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Preface 
Number Cruncher Statistical System (NCSS) is an advanced, easy-to-use statistical analysis 
software package. The system was designed and written by Dr. Jerry L. Hintze over the last 
several years. Dr. Hintze drew upon his experience both in teaching statistics at the university 
level and in various types of statistical consulting. 

The present version, written for 32-bit versions of Microsoft Windows (95, 98, ME, 2000, NT, 
etc.) computer systems, is the result of several iterations. Experience over the years with several 
different types of users has helped the program evolve into its present form. 

Statistics is a broad, rapidly developing field. Updates and additions are constantly being made to 
the program. If you would like to be kept informed about updates, additions, and corrections, 
please send your name, address, and phone number to: 

 
 User Registration 
 NCSS 
 329 North 1000 East 
 Kaysville, Utah 84037 
  
or Email you name, address, and phone number to: 
 
 Sales@NCSS.COM 
 
NCSS maintains a website at WWW.NCSS.COM where we make the latest edition of NCSS 
available for free downloading. The software is password protected, so only users with valid 
serial numbers may use this downloaded edition. We hope that you will download the latest 
edition routinely and thus avoid any bugs that have been corrected since you purchased your 
copy. 

NCSS maintains the following program and documentation copying policy. Copies are limited to 
a one person / one machine basis for “BACKUP” purposes only. You may make as many backup 
copies as you wish. Further distribution constitutes a violation of this copy agreement and will be 
prosecuted to the fullest extent of the law. 

NCSS is not “copy protected.”  You may freely load the program onto your hard disk. We have 
avoided copy protection in order to make the system more convenient for you. Please honor our 
good faith (and low price) by avoiding the temptation to distribute copies to friends and 
associates. 

We believe this to be an accurate, exciting, easy-to-use system. If you find any portion that you 
feel needs to be changed, please let us know. Also, we openly welcome suggestions for additions 
to the system. 
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Chapter 300 

Linear Regression 
and Correlation 
Introduction  
Linear Regression refers to a group of techniques for fitting and studying the straight-line 
relationship between two variables. Linear regression estimates the regression coefficientsβ0  and 

1β  in the equation 

Y Xj j j= + +β β ε0 1  

where X is the independent variable, Y is the dependent variable, β0  is the Y intercept, β1  is the 
slope, and ε  is the error.  
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In order to calculate confidence intervals and hypothesis tests, it is assumed that the errors are 
independent and normally distributed with mean zero and variance . 2σ

Given a sample of N observations on X and Y, the method of least squares estimates β0  and β1  as 
well as various other quantities that describe the precision of the estimates and the goodness-of-fit 
of the straight line to the data. Since the estimated line will seldom fit the data exactly, a term for 
the discrepancy between the actual and fitted data values must be added. The equation then 
becomes  

y b b x e
y e

j j

j j

j= + +

= +
0 1

$
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where j is the observation (row) number, b  estimates 0 0β , b  estimates 1 1β , and  is the 
discrepancy between the actual data value  and the fitted value given by the regression 
equation, which is often referred to as . This discrepancy is usually referred to as the residual. 

ej

y j

$y j

Note that the linear regression equation is a mathematical model describing the relationship 
between X and Y. In most cases, we do not believe that the model defines the exact relationship 
between the two variables. Rather, we use it as an approximation to the exact relationship. Part of 
the analysis will be to determine how close the approximation is. 

Also note that the equation predicts Y from X. The value of Y depends on the value of X. The 
influence of all other variables on the value of Y is lumped into the residual.  

Correlation 
Once the intercept and slope have been estimated using least squares, various indices are studied 
to determine the reliability of these estimates. One of the most popular of these reliability indices 
is the correlation coefficient. The correlation coefficient, or simply the correlation, is an index 
that ranges from -1 to 1. When the value is near zero, there is no linear relationship. As the 
correlation gets closer to plus or minus one, the relationship is stronger. A value of one (or 
negative one) indicates a perfect linear relationship between two variables.  

Actually, the strict interpretation of the correlation is different from that given in the last 
paragraph. The correlation is a parameter of the bivariate normal distribution. This distribution is 
used to describe the association between two variables. This association does not include a cause 
and effect statement. That is, the variables are not labeled as dependent and independent. One 
does not depend on the other. Rather, they are considered as two random variables that seem to 
vary together. The important point is that in linear regression, Y is assumed to be a random 
variable and X is assumed to be a fixed variable. In correlation analysis, both Y and X are assumed 
to be random variables. 

Possible Uses of Linear Regression Analysis 
Montgomery (1982) outlines the following four purposes for running a regression analysis. 

Description 
The analyst is seeking to find an equation that describes or summarizes the relationship between 
two variables. This purpose makes the fewest assumptions. 

Coefficient Estimation  
This is a popular reason for doing regression analysis. The analyst may have a theoretical 
relationship in mind, and the regression analysis will confirm this theory. Most likely, there is 
specific interest in the magnitudes and signs of the coefficients. Frequently, this purpose for 
regression overlaps with others.  

Prediction 
The prime concern here is to predict the response variable, such as sales, delivery time, 
efficiency, occupancy rate in a hospital, reaction yield in some chemical process, or strength of 
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some metal. These predictions may be very crucial in planning, monitoring, or evaluating some 
process or system. There are many assumptions and qualifications that must be made in this case. 
For instance, you must not extrapolate beyond the range of the data. Also, interval estimates 
require that normality assumptions to hold. 

Control 
Regression models may be used for monitoring and controlling a system. For example, you might 
want to calibrate a measurement system or keep a response variable within certain guidelines. 
When a regression model is used for control purposes, the independent variable must be related to 
the dependent variable in a causal way. Furthermore, this functional relationship must continue 
over time. If it does not, continual modification of the model must occur. 

Assumptions 
The following assumptions must be considered when using linear regression analysis.  

Linearity 
Linear regression models the straight-line relationship between Y and X. Any curvilinear 
relationship is ignored. This assumption is most easily evaluated by using a scatter plot. This 
should be done early on in your analysis. Nonlinear patterns can also show up in residual plot. A 
lack of fit test is also provided. 

Constant Variance 
The variance of the residuals is assumed to be constant for all values of X. This assumption can 
be detected by plotting the residuals versus the independent variable. If these residual plots show 
a rectangular shape, we can assume constant variance. On the other hand, if a residual plot shows 
an increasing or decreasing wedge or bowtie shape, nonconstant variance (heteroscedasticity) 
exists and must be corrected.  

The corrective action for nonconstant variance is to use weighted linear regression or to transform 
either Y or X in such a way that variance is more nearly constant. The most popular variance 
stabilizing transformation is the to take the logarithm of Y.  

Special Causes 
It is assumed that all special causes, outliers due to one-time situations, have been removed from 
the data. If not, they may cause nonconstant variance, nonnormality, or other problems with the 
regression model. The existence of outliers is detected by considering scatter plots of Y and X as 
well as the residuals versus X. Outliers show up as points that do not follow the general pattern. 

Normality 
When hypothesis tests and confidence limits are to be used, the residuals are assumed to follow 
the normal distribution. 
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Independence 
The residuals are assumed to be uncorrelated with one another, which implies that the Y’s are also 
uncorrelated. This assumption can be violated in two ways: model misspecification or time-
sequenced data. 

1. Model misspecification. If an important independent variable is omitted or if an incorrect 
functional form is used, the residuals may not be independent. The solution to this 
dilemma is to find the proper functional form or to include the proper independent 
variables and use multiple regression. 

2. Time-sequenced data. Whenever regression analysis is performed on data taken over 
time, the residuals may be correlated. This correlation among residuals is called serial 
correlation. Positive serial correlation means that the residual in time period j tends to 
have the same sign as the residual in time period (j - k), where k is the lag in time periods. 
On the other hand, negative serial correlation means that the residual in time period j 
tends to have the opposite sign as the residual in time period (j - k). 

The presence of serial correlation among the residuals has several negative impacts.  

1. The regression coefficients remain unbiased, but they are no longer efficient, i.e., 
minimum variance estimates. 

2. With positive serial correlation, the mean square error may be seriously underestimated. 
The impact of this is that the standard errors are underestimated, the t-tests are inflated 
(show significance when there is none), and the confidence intervals are shorter than they 
should be. 

3. Any hypothesis tests or confidence limits that require the use of the t or F distribution are 
invalid. 

You could try to identify these serial correlation patterns informally, with the residual plots 
versus time. A better analytical way would be to use the Durbin-Watson test to assess the amount 
of serial correlation. 

Technical Details  

Regression Analysis 
This section presents the technical details of least squares regression analysis using a mixture of 
summation and matrix notation. Because this module also calculates weighted linear regression, 
the formulas will include the weights, . When weights are not used, the  are set to one. wj wj

Define the following vectors and matrices. 
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Least Squares  
Using this notation, the least squares estimates are found using the equation.  

( )b X WX X'WY= ′ −1  

Note that when the weights are not used, this reduces to 

( )b X X X'Y= ′ −1  

The predicted values of the dependent variable are given by 

$Y b'X=  

The residuals are calculated using 

e Y Y= − $  

Estimated Variances  
An estimate of the variance of the residuals is computed using 

s
N

2

2
=

−
e'We

 

An estimate of the variance of the regression coefficients is calculated using 

( )

V
b
b

s s
s s

s

b b b

b b b

0

1
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2

2 1

0 0 1

0 1 1

⎛
⎝
⎜
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⎠
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An estimate of the variance of the predicted mean of Y at a specific value of X, say , is given 
by 

X0

( )( )s s X
XY Xm | ,

0

2 2
0

1

0

1
1

=
⎛
⎝
⎜

⎞
⎠
⎟

−X'WX  

An estimate of the variance of the predicted value of Y for an individual for a specific value of X, 
say , is given by X0

s s sY X Y XI m| |0 0

2 2 2= +  
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Hypothesis Tests of the Intercept and Slope 
Using these variance estimates and assuming the residuals are normally distributed, hypothesis 
tests may be constructed using the Student’s t distribution with N - 2 degrees of freedom using 

t b
sb

b
0

0

0 0=
− B

 

and 

t b
sb

b
1

1

1 1=
− B

 

Usually, the hypothesized values of  and B  are zero, but this does not have to be the case. B0 1

Confidence Intervals of the Intercept and Slope 
A ( )%1100 α−  confidence interval for the intercept, 0β , is given by 

b t sN b0 ± − −1 2 2 0α / ,  

A ( )%1100 α−  confidence interval for the slope, 1β , is given by 

b t sN b1 ± − −1 2 2 1α / ,  

Confidence Interval of Y for Given X 
A ( )%1100 α−  confidence interval for the mean of Y at a specific value of X, say , is given by X0

b b X t sN Y Xm0 0 1 2 2 0
+ ± − −1 α / , |  

Note that this confidence interval assumes that the sample size at X is N. 

A ( )%1100 α−  prediction interval for the value of Y for an individual at a specific value of X, say 
, is given by X0

b b X t sN Y XI0 0 1 2 2 0
+ ± − −1 α / , |  

Working-Hotelling Confidence Band for the Mean of Y 
A ( )%1100 α−  simultaneous confidence band for the mean of Y at all values of X is given by 

b b X s FY X Nm0 12+ ± − −1 | / , ,α 2 2 2  

This confidence band applies to all possible values of X. The confidence coefficient, 
( )%1100 α− , is the percent of a long series of samples for which this band covers the entire line 

for all values of X from negativity infinity to positive infinity.  

Confidence Interval of X for Given Y 
This type of analysis is called inverse prediction or calibration. A ( )%1100 α−  confidence 
interval for the mean value of X for a given value of Y is calculated as follows. First, calculate X 
from Y using 
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$X Y b
b

=
− 0

1

 

Then, calculate the interval using  

( ) ( ) ( )
( )

$
$

X gX A
g

N

X X

w X X

g

j j
j

N− ±
−

+
−

−

−
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∑
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where 

A
t s

b
N= − −1 2 2

1
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( )
g A
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j
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∑
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A ( )%1100 α−  confidence interval for an individual value of X for a given value of Y is  

( ) ( )( ) ( )
( )

$
$

X gX A
N g

N

X X

w X X

g

j j
j

N− ±
+ −

+
−

−

−
=
∑

1 1

1

2

1  

R-Squared (Percent of Variation Explained ) 
Several measures of the goodness-of-fit of the regression model to the data have been proposed, 
but by far the most popular is R2 . R2  is the square of the correlation coefficient. It is the 
proportion of the variation in Y that is accounted by the variation in X. R2  varies between zero 
(no linear relationship) and one (perfect linear relationship).  

R2 , officially known as the coefficient of determination, is defined as the sum of squares due to 
the regression divided by the adjusted total sum of squares of Y. The formula for R2  is 

( )
R

SS
SS

Model

Total

2
21= −

−

⎛
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⎜
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=

e'We
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R2  is probably the most popular measure of how well a regression model fits the data. R2  may 
be defined either as a ratio or a percentage. Since we use the ratio form, its values range from 
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zero to one. A value of R2  near zero indicates no linear relationship, while a value near one 
indicates a perfect linear fit. Although popular, R2  should not be used indiscriminately or 
interpreted without scatter plot support. Following are some qualifications on its interpretation:  

1. Additional independent variables. It is possible to increase R2  by adding more 
independent variables, but the additional independent variables may actually cause an 
increase in the mean square error, an unfavorable situation. This usually happens when 
the sample size is small. 

2. Range of the independent variable. R2  is influenced by the range of the independent 
variable. R2  increases as the range of X increases and decreases as the range of the X 
decreases.  

3. Slope magnitudes. R2  does not measure the magnitude of the slopes.  

4. Linearity. R2  does not measure the appropriateness of a linear model. It measures the 
strength of the linear component of the model. Suppose the relationship between X and Y 
was a perfect circle. Although there is a perfect relationship between the variables, the 
R2  value would be zero. 

5. Predictability. A large R2  does not necessarily mean high predictability, nor does a low 
R2  necessarily mean poor predictability.  

6. No-intercept model. The definition of R2  assumes that there is an intercept in the 
regression model. When the intercept is left out of the model, the definition of R2  
changes dramatically. The fact that your R2  value increases when you remove the 
intercept from the regression model does not reflect an increase in the goodness of fit. 
Rather, it reflects a change in the underlying definition of R2 . 

7. Sample size. R2  is highly sensitive to the number of observations. The smaller the 
sample size, the larger its value. 

Rbar-Squared (Adjusted R-Squared) 
R2  varies directly with N, the sample size. In fact, when N = 2, R2 = 1. Because R2  is so closely 
tied to the sample size, an adjusted R2  value, called R 2 , has been developed. R 2  was developed 
to minimize the impact of sample size. The formula for R 2  is  

( )( )( )
R

N p R
N p

2
2

1
1 1

= −
− − −

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

where p is 2 if the intercept is included in the model and 1 if not. 

Probability Ellipse 
When both variables are random variables and they follow the bivariate normal distribution, it is 
possible to construct a probability ellipse for them (see Jackson (1991) page 342). The equation 
of the ( )100 1− α %  probability ellipse is given by those values of X and Y that are solutions of 
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Orthogonal Regression Line 
The least squares estimates discussed above minimize the sum of the squared distances between 
the Y’s and there predicted values. In some situations, both variables are random variables and it 
is arbitrary which is designated as the dependent variable and which is the independent variable. 
When the choice of which variable is the dependent variable is arbitrary, you may want to use the 
orthogonal regression line rather than the least squares regression line. The orthogonal regression 
line minimizes the sum of the squared perpendicular distances from the each observation to the 
regression line. The orthogonal regression line is the first principal component when a principal 
components analysis is run on the two variables.   

Jackson (1991) page 343 gives a formula for computing the orthogonal regression line without 
computing a principal components analysis. The slope is given by 

b
s s s s s

sortho
YY XX YY XX XY

XY
,1

24
2
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− + − +
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=
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−
=
∑
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1
 

The estimate of the intercept is then computed using 

b Y bortho y ortho, ,= − 1 X  

Although Jackson gives formulas for a confidence interval on the slope and intercept, we do not 
provide them in NCSS because their properties are not well understood and the require certain 
bivariate normal assumptions. Instead, NCSS provides bootstrap confidence intervals for the 
slope and intercept. 

The Correlation Coefficient 
The correlation coefficient can be interpreted in several ways. Here are some of the 
interpretations.  

1. If both Y and X are standardized by subtracting their means and dividing by their standard 
deviations, the correlation is the slope of the regression of the standardized Y on the 
standardized X.  

2. The correlation is the standardized covariance between Y and X.  

3. The correlation is the geometric average of the slopes of the regressions of Y on X and of 
X on Y. 

4. The correlation is the square root of R-squared, using the sign from the slope of the 
regression of Y on X. 

The corresponding formulas for the calculation of the correlation coefficient are  
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where  is the covariance between X and Y, b  is the slope from the regression of X on Y, and 
 is the slope from the regression of Y on X.  is calculated using the formula 
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The population correlation coefficient, ρ , is defined for two random variables, U and W, as 
follows 

( )([ ]
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Note that this definition does not refer to one variable as dependent and the other as independent. 
Rather, it simply refers to two random variables. 

Facts about the Correlation Coefficient 
The correlation coefficient has the following characteristics. 

1. The range of r is between -1 and 1, inclusive. 

2. If r = 1, the observations fall on a straight line with positive slope. 

3. If r = -1, the observations fall on a straight line with negative slope. 

4. If r = 0, there is no linear relationship between the two variables. 

5. r is a measure of the linear (straight-line) association between two variables. 

6. The value of r is unchanged if either X or Y is multiplied by a constant or if a constant is 
added. 
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7. The physical meaning of r is mathematically abstract and may not be very help. 
However, we provide it for completeness. The correlation is the cosine of the angle 
formed by the intersection of two vectors in N-dimensional space. The components of the 
first vector are the values of X while the components of the second vector are the 
corresponding values of Y. These components are arranged so that the first dimension 
corresponds to the first observation, the second dimension corresponds to the second 
observation, and so on. 

Hypothesis Tests for the Correlation 
You may be interested in testing hypotheses about the population correlation coefficient, such as 
ρ ρ= 0 . When ρ0 0= , the test is identical to the t-test used to test the hypothesis that the slope 
is zero. The test statistic is calculated using 

t r
r

N

N − =
−
−

2 21
2

 

However, when ρ0 0≠ , the test is different from the corresponding test that the slope is a 
specified, nonzero, value. 

NCSS provides two methods for testing whether the correlation is equal to a specified, nonzero, 
value.  

Method 1. This method uses the distribution of the correlation coefficient. Under the null 
hypothesis that ρ ρ= 0  and using the distribution of the sample correlation coefficient, the 
likelihood of obtaining the sample correlation coefficient, r, can be computed. This likelihood is 
the statistical significance of the test. This method requires the assumption that the two variables 
follow the bivariate normal distribution. 

Method 2. This method uses the fact that Fisher’s z transformation, given by 

( )F r r
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and variance  
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To test the hypothesis that 0ρρ = , you calculate z using  
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and use the fact that z is approximately distributed as the standard normal distribution with mean 
equal to zero and variance equal to one. This method requires two assumptions. First, that the two 
variables follow the bivariate normal distribution. Second, that the distribution of z is 
approximated by the standard normal distribution.  

This method has become popular because it uses the commonly available normal distribution 
rather than the obscure correlation distribution. However, because it makes an additional 
assumption, it is not as accurate as is method 1. In fact, we have included in for completeness, but 
recommend the use of Method 1. 

Confidence Intervals for the Correlation 
A ( )%1100 α−  confidence interval for ρ  may be constructed using either of the two hypothesis 
methods described above. The confidence interval is calculated by finding, either directly using 
Method 2 or by a search using Method 1, all those values of ρ0  for which the hypothesis test is 
not rejected. This set of values becomes the confidence interval. 

Be careful not to make the common mistake in assuming that this confidence interval is related to 
a transformation of the confidence interval on the slope β1 . The two confidence intervals are not 
simple transformations of each other. 

Spearman Rank Correlation Coefficient 
The Spearman rank correlation coefficient is a popular nonparametric analog of the usual 
correlation coefficient. This statistic is calculated by replacing the data values with their ranks 
and calculating the correlation coefficient of the ranks. Tied values are replaced with the average 
rank of the ties. This coefficient is really a measure of association rather than correlation, since 
the ranks are unchanged by a monotonic transformation of the original data. 

When N is greater than 10, the distribution of the Spearman rank correlation coefficient can be 
approximated by the distribution of the regular correlation coefficient. 

Note that when weights are specified, the calculation of the Spearman rank correlation coefficient 
uses the weights.  



   Linear Regression and Correlation  300-13 

Smoothing with Loess 
The loess (locally weighted regression scatter plot smoothing) method is used to obtain a smooth 
curve representing the relationship between X and Y. Unlike linear regression, loess does not have 
a simple mathematical model. Rather, it is an algorithm that, given a value of X, computes an 
appropriate value of Y. The algorithm was designed so that the loess curve travels through the 
middle of the data, summarizing the relationship between X and Y.  

The loess algorithm works as follows. 

1. Select a value for X. Call it X0. 

2. Select a neighborhood of points close to X0. 

3. Fit a weighted regression of Y on X using only the points in this neighborhood. In the 
regression, the weights are inversely proportional to the distance between X and X0. 

4. To make the procedure robust to outliers, a robust regression may be substituted for the 
weighted regression in step 3. This robust procedure modifies the weights so that 
observations with large residuals receive smaller weights. 

5. Use the regression coefficients from the weighted regression in step 3 to obtained a 
predicted value for Y at X0. 

6. Repeat steps 1 - 5 for a set of X’s between the minimum and maximum of X. 

Mathematical Details of Loess 
This section presents the mathematical details of the loess method of scatter plot smoothing. Note 
that implicit in the discussion below is the assumption that Y is the dependent variable and X is 
the independent variable. 

Loess gives the value of Y for a given value of X, say X0. For each observation, define the 
distance between X and X0 as 

j jd   X X= − 0  

Let q be the number of observations in the neighborhood of X0. Define q as [fN] where f is the 
user-supplied fraction of the sample. Here, [Z] is the largest integer in Z. Often f = 0.40 is a good 
choice. The neighborhood is defined as the observations with the q smallest values of . Define 

 as the largest distance in the neighborhood of observations close to X0. 
jd

qd

The tricube weight function is defined as 
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The weight for each observation is defined as 
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The weighted regression for X0 is defined by the value of b0, b1, and b2 that minimize the sum of 
squares 
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Note the if b2 is zero, a linear regression is fit. Otherwise, a quadratic regression is fit. The choice 
of linear or quadratic is an option in the procedure. The linear option is quicker, while the 
quadratic option fits peaks and valleys better. In most cases, there is little difference except at the 
extremes in the X space. 

Once b0, b1, and b2 have be estimated using weighted least squares, the loess value is computed 
using 

( ) ( ) ( )$Y X b b X b Xloess 0 0 1 0 2 0 2= − −  

Note that a separate weighted regression must be run for each value of X0. 

Robust Loess 
Outliers often have a large impact on least squares impact. A robust weighted regression 
procedure may be used to lessen the influence of outliers on the loess curve. This is done as 
follows.  

The q loess residuals are computed using the loess regression coefficients using the formula 

( )r Y Y Xj j loess j= − $
 

New weights are defined as 
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where  is the previous weight for this observation, M is the median of the q absolute values 
of the residuals, and B(u) is the bisquare weight function defined as 

wlast j,
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This robust procedure may be iterated up to five items, but we have seen little difference in the 
appearance of the loess curve after two iterations. 

Note that it is not always necessary to create the robust weights. If you are not going to remove 
the outliers from you final results, you probably should not remove them from the loess curve by 
setting the number of robust iterations to zero. 
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Testing Assumptions Using Residual Diagnostics 
Evaluating the amount of departure in your data from each linear regression assumption is 
necessary to see if any remedial action is necessary before the fitted results can be used. First, the 
types of plots and statistical analyses the are used to evaluate each assumption will be given. 
Second, each of the diagnostic values will be defined.  

Notation – Use of (j) and p 
Several of these residual diagnostic statistics are based on the concept of studying what happens 
to various aspects of the regression analysis when each row is removed from the analysis. In what 
follows, we use the notation (j) to mean that observation j has been omitted from the analysis. 
Thus, b(j) means the value of b calculated without using observation j. 
Some of the formulas depend on whether the intercept is fitted or not. We use p to indicate the 
number of regression parameters.  When the intercept is fit, p will be two. Otherwise, p will be 
one. 

1 – No Outliers 
Outliers are observations that are poorly fit by the regression model. If outliers are influential, 
they will cause serious distortions in the regression calculations. Once an observation has been 
determined to be an outlier, it must be checked to see if it resulted from a mistake. If so, it must 
be corrected or omitted. However, if no mistake can be found, the outlier should not be discarded 
just because it is an outlier. Many scientific discoveries have been made because outliers, data 
points that were different from the norm, were studied more closely. Besides being caused by 
simple data-entry mistakes, outliers often suggest the presence of an important independent 
variable that has been ignored. 

Outliers are easy to spot on bar charts or box plots of the residuals and RStudent. RStudent is the 
preferred statistic for finding outliers because each observation is omitted from the calculation 
making it less likely that the outlier can mask its presence. Scatter plots of the residuals and 
RStudent against the X variable are also helpful because they may show other problems as well.  

2 – Linear Regression Function - No Curvature 
The relationship between Y and X is assumed to be linear (straight-line). No mechanism for 
curvature is included in the model. Although a scatter plot of Y versus X can show curvature in 
the relationship, the best diagnostic tool is the scatter plot of the residual versus X. If curvature is 
detected, the model must be modified to account for the curvature. This may mean adding a 
quadratic terms, taking logarithms of Y or X, or some other appropriate transformation. 

Loess Curve 
A loess curve should be plotted between X and Y to see if any curvature is present. 



300-16  Linear Regression and Correlation  

Lack of Fit Test 
When the data include repeat observations at one or more X values (replicates), the adequacy of 
the linear model can evaluated numerically by performing a lack of fit test. This test procedure 
detects nonlinearities.  

The lack of fit test is constructed as follows. First, the sum of squares for error is partitioned into 
two quantities: lack of fit and pure error. The pure error sum of squares is found by considering 
only those observations that are replicates. The X values are treated as the levels of the factor in a 
one-way analysis of variance. The sum of squares error from this analysis measures the 
underlying variation in Y that occurs when the value of X is held constant. Thus it is called pure 
error. When the pure error sum of squares is subtracted from the error sum of squares of the 
linear regression, the result is measure of the amount of nonlinearity in the data. An F-ratio can 
be constructed from these two values that will test the statistical significant of the lack of fit. The 
F-ratio is constructed using the following equation. 

F

SS
DF

SS
DF

DF DF

Lack of fit

Pure Error
1 2

1

2

, =  

where DF2 is the degrees of freedom for the error term in the one-way analysis of variance and 
DF1 is N - DF2 - 2. 

3 – Constant Variance 
The errors are assumed to have constant variance across all values of X. If there are a lot of data 
(N > 100), nonconstant variance can be detected on a scatter plot of the residuals versus X. 
However, the most direct diagnostic tool to evaluate this assumption is a scatter plot of the 
absolute values of the residuals versus X. Often, the assumption is violated because the variance 
increases with X. This will show up as a ‘megaphone’ pattern to this plot. 

When nonconstant variance is detected, a variance-stabilizing transformation such as the square-
root or logarithm may be used. However, the best solution is probably to use weighted regression, 
with weights inversely proportional to the magnitude of the residuals. 

Modified Levene Test 
The modified Levene test can be used to evaluate the validity of the assumption of constant 
variance. It has been shown to be reliable even when the residuals do not follow a normal 
distribution. 

The test is constructed by grouping the residuals according to the values of X. The number of 
groups is arbitrary, but usually, two groups are used.  In this case, the absolute residuals of 
observations with low values of X are compared against those with high values of X. If the 
variability is constant, the variability in these two groups of residuals should be equal. The test is 
computed using the formula 
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and ~e1  is the median of the group of residuals for low values of X and ~e2  is the median of the 
group of residuals for high values of X. The test statistic L is approximately distributed as a t 
statistic with N - 2 degrees of freedom. 

4 – Independent Errors 
The Y’s, and thus the errors, are assumed to be independent. This assumption is usually ignored 
unless there is a reason to think that it has been violated, such as when the observations were 
taken across time. An easy way to evaluate this assumption is a scatter plot of the residuals versus 
their sequence number (assuming that the data are arranged in time sequence order). This plot 
should show a relative random pattern.  

The Durbin-Watson statistic is used as a formal test for the presence of first-order serial 
correlation. A more comprehensive method of evaluation is to look at the autocorrelations of the 
residuals at various lags. Large autocorrelations are found by testing each using Fisher’s z 
transformation. Although Fisher’s z transformation is only approximate in the case of 
autocorrelations, it does provide a reasonable measuring stick with which to judge the size of the 
autocorrelations.  

If independence is violated, confidence intervals and hypothesis tests are erroneous. Some 
remedial method that accounts for the lack of independence must be adopted, such as using first 
differences or the Cochrane-Orcutt procedure. 

Durbin-Watson Test 
The Durbin-Watson test is often used to test for positive or negative, first-order, serial correlation. 
It is calculated as follows 
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The distribution of this test is difficult because it involves the X values. Originally, Durbin-Watson 
(1950, 1951) gave a pair of bounds to be used. However, there is a large range of ‘inclusion’ found 
when using these bounds. Instead of using these bounds, we calculate the exact probability using the 
beta distribution approximation suggested by Durbin-Watson (1951). This approximation has been 
shown to be accurate to three decimal places in most cases which is all that are needed for practical 
work.   
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5 – Normality of Residuals 
The residuals are assumed to follow the normal probability distribution with zero mean and 
constant variance. This can be evaluated using a normal probability plot of the residuals. Also, 
normality tests are used to evaluate this assumption. The most popular of the five normality tests 
provided is the Shapiro-Wilk test.  

