniform, 230-3 
Von Mises, 230-5 

Distribution fitting 
Weibull fitting, 550-1 

Distribution statistics, 200-1 
Distributions 

combining, 122-13 
exponential, 550-1 
extreme value, 550-1 
logistic, 550-1 
log-logistic, 550-1 
lognormal, 550-1 
mixing, 122-13 
simulation, 122-1 
Weibull, 550-1 

Dmn-criterion value, 206-23 
DOPT_MIXED dataset, 267-22 
DOPT3 dataset, 267-20 
D-optimal designs, 267-1 
Dose 

probit analysis, 575-1 
Dose-response plot 

probit analysis, 575-9 
Dot plots, 140-4, 150-1 

jittering, 150-1 
Double dendrograms, 450-1 
Double exponential smoothing, 466-

1 
Double-precision accuracy, 101-2, 

102-4 
DRUGSTUDY dataset, 501-19 
DS476 dataset, 315-2, 315-9, 385-2, 

385-9 
Dummy variables 

multiple regression, 305-3 
Duncan’s test 

one-way ANOVA, 210-5 
Dunn’s partition coefficient 

fuzzy clustering, 448-2 
Dunn’s test 

one-way ANOVA, 210-7 
Dunnett’s test 

one-way ANOVA, 210-6 
Duplicates 

D-optimal designs, 267-5 
Durbin-Watson 

linear regression, 300-17 
multiple regression, 305-17 

Durbin-Watson test 
multiple regression, 305-53 
multiple regression with serial 

correlation, 306-3 
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E 
e - using 

Cox regression, 565-4 
E notation, 102-4 
EDF 

descriptive statistics, 200-7 
EDF plot, 240-15 
Edit 

clear, 103-5 
copy, 103-4 
cut, 103-4 
delete, 103-5 
fill, 103-6 
find, 103-6 
insert, 103-5 
paste, 103-4 
undo, 103-4 

Efron ties 
Cox regression, 565-7 

Eigenvalue 
MANOVA, 415-14 
PC regression, 340-13 

Eigenvalues, 425-17 
correspondence analysis, 430-12 
factor analysis, 420-14 
multidimensional scaling, 435-11 
multiple regression, 305-58, 305-

59 
principal components analysis, 

425-12 
ridge regression, 335-17 

Eigenvector 
multiple regression, 305-58, 305-

60 
Eigenvectors 

factor analysis, 420-15 
Elapsed time 

time calculator, 580-1 
Elevation 

3D scatter plot, 170-7 
3D surface plot, 171-6 
bar charts, 141-13 

Ellipse (probability) 
linear regression, 300-8 

Else 
if-then transformation, 120-4 

EM algorithm 
principal components analysis, 

425-5 
Empirical 

ROC curves, 545-2 
Empty cells, 102-5 
Entry date 

time calculator, 580-2 
Entry time 

Cox regression, 565-17 
Kaplan-Meier, 555-15 

Epanechnikov 
Weibull fitting, 550-17 

Epanechnikov kernel 
Kaplan-Meier, 555-8 
Weibull fitting, 550-34 

Epsilon 
Geisser-Greenhouse, 214-4 
repeated measures, 214-20 

Equal slopes 
multiple regression, 305-86 

Equality of covariance matrices, 
402-1 

Equivalence 
2-sample binary diagnostic, 537-

9 
clustered binary diagnostic, 538-8 
cross-over analysis using t-tests, 

235-1 
paired binary diagnostic, 536-7 
ROC curves, 545-30 

Equivalence test 
correlated proportions, 520-8 
two proportions, 515-17 
two-sample, 207-1 

Equivalence tests 
two proportions, 515-38 

Error-bar charts, 140-6, 155-1 
Euclidean distance 

medoid partitioning, 447-2 
Event date 

time calculator, 580-2 
EWMA chart, 250-4, 250-35 
EWMA chart limits, 250-8 
EWMA parameter, 250-19 
Exact test 

two proportions, 515-12 
Exact tests 

two proportions, 515-4, 515-36 
EXAMS dataset, 450-12 
Excel exporting, 116-1 
EXERCISE dataset, 214-6, 214-16 
Exiting NCSS, 101-4 
Exp transformation, 119-7 
Experiment (Run) 

two level designs, 260-2 
Experimental design, 260-1 

two level designs, 260-2 
Experimental error 

two level designs, 260-2 
Experimentwise error rate, 210-3 
Exponential 

curve fitting, 351-10 
using, 565-4 

Exponential distribution 
simulation, 122-6 
Weibull fitting, 550-8 

Exponential model 
curve fitting, 351-6 
growth curves, 360-4 

Exponential regression, 566-1 
Exponential smoothing 

double, 466-1 
horizontal, 465-1 

simple, 465-1 
trend, 466-1 
trend and seasonal, 467-1 

ExpoProb transformation, 119-9 
Export, 103-3 
Export limitations, 116-1 
Exporting data, 116-1 
Exposure 

Poisson regression, 325-1 
Exposure variable 

Poisson regression, 325-12 
ExpoValue transformation, 119-9 
Extract transformation, 119-18 
Extreme value distribution 

Weibull fitting, 550-8 

F 
F distribution 

probablility calculator, 135-3 
simulation, 122-7 

Factor analysis, 420-1 
Factor loadings 

factor analysis, 420-16 
principal components analysis, 

425-2 
Factor rotation 

factor analysis, 420-7 
Factor scaling 

D-optimal designs, 267-2 
Factorial designs 

two level designs, 260-3 
two-level designs, 260-1 

Factors 
how many, 420-3, 425-6 

Failed 
parametric survival regression, 

566-2 
Weibull fitting, 550-11 

Failure 
Cox regression, 565-16 
Kaplan-Meier, 555-15 

Failure distribution 
Weibull fitting, 550-37 

Familywise error rate, 210-3 
FANFAILURE dataset, 550-49 
Farazdaghi and Harris model 

curve fitting, 351-5 
growth curves, 360-3 

Farrington-Manning test 
two proportions, 515-10 

Fast Fourier transform 
spectral analysis, 468-3 

Fast initial restart, 250-9 
Feedback model, 487-1 
Fences 

box plot, 152-6 
File function transformation, 119-15 
Files 
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Access, 115-1 
ASCII, 115-3 
BMDP, 115-1 
creating text, 115-1 
Dbase, 115-1 
Excel, 115-1 
NCSS 5.0, 115-1 
Paradox, 115-1 
SAS, 115-1 
SPSS, 115-1 
text, 115-1 

Fill, 103-6 
Fill functions transformations, 119-6 
Filter, 121-1 

disabling, 10-4 
specifying, 103-7 

Filter statements, 103-7 
Filters, 10-1 
Final Tableau section 

linear programming, 480-6 
Find, 103-6 
Find a procedure, 107-1 
Find in output, 106-4 
Find next in output, 106-4 
FIR, 250-9 
FISH dataset, 220-90 
FISHER dataset, 143-14, 144-15, 

150-8, 151-13, 152-12, 153-8, 
154-8, 170-2, 170-9, 173-7, 402-
2, 402-5, 440-4, 440-10, 440-20, 
440-22 

Fisher information matrix 
beta distribution fitting, 551-14 
gamma distribution fitting, 552-

15 
Weibull fitting, 550-32 

Fisher’s exact test, 501-1, 501-13 
cross tabulation, 501-17 

Fisher’s Z transformation 
linear regression, 300-11 

Fisher's exact test 
cross tabulation, 501-11 

Fisher's g1 
descriptive statistics, 200-18 

Fisher's g2 
descriptive statistics, 200-18 

Fisher's LSD 
one-way ANOVA, 210-6 

Fixed effects 
mixed models, 220-9 

Fixed effects model 
meta-analysis of correlated 

proportions, 457-5 
meta-analysis of hazard ratios, 

458-4 
meta-analysis of means, 455-4 
meta-analysis of proportions, 

456-5 
Fixed effects models 

mixed models, 220-4 
Fixed factor 

ANOVA balanced, 211-5 
GLM, 212-4 
repeated measures, 214-8 

Fixed sigma 
Xbar R, 250-19 

Fixed Xbar 
Xbar R, 250-18 

Fleiss Confidence intervals 
two proportions, 515-24 

Fleming-Harrington tests 
Kaplan-Meier, 555-12 

Flexible strategy 
double dendrograms, 450-3 
hierarchical clustering, 445-4 

Flipping constant, 240-2 
FNREG1 dataset, 360-15, 380-7 
FNREG2 dataset, 365-11 
FNREG3 dataset, 163-4, 370-6, 375-

8 
FNREG4 dataset, 371-6, 376-8 
FNREG5 dataset, 351-30 
Follow-up 

life-table analysis, 570-2 
Forced match variable, 123-4 
Forced points 

D-optimal designs, 267-5 
Forced X’s 

variable selection, 310-4 
Forecast 

ARIMA, 471-11 
automatic ARMA, 474-10 
decomposition forecasting, 469-

10 
exponential smoothing, 465-8, 

466-12, 467-10 
Forecasts 

multiple regression with serial 
correlation, 306-3 

Forest plot 
meta analysis of hazard ratios, 

458-17 
meta-analysis of correlated 

proportions, 457-20 
meta-analysis of means, 455-17 
meta-analysis of proportions, 

456-20 
Format, 102-6 
Forward selection 

Cox regression, 565-23 
logistic regression, 320-17 
Poisson regression, 325-6 

Forward selection with switching 
logistic regression, 320-18 
multiple regression, 305-24 
Poisson regression, 325-7 

Forward variable selection 
multiple regression, 305-23 

Fourier plot 
spectral analysis, 468-10 

Fourier series 
spectral analysis, 468-2 

Fprob transformation, 119-9 
Fraction transformation, 119-7 
Fractional-factorial designs, 261-1 
F-ratio 

linear regression, 300-47 
Freeman-Tukey standardized 

residual 
loglinear models, 530-20 

Frequency 
spectral analysis, 468-1 

Frequency polygon 
histograms, 143-13 

Frequency tables, 500-1 
Frequency variable 

linear regression, 300-25 
Poisson regression, 325-8 

Friedman’s Q statistic, 211-15 
Friedman’s rank test, 211-3 
FRUIT dataset, 141-1, 141-17 
F-test 

multiple regression, 305-50 
FT-SR 

loglinear models, 530-20 
Full matching, 123-3 
Function plots, 160-1 
Functions 

nonlinear regression, 315-4 
Fuzz factor 

filter, 121-2 
in filter comparisons, 103-8 

Fuzzifier 
fuzzy clustering, 448-5 

Fuzzy clustering, 448-1 
FUZZY dataset, 448-3, 448-8 
Fvalue transformation, 119-9 

G 
G statistic test 

Poisson regression, 325-3 
Gamma 

hierarchical clustering, 445-8 
Gamma distribution 

probablility calculator, 135-4 
simulation, 122-7 

Gamma distribution fitting, 552-1 
GammaProb transformation, 119-9 
GammaValue transformation, 119-9 
Gap between bars 

bar charts, 141-14 
Gap between sets of bars 

bar charts, 141-15 
Gart-Nam test 

two proportions, 515-11 
Gehan test 

Kaplan-Meier, 555-12 
nondetects analysis, 240-3 

Geisser-Greenhouse adjustment, 
214-1, 214-5 
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Geisser-Greenhouse epsilon, 214-4, 
214-20 

General linear models, 212-1 
Generating data, 122-1 
Generations 

hybrid appraisal models, 487-8 
Geometric mean 

descriptive statistics, 200-14 
Gleason-Staelin redundancy measure 

principal components analysis, 
425-17 

GLM 
checklist, 212-18 

Gompertz model 
curve fitting, 351-7 
growth curves, 360-5 

Goodness of fit 
loglinear models, 530-4 
Poisson regression, 325-3 

Goodness-of-fit 
hierarchical clustering, 445-4 
K-means clustering, 446-2 
multidimensional scaling, 435-3 
ratio of polynomials, 370-2 

Goto in output, 106-4 
Graeco-Latin square designs, 263-1 
Greedy matching, 123-1, 123-2 
Greenwood’s formula 

Kaplan-Meier, 555-3, 555-29, 
555-33 

Weibull fitting, 550-3 
Grid / tick settings window, 185-1 
Grid lines, 185-1 
Grid plot style file, 173-8 
Grid plots, 140-11, 173-1 

response surface regression, 330-
19 

Grid range 
hybrid appraisal models, 487-9 

Group average 
double dendrograms, 450-2 
hierarchical clustering, 445-4 

Group variables 
logistic regression, 320-19 

Growth curves, 360-1 

H 
HAIR dataset, 220-103 
Harmonic mean 

descriptive statistics, 200-14 
Hat diagonal 

linear regression, 300-19, 300-62 
multiple regression, 305-18, 305-

64 
Hat matrix 

linear regression, 300-18 
logistic regression, 320-14 
multiple regression, 305-18 

Poisson regression, 325-34 
Hat values 

Poisson regression, 325-5 
Hazard 

baseline, 565-8 
cumulative, 565-3 
Nelson-Aalen, 555-4 

Hazard function 
beta distribution fitting, 551-2 
Cox regression, 565-2 
gamma distribution fitting, 552-2 

Hazard function plot 
Kaplan-Meier, 555-36 

Hazard rate 
Kaplan-Meier, 555-2 
life-table analysis, 570-3 
Weibull fitting, 550-2, 550-36 

Hazard rate plot 
Kaplan-Meier, 555-36 

Hazard ratio 
confidence interval, 555-40 
Kaplan-Meier, 555-40 

Hazard ratio test 
Kaplan-Meier, 555-41 

Hazard ratios 
meta analysis, 458-1 

Hazard-baseline 
Cox regression, 565-38 

HEART dataset, 212-23 
Heat map colors, 187-5 
Heat map settings window, 187-1 
Help system, 1-10, 100-1 
Heterogeneity test 

meta-analysis of proportions, 
456-4 

Heteroscedasticity 
linear regression, 300-3 

Hierarchical cluster analysis, 450-1 
dendrograms, 450-3 

Hierarchical clustering, 445-1 
Hierarchical models 

Cox regression, 565-23 
loglinear models, 530-3 
multiple regression, 305-32 
response surface regression, 330-

1 
Hierarchical-classification designs, 

212-27 
Histogram 

bootstrap, 300-31, 305-42 
definition, 140-2 
density trace, 143-1 
descriptive statistics, 200-25 
linear regression, 300-34 
multiple regression, 305-67 
t-test, 205-20 
Xbar R, 250-32 

Histogram style file, 143-16 
Histograms, 140-2, 143-1 
Histograms - comparative, 140-4, 

151-1 

Histograms – comparative 
density trace, 151-2 

Holliday model 
curve fitting, 351-5 
growth curves, 360-4 

Holt’s linear trend, 466-1 
Holt-Winters forecasting 

exponential smoothing, 467-1 
Hotelling’s one sample T2, 405-1 
Hotelling’s T2, 410-1 

1-Sample, 405-1 
Hotelling’s T2 distribution 

probablility calculator, 135-4 
Hotelling’s T2 value, 410-7 
Hotelling’s two-sample T2, 410-1 
Hour format, 102-8 
HOUSING dataset, 306-4, 306-10 
Hsu’s test 

one-way ANOVA, 210-6 
Huber’s method 

multiple regression, 305-26 
Huynh Feldt epsilon, 214-20 
Huynh-Feldt adjustment, 214-1 
Hybrid appraisal models, 487-1 
Hybrid model, 487-1 
HYP(z) 

piecewise polynomial models, 
365-6 

Hypergeometric distribution 
probablility calculator, 135-4 

HypergeoProb transformation, 119-9 
Hypothesis tests 

linear regression, 300-6 
multiple regression, 305-13 

I 
Identicalness 

curve fitting, 350-6 
IEEE format, 102-4 
If-then transformations, 120-1 
Import limitations, 115-1 
Importing, 103-2 
Importing data, 12-1, 115-1 
Imputation, 118-1 

principal components analysis, 
425-4 

Imputing data values, 118-1 
Incidence 

Poisson regression, 325-1 
Incidence rate 

Poisson regression, 325-34 
Inclusion points 

D-optimal designs, 267-6 
Incomplete beta function ratio 

beta distribution fitting, 551-2 
Independence tests 

cross tabulation, 501-1 
Independent variable 
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linear regression, 300-25 
Independent variables 

logistic regression, 320-20 
multiple regression, 305-1 
multiple regression, 305-28 
Poisson regression, 325-8 

Indicator variables 
creating, 119-19 
multiple regression, 305-3 

Individuals 
hybrid appraisal models, 487-8 

Individuals chart, 250-4 
Xbar R, 250-33 

Inertia 
correspondence analysis, 430-13 

Influence 
multiple regression, 305-17 

Influence  report 
linear regression, 300-66 

Influence detection 
linear regression, 300-65 

Information matrix 
Cox regression, 565-7 

Inheritance 
hybrid appraisal models, 487-9 
Weibull fitting, 550-15 

Initial communality 
factor analysis, 420-3 

Initial Tableau section 
linear programming, 480-4 

Initial values 
backcasting, 465-2, 466-3, 467-3 

Insert, 103-5 
Installation, 1-1, 100-1 

folders, 1-1 
Int transformation, 119-7 
INTEL dataset, 465-7, 466-9, 471-7, 

473-5 
Interaction 

two level designs, 260-3 
Interactions 

multiple regression, 305-4 
Intercept 

linear regression, 300-25, 300-39 
multiple regression, 305-34 
Poisson regression, 325-15 

Interquartile range 
box plot, 152-1 
descriptive statistics, 200-17 

Interval censored 
parametric survival regression, 

566-3 
Weibull fitting, 550-11 

Interval data 
Cox regression, 565-17 

Interval failure 
Kaplan-Meier, 555-15 

Interval variables 
fuzzy clustering, 448-4 
hierarchical clustering, 445-6 
medoid partitioning, 447-1 

Intervals 
tolerance, 585-1 

Inverse prediction 
linear regression, 300-6, 300-41, 

300-67, 300-68 
IQ dataset, 305-27, 305-43, 305-72, 

305-76, 305-79 
IQR 

descriptive statistics, 200-17 
Isolines, 140-11 

contour plot, 172-1 
Item analysis, 505-1 
ITEM dataset, 505-2, 505-5, 506-2, 

506-6 
Item response analysis, 506-1 

J 
Jittering 

dot plots, 150-1 
Join transformation, 119-18 
Julian date transformation, 119-6 

K 
K analysis 

ridge regression, 335-22 
K values 

ridge regression, 335-8 
Kaplan-Meier 

Weibull fitting, 550-1 
Kaplan-Meier estimates, 555-1 
Kaplan-Meier product limit 

estimator 
Weibull fitting, 550-3 

Kaplan-Meier product-limit, 555-32 
beta distribution fitting, 551-14 
gamma distribution fitting, 552-

16 
nondetects analysis, 240-14 
Weibull fitting, 550-33 

Kaplan-Meier product-limit 
estimator 
beta distribution fitting, 551-2 

Kappa reliability test 
cross tabulation, 501-15 

Kaufman and Rousseeuw 
medoid partitioning, 447-4 

Kendall’s coefficient 
concordance, 211-15 

Kendall's tau-B 
cross tabulation, 501-15 

Kendall's tau-C 
cross tabulation, 501-15 

Kenward and Roger method 
mixed models, 220-28 

Kernel-smoothed estimators 

Kaplan-Meier, 555-9 
Weibull fitting, 550-35 

Keyboard 
commands, 103-11 

KLEIN6 dataset, 555-45 
K-means cluster analysis, 446-1 
KOCH36 dataset, 325-7, 325-21 
Kolmogorov-Smirnov 

descriptive statistics, 200-23 
Kolmogorov-Smirnov test 

two-sample, 206-1, 206-23 
Kruskall-Wallis test statistic, 210-21 
Kruskal-Wallis test, 210-1 
Kruskal-Wallis Z test 

one-way ANOVA, 210-7 
Kurtosis, 200-2 

descriptive statistics, 200-18 
t-test, 205-15 

L 
L’Abbe plot 

meta-analysis of correlated 
proportions, 457-22 

meta-analysis of means, 455-18 
meta-analysis of proportions, 

456-22 
Labeling values, 102-10 
Labeling variables, 2-4 
Labels 

values, 13-1 
LACHIN91 dataset, 320-71 
Lack of fit 

linear regression, 300-16 
Lack-of-fit test 

response surface regression, 330-
1 

Lagk transformation, 119-16 
Lambda 

canonical correlation, 400-10 
discriminant analysis, 440-12 
loglinear models, 530-18 