Unfortunately, a breakdown in any of the other assumptions results in a departure from this 
assumption as well. Hence, you should investigate the other assumptions first, leaving this 
assumption until last. 

Influential Observations 
Part of the evaluation of the assumptions includes an analysis to determine if any of the 
observations have an extra large influence on the estimated regression coefficients, on the fit of 
the model, or on the value of Cook’s distance. By looking at how much removing an observation 
changes the results, an observation’s influence can be determined. 

Five statistics are used to investigate influence. These are Hat diagonal, DFFITS, DFBETAS, 
Cook’s D, and COVARATIO. 

Definitions Used in Residual Diagnostics 

Residual 
The residual is the difference between the actual Y value and the Y value predicted by the 
estimated regression model. It is also called the error, the deviate, or the discrepancy.  

j j je   y y= − $  

Although the true errors, ε j , are assumed to be independent, the computed residuals, , are not. 
Although the lack of independence among the residuals is a concern in developing theoretical 
tests, it is not a concern on the plots and graphs. 

ej

The variance of the ε j  is . However, the variance of the  is not . In vector notation, the 
covariance matrix of e is given by 
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The matrix H is called the hat matrix since it puts the ‘hat’ on y as is shown in the unweighted 
case.  
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Hence, the variance of  is given by ej

( ) ( )V e hj j= −σ 2 1 j  

where  is the jth diagonal element of H. This variance is estimated using hjj

( ) ( )$V e s hj j= −2 1 j  

Hat Diagonal 

The hat diagonal, , is the jth diagonal element of the hat matrix, H where  hjj

( )H W X X'WX X W
1
2

1
2

1= − '  

H captures an observation’s remoteness in the X-space. Some authors refer to the hat diagonal as 
a measure of leverage in the X-space. As a rule of thumb, hat diagonals greater than 4/N are 
considered influential and are called high-leverage observations. 

Note that a high-leverage observation is not a bad observation. Rather, high-leverage observations 
exert extra influence on the final results, so care should be taken to insure that they are correct. 
You should not delete an observation just because it has a high-influence. However, when you 
interpret the regression equation, you should bear in mind that the results may be due to a few, 
high-leverage observations. 

Standardized Residual 
As shown above, the variance of the observed residuals is not constant. This makes comparisons 
among the residuals difficult. One solution is to standardize the residuals by dividing by their 
standard deviations. This will give a set of residuals with constant variance.  

The formula for this residual is 
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s(j) or MSEi 
This is the value of the mean squared error calculated without observation j. The formula for s(j) 
is given by 
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RStudent 
Rstudent is similar to the studentized residual. The difference is the s(j) is used rather than s in the 
denominator. The quantity s(j) is calculated using the same formula as s, except that observation j 
is omitted. The hope is that be excluding this observation, a better estimate of  will be 
obtained. Some statisticians refer to these as the studentized deleted residuals.  
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If the regression assumptions of normality are valid, a single value of the RStudent has a t 
distribution with N - 2 degrees of freedom. It is reasonable to consider |RStudent| > 2 as outliers. 

DFFITS 
DFFITS is the standardized difference between the predicted value with and without that 
observation. The formula for DFFITS is 
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The values of  and  are found by removing observation j before the doing the 
calculations. It represents the number of estimated standard errors that the fitted value changes if 
the j

( )$y jj ( )s j2

th observation is omitted from the data set. If |DFFITS| > 1, the observation should be 
considered to be influential with regards to prediction. 

Cook’s D 
The DFFITS statistic attempts to measure the influence of a single observation on its fitted value. 
Cook’s distance (Cook’s D) attempts to measure the influence each observation on all N fitted 
values. The formula for Cook’s D is 

( )[ ]
j

j j j
i

N

D   
w y y i

ps
=

−
=
∑ $ $

2

1
2   

The  are found by removing observation i before the calculations. Rather than go to all the 
time of recalculating the regression coefficients N times, we use the following approximation 
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This approximation is exact when no weight variable is used.  

A Cook’s D value greater than one indicates an observation that has large influence. Some 
statisticians have suggested that a better cutoff value is 4 / (N - 2). 
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CovRatio 
This diagnostic flags observations that have a major impact on the generalized variance of the 
regression coefficients. A value exceeding 1.0 implies that the ith observation provides an 
improvement, i.e., a reduction in the generalized variance of the coefficients. A value of 
CovRatio less than 1.0 flags an observation that increases the estimated generalized variance. 
This is not a favorable condition.  

The general formula for the CovRatio is 
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where p = 2 if the intercept is fit or 1 if not. 

Belsley, Kuh, and Welsch (1980) give the following guidelines for the CovRatio. 

If CovRatio > 1 + 3p / N then omitting this observation significantly damages the precision of at 
least some of the regression estimates. 

If CovRatio < 1 - 3p / N then omitting this observation significantly improves the precision of at 
least some of the regression estimates.  

DFBETAS 
The DFBETAS criterion measures the standardized change in a regression coefficient when an 
observation is omitted. The formula for this criterion is 
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where  is a diagonal element of the inverse matrix ckk ( )X'WX −1 . 

Belsley, Kuh, and Welsch (1980) recommend using a cutoff of 2 / N  when N is greater than 
100. When N is less than 100, others have suggested using a cutoff of 1.0 or 2.0 for the absolute 
value of DFBETAS. 

Press Value 
PRESS is an acronym for prediction sum of squares. It was developed for use in variable selection  
to validate a regression model. To calculate PRESS, each observation is individually omitted. The 
remaining N - 1 observations are used to calculate a regression and estimate the value of the 
omitted observation. This is done N times, once for each observation. The difference between the 
actual Y value and the predicted Y with the observation deleted is called the prediction error or 
PRESS residual. The sum of the squared prediction errors is the PRESS value. The smaller PRESS 
is, the better the predictability of the model.  

The formula for PRESS is 
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Press R-Squared 
The PRESS value above can be used to compute an R2 -like statistic, called R2Predict, which 
reflects the prediction ability of the model. This is a good way to validate the prediction of a 
regression model without selecting another sample or splitting your data. It is very possible to 
have a high R2  and a very low R2Predict. When this occurs, it implies that the fitted model is 
data dependent. This R2Predict ranges from below zero to above one. When outside the range of 
zero to one, it is truncated to stay within this range.  

Predict
2

Total
R  =   -  PRESS

SS
1  

Sum |Press residuals| 
This is the sum of the absolute value of the PRESS residuals or prediction errors. If a large value 
for the PRESS is due to one or a few large PRESS residuals, this statistic may be a more accurate 
way to evaluate predictability. This quantity is computed as 
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Bootstrapping 
Bootstrapping was developed to provide standard errors and confidence intervals for regression 
coefficients and predicted values in situations in which the standard assumptions are not valid. In 
these nonstandard situations, bootstrapping is a viable alternative to the corrective action 
suggested earlier. The method is simple in concept, but it requires extensive computation time.  

The bootstrap is simple to describe. You assume that your sample is actually the population and 
you draw B samples (B is over 1000) of size N from your original sample with replacement. With 
replacement means that each observation may be selected more than once. For each bootstrap 
sample, the regression results are computed and stored.  

Suppose that you want the standard error and a confidence interval of the slope. The bootstrap 
sampling process has provided B estimates of the slope. The standard deviation of these B 
estimates of the slope is the bootstrap estimate of the standard error of the slope. The bootstrap 
confidence interval is found by arranging the B values in sorted order and selecting the 
appropriate percentiles from the list. For example, a 90% bootstrap confidence interval for the 
slope is given by fifth and ninety-fifth percentiles of the bootstrap slope values. The bootstrap 
method can be applied to many of the statistics that are computed in regression analysis.  

The main assumption made when using the bootstrap method is that your sample approximates 
the population fairly well. Because of this assumption, bootstrapping does not work well for small 
samples in which there is little likelihood that the sample is representative of the population. 
Bootstrapping should only be used in medium to large samples. 

When applied to linear regression, there are two types of bootstrapping that can be used. 
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Modified Residuals 
Davison and Hinkley (1999) page 279 recommend the use of a special rescaling of the residuals 
when bootstrapping to keep results unbiased. These modified residuals are calculated using 
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Bootstrap the Observations 
The bootstrap samples are selected from the original sample of X and Y pairs. This method is 
appropriate for data in which both X and Y have been selected at random. That is, the X values 
were not predetermined, but came in as measurements just as the Y values.  

An example of this situation would be if a population of individuals is sampled and both Y and X 
are measured on those individuals only after the sample is selected. That is, the value of X was 
not used in the selection of the sample. 

Bootstrap the Residuals 
The bootstrap samples are constructed using the modified residuals. In each bootstrap sample, the 
randomly sampled modified residuals are added to the original fitted values forming new values 
of Y. This method forces the original structure of the X values to be retained in every bootstrap 
sample. 

This method is appropriate for data obtained from a designed experiment in which the values of X 
are preset by the experimental design. 

Because the residuals are sampled and added back at random, the method must assume that the 
variance of the residuals is constant. If the sizes of the residuals are proportional to X, this 
method should not be used. 

Bootstrap Prediction Intervals 
Bootstrap confidence intervals for the mean of Y given X are generated from the bootstrap sample 
in the usual way. To calculate prediction intervals for the predicted value (not the mean) of Y 
given X requires a modification to the predicted value of Y  to be made to account for the 
variation of Y about its mean. This modification of the predicted Y values in the bootstrap sample, 
suggested by Davison and Hinkley, is as follows. 

( )$ $ * *y y x b b e+ += − − +1 1   
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where is a randomly selected modified residual. By adding the randomly sample residual we 
have added an appropriate amount of variation to represent the variance of individual Y’s about 
their mean value.  

e  +
*

Randomization Test 
Because of the strict assumptions that must be made when using this procedure to test hypotheses about 
the slope, NCSS also includes a randomization test as outlined by Edgington (1987). Randomization 
tests are becoming more and more popular as the speed of computers allows them to be computed in 
seconds rather than hours.  

A randomization test is conducted by enumerating all possible permutations of the dependent variable 
while leaving the independent variable in the original order. The slope is calculated for each permutation 
and the number of permutations that result in a slope with a magnitude greater than or equal to the actual 
slope is counted. Dividing this count by the number of permutations tried gives the significance level of 
the test.  

For even moderate sample sizes, the total number of permutations is in the trillions, so a Monte Carlo 
approach is used in which the permutations are found by random selection rather than complete 
enumeration. Edgington suggests that at least 1,000 permutations by selected. We suggest that this be 
increased to 10,000.  

Data Structure 
The data are entered as two variables. If weights or frequencies are available, they are entered 
separately in other variables. An example of data appropriate for this procedure is shown below. 
These data are the heights and weights of twenty individuals. The data are contained in the 
LINREG1 database. We suggest that you open this database now so that you can follow along 
with the examples.  

LINREG1 dataset (subset) 

Height Weight 
64 159 
63 155 
67 157 
60 125 
52 103 
58 122 
56 101 
52 82 
79 228 
76 199 
73 195 

Missing Values 
Rows with missing values in the variables being analyzed are ignored. If data are present on a 
row for all but the dependent variable, a predicted value and confidence limits are generated for 
that row.  
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Dependent Variable 

Y: Dependent Variable(s) 
Specifies a dependent (Y) variable. This variable should contain only numeric values. If more 
than one variable is specified, a separate analysis is run for each.  

Independent Variable 

X: Independent Variable 
Specifies the variable to be used as independent (X) variable. This variable should contain only 
numeric values.  

Frequency Variable 

Frequency Variable 
Specify an optional frequency (count) variable. This variable contains integers that represent the 
number of observations (frequency) associated with each observation. If left blank, each 
observation has a frequency of one. This variable lets you modify that frequency. This is 
especially useful when your data are already tabulated and you want to enter the counts.  

Weight Variable 

Weight Variable 
A weight variable may be specified to set the (non-negative) weight given to each observation in 
a weighted regression. By default, each observation receives an equal weight of 1 / N (where N is 
the sample size). This variable allows you to specify different weights for different observations.  

NCSS automatically scales the weights so that they sum to one. Hence, you can enter integer 
numbers and NCSS will scale them to appropriate fractions.  

The weight variable is commonly created in the Robust Regression procedure. 

Model Specification 

Remove Intercept 
Specifies whether to remove the Y-intercept term from the regression model. In most cases, you 
will want to keep the intercept term by leaving this option unchecked.  

Note that removing the Y-intercept from the regression equation distorts many of the common 
regression measures such as R-Squared, mean square error, and t-tests. You should not use these 
measures when the intercept has been omitted. 
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Resampling 

Calculate Bootstrap C.I.’s 
This option causes bootstrapping to be done and all associated bootstrap reports and plots to be 
generated. Bootstrapping may be very time consuming when the sample size is large (say > 
1000). 

Run randomization tests 
Check this option to run the randomization test. Note that this test is computer-intensive and may 
require a great deal of time to run. 

Alpha Levels 

Alpha for C.I.’s and Tests 
Alpha is the significance level used in the hypothesis tests. One minus alpha is the confidence 
level (confidence coefficient) of the confidence intervals.  

A value of 0.05 is commonly used. This corresponds to a chance of 1 out of 20. You should not 
be afraid to use other values since 0.05 became popular in pre-computer days when it was the 
only value available. Typical values range from 0.001 to 0.20. 

Alpha for Assumptions 
This value specifies the significance level that must be achieved to reject a preliminary test of an 
assumption. In regular hypothesis tests, common values of alpha are 0.05 and 0.01. However, 
most statisticians recommend that preliminary tests use a larger alpha such as 0.15 or 0.20.  

We recommend 0.20. 

Reports Tab 
The following options control which reports and plots are displayed. Since over 25 reports are 
available, you may want to spend some time deciding which reports you want to display on a 
routine basis and create a template that saves your favorite choices.  

Select Report / Plot Group 

Select a Group of Reports and Plots 
This option allows you to specify a group of reports and plots without checking them 
individually. The checking of individual reports and plots is only useful when this option is set to 
Display only those items that are CHECKED BELOW. Otherwise, the checking of individual 
reports and plots is ignored. 

Report Options 

Show Notes 
This option controls whether the available notes and comments that are displayed at the bottom of 
each report. This option lets you omit these notes to reduce the length of the output.  
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Show All Rows 
This option makes it possible to display predicted values for only a few designated rows. 
When checked predicted values, residuals, and other row-by-row statistics, will be displayed for 
all rows used in the analysis.  
When not checked, predicted values and other row-by-row statistics will be displayed for only 
those rows in which the dependent variable’s value is missing. 

Select Reports – Summaries 

Run Summary ... Summary Matrices 
Each of these options specifies whether the indicated report is calculated and displayed. Note that 
since some of these reports provide results for each row, they may be too long for normal use 
when requested on large databases. 

Select Reports – Estimation 

Regression Estimation 
Indicate whether to display this report.  

Select Reports – ANOVA 

ANOVA 
Indicate whether to display this report.  

Select Reports – Assumptions 

Assumptions 
Indicate whether to display this report.  

Levene Groups 
This option sets the number of groups used in Levene’s constant-variance of residuals test. In 
most cases, a ‘2’ should be used. In all cases, the number of groups should be small enough so 
that you have at least 25 observations in each group.  

Durbin-Watson 
Indicate whether to display this report.  

PRESS 
Indicate whether to display this report.  

Select Reports – Prediction 

Predict Y at these X Values 
Enter an optional list of X values at which to report predicted values of Y and confidence 
intervals. Note that these values are also reported on in the bootstrap reports. 

You can enter a single number or a list of numbers. The list can be separated with commas or 
spaces. The list can also be of the form XX:YY(ZZ) which means XX to YY by ZZ. 
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Examples: 

10 

10 20 30 40 50 

0:100(10) 

0:90(10) 100:900(100) 1000 5000 

Predicted Y – C.L. 
Indicate whether to display the confidence limits for the mean of Y at a specific X.  

Predicted Y – P.L. 
Indicate whether to display the prediction limits for Y at a specific X.  

Select Reports – Row-by-Row Lists 

Original Data ... Predicted X Individuals 
Indicate whether to display these reports. Note that since these reports provide results for each 
row, they may be too long for normal use when requested on large databases. 

Select Reports – Regression 
Diagnostics 

Residuals ... Outlier-Influence Chart 
Indicate whether to display these reports.  

Select Plots 

Y vs X Plot ... Probability Plot 
Indicate whether to display these plots.  

Format Tab 
These options specify the number of decimal places shown when the indicated value is displayed 
in a report. The number of decimal places shown in plots is controlled by the Tick Labels buttons 
on the Axis Setup window. 

Report Options 

Precision 
Specifies the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 
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Report Options – Decimal Places 

Probability ... Matrix Decimals 
Specify the number of digits after the decimal point to display on the output of values of this type. 
Note that this option in no way influences the accuracy with which the calculations are done. 

Enter 'All' to display all digits available. The number of digits displayed by this option is 
controlled by whether the PRECISION option is SINGLE or DOUBLE. 

Plot Options  

Y vs X Plot Size and All Other Plot Sizes 
These options control the size of the plots. Possible choices are shown below. 

• Small 
Each plot is about 2.5 inches wide. Two plots are shown per line. Six plots fit on a page. 

• Medium 
Each plot is about 4.5 inches wide. One plot is shown per line. Two plots fit on a page. 

• Large 
Each plot is about 5.5 inches wide. One plot is shown per line. One plot fits on a page.] 

Resampling Tab 
This panel controls the bootstrapping and randomization test. Note that bootstrapping and the 
randomization test are only used when Calculate Bootstrap C.I.'s and Run Randomization Tests 
are checked, respectively.  

Bootstrap Calculation Options 
The following options control the calculation of bootstrap confidence intervals. 

Bootstrap Calculation Options – 
Sampling 

Samples (N) 
This is the number of bootstrap samples used. A general rule of thumb is that you use at least 100 
when standard errors are your focus or at least 1000 when confidence intervals are your focus. If 
computing time is available, it does not hurt to do 4000 or 5000.  

We recommend setting this value to at least 3000. 
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Sampling Method 
Specify which of the two sampling methods are to be used in forming the bootstrap sample.  

• Observations 
Each bootstrap sample is obtained as a random sample with replacement from the original X-
Y pairs. This method is appropriate when the X values were not set before the original sample 
was taken. 

• Residuals 
Each bootstrap sample is obtained as a random sample with replacement from the original set 
of residuals. These residuals are added to the predicted values to form the bootstrap sample. 
The original X structure is maintained by each bootstrap sample. This method is appropriate 
when a limited number of X values were selected by the experimental design. 

We recommend setting this value to at least 3000. 

Retries 
If the results from a bootstrap sample cannot be calculated, the sample is discarded and a new 
sample is drawn in its place. This parameter is the number of times that a new sample is drawn 
before the algorithm is terminated. We recommend setting the parameter to at least 50. 

Bootstrap Calculation Options – 
Estimation 

Percentile Type 
The method used to create the percentiles when forming bootstrap confidence limits. You can 
read more about the various types of percentiles in the Descriptive Statistics chapter. We suggest 
you use the Ave X(p[n+1]) option.  

C.I. Method 
This option specifies the method used to calculate the bootstrap confidence intervals. The 
reflection method is recommended.  

• Percentile 
The confidence limits are the corresponding percentiles of the bootstrap values.  

• Reflection 
The confidence limits are formed by reflecting the percentile limits. If X0 is the original value 
of the parameter estimate and XL and XU are the percentile confidence limits, the Reflection 
interval is (2 X0 - XU, 2 X0 - XL).  

Bootstrap Confidence Coefficients 
These are the confidence coefficients of the bootstrap confidence intervals. Since bootstrapping 
calculations may take several minutes, it may be useful to obtain confidence intervals using 
several different confidence coefficients.  

All values must be between 0.50 and 1.00. You may enter several values, separated by blanks or 
commas. A separate confidence interval is given for each value entered.  
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Examples: 

0.90 0.95 0.99 

0.90:.99(0.01) 

0.90.  

Bootstrap Histogram Options 

Vertical Axis Label 
This is the label of the vertical axis of a bootstrap histogram. 

Horizontal Axis Label 
This is the label of the horizontal axis of a bootstrap histogram. 

Plot Style File 
This is the histogram style file. We have provided several different style files to choose from, or 
you can create your own in the Histogram procedure. 

Histogram Title 
This is the title used on the bootstrap histograms.  

Number of Bars 
The number of bars shown in a bootstrap histogram. We recommend setting this value to at least 
25 when the number of bootstrap samples is over 1000. 

Randomization Test Options 

Monte Carlo Samples 
Specify the number of Monte Carlo samples used when conducting randomization tests. You also 
need to check the ‘Run Randomization Tests’ box to run this test. 
Somewhere between 1,000 and 100,000 Monte Carlo samples are usually necessary. Although 
the default is 1,000, we suggest the use of 10,000 when using this test. 

Axis Setup Tab 
The options on this panel control the appearance of the X variable, the Y variable, and the 
residuals whenever they are included on a plot. This makes it easy to give a consistent look to all 
of your plots without modifying them individually. 

Y-Variable, X-Variable, and Residuals 
Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by the names of the 
corresponding variables. Press the button on the right of the field to specify the font of the text. 
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Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the axis associated 
with this variable. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the tick labels along each axis. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Y vs X Plot Tab 
This panel controls which objects are shown on the scatterplot of Y and X. The labels, minimums, 
maximums, and number of tickmarks can be modified on the Axis Setup window. 

Y vs X Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. We have provided 
several style files to choose from, or you can create your own. Style files are created in the Scatter 
Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Plot Contents 

Y on X Line 
Check this box to cause the regression line of Y on X to be displayed. The color and thickness of 
the line can be changed using the button just below this check box. 

X on Y Line 
Check this box to cause the regression line X on Y to be displayed. The color and thickness of the 
line can be changed using the button just below this check box. 
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Y and X Line 
Check this box to cause the orthogonal regression line to be displayed. The color and thickness of 
the line can be changed using the button just below this check box. 

Prediction Limits 
Check this box to cause the prediction limits to be displayed. The confidence level used to create 
these limits is set on the Format window. The color and thickness of the line can be changed 
using the button just below this check box. 

Confidence Limits 
Check this box to cause the confidence limits about the mean to be displayed. The confidence 
level used to create these limits is set on the Format window. The color and thickness of the line 
can be changed using the button just below this check box. 

Confidence Band 
Check this box to cause a confidence band to be displayed. The confidence level used to create 
the band is set on the Format window. The color and thickness of the line can be changed using 
the button just below this check box. 

Probability Ellipse 
Check this box to cause a probability ellipse to be displayed. The confidence level used to create 
the ellipse is set on the Format window. The color and thickness of the line can be changed using 
the button just below this check box. 

LOESS Curve 
Check this box to cause a LOESS curve to be displayed. The color and thickness of the line can 
be changed using the button just below this check box. 

Plot Contents – Number of Evaluation 
Points 

Number of Points 
Specify the number of points at which the regression lines, confidence limits, prediction limits, 
confidence bands, and probability ellipse are evaluated. This effects the granularity of these 
objects. Although this value can range from 20 to over 2000, we have found that 200 works well.  

Plot Contents – Loess Options 

LOESS Order 
The order of the polynomial fit in the LOESS procedure. Select ‘1” for a linear fit or ‘2’ for a 
quadratic fit. The quadratic fit tends to pick up sudden changes better than the linear fit. 

LOESS %N 
This specifies the percent of the dataset to be used at each LOESS calculation. Although the 
allowable range is 1 to 99, a value from 25 to 40 is usually optimal. The large this value is, the 
smoother the LOESS curve will be. 
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LOESS Robust 
This specifies the number of robust iterations used in the LOESS algorithm to downplay the 
influence of outliers. Select ‘0’ if you do not want robust iterations. This will greatly reduce the 
execution time in large datasets. Select ‘1’ for one iteration. Select ‘2’ for two iterations. 

We recommend selecting ‘2’ for datasets with N < 100, ‘1’ for datasets with N < 500, and ‘0’ 
otherwise. 

Note that using ‘1’ or ‘2’ will cause the algorithm to try find and ignore outliers. If you want the 
effect of outliers to be shown in the LOESS curve, set this value to ‘0’. 

Resid vs X Plot ... Serial Corr Plot Tabs 
Various residual plots may be displayed to help you validate the assumptions of your regression 
analysis as well as investigate the fit of your estimated equation. The options on these panels 
control the appearance of the corresponding residual scatter plot. The appearance of the residual 
axis and the Y-axis (when used) is controlled on the Axis Setup tab (described above). 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Histogram Tab 
The options on this panel control the appearance of the histogram of the residuals. Note that the 
residual axis is controlled on the Axis Setup window. The Vertical (Count) Axis options are 
described under the Axis Setup Tab heading above. 

Plot Settings 

Plot Style File 
Designate a histogram style file. This file sets all histogram options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Histogram procedure. 
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Number of Bars 
Specify the number of intervals, bins, or bars used in the histogram. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} are replaced by the name of the variable. Press the 
button on the right of the field to specify the font of the text. 

Probability Plot Tab 
The options on this panel control the appearance of the probability plot. Note that the residual 
axis is controlled on the Axis Setup tab. The Horizontal (Expected) Axis options are described 
under the Axis Setup Tab heading above. 

Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} are replaced by the name of the variable. Press the 
button on the right of the field to specify the font of the text. 

Storage Tab 
These options let you specify if, and where on the database, various statistics are stored.  

Warning: Any data already in these variables are replaced by the new data. Be careful not to 
specify variables that contain important data. 

Data Storage Options 

Storage Option 
This option controls whether the values indicated below are stored on the database when the 
procedure is run. 

• Do not store data 
No data are stored even if they are checked. 
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• Store in empty columns only 
The values are stored in empty columns only. Columns containing data are not used for data 
storage, so no data can be lost. 

• Store in designated columns 
Beginning at the First Storage Variable, the values are stored in this column and those to the 
right. If a column contains data, the data are replaced by the storage values. Care must be 
used with this option because it cannot be undone. 

Store First Variable In 
The first item is stored in this variable. Each additional item that is checked is stored in the 
variables immediately to the right of this variable.  

Leave this value blank if you want the data storage to begin in the first blank column on the right-
hand side of the data. 

Warning: any existing data in these variables is automatically replaced, so be careful. 

Data Storage Options – Select Items 
to Store 

Predicted Y ... LOESS Values 
Indicate whether to store these row-by-row values, beginning at the variable indicated by the 
Store First Variable In option.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Running a Linear Regression Analysis 
This section presents an example of how to run a linear regression analysis of the data in the 
LINREG1 database. In this example, we will run a regression of Height on Weight. Predicted 
values of Height are wanted at Weight values equal to 90, 100, 150, 200, and 250. 

This regression program outputs over thirty different reports and plots, many of which contain 
duplicate information. For the purposes of annotating the output, we will output all of the reports. 
Normally, you would only select a few these reports.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Linear Regression and Correlation window. 

1 Open the LINREG1 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file LinReg1.s0. 
• Click Open. 

2 Open the Linear Regression and Correlation window. 
• On the menus, select Analysis, then Regression / Correlation, then Linear Regression 

and Correlation. The Linear Regression and Correlation procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Linear Regression and Correlation window, select the Variables tab.  
• Set the Y: Dependent Variable box to Height.  
• Set the X: Independent Variable box to Weight.  
• Check the Calculate Bootstrap C.I.'s and Run Randomization Tests boxes. 

4 Specify the randomization test options. 
• Select the Resampling tab. 
• Set the Monte Carlo Samples to 1000. 

5 Specify the reports. 
• Select the Reports tab. 
• Set the Predict Y at these X Values box to 90 100 150 200 250.  
• Under Select a Group of Reports and Plots, select Display ALL reports & plots. As 

we mentioned above, normally you would only view a few of these reports, but we are 
selecting them all so that we can document them. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Linear Regression Plot Section 
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The plot shows the data and the linear regression line. This plot is very useful for finding outliers 
and nonlinearities. It gives you a good feel for how well the linear regression model fits the data. 

Run Summary Section 
 
Parameter Value Parameter Value 
Dependent Variable Height Rows Processed 20 
Independent Variable Weight Rows Used in Estimation 20 
Frequency Variable None Rows with X Missing 0 
Weight Variable None Rows with Freq Missing 0 
Intercept 35.1337 Rows Prediction Only 0 
Slope 0.1932 Sum of Frequencies 20 
R-Squared 0.9738 Sum of Weights 20.0000 
Correlation 0.9868 Coefficient of Variation 0.0226 
Mean Square Error 1.970176 Square Root of MSE 1.40363 
 

This report summarizes the linear regression results. It presents the variables used, the number of 
rows used, and the basic least squares results. These values are repeated later in specific reports, 
so they will not be discussed further here. 

Coefficient of Variation 
The coefficient of variation is a relative measure of dispersion, computed by dividing the square 
root of the mean square error by the mean of Y. By itself, it has little value, but it can be useful in 
comparative studies.  

CV MSE
Y

=  
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Summary Statement 
 
The equation of the straight line relating Height and Weight is estimated as: Height = 
(35.1337) + (0.1932) Weight using the 20 observations in this dataset. The y-intercept, the 
estimated value of Height when Weight is zero, is 35.1337 with a standard error of 1.0887. The 
slope, the estimated change in Height per unit change in Weight, is 0.1932 with a standard 
error of 0.0075. The value of R-Squared, the proportion of the variation in Height that can be 
accounted for by variation in Weight, is 0.9738. The correlation between Height and Weight is 
0.9868. 
A significance test that the slope is zero resulted in a t-value of 25.8679. The significance 
level of this t-test is 0.0000. Since 0.0000 < 0.0500, the hypothesis that the slope is zero is 
rejected. 
The estimated slope is 0.1932. The lower limit of the 95% confidence interval for the slope is 
0.1775 and the upper limit is 0.2089. The estimated intercept is 35.1337. The lower limit of 
the 95% confidence interval for the intercept is 32.8464 and the upper limit is 37.4209. 
 