Lambda A 
cross tabulation, 501-14 

Lambda B 
cross tabulation, 501-15 

Latin square designs, 263-1 
LATINSQR dataset, 212-22 
Latin-square 

GLM, 212-21 
Lawley-Hotelling trace 

MANOVA, 415-3 
Lcase transformation, 119-18 
LEAD dataset, 240-19 
Least squares 

linear regression, 300-5 
multiple regression, 305-13 

Least squares trend, 466-1 
Ledk transformation, 119-16 
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LEE91 database, 570-15 
LEE91 dataset, 570-4 
Left censored 

parametric survival regression, 
566-3 

Weibull fitting, 550-11 
Left transformation, 119-18 
Length transformation, 119-18 
LEUKEMIA dataset, 320-18, 320-

34, 320-57 
Levenberg-Marquardt algorithm, 

385-1 
Levene test 

linear regression, 300-27 
modified, 206-20 
modified (multiple-groups), 210-

18 
Levene test (modified) 

linear regression, 300-50 
Levey-Jennings control charts, 252-1 
Life-table analysis, 570-1 
Like. ratio chi-square 

loglinear models, 530-13 
Likelihood 

Cox regression, 565-5 
Likelihood ratio 

1-sample binary diagnostic test, 
535-3 

logistic regression, 320-8 
ROC curves, 545-24 

Likelihood ratio test 
Cox regresion, 565-10 

Likelihood ratio test of difference 
two proportions, 515-8 

Likelihood-ratio statistic 
loglinear models, 530-4 

Likert-scale 
simulation, 122-8, 122-22 

Lilliefors' critical values 
descriptive statistics, 200-23 

Limitations 
exporting, 116-1 

Line charts, 140-1, 141-1 
Line granularity 

linear regression, 300-33 
Line settings window, 183-1 
Linear discriminant functions 

discriminant analysis, 440-2 
Linear model, 212-1 
Linear programming, 480-1 
Linear regression, 300-1 

assumptions, 300-3 
Linearity 

MANOVA, 415-5 
multiple regression, 305-6 

Linear-linear fit 
curve fitting, 351-11 

Linear-logistic model, 320-1 
Linkage type 

hierarchical clustering, 445-7 
LINREG1 dataset, 300-24, 300-37 

Ljung statistic 
automatic ARMA, 474-12 

LLM, 530-1 
Ln(X) transformation, 119-7 
Loading a database, 2-1, 2-10, 7-1 
Loess 

robust, 300-14 
LOESS 

linear regression, 300-13 
LOESS %N 

linear regression, 300-33 
LOESS curve 

linear regression, 300-33 
LOESS order 

linear regression, 300-33 
LOESS robust 

linear regression, 300-34 
Loess smooth 

scatter plot, 161-14 
Log document, 106-1 
Log file 

tutorial, 101-4 
Log likelihood 

Poisson regression, 325-23 
Weibull fitting, 550-30 

Log odds ratio transformation 
logistic regression, 320-2 

Log of output, 9-6 
Log transformation, 119-7 
Logarithmic fit 

curve fitting, 351-8 
LogGamma transformation, 119-9 
Logistic distribution 

Weibull fitting, 550-10 
Logistic item characteristic curve 

item response analysis, 506-1 
Logistic model 

curve fitting, 351-6 
growth curves, 360-5 

Logistic regression, 320-1 
parametric survival regression, 

566-1 
Logit transformation, 119-7 

logistic regression, 320-1 
LOGLIN1 dataset, 530-7, 530-11 
Loglinear models, 530-1 
Log-logistic distribution 

Weibull fitting, 550-10 
Log-logistic regression, 566-1 
Lognormal 

curve fitting, 351-10, 351-11 
growth curves, 360-9 

Lognormal distribution 
nondetects regression, 345-2 
Weibull fitting, 550-5 

Lognormal regression, 566-1 
Logrank test 

Kaplan-Meier, 555-41 
Log-rank test 

Kaplan-Meier, 555-12 
nondetects analysis, 240-3 

randomization, 555-1 
Log-rank tests 

Kaplan-Meier, 555-38 
Longitudinal data example 

mixed models, 220-51 
Longitudinal data models 

mixed models, 220-4 
Longitudinal models, 220-1 
Lookup transformation, 119-14 
Lotus 123 exporting, 116-1 
Lotus 123 importing, 115-1 
Lowess smooth 

scatter plot, 161-14 
LP dataset, 480-2, 480-4 
LUNGCANCER dataset, 565-15, 

565-31, 565-48 

M 
MA order (Q) 

automatic ARMA, 474-8 
Macros, 130-1 

command list, 130-25 
commands, 130-6 
examples, 130-26 
syntax, 130-2 

MAD 
descriptive statistics, 200-20 

MAD constant 
multiple regression, 305-40 

MAE 
exponential smoothing, 466-4, 

467-2 
Mallow's Cp 

variable selection and, 312-8 
Mallow's Cp statistic 

multiple regression, 305-55 
MAMMALS dataset, 3-1, 4-1, 10-1 
MAMMALS1 dataset, 5-1, 6-1 
Manhattan distance 

medoid partitioning, 447-3 
Mann-Whitney U test, 206-1, 206-20 
MANOVA, 415-1 

multivariate normality and 
Outliers, 415-4 

MANOVA1 dataset, 410-3, 410-6, 
415-5, 415-10 

Mantel Haenszel test 
two proportions, 515-7 

Mantel-Haenszel logrank test 
Kaplan-Meier, 555-41 

Mantel-Haenszel test, 525-1 
MAPE 

exponential smoothing, 466-4, 
467-2 

Maps 
contour plots, 172-1 
contour plots, 140-11 

Mardia-Watson-Wheeler test 
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circular data, 230-10 
Marginal association 

loglinear models, 530-6 
Martinez-Iglewicz 

descriptive statistics, 200-22 
Martingale residuals 

Cox regression, 565-13, 565-39 
Cox regression, 565-40 

MARUBINI dataset, 560-3, 560-9 
Mass 

correspondence analysis, 430-13 
Matched pairs 

correlated proportions, 520-1 
Matching 

caliper, 123-4 
caliper radius, 123-5 
distance calculation method, 123-

3 
forced match variable, 123-4 
full (variable), 123-3 
greedy, 123-1, 123-2 
optimal, 123-1, 123-2 
propensity score, 123-2 
standardized difference, 123-15 

Mathematical functions 
transformations, 119-7 

Matrix determinant 
equality of covariance, 402-8 

Matrix type 
principal components analysis, 

425-11 
Mauchley’s test of compound 

symmetry, 214-5 
Mavk transformation, 119-16 
Max % change in any beta 

multiple regression, 305-78 
Max terms 

multiple regression, 305-33 
Max transformation, 119-16 
Maximum likelihood 

Cox regression, 565-5 
mixed models, 220-17 
Weibull fitting, 550-10 

Maximum likelihood estimates 
beta distribution fitting, 551-12 

McHenry's select algorithm, 310-1 
McNemar test 

correlated proportions, 520-1, 
520-6 

cross tabulation, 501-16 
McNemar's tests, 501-1 
MDB exporting, 116-1 
MDB importing, 115-1 
MDS, 435-1 
MDS2 dataset, 435-6, 435-10, 435-

15 
Mean 

confidence interval for, 200-13 
descriptive statistics, 200-13 
deviation, 200-20 
geometric, 200-14 

harmonic, 200-14 
standard error of, 200-13 

Mean absolute deviation 
descriptive statistics, 200-20 

Mean deviation 
descriptive statistics, 200-20 
estimate of standard error of, 

200-20 
Mean square 

linear regression, 300-47 
Mean squared error 

linear regression, 300-19 
multiple regression, 305-19 

Mean squares 
multiple regression, 305-50 

Mean-deviation 
descriptive statistics, 200-20 

Means 
meta-analysis of means, 455-1 

Measurement error 
R & R, 254-19 

Measurement error ratio 
R & R, 254-3 

Median 
cluster method, 445-4 
confidence interval, 200-14 
descriptive statistics, 200-14 

Median cluster method 
double dendrograms, 450-2 

Median remaining lifetime 
life-table analysis, 570-4, 570-22 

Median smooth 
scatter plot, 161-15 

Median survival time 
Kaplan-Meier, 555-30 

Medoid clustering, 447-1 
Medoid partitioning, 447-1 
Membership 

fuzzy clustering, 448-1 
Merging two databases, 104-1 
M-estimators 

multiple regression, 305-25 
Meta-analysis 

correlated proportions, 457-1 
Meta-analysis of hazard ratios, 458-1 
Meta-analysis of means, 455-1 
Meta-analysis of proportions, 456-1 
METACPROP dataset, 457-6, 457-

14 
METAHR dataset, 458-6, 458-12 
Method of moments estimates 

beta distribution fitting, 551-12 
Metric multidimensional scaling, 

435-5 
Michaelis-Menten 

curve fitting, 351-1, 351-4 
Miettinen - Nurminen test 

two proportions, 515-8 
Mill’s ratio 

Kaplan-Meier, 555-2 
Weibull fitting, 550-2 

Min transformation, 119-16 
Minimum Percent Beta Change, 305-

40 
Minute format, 102-8 
Missing 

if-then transformation, 120-4 
Missing value estimation 

factor analysis, 420-7 
Missing values, 102-5, 320-8, 320-18, 

425-4 
cross tabs, 501-4 
descriptive tables, 201-7 
estimating, 118-1 
GLM, 212-19 
principal components analysis, 

425-3 
Missing-value imputation 

principal components analysis, 
425-4 

Mixed model 
defined, 220-2 

Mixed models, 220-1 
AIC, 220-7 
Bonferroni adjustment, 220-14 
covariates, 220-9 
differential evolution, 220-29 
F test, 220-28 
Fisher scoring, 220-29 
fixed effects, 220-9 
G matrix, 220-18 
Kenward and Roger method, 220-

28 
L matrix, 220-26 
likelihood formulas, 220-17 
maximum likelihood, 220-17 
MIVQUE, 220-29 
model building, 220-13 
multiple comparisons, 220-14 
Newton-Raphson, 220-29 
R matrix, 220-19 
random vs repeated error, 220-7 
restricted maximum likelihood, 

220-18 
technical details, 220-16 
time, 220-11 
types, 220-4 
zero variance estimate, 220-8 