This report gives an explanation of the results in text format. 

Descriptive Statistics Section 
 
Parameter Dependent Independent 
Variable Height Weight 
Count 20 20 
Mean 62.1000 139.6000 
Standard Deviation 8.4411 43.1221 
Minimum 51.0000 82.0000 
Maximum 79.0000 228.0000 

 

This report presents the mean, standard deviation, minimum, and maximum of the two variables. 
It is particularly useful for checking that the correct variables were selected. 

Regression Estimation Section  
 
 Intercept Slope 
Parameter B(0) B(1) 
Regression Coefficients 35.1337 0.1932 
Lower 95% Confidence Limit 32.8464 0.1775 
Upper 95% Confidence Limit 37.4209 0.2089 
Standard Error 1.0887 0.0075 
Standardized Coefficient 0.0000 0.9868 
 
T Value 32.2716 25.8679 
Prob Level 0.0000 0.0000 
Prob Level (Randomization Test N =1000)  0.0010 
Reject H0 (Alpha = 0.0500) Yes Yes 
Power (Alpha = 0.0500) 1.0000 1.0000 
 
Regression of Y on X 35.1337 0.1932 
Inverse Regression from X on Y 34.4083 0.1984 
Orthogonal Regression of Y and X 35.1076 0.1934 
 
Estimated Model 
( 35.1336680743148) + ( .193168566802902) * (Weight) 
 

This section reports the values and significance tests of the regression coefficients. Before using 
this report, check that the assumptions are reasonable by looking at the tests of assumptions 
report.  
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Regression Coefficients 
The regression coefficients are the least-squares estimates of the Y-intercept and the slope. The 
slope indicates how much of a change in Y occurs for a one-unit change in X. 

Lower - Upper 95% Confidence Limits  
These are the lower and upper values of a 100(1-α)% interval estimate for βj based on a t-
distribution with N - 2 degrees of freedom. This interval estimate assumes that the residuals for 
the regression model are normally distributed.  

The formulas for the lower and upper confidence limits are 

jbnj stb 2,21 −−± α  

Standard Error 
The standard error of the regression coefficient, s , is the standard deviation of the estimate. It 
provides a measure of the precision of the estimated regression coefficient. It is used in 
hypothesis tests or confidence limits.  

b j

Standardized Coefficient 
Standardized regression coefficients are the coefficients that would be obtained if you 
standardized both variables. Here standardizing is defined as subtracting the mean and dividing 
by the standard deviation of a variable. A regression analysis on these standardized variables 
would yield these standardized coefficients.  

The formula for the standardized regression coefficient is: 

1 1,  std
X

Y
b  =  b s

s
⎛
⎝
⎜

⎞
⎠
⎟   

where  and  are the standard deviations for the dependent and independent variables, 
respectively. 

sY sX

Note that in the case of linear regression, the standardized coefficient is equal to the correlation 
between the two variables. 

T-Value  
These are the t-test values for testing the hypotheses that the intercept and the slope are zero 
versus the alternative that they are nonzero. These t-values have N - 2 degrees of freedom. 

To test that the slope is equal to a hypothesized value other than zero, inspect the confidence 
limits. If the hypothesized value is outside the confidence limits, the hypothesis is rejected. 
Otherwise, it is not rejected.  

Prob Level 
This is the two-sided p-value for the significance test of the regression coefficient. The p-value is 
the probability that this t-statistic will take on a value at least as extreme as the actually observed 
value, assuming that the null hypothesis is true (i.e., the regression estimate is equal to zero). If 
the p-value is less than alpha, say 0.05, the null hypothesis is rejected. 
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Prob Level (Randomization Test) 
This is the two-sided p-value for the randomization test of whether the slope is zero. Since this 
value is based on a randomization test, it does not require all of the assumptions that the t-test 
does. The number of Monte Carlo samples of the permutation distribution of the slope is shown 
in parentheses. 

Reject H0 (Alpha = 0.05) 
This value indicates whether the null hypothesis was reject. Note that the level of significance 
was specified as the value of Alpha. 

Power (Alpha = 0.05) 
Power is the probability of rejecting the null hypothesis that the regression coefficient is zero 
when in truth, the regression coefficient is some value other than zero. The power is calculated 
for the case when the estimate coefficient is the actual coefficient, the estimate variance is the 
true variance, and Alpha is the given value.  

High power is desirable. High power means that there is a high probability of rejecting the null 
hypothesis when the null hypothesis is false. This is a critical measure of sensitivity in hypothesis 
testing. This estimate of power is based upon the assumption that the residuals are normally 
distributed. 

Regression of Y on X 
These are the usual least squares estimates of the intercept and slope from a linear regression of Y 
on X. These quantities were given earlier and are reproduced here to allow easy comparisons. 

Regression of X on Y 
These are the estimated intercept and slope derived from the coefficients of linear regression of X 
on Y. These quantities may be useful in calibration and inverse prediction.  

Orthogonal Regression of Y and X 
The are the estimates of the intercept and slope from an orthogonal regression of Y on X. This 
equation minimizes the sum of the squared perpendicular distances between the points and the 
regression line.  

Estimated Model 
This is the least squares regression line presented in double precision. Besides showing the 
regression model in long form, it may be used as a transformation by copying and pasting it into 
the Transformation portion of the spreadsheet. 



300-42  Linear Regression and Correlation  

Bootstrap Section 
 
---  Estimation Results ------ | --- Bootstrap Confidence Limits ---- 
Parameter Estimate | Conf. Level Lower Upper 
Intercept 
Original Value 35.1337 | 0.9000 33.5138 36.8691 
Bootstrap Mean 35.1391 | 0.9500 33.1520 37.2812 
Bias (BM - OV) 0.0055 | 0.9900 32.6492 38.1285 
Bias Corrected 35.1282    
Standard Error 1.0178    
Slope 
Original Value 0.1932 | 0.9000 0.1815 0.2047 
Bootstrap Mean 0.1931 | 0.9500 0.1785 0.2069 
Bias (BM - OV) 0.0000 | 0.9900 0.1729 0.2118 
Bias Corrected 0.1932    
Standard Error 0.0071    
Correlation 
Original Value 0.9868 | 0.9000 0.9799 0.9973 
Bootstrap Mean 0.9865 | 0.9500 0.9789 1.0000 
Bias (BM - OV) -0.0003 | 0.9900 0.9772 1.0000 
Bias Corrected 0.9871    
Standard Error 0.0056    
R-Squared 
Original Value 0.9738 | 0.9000 0.9601 0.9943 
Bootstrap Mean 0.9733 | 0.9500 0.9582 0.9996 
Bias (BM - OV) -0.0005 | 0.9900 0.9548 1.0000 
Bias Corrected 0.9743    
Standard Error 0.0109    
Standard Error of Estimate 
Original Value 1.4036 | 0.9000 1.1710 1.8446 
Bootstrap Mean 1.3241 | 0.9500 1.1225 1.9071 
Bias (BM - OV) -0.0795 | 0.9900 1.0355 2.0552 
Bias Corrected 1.4832    
Standard Error 0.2046    
Orthogonal Intercept 
Original Value 35.1076 | 0.9000 33.4855 36.8576 
Bootstrap Mean 35.1123 | 0.9500 33.1251 37.2581 
Bias (BM - OV) 0.0047 | 0.9900 32.6179 38.1223 
Bias Corrected 35.1028    
Standard Error 1.0231    
Orthogonal Slope 
Original Value 0.1934 | 0.9000 0.1816 0.2048 
Bootstrap Mean 0.1933 | 0.9500 0.1786 0.2071 
Bias (BM - OV) 0.0000 | 0.9900 0.1731 0.2120 
Bias Corrected 0.1934    
Standard Error 0.0071    
Predicted Mean and Confidence Limits of Height when Weight = 90.0000 
Original Value 52.5188 | 0.9000 51.8172 53.2993 
Bootstrap Mean 52.5220 | 0.9500 51.6895 53.4913 
Bias (BM - OV) 0.0032 | 0.9900 51.4648 53.8741 
Bias Corrected 52.5157    
Standard Error 0.4549  
(Report continues for the other values of Weight) 
Sampling Method = Observation, Confidence Limit Type = Reflection, Number of Samples = 3000. 
 

This report provides bootstrap estimates of the slope and intercept of the least squares regression 
line and the orthogonal regression line, the correlation coefficient, and other linear regression 
quantities. Note that bootstrap confidence intervals and prediction intervals are provided for each 
of the X (Weight) values. Details of the bootstrap method were presented earlier in this chapter. 

Note that since these results are based on 3000 random bootstrap samples, they will differ slightly 
from the results you obtain when you run this report.  

Original Value 
This is the parameter estimate obtained from the complete sample without bootstrapping. 
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Bootstrap Mean 
This is the average of the parameter estimates of the bootstrap samples. 

Bias (BM - OV) 
This is an estimate of the bias in the original estimate. It is computed by subtracting the original 
value from the bootstrap mean. 

Bias Corrected 
This is an estimated of the parameter that has been corrected for its bias. The correction is made 
by subtracting the estimated bias from the original parameter estimate. 

Standard Error 
This is the bootstrap method’s estimate of the standard error of the parameter estimate. It is 
simply the standard deviation of the parameter estimate computed from the bootstrap estimates. 

Conf. Level 
This is the confidence coefficient of the bootstrap confidence interval given to the right. 

Bootstrap Confidence Limits - Lower and Upper 
These are the limits of the bootstrap confidence interval with the confidence coefficient given to 
the left. These limits are computed using the confidence interval method (percentile or reflection) 
designated on the Bootstrap panel. 

Note that to be accurate, these intervals must be based on over a thousand bootstrap samples and 
the original sample must be representative of the population. 

Bootstrap Histograms Section 
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Each histogram shows the distribution of the corresponding parameter estimate.  
Note that the number of decimal places shown in the horizontal axis is controlled by which 
histogram style file is selected. In this example, we selected Bootstrap2, which was created to 
provide two decimal places. 
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Correlation and R-Squared Section 
 
   Spearman 
 Pearson  Rank 
 Correlation  Correlation 
Parameter Coefficient R-Squared Coefficient 
Estimated Value 0.9868 0.9738 0.9759 
Lower 95% Conf. Limit (r dist’n) 0.9646  
Upper 95% Conf. Limit (r dist’n) 0.9945  
Lower 95% Conf. Limit (Fisher’s z) 0.9662  0.9387 
Upper 95% Conf. Limit (Fisher’s z) 0.9949  0.9906 
Adjusted (Rbar)  0.9723  
T-Value for H0: Rho = 0 25.8679 25.8679 18.9539 
Prob Level for H0: Rho = 0 0.0000 0.0000 0.0000 
 

This report provides results about Pearson’s correlation, R-squared, and Spearman’s rank 
correlation. 

Pearson Correlation Coefficient 
Details of the calculation of this value were given earlier in the chapter. Remember that this value 
is an index of the strength of the linear association between X and Y. The range of values is from -
1 to 1. Strong association occurs when the magnitude of the correlation is close to one. Low 
correlations are those near zero.  

Two sets of confidence limits are given. The first is a set of exact limits computed from the 
distribution of the correlation coefficient. These limits assume that X and Y follow the bivariate 
normal distribution. The second set of limits are limits developed by R. A. Fisher as an 
approximation to the exact limits. The approximation is quite good as you can see by comparing 
the two sets of limits. The second set is provided because they are often found in statistics books. 
In most cases, you should use the first set based on the r distribution because they are exact. You 
may want to compare these limits with those found for the correlation in the Bootstrap report. 

The two-sided hypothesis test and probability level are for testing whether the correlation is zero. 

Prob Level (Randomization Test) 
This is the two-sided p-value for the randomization test of whether the slope is zero. This 
probability value may also be used to test whether the Pearson correlation is zero. Since this value 
is based on a randomization test, it does not require all of the assumptions that the parametric test 
does. The number of Monte Carlo samples of the permutation distribution of the slope is shown 
in parentheses. 

Spearman Rank Correlation Coefficient 
The Spearman’s rank correlation is simply the Pearson correlation computed on the ranks of X 
and Y rather than on the actual data. By using the ranks, some of the assumptions may be relaxed. 
However, the interpretation of the correlation is much more difficult.  

The confidence interval for this correlation is calculated using the Fisher’s z transformation of the 
rank correlation. 

The two-sided hypothesis test and probability level are for testing whether the rank correlation is 
zero. 
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R-Squared 
R2 , officially known as the coefficient of determination, is defined as 

Total

Model

SS
SS

R =2  

R2  is probably the most popular statistical measure of how well the regression model fits the 
data. R2  may be defined either as a ratio or a percentage. Since we use the ratio form, its values 
range from zero to one. A value of R2  near zero indicates no linear relationship between the Y 
and X, while a value near one indicates a perfect linear fit. Although popular, R2  should not be 
used indiscriminately or interpreted without scatter plot support. Following are some 
qualifications on its interpretation:  

1. Linearity. R2  does not measure the appropriateness of a linear model. It measures the 
strength of the linear component of the model. Suppose the relationship between X and Y 
was a perfect circle. The R2  value of this relationship would be zero. 

2. Predictability. A large R2  does not necessarily mean high predictability, nor does a low 
R2  necessarily mean poor predictability.  

3. No-intercept model. The definition of R2  assumes that there is an intercept in the 
regression model. When the intercept is left out of the model, the definition of R2  
changes dramatically. The fact that your R2  value increases when you remove the 
intercept from the regression model does not reflect an increase in the goodness of fit. 
Rather, it reflects a change in the underlying meaning of R2 . 

4. Sample size. R2  is highly sensitive to the number of observations. The smaller the 
sample size, the larger its value. 

Adjusted R-Squared 
This is an adjusted version of R2 . The adjustment seeks to remove the distortion due to a small 
sample size.  

( )adjusted
2R  =   -  R N -

N -
1 1 1

2
2− ⎛
⎝⎜

⎞
⎠⎟

 

Analysis of Variance Section 
 
  Sum of Mean  Prob Power 
Source DF Squares Square F-Ratio Level (5%) 
Intercept 1 77128.2 77128.2 
Slope 1 1318.337 1318.337 669.1468 0.0000 1.0000 
Error 18 35.46317 1.970176 
   Lack of Fit 16 34.96317 2.185198 8.7408 0.1074 
   Pure Error 2 0.5 0.25 
Adj. Total 19 1353.8 71.25263 
Total 20 78482 
s = Square Root(1.970176) = 1.40363 
 

An analysis of variance (ANOVA) table summarizes the information related to the sources of 
variation in data.  
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Source 
This represents the partitions of the variation in Y. There are four sources of variation listed: 
intercept, slope, error, and total (adjusted for the mean).  

DF 
The degrees of freedom are the number of dimensions associated with this term. Note that each 
observation can be interpreted as a dimension in N-dimensional space. The degrees of freedom 
for the intercept, model, error, and adjusted total are 1, 1, N - 2, and N - 1, respectively. 

Sum of Squares 
These are the sums of squares associated with the corresponding sources of variation. Note that 
these values are in terms of the dependent variable, Y. The formulas for each are 

interceptSS   NY= 2  

( )slopeSS  Y Y= ∑ −$
2
 

( )errorSS  Y Y= ∑ − $
2
 

( )totalSS  Y  Y= ∑ −
2

 

Note that the lack of fit and pure error values are provided if there are observations with identical 
values of the independent variable. 

Mean Square 
The mean square is the sum of squares divided by the degrees of freedom. This mean square is an 
estimated variance. For example, the mean square error is the estimated variance of the residuals 
(the residuals are sometimes called the errors).  

F-Ratio 
This is the F statistic for testing the null hypothesis that the slope equals zero. This F-statistic has 
1 degree of freedom for the numerator variance and N - 2 degrees of freedom for the denominator 
variance.  

Prob Level 
This is the p-value for the above F test. The p-value is the probability that the test statistic will 
take on a value at least as extreme as the observed value, assuming that the null hypothesis is true. 
If the p-value is less than alpha, say 0.05, the null hypothesis is rejected. If the p-value is greater 
than alpha, the null hypothesis is accepted.  

Power(5%) 
Power is the probability of rejecting the null hypothesis that the slope is zero when it is not. 

S = Root Mean Square Error 
s is the square root of the mean square error. It is an estimate of the standard deviation of the 
residuals. 
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Summary Matrices 
 
 X’X X’X X’Y X’X Inverse X’X Inverse 
Index 0 1 2 0 1 
0 20 2792 1242 0.6015912 -3.951227E-03 
1 2792 425094 180208 -3.951227E-03 2.830392E-05 
2 (Y’Y)   78482   
Determinant  706616   1.415196E-06 
 
Variance - Covariance Matrix of Regression Coefficients 
 VC(b) VC(b) 
Index 0 1 
0 1.185241 -7.784612E-03 
1 -7.784612E-03 5.576369E-05 
 

This section provides the matrices from which the least square regression values are calculated. 
Occasionally, these values may be useful in hand calculations. 

Tests of Assumptions Section 
 
   Is the Assumption 
 Test Prob Reasonable at the 0.2000 
Assumption/Test Value Level Level of Significance? 
Residuals follow Normal Distribution? 
Shapiro Wilk 0.9728 0.812919 Yes 
Anderson Darling 0.2652 0.694075 Yes 
D’Agostino Skewness -0.9590 0.337543 Yes 
D’Agostino Kurtosis 0.1205 0.904066 Yes 
D’Agostino Omnibus 0.9343 0.626796 Yes 
 
Constant Residual Variance? 
Modified Levene Test 0.0946 0.761964 Yes 
 
Relationship is a Straight Line? 
Lack of Linear Fit F(16, 2) Test 8.7408 0.107381 No 
 
No Serial Correlation? 
Evaluate the Serial-Correlation report and the Durbin-Watson test if you have  
equal-spaced, time series data. 
 

This report presents numeric tests of some of the assumptions made when using linear regression. 
The results of these tests should be compared to an appropriate plot to determine if the 
assumption is valid or not.  
Note that a ‘Yes’ means that there is not enough evidence to reject the assumption. This lack of 
assumption test rejection may be because the sample size is too small or the assumptions of the 
test were no met. It does not necessarily mean that the data met assumption. Likewise, a ‘No’ 
may occur because the sample size is very large. It is almost always possible to fail a preliminary 
test given a large enough sample size. No assumption is every fits perfectly. Bottom line, you 
should also investigate plots designed to check the assumptions. 

Residuals follow Normal Distribution? 
This section displays the results of five normality tests of the residuals. The Shapiro-Wilk and 
Anderson-Darling tests are usually considered as the best.  

Unfortunately, these tests have small statistical power (probability of detecting nonnormal data) 
unless the sample sizes are large, say over 300. Hence, if the decision is to reject normality, you 
can be reasonably certain that the data are not normal. However, if the decision is not to reject, 
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the situation is not as clear. If you have a sample size of 300 or more, you can reasonably assume 
that the actual distribution is closely approximated by the normal distribution. If your sample size  

is less than 300, all you know for sure is that there was not enough evidence in your data to reject 
the normality of residuals assumption. In other words, the data might be nonnormal, you just 
could not prove it. In this case, you must rely on the graphics to justify the normality assumption. 

Shapiro-Wilk W Test 
This test for normality, developed by Shapiro and Wilk (1965), has been found to be the most 
powerful test in most situations. It is the ratio of two estimates of the variance of a normal 
distribution based on a random sample of N observations. The numerator is proportional to the 
square of the best linear estimator of the standard deviation. The denominator is the sum of 
squares of the observations about the sample mean. W may be written as the square of the Pearson 
correlation coefficient between the ordered observations and a set of weights which are used to 
calculate the numerator. Since these weights are asymptotically proportional to the corresponding 
expected normal order statistics, W is roughly a measure of the straightness of the normal 
quantile-quantile plot. Hence, the closer W is to one, the more normal the sample is.  

The probability values for W are valid for samples in the range of 3 to 5000. 

The test is not calculated when a frequency variable is specified. 

Anderson-Darling Test 
This test, developed by Anderson and Darling (1954), is based on EDF statistics. In some 
situations, it has been found to be as powerful as the Shapiro-Wilk test.  

The test is not calculated when a frequency variable is specified. 

D’Agostino Skewness 
D’Agostino (1990) proposed a normality test based on the skewness coefficient, b1 . Because 
the normal distribution is symmetrical, b1  is equal to zero for normal data. Hence, a test can be 
developed to determine if the value of b1  is significantly different from zero. If it is, the data are 
obviously nonnormal. The test statistic is, under the null hypothesis of normality, approximately 
normally distributed. The computation of this statistic is restricted to sample sizes greater than 8. 
The formula and further details are given in the Descriptive Statistics chapter.  

D’Agostino Kurtosis 
D’Agostino (1990) proposed a normality test based on the kurtosis coefficient, . For the normal 
distribution, the theoretical value of b  is 3. Hence, a test can be developed to determine if the 
value of  is significantly different from 3. If it is, the residuals are obviously nonnormal. The 
test statistic is, under the null hypothesis of normality, approximately normally distributed for 
sample sizes N > 20. The formula and further details are given in the Descriptive Statistics 
chapter.  

b2

2

b2

D’Agostino Omnibus 
D’Agostino (1990) proposed a normality test that combines the tests for skewness and kurtosis. 
The statistic, K 2 , is approximately distributed as a chi-square with two degrees of freedom.  
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Constant Residual Variance? 
Linear regression assumes that the residuals have constant variance. The validity of this 
assumption can be checked by looking at a plot of the absolute values of the residuals versus the 
X variable. The modified Levene test may be used when a numerical answer is needed.  

If your data fail this test, you may want to use a logarithm transformation or a weighted 
regression. 

Modified Levene Test 
The modified Levene test can be used to evaluated the validity of the assumption of constant 
variance. It has been shown to be reliable even when the residuals do not follow a normal 
distribution. The mathematical details of the test were presented earlier in this chapter.   

Relationship is a Straight Line? 
Linear regression assumes that the relationship between X and Y is a straight line (linear). The 
validity of this assumption can be checked by looking at the plot Y versus X and at the plot of the 
residuals versus X. The lack of fit test may be used when a numerical answer is needed.  

If your data fail this test, you may want to use a different model which accounts for the curvature. 
The Growth and Other Models procedure in curve fitting is a good choice when curvature exists 
in your data. 

Lack of Linear Fit Test 
The lack-of-fit test is used to test for a departure from the linear fit. This test requires that there 
are multiple observations for at least one X value. When such is the case, an estimate of pure 
error and lack of fit can be found and an F test created. The mathematical details of the test were 
presented earlier in this chapter.  

Serial Correlation and Durbin-Watson Sections 
 
Serial Correlation of Residuals Section 
 Serial  Serial  Serial 
Lag Correlation Lag Correlation Lag Correlation 
1 0.1029 9 -0.2353 17  
2 -0.4127* 10 -0.0827 18  
3 0.0340 11 -0.0316 19  
4 0.2171 12 -0.0481 20  
5 -0.1968 13 0.0744 21  
6 -0.0194 14 0.0073 22  
7 0.2531 15  23  
8 -0.0744 16  24  
 
Durbin-Watson Test For Serial Correlation 
  Did the Test Reject 
Parameter Value H0: Rho(1) = 0? 
Durbin-Watson Value 1.6978 
Prob. Level: Positive Serial Correlation 0.2366 No 
Prob. Level: Negative Serial Correlation 0.7460 No 
 

This section reports on the autocorrelation structure of the residuals. Of course, if your data were 
not taken through time, this section should be ignored.   

Lag 
The lag, k, is the number of periods back.  
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Serial Correlation 
The serial correlation reported here is the sample autocorrelation coefficient of lag k. It is 
computed as 

k
i-k i

i
2r  =  e e

e
     for k = 1,2,...,24∑

∑   
The distribution of these autocorrelations may be approximated by the distribution of the regular 
correlation coefficient. Using this fact, Fisher’s Z transformation may be used to find large 
autocorrelations. If the Fisher’s Z transformation of the autocorrelation is greater than 1.645, the 
autocorrelation is assumed to be large and the observation is starred. 

Durbin-Watson Value 
The Durbin-Watson test is often used to test for positive or negative, first-order, serial correlation. 
It is calculated as follows 
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The distribution of this test is mathematically difficult because it involves the X values. Originally, 
Durbin-Watson (1950, 1951) gave a pair of bounds to be used. However, there is a large range of 
indecision that can be found when using these bounds. Instead of using these bounds, NCSS 
calculates the exact probability using the beta distribution approximation suggested by Durbin-
Watson (1951). This approximation has been shown to be accurate to three decimal places in most 
cases. 

PRESS Section 
 
 From From 
 PRESS Regular 
Parameter Residuals Residuals 
Sum of Squared Residuals 43.15799 35.46317 
Sum of |Residuals| 24.27421 22.02947 
R-Squared 0.9681 0.9738 
 

This section reports on the PRESS statistics. The regular statistics, computed on all of the data, 
are provided to the side to make comparison between corresponding values easier. 

Sum of Squared Residuals 
PRESS is an acronym for prediction sum of squares. It was developed for use in variable selection 
to validate a regression model. To calculate PRESS, each observation is individually omitted. The 
remaining N - 1 observations are used to calculate a regression and estimate the value of the 
omitted observation. This is done N times, once for each observation. The difference between the 
actual Y value and the predicted Y with the observation deleted is called the prediction error or 
PRESS residual. The sum of the squared prediction errors is the PRESS value. The smaller PRESS 
is, the better the predictability of the model.  
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Sum of |Press residuals| 
This is the sum of the absolute value of the PRESS residuals or prediction errors. If a large value 
for the PRESS is due to one or a few large PRESS residuals, this statistic may be a more accurate 
way to evaluate predictability.  

Press R-Squared 
The PRESS value above can be used to compute an R2 -like statistic, called R2Predict, which 
reflects the prediction ability of the model. This is a good way to validate the prediction of a 
regression model without selecting another sample or splitting your data. It is very possible to 
have a high R2  and a very low R2Predict. When this occurs, it implies that the fitted model is 
data dependent. This R2Predict ranges from below zero to above one. When outside the range of 
zero to one, it is truncated to stay within this range.  

Predicted Values and Confidence Limits Section 
 
 Predicted Standard Lower 95% Upper 95% 
Weight Height Error Confidence Confidence 
(X) (Yhat|X) of Yhat Limit of Y|X Limit of Y|X 
90.0000 52.5188 0.4855 51.4989 53.5388 
100.0000 54.4505 0.4312 53.5446 55.3565 
150.0000 64.1090 0.3233 63.4297 64.7882 
200.0000 73.7674 0.5495 72.6129 74.9218 
250.0000 83.4258 0.8821 81.5725 85.2791 
 

The predicted values and confidence intervals of the mean response of Y given X are provided 
here. The values of X used here were specified in the Predict Y at these X Values option on the 
Variables panel.  
It is important to note that violations of any regression assumptions will invalidate this interval 
estimate. 

X 
This is the value of X at which the prediction is made. 

Predicted Y (Yhat|X) 
The predicted value of Y for the value of X indicated. 

Standard Error of Yhat 
This is the estimated standard deviation of the predicted value.  

Lower 95% Confidence Limit of Y|X 
This is the lower limit of a 95% confidence interval estimate of the mean of Y at this value of X. 

Upper 95% Confidence Limit of Y|X 
This is the upper limit of a 95% confidence interval estimate of the mean of Y at this value of X. 
Note that you set the alpha level on the Variables panel. 
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Predicted Values and Prediction Limits Section 
 
 Predicted Standard Lower 95% Upper 95% 
Weight Height Error Prediction Prediction 
(X) (Yhat|X) of Yhat Limit of Y|X Limit of Y|X 
90.0000 52.5188 1.4852 49.3985 55.6392 
100.0000 54.4505 1.4684 51.3656 57.5355 
150.0000 64.1090 1.4404 61.0828 67.1351 
200.0000 73.7674 1.5074 70.6005 76.9342 
250.0000 83.4258 1.6578 79.9429 86.9087 
 

The predicted values and prediction intervals of the response of Y given X are provided here. The 
values of X used here were specified in the Predict Y at these X Values option on the Variables 
panel.  
It is important to note that violations of any regression assumptions will invalidate this interval 
estimate. 

X 
This is the value of X at which the prediction is made. 

Predicted Y (Yhat|X) 
The predicted value of Y for the value of X indicated. 

Standard Error of Yhat 
This is the estimated standard deviation of the predicted value.  

Lower 95% Prediction Limit of Y|X 
This is the lower limit of a 95% prediction interval estimate of the mean of Y at this value of X. 

Upper 95% Prediction Limit of Y|X 
This is the upper limit of a 95% prediction interval estimate of the mean of Y at this value of X. 
Note that you set the alpha level on the Variables panel. 

Residual Plots 
The residuals can be graphically analyzed in numerous ways. For certain, the regression analyst 
should examine all of the basic residual graphs:  the histogram, the density trace, the normal 
probability plot, the serial correlation plots (for time series data), the scatter plot of the residuals 
versus the sequence of the observations (for time series data), and the scatter plot of the residuals 
versus the independent variable.  

For the scatter plots of residuals versus either the predicted values of Y or the independent 
variables, Hoaglin (1983) explains that there are several patterns to look for. You should note that 
these patterns are very difficult, if not impossible, to recognize for small data sets. 