Mixture design 
D-optimal designs, 267-22 

MLCO2 dataset, 470-11 
Mod transformation, 119-7 
Mode 

descriptive statistics, 200-15 
Model 

Bleasdale-Nelder, 351-5, 360-3 
exponential, 351-6, 360-4 
Farazdaghi and Harris, 351-5, 

360-3 
four-parameter logistic, 351-7, 

360-5 
Gompertz, 351-7, 360-5 
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Holliday, 351-5, 360-4 
Kira, 351-4, 360-2 
monomolecular, 351-6, 360-4 
Morgan-Mercer-Floding, 351-8, 

360-6 
multiple regression, 305-33 
reciprocal, 351-4, 360-2 
Richards, 351-8, 360-7 
Shinozaki, 351-4, 360-2 
three-parameter logistic, 351-6, 

360-5 
Weibull, 351-7, 360-6 

Model size 
all possible regressions, 312-8 

Models 
growth curves, 360-1 
hierarchical, 530-3 
multiphase, 365-1 
multiple regression, 305-35 
piecewise polynomial, 365-1 
ratio of polynomials, 370-1, 375-

1 
sum of functions, 380-1 
user written, 385-1 

Modified Kuiper’s test 
circular data, 230-4 

Moment 
descriptive statistics, 200-11 

Monomolecular model 
curve fitting, 351-6 
growth curves, 360-4 

Monte Carlo samples 
1-Sample T2, 405-4 
linear regression, 300-31 

Monte Carlo simulation, 122-1 
Month format, 102-8 
Month transformation, 119-6 
Morgan-Mercer-Floding model 

curve fitting, 351-8 
growth curves, 360-6 

MOTORS dataset, 566-3, 566-11 
Moving average chart, 250-4 
Moving average chart limits, 250-8 
Moving average parameters 

ARIMA, 471-3 
theoretical ARMA, 475-2 

Moving data, 103-14 
Moving range 

Xbar R, 250-33 
Moving range chart, 250-4 
MSEi 

multiple regression, 305-19 
Multicollinearity 

canonical correlation, 400-2 
discriminant analysis, 440-4 
MANOVA, 415-5 
multiple regression, 305-7 
ridge regression, 335-1 
stepwise regression, 311-2 

Multicollinearity report 
multiple regression, 305-57 

Multidimensional scaling, 435-1 
metric, 435-1 

Multinomial chi-square tests 
frequency tables, 500-1 

Multinomial distribution 
simulation, 122-8 

Multinomial test 
frequency tables, 500-10 

Multiple comparisons 
Bonferroni, 210-4 
box plots, 152-2 
Duncan’s test, 210-5 
Dunn’s test, 210-7 
Dunnett’s test, 210-6 
Fisher's LSD, 210-6 
Hsu’s test, 210-6 
Kruskal-Wallis Z test, 210-7 
mixed models, 220-14 
Newman-Keuls test, 210-8 
one-way ANOVA, 210-3 
recommendations, 210-8 
Scheffe’s test, 210-8 
Tukey-Kramer test, 210-8 

Multiple regression 
robust, 305-24 

Multiple regression, 305-1 
assumptions, 305-6 

Multiple regression 
all possible, 312-1 

Multiple regression 
binary response, 320-8 

Multiple regression with serial 
correlation, 306-1 

Multiplicative seasonality 
exponential smoothing, 467-2 

Multiplicity factor 
t-test, 205-19 

Multivariate analysis of variance, 
415-1 

Multivariate normal 
factor analysis, 420-7 
principal components analysis, 

425-11 
Multivariate polynomial ratio fit, 

376-1 
Multivariate variable selection, 310-

1 
Multiway frequency analysis 

loglinear models, 530-1 
Mutation rate 

hybrid appraisal models, 487-9 
Weibull fitting, 550-15 

N 
Nam and Blackwelder test 

correlated proportions, 520-5 
Nam test 

correlated proportions, 520-7 

Nam’s score 
correlated proportions, 520-2 

Navigator, 107-1 
NC CRIMINAL dataset, 320-64, 

320-68 
NcBetaProb transformation, 119-9 
NcBetaValue transformation, 119-10 
NcCsProb transformation, 119-10 
NcCsValue transformation, 119-10 
NcFprob transformation, 119-10 
NcFvalue transformation, 119-10 
NCSS 

quitting, 101-4 
NcTprob transformation, 119-10 
NcTvalue transformation, 119-10 
Nearest neighbor 

double dendrograms, 450-2 
hierarchical clustering, 445-3 

Negative binomial distribution 
probablility calculator, 135-5 

Negative binomial transformation, 
119-10 

NegBinomProb transformation, 119-
10 

Neighborhood 
appraisal ratios, 485-7 

Nelson-Aalen estimates 
Weibull fitting, 550-1 

Nelson-Aalen estimator, 555-7 
Weibull fitting, 550-33 

Nelson-Aalen hazard 
Kaplan-Meier, 555-1 
Weibull fitting, 550-4 

Nested factor 
GLM, 212-4 

Nested factors 
design generator, 268-1 

New database, 103-1 
New spreadsheet, 103-1 
New template, 105-1 
Newman-Keuls test 

one-way ANOVA, 210-8 
Newton-Raphson 

Weibull fitting, 550-11 
Nominal variables 

fuzzy clustering, 448-4 
hierarchical clustering, 445-7 
medoid partitioning, 447-2 

Non-central Beta transformation, 
119-10 

Non-central Chi-square 
transformation, 119-10 

noncentral-F distribution 
transformation, 119-10 

Noncentral-t distribution 
transformation, 119-10 

Nondetects analysis, 240-1 
confidence limits, 240-7 
flipping constant, 240-2 
Gehan test, 240-3 
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Kaplan-Meier product-limit, 240-
14 

log-rank test, 240-3 
Peto-Peto test, 240-3 
Tarone-Ware test, 240-3 

NONDETECTS dataset, 240-4 
Nondetects regression, 345-1 

confidence limits, 345-11 
Cox-Snell residual, 345-13 
R-squared, 345-11 
standardized residual, 345-13 

Noninferiority 
2-sample binary diagnostic, 537-

10 
clustered binary diagnostic, 538-9 
paired binary diagnostic, 536-8 
ROC curves, 545-31 

Noninferiority test 
correlated proportions, 520-8 
two proportions, 515-17 

Noninferiority tests 
two proportions, 515-37 

Nonlinear regression, 315-1 
appraisal, 487-1 
functions, 315-4 
starting values, 315-1 
user written models, 385-1 

Nonparametric tests 
t-test, 205-17 

Nonstationary models 
Box Jenkins, 470-3 

Normal 
curve fitting, 351-10 
growth curves, 360-9 

Normal distribution 
probablility calculator, 135-5 
simulation, 122-9, 122-20 
Weibull fitting, 550-4 

Normal line 
histograms, 143-12 

Normal probability plot 
descriptive statistics, 200-26 

Normality, 200-4 
descriptive statistics, 200-21 
ROC curves, 545-12 
t-test, 205-15 

Normality test alpha, 118-3 
Normality tests 

Anderson-Darling test, 200-22 
D’Agostino kurtosis, 200-24 
D’Agostino omnibus, 200-25 
D’Agostino skewness, 200-23 
descriptive statistics, 200-21 
Kolmogorov-Smirnov, 200-23 
Lilliefors' critical values, 200-23 
linear regression, 300-48 
Martinez-Iglewicz, 200-22 
multiple regression, 305-52 
Shapiro-Wilk test, 200-22 
skewness test, 200-24 
tolerance intervals, 585-11 

NormalProb transformation, 119-10 
NormalValue transformation, 119-10 
NormScore transformation, 119-16 
Notes 

omitting them in linear 
regression, 300-26 

NP-chart, 251-1 
Number exposed 

life-table analysis, 570-2 
Number of correlations 

canonical correlation, 400-5 
Number of points 

linear regression, 300-33 
Numeric data, 102-1 
Numeric functions, 119-6 

O 
Objective function 

linear programming, 480-1 
Observational study matching, 123-1 
Observational study stratification, 

124-1 
Odds ratio 

1-sample binary diagnostic test, 
535-4 

2-sample binary diagnostic, 537-
9 

confidence interval of, 515-23 
correlated proportions, 520-5 
meta-analysis of correlated 

proportions, 457-2 
meta-analysis of proportions, 

456-2 
two proportions, 515-1, 515-3 

Odds ratios 
Mantel-Haenszel test, 525-1 

ODOR dataset, 330-3, 330-11 
Omission report 

multiple regression, 305-54 
One proportion, 510-1 
One-sample tests, 205-1 
One-sample t-test, 205-1 
One-way analysis of variance, 210-1 
One-way ANOVA 

Bonferroni, 210-4 
Duncan’s test, 210-5 
Dunn’s test, 210-7 
Dunnett’s test, 210-6 
Fisher's LSD, 210-6 
Hsu’s test, 210-6 
Kruskal-Wallis Z test, 210-7 
multiple comparisons, 210-3 
Newman-Keuls test, 210-8 
orthogonal contrasts, 210-11 
orthogonal polynomials, 210-11 
planned comparisons, 210-10 
Scheffe’s test, 210-8 
Tukey-Kramer test, 210-8 

Open database, 103-1 
Open log file, 106-2 
Open output file, 106-2 
Open spreadsheet, 103-1 
Open template, 105-1 
Opening a database 

tutorial, 101-3 
Optimal matching, 123-1, 123-2 
Optimal solution section 

linear programming, 480-5 
Optimal value 

linear programming, 480-5 
Or 

if-then transformation, 120-2 
Ordinal variables 

fuzzy clustering, 448-4 
hierarchical clustering, 445-6 
medoid partitioning, 447-2 

Original cost 
linear programming, 480-5 

Orthogonal arrays, 266-1 
Orthogonal contrasts 

one-way ANOVA, 210-11 
Orthogonal polynomial 

ANOVA balanced, 211-6 
GLM, 212-5 
repeated measures, 214-11 

Orthogonal polynomials 
one-way ANOVA, 210-11 

Orthogonal regression 
linear regression, 300-9, 300-41 

Orthogonal sets of Latin squares, 
263-2 

Outlier detection 
linear regression, 300-64 
multiple regression, 305-83 

Outlier report 
linear regression, 300-66 

Outliers 
Cox regression, 565-14 
linear regression, 300-15 
multiple regression, 305-1, 305-