Point Cloud 
A point cloud, basically in the shape of a rectangle or a horizontal band, would indicate no 
relationship between the residuals and the variable plotted against them. This is the preferred 
condition. 
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Wedge 
An increasing or decreasing wedge would be evidence that there is increasing or decreasing 
(nonconstant) variation. A transformation of Y may correct the problem, or weighted least squares 
may be needed. 

Bowtie 
This is similar to the wedge above in that the residual plot shows a decreasing wedge in one 
direction while simultaneously having an increasing wedge in the other direction. A 
transformation of Y may correct the problem, or weighted least squares may be needed. 

Sloping Band 
This kind of residual plot suggests adding a linear version of the independent variable to the 
model. 

Curved Band 
This kind of residual plot may be indicative of a nonlinear relationship between Y and the 
independent variable that was not accounted for. The solution might be to use a transformation on 
Y to create a linear relationship with X. Another possibility might be to add quadratic or cubic 
terms of a particular independent variable. 

Curved Band with Increasing or Decreasing Variability 
This residual plot is really a combination of the wedge and the curved band. It too must be 
avoided. 

Residual vs X Plot 
 

 

-4.0

-2.3

-0.5

1.3

3.0

50.0 100.0 150.0 200.0 250.0

Residuals of Height vs Weight

Weight

R
es

id
ua

ls
 o

f H
ei

gh
t

 
 
This plot is useful for showing nonlinear patterns and outliers. The preferred pattern is a 
rectangular shape or point cloud. Any other nonrandom pattern may require a redefining of the 
regression model. 
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|Residual| vs X Plot 
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This plot is useful for showing nonconstant variance in the residuals. The preferred pattern is a 
rectangular shape or point cloud. The most common type of nonconstant variance occurs when 
the variance is proportion to X. This is shown by a funnel shape. Remedies for nonconstant 
variances were discussed earlier. 

RStudent vs X Plot 
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This is a scatter plot of the RStudent residuals versus the independent variable. The preferred 
pattern is a rectangular shape or point cloud. This plot is helpful in identifying any outliers. 
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Sequence Plot 
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Sequence plots may be useful in finding variables that are not accounted for by the regression 
equation. They are especially useful if the data were taken over time. 

Serial Correlation of Residuals Plot 
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This is a scatter plot of the ith residual versus the ith-1 residual. It is only useful for time series data 
where the order of the rows on the database is important. 
The purpose of this plot is to check for first-order autocorrelation. You would like to see a 
random pattern, i.e., a rectangular or uniform distribution of the points. A strong positive or 
negative trend indicates a need to redefine the model with some type of autocorrelation 
component.  

Positive autocorrelation or serial correlation means that the residual in time period t tends to have 
the same sign as the residual in time period (t - 1). On the other hand, a strong negative 
autocorrelation means that the residual in time period t tends to have the opposite sign as the 
residual in time period (t - 1).  

Be sure to check the Durbin-Watson statistic. 
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Histogram 
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The purpose of the histogram and density trace of the residuals is to evaluate whether they are 
normally distributed. Unless you have a large sample size, it is best not to rely on the histogram 
for visually evaluating normality of the residuals. The better choice would be the normal 
probability plot. 

Probability Plot of Residuals 
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If the residuals are normally distributed, the data points of the normal probability plot will fall 
along a straight line. Major deviations from this ideal picture reflect departures from normality. 
Stragglers at either end of the normal probability plot indicate outliers. Curvature at both ends of 
the plot indicates long or short distributional tails. Convex, or concave, curvature indicates a lack 
of symmetry. Gaps, plateaus, or segmentation indicate clustering and may require a closer 
examination of the data or model. Of course, use of this graphic tool with very small sample sizes 
is unwise.  
If the residuals are not normally distributed, the t-tests on regression coefficients, the F-tests, and 
the interval estimates are not valid. This is a critical assumption to check. 
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Original Data Section 
 
   Predicted 
 Weight Height Height 
Row (X) (Y) (Yhat|X) Residual 
1 159.0000 64.0000 65.8475 -1.8475 
2 155.0000 63.0000 65.0748 -2.0748 
3 157.0000 67.0000 65.4611 1.5389 
4 125.0000 60.0000 59.2797 0.7203 
5 103.0000 52.0000 55.0300 -3.0300 
6 122.0000 58.0000 58.7002 -0.7002 
. . . . . 
. . . . . 
. . . . . 

 

This report lists the values of X, Y, the predicted value of Y, and the residual. 

Predicted Values of Means Section 
 
   Predicted Standard Lower 95% Upper 95% 
 Weight Height Height Error Conf. Limit Conf. Limit 
Row (X) (Y) (Yhat|X) of Yhat of Y Mean|X of Y Mean|X 
1 159.0000 64.0000 65.8475 0.3457 65.1212 66.5737 
2 155.0000 63.0000 65.0748 0.3343 64.3725 65.7771 
3 157.0000 67.0000 65.4611 0.3397 64.7475 66.1748 
4 125.0000 60.0000 59.2797 0.3323 58.5817 59.9778 
5 103.0000 52.0000 55.0300 0.4162 54.1557 55.9044 
6 122.0000 58.0000 58.7002 0.3403 57.9854 59.4151 
. . . . . . . 
. . . . . . . 
. . . . . . . 
 

The predicted values and confidence intervals of the mean response of Y given X are given for 
each observation.  

X 
This is the value of X at which the prediction is made. 

Y 
This is the actual value of Y. 

Predicted Y (Yhat|X) 
The predicted value of Y for the value of X indicated. 

Standard Error of Yhat 
This is the estimated standard deviation of the predicted mean value.  

Lower 95% Confidence Limit of Y|X 
This is the lower limit of a 95% confidence interval estimate of the mean of Y at this value of X. 

Upper 95% Confidence Limit of Y|X 
This is the upper limit of a 95% confidence interval estimate of the mean of Y at this value of X. 
Note that you set the alpha level on the Variables panel. 
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Predicted Values and Prediction Limits Section 
 
   Predicted Standard Lower 95% Upper 95% 
 Weight Height Height Error Prediction Prediction 
Row (X) (Y) (Yhat|X) of Yhat Limit of Y|X Limit of Y|X 
1 159.0000 64.0000 65.8475 1.4456 62.8104 68.8845 
2 155.0000 63.0000 65.0748 1.4429 62.0434 68.1062 
3 157.0000 67.0000 65.4611 1.4441 62.4271 68.4952 
4 125.0000 60.0000 59.2797 1.4424 56.2493 62.3101 
5 103.0000 52.0000 55.0300 1.4640 51.9542 58.1058 
6 122.0000 58.0000 58.7002 1.4443 55.6659 61.7346 
. . . . . . . 
. . . . . . . 
. . . . . . . 
 

The predicted values and confidence intervals of the mean response of Y given X are given for 
each observation.  

X 
This is the value of X at which the prediction is made. 

Y 
This is the actual value of Y. 

Predicted Y (Yhat|X) 
The predicted value of Y for the value of X indicated. 

Standard Error of Yhat 
This is the estimated standard deviation of the predicted value suitable for creating a prediction 
limit for an individual.  

Lower 95% Prediction Limit of Y|X 
This is the lower limit of a 95% prediction interval estimate of Y at this value of X. 

Upper 95% Prediction Limit of Y|X 
This is the upper limit of a 95% prediction interval estimate of Y at this value of X. Note that you 
set the alpha level on the Variables panel. 
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Working-Hotelling Simultaneous Confidence Band 
 
   Predicted Standard Lower 95% Upper 95% 
 Weight Height Height Error Conf. Band Conf. Band 
Row (X) (Y) (Yhat|X) of Yhat of Y Mean|X of Y Mean|X 
1 159.0000 64.0000 65.8475 0.3457 63.3900 68.3050 
2 155.0000 63.0000 65.0748 0.3343 62.6985 67.4511 
3 157.0000 67.0000 65.4611 0.3397 63.0462 67.8761 
4 125.0000 60.0000 59.2797 0.3323 56.9177 61.6418 
5 103.0000 52.0000 55.0300 0.4162 52.0713 57.9887 
6 122.0000 58.0000 58.7002 0.3403 56.2812 61.1192 
. . . . . . . 
. . . . . . . 
. . . . . . . 
 

The predicted values and confidence band of the mean response function are given for each 
observation. Note that this is a confidence band for all possible values of X along the real number 
line. The confidence coefficient is the proportion of time that this procedure yields a band that 
includes the true regression line when a large number of samples are taken using the X values as 
in this sample.  

X 
This is the value of X at which the prediction is made. 

Y 
This is the actual value of Y. 

Predicted Y (Yhat|X) 
The predicted value of Y for the value of X indicated. 

Standard Error of Yhat 
This is the estimated standard deviation of the predicted mean value.  

Lower 95% Confidence Band of Y|X 
This is the lower limit of the 95% confidence band for the value of Y at this X. 

Upper 95% Confidence Band of Y|X 
This is the upper limit of the 95% confidence band for the value of Y at this X. 
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Residual Section 
 
   Predicted   Percent 
 Weight Height Height  Standardized Absolute 
Row (X) (Y) (Yhat|X) Residual Residual Error 
1 159.0000 64.0000 65.8475 -1.8475 -1.3580 2.8867 
2 155.0000 63.0000 65.0748 -2.0748 -1.5220 3.2933 
3 157.0000 67.0000 65.4611 1.5389 1.1299 2.2968 
4 125.0000 60.0000 59.2797 0.7203 0.5282 1.2004 
5 103.0000 52.0000 55.0300 -3.0300 -2.2604 5.8270 
6 122.0000 58.0000 58.7002 -0.7002 -0.5142 1.2073 
. . . . . . . 
. . . . . . . 
. . . . . . . 

 

This is a report showing the value of the residual at each observation.  

X 
This is the value of X at which the prediction is made. 

Y 
This is the actual value of Y. 

Predicted Y (Yhat|X) 
The predicted value of Y for the value of X indicated. 

Residual 
This is the difference between the actual and predicted values of Y.  

Standardized Residual 
The variance of the observed residuals is not constant. This makes comparisons among the 
residuals difficult. One solution is to standardize the residuals by dividing by their standard 
deviations. This gives a set of residuals with constant variance.  

The formula for this residual is 

j
j

jj
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Percent Absolute Error 
The percent is the absolute value of the Residual divided by the Actual value. Scrutinize 
observations with the large percent errors. 
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Residual Diagnostics Section 
 
 Weight   Hat   
Row (X) Residual RStudent Diagonal Cook's D MSEi 
1 159.0000 -1.8475 -1.3931 0.0607 0.0595 1.8723 
2 155.0000 -2.0748 -1.5845 0.0567 0.0696 1.8176 
3 157.0000 1.5389 1.1392 0.0586 0.0397 1.9381 
4 125.0000 0.7203 0.5173 0.0560 0.0083 2.0537 
5 103.0000 -3.0300 *-2.5957 0.0879 0.2462 1.4939 
6 122.0000 -0.7002 -0.5034 0.0588 0.0083 2.0554 
. . . . . . . 
. . . . . . . 
. . . . . . . 
 

This is a report gives residual diagnostics for each observation. These were discussed earlier in 
the technical of this chapter and we refer you to that section for the technical details. 

X 
This is the value of X at which the prediction is made. 

Residual 
This is the difference between the actual and predicted values of Y.  

RStudent 
Sometimes called the externally studentized residual, RStudent is a standardized residual that has 
the impact of a single observation removed from the mean square error. If the regression 
assumption of normality is valid, a single value of the RStudent has a t distribution with N - 2 
degrees of freedom.  

An observation is starred as an outlier if the absolute value of RStudent is greater than 2. 

Hat Diagonal 
The hat diagonal captures an observation’s remoteness in the X-space. Some authors refer to the 
hat diagonal as a measure of leverage in the X-space.  

Hat diagonals greater than 4 / N are considered influential. However, an influential observation is 
not a bad observation. An influential observation should be checked to determine if it is also an 
outlier.  

Cook’s D 
Cook’s D attempts to measure the influence the observation on all N fitted values. The formula 
for Cook’s D is 
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The  are found by removing observation i before the calculations. A Cook’s D value greater 
than one indicates an observation that has large influence. Some statisticians have suggested that 
a better cutoff value is 4 / (N - 2). 

( )$y ij

MSEi 
This is the value of the mean squared error calculated without observation j.  
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Leave One Row Out Section 
 
Row RStudent DFFITS Cook's D CovRatio DFBETAS(0) DFBETAS(1) 
1 -1.3931 -0.3540 0.0595 0.9615 0.0494 -0.1483 
2 -1.5845 -0.3885 0.0696 0.9023 0.0228 -0.1337 
3 1.1392 0.2842 0.0397 1.0279 -0.0284 0.1087 
4 0.5173 0.1260 0.0083 1.1511 0.0739 -0.0414 
5 * -2.5957 -0.8059 0.2462 0.6304 -0.6820 0.5292 
6 -0.5034 -0.1258 0.0083 1.1564 -0.0800 0.0486 
. . . . . . . 
. . . . . . . 
. . . . . . . 
 

Each column gives the impact on some aspect of the linear regression of omitting that row. 

RStudent 
Sometimes called the externally studentized residual, RStudent is a standardized residual that has 
the impact of a single observation removed from the mean square error. If the regression 
assumption of normality is valid, a single value of the RStudent has a t distribution with N - 2 
degrees of freedom. 

An observation is starred as an outlier if the absolute value of RStudent is greater than 2. 

Dffits 
Dffits is the standardized difference between the predicted value of Y with and without 
observation j. It represents the number of estimated standard errors that the predicted value 
changes if that observation is omitted. Dffits > 1 would flag observations as being influential in 
prediction.  

Cook’s D 
Cook’s D attempts to measure the influence the observation on all N fitted values. The formula 
for Cook’s D is 
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The  are found by removing observation i before the calculations. A Cook’s D value greater 
than one indicates an observation that has large influence. Some statisticians have suggested that 
a better cutoff value is 4 / (N - 2). 

( )$y ij

CovRatio 
This diagnostic flags observations that have a major impact on the generalized variance of the 
regression coefficients. A value exceeding 1.0 implies that the observation provides an 
improvement, i.e., a reduction in the generalized variance of the coefficients. A value of 
CovRatio less than 1.0 flags an observation that increases the estimated generalized variance. 
This is not a favorable condition.  

DFBETAS(0) and DFBETAS(1) 
DFBETAS(0) and DFBETAS(1) are the standardized change in the intercept and slope when an 
observation is omitted from the analysis. Belsley, Kuh, and Welsch (1980) recommend using a 
cutoff of 2 / N  when N is greater than 100. When N is less than 100, others have suggested 
using a cutoff of 1.0 or 2.0 for the absolute value of DFBETAS. 
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Outlier Detection Chart 
 
 Weight   Standardized    
Row (X) Residual  Residual  RStudent  
1 159.0000 -1.8475 |.............. -1.3580 |.............. -1.3931 |.............. 
2 155.0000 -2.0748 |.............. -1.5220 |.............. -1.5845 |.............. 
3 157.0000 1.5389 |.............. 1.1299 |.............. 1.1392 |.............. 
4 125.0000 0.7203 |.............. 0.5282 |.............. 0.5173 |.............. 
5 103.0000 -3.0300 |.............. -2.2604 |.............. * -2.5957 |.............. 
6 122.0000 -0.7002 |.............. -0.5142 |.............. -0.5034 |.............. 
. . . . . . . . 
. . . . . . . . 
. . . . . . . . 

 

Outliers are rows that are far removed from the rest of the data. Since outliers can have dramatic 
effects on the results, corrective action, such as elimination, must be carefully considered. 
Outlying rows should not be removed unless a good reason for their removal can be given.  
An outlier may be defined as a row in which |RStudent| > 2. Rows with this characteristic have 
been starred. 

X 
This is the value of X. 

Residual 
This is the difference between the actual and predicted values of Y.  

Standardized Residual 
The variance of the observed residuals is not constant. This makes comparisons among the 
residuals difficult. One solution is to standardize the residuals by dividing by their standard 
deviations. This gives a set of residuals with constant variance.  

RStudent 
Sometimes called the externally studentized residual, RStudent is a standardized residual that has 
the impact of a single observation removed from the mean square error. If the regression 
assumption of normality is valid, a single value of the RStudent has a t distribution with N - 2 
degrees of freedom. 

An observation is starred as an outlier if the absolute value of RStudent is greater than 2. 
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Influence Detection Chart 
 
 Weight       
Row (X) DFFITS  Cook's D  DFBETAS(1)  
1 159.0000 -0.3540 |.............. 0.0595 |.............. -0.1483 |.............. 
2 155.0000 -0.3885 |.............. 0.0696 |.............. -0.1337 |.............. 
3 157.0000 0.2842 |.............. 0.0397 |.............. 0.1087 |.............. 
4 125.0000 0.1260 |.............. 0.0083 |.............. -0.0414 |.............. 
5 103.0000 -0.8059 ||............. 0.2462 ||||||......... 0.5292 |||............ 
6 122.0000 -0.1258 |.............. 0.0083 |.............. 0.0486 |.............. 
. . . . . . . . 
. . . . . . . . 
. . . . . . . . 

 

Influential rows are those whose omission results in a relatively large change in the results. They 
are not necessarily harmful. However, they will distort the results if they are also outliers. The 
impact of influential rows should be studied very carefully. The accuracy of the data values 
should be double-checked.  

X 
This is the value of X. 

Dffits 
Dffits is the standardized difference between the predicted value of Y with and without 
observation j. It represents the number of estimated standard errors that the predicted value 
changes if that observation is omitted. Dffits > 1 would flag observations as being influential in 
prediction. 

Cook’s D 
Cook’s D attempts to measure the influence the observation on all N fitted values. The formula 
for Cook’s D is 
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The  are found by removing observation i before the calculations. A Cook’s D value greater 
than one indicates an observation that has large influence. Some statisticians have suggested that 
a better cutoff value is 4 / (N - 2). 

( )$y ij

DFBETAS(1) 
DFBETAS(1) is the standardized change in the slope when an observation is omitted from the 
analysis. Belsley, Kuh, and Welsch (1980) recommend using a cutoff of 2 / N  when N is 
greater than 100. When N is less than 100, others have suggested using a cutoff of 1.0 or 2.0 for 
the absolute value of DFBETAS. 
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Outlier & Influence Detection Chart 
 
      Hat  
 Weight RStudent  Cooks D  Diagonal  
Row (X) (Outlier)  (Influence)  (Leverage)  
1 159.0000 -1.3931 |.............. 0.0595 |.............. 0.0607 |.............. 
2 155.0000 -1.5845 |.............. 0.0696 |.............. 0.0567 |.............. 
3 157.0000 1.1392 |.............. 0.0397 |.............. 0.0586 |.............. 
4 125.0000 0.5173 |.............. 0.0083 |.............. 0.0560 |.............. 
5 103.0000 * -2.5957 |.............. 0.2462 ||||||......... 0.0879 |.............. 
6 122.0000 -0.5034 |.............. 0.0083 |.............. 0.0588 |.............. 
. . . . . . . . 
. . . . . . . . 
. . . . . . . . 

 

This report provides diagnostics about whether a row is an outlier, influential, and has high 
leverage. Outliers are rows that are removed from the rest of the data. Influential rows are those 
whose omission results in a relatively large change in the results. This report lets you see both.  

X 
This is the value of X. 

RStudent (Outlier) 
RStudent is a standardized residual that has the impact of a single observation removed from the 
mean square error. If the regression assumption of normality is valid, a single value of the 
RStudent has a t distribution with N - 2 degrees of freedom. 

An observation is starred as an outlier if the absolute value of RStudent is greater than 2. 

Cook’s D (Influence) 
Cook’s D attempts to measure the influence the observation on all N fitted values. The formula 
for Cook’s D is 
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The  are found by removing observation i before the calculations. A Cook’s D value greater 
than one indicates an observation that has large influence. Some statisticians have suggested that 
a better cutoff value is 4 / (N - 2). 

( )$y ij

Hat Diagonal (Leverage) 
The hat diagonal captures an observation’s remoteness in the X-space. Some authors refer to the 
hat diagonal as a measure of leverage in the X-space.  

Hat diagonals greater than 4 / N are considered influential. However, an influential observation is 
not a bad observation. An influential observation should be checked to determine if it is also an 
outlier. 
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Inverse Prediction of X Means 
 
   Predicted  Lower 95% Upper 95% 
 Height Weight Weight  Conf. Limit Conf. Limit 
Row (Y) (X) (Xhat|Y) X-Xhat|Y of X Mean|Y of X Mean|Y 
1 64.0000 159.0000 149.4360 9.5640 145.9832 153.0193 
2 63.0000 155.0000 144.2591 10.7409 140.8441 147.7361 
3 67.0000 157.0000 164.9664 -7.9664 161.1310 169.1387 
4 60.0000 125.0000 128.7287 -3.7287 125.1181 132.1948 
5 52.0000 103.0000 87.3141 15.6859 81.4894 92.4444 
6 58.0000 122.0000 118.3750 3.6250 114.3947 122.0735 
. . . . . . . 
. . . . . . . 
. . . . . . . 
 

This report provides inverse prediction or calibration results. Although a regression of Y on X has 
been fit, our interest here is predicting the value of X from the value of Y. This report provides 
both a point estimate and an interval estimate of the predicted mean of X given Y.  

Y 
This is the actual value of Y. 

X 
This is the value of X at which the prediction is made. 

Predicted X (Xhat|Y) 
The predicted value of X for the value of Y indicated. 

Lower 95% Confidence Limit of X Mean|Y 
This is the lower limit of a 95% confidence interval estimate of the mean of X at this value of Y. 

Upper 95% Confidence Limit of X Mean|Y 
This is the upper limit of a 95% confidence interval estimate of the mean of X at this value of Y. 
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Inverse Prediction of X Individuals 
 
   Predicted  Lower 95% Upper 95% 
 Height Weight Weight  Prediction Prediction 
Row (Y) (X) (Xhat|Y) X-Xhat|Y Limit of X|Y Limit of X|Y 
1 64.0000 159.0000 149.4360 9.5640 133.7858 165.2167 
2 63.0000 155.0000 144.2591 10.7409 128.5906 159.9896 
3 67.0000 157.0000 164.9664 -7.9664 149.3036 180.9662 
4 60.0000 125.0000 128.7287 -3.7287 112.9365 144.3765 
5 52.0000 103.0000 87.3141 15.6859 70.7003 103.2335 
6 58.0000 122.0000 118.3750 3.6250 102.4436 134.0246 
. . . . . . . 
. . . . . . . 
. . . . . . . 
 

This report provides inverse prediction or calibration results. Although a regression of Y on X has 
been fit, our interest here is predicting the value of X from the value of Y. This report provides 
both a point estimate and an interval estimate of the predicted value of X given Y.  

Y 
This is the actual value of Y. 

X 
This is the value of X at which the prediction is made. 

Predicted X (Xhat|Y) 
The predicted value of X for the value of Y indicated. 

Lower 95% Prediction Limit of X|Y 
This is the lower limit of a 95% prediction interval estimate of X at this value of Y. 

Upper 95% Prediction Limit of X|Y 
This is the upper limit of a 95% prediction interval estimate of X at this value of Y. 
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Chapter 305 

Multiple 
Regression  
Introduction  
Multiple Regression Analysis refers to a set of techniques for studying the straight-line 
relationships among two or more variables. Multiple regression estimates the β ' s  in the equation 

jpjpjjj +x++x+x+y εββββ L22110=  

The X’s are the independent variables (IV’s). Y is the dependent variable. The subscript j 
represents the observation (row) number. The β ' s  are the unknown regression coefficients. Their 
estimates are represented by b’s. Each β  represents the original unknown (population) 
parameter, while b is an estimate of this β . The ε j  is the error  (residual) of observation j.  

Although the regression problem may be solved by a number of techniques, the most-used 
method is least squares. In least squares regression analysis, the b’s are selected so as to minimize 
the sum of the squared residuals. This set of b’s is not necessarily the set you want, since they 
may be distorted by outliers--points that are not representative of the data. Robust regression, an 
alternative to least squares, seeks to reduce the influence of outliers.  

Multiple regression analysis studies the relationship between a dependent (response) variable and 
p independent variables (predictors, regressors, IV’s). The sample multiple regression equation is 

pjpj2j10j xb+...+xb+xb+by 21ˆ =  

If p = 1, the model is called linear regression.  

The intercept, b0, is the point at which the regression plane intersects the Y axis. The bi are the 
slopes of the regression plane in the direction of xi. These coefficients are called the partial-
regression coefficients. Each partial regression coefficient represents the net effect the ith variable 
has on the dependent variable, holding the remaining X’s in the equation constant. 

A large part of a regression analysis consists of analyzing the sample residuals, ej, defined as 
e y yj j j= − $  

Once the β ' s  have been estimated, various indices are studied to determine the reliability of 
these estimates. One of the most popular of these reliability indices is the correlation coefficient. 
The correlation coefficient, or simply the correlation, is an index that ranges from -1 to 1. When 
the value is near zero, there is no linear relationship. As the correlation gets closer to plus or 
minus one, the relationship is stronger. A value of one (or negative one) indicates a perfect linear 
relationship between two variables. 
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The regression equation is only capable of measuring linear, or straight-line, relationships. If the 
data form a circle, for example, regression analysis would not detect a relationship. For this 
reason, it is always advisable to plot each independent variable with the dependent variable, 
watching for curves, outlying points, changes in the amount of variability, and various other 
anomalies that may occur. 

εIf the data are a random sample from a larger population and the ' s  are independent and 
normally distributed, a set of statistical tests may be applied to the b’s and the correlation 
coefficient. These t-tests and F-tests are valid only if the above assumptions are met.\ 

Regression Models 
In order to make good use of multiple regression, you must have a basic understanding of the 
regression model. The basic regression model is 

y + x + x + + x +0 1 2 p p= εβ β β β  1 2 L

This expression represents the relationship between the dependent variable (DV) and the 
independent variables (IV’s) as a weighted average in which the regression coefficients (β ' s ) are 
the weights. Unlike the usual weights in a weighted average, it is possible for the regression 
coefficients to be negative.  

A fundamental assumption in this model is that the effect of each IV is additive. Now, no one 
really believes that the true relationship is actually additive. Rather, they believe that this model is 
a reasonable first-approximation to the true model. To add validity to this approximation, you 
might consider this additive model to be a Taylor-series expansion of the true model. However, 
this appeal to the Taylor-series expansion usually ignores the ‘local-neighborhood’ assumption. 

Another assumption is that the relationship of the DV with each IV is linear (straight-line). Here 
again, no one really believes that the relationship is a straight-line. However, this is a reasonable 
first approximation. 

In order obtain better approximations, methods have been developed to allow regression models 
to approximate curvilinear relationships as well as nonadditivity. Although nonlinear regression 
models can be used in these situations, they add a higher level of complexity to the modeling 
process. An experienced user of multiple regression knows how to include curvilinear 
components in a regression model when it is needed. 

Another issue is how to add categorical variables into the model. Unlike regular numeric 
variables, categorical variables may be alphabetic. Examples of categorical variables are gender, 
producer, and location. In order to effectively use multiple regression, you must know how to 
include categorical IV’s in your regression model.  

This section shows how NCSS may be used to specify and estimate advanced regression models 
that include curvilinearity, interaction, and categorical variables. 

Representing a Curvilinear Relationship 
A curvilinear relationship between a DV and one or more IV’s is often modeled by adding new 
IV’s which are created from the original IV by squaring, and occasionally cubing, them. For 
example, the regression model  

Y + X += 0 1 1 2 2Xβ β β  
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might be expanded to 

Y + X + X + X + X + X X
+ Z + Z + Z + Z + Z

=

=
0 1 1 2 2 3 1

2
4 2

2
5 1 2

0 1 1 2 2 3 3 4 4 5 5

β β β β β β
β β β β β β

2

 

Note that this model is still additive in terms of the new IV’s.  

One way to adopt such a new model is to create the new IV’s using the transformations of 
existing variables. However, the same effect can be achieved using the Custom Model statement. 
The details of writing a Custom Model will be presented later, but we note in passing that the 
above model would be written as 

X X X * X X * X X * X1 2 1 1 1 2 2  

Representing Categorical Variables 
Categorical variables take on only a few unique values. For example, suppose a therapy variable 
has three possible values: A, B, and C. One question is how to include this variable in the 
regression model. At first glance, we can convert the letters to numbers by recoding A to 1, B to 
2, and C to 3. Now we have numbers. Unfortunately, we will obtain completely different results if 
we recode A to 2, B to 3, and C to 1. Thus, a direct recode of letters to numbers will not work.  

To convert a categorical variable to a form usable in regression analysis, we have to create a new 
set of numeric variables. If a categorical variable has k values, k - 1 new variables must be 
generated. 

There are many ways in which these new variables may be generated. We will present a few 
examples here. 

Indicator Variables 
Indicator (dummy or binary) variables are a popular type of generated variables. They are created 
as follows. A reference value is selected. Usually, the most common value is selected as the 
reference value. Next, a variable is generated for each of the values other than the reference 
value. For example, suppose that C is selected as the reference value. An indicator variable is 
generated for each of the remaining values: A and B. The value of the indicator variable is one if 
the value of the original variable is equal to the value of interest, or zero otherwise. Here is how 
the original variable T and the two new indicator variables TA and TB look in a short example.  

T TA TB 
A 1 0 
A 1 0 
B 0 1 
B 0 1 
C 0 0 
C 0 0 

The generated IV’s, TA and TB, would be used in the regression model. 

Contrast Variables 
Contrast variables are another popular type of generated variables. Several types of contrast 
variables can be generated. We will present a few here. One method is to contrast each value with 
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the reference value. The value of interest receives a one. The reference value receives a negative 
one. All other values receive a zero.  