24, 305-78 
stepwise regression, 311-3 
t-test, 205-22 

Outliers, 200-3 
Output, 106-1 

log of, 9-6 
printing, 9-4 
ruler, 106-4 
saving, 9-5 

Output document, 106-1 
Output window, 1-6, 9-1 
Overdispersion 

Poisson regression, 325-3, 325-12 
Overlay 

scatter plot, 161-3 
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P 
Page setup, 103-2 
PAIN dataset, 220-51 
Paired data 

clustered binary diagnostic, 538-
11 

Paired t-test 
1-Sample T2, 405-1 

Paired t-tests, 205-1 
Pair-wise removal 

correlation matrix, 401-3 
Paradox exporting, 116-1 
Paradox importing, 115-1 
Parallel slopes 

multiple regression, 305-86 
Parameterization 

curve fitting, 350-5 
Pareto chart, 253-1 
Pareto charts, 250-41 
Parsimony 

ratio of polynomials, 370-2 
Partial association 

loglinear models, 530-5 
Partial autocorrelation, 472-1 
Partial autocorrelation function 

Box Jenkins, 470-4 
Partial correlation 

multiple regression, 305-56 
Partial residual plots, 305-71 
Partial variables 

canonical correlation, 400-4 
correlation matrix, 401-3 

Partial-regression coefficients, 305-
47 

Partition coefficient 
fuzzy clustering, 448-3 

Paste, 103-4 
Paste output, 106-3 
Pasting data, 7-2 
PCA, 425-1 
PCA2 dataset, 118-4, 420-5, 420-11, 

425-9, 425-15 
P-chart, 251-1 
Pearson chi-square 

loglinear models, 530-4, 530-13 
Pearson correlation 

linear regression, 300-45 
Pearson correlations 

matrix of, 401-1 
Pearson residuals 

logistic regression, 320-13 
Poisson regression, 325-5, 325-31 

Pearson test 
Poisson regression, 325-3 

Pearson’s contingency coefficient 
cross tabulation, 501-14 

Percentile plots, 140-5 
Percentile Plots, 153-1 
Percentile type 

descriptive statistics, 200-6 
Percentiles, 200-2 
Percentiles of absolute residuals 

multiple regression, 305-78 
Period effect 

cross-over analysis using t-tests, 
235-4 

Period plot 
cross-over analysis using t-tests, 

235-24 
Periodogram 

spectral analysis, 468-1 
Perspective 

3D scatter plot, 170-6 
3D surface plot, 171-6 
bar charts, 141-12 

PET dataset, 538-11 
Peto-Peto test 

Kaplan-Meier, 555-12 
nondetects analysis, 240-3 

Phase 
spectral analysis, 468-1 

Phi 
cross tabulation, 501-14 
factor analysis, 420-13 
Poisson regression, 325-3, 325-

12, 325-27 
principal components analysis, 

425-17 
Phis 

theoretical ARMA, 475-2 
Pie charts, 140-2, 142-1 
PIE dataset, 142-6 
Piecewise polynomial models, 365-1 
Pillai's trace 

MANOVA, 415-3 
Plackett-Burman design, 265-1 
Planned comparisons 

one-way ANOVA, 210-10 
PLANT dataset, 212-27 
Plot size 

linear regression, 300-29 
Plots 

3D scatter plots, 140-10, 170-1 
3D surface plots, 140-10, 171-1 
area charts, 140-1, 141-1 
bar charts, 140-1, 141-1 
box plots, 140-5, 152-1 
contour plots, 140-11, 172-1 
density trace, 143-1 
dot plots, 140-4, 150-1 
error-bar charts, 140-6, 155-1 
function plots, 160-1 
grid plots, 140-11, 173-1 
histograms, 140-2, 143-1 
histograms - comparative, 140-4, 

151-1 
line charts, 140-1, 141-1 
percentile plots, 140-5, 153-1 
pie charts, 140-2 
probability plots, 140-3, 144-1 

scatter plot matrix, 140-8, 162-1 
scatter plot matrix (curve fitting), 

163-1 
scatter plot matrix for curve 

fitting, 140-9 
scatter plots, 140-7, 161-1 
single-variable charts, 140-1 
surface charts, 140-1, 141-1 
surface plots, 140-10, 171-1 
three-variable charts, 140-10 
two-variable charts, 140-4, 140-7 
violin plots, 140-6, 154-1 

POISREG dataset, 325-37 
Poisson distribution 

probablility calculator, 135-5 
simulation, 122-9 

Poisson regression, 325-1 
PoissonProb transformation, 119-11 
POLITIC dataset, 13-1, 14-1 
Polynomial 

logistic regression, 320-23 
multiple regression, 305-31 
multivariate ratio fit, 376-1 
Poisson regression, 325-11 

Polynomial fit 
scatter plot, 161-13 

Polynomial model 
response surface regression, 330-

1 
Polynomial models, 365-1 
Polynomial ratio fit, 375-1 
Polynomial ratios 

model search (many X variables), 
371-1 

Polynomial regression model, 330-1 
Polynomials 

ratio of, 370-1, 375-1 
Pooled terms, 213-2 
POR exporting, 116-1 
Portmanteau test 

ARIMA, 471-12 
automatic ARMA, 474-12 
Box Jenkins, 470-10 

Power 
multiple regression, 305-47 

Power spectral density 
spectral analysis, 468-3 

Power spectrum 
theoretical ARMA, 475-8 

PRD 
appraisal ratios, 485-8 

Precision-to-tolerance 
R & R, 254-20 

Precision-to-tolerance ratio 
R & R, 254-3 

Predicted value 
Poisson regression, 325-32 

Predicted values 
linear regression, 300-27, 300-52 
multiple regression, 305-61 

Prediction interval 
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multiple regression, 305-61 
Prediction limits 

linear regression, 300-33, 300-53, 
300-59 

multiple regression, 305-61 
Pre-post 

multiple regression, 305-87 
PREPOST dataset, 305-87 
PRESS 

linear regression, 300-21, 300-51 
multiple regression, 305-21, 305-

51 
PRESS R2 

multiple regression, 305-52 
Press R-squared 

multiple regression, 305-21 
PRESS R-squared 

linear regression, 300-22 
Prevalence 

ROC curves, 545-5 
Price related differential 

appraisal ratios, 485-8 
hybrid appraisal models, 487-17 

Principal axis method 
factor analysis, 420-1 

Principal components 
linear regression, 300-9 

Principal components analysis, 425-
1 

Principal components regression, 
340-1 

Print 
output, 106-3 

Printer setup, 103-2 
Printing 

data, 2-7, 103-3 
output, 9-4 
output reports, 4-5 

Printing data, 117-1 
Prior probabilities 

discriminant analysis, 440-5 
Prob level, 415-13 

linear regression, 300-47 
Prob to enter 

stepwise regression, 311-4 
Prob to remove 

stepwise regression, 311-4 
Probability Calculator, 135-1 

Beta distribution, 135-1 
Binomial distribution, 135-2 
Bivariate normal distribution, 

135-2 
Chi-square distribution, 135-2 
Correlation coefficient 

distribution, 135-3 
F distribution, 135-3 
Gamma distribution, 135-4 
Hotelling’s T2 distribution, 135-4 
Hypergeometric distribution, 

135-4 

Negative binomial distribution, 
135-5 

Normal distribution, 135-5 
Poisson distribution, 135-5 
Student’s t distribution, 135-6 
Studentized range distribution, 

135-6 
Weibull distribution, 135-6 

Probability ellipse 
linear regression, 300-8, 300-33 

Probability functions 
transformations, 119-8 

Probability plot 
descriptive statistics, 200-26 
linear regression, 300-57 
multiple regression, 305-67 
t-test, 205-20 
Weibull, 144-17 

Probability plot style file, 144-19 
Probability plots, 140-3 

asymmetry, 144-3 
quantile scaling, 144-7 

Probability Plots, 144-1 
Probit analysis, 575-1 
Probit plot 

probit analysis, 575-10 
Procedure, 105-1 

running, 101-3 
Procedure window, 1-5, 8-1 
Product-limit survival distribution 

beta distribution fitting, 551-14 
gamma distribution fitting, 552-

16 
Kaplan-Meier, 555-32 
Weibull fitting, 550-33 

Product-moment correlation 
correlation matrix, 401-3 

Profiles 
correspondence analysis, 430-1 

Projection method 
3D scatter plot, 170-8 
3D surface plot, 171-7 
bar charts, 141-14 

PROPENSITY dataset, 123-5, 123-
12, 124-4 

Propensity score, 123-2 
stratification, 124-1 

Proportion trend test 
Armitage, 501-5 

Proportions 
2-sample binary diagnostic, 537-

1 
clustered binary diagnostic, 538-1 
confidence interval of ratio, 515-

21 
correlated, 520-1 
Meta-analysis of correlated 

proportions, 457-1 
meta-analysis of proportions, 

456-1 
one, 510-1 

paired binary diagnostic, 536-1 
two, 515-1 

Proportions test 
1-sample binary diagnostic test, 

535-1 
Proximity matrix 

multidimensional scaling, 435-1 
Proximity measures 

multidimensional scaling, 435-4 
Pseudo R-squared 

multidimensional scaling, 435-12 
Poisson regression, 325-4 

Pure error 
linear regression, 300-16 

Q 
QATEST dataset, 250-14, 250-27, 

250-33, 250-35, 250-37, 251-3, 
251-11, 253-2, 253-7, 253-9 

Quadratic fit 
curve fitting, 351-2 

Qualitative factors 
D-optimal designs, 267-6, 267-25 

Quality 
correspondence analysis, 430-13 

Quantile scaling 
probability plots, 144-7 

Quantile test, 205-17 
Quantiles 

Kaplan-Meier, 555-30 
Quartiles 

descriptive statistics, 200-21 
Quartimax rotation 

factor analysis, 420-4 
principal components analysis, 

425-8 
Quatro exporting, 116-1 
Quick launch window, 107-1, 107-2 
Quick start, 100-1 
Quitting NCSS, 101-4 

R 
R & R study, 254-1 
Radial plot 

meta analysis of hazard ratios, 
458-18 

meta-analysis of correlated 
proportions, 457-21 

meta-analysis of means, 455-18 
meta-analysis of proportions, 

456-21 
Random coefficients example 

mixed models, 220-103 
Random coefficients models 

mixed models, 220-5 
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Random effects model 
meta-analysis of correlated 

proportions, 457-5 
meta-analysis of hazard ratios, 

458-5 
meta-analysis of means, 455-4 
meta-analysis of proportions, 

456-5 
Random effects models, 220-1 

mixed models, 220-4 
Random factor 

ANOVA balanced, 211-5 
GLM, 212-4 
repeated measures, 214-8 

Random numbers, 122-1 
uniform, 15-1 

Randomization 
Latin square designs, 263-2 

Randomization test 
curve fitting, 351-16 
linear regression, 300-24 
log-rank, 555-1 
T2, 410-7 