Continuing with our example, one set of contrast variables is 

T CA CB 
A 1 0 
A 1 0 
B 0 1 
B 0 1 
C -1 -1 
C -1 -1 

The generated IV’s, CA and CB, would be used in the regression model. 

Another set of contrast variables that is commonly used is to compare each value with those 
remaining. For this example, we will suppose that T takes on four values: A, B, C, and D. The 
generate variables are 

T C1 C2 C3 
A -3 0 0 
A -3 0 0 
B 1 -2 0 
B 1 -2 0 
C 1 1 -1 
C 1 1 -1 
D 1 1 1 
D 1 1 1 

Many other methods have been developed to provide meaningful numeric variables that represent 
categorical variable. We have presented these because they may be generated automatically by 
NCSS. 

Representing Interactions of Numeric Variables 
The interaction between two variables is represented in the regression model by creating a new 
variable that is the product of the variables that are interacting. Suppose you have two variables 
X1 and X2 for which an interaction term is necessary. A new variable is generated by multiplying 
the values of X1 and X2 together.  

X1 X2 Int 
1 1 1 
2 1 2 
3 2 6 
2 2 4 
0 4 0 
5 -2 -10 

The new variable, Int, is added to the regression equation and treated like any other variable 
during the analysis. With Int in the regression model, the interaction between X1 and X2 may be 
investigated. 
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Representing Interactions of Numeric and Categorical Variables 
When the interaction between a numeric IV and a categorical IV is to be included in the model, 
all proceeds as above, except that an interaction variable must be generated for each categorical 
variable. This can be accomplished automatically in NCSS using an appropriate Model statement. 

In the following example, the interaction between the categorical variable T and the numeric 
variable X is created.  

T CA CB X XCA XCB 
A 1 0 1.2 1.2 0 
A 1 0 1.4 1.4 0 
B 0 1 2.3 0 2.3 
B 0 1 4.7 0 4.7 
C -1 -1 3.5 -3.5 -3.5 
C -1 -1 1.8 -1.8 -1.8 

When the variables XCA and XCB are added to the regression model, they will account for the 
interaction between T and X. 

Representing Interactions Two or More Categorical Variables 
When the interaction between two categorical variables is included in the model, an interaction 
variable must be generated for each combination of the variables generated for each categorical 
variable. This can be accomplished automatically in NCSS using an appropriate Model statement. 

In the following example, the interaction between the categorical variables T and S are generated. 
Try to determine the reference value used for variable S. 

T CA CB S S1 S2 CAS1 CAS2 CBS1 CBS2 
A 1 0 D 1 0 1 0 0 0 
A 1 0 E 0 1 0 1 0 0 
B 0 1 F 0 0 0 0 0 0 
B 0 1 D 1 0 0 0 1 0 
C -1 -1 E 0 1 0 -1 0 -1 
C -1 -1 F 0 0 0 0 0 0 

When the variables, CAS1, CAS2, CBS1, and CBS2 are added to the regression model, they will 
account for the interaction between T and S. 

Possible Uses of Regression Analysis 
Montgomery (1982) outlines the following five purposes for running a regression analysis. 

Description 
The analyst is seeking to find an equation that describes or summarizes the relationships in a set 
of data. This purpose makes the fewest assumptions. 

Coefficient Estimation  
This is a popular reason for doing regression analysis. The analyst may have a theoretical 
relationship in mind, and the regression analysis will confirm this theory. Most likely, there is 
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specific interest in the magnitudes and signs of the coefficients. Frequently, this purpose for 
regression overlaps with others.  

Prediction 
The prime concern here is to predict some response variable, such as sales, delivery time, 
efficiency, occupancy rate in a hospital, reaction yield in some chemical process, or strength of 
some metal. These predictions may be very crucial in planning, monitoring, or evaluating some 
process or system. There are many assumptions and qualifications that must be made in this case. 
For instance, you must not extrapolate beyond the range of the data. Also, interval estimates 
require special, so-called normality, assumptions to hold. 

Control 
Regression models may be used for monitoring and controlling a system. For example, you might 
want to calibrate a measurement system or keep a response variable within certain guidelines. 
When a regression model is used for control purposes, the independent variables must be related 
to the dependent in a causal way. Furthermore, this functional relationship must continue over 
time. If it does not, continual modification of the model must occur. 

Variable Selection or Screening 
In this case, a search is conducted for those independent variables that explain a significant 
amount of the variation in the dependent variable. In most applications, this is not a one-time 
process but a continual model-building process. This purpose is manifested in other ways, such as 
using historical data to identify factors for future experimentation. 

Assumptions 
The following assumptions must be considered when using multiple regression analysis.  

Linearity 
Multiple regression models the linear (straight-line) relationship between Y and the X’s. Any 
curvilinear relationship is ignored. This is most easily evaluated by scatter plots early on in your 
analysis. Nonlinear patterns can show up in residual plots.  

Constant Variance 
The variance of the ε ' s  is constant for all values of the X’s. This can be detected by residual 
plots of ej versus  or the X’s. If these residual plots show a rectangular shape, we can assume 
constant variance. On the other hand, if a residual plot shows an increasing or decreasing wedge 
or bowtie shape, nonconstant variance exists and must be corrected.  

$y j

Special Causes 
We assume that all special causes, outliers due to one-time situations, have been removed from 
the data. If not, they may cause nonconstant variance, nonnormality, or other problems with the 
regression model. 
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Normality 
εWe assume the ' s  are normally distributed when hypothesis tests and confidence limits are to 

be used. 

Independence 
The ε ' s  are assumed to be uncorrelated with one another, which implies that the Y’s are also 
uncorrelated. This assumption can be violated in two ways: model misspecification or time-
sequenced data. 

1.  Model misspecification. If an important independent variable is omitted or if an incorrect 
functional form is used, the residuals may not be independent. The solution to this 
dilemma is to find the proper functional form or to include the proper independent 
variables. 

2.  Time-sequenced data. Whenever regression analysis is performed on data taken over time 
(frequently called time series data), the residuals are often correlated. This correlation 
among residuals is called serial correlation or autocorrelation. Positive autocorrelation 
means that the residual in time period j tends to have the same sign as the residual in time 
period (j-k), where k is the lag in time periods. On the other hand, negative 
autocorrelation means that the residual in time period j tends to have the opposite sign as 
the residual in time period (j-k). 

The presence of autocorrelation among the residuals has several negative impacts:  

1.  The regression coefficients are unbiased but no longer efficient, i.e., minimum variance 
estimates. 

2.  With positive serial correlation, the mean square error may be seriously underestimated. 
The impact of this is that the standard errors are underestimated, the partial t-tests are 
inflated (show significance when there is none), and the confidence intervals are shorter 
than they should be. 

3.  Any hypothesis tests or confidence limits that required the use of the t or F distribution 
would be invalid. 

You could try to identify these serial correlation patterns informally, with the residual plots 
versus time. A better analytical way would be to compute the serial or autocorrelation coefficient 
for different time lags and compare it to a critical value. 

Multicollinearity 
Collinearity, or multicollinearity, is the existence of near-linear relationships among the set of 
independent variables. The presence of multicollinearity causes all kinds of problems with 
regression analysis, so you could say that we assume the data do not exhibit it.  

Effects of Multicollinearity 
Multicollinearity can create inaccurate estimates of the regression coefficients, inflate the 
standard errors of the regression coefficients, deflate the partial t-tests for the regression 
coefficients, give false nonsignificant p-values, and degrade the predictability of the model. 

Sources of Multicollinearity 
To deal with collinearity, you must be able to identify its source. The source of the collinearity 
impacts the analysis, the corrections, and the interpretation of the linear model. There are five 
sources (see Montgomery [1982] for details): 
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1.  Data collection. In this case, the data has been collected from a narrow subspace of the 
independent variables. The collinearity has been created by the sampling methodology. 
Obtaining more data on an expanded range would cure this collinearity problem. 

2.  Physical constraints of the linear model or population. This source of collinearity will 
exist no matter what sampling technique is used. Many manufacturing or service 
processes have constraints on independent variables (as to their range), either physically, 
politically, or legally, which will create collinearity. 

3.  Over-defined model. Here, there are more variables than observations. This situation 
should be avoided. 

4.  Model choice or specification. This source of collinearity comes from using independent 
variables that are higher powers or interactions of an original set of variables. It should be 
noted that if sampling subspace of Xj is narrow, then any combination of variables with xj 
will increase the collinearity problem even further. 

5.  Outliers. Extreme values or outliers in the X-space can cause collinearity as well as hide 
it.  

Detection of Collinearity 
The following steps for detecting collinearity proceed from simple to complex. 

1. Begin by studying pairwise scatter plots of pairs of independent variables, looking for 
near-perfect relationships. Also glance at the correlation matrix for high correlations. 
Unfortunately, multicollinearity does not always show up when considering the variables 
two at a time.  

2. Next, consider the variance inflation factors (VIF). Large VIF’s flag collinear variables.  

3. Finally, focus on small eigenvalues of the correlation matrix of the independent variables. 
An eigenvalue of zero or close to zero indicates that an exact linear dependence exists. 
Instead of looking at the numerical size of the eigenvalue, use the condition number. 
Large condition numbers indicate collinearity. 

Correction of Collinearity 
Depending on what the source of collinearity is, the solutions will vary. If the collinearity has 
been created by the data collection, then collect additional data over a wider X-subspace. If the 
choice of the linear model has accented the collinearity, simplify the model by variable selection 
techniques. If an observation or two has induced the collinearity, remove those observations and 
proceed accordingly. Above all, use care in selecting the variables at the outset. 

Centering and Scaling Issues in Collinearity 
 When the variables in regression are centered (by subtracting their mean) and scaled (by dividing 
by their standard deviation), the resulting X'X matrix is in correlation form. The centering of each 
independent variable has removed the constant term from the collinearity diagnostics. Scaling and 
centering permit the computation of the collinearity diagnostics on standardized variables. On the 
other hand, there are many regression applications where the intercept is a vital part of the linear 
model. The collinearity diagnostics on the uncentered data may provide a more realistic picture of 
the collinearity structure in these cases. 
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Multiple Regression Checklist 
This checklist, prepared by a professional statistician, is a flowchart of the steps you should 
complete to conduct a valid multiple regression analysis. Several of these steps should be 
performed prior to this phase of the regression analysis, but they are briefly listed here again as a 
reminder. You should complete these tasks in order. 

Step 1 – Data Preparation 
Scan your data for anomalies, keypunch errors, typos, and so on. You should have a minimum of 
five observations for each variable in the analysis, including the dependent variable. This 
discussion assumes that the pattern of missing values is random. All data preparation should be 
done prior to the use of one of the variable selection strategies. 

Special attention must be paid to categorical IV’s to make certain that you have chosen a 
reasonable method of converting them to numeric values. 

Also, you must decide how complicated of a model to use. Do you want to include powers of 
variables and interactions between terms? 

One the best ways to accomplish this data preparation is to run your data through the Data 
Screening procedure, since it provides reports about missing value patterns, discrete and 
continuous variables, and so on. 

Step 2 – Variable Selection 
Variable selection seeks to reduce the number of IV’s to a manageable few. There are several 
variable selection methods in regression: Stepwise Regression, All Possible Regressions, or 
Multivariate Variable Selection. Each of these variable selection methods has advantages and 
disadvantages. We suggest that you begin with the Hierarchical Stepwise procedure included in 
this procedure since it allows you to look at interactions, powers, and categorical variables. Use 
this to narrow your search down to fifteen or fewer IV’s. Next, apply All Possible Regressions to 
those fifteen variables to find the best four or five variables. 

It is extremely important that you complete Step 1 before beginning this step, since variable 
selection can be greatly distorted by outliers. Every effort should be taken to find outliers before 
beginning this step. 

Step 3 – Setup and Run the Regression 

Introduction 
Now comes the fun part: running the program. NCSS is designed to be simple to operate, but it 
can still seem complicated. When you go to run a procedure such as this for the first time, take a 
few minutes to read through the chapter again and familiarize yourself with the issues involved. 

Enter Variables 
The NCSS panels are set with ready-to-run defaults, but you have to select the appropriate 
variables (columns of data). There should be only one dependent variable and one or more 
independent variables enumerated. In addition, if a weight variable is available from a previous 
analysis, it needs to be specified. 
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Choose Report Options 
In multiple linear regression, there is a wide assortment of report options available. As a 
minimum, you are interested in the coefficients for the regression equation, the analysis of 
variance report, normality testing, serial correlation (for time-sequenced data), regression 
diagnostics (looking for outliers), and multicollinearity insights. 

Specify Alpha 
Most beginners at statistics forget this important step and let the alpha value default to the 
standard 0.05. You should make a conscious decision as to what value of alpha is appropriate for 
your study. The 0.05 default came about during the dark ages when people had to rely on printed 
probability tables and there were only two values available: 0.05 or 0.01. Now you can set the 
value to whatever is appropriate.  

Select All Plots 
As a rule, select all residual plots. They add a great deal to your analysis of the data. 

Step 4 – Check Model Adequacy 

Introduction 
Once the regression output is displayed, you will be tempted to go directly to the probability of 
the F-test from the regression analysis of variance table to see if you have a significant result. 
However, it is very important that you proceed through the output in an orderly fashion. The main 
conditions to check for relate to linearity, normality, constant variance, independence, outliers, 
multicollinearity, and predictability. Return to the statistical sections and plot descriptions for 
more detailed discussions. 

Check 1. Linearity 
• Look at the Residual vs. Predicted plot. A curving pattern here indicates nonlinearity. 

• Look at the Residual vs. Predictor plots. A curving pattern here indicates nonlinearity. 

• Look at the Y versus X plots. For simple linear regression, a linear relationship between Y 
and X in a scatter plot indicates that the linearity assumption is appropriate. The same holds if 
the dependent variable is plotted against each independent variable in a scatter plot. 

• If linearity does not exist, take the appropriate action and return to Step 2. Appropriate action 
might be to add power terms (such as Log(X), X squared, or X cubed) or to use an 
appropriate nonlinear model. 

Check 2. Normality 
• Look at the Normal Probability Plot. If all of the residuals fall within the confidence bands 

for the Normal Probability Plot, the normality assumption is likely met. One or two residuals 
outside the confidence bands may be an indicator of outliers, not nonnormality. 

• Look at the Normal Assumptions Section. The formal normal goodness of fit tests are given in 
the Normal Assumptions Section. If the decision is accepted for the Normality (Omnibus) test, 
there is no evidence that the residuals are not normal. 
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• If normality does not exist, take the appropriate action and return to Step 2. Appropriate 
action includes removing outliers and/or using the logarithm of the dependent variable. 

Check 3. Nonconstant Variance 
• Look at the Residual vs. Predicted plot. If the Residual vs. Predicted plot shows a rectangular 

shape instead of an increasing or decreasing wedge or a bowtie, the variance is constant. 

• Look at the Residual vs. Predictor plots. If the Residual vs. Predictor plots show a rectangular 
shape, instead of an increasing or decreasing wedge or a bowtie, the variance is constant. 

• If nonconstant variance does not exist, take the appropriate action and return to Step 2. 
Appropriate action includes taking the logarithm of the dependent variable or using weighted 
regression. 

Check 4. Independence or Serial Correlation 
• If you have time series data, look at the Serial-Correlations Section. If none of the serial 

correlations in the Serial-Correlations Section are greater than the critical value that is 
provided, independence may be assumed. 

• Look at the Residual vs. Row plot. A visualization of what the Serial-Correlations Section 
shows will be exhibited by adjacent residuals being similar (a roller coaster trend) or 
dissimilar (a quick oscillation). 

• If independence does not exist, use a first difference model and return to Step 2. More 
complicated choices require time series models. 

Check 5. Outliers 
• Look at the Regression Diagnostics Section. Any observations with an asterisk by the 

diagnostics RStudent, Hat Diagonal, DFFITS, or the CovRatio, are potential outliers. 
Observations with a Cook’s D greater than 1.00 are also potentially influential. 

• Look at the Dfbetas Section. Any Dfbetas beyond the cutoff of N2± indicate influential 
observations. 

• Look at the Rstudent vs. Hat Diagonal plot. This plot will flag an observation that may be 
jointly influential by both diagnostics. 

• If outliers do exist in the model, go to robust regression and run one of the options there to 
confirm these outliers. If the outliers are to be deleted or down weighted, return to Step 2. 

Check 6. Multicollinearity 
• Look at the Multicollinearity Section. If any variable has a variance inflation factor greater 

than 10, collinearity could be a problem. 

• Look at the Eigenvalues of Centered Correlations Section. Condition numbers greater than 
1000 indicate severe collinearity. Condition numbers between 100 and 1000 imply moderate 
to strong collinearity. 

• Look at the Correlation Matrix Section. Strong pairwise correlation here may give some 
insight as to the variables causing the collinearity. 
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• If multicollinearity does exist in the model, it could be due to an outlier (return to Check 5 
and then Step 2) or due to strong interdependencies between independent variables. In the 
latter case, return to Step 2 and try a different variable selection procedure. 

Check 7. Predictability 
• Look at the PRESS Section. If the Press R2 is almost as large as the R2, you have done as 

well as could be expected. It is not unusual in practice for the Press R2 to be half of the R2. If 
R2 is 0.50, a Press R2 of 0.25 would be unacceptable.  

• Look at the Predicted Values with Confidence Limits for Means and Individuals. If the 
confidence limits are too wide to be practical, you may need to add new variables or reassess 
the outlier and collinearity possibilities. 

• Look at the Residual Report. Any observation that has percent error grossly deviant from the 
values of most observations is an indication that this observation may be impacting 
predictability. 

• Any changes in the model due to poor predictability require a return to Step 2. 

Step 5 – Record Your Results 
Since multiple regression can be quite involved, it is best make notes of why you did what you 
did at different steps of the analysis. Jot down what decisions you made and what you have 
found. Explain what you did, why you did it, what conclusions you reached, which outliers you 
deleted, areas for further investigation, and so on. Be sure to examine the following sections 
closely and in the indicated order: 

1. Analysis of Variance Section. Check for the overall significance of the model. 

2. Regression Equation and Coefficient Sections. Significant individual variables are noted 
here. 

Regression analysis is a complicated statistical tool that frequently demands revisions of the 
model. Your notes of the analysis process as well as of the interpretation will be worth their 
weight in gold when you come back to an analysis a few days later! 

Multiple Regression Technical Details  
This section presents the technical details of least squares regression analysis using a mixture of 
summation and matrix notation. Because this module also calculates weighted multiple 
regression, the formulas will include the weights, . When weights are not used, the  are set 
to one. 

jw jw
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Least Squares  
Using this notation, the least squares estimates are found using the equation.  

( ) WYX'WXXb 1−′=  

Note that when the weights are not used, this reduces to 

( ) YX'XXb 1−′=  

The predicted values of the dependent variable are given by 

Xb'Y =ˆ  

The residuals are calculated using 

YYe ˆ−=  

Estimated Variances  
An estimate of the variance of the residuals is computed using 

1
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An estimate of the variance of the regression coefficients is calculated using 

( ) 121

0

V −=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

WXX's

b

b
b

p

M
 

An estimate of the variance of the predicted mean of Y at a specific value of X, say , is given 
by 

X0
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An estimate of the variance of the predicted value of Y for an individual for a specific value of X, 
say , is given by X0

2
|

22
| 00 XYXY mI

sss +=  

Hypothesis Tests of the Intercept and Slopes 
Using these variance estimates and assuming the residuals are normally distributed, hypothesis 
tests may be constructed using the Student’s t distribution with N - p - 1 degrees of freedom using 
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Usually, the hypothesized value of  is zero, but this does not have to be the case. Bi

Confidence Intervals of the Intercept and Slope 
A ( )%1100 α−  confidence interval for the true regression coefficient, βi , is given by 

( )
ibpN stb 1,2/1i −−−± α  

Confidence Interval of Y for Given X 
A ( )%1100 α−  confidence interval for the mean of Y at a specific value of X, say , is given by X0

( )
0|1,2/10 XYpN m

stXb −−−±′ α  

A ( )%1100 α−  prediction interval for the value of Y for an individual at a specific value of X, say 
, is given by X0

( )
0|1,2/10 XYpN I

stXb −−−±′ α  

R-Squared (Percent of Variation Explained ) 
Several measures of the goodness-of-fit of the regression model to the data have been proposed, 
but by far the most popular is R2 . R2  is the square of the correlation coefficient between Y and 

. It is the proportion of the variation in Y that is accounted by the variation in the independent 
variables. 

$Y
R2  varies between zero (no linear relationship) and one (perfect linear relationship).  

R2 , officially known as the coefficient of determination, is defined as the sum of squares due to 
the regression divided by the adjusted total sum of squares of Y. The formula for R2  is 
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R2  is probably the most popular measure of how well a regression model fits the data. R2  may 
be defined either as a ratio or a percentage. Since we use the ratio form, its values range from 
zero to one. A value of R2  near zero indicates no linear relationship, while a value near one 
indicates a perfect linear fit. Although popular, R2  should not be used indiscriminately or 
interpreted without scatter plot support. Following are some qualifications on its interpretation:  

1. Additional independent variables. It is possible to increase R2  by adding more 
independent variables, but the additional independent variables may actually cause an 
increase in the mean square error, an unfavorable situation. This usually happens when 
the sample size is small. 
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2. Range of the independent variables. R2  is influenced by the range of the independent 
variables. R2  increases as the range of the X’s increases and decreases as the range of the 
X’s decreases.  

3. Slope magnitudes. R2  does not measure the magnitude of the slopes.  

4. Linearity. R2  does not measure the appropriateness of a linear model. It measures the 
strength of the linear component of the model. Suppose the relationship between X and Y 
was a perfect sphere. Although there is a perfect relationship between the variables, the 
R2  value would be zero. 

5. Predictability. A large R2  does not necessarily mean high predictability, nor does a low 
R2  necessarily mean poor predictability.  

6. No-intercept model. The definition of R2  assumes that there is an intercept in the 
regression model. When the intercept is left out of the model, the definition of R2  
changes dramatically. The fact that your R2  value increases when you remove the 
intercept from the regression model does not reflect an increase in the goodness of fit. 
Rather, it reflects a change in the underlying definition of R2 . 

7. Sample size. R2  is highly sensitive to the number of observations. The smaller the 
sample size, the larger its value. 

Rbar-Squared (Adjusted R-Squared) 
R2  varies directly with N, the sample size. In fact, when N = p, R2 = 1. Because R2  is so closely 
tied to the sample size, an adjusted R2  value, called R 2 , has been developed. R 2  was developed 
to minimize the impact of sample size. The formula for R 2  is  
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Testing Assumptions Using Residual Diagnostics 
Evaluating the amount of departure in your data from each assumption is necessary to see if 
remedial action is necessary before the fitted results can be used. First, the types of plots and 
statistical analyses the are used to evaluate each assumption will be given. Second, each of the 
diagnostic values will be defined.  

Notation – Use of (j) and p 
Several of these residual diagnostic statistics are based on the concept of studying what happens 
to various aspects of the regression analysis when each row is removed from the analysis. In what 
follows, we use the notation (j) to mean that observation j has been omitted from the analysis. 
Thus, b(j) means the value of b calculated without using observation j. 
Some of the formulas depend on whether the intercept is fitted or not. We use p to indicate the 
number of regression parameters.  When the intercept is fit, p will include the intercept. 
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1 – No Outliers 
Outliers are observations that are poorly fit by the regression model. If outliers are influential, 
they will cause serious distortions in the regression calculations. Once an observation has been 
determined to be an outlier, it must be checked to see if it resulted from a mistake. If so, it must 
be corrected or omitted. However, if no mistake can be found, the outlier should not be discarded 
just because it is an outlier. Many scientific discoveries have been made because outliers, data 
points that were different from the norm, were studied more closely. Besides being caused by 
simple data-entry mistakes, outliers often suggest the presence of an important independent 
variable that has been ignored. 

Outliers are easy to spot on scatter plots of the residuals and RStudent. RStudent is the preferred 
statistic for finding outliers because each observation is omitted from the calculation making it 
less likely that the outlier can mask its presence. Scatter plots of the residuals and RStudent 
against the X variables are also helpful because they may show other problems as well.  

2 – Linear Regression Function - No Curvature 
The relationship between Y and each X is assumed to be linear (straight-line). No mechanism for 
curvature is included in the model. Although scatter plots of Y versus each X can show curvature 
in the relationship, the best diagnostic tool is the scatter plot of the residual versus each X. If 
curvature is detected, the model must be modified to account for the curvature. This may mean 
adding a quadratic term, taking logarithms of Y or X, or some other appropriate transformation. 

3 – Constant Variance 
The errors are assumed to have constant variance across all values of X. If there are a lot of data 
(N > 100), nonconstant variance can be detected on the scatter plots of the residuals versus each 
X. However, the most direct diagnostic tool to evaluate this assumption is a scatter plot of the 
absolute values of the residuals versus each X. Often, the assumption is violated because the 
variance increases with X. This will show up as a ‘megaphone’ pattern on the scatter plot. 

When nonconstant variance is detected, a variance-stabilizing transformation such as the square-
root or logarithm may be used. However, the best solution is probably to use weighted regression, 
with weights inversely proportional to the magnitude of the residuals. 

4 – Independent Errors 
The Y’s, and thus the errors, are assumed to be independent. This assumption is usually ignored 
unless there is a reason to think that it has been violated, such as when the observations were 
taken across time. An easy way to evaluate this assumption is a scatter plot of the residuals versus 
their sequence number (assuming that the data are arranged in time sequence order). This plot 
should show a relative random pattern.  

The Durbin-Watson statistic is used as a formal test for the presence of first-order serial 
correlation. A more comprehensive method of evaluation is to look at the autocorrelations of the 
residuals at various lags. Large autocorrelations are found by testing each using Fisher’s z 
transformation. Although Fisher’s z transformation is only approximate in the case of 
autocorrelations, it does provide a reasonable measuring stick with which to judge the size of the 
autocorrelations.  
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If independence is violated, confidence intervals and hypothesis tests are erroneous. Some 
remedial method that accounts for the lack of independence must be adopted, such as using first 
differences or the Cochrane-Orcutt procedure. 

Durbin-Watson Test 
The Durbin-Watson test is often used to test for positive or negative, first-order, serial correlation. 
It is calculated as follows 
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The distribution of this test is difficult because it involves the X values. Originally, Durbin-
Watson (1950, 1951) gave a pair of bounds to be used. However, there is a large range of 
‘inclusion’ found when using these bounds. Instead of using these bounds, we calculate the exact 
probability using the beta distribution approximation suggested by Durbin-Watson (1951). This 
approximation has been shown to be accurate to three decimal places in most cases which is all 
that are needed for practical work. 

5 – Normality of Residuals 
The residuals are assumed to follow the normal probability distribution with zero mean and 
constant variance. This can be evaluated using a normal probability plot of the residuals. Also, 
normality tests are used to evaluate this assumption. The most popular of the five normality tests 
provided is the Shapiro-Wilk test.  

Unfortunately, a breakdown in any of the other assumptions results in a departure from this 
assumption as well. Hence, you should investigate the other assumptions first, leaving this 
assumption until last. 

Influential Observations 
Part of the evaluation of the assumptions includes an analysis to determine if any of the 
observations have an extra large influence on the estimated regression coefficients, on the fit of 
the model, or on the value of Cook’s distance. By looking at how much removing an observation 
changes the results, an observation’s influence can be determined. 

Five statistics are used to investigate influence. These are Hat diagonal, DFFITS, DFBETAS, 
Cook’s D, and COVARATIO. 

Definitions Used in Residual Diagnostics 

Residual 
The residual is the difference between the actual Y value and the Y value predicted by the 
estimated regression model. It is also called the error, the deviate, or the discrepancy.  

j j je   y y= − $  
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Although the true errors, ε j , are assumed to be independent, the computed residuals, , are not. 
Although the lack of independence among the residuals is a concern in developing theoretical 
tests, it is not a concern on the plots and graphs. 

ej

By assumption, the variance of the ε j  is . However, the variance of the  is not . In 
vector notation, the covariance matrix of e is given by 
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The matrix H is called the hat matrix since it puts the ‘hat’ on y as is shown in the unweighted 
case.  
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Hence, the variance of  is given by je

( ) ( )V e hj j= −σ 2 1 j  

where  is the jth diagonal element of H. This variance is estimated using hjj

( ) ( )$V e s hj j= −2 1 j  

Hat Diagonal 
The hat diagonal, , is the jth diagonal element of the hat matrix, H where  jjh

( )H W X X'WX X W
1
2

1
2

1= − '  

H captures an observation’s remoteness in the X-space. Some authors refer to the hat diagonal as 
a measure of leverage in the X-space. As a rule of thumb, hat diagonals greater than 4/N are 
considered influential and are called high-leverage observations. 

Note that a high-leverage observation is not a bad observation. Rather, high-leverage observations 
exert extra influence on the final results, so care should be taken to insure that they are correct. 
You should not delete an observation just because it has a high-influence. However, when you 
interpret the regression equation, you should bear in mind that the results may be due to a few, 
high-leverage observations. 

Standardized Residual 
As shown above, the variance of the observed residuals is not constant. This makes comparisons 
among the residuals difficult. One solution is to standardize the residuals by dividing by their 
standard deviations. This will give a set of residuals with constant variance.  
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The formula for this residual is 
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s(j) or MSEi 
This is the value of the mean squared error calculated without observation j. The formula for s(j) 
is given by 
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RStudent 
Rstudent is similar to the studentized residual. The difference is the s(j) is used rather than s in the 
denominator. The quantity s(j) is calculated using the same formula as s, except that observation j 
is omitted. The hope is that be excluding this observation, a better estimate of  will be 
obtained. Some statisticians refer to these as the studentized deleted residuals.  
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If the regression assumptions of normality are valid, a single value of the RStudent has a t 
distribution with N - 2 degrees of freedom. It is reasonable to consider |RStudent| > 2 as outliers. 