Randomization tests 
1-Sample T2, 405-1, 405-8 
T2, 410-1 

Randomized block design 
repeated measures, 214-6 

RandomNormal transformation, 119-
11 

Random-number functions 
transformations, 119-11 

Range 
descriptive statistics, 200-17 
interquartile, 200-17 

Range chart, 250-1 
Rank transformation, 119-16 
Rate ratio 

Poisson regression, 325-30 
Ratio of polynomials 

model search (many X variables), 
371-1 

model search (one X variable), 
370-1 

Ratio of polynomials fit, 375-1 
many variables, 376-1 

Ratio of two proportions 
two proportions, 515-6 

Ratio plot 
decomposition forecasting, 469-

12 
Ratio section 

appraisal ratios, 485-7 
Ratio study 

appraisal ratios, 485-1 
Ratio variables 

fuzzy clustering, 448-4 
hierarchical clustering, 445-6 
medoid partitioning, 447-2 

Rayleigh test 
circular data, 230-4 

Rbar-squared 
linear regression, 300-8 
multiple regression, 305-15 

RCBD data example 
mixed models, 220-94 

RCBD dataset, 220-94 
REACTION dataset, 214-6, 214-29 
Readout 

parametric survival regression, 
566-3 

Weibull fitting, 550-11 
READOUT105 dataset, 550-47 
Rearrangement functions 

transformations, 119-12 
Recalc all, 103-9, 119-4 
Recalc current, 103-8, 119-4 
Reciprocal model 

curve fitting, 351-4 
growth curves, 360-2 

Recode functions transformations, 
119-14 

Recode transformation, 3-4, 119-15 
Recoding, 11-1 
Reduced cost 

linear programming, 480-5 
Redundancy indices 

canonical correlation, 400-4 
Reference group 

logistic regression, 320-19 
Reference value 

logistic regression, 320-21 
multiple regression, 305-3, 305-

29 
Poisson regression, 325-9 
Xbar R, 250-23 

Reflection C.I. method 
multiple regression, 305-41 

Reflection method 
linear regression, 300-30 
two proportions, 515-28 

REGCLUS dataset, 449-2, 449-5 
Regression 

all possible, 312-1 
appraisal model, 487-1 
backward selection, 311-2 
binary response, 320-1, 320-8 
clustering, 449-1 
Cox, 565-1 
diagnostics, 305-63 
exponential, 566-1 
extreme value, 566-1 
forward selection, 311-1 
growth curves, 360-1 
hybrid appraisal model, 487-1 
linear, 300-1 
logistic, 320-1, 566-1 
log-logistic, 566-1 
lognormal, 566-1 
model search (many X variables), 

371-1 
multiple, 312-8 

nondetects, 345-1 
nonlinear, 315-1 
normal, 566-1 
orthogonal regression, 300-9 
Poisson, 325-1 
polynomial ratio, 375-1 
polynomial ratio (search), 370-1 
principal components, 340-1 
proportional hazards, 565-1 
response surface regression, 330-

1 
ridge, 335-1 
stepwise, 311-1 
sum of functions models, 380-1 
user written, 385-1 
variable selection, 311-1 
Weibull, 566-1 

Regression analysis, 6-1 
multiple regression, 305-1 

Regression clustering, 449-1 
Regression coefficients 

Cox regression, 565-32 
Regression coefficients report 

multiple regression, 305-48 
Regression equation report 

multiple regression, 305-46 
Relative risk 

meta-analysis of correlated 
proportions, 457-2 

meta-analysis of proportions, 
456-2 

two proportions, 515-1 
Reliability 

beta distribution fitting, 551-1, 
551-15 

gamma distribution fitting, 552-1 
item analysis, 505-1 
Kaplan-Meier, 555-1 
kappa, 501-15 
Weibull fitting, 550-1 

Reliability analysis 
Weibull fitting, 550-1 

Reliability function 
beta distribution fitting, 551-2 
gamma distribution fitting, 552-2 
Weibull fitting, 550-2 

Remove last sheet, 103-2 
Remove transformation, 119-18 
Removed lambda 

discriminant analysis, 440-12 
Repeat transformation, 119-18 
Repeatability 

R & R, 254-1, 254-14 
Repeated measures, 214-1 

1-Sample T2, 405-6 
mixed models, 220-1 

Repeated measures data example 
mixed models, 220-51 

Repeated measures design 
generating, 268-7 

Repeated-measures design 
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GLM, 212-23 
Replace, 103-6 
Replace in output, 106-4 
Replace transformation, 119-18 
Replication 

two level designs, 260-4 
Reporting data, 117-1 
Reports 

selecting in linear regression, 
300-26 

Reproducibility 
R & R, 254-1, 254-14 

RESALE dataset, 117-4, 151-14, 
155-1, 155-7, 201-1, 201-11, 
201-12, 201-14, 201-15, 201-17, 
201-19, 201-21, 305-81, 500-1, 
500-9, 500-10, 500-12, 500-14, 
501-1, 501-8, 501-11, 501-17 

Resampling tab 
linear regression, 300-29 

Residual 
diagnostics, 305-63 
linear regression, 300-2, 300-18 
multiple regression, 305-17 

Residual diagnostics 
linear regression, 300-15 
multiple regression, 305-15 
Poisson regression, 325-33 

Residual life 
life-table analysis, 570-22 
Weibull fitting, 550-40 

Residual plots 
linear regression, 300-53 
multiple regression, 305-67, 305-

70 
partial residuals, 305-71 

Residual report 
linear regression, 300-61 
multiple regression, 305-62 

Residuals 
Cox regression, 565-13 
Cox regression, 565-39 
logistic regression, 320-11 
multiple regression, 305-1 
Poisson regression, 325-4, 325-31 

Residuals-deviance 
Cox regression, 565-14 

Residuals-Martingale 
Cox regression, 565-13 

Residuals-scaled Schoenfeld 
Cox regression, 565-15 

Residuals-Schoenfeld 
Cox regression, 565-14 

Response surface regression, 330-1 
Response-surface designs, 264-1 
Restart method 

Xbar R, 250-23 
Restricted maximum likelihood 

mixed models, 220-18 
Richards model 

curve fitting, 351-8 

growth curves, 360-7 
Ridge regression, 335-1 
Ridge trace 

ridge regression, 335-4, 335-18 
RIDGEREG dataset, 335-7, 335-15, 

340-3, 340-11 
Right censored 

parametric survival regression, 
566-2 

Weibull fitting, 550-11 
Right transformation, 119-19 
Right-hand sides 

linear programming, 480-1 
Risk ratio 

correlated proportions, 520-4 
Cox regression, 565-33, 565-35 
meta-analysis of correlated 

proportions, 457-2 
meta-analysis of proportions, 

456-2 
Risk set 

Cox regression, 565-16 
Kaplan-Meier, 555-3 

RMSF dataset, 545-3 
RNDBLOCK dataset, 211-4, 211-11, 

212-3, 212-12 
Robins odds ratio C. L. 

Mantel-Haenszel test, 525-11 
Robust estimation 

principal components analysis, 
425-5 

Robust iterations 
Xbar R, 250-18 

Robust loess 
linear regression, 300-14 

Robust method 
multiple regression, 305-39 

Robust regression 
multiple regression, 305-24, 305-

31 
Robust regression reports 

multiple regression, 305-77 
Robust regression tutorial 

multiple regression, 305-76 
Robust sigma multiplier 

Xbar R, 250-18 
Robust tab 

multiple regression, 305-39 
Robust weight 

factor analysis, 420-7 
principal components analysis, 

425-11 
Robust weights 

multiple regression, 305-78 
ROC curves, 545-1 

comparing, 545-9 
ROC dataset, 545-19 
Root MSE 

all possible regressions, 312-8 
Rose plot 

circular data, 230-16 

Rose plots, 230-1 
Rotation 

3D scatter plot, 170-7 
3D surface plot, 171-7 
bar charts, 141-13 
factor analysis, 420-7 
principal components analysis, 

425-11 
Round transformation, 119-7 
Row heights, 103-15 
Row profiles 

correspondence analysis, 430-1 
Rows, 251-4, 251-5 
Row-wise removal 

correlation matrix, 401-3 
Roy’s largest root 

MANOVA, 415-4 
RRSTUDY dataset, 254-1, 254-10 
RRSTUDY1 dataset, 254-24 
R-squared 

adjusted, 300-46 
adjusted, 305-45 
all possible regressions, 312-8 
Cox regression, 565-11 
definition, 305-44 
linear regression, 300-7, 300-46 
logistic regression, 320-10 
multiple regression, 305-14 
Poisson regression, 325-4, 325-24 

R-squared increment 
stepwise regression, 311-8 

R-squared report 
multiple regression, 305-53 

R-squared vs variable count plot, 
310-8 

RStudent 
linear regression, 300-20, 300-62 
multiple regression, 305-19, 305-

63 
RStudent plot 

multiple regression, 305-69 
Rstudent residuals 

scatter plot of, 300-55 
RTF, 106-3 

tutorial, 101-4 
RTF output format, 106-1 
Ruler 

output, 106-4 
Run summary report 

multiple regression, 305-44 
Running a procedure 

tutorial, 101-3 
Running a regression analysis, 6-1 
Running a two-sample t-test, 5-1 
Running descriptive statistics, 4-1 
Runs tests 

attribute charts, 251-3 
Xbar R, 250-9 
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S 
S0 database, 102-1 
S0/S0Z comparison, 102-4 
S0Z/S0 comparison, 102-4 
Sale date variable 

appraisal ratios, 485-4 
comparables, 486-7 

Sale price variables 
appraisal ratios, 485-2 

SALES dataset, 467-9, 469-9 
Sales price 

multiple regression, 305-81 
SALESRATIO dataset, 485-1, 485-

6, 486-4 
SAMPLE dataset, 101-3, 161-20, 

162-5, 171-9, 172-7, 200-4, 200-
10, 205-12, 206-12, 210-16, 310-
3, 310-6, 311-3, 311-6, 312-2, 
312-6, 400-8, 401-2, 401-5, 585-
8 