DFFITS 
DFFITS is the standardized difference between the predicted value with and without that 
observation. The formula for DFFITS is 
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The values of  and  are found by removing observation j before the doing the 
calculations. It represents the number of estimated standard errors that the fitted value changes if 
the j

( )$y jj ( )s j2

th observation is omitted from the data set. If |DFFITS| > 1, the observation should be 
considered to be influential with regards to prediction. 



305-20  Multiple Regression  

Cook’s D 
The DFFITS statistic attempts to measure the influence of a single observation on its fitted value. 
Cook’s distance (Cook’s D) attempts to measure the influence each observation on all N fitted 
values. The formula for Cook’s D is 
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The  are found by removing observation i before the calculations. Rather than go to all the 
time of recalculating the regression coefficients N times, we use the following approximation 
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This approximation is exact when no weight variable is used.  

A Cook’s D value greater than one indicates an observation that has large influence. Some 
statisticians have suggested that a better cutoff value is 4 / (N - 2). 

CovRatio 
This diagnostic flags observations that have a major impact on the generalized variance of the 
regression coefficients. A value exceeding 1.0 implies that the ith observation provides an 
improvement, i.e., a reduction in the generalized variance of the coefficients. A value of 
CovRatio less than 1.0 flags an observation that increases the estimated generalized variance. 
This is not a favorable condition.  

The general formula for the CovRatio is 
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Belsley, Kuh, and Welsch (1980) give the following guidelines for the CovRatio. 

If CovRatio > 1 + 3p / N then omitting this observation significantly damages the precision of at 
least some of the regression estimates. 

If CovRatio < 1 - 3p / N then omitting this observation significantly improves the precision of at 
least some of the regression estimates. 

DFBETAS 
The DFBETAS criterion measures the standardized change in a regression coefficient when an 
observation is omitted. The formula for this criterion is 
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where  is a diagonal element of the inverse matrix ckk ( )X'WX −1 . 

Belsley, Kuh, and Welsch (1980) recommend using a cutoff of 2 / N  when N is greater than 
100. When N is less than 100, others have suggested using a cutoff of 1.0 or 2.0 for the absolute 
value of DFBETAS. 

Press Value 
PRESS is an acronym for prediction sum of squares. It was developed for use in variable selection  
to validate a regression model. To calculate PRESS, each observation is individually omitted. The 
remaining N - 1 observations are used to calculate a regression and estimate the value of the 
omitted observation. This is done N times, once for each observation. The difference between the 
actual Y value and the predicted Y with the observation deleted is called the prediction error or 
PRESS residual. The sum of the squared prediction errors is the PRESS value. The smaller PRESS 
is, the better the predictability of the model.  

The formula for PRESS is 
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Press R-Squared 
The PRESS value above can be used to compute an R2 -like statistic, called R2Predict, which 
reflects the prediction ability of the model. This is a good way to validate the prediction of a 
regression model without selecting another sample or splitting your data. It is very possible to 
have a high R2  and a very low R2Predict. When this occurs, it implies that the fitted model is 
data dependent. This R2Predict ranges from below zero to above one. When outside the range of 
zero to one, it is truncated to stay within this range.  

predict
2
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SS
1−  

Sum |Press residuals| 
This is the sum of the absolute value of the PRESS residuals or prediction errors. If a large value 
for the PRESS is due to one or a few large PRESS residuals, this statistic may be a more accurate 
way to evaluate predictability. This quantity is computed as 
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Bootstrapping 
Bootstrapping was developed to provide standard errors and confidence intervals for regression 
coefficients and predicted values in situations in which the standard assumptions are not valid. In 
these nonstandard situations, bootstrapping is a viable alternative to the corrective action 
suggested earlier. The method is simple in concept, but it requires extensive computation time.  

The bootstrap is simple to describe. You assume that your sample is actually the population and 
you draw B samples (B is over 1000) of size N from your original sample with replacement. With 
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replacement means that each observation may be selected more than once. For each bootstrap 
sample, the regression results are computed and stored.  

Suppose that you want the standard error and a confidence interval of the slope. The bootstrap 
sampling process has provided B estimates of the slope. The standard deviation of these B 
estimates of the slope is the bootstrap estimate of the standard error of the slope. The bootstrap 
confidence interval is found the arranging the B values in sorted order and selecting the 
appropriate percentiles from the list. For example, a 90% bootstrap confidence interval for the 
slope is given by fifth and ninety-fifth percentiles of the bootstrap slope values. The bootstrap 
method can be applied to many of the statistics that are computed in regression analysis.  

The main assumption made when using the bootstrap method is that your sample approximates 
the population fairly well. Because of this assumption, bootstrapping does not work well for small 
samples in which there is little likelihood that the sample is representative of the population. 
Bootstrapping should only be used in medium to large samples. 

When applied to linear regression, there are two types of bootstrapping that can be used. 

Modified Residuals 
Davison and Hinkley (1999) page 279 recommend the use of a special rescaling of the residuals 
when bootstrapping to keep results unbiased. These modified residuals are calculated using 
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Bootstrap the Observations 
The bootstrap samples are selected from the original sample. This method is appropriate for data 
in which both X and Y have been selected at random. That is, the X values were not 
predetermined, but came in as measurements just as the Y values.  

An example of this situation would be if a population of individuals is sampled and both Y and X 
are measured on those individuals only after the sample is selected. That is, the value of X was 
not used in the selection of the sample. 

Bootstrap Prediction Intervals 
Bootstrap confidence intervals for the mean of Y given X are generated from the bootstrap sample 
in the usual way. To calculate prediction intervals for the predicted value (not the mean) of Y 
given X requires a modification to the predicted value of Y  to be made to account for the 
variation of Y about its mean. This modification of the predicted Y values in the bootstrap sample, 
suggested by Davison and Hinkley, is as follows. 
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( )$ $ * *y y x b b ei i i+ += − − +  ∑  

where is a randomly selected modified residual. By adding the randomly sample residual we 
have added an appropriate amount of variation to represent the variance of individual Y’s about 
their mean value. 

e  +
*

Subset Selection 
Subset selection refers to the task of finding a small subset of the available independent variables 
that does a good job of predicting the dependent variable. Exhaustive searches are possible for 
regressions with up to 15 IV’s. However, when more than 15 IV’s are available, algorithms that 
add or remove a variable at each step must be used. Two such searching algorithms are available 
in this module: forward selection and forward selection with switching.  

An issue that comes up because of categorical IV’s is what to do with the individual-degree of 
freedom variables that are generated for a categorical independent variable. If such a variable has 
six categories, five binary variables are generated. You can see that with two or three categorical 
variables, a large number of binary variables may result, which greatly increases the total number 
of variables that must be searched. To avoid this problem, the algorithms search on model terms 
rather than on the individual binary variables. Thus, the whole set of generated variables 
associated with a given term are considered together for inclusion in, or deletion from, the model. 
Its all or none. Because of the time consuming nature of the algorithm, this is the only feasible 
way to deal with categorical variables. If you want the subset algorithm to deal with them 
individually, you can save the generated set of variables in the first run and designate them as 
Numeric Variables. 

Hierarchical Models 
Another issue is what to do with interactions. Usually, an interaction is not entered in the model 
unless the individual terms that make up that interaction are also in the model. For example, the 
interaction term A*B*C is not included unless the terms A, B, C, A*B, A*C, and B*C are already 
in the model. Such models are said to be hierarchical. You have the option during the search to 
force the algorithm to consider only hierarchical models during its search. Thus, if C is not in the 
model, interactions involving C are not even considered. Even though the option for non-
hierarchical models is available, we recommend that you only consider hierarchical models. 

Forward Selection 
The method of forward selection proceeds as follows.  

1.  Begin with no terms in the model. 

2.  Find the term that, when added to the model, achieves the largest value of R-Squared. Enter 
this term into the model. 

3.  Continue adding terms until a target value for R-Squared is achieved or until a preset limit on 
the maximum number of terms in the model is reached. Note that these terms can be limited 
to those keeping the model hierarchical. 

This method is comparatively fast, but it does not guarantee that the best model is found except 
for the first step when it finds the best single term. You might use it when you have a large 
number of observations and terms so that other, more time consuming, methods are not feasible. 
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Forward Selection with Switching 
This method is similar to the method of Forward Selection discussed above. However, at each 
step when a term is added, all terms in the model are switched one at a time with all candidate 
terms not in the model to determine if they increase the value of R-Squared. If a switch can be 
found, it is made and the pool of terms is again searched to determine if another switch can be 
made. Note that this switching can be limited to those keeping the model hierarchical.  

When the search for possible switches does not yield a candidate, the subset size is increased by 
one and a new search is begun. The algorithm is terminated when a target subset size is reached 
or all terms are included in the model. 

Discussion 
These algorithms usually require two runs. In the first run, you set the maximum subset size to a 
large value such as 10. By studying the Subset Selection reports from this run, you can quickly 
determine the optimum number of terms. You reset the maximum subset size to this number and 
make the second run. This two-step procedure works better than relying on some F-to-enter and 
F-to-remove tests whose properties are not well understood to begin with. 

Robust Regression 
Regular multiple regression is optimum when all of its assumptions are valid. When some of these 
assumptions are invalid, least squares regression can perform poorly. Thorough residual analysis can 
point to these assumption breakdowns and allow you to work around these limitations. However, this 
residual analysis is time consuming and requires a great deal of training.  

Robust regression provides an alternative to least squares regression that works with less restrictive 
assumptions. Specifically, it provides much better regression coefficient estimates when outliers are 
present in the data. Outliers violate the assumption of normally distributed residuals in least squares 
regression. They tend to pull the least squares fit too much in their direction by receiving much more 
“weight” than they deserve. Typically, you would expect that the weight attached to each observation 
would be about 1/N in a dataset with N observations. However, these outlying observations may 
receive a weight of 10, 20, or even 50 %. This leads to serious distortions in the estimated regression 
coefficients. 

Because of this distortion, these outliers are difficult to identify since their residuals are much smaller 
than they should be. When only one or two independent variables are used, these outlying points may 
be visually detected in various scatter plots. However, the complexity added by additional 
independent variables hides the outliers from view in these scatter plots. Robust regression down-
weights the influence of outliers. This makes their residuals larger and easier to spot. Robust 
regression techniques are iterative procedures that seek to identify these outliers and minimize their 
impact on the coefficient estimates.  

The amount of weighting assigned to each observation in robust regression is controlled by a special 
curve called an influence function. There are three influence functions available in NCSS. 

Although robust regression can particularly benefit untrained users, careful consideration should be 
given to the results. Essentially, robust regression conducts its own residual analysis and down-
weights or completely removes various observations. You should study the weights that are assigned 
to each observation, determine which have been largely eliminated, and decide if you want these 
observations in your analysis. 
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M-Estimators 
Several families of robust estimators have been developed. The robust methods found in NCSS 
fall into the family of M-estimators. This estimator minimizes the sum of a function ( )ρ ⋅  of the 
residuals. That is, these estimators are defined as the β 's  that minimize 
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M in M-estimators stands for maximum likelihood since the function ( )ρ ⋅  is related to the 
likelihood function for a suitable choice of the distribution of the residuals. In fact, when the 
residuals follow the normal distribution, setting ( )ρ u = 1

2
2u  results in the usual method of least 

squares. 

Unfortunately, M-estimators are not necessarily scale invariant. That is, these estimators may be 
influenced by the scale of the residuals. A scale-invariant estimator is found by solving 
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where s is a robust estimate of scale. The value of s is given by 
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This estimate of s yields an approximately unbiased estimator of the standard deviation of the 
residuals when N is large and the error distribution is normal. 
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is minimized by setting the first partial derivatives of ( )ρ ⋅  with respect to each βi  to zero which 
forms a set of p + 1 nonlinear equations 
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where ( ) ( )ψ ρu = ′ u  is the influence function. 

These equations are solved iteratively using an approximate technique called iteratively 
reweighted least squares (IRLS). At each step, new estimates of the regression coefficients are 
found using the matrix equation 
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where W  is an N-by-N diagonal matrix of weights  defined as t w w wt t N1 2, , ,L
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The ordinary least squares regression coefficients are used at the first iteration to begin the 
iteration process. Iterations are continued until there is little or no change in the regression 
coefficients from one iteration to the next. Because of the masking nature of outliers, it is a good 
idea to run through at least five iterations to allow the outliers to be found. 

Three functions are available in NCSS. These are Andrew’s Sine, Huber’s method, and Tukey’s 
biweight. Huber’s method is currently the most frequently recommended in the regression texts 
that we have seen. The specifics for each of these functions are as follows. 
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c = 1339.  

Huber’s Method 
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c = 1345.  

Tukey’s Biweight 
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c = 4 685.  

This gives you a sketch of what robust regression is about. If you find yourself using the 
technique often, we suggest that you study one of the modern texts on regression analysis. All of 
these texts have chapters on robust regression. A good introductory discussion of robust 
regression is found in Hamilton (1991). A more thorough discussion is found in Montgomery and 
Peck (1992). 

Data Structure 
The data are entered in two or more variables. An example of data appropriate for this procedure 
is shown below. These data are from a study of the relationship of several variables with a 
person’s I.Q. Fifteen people were studied. Each person’s IQ was recorded along with scores on 
five different personality tests. The data are contained in the IQ database. We suggest that you 
open this database now so that you can follow along with the example.  

IQ dataset 

Test1 Test2 Test3 Test4 Test5 IQ 
83 34 65 63 64 106 
73 19 73 48 82 92 
54 81 82 65 73 102 
96 72 91 88 94 121 
84 53 72 68 82 102 
86 72 63 79 57 105 
76 62 64 69 64 97 
54 49 43 52 84 92 
37 43 92 39 72 94 
42 54 96 48 83 112 
71 63 52 69 42 130 
63 74 74 71 91 115 
69 81 82 75 54 98 
81 89 64 85 62 96 
50 75 72 64 45 103 

Missing Values 
Rows with missing values in the variables being analyzed are ignored. If data are present on a 
row for all but the dependent variable, a predicted value and confidence limits are generated for 
that row. 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Dependent Variable 

Y: Dependent Variable(s) 
This option specifies one or more dependent (Y) variables. If more than one variable is specified, 
a separate analysis is run for each. 

Weight Variable 

Weight Variable 
When used, this is the name of a variable containing observation weights for generating a 
weighted-regression analysis. These weight values should be non-negative.  

Numeric Independent Variables 

X’s: Numeric Independent Variable(s) 
Specify any numeric independent variables in this box. Numeric variables are those whose values 
are numeric and are at least ordinal. Nominal variables, even when coded with numbers, should 
be specified as Categorical Independent Variables. Although you may specify binary (0-1) 
variables here, they are more appropriately analyzed when you specify them as Categorical 
Independent Variables. 

If you want to create powers and cross-products of these variables, specify an appropriate model 
in the ‘Custom Model’ field under the Model tab. 

If you want to create predicted values of Y for values of X not in your database, add the X values 
to the bottom of the database. These rows will not be used during estimation phase, but predicted 
values will be generated for them on the reports.  

Categorical Independent Variables 

X’s: Categorical Independent Variable(s) 
Specify categorical (nominal) independent variables in this box. By categorical we mean that the 
variable has only a few unique, numeric or text, values like 1, 2, 3 or Yes, No, Maybe. The values 
are used to identify categories.  

The values in a categorical variable are not used directly in the regression analysis. Instead, a set 
of numeric variables is substituted for them. Suppose a categorical variable has G categories. 
NCSS automatically generates the G-1 indicator variables that are needed for the analysis. The 
type of indicator variable created is determined by the selection for the Default Reference Value 
and the Default Contrast Type. The type of indicator created can also be controlled by entering 
the reference value and contrast type directly according to the syntax below. See the Default 
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Reference Value and Default Contrast Type sections below for a discussion of the reference value 
and contrast type options.  

You can create the interactions among these variables automatically using the Custom Model 
field under the Model tab.  

Syntax 
The syntax for specifying a categorical variable is VarName(RefValue;CType) where VarName is 
the name of the variable, RefValue is the reference value, and CType is the type of numeric 
variables generated: B for binary, P for polynomial, R for contrast with the reference value, and S 
for a standard set of contrasts.  

For example, suppose a categorical variable, STATE, has four values: Texas, California, Florida, 
and New York. To process this variable, the values are arranged in sorted order: California, 
Florida, New York, and Texas. Next, the reference value is selected. If a reference value is not 
specified, the default value specified in the Default Reference Value window is used. Finally, the 
method of generating numeric variables is selected. If such a method is not specified, the contrast 
type selected in the Default Contrast Type window is used. Possible ways of specifying this 
variable are 
STATE RefValue = Default, CType = Default 
STATE(New York) RefValue = New York, CType = Default 
STATE(California;R) RefValue = California, CType = Contrast with Reference 
STATE(Texas;S) RefValue = Texas, CType = Standard Set 

 

More than one category variable may be designated using a list. Examples of specifying three 
variables with various options are shown next. 
STATE  BLOODTYPE  GENDER 
STATE(California;R)  BLOODTYPE(O)  GENDER(F) 
STATE(Texas;S)  BLOODTYPE(O;R)  GENDER(F;B) 
 

Default Reference Value 
This option specifies the default reference value to be used when automatically generating 
indicator variables during the processing of selected categorical independent variables. The 
reference value is often the baseline, and the other values are compared to it. The choices are 

• First Value after Sorting 
Use the first value in alpha-numeric sorted order as the reference value. 

• Last Value after Sorting 
Use the last value in alpha-numeric sorted order as the reference value. 

The reference value may also be designated within parentheses after the name of the categorical 
independent variable, in which case the default reference value is ignored. For example, suppose 
that the categorical independent variable, STATE, has four values: 1, 3, 4, and 5.  

1. If this option is set to 'First Value after Sorting' and the categorical independent variable 
is entered as 'STATE', the reference value would be 1.  

2. If this option is set to 'Last Value after Sorting' and the categorical independent variable 
is entered as 'STATE', the reference value would be 5.  
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3. If the categorical independent variable is entered as 'STATE(4)', the choice for this 
setting would be ignored, and the reference value would be 4. 

Default Contrast Type 
Select the default type of numeric variable that will be generated when processing categorical 
independent variables. The values in a categorical variable are not used directly in regression 
analysis. Instead, a set of numeric variables is automatically created and substituted for them. 
This option allows you to specify what type of numeric variable will be created. The options are 
outlined in the sections below. 

The contrast type may also be designated within parentheses after the name of each categorical 
independent variable, in which case the default contrast type is ignored. 

If your model includes interactions of categorical variables, this option should be set to 'Contrast 
with Reference' or 'Standard Set' in order to match GLM results for factor effects. 

• Binary (This is the default) 
Categories are converted to numbers using a set of binary indicator variables by assigning a 
'1' to the active category and a '0' to all other values. For example, suppose a categorical 
variable has G categories. NCSS automatically generates the G-1 binary (indicator) variables 
that are used in the regression. These indicator variables are set to 1 for those rows in which 
the value of this variable is equal to a certain value. They are set to 0 otherwise. The G-1 
occurs because the Gth indicator variable is redundant (when all G-1 indicators are 0, wIfe 
know that the Gth indicator variable would be a 1). The value that is skipped is called the 
Reference Value. 

If your model includes interactions, using the binary indicator type may cause strange results.   

For the STATE variable, three binary variables would be generated. Suppose that the Default 
Contrast Type was 'Binary' and the statement used was 'STATE(Florida)'. The categories 
would be converted to numbers as follows: 

STATE B1 B2 B3 
California 1 0 0 
Florida 0 0 0 
New York 0 1 0 
Texas 0 0 1 

• Contrast with Reference 
Categories are converted to numbers using a set of contrast variables by assigning a '1' to the 
active category, a '-1' to the reference value, and a '0' to all other values. A separate contrast is 
generated for each value other than the reference value.  

For the STATE variable, three numeric variables would be generated. Suppose the Default 
Contrast Type was 'Contrast with Reference', the Default Reference Type was 'Last Value 
after Sorting', and the variable was entered as 'STATE'. The categories would be converted to 
numbers as follows: 

STATE R1 R2 R3 
California 1 0 0 
Florida 0 1 0 
New York 0 0 1 
Texas -1 -1 -1 
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• Polynomial 
If a variable has five or fewer categories, it can be converted to a set of polynomial contrast 
variables that account for the linear, quadratic, cubic, quartic, and quintic relationships. Note 
that these assignments are made after the values are sorted. Usually, the polynomial method 
is used on a variable for which the categories represent the actual values. That is, the values 
themselves are ordinal, not just category identifiers. Also, it is assumed that these values are 
equally spaced. Note that with this method, the reference value is ignored.  

For the STATE variable, linear, quadratic, and cubic variables are generated. Suppose that the 
Default Contrast Type was 'Polynomial' and the statement used was 'STATE'.  The categories 
would be converted to numbers as follows: 

STATE Linear Quadratic Cubic 
California -3 1 -1 
Florida -1 -1 3 
New York 1 -1 -3 
Texas 3 1 1 

• Standard Set 
A variable can be converted to a set of contrast variables using a standard set of contrasts. 
This set is formed by comparing each value with those below it. Those above it are ignored. 
Note that these assignments are made after the values are sorted. The reference value is 
ignored.  

For the STATE variable, three numeric variables are generated. Suppose that the Default 
Contrast Type was 'Standard Set' and the statement used was 'STATE'. The categories would 
be converted to numbers as follows: 

STATE S1 S2 S3 
California -3 0 0 
Florida 1 -2 0 
New York 1 1 -1 
Texas 1 1 1 

Regression Options 

Perform Robust Regression 
When checked, the program performs a robust regression analysis using the options specified 
under the ‘Robust’ tab.  

Resampling 

Calculate Bootstrap C.I.’s 
Specify whether to calculate the bootstrap confidence intervals of the regression coefficients and 
predicted values. Note that this option uses Monte Carlo simulation and may require a long time 
to complete, especially for robust regression.  
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Alpha Levels 

Alpha for C.I.’s and Tests 
The value of alpha for the statistical tests and confidence intervals is specified here. Usually, this 
number will range from 0.1 to 0.001. A common choice for alpha is 0.05, but this value is a 
legacy from the age before computers when only printed tables were available. You should 
determine a value appropriate for your particular study.  

Alpha for Assumptions 
This value specifies the significance level that must be achieved to reject a preliminary test of an 
assumption. In regular hypothesis tests, common values of alpha are 0.05 and 0.01. However, 
most statisticians recommend that preliminary tests use a larger alpha such as 0.10, 0.15, or 0.20.  

We recommend 0.20. 

Model Tab 
These options control the regression model. To run a standard multiple regression analysis, set 
Subset Selection to None and Which Model Terms to Up to 1-Way.  

Subset Selection 

Subset Selection 
This option specifies the subset selection algorithm used to reduce the number of independent 
variables used in the regression model. The Forward algorithm is much quicker than the Forward 
with Switching algorithm, but the Forward algorithm does not usually find as good of a model.  

Also note that in the case of categorical independent variables, the algorithm searches among the 
original categorical variables, not among the individual generated variables. That is, either all 
numeric variables associated with a particular categorical variable are included or not—they are 
not considered individually. 

Hierarchical models are such that if an interaction is in the model, so are the terms that can be 
derived from it. For example, if A*B*C is in the model, so are A, B, C, A*B, A*C, and B*C. 
Statisticians usually adopt hierarchical models rather than non-hierarchical models. The subset 
selection procedure can be made to consider only hierarchical models during its search.  

The subset selection options are: 

• None 
No subset selection is attempted. All specified independent variables are used in the 
regression equation. 

• (Hierarchical) Forward 
With this algorithm, the term that adds the most to R-Squared is entered into the model. Next, 
the term that increases the R-Squared the most is added. This selection is continued until all 
the terms have been entered or until the maximum subset size has been reach. 

If hierarchical models are selected, only those terms that will keep the model hierarchical are 
candidates for selection. For example, the interaction term A*B will not be considered unless 
both A and B are already in the model. 
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When using this algorithm, you must make one run that allows a large number of terms to 
find the appropriate number of terms. Next, a second run is made in which you decrease the 
maximum terms in the subset to the number after which the R-Squared does not change 
significantly. 

• (Hierarchical) Forward with Switching 
This algorithm is similar to the Forward algorithm described above. The term with the largest 
R-Squared is entered into the regression model. The term which increases largest R-Squared 
the most when combined with the first term is entered next. Now, each term in the current 
model is removed and the rest of the terms are checked to determine if, when they are used 
instead, R-Squared is increased. If a term can be found by this switching process, the switch 
is made and the whole switching operation is begun again. The algorithm continues until no 
term can be found that improves the likelihood. This model then becomes the best two-term 
model.  

Next, the subset size is increased by one, the best third term is entered into the model, and the 
switching process is repeated. This process is repeated until the maximum subset size is 
reached. Hence, this model finds the optimum subset for each subset size. You must make 
one run to find an appropriate subset size by looking at the change in R-Squared. You then 
reset the maximum subset size to this value and rerun the analysis. 

If hierarchical models are selected, only those terms that will keep the model hierarchical are 
candidates for addition or deletion. For example, the interaction term A*B will not be 
considered unless both A and B are already in the model. Likewise, the term A cannot be 
removed from a model that contains A*B. 

Max Terms in Subset 
Once this number of terms has been entered into the model, the subset selection algorithm is 
terminated. Often you will have to run the procedure twice to find an appropriate value. You 
would set this value high for the first run and then reset it appropriately for the second run, 
depending upon the values of R-Squared.  

Note that the intercept is counted in this number. 

Model Specification 

Which Model Terms 
This option specifies which terms (terms, powers, cross-products, and interactions) are included 
in the regression model. For a straight-forward regression model, select Up to 1-Way.  

The options are 

• Full Model 
The complete, saturated model (all terms and their interactions) is generated. This requires a 
dataset with no missing categorical-variable combinations (you can have unequal numbers of 
observations for each combination of the categorical variables). 

For example, if you have three independent variables A, B, and C, this would generate the 
model: 

A + B + C + A*B + A*C + B*C + A*B*C  

Note that the discussion of the Custom Model option discusses the interpretation of this 
model. 
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• Up to 1-Way 
This option generates a model in which each variable is represented by a single model term. 
No cross-products or interaction terms are added. Use this option when you want to use the 
variables you have specified, but you do not want to generate other terms.  

This is the option to select when you want to analyze the independent variables specified 
without adding any other terms. 

For example, if you have three independent variables A, B, and C, this would generate the 
model: 

A + B + C 

• Up to 2-Way 
This option specifies that all main effects and two-way interactions are included in the model. 
For example, if you have three independent variables A, B, and C, this would generate the 
model: 

A + B + C + A*B + A*C + B*C 

• Up to 3-Way 
All main effects, two-way interactions, and three-way interactions are included in the model. 
For example, if you have three independent variables A, B, and C, this would generate the 
model: 

A + B + C + A*B + A*C + B*C + A*B*C 

• Up to 4-Way 
All main effects, two-way interactions, three-way interactions, and four-way interactions are 
included in the model. For example, if you have four independent variables A, B, C, and D, 
this would generate the model: 

A + B + C + D + A*B + A*C + A*D + B*C + B*D + C*D + A*B*C + A*B*D + A*C*D + 
B*C*D + A*B*C*D 

• Custom Model 
The model specified in the Custom Model box is used.  

Remove Intercept 
Unchecked indicates that the intercept term, β0 , is to be included in the regression. Checked 
indicates that the intercept should be omitted from the regression model. Note that deleting the 
intercept distorts most of the diagnostic statistics (R-Squared, etc.). In most situations, you should 
include the intercept in the model.  

Write Model in Custom Model Field 
When this option is checked, no data analysis is performed when the procedure is run. Instead, a 
copy of the full model is stored in the Custom Model box. You can then edit the model as desired. 
This option is useful when you have several variables and you want to be selective about which 
terms are used. 

Note that the program will not do any calculations while this option is checked. 
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Model Specification – Custom Model 

Max Term Order 
This option specifies that maximum number of variables that can occur in an interaction term in a 
custom model. For example, A*B*C is a third order interaction term and if this option were set to 
2, the A*B*C term would be excluded from the model. 

This option is particularly useful when used with the bar notation of a custom model to allow a 
simple way to remove unwanted high-order interactions.  

Custom Model 
This options specifies a custom model. It is only used when the Which Model Terms option is set 
to Custom Model. A custom model specifies the terms (single variables and interactions) that are 
to be kept in the model.  

Interactions 
An interaction expresses the combined relationship between two or more variables and the 
dependent variable by creating a new variable that is the product of the variables. The interaction 
between two numeric variables is generated by multiplying them. The interaction between to 
categorical variables is generated by multiplying each pair of generated variables. The interaction 
between a numeric variable and a categorical variable is created by generating all products 
between the numeric variable and the generated variables.  

Syntax 
A model is written by listing one or more terms.  The terms are separated by a blank or plus sign. 
Terms include variables and interactions. Specify regular variables (main effects) by entering the 
variable names. Specify interactions by listing each variable in the interaction separated by an 
asterisk (*), such as Fruit*Nuts or A*B*C.  

You can use the bar (|) symbol as a shorthand technique for specifying many interactions quickly. 
When several variables are separated by bars, all of their interactions are generated. For example, 
A|B|C is interpreted as A + B + C + A*B + A*C + B*C + A*B*C. 

You can use parentheses. For example, A*(B+C) is interpreted as A*B + A*C. 

Some examples will help to indicate how the model syntax works: 

A|B = A + B + A*B 

A|B A*A B*B = A + B + A*B + A*A + B*B 

Note that you should only repeat numeric variables. That is, A*A is valid for a numeric variable, 
but not for a categorical variable. 

A|A|B|B (Max Term Order=2) = A + B + A*A + A*B + B*B 

A|B|C = A + B + C + A*B + A*C + B*C + A*B*C 

(A + B)*(C + D) = A*C + A*D + B*C + B*D 

(A + B)|C = (A + B) + C + (A + B)*C = A + B + C + A*C + B*C 
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Reports Tab 
The following options control which reports and plots are displayed. Since over 30 reports are 
available, you may want to spend some time deciding which reports to display on a routine basis 
and create a template that saves your favorite choices. 

Select Report / Plot Group 

Select a Group of Reports and Plots 
This option allows you to specify a group of reports and plots without checking them 
individually. The checking of individual reports and plots is only useful when this option is set to 
Display only those items that are CHECKED BELOW. Otherwise, the checking of individual 
reports and plots is ignored. 

Report Options 

Show All Rows 
This option makes it possible to display predicted values for only a few designated rows. 

When checked predicted values, residuals, and other row-by-row statistics, will be displayed for 
all rows used in the analysis.  

When not checked, predicted values and other row-by-row statistics will be displayed for only 
those rows in which the dependent variable’s value is missing. 

Select Reports – Summaries 

Run Summary ... Correlations 
Each of these options specifies whether the indicated report is calculated and displayed.  

Select Reports – Subset Selection 

Subset Summary and Subset Detail 
Indicate whether to display these subset selection reports.  

Select Reports – Estimation 

Equation ... Robust Percentiles 
Indicate whether to display these estimation reports.  

Select Reports – ANOVA 

ANOVA Summary and ANOVA Detail 
Indicate whether to display these ANOVA reports.  
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Select Reports – Assumptions 

PRESS Statistics ... Durbin-Watson 
Indicate whether to display these assumptions reports.  

Select Reports – IV Diagnostics 

R-Squared ... Multicollinearity 
Indicate whether to display these independent variable diagnostic reports. 

Select Reports – Study Design 

Eigenvalues - Centered Corr ... Eigenvectors - Uncentered Corr 
Indicate whether to display these design reports.  

Select Reports – Row-by-Row Lists 

Robust Residuals ... DFBetas 
Indicate whether to display these list reports. The number of rows in the output is controlled by 
the 'Show All Rows' option. Note that since these reports provide results for each row, they may 
be too long for normal use when requested on large databases. 

Select Plots 

Histogram ... Partial Resid vs X Plot 
Indicate whether to display these plots.  

Format Tab 
These options specify the number of decimal places shown when the indicated value is displayed 
in a report. The number of decimal places shown in plots is controlled by the Tick Label Settings 
buttons on the Axes tabs. 

Report Options 

Precision 
Specifies the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Skip Line After 
The names of the indicator variables can be too long to fit in the space provided. If the name 
contains more characters than the number specified here, only the name is shown on the first line 
of the report and the rest of the output is placed on the next line. 
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Enter 1 when you want the each variable’s results printed on two lines. 

Enter 100 when you want each variable’s results printed on a single line. 

Report Options – Decimal Places 

Probability ... Mean Square Decimals 
Specify the number of digits after the decimal point to display on the output of values of this type. 
Note that this option in no way influences the accuracy with which the calculations are done. 

Enter 'All' to display all digits available. The number of digits displayed by this option is 
controlled by whether the PRECISION option is SINGLE or DOUBLE. 

Plot Options Tab 
These options control the titles and style files used on each of the plots. 

Plot Titles and Style Files 

Plot Titles 
This is the text of the title. The characters {Y} are replaced by the name of the variable. Press the 
button on the right of the field to specify the font of the text.  

Plot Style Files 
Designate various plot style files. These files set all plot options that are not set directly by this 
procedure. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the various graphics procedures, depending on the plot type. 

Plotting Symbol 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Histogram Options 

Number of Bars 
Specify the number of intervals, bins, or bars used in the histogram. Select ‘0 - Automatic’ to 
have the program select an appropriate number based on the number of residuals. 
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Axes Tabs 
The options on these panels control the appearance of the X variables, Y variable, residuals, 
RStudent, Hat Diagonal, Rows Numbers, Counts, and Expected axes whenever they are included 
on a plot. This makes it easy to give a consistent look to all of your plots without modifying them 
individually. 

Y-Variable ... Expected Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by the names of the 
corresponding variables. Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the axis associated 
with this variable. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the associated axis. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on the associated axes. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Robust Tab 
The options on this panel control the robust regression analysis, if designated.  

Robust Regression Options 

Robust Method 
This option specifies which of the three robust influence functions is used: Andrews’ sine, 
Tukey’s biweight, or Huber’s. We recommend that use Huber’s method.  

Robust Regression Options – Robust 
Truncation Constants 

Andrew’s Sine Constant 
This option specifies the robust truncation constant for Andrew's Sine method. This is a cutoff 
point on the influence function designating when an observation’s weight should be set to zero.  

The recommended value is 1.339. 

Huber’s Constant 
This option specifies the robust truncation constant for Huber’s method. This is a cutoff point on 
the influence function designating when an observation’s weight should be reduced.  

The recommended value is 1.345. 
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Tukey’s Biweight Constant 
This option specifies the robust truncation constant for Tukey’s Biweight method. This is a cutoff 
point on the influence function designating when an observation’s weight should be set to zero.  

The recommended value is 4.685. 

Robust Regression Options – Robust 
Truncation Constants 

Minimum % Beta Change 
This option specifies an early stopping value for the iteration procedure. Normally, the number of 
iterations is specified in the next option. However, if the percentage change in each of the 
estimated regression coefficients is less than this amount, the iteration procedure is terminated. If 
you want this option to be ignored, set it to zero.  

Maximum Iterations 
This is the maximum number of iterations that the robust procedure will cycle through. Normally, 
you should have at least five iterations. 

MAD Constant 
Specify the constant used to scale MAD. The default value of 0.6745 has been suggested in 
several regression texts.  

Note that in the older Robust Regression procedure, this value was set to 1.0. 

Robust Regression Options – 
Reporting Options 

Cutoff for Weight Report 
On the Robust Residuals and Weights report, only rows with weights less than this amount are 
displayed. Since this report may be several pages long when the number of rows is large, this 
cutoff value allows you to see only those rows that have been severely down-weighted. 

The permissible range is from 0.01 to 1.00. The recommended value is 0.20. 

Resampling Tab 
This panel controls the bootstrapping. Note that bootstrapping is only used when the Calculate 
Bootstrap C.I.’s is checked on the Variables panel. 

Bootstrap Calculation Options – 
Sampling 

Samples (N) 
This is the number of bootstrap samples used. A general rule of thumb is that you use at least 100 
when standard errors are your focus or at least 1000 when confidence intervals are your focus. If 
computing time is available, it does not hurt to do 4000 or 5000.  

We recommend setting this value to at least 3000. 
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Retries 
If the results from a bootstrap sample cannot be calculated, the sample is discarded and a new 
sample is drawn in its place. This parameter is the number of times that a new sample is drawn 
before the algorithm is terminated. We recommend setting the parameter to at least 50. 

Bootstrap Calculation Options – 
Estimation 

Percentile Type 
The method used to create the percentiles when forming bootstrap confidence limits. You can 
read more about the various types of percentiles in the Descriptive Statistics chapter. We suggest 
you use the Ave X(p[n+1]) option. 

C.I. Method 
This option specifies the method used to calculate the bootstrap confidence intervals. The 
reflection method is recommended.  

• Percentile 
The confidence limits are the corresponding percentiles of the bootstrap values.  

• Reflection 
The confidence limits are formed by reflecting the percentile limits. If X0 is the original value 
of the parameter estimate and XL and XU are the percentile confidence limits, the Reflection 
interval is (2 X0 - XU, 2 X0 - XL).  

Bootstrap Confidence Coefficients 
These are the confidence coefficients of the bootstrap confidence intervals. Since bootstrapping 
calculations may take several minutes, it may be useful to obtain confidence intervals using 
several different confidence coefficients. 

All values must be between 0.50 and 1.00. You may enter several values, separated by blanks or 
commas. A separate confidence interval is given for each value entered.  

Examples: 

0.90 0.95 0.99 

0.90:.99(0.01) 

0.90. 

Bootstrap Histogram Options 

Vertical Axis Label 
This is the label of the vertical axis of a bootstrap histogram. 

Horizontal Axis Label 
This is the label of the horizontal axis of a bootstrap histogram. 

Plot Style File 
This is the histogram style file. We have provided several different style files to choose from, or 
you can create your own in the Histogram procedure. 
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Histogram Title 
This is the title used on the bootstrap histograms.  

Number of Bars 
The number of bars shown in a bootstrap histogram. We recommend setting this value to at least 
25 when the number of bootstrap samples is over 1000. 

Storage Tab 
These options let you specify if, and where on the database, various statistics are stored.  

Warning: Any data already in these variables are replaced by the new data. Be careful not to 
specify variables that contain important data. 

Data Storage Options 

Storage Option 
This option controls whether the values indicated below are stored on the database when the 
procedure is run. 

• Do not store data 
No data are stored even if they are checked. 

• Store in empty columns only 
The values are stored in empty columns only. Columns containing data are not used for data 
storage, so no data can be lost. 

• Store in designated columns 
Beginning at the First Storage Variable, the values are stored in this column and those to the 
right. If a column contains data, the data are replaced by the storage values. Care must be 
used with this option because it cannot be undone. 

Store First Variable In 
The first item is stored in this variable. Each additional item that is checked is stored in the 
variables immediately to the right of this variable.  

Leave this value blank if you want the data storage to begin in the first blank column on the right-
hand side of the data. 

Warning: any existing data in these variables is automatically replaced, so be careful. 

Data Storage Options – Select Items 
to Store 

Predicted Y ... VC(Betas) Matrix 
Indicate whether to store these row-by-row values, beginning at the variable indicated by the 
Store First Variable In option.  
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Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Multiple Regression (All Reports) 
This section presents an example of how to run a multiple regression analysis of the data 
presented earlier in this chapter. The data are in the IQ database. This example will run a 
regression of IQ on Test1 through Test5. This regression program outputs over thirty different 
reports and plots, many of which contain duplicate information. For the purposes of annotating 
the output, all output is displayed. Normally, you would only select a few these reports.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Multiple Regression window. 

1 Open the IQ dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file IQ.s0. 
• Click Open. 

2 Open the Multiple Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Multiple 

Regression. The Multiple Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Multiple Regression window, select the Variables tab.  
• Set the Y: Dependent Variables box to IQ.  
• Set the X’s: Numeric Independent Variables box to Test1-Test5.  
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4 Specify the reports. 
• Select the Reports tab. 
• Set the Select a Group of Reports and Plots to Display ALL reports & plots. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Run Summary Section 
 
Parameter Value Parameter Value 
Dependent Variable IQ Rows Processed 17 
Number Ind. Variables 5 Rows Filtered Out 0 
Weight Variable None Rows with X's Missing 0 
R2 0.3991 Rows with Weight Missing 0 
Adj R2 0.0652 Rows with Y Missing 0 
Coefficient of Variation 0.1021 Rows Used in Estimation 15 
Mean Square Error 113.4648 Sum of Weights 15.000 
Square Root of MSE 10.65198 Completion Status Normal Completion 
Ave Abs Pct Error 6.218   

 

This report summarizes the multiple regression results. It presents the variables used, the number 
of rows used, and the basic results.  

R-Squared 
R2 , officially known as the coefficient of determination, is defined as 

R SS
SS

Model

Total Adjusted

2 =
( )

 

R2  is probably the most popular statistical measure of how well the regression model fits the 
data. R2  may be defined either as a ratio or a percentage. Since we use the ratio form, its values 
range from zero to one. A value of R2  near zero indicates no linear relationship between the Y 
and the X’s, while a value near one indicates a perfect linear fit. Although popular, R2  should not 
be used indiscriminately or interpreted without scatter plot support. Following are some 
qualifications on its interpretation:  

1. Additional independent variables. It is possible to increase R2  by adding more 
independent variables, but the additional independent variables may actually cause an 
increase in the mean square error, an unfavorable situation. This case happens when your 
sample size is small. 

2. Range of the independent variables. R2  is influenced by the range of each independent 
variable. R2  increases as the range of the X’s increases and decreases as the range of the 
X’s decreases.  

3. Slope magnitudes. R2  does not measure the magnitude of the slopes.  

4. Linearity. R2  does not measure the appropriateness of a linear model. It measures the 
strength of the linear component of the model. Suppose the relationship between x and Y 
was a perfect circle. The R2  value of this relationship would be zero. 
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5. Predictability. A large R2  does not necessarily mean high predictability, nor does a low 
R2 necessarily mean poor predictability.  

6. No-intercept model. The definition of R2  assumes that there is an intercept in the 
regression model. When the intercept is left out of the model, the definition of R2  
changes dramatically. The fact that your R2  value increases when you remove the 
intercept from the regression model does not reflect an increase in the goodness of fit. 
Rather, it reflects a change in the underlying meaning of R2 . 

7. Sample size. R2  is highly sensitive to the number of observations. The smaller the 
sample size, the larger its value. 

Adjusted R-Squared 
This is an adjusted version of R2 . The adjustment seeks to remove the distortion due to a small 
sample size. 

Coefficient of Variation 
The coefficient of variation is a relative measure of dispersion, computed by dividing root mean 
square error by the mean of the dependent variable. By itself, it has little value, but it can be 
useful in comparative studies.  

CV MSE
y

=  

Ave Abs Pct Error 
This is the average of the absolute percent errors. It is another measure of the goodness of fit of 
the regression model to the data. It is calculated using the formula  
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y y
y

N

j j

jj

N

=

−

=
∑100

1

$

 

Note that when the dependent variable is zero, its predicted value is used in the denominator. 

Descriptive Statistics Section 
 
   Standard 
Variable Count Mean Deviation Minimum Maximum 
Test1 15 67.93333 17.39239 37 96 
Test2 15 61.4 19.39735 19 89 
Test3 15 72.33334 14.73415 43 96 
Test4 15 65.53333 13.95332 39 88 
Test5 15 69.93333 16.15314 42 94 
IQ 15 104.3333 11.0173 92 130 

 

For each variable, the count, arithmetic mean, standard deviation, minimum, and maximum are 
computed. This report is particularly useful for checking that the correct variables were selected.  
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Correlation Matrix Section 
 
 Test1 Test2 Test3 Test4 
Test1 1.0000 0.1000 -0.2608 0.7539 
Test2 0.1000 1.0000 0.0572 0.7196 
Test3 -0.2608 0.0572 1.0000 -0.1409 
Test4 0.7539 0.7196 -0.1409 1.0000 
Test5 0.0140 -0.2814 0.3473 -0.1729 
IQ 0.2256 0.2407 0.0741 0.3714 
   
 Test5 IQ 
Test1 0.0140 0.2256 
Test2 -0.2814 0.2407 
Test3 0.3473 0.0741 
Test4 -0.1729 0.3714 
Test5 1.0000 -0.0581 
IQ -0.0581 1.0000 

  

Pearson correlations are given for all variables. Outliers, nonnormality, nonconstant variance, and 
nonlinearities can all impact these correlations. Note that these correlations may differ from pair-
wise correlations generated by the correlation matrix program because of the different ways the 
two programs treat rows with missing values. The method used here is row-wise deletion. 
These correlation coefficients show which independent variables are highly correlated with the 
dependent variable and with each other. Independent variables that are highly correlated with one 
another may cause collinearity problems.  

Regression Equation Section 
 
 Regression Standard T-Value  Reject Power 
Independent Coefficient Error to test  Prob H0 at of Test 
Variable b(i) Sb(i) H0:B(i)=0 Level 5%? at 5% 
Intercept 85.2404 23.6951 3.597 0.0058 Yes 0.8915 
Test1 -1.9336 1.0291 -1.879 0.0930 No 0.3896 
Test2 -1.6599 0.8729 -1.902 0.0897 No 0.3974 
Test3 0.1050 0.2199 0.477 0.6445 No 0.0713 
Test4 3.7784 1.8345 2.060 0.0695 No 0.4522 
Test5 -0.0406 0.2012 -0.202 0.8447 No 0.0538 
 
Estimated Model 
 85.2403846967438-1.9335712381893*Test1-1.6598811696115*Test2+ .104954325385776*Test3  
+3.7783766794138*Test4-4.05775409260278E-02*Test5 

   

This section reports the values and significance tests of the regression coefficients. Before using 
this report, check that the assumptions are reasonable. For instance, collinearity can cause the t-
tests to give false results and the regression coefficients to be of the wrong magnitude or sign.  

Independent Variable 
The names of the independent variables are listed here. The intercept is the value of the Y 
intercept. 

Note that the name may become very long, especially for interaction terms. These long names 
may misalign the report. You can force the rest of the items to be printed on the next line by using 
the Skip Line After option in the Format tab. This should create a better looking report when the 
names are extra long. 
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Regression Coefficient 
The regression coefficients are the least squares estimates of the parameters. The value indicates 
how much change in Y occurs for a one-unit change in that particular X when the remaining X’s 
are held constant. These coefficients are often called partial-regression coefficients since the 
effect of the other X’s is removed. These coefficients are the values of .  b b bp0 1, , ,L

Standard Error 
The standard error of the regression coefficient, s , is the standard deviation of the estimate. It is 
used in hypothesis tests or confidence limits. 

b j

T-Value to test Ho: B(i)=0  
This is the t-test value for testing the hypothesis that β j = 0  versus the alternative that β j ≠ 0  
after removing the influence of all other X’s. This t-value has n-p-1 degrees of freedom. 

To test for a value other than zero, use the formula below. There is an easier way to test 
hypothesized values using confidence limits. See the discussion below under Confidence Limits. 
The formula for the t-test is 

j
j j

*

b
t

b
s j
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Prob Level 
This is the p-value for the significance test of the regression coefficient. The p-value is the 
probability that this t-statistic will take on a value at least as extreme as the actually observed 
value, assuming that the null hypothesis is true (i.e., the regression estimate is equal to zero). If 
the p-value is less than alpha, say 0.05, the null hypothesis of equality is rejected. This p-value is 
for a two-tail test. 

Reject H0 at 5%? 
This is the conclusion reached about the null hypothesis. It will be either reject H0 at the 5% level 
of significance or not.  

Note that the level of significance is specified in the Alpha of C.I.’s and Tests box on the Format 
tab panel. 

Power (5%) 
Power is the probability of rejecting the null hypothesis that β j = 0  when . The 

power is calculated for the case when , , and alpha is as specified in the Alpha of 
C.I.’s and Tests option. 

β βj j= ≠* 0

β j jb* = σ 2 = s2

High power is desirable. High power means that there is a high probability of rejecting the null 
hypothesis that the regression coefficient is zero when this is false. This is a critical measure of 
sensitivity in hypothesis testing. This estimate of power is based upon the assumption that the 
residuals are normally distributed.  

Estimated Model 
This is the least squares regression line presented in double precision. Besides showing the 
regression model in long form, it may be used as a transformation by copying and pasting it into 
the Transformation portion of the spreadsheet. 
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Note that a transformation must be less than 255 characters. Since these formulas are often 
greater than 255 characters in length, you must use the FILE(filename) transformation. To do so, 
copy the formula to a text file using Notepad, Windows Write, or Word to receive the model text. 
Be sure to save the file as an unformatted text (ASCII) file. The transformation is FILE(filename) 
where filename is the name of the text file, including directory information. When the 
transformation is executed, it will load the file and use the transformation stored there. 

Regression Coefficient Section 
 
Independent Regression Standard Lower Upper Standardized 
Variable Coefficient Error 95% C.L. 95% C.L. Coefficient 
Intercept 85.2404 23.6951 31.6383 138.8425 0.0000 
Test1 -1.9336 1.0291 -4.2615 0.3944 -3.0524 
Test2 -1.6599 0.8729 -3.6345 0.3147 -2.9224 
Test3 0.1050 0.2199 -0.3925 0.6024 0.1404 
Test4 3.7784 1.8345 -0.3715 7.9283 4.7853 
Test5 -0.0406 0.2012 -0.4958 0.4146 -0.0595 
Note: The T-Value used to calculate these confidence limits was 2.262. 

 

Independent Variable 
The names of the independent variables are listed here. The intercept is the value of the Y 
intercept.  

Note that the name may become very long, especially for interaction terms. These long names 
may misalign the report. You can force the rest of the items to be printed on the next line by using 
the Skip Line After option in the Format tab. This should create a better looking report when the 
names are extra long. 

Regression Coefficient 
The regression coefficients are the least squares estimates of the parameters. The value indicates 
how much change in Y occurs for a one-unit change in x when the remaining X’s are held 
constant. These coefficients are often called partial-regression coefficients since the effect of the 
other X’s is removed. These coefficients are the values of b b . bp0 1, , ,L

Standard Error 
The standard error of the regression coefficient, s , is the standard deviation of the estimate. It is 
used in hypothesis tests and confidence limits. 

b j

Lower - Upper 95% C.L.  
These are the lower and upper values of a ( )100 1− α %  interval estimate for β j  based on a t-
distribution with n-p-1 degrees of freedom. This interval estimate assumes that the residuals for 
the regression model are normally distributed.  

These confidence limits may be used for significance testing values of β j  other than zero. If a 
specific value is not within this interval, it is significantly different from that value. Note that 
these confidence limits are set up as if you are interested in each regression coefficient separately. 

The formulas for the lower and upper confidence limits are: 

jb  t  s1- / 2 n p bj± − −α , 1  
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Standardized Coefficient 
Standardized regression coefficients are the coefficients that would be obtained if you 
standardized the independent variables and the dependent variable. Here standardizing is defined 
as subtracting the mean and dividing by the standard deviation of a variable. A regression 
analysis on these standardized variables would yield these standardized coefficients.  

When the independent variables have vastly different scales of measurement, this value provides 
a way of making comparisons among variables. The formula for the standardized regression 
coefficient is: 

j, std j
X

Y
b b

s
s

j=
⎛

⎝
⎜

⎞

⎠
⎟  

where  and are the standard deviations for the dependent variable and the jsY sX j

th independent 

variable. 

Note: The T-Value … 
This is the value of t   used to construct the confidence limits.  n p1 2 1− − −α / ,

Analysis of Variance Section 
 
   Sum of Mean  Prob Power 
Source DF R2 Squares Square F-Ratio Level (5%) 
Intercept 1  163281.7 163281.7 
Model 5 0.3991 678.1504 135.6301 1.195 0.3835 0.2565 
Error 9 0.6009 1021.183 113.4648 
Total(Adjusted) 14 1.0000 1699.333 121.381 

  

An analysis of variance (ANOVA) table summarizes the information related to the variation in 
data.  

Source 
This represents a partition of the variation in Y. 

R2 
This is the overall R2  of this the regression model. 

DF 
The degrees of freedom are the number of dimensions associated with this term. Note that each 
observation can be interpreted as a dimension in n-dimensional space. The degrees of freedom for 
the intercept, model, error, and adjusted total are 1, p, n-p-1, and n-1, respectively. 

Sum of Squares 
These are the sums of squares associated with the corresponding sources of variation. Note that 
these values are in terms of the dependent variable. The formulas for each are 

InterceptSS ny= 2  

( )Model jSS y y= ∑ −$
2
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( )Error j jSS y y= ∑ − $
2
 

( )Total jSS y y= ∑ −
2
 

Mean Squares 
The mean square is the sum of squares divided by the degrees of freedom. This mean square is an 
estimated variance. For example, the mean square error is the estimated variance of the residuals.  

F-Ratio 
This is the F-statistic for testing the null hypothesis that all β j = 0 . This F-statistic has p degrees 
of freedom for the numerator variance and n-p-1 degrees of freedom for the denominator 
variance.  

Prob Level 
This is the p-value for the above F-test. The p-value is the probability that the test statistic will 
take on a value at least as extreme as the observed value, assuming that the null hypothesis is true. 
If the p-value is less than α , say 0.05, the null hypothesis is rejected. If the p-value is greater 
than α , then the null hypothesis is accepted.  

Power(5%) 
Power is the probability of rejecting the null hypothesis that all the regression coefficients are 
zero when at least one is not. 

Analysis of Variance Detail Section 
 
 Model   Sum of Mean  Prob Power 
 Term DF R2 Squares Square F-Ratio Level (5%) 
 Intercept 1  163281.7 163281.7 
 Model 5 0.3991 678.1504 135.6301 1.195 0.3835 0.2565 
 Test1 1 0.2357 400.562 400.562 3.530 0.0930 0.3896 
 Test2 1 0.2414 410.2892 410.2892 3.616 0.0897 0.3974 
 Test3 1 0.0152 25.8466 25.8466 0.228 0.6445 0.0713 
 Test4 1 0.2832 481.3241 481.3241 4.242 0.0695 0.4522 
 Test5 1 0.0027 4.614109 4.614109 0.041 0.8447 0.0538 
 Error 9 0.6009 1021.183 113.4648 
 Total(Adjusted)14 1.0000 1699.333 121.381 
  

This analysis of variance table provides a line for each term in the model. It is especially useful 
when you have categorical independent variables.  

Model Term 
This is the term from the design model.  

Note that the name may become very long, especially for interaction terms. These long names 
may misalign the report. You can force the rest of the items to be printed on the next line by using 
the Skip Line After option in the Format tab. This should create a better looking report when the 
names are extra long. 

DF 
This is the number of degrees of freedom that the model is degrees of freedom is reduced when 
this term is removed from the model. This is the numerator degrees of freedom of the F-test. 
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R2 
This is the amount that R2  is reduced when this term is removed from the regression model. 

Sum of Squares 
This is the amount that the model sum of squares that are reduced when this term is removed 
from the model.  

Mean Square 
The mean square is the sum of squares divided by the degrees of freedom. 

F-Ratio 
This is the F-statistic for testing the null hypothesis that all β j  associated with this term are zero. 
This F-statistic has DF and n-p-1 degrees of freedom. 

Prob Level 
This is the p-value for the above F-test. The p-value is the probability that the test statistic will 
take on a value at least as extreme as the observed value, assuming that the null hypothesis is true. 
If the p-value is less than α , say 0.05, the null hypothesis is rejected. If the p-value is greater 
than α , then the null hypothesis is accepted.  

Power(5%) 
Power is the probability of rejecting the null hypothesis that all the regression coefficients 
associated with this term are zero, assuming that the estimated values of these coefficients are 
their true values. 

PRESS Section 
 
 From From 
 PRESS Regular 
Parameter Residuals Residuals 
Sum of Squared Residuals 2839.941 1021.183 
Sum of |Residuals| 169.6438 99.12155 
R2 -0.6712 0.3991 
 

This section reports on the PRESS statistics. The regular statistics, computed on all of the data, 
are provided to the side to make comparison between corresponding values easier. 

Sum of Squared Residuals 
PRESS is an acronym for prediction sum of squares. It was developed for use in variable selection 
to validate a regression model. To calculate PRESS, each observation is individually omitted. The 
remaining N - 1 observations are used to calculate a regression and estimate the value of the 
omitted observation. This is done N times, once for each observation. The difference between the 
actual Y value and the predicted Y with the observation deleted is called the prediction error or 
PRESS residual. The sum of the squared prediction errors is the PRESS value. The smaller PRESS 
is, the better the predictability of the model.  

( )∑ − y yj j,-j$
2
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Sum of |Press residuals| 
This is the sum of the absolute value of the PRESS residuals or prediction errors. If a large value 
for the PRESS is due to one or a few large PRESS residuals, this statistic may be a more accurate 
way to evaluate predictability.  

∑ − y yj j,$ -j  

Press R2 
The PRESS value above can be used to compute an R2 -like statistic, called R2Predict, which 
reflects the prediction ability of the model. This is a good way to validate the prediction of a 
regression model without selecting another sample or splitting your data. It is very possible to 
have a high R2  and a very low R2Predict. When this occurs, it implies that the fitted model is 
data dependent. This R2Predict ranges from below zero to above one. When outside the range of 
zero to one, it is truncated to stay within this range.  

PRESS
2

Total
R  =  PRESS

SS
1−  

Normality Tests Section 
 
Test Test Prob Reject H0 
Name Value Level At Alpha = 20%? 
Shapiro Wilk 0.9076 0.124280 Yes 
Anderson Darling 0.4365 0.297324 No 
D'Agostino Skewness 2.0329 0.042064 Yes 
D'Agostino Kurtosis 1.5798 0.114144 Yes 
D'Agostino Omnibus 6.6285 0.036361 Yes 

  

This report gives the results of applying several normality tests to the residuals. The Shapiro-Wilk 
test is probably the most popular, so it is given first. These tests are discussed in detail in the 
Normality Test section of the Descriptive Statistics procedure.  

Serial-Correlation and Durbin-Watson Test 
 
 Serial  Serial  Serial 
Lag Correlation Lag Correlation Lag Correlation 
1 0.4529 9 -0.2769 17 0.0000 
2 -0.2507 10 -0.2287 18 0.0000 
3 -0.5518 11 0.0000 19 0.0000 
4 -0.3999 12 0.0000 20 0.0000 
5 0.0780 13 0.0000 21 0.0000 
6 0.2956 14 0.0000 22 0.0000 
7 0.1985 15 0.0000 23 0.0000 
8 -0.0016 16 0.0000 24 0.0000 
Above serial correlations significant if their absolute values are greater than 0.516398 
 
Durbin-Watson Test For Serial Correlation 
  Did the Test Reject 
Parameter Value H0: Rho(1) = 0? 
Durbin-Watson Value 1.0010 
Prob. Level: Positive Serial Correlation 0.0072 Yes 
Prob. Level: Negative Serial Correlation 0.9549 No 
 

This section reports the autocorrelation structure of the residuals. Of course, this report is only 
useful if the data represent a time series. 
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Lag and Correlation 
The lag, k, is the number of periods (rows) back. The correlation here is the sample 
autocorrelation coefficient of lag k. It is computed as: 

k
i-k i

i
2r e e

e
     for k = 1,2,...,24=

∑
∑

 

To test the null hypothesis that k  =  ρ 0  at a 5% level of significance with a large-sample 
normal approximation, reject when the absolute value of the autocorrelation coefficient, kr  , is 
greater than two over the square root of N. 