SAS exporting, 116-1 
SAS importing, 115-1 
Saturated model 

loglinear models, 530-3 
Save, 103-3 
Save as, 103-3 
Save output, 106-3 
Saved colors, 180-3 
Saving 

data, 2-6 
tutorial, 101-2 

output, 9-5 
template, 8-5 

Saving a template, 105-2 
Saving results 

multiple regression, 305-42 
SC 

medoid partitioning, 447-5 
Scaled Schoenfeld residuals 

Cox regression, 565-15, 565-42 
Scaling 

multidimensional, 435-1 
Scaling factors 

D-optimal designs, 267-2 
Scaling method 

fuzzy clustering, 448-5 
hierarchical clustering, 445-8 

Scatter plot 
loess smooth, 161-14 
lowess smooth, 161-14 
median smooth, 161-15 
overlay, 161-3 
polynomial fit, 161-13 
spline, 161-15 
sunflower plot, 161-18 

Scatter plot matrix, 140-8, 162-1 
Scatter plot matrix (curve fitting), 

163-1 

Scatter plot matrix for curve fitting, 
140-9 

Scatter plot style file, 161-22 
Scatter plots, 140-7, 161-1 

3D, 140-10, 170-1 
Scheffe’s test 

one-way ANOVA, 210-8 
Schoenfeld residuals 

Cox regression, 565-14, 565-41 
Schuirmann’s test 

cross-over analysis using t-tests, 
235-7 

Scientific notation, 102-4 
Score, 320-45 
Score coefficients 

factor analysis, 420-17 
principal components analysis, 

425-2 
Scores plots 

canonical correlation, 400-12 
Scree graph 

factor analysis, 420-3 
Scree plot 

factor analysis, 420-15 
principal components analysis, 

425-18 
Screening data, 118-1, 200-3 
Screening designs, 265-1 
Searches 

ratio of polynomials, 370-1, 371-
1 

Seasonal adjustment 
exponential smoothing, 467-1 

Seasonal autoregressive parameters 
ARIMA, 471-3 

Seasonal decomposition forecasting, 
469-1 

Seasonal differencing 
ARIMA, 471-2 

Seasonal moving average parameters 
ARIMA, 471-3 

Seasonal time series 
Box Jenkins, 470-4 

Second format, 102-8 
Select all output, 106-4 
Selecting procedures, 1-7 
Selection method 

stepwise regression, 311-4 
Selection procedure 

forward, 311-1 
Sensitivity 

1-sample binary diagnostic test, 
535-2 

2-sample binary diagnostic, 537-
2 

clustered binary diagnostic, 538-8 
paired binary diagnostic, 536-2 
ROC curves, 545-1, 545-24 

Sequence plot 
multiple regression, 305-69 

Sequence transformation, 119-6 

Sequential models report 
multiple regression, 305-56 

Ser transformation, 119-6 
Serial correlation 

linear regression, 300-4 
residuals, 305-53 

Serial correlation plot 
multiple regression, 305-68 

Serial numbers, 1-3, 100-1 
Serial-correlation 

linear regression, 300-50 
SERIESA dataset, 470-8, 474-7 
Shapiro-Wilk 

linear regression, 300-18 
multiple regression, 305-17 

Shapiro-Wilk test 
descriptive statistics, 200-22 
linear regression, 300-49 

Shinozaki and Kari model 
curve fitting, 351-4 
growth curves, 360-2 

Short transformation, 119-7 
Sigma 

Xbar R, 250-19 
Sigma multiplier 

Xbar R, 250-17 
Sign test, 205-17 
Sign transformation, 119-8 
SIGN(z) 

piecewise polynomial models, 
365-6 

Signal-to-noise ratio 
R & R, 254-3 

Silhouette 
fuzzy clustering, 448-9 
medoid partitioning, 447-13 

Silhouettes 
medoid partitioning, 447-5 

Similarities 
multidimensional scaling, 435-4 

Simple average 
double dendrograms, 450-2 
hierarchical clustering, 445-3 

Simplex algorithm 
linear programming, 480-1 

Simulation, 122-1 
Beta distribution, 122-3 
Binomial distribution, 122-5 
Cauchy distribution, 122-5 
Constant distribution, 122-6 
contaminated normal, 122-21 
data, 15-1 
Exponential distribution, 122-6 
F distribution, 122-7 
Gamma distribution, 122-7 
Likert-scale, 122-8, 122-22 
Multinomial distribution, 122-8 
Normal distribution, 122-9, 122-

20 
Poisson distribution, 122-9 
skewed distribution, 122-10 
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Student's T distribution, 122-10 
syntax, 122-13 
T distribution, 122-10 
Tukey's lambda distribution, 122-

10 
Uniform distribution, 122-11 
Weibull distribution, 122-12 

Simultaneous C.I.’s 
T2, 405-9, 410-10 

Sin transformation, 119-17 
Single linkage 

double dendrograms, 450-2 
hierarchical clustering, 445-3 

Single-to-noise ratio 
R & R, 254-19 

Single-variable charts, 140-1 
Sinh transformation, 119-17 
Skewed distribution 

simulation, 122-10 
Skewness, 200-2 

descriptive statistics, 200-17 
t-test, 205-15 

Skewness test 
descriptive statistics, 200-24 

Slices 
pie charts, 142-1 

Slope 
linear regression, 300-39 

Slopes 
testing for equal 

multiple regression, 305-86 
SMOKING dataset, 525-2, 525-5 
Smooth transformation, 119-16 
Smoothing constant 

exponential smoothing, 465-1, 
466-2 

Smoothing constants 
exponential smoothing, 467-2 

Smoothing interval 
item response analysis, 506-4 

Solo exporting, 116-1 
Solo exporting, 116-1 
Solo importing, 115-1 
Sort, 103-6 
Sort transformation, 119-12 
Spath 

medoid partitioning, 447-4 
SPC fundamentals 

Xbar R, 250-38 
Spearman correlation 

linear regression, 300-45 
Spearman rank 

correlation matrix, 401-3 
Spearman rank correlation 

linear regression, 300-12 
Specificity 

1-sample binary diagnostic test, 
535-2 

2-sample binary diagnostic, 537-
2 

clustered binary diagnostic, 538-8 

paired binary diagnostic, 536-2 
ROC curves, 545-1, 545-24 

Spectral analysis, 468-1 
Spectral density 

spectral analysis, 468-3 
Spectrum 

spectral analysis, 468-1 
Sphericity test 

factor analysis, 420-14 
Splice transformation, 119-12 
Spline 

scatter plot, 161-15 
Split plot analysis 

mixed models, 220-1 
Split plot data example 

mixed models, 220-98 
Spread, 140-5 
Spreadsheet 

limits, 102-1 
overview, 102-1 

Spreadsheet/database comparison, 
102-4 

SPSS importing, 115-1 
Sqrt transformation, 119-8 
Standard deviation, 200-16 

confidence limits, 207-2 
descriptive statistics, 200-16 
ratio, 207-2 
unbiased, 200-17 

Standard error, 200-13 
linear regression, 300-40 
Poisson regression, 325-26 

Standardization 
PC regression, 340-1 
ridge regression, 335-3 

Standardize transformation, 119-16 
Standardized coefficients 

linear regression, 300-40 
multiple regression, 305-49 

Standardized difference, 123-15 
Standardized residual 

linear regression, 300-19, 300-61, 
300-64 

multiple regression, 305-18, 305-
63 

nondetects regression, 345-13 
Start time variable 

Weibull fitting, 550-12 
Starting NCSS, 1-2, 2-1, 100-1, 101-

2 
Starting values 

curve fitting, 350-3 
nonlinear regression, 315-1 

Stata file exporting, 116-1 
Statistical functions transformations, 

119-15 
Std error 

of kurtosis, 200-18 
of skewness, 200-18 
of standard deviation, 200-16 
of variance, 200-15 

of X-mean, 200-20 
Std Error 

of Coefficient of Variation, 200-
18 

Stddev transformation, 119-16 
StdRangeProb transformation, 119-

11 
StdRangeValue transformation, 119-

11 
Stem-leaf 

depth, 200-27 
leaf, 200-28 
stem, 200-27 
unit, 200-28 

Stem-leaf plot 
descriptive statistics, 200-27 

Stephens test 
circular data, 230-7 

Stepwise regression, 311-1 
Cox regression, 565-11 
logistic regression, 320-17 
multiple regression, 305-23 
Poisson regression, 325-6 

Storing results 
linear regression, 300-35 
multiple regression, 305-42 

Stratification based on propensity 
scores, 124-1 

Stratification of a database, 124-1 
Stress 

multidimensional scaling, 435-3 
Stress A 

parametric survival regression, 
566-6 

Stress B 
parametric survival regression, 

566-6 
Stress plot 

parametric survival regression, 
566-19 

Stress variable 
parametric survival regression, 

566-6 
Student’s t distribution 

probablility calculator, 135-6 
Studentized deviance residuals 

Poisson regression, 325-5 
Studentized Pearson residuals 

Poisson regression, 325-5 
Studentized range 

one-way ANOVA, 210-5 
Studentized range distribution 

probablility calculator, 135-6 
Studentized residuals 

Poisson regression, 325-34 
Studentized-range distribution 

transformation, 119-11 
Student's T distribution 

simulation, 122-10 
Style file 

grid plot, 173-8 
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Style file 
box plot, 152-13 
histogram, 143-16 
probability plot, 144-19 
scatter plot, 161-22 

Style files 
multiple regression, 305-38 

Subset of a database, 14-1 
Subset selection 

Cox regression, 565-11, 565-48 
logistic regression, 320-17 
multiple regression, 305-23, 305-

32 
Poisson regression, 325-6, 325-37 

Subset selection report 
multiple regression, 305-80 

Subset selection tutorial 
multiple regression, 305-79 

Sum of exponentials 
curve fitting, 351-9 
growth curves, 360-8 

Sum of functions models, 380-1 
Sum of squares 

multiple regression, 305-49, 305-
55 

Sum transformation, 119-16 
Sunflower plot 

scatter plot, 161-18 
SUNSPOT dataset, 468-9, 472-7 
Support services, 100-2 
Surface charts, 140-1, 141-1 
Surface plot 

depth, 171-7 
elevation, 171-6 
perspective, 171-6 
projection method, 171-7 
rotation, 171-7 