Durbin-Watson Value 
The Durbin-Watson test is often used to test for positive or negative, first-order, serial correlation. 
It is calculated as follows 

k
i-k i

i
2r e e

e
     for k = 1,2,...,24=

∑
∑

 

The distribution of this test is mathematically difficult because it involves the X values. Originally, 
Durbin-Watson (1950, 1951) gave a pair of bounds to be used. However, there is a large range of 
indecision that can be found when using these bounds. Instead of using these bounds, NCSS 
calculates the exact probability using the beta distribution approximation suggested by Durbin-
Watson (1951). This approximation has been shown to be accurate to three decimal places in most 
cases. 

R-Squared Section 
 
  R2 Increase R2 Decrease R2 When Partial R2 
 Total R2 for When This When This This I.V. Adjusted 
Independent This I.V. And I.V. Added To I.V. Is Is Fit For All 
Variable Those Above Those Above Removed Alone Other I.V.'s 
Test1 0.0509 0.0509 0.2357 0.0509 0.2817 
Test2 0.0990 0.0480 0.2414 0.0579 0.2866 
Test3 0.1131 0.0142 0.0152 0.0055 0.0247 
Test4 0.3964 0.2832 0.2832 0.1379 0.3203 
Test5 0.3991 0.0027 0.0027 0.0034 0.0045 
   
2R  reflects the percent of variation in Y explained by the independent variables in the model. A 

value of R2  near zero indicates a complete lack of fit between Y and the Xs, while a value near 
one indicates a perfect fit.  

In this section, various types of R2  values are given to provide insight into the variation in the 
dependent variable explained either by the independent variables added in order (i.e., sequential) 
or by the independent variables added last. This information is valuable in an analysis of which 
variables are most important. 

Independent Variable 
This is the name of the independent variable reported on in this row. 

Total R2 for This I.V. and Those Above 
This is the R2  value that would result from fitting a regression with this independent variable and 
those listed above it. The IV’s below it are ignored. 
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R2 Increase When This IV Added to Those Above 
This is the amount that this IV adds to R2  when it is added to a regression model that includes 
those IV’s listed above it in the report. 

R2 Decrease When This IV is Removed 
This is the amount that R2  would be reduced if this IV were removed from the model. Large 
values here indicate important independent variables, while small values indicate insignificant 
variables. 

One of the main problems in interpreting these values is that each assumes all other variables are 
already in the equation. This means that if two variables both represent the same underlying 
information, they will each seem to be insignificant after considering the other. If you remove 
both, you will lose the information that either one could have brought to the model. 

R2 When This IV Is Fit Alone 
This is the R2  that would be obtained if the dependent variable were only regressed against this 
one independent variable. Of course, a large R2  value here indicates an important independent 
variable that can stand alone. 

Partial R2 Adjusted For All Other IV’s  
The is the square of the partial correlation coefficient. The partial R2  reflects the percent of 
variation in the dependent variable explained by one independent variable controlling for the 
effects of the rest of the independent variables. Large values for this partial R2  indicate 
important independent variables. 

Variable Omission Section 
 
 R2 MSE Mallow's Cp H0: B=0 Regress. Of 
Independent When I.V. When I.V. When I.V. Prob This I.V. On 
Variable Omitted Omitted Omitted Level Other I.V.'s 
Full Model 0.3991 113.4648    
Test1 0.1634 142.1745 7.5303 0.0930 0.9747 
Test2 0.1576 143.1472 7.6160 0.0897 0.9717 
Test3 0.3839 104.703 4.2278 0.6445 0.2280 
Test4 0.1158 150.2507 8.2421 0.0695 0.9876 
Test5 0.3964 102.5797 4.0407 0.8447 0.2329 

   

One way of assessing the importance of an independent variable is to examine the impact on 
various goodness-of-fit statistics of removing it from the model. This section provides this.  

Independent Variable 
This is the name of the predictor variable reported on in this row. Note that the Full Model row 
gives the statistics when no variables are omitted. 

R2 When IV Omitted 
This is the R2  for the multiple regression model when this independent variable is omitted and 
the remaining independent variables are retained. If this R2  is close to the R2  for the full model, 
this variable is not very important. On the other hand, if this R2  is much smaller than that of the 
full model, this independent variable is important. 
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MSE When IV Omitted 
This is the mean square error for the multiple regression model when this IV is omitted and the 
remaining IV’s are retained. If this MSE is close to the MSE for the full model, this variable may 
not be very important. On the other hand, if this MSE is much larger than that of the full model, 
this IV is important. 

Mallow's Cp When IV Omitted 
Another criterion for variable selection and importance is Mallow’s Cp statistic. The optimum 
model will have a Cp value close to p+1, where p is the number of independent variables. A Cp 
greater than (p+1) indicates that the regression model is overspecified (contains too many 
variables and stands a chance of having collinearity problems). On the other hand, a model with a 
Cp less than (p+1) indicates that the regression model is underspecified (at least one important 
independent variable has been omitted). The formula for the Cp statistic is as follows, where k is 
the maximum number of independent variables available 

( ) ( )[ ]p
p

k
C  =  n p MSE

MSE
  n p+− − ⎡

⎣⎢
⎤

⎦⎥
− −1 2 1  

H0: B=0 Prob Level 
This is the two-tail p-value for testing the significance of the regression coefficient. Most likely, 
you would deem IV’s with small p-values as important. However, you must be careful here. 
Collinearity can cause extra large p-values, so you must check for its presence. 

R2 Of Regress. Of This IV Other X’s 
This is the R2  value that would result if this independent variable were regressed on the 
remaining independent variables. A high value indicates a redundancy between this IV and the 
other IV’s. IV’s with a high value here (above 0.90) are candidates for omission from the model. 

Sum of Squares and Correlation Section 
 
 Sequential Incremental Last   
Independent Sum of Sum of Sum of Simple Partial 
Variable Squares Squares Squares Correlation Correlation 
Test1 86.5252 86.5252 400.562 0.2256 -0.5308 
Test2 168.1614 81.6362 410.2892 0.2407 -0.5354 
Test3 192.2748 24.11342 25.8466 0.0741 0.1571 
Test4 673.5363 481.2615 481.3241 0.3714 0.5660 
Test5 678.1504 4.614109 4.614109 -0.0581 -0.0671 

   

This section provides the sum of squares and correlations equivalent to the R-Squared Section.  

Independent Variable 
This is the name of the IV reported on in this row. 

Sequential Sum Squares 
The is the sum of squares value that would result from fitting a regression with this independent 
variable and those above it. The IV’s below it are ignored. 

Incremental Sum Squares 
This is the amount that this predictor adds to the sum of squares value when it is added to a 
regression model that includes those predictors listed above it. 
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Last Sum Squares 
This is the amount that the model sum of squares would be reduced if this variable were removed 
from the model. 

Simple Correlation 
This is the Pearson correlation coefficient between the dependent variable and the specified 
independent variable. 

Partial Correlation 
The partial correlation coefficient is a measure of the strength of the linear relationship between Y 
and Xj after adjusting for the remaining (p-1) variables.  

Sequential Models Section 
 
Independent Included Omitted Included Included Omitted Omitted 
Variable R2 R2 F-Ratio Prob>F F-Ratio Prob>F 
Test1 0.0509 0.3482 0.697 0.4187 1.304 0.3390 
Test2 0.0990 0.3001 0.659 0.5351 1.498 0.2801 
Test3 0.1131 0.2859 0.468 0.7107 2.141 0.1735 
Test4 0.3964 0.0027 1.641 0.2390 0.041 0.8447 
Test5 0.3991 0.0000 1.195 0.3835   

 Notes  
 1. INCLUDED variables are those listed from current row up (includes current row).  
 2. OMITTED variables are those listed below (but not including) this row.  
  

This section examines the step-by-step effect of adding variables to the regression model.  

Independent Variable 
This is the name of the predictor variable reported on in this row. 

Included R2 
This is the R2  that would be obtained if only those IV’s on this line and above were in the 
regression model.  

Omitted R2 
This is the R2  for the full model minus the Included R2. This is the amount of R2  explained by 
the independent variables listed below the current row. Large values indicate that there is much 
more to come with later independent variables. On the other hand, small values indicate that 
remaining independent variables contribute little to the regression model. 

Included F-ratio 
This is an F-ratio for testing the hypothesis that the regression coefficients (β 's ) for the IV’s 
listed on this row and above are zero. 

Included Prob>F 
This is the p-value for the above F-ratio. 

Omitted F-Ratio 
This is an F-ratio for testing the hypothesis that the regression coefficients (β 's ) for the variables 
listed below this row are all zero. The alternative is that at least one coefficient is nonzero. 
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Omitted Prob>F 
This is the p-value for the above F-ratio. 

Multicollinearity Section 
 
 Variance R2  Diagonal 
Independent Inflation Versus  of X'X 
Variable Factor Other I.V.'s Tolerance Inverse 
Test1 39.5273 0.9747 0.0253 9.333631E-03 
Test2 35.3734 0.9717 0.0283 6.715277E-03 
Test3 1.2953 0.2280 0.7720 4.261841E-04 
Test4 80.8456 0.9876 0.0124 2.966012E-02 
Test5 1.3035 0.2329 0.7671 3.568483E-04 

 

This report provides information useful in assessing the amount of multicollinearity in your data.  

Variance Inflation 
The variance inflation factor (VIF) is a measure of multicollinearity. It is the reciprocal of 

, where 1 2− RX RX
2  is the R2  obtained when this variable is regressed on the remaining IV’s. A 

VIF of 10 or more for large data sets indicates a collinearity problem since the RX
2  with the 

remaining IV’s is 90 percent. For small data sets, even VIF’s of 5 or more can signify collinearity. 
Variables with a high VIF are candidates for exclusion from the model.  

j
j

VIF   
R

=
−
1

1 2  

R2 Versus Other IV’s 
RX

2  is the R2  obtained when this variable is regressed on the remaining independent variables. A 
high  indicates a lot of overlap in explaining the variation among the remaining independent 
variables. 

RX
2

Tolerance 
Tolerance is just 1 , the denominator of the variance inflation factor.  2− RX

Diagonal of X'X Inverse 
The X'X inverse is an important matrix in regression. This is the jth row and jth column element of 
this matrix. 

Eigenvalues of Centered Correlations Section 
 
  Incremental Cumulative Condition 
No. Eigenvalue Percent Percent Number 
1 2.2150 44.299 44.299 1.000 
2 1.2277 24.554 68.853 1.804 
3 1.1062 22.124 90.978 2.002 
4 0.4446 8.892 99.870 4.982 
5 0.0065 0.130 100.000 340.939 
 
Some Condition Numbers greater than 100. Multicollinearity is a MILD problem. 
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This section gives an eigenvalue analysis of the independent variables when they have been 
centered and scaled.  

Eigenvalue 
The eigenvalues of the correlation matrix. The sum of the eigenvalues is equal to the number of 
IV’s. Eigenvalues near zero indicate a high degree of is collinearity in the data. 

Incremental Percent  
Incremental percent is the percent this eigenvalue is of the total. In an ideal situation, these 
percentages would be equal. Percents near zero indicate collinearity in the data. 

Cumulative Percent 
 This is the running total of the Incremental Percent. 

Condition Number 
 The condition number is the largest eigenvalue divided by each corresponding eigenvalue. Since 
the eigenvalues are really variances, the condition number is a ratio of variances. Condition 
numbers greater than 1000 indicate a severe collinearity problem while condition numbers 
between 100 and 1000 indicate a mild collinearity problem. 

Eigenvector Percent of Regression-Coefficent-Variance using 
Centered Correlations Section 

 
No. Eigenvalue Test1 Test2 Test3 
1 2.2150 0.2705 0.2850 1.8773 
2 1.2277 0.0330 0.1208 31.1222 
3 1.1062 0.8089 0.8397 7.6430 
4 0.4446 0.8059 1.0889 59.3291 
5 0.0065 98.0817 97.6657 0.0284 
    
No. Eigenvalue Test4 Test5 
1 2.2150 0.2331 2.3798 
2 1.2277 0.0579 23.6898 
3 1.1062 0.0015 14.3442 
4 0.4446 0.0002 59.5804 
5 0.0065 99.7072 0.0058 
   

This report displays how the eigenvectors associated with each eigenvalue are related to the 
independent variables.  

No. 
The number of the eigenvalue. 

Eigenvalue 
The eigenvalues of the correlation matrix. The sum of the eigenvalues is equal to the number of 
independent variables. Eigenvalues near zero mean that there is collinearity in your data. 

Values 
The rest of this report gives a breakdown of what percentage each eigenvector is of the total 
variation for the regression coefficient. Hence, the percentages sum to 100 down a column. 

A small eigenvalue (large condition number) along with a subset of two or more independent 
variables having high variance percentages indicates a dependency involving the independent 
variables in that subset. This dependency has damaged or contaminated the precision of the 
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regression coefficients estimated in the subset. Two or more percentages of at least 50% for an 
eigenvector or eigenvalue suggest a problem. For certain, when there are two or more variance 
percentages greater than 90%, there is definitely a collinearity problem. 

Again, take the following steps when using this table. 

1. Find rows with condition numbers greater than 100 (find these in the Eigenvalues of 
Centered Correlations report). 

2. Scan across each row found in step 1 for two or more percentages greater than 50. If two 
such percentages are found, the corresponding variables are being influenced by 
collinearity problems. You should remove one and re-run your analysis. 

Eigenvalues of Uncentered Correlations Section 
 
  Incremental Cumulative Condition 
No. Eigenvalue Percent Percent Number 
1 5.7963 96.606 96.606 1.000 
2 0.1041 1.735 98.340 55.686 
3 0.0670 1.116 99.457 86.532 
4 0.0214 0.357 99.814 270.830 
5 0.0109 0.181 99.995 533.756 
6 0.0003 0.005 100.000 17767.041 
Some Condition Numbers greater than 1000. Multicollinearity is a SEVERE problem. 

 

This report gives an eigenvalue analysis of the independent variables when they have been scaled 
but not centered (the intercept is included in the collinearity analysis). The eigenvalues for this 
situation are generally not the same as those in the previous eigenvalue analysis. Also, the 
condition numbers are much higher.  

Eigenvalue 
The eigenvalues of the scaled, but not centered, matrix. The sum of the eigenvalues is equal to the 
number of independent variables. Eigenvalues near zero mean that there is collinearity in your 
data. 

Incremental Percent  
Incremental percent is the percent this eigenvalue is of the total. In an ideal situation, these 
percentages would be equal. Percents near zero mean that there is collinearity in your data. 

Cumulative Percent 
 This is the running total of the Incremental Percent. 

Condition Number 
 The condition number is the largest eigenvalue divided by each corresponding eigenvalue. Since 
the eigenvalues are really variances, the condition number is a ratio of variances. There has not 
been any formalization of rules on condition numbers for uncentered matrices. You might use the 
criteria mentioned earlier for mild collinearity and severe collinearity. Since the collinearity will 
always be worse with the intercept in the model, it is advisable to have more relaxed criteria for 
mild and severe collinearity, say 500 and 5000, respectively. 



305-60  Multiple Regression  

Eigenvector Percent of Regression-Coefficent-Variance using 
Uncentered Correlations 

 
No. Eigenvalue Test1 Test2 Test3 
1 5.7963 0.0042 0.0068 0.0826 
2 0.1041 0.0308 0.8177 3.8156 
3 0.0670 1.1375 0.9627 7.4272 
4 0.0214 0.2675 0.9263 51.4298 
5 0.0109 0.4157 0.0499 37.2046 
6 0.0003 98.1444 97.2367 0.0402 
 
No. Eigenvalue Test4 Test5 Intercept 
1 5.7963 0.0015 0.1033 0.0397 
2 0.1041 0.0610 11.8930 0.2599 
3 0.0670 0.0261 0.0897 0.0106 
4 0.0214 0.0006 79.7835 1.6692 
5 0.0109 0.0931 8.1292 97.0221 
6 0.0003 99.8177 0.0013 0.9986 
   

This report displays how the eigenvectors associated with each eigenvalue are related to the 
independent variables.  

No. 
The number of the eigenvalue. 

Eigenvalue 
The eigenvalues of the correlation matrix. The sum of the eigenvalues is equal to the number of 
independent variables. Eigenvalues near zero mean that there is collinearity in your data. 

Values 
The rest of this report gives a breakdown of what percentage each eigenvector is of the total 
variation for the regression coefficient. Hence, the percentages sum to 100 down a column. 

A small eigenvalue (large condition number) along with a subset of two or more independent 
variables having high variance percentages indicates a dependency involving the independent 
variables in that subset. This dependency has damaged or contaminated the precision of the 
regression coefficients estimated in the subset. Two or more percentages of at least 50% for an 
eigenvector or eigenvalue suggest a problem. For certain, when there are two or more variance 
percentages greater than 90%, there is definitely a collinearity problem. 
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Predicted Values with Confidence Limits of Means 
 
   Standard 95% Lower 95% Upper 
 Actual Predicted Error Of Conf. Limit Conf. Limit 
Row IQ IQ Predicted Of Mean Of Mean 
1 106.000 110.581 7.157 94.391 126.770 
2 92.000 98.248 7.076 82.242 114.255 
3 102.000 97.616 6.223 83.539 111.693 
4 121.000 118.340 8.687 98.689 137.990 
5 102.000 96.006 6.369 81.597 110.414 
6 105.000 102.233 5.433 89.942 114.523 
. . . . . . 
. . . . . . 
. . . . . . 

 

Confidence intervals for the mean response of Y given specific levels for the IV’s are provided 
here. It is important to note that violations of any regression assumptions will invalidate these 
interval estimates.  

Actual 
This is the actual value of Y. 

Predicted 
The predicted value of Y. It is predicted using the values of the IV’s for this row. If the input data 
had all IV values but no value for Y, the predicted value is still provided. 

Standard Error of Predicted 
This is the standard error of the mean response for the specified values of the IV’s. Note that this 
value is not constant for all IV’s values. In fact, it is a minimum at the average value of each IV. 

Lower 95% C.L. of Mean 
This is the lower limit of a 95% confidence interval estimate of the mean of Y for this 
observation. 

Upper 95% C.L. of Mean 
This is the upper limit of a 95% confidence interval estimate of the mean of Y for this 
observation. Note that you set the alpha level. 

Predicted Values with Prediction Limits of Individuals 
 
   Standard 95% Lower 95% Upper 
 Actual Predicted Error Of Pred. Limit Pred. Limit 
Row IQ IQ Predicted Of Individual Of Individual 
1 106.000 110.581 12.833 81.551 139.611 
2 92.000 98.248 12.788 69.320 127.177 
3 102.000 97.616 12.336 69.709 125.523 
4 121.000 118.340 13.745 87.247 149.433 
5 102.000 96.006 12.411 67.930 124.081 
6 105.000 102.233 11.958 75.183 129.283 
. . . . . . 
. . . . . . 
. . . . . . 
 

A prediction interval for the individual response of Y given specific values of the IV’s is provided 
here for each row.   
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Actual 
This is the actual value of Y. 

Predicted 
The predicted value of Y. It is predicted using the levels of the IV’s for this row. If the input data 
had all values of the IV’s but no value for Y, a predicted value is provided. 

Standard Error of Predicted 
This is the standard deviation of the mean response for the specified levels of the IV’s. Note that 
this value is not constant for all IV’s. In fact, it is a minimum at the average value of each IV. 

Lower 95% Pred. Limit of Individual 
This is the lower limit of a 95% prediction interval of the individual value of Y for the values of 
the IV’s for this observation. 

Upper 95% Pred. Limit of Individual 
This is the upper limit of a 95% prediction interval of the individual value of Y for the values of 
the IV’s for this observation. Note that you set the alpha level. 

Residual Report 
 
    Absolute Sqrt(MSE) 
 Actual Predicted  Percent Without 
Row IQ IQ Residual Error This Row 
1 106.000 110.581 -4.581 4.322 11.085 
2 92.000 98.248 -6.248 6.792 10.905 
3 102.000 97.616 4.384 4.298 11.136 
4 121.000 118.340 2.660 2.199 11.181 
5 102.000 96.006 5.994 5.877 10.984 
6 105.000 102.233 2.767 2.635 11.241 
. . . . . . 
. . . . . . 
. . . . . . 
 

This section reports on the sample residuals, or ei’s.  

Actual 
This is the actual value of Y. 

Predicted 
The predicted value of Y using the values of the IV’s given on this row. 

Residual 
This is the error in the predicted value. It is equal to the Actual minus the Predicted. 

Absolute Percent Error 
This is percentage that the absolute value of the Residual is of the Actual value. Scrutinize rows 
with the large percent errors. 

Sqrt(MSE) Without This Row 
This is the value of the square root of the mean square error that is obtained if this row is deleted. 
A perusal of this statistic for all observations will highlight observations that have an inflationary 
impact on mean square error and could be outliers. 
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Regression Diagnostics Section 
 
 Standardized  Hat 
Row Residual RStudent Diagonal Cook's D Dffits CovRatio 
1 -0.5806 -0.5579 0.4514 0.0462 -0.5061 2.9388 
2 -0.7847 -0.7665 0.4413 0.0811 -0.6812 2.3714 
3 0.5071 0.4851 0.3413 0.0222 0.3492 2.5863 
4 0.4315 0.4111 0.6650 0.0616 0.5792 5.3387 
5 0.7021 0.6808 0.3575 0.0457 0.5079 2.2506 
6 0.3020 0.2862 0.2601 0.0053 0.1697 2.5777 
. . . . . . . 
. . . . . . . 
. . . . . . . 
 

This report presents various statistics known as regression diagnostics. They let you conduct an 
influence analysis of the observations. The interpretation of these values is explained in modern 
regression books. Belsley, Kuh, and Welsch (1980) devote an entire book to the study of 
regression diagnostics.  
These statistics flag observations that exert three types of influence on the regression. 

1.  Outliers in the residual space. The Studentized Residual, the RStudent, and the CovRatio 
will flag observations that are influential because of large residuals. 

2.  Outliers in the X-space. The Hat Diagonal flags observations that are influential because 
they are outliers in the X-space.  

3.  Parameter estimates and fit. The Dffits shows the influence on fitted values. It also 
measures the impact on the regression coefficients. Cook’s D measures the overall impact 
that a single observation has on the regression coefficient estimates. 

Standardized Residual 
The variances of the observed residuals are not equal, making comparisons among the residuals 
difficult. One solution is to standardize the residuals by dividing by their standard deviations. 
This will give a set of standardized residuals with constant variance. The formula for this residual 
is 

( )j
j

jj

r e
h

=
−MSE 1

 

RStudent 
Rstudent is similar to the standardized residual. The difference is the MSE(j) is used rather than 
MSE in the denominator. The quantity MSE(j) is calculated using the same formula as MSE, 
except that observation j is omitted. The hope is that be excluding this observation, a better 
estimate of  will be obtained. Some statisticians refer to these as the studentized deleted 
residuals. 

σ 2

If the regression assumptions of normality are valid, a single value of the RStudent has a t 
distribution with n-p-1 degrees of freedom.  
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Hat Diagonal 
The hat diagonal, , captures an observation’s remoteness in the X-space. Some authors refer to 
the hat diagonal as a measure of leverage in the X-space. Hat diagonals greater than two times the 
number of coefficients in the model divided by the number of observations are said to have high 
leverage (i.e., h

hjj

ii > 2p/n).  

Cook’s D 
Cook’s distance (Cook’s D) attempts to measure the influence each observation on all N fitted 
values. The approximate formula for Cook’s D is 
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The  are found by removing observation i before the calculations. Rather than go to all the 
time of recalculating the regression coefficients N times, we use the following approximation 
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This approximation is exact when no weight variable is used.  

A Cook’s D value greater than one indicates an observation that has large influence. Some 
statisticians have suggested that a better cutoff value is 4 / (N - 2). 

DFFITS 
DFFITS is the standardized difference between the predicted value with and without that 
observation. The formula for DFFITS is 
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The values of  and  are found by removing observation j before the doing the 
calculations. It represents the number of estimated standard errors that the fitted value changes if 
the j

( )$y jj ( )s j2

th observation is omitted from the data set. If |DFFITS| > 1, the observation should be 
considered to be influential with regards to prediction. 

CovRatio 
This diagnostic flags observations that have a major impact on the generalized variance of the 
regression coefficients. A value exceeding 1.0 implies that the ith observation provides an 
improvement, i.e., a reduction in the generalized variance of the coefficients. A value of 
CovRatio less than 1.0 flags an observation that increases the estimated generalized variance. 
This is not a favorable condition.  

The general formula for the CovRatio is 
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Belsley, Kuh, and Welsch (1980) give the following guidelines for the CovRatio. 

If CovRatio > 1 + 3p / N then omitting this observation significantly damages the precision of at 
least some of the regression estimates. 

If CovRatio < 1 - 3p / N then omitting this observation significantly improves the precision of at 
least some of the regression estimates. 

DFBETAS Section 
 
Row Test1 Test2 Test3 Test4 Test5 
1 0.2160 0.3128 -0.0390 -0.2556 0.1723 
2 -0.1123 0.0190 -0.0830 0.0871 0.0045 
3 0.1822 0.2370 0.0291 -0.2075 0.0674 
4 -0.1792 -0.2157 0.2157 0.2393 0.1963 
5 0.3932 0.3443 0.0108 -0.3638 0.1240 
6 0.0969 0.0868 -0.0110 -0.0842 -0.0534 
. . . . . . 
. . . . . . 
. . . . . . 
 

DFBETAS 
The DFBETAS is an influence diagnostic which gives the number of standard errors that an 
estimated regression coefficient changes if the jth observation is deleted. If one has N observations 
and p independent variables, there are Np of these diagnostics. Sometimes, Cook’s D may not 
show any overall influence on the regression coefficients, but this diagnostic gives the analyst 
more insight into individual coefficients. The criteria of influence for this diagnostic are varied, 
but Belsley, Kuh, and Welsch (1980) recommend a cutoff of 2 / N . Other guidelines are ±1 or 
±2. The formula for DFBETAS is 

k
k k,-j

j kk

dfbetas b b
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where  is the kckk
th row and kth column element of the inverse matrix (X'X)-1. 
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Graphic Residual Analysis 
The residuals can be graphically analyzed in numerous ways. Three types of residuals are 
graphically analyzed here:  residuals, rstudent residuals, and partial residuals. For certain, the 
regression analyst should examine all of the basic residual graphs:  the histogram, the density 
trace, the normal probability plot, the serial correlation plots, the scatter plot of the residuals 
versus the sequence of the observations, the scatter plot of the residuals versus the predicted value 
of the dependent variable, and the scatter plot of the residuals versus each of the independent 
variables. 

For the basic scatter plots of residuals versus either the predicted values of Y or the independent 
variables, Hoaglin (1983) explains that there are several patterns to look for. You should note that 
these patterns are very difficult, if not impossible, to recognize for small data sets. 

Point Cloud 
 A point cloud, basically in the shape of a rectangle or a horizontal band, would indicate no 
relationship between the residuals and the variable plotted against them. This is the preferred 
condition. 

Wedge 
An increasing or decreasing wedge would be evidence that there is increasing or decreasing 
(nonconstant) variation. A transformation of Y may correct the problem, or weighted least squares 
may be needed. 

Bowtie 
This is similar to the wedge above in that the residual plot shows a decreasing wedge in one 
direction while simultaneously having an increasing wedge in the other direction. A 
transformation of Y may correct the problem, or weighted least squares may be needed. 

Sloping Band 
This kind of residual plot suggests adding a linear version of the independent variable to the 
model. 

Curved Band 
 This kind of residual plot may be indicative of a nonlinear relationship between Y and the 
independent variables that was not accounted for. The solution might be to use a transformation 
on Y to create a linear relationship with the X’s. Another possibility might be to add quadratic or 
cubic terms of a particular independent variable. 

Curved Band with Increasing or Decreasing Variability 
This residual plot is really a combination of the wedge and the curved band. It too must be 
avoided. 
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Histogram 
The purpose of the histogram and density trace of the residuals is to evaluate whether they are 
normally distributed. A dot plot is also given that highlights the distribution of points in each bin 
of the histogram. Unless you have a large sample size, it is best not to rely on the histogram for 
visually evaluating normality of the residuals. The better choice would be the normal probability 
plot.  
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Probability Plot of Residuals 
If the residuals are normally distributed, the data points of the normal probability plot will fall 
along a straight line through the origin with a slope of 1.0. Major deviations from this ideal 
picture reflect departures from normality. Stragglers at either end of the normal probability plot 
indicate outliers, curvature at both ends of the plot indicates long or short distributional tails, 
convex or concave curvature indicates a lack of symmetry, and gaps or plateaus or segmentation 
in the normal probability plot may require a closer examination of the data or model. Of course, 
use of this graphic tool with very small sample sizes is not recommended.  

If the residuals are not normally distributed, then the t-tests on regression coefficients, the F-tests, 
and any interval estimates are not valid. This is a critical assumption to check.  
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Plots of Y versus each IV 
Actually, a regression analysis should always begin with a plot of Y versus each IV. These plots 
often show outliers, curvilinear relationships, and other anomalies. 
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Serial Correlation of Residuals Plot 
This plot is only useful if your data represent