Surface plots, 140-10, 171-1 
Survival 

cumulative, 565-4 
Survival analysis 

Kaplan-Meier, 555-1 
life-table analysis, 570-1 
time calculator, 580-1 
Weibull fitting, 550-1 

Survival curves 
Kaplan-Meier, 555-1 

SURVIVAL dataset, 555-14, 555-
37, 575-1, 575-5 

Survival distribution 
Cox regression, 565-2 

Survival function 
Kaplan-Meier, 555-2 
Weibull fitting, 550-2 

Survival plot 
Kaplan-Meier, 555-35 

Survival quantiles 
Kaplan-Meier, 555-6, 555-30 

SUTTON 22 dataset, 456-6, 456-14 
SUTTON30 dataset, 455-6, 455-13 
Symbol settings window, 181-1 

Symmetric-binary variables 
fuzzy clustering, 448-4 
hierarchical clustering, 445-6 
medoid partitioning, 447-2 

Symmetry, 200-2, 206-25 
Symphony exporting, 116-1 
Syntax 

macros, 130-2 
SYS exporting, 116-1 
Systat exporting, 116-1 
Systat importing, 115-1 
System requirements, 1-1 

T 
T distribution 

simulation, 122-10 
T2 alpha 

data screening, 118-3 
T2 Dataset, 405-3, 405-5, 405-10 
T2 value, 410-7 
Tables 

descriptive, 201-1 
Taguchi designs, 266-1 
Tan transformation, 119-17 
Tanh transformation, 119-17 
Target specification, 250-20 
Tarone-Ware test 

Kaplan-Meier, 555-12 
nondetects analysis, 240-3 

Template, 105-1 
default, 105-1 
new, 105-1 
open, 105-1 
save, 105-2 
saving, 8-5 

Terms 
multiple regression, 305-35 

Text data, 102-1 
Text functions transformations, 119-

17 
Text settings window, 182-1 
Theoretical ARMA, 475-1 
Thetas 

theoretical ARMA, 475-2 
Three-variable charts, 140-10 
Threshold limit 

Xbar R, 250-23 
Tick label settings window, 186-1 
Tick settings window, 185-1 
Tickmarks, 185-1 
Ties method 

Cox regression, 565-17 
Tile horizontally, 106-5 
Tile vertically, 106-5 
Time calculator, 580-1 
Time format, 102-8 
Time remaining 

life-table analysis, 570-4 

Time variable 
Cox regression, 565-16 
life-table analysis, 570-6 
parametric survival regression, 

566-4 
TIMECALC dataset, 580-3 
TNH(Z) 

piecewise polynomial models, 
365-6 

Tolerance 
multiple regression, 305-57 
PC regression, 340-13 
ridge regression, 335-17 

Tolerance intervals, 585-1 
Toolbar 

customizing, 107-3 
Topic search 

goto window, 106-4 
TOST 

two-sample, 207-1 
Tprob transformation, 119-11 
TPT exporting, 116-1 
Transformation 

recoding, 3-4 
Transformation operators, 119-4 
Transformations, 3-1, 102-6, 119-1 

Abs, 119-7 
Arc sine, 119-17 
Arc tangent, 119-17 
ArCosh, 119-17 
Arsine, 119-17 
ArSinh, 119-17 
ArTan, 119-17 
ArTanh, 119-17 
Average, 119-15 
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BetaValue, 119-8 
BinomProb, 119-8 
BinomValue, 119-8 
BinormProb transformation, 119-
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Collate, 119-12 
conditional, 120-1 
Contains, 119-17 
CorrProb, 119-8 
CorrValue, 119-8 
Cos, 119-17 
Cosh, 119-17 
Cosine, 119-17 
Count, 119-15 
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CsValue, 119-9 
Cum, 119-7 
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Day, 119-6 
Exp, 119-7 
ExpoProb, 119-9 
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Extract, 119-18 
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Fprob, 119-9 
Fraction, 119-7 
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GammaProb, 119-9 
GammaValue, 119-9 
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indicator variables, 119-19 
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Join, 119-18 
Julian date, 119-6 
Lagk, 119-16 
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numeric functions, 119-6 
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rearrangement functions, 119-12 
Recode, 119-15 
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Sequence, 119-6 
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Smooth, 119-16 
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Standardize, 119-16 
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Stddev, 119-16 
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StdRangeValue, 119-11 
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Tanh, 119-17 
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trigonometric functions, 119-17 
Tvalue, 119-11 
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UnCollate, 119-13 
Uniform, 119-11 
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UnSplice, 119-14 
WeibullProb, 119-11 
WeibullValue, 119-11 
Year, 119-6 
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piecewise polynomial models, 
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Tricube weights 
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Trigamma 

beta distribution fitting, 551-14 
Trigonometric functions 

transformations, 119-17 
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descriptive statistics, 200-19 
Trimmed 

descriptive statistics, 200-19 
Trim-std dev 

descriptive statistics, 200-19 
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cross tabulation, 501-14 
T-test 

1-Sample T2, 405-1 
assumptions, 205-22 
average difference plot, 205-20 
bootstrapping, 205-3 
histogram, 205-20 
kurtosis, 205-15 
multiplicity factor, 205-19 
nonparametric tests, 205-17 
normality, 205-15 
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probability plot, 205-20 
skewness, 205-15 

T-test of difference 
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Tutorial 

general, 101-1 
linear regression, 300-37 
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Two proportions, 515-1 
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Two-way tables 
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TXT importing, 115-1 

U 
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Unconditional tests 
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Undo, 103-4 
Unequal variance t-test, 206-2 
Uniform distribution 

simulation, 122-11 
Uniform kernel 

Kaplan-Meier, 555-8 
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Weibull fitting, 550-34 
Uniform transformation, 119-11 
Uniformity test 

circular data, 230-3 
Uniques transformation, 119-13 
Unknown censor 

Cox regression, 565-18 
Kaplan-Meier, 555-17 
life-table analysis, 570-6 
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User written models, 385-1 
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properties of, 211-1 

V 
Validation 
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item analysis, 505-1 

Value labels, 13-1, 102-10 
Variable 

data type, 102-10 
format, 102-6 
labels, 102-6 
names, 101-1, 102-5 
numbers, 102-5 
transformations, 102-6 

Variable format, 102-6 
Variable info, 102-5 

tutorial, 101-2 
Variable info file, 102-1 
Variable info sheet, 102-1 
Variable info tab, 2-4 
Variable labeling, 2-4 
Variable labels, 102-6 
Variable matching, 123-3 
Variable name, 2-4 
Variable names, 102-5 

rules for, 2-5 
Variable numbers, 102-5 
Variable selection, 310-1 

Cox regression, 565-11 
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multiple regression, 305-23 
Poisson regression, 325-6 
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425-8 
Variables 
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Variance 
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multiple regression, 305-13 

Variance components 
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Variance inflation factor 
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PC regression, 340-12 
ridge regression, 335-16 

Variance inflation factor plot 
ridge regression, 335-19 

Variance inflation factors 
ridge regression, 335-2 

Variance ratio test, 206-19 
Variance test 

equal, 206-19 
linear regression, 300-50 

Variances 
equality of, 206-20 
testing equality of multiple, 210-
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Variates 

canonical correlation, 400-1 
Varimax rotation 

factor analysis, 420-4 
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425-7 
VIF 

multiple regression, 305-8 
ridge regression, 335-2 

Violin plot 
density trace, 154-1 

Violin plots, 140-6, 154-1 
Von Mises distribution 

circular data, 230-5 

W 
W mean 

appraisal ratios, 485-8 
Wald method 

correlated proportions, 520-4 
Wald statistic 

Poisson regression, 325-26 
Wald test 

Cox regression, 565-11, 565-33 
logistic regression, 320-9 

Walter’s confidence intervals 
two proportions, 515-22 

Ward’s minimum variance 
double dendrograms, 450-3 
hierarchical clustering, 445-4 

Watson & Williams test 
circular data, 230-7 

Watson test 
circular data, 230-4 

Watson-Williams F test 
circular data, 230-10 
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550-44, 552-3, 552-12, 555-27 

Weibull distribution 
probablility calculator, 135-6 
simulation, 122-12 

Weibull fitting, 550-6 
Weibull fitting, 550-1 
Weibull model 

curve fitting, 351-7 
growth curves, 360-6 

Weibull probability plot, 144-17 
Weibull regression, 566-1 
WEIBULL2 dataset, 144-17 
WeibullProb transformation, 119-11 
WeibullValue transformation, 119-
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Weight variable 

linear regression, 300-25 
multiple regression, 305-28 

WEIGHTLOSS dataset, 220-85 
WESTGARD dataset, 252-9 
Westgard rules, 252-1 
Westlake’s confidence interval, 235-
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Whiskers 

box plot, 152-5 
Wilcoxon rank-sum test, 206-1, 206-

20 
Wilcoxon signed-rank test, 205-18 
Wilcoxon-Mann-Whitney test 

cross-over analysis using t-tests, 
235-8 

Wilks’ lambda 
canonical correlation, 400-10 
discriminant analysis, 440-2 
MANOVA, 415-2 

Wilson score limits 
one proportion, 510-2 

Wilson’s score 
correlated proportions, 520-3 
two proportions, 515-19 

Window 
data, 7-1 
output, 9-1 

Windows 
navigating, 1-4 

Winters forecasting 
exponential smoothing, 467-1 

Within factor 
repeated measures, 214-9 

Within subject 
repeated measures, 214-2 

WK exporting, 116-1 
WKQ exporting, 116-1 
Woolf’s odds ratio analysis 

Mantel-Haenszel test, 525-11 
Word processor, 9-1 
Working-Hotelling C.I. band 

linear regression, 300-6 
Working-Hotelling limits 

linear regression, 300-60 
WR1 exporting, 116-1 
WRK exporting, 116-1 

 



  Index-25 

 

X 
Xbar chart, 250-1 
Xbar R chart, 250-1 
XLS exporting, 116-1 

Y 
Year format, 102-8 

Year transformation, 119-6 
Yule-Walker 

automatic ARMA, 474-1 

Z 
Zero time replacement 

beta distribution fitting, 551-3 
cumulative incidence, 560-4 
gamma distribution fitting, 552-4 

parametric survival regression, 
566-4 

Weibull fitting, 550-13 
ZHOU 175 dataset, 545-33 
ZINC dataset, 345-15 
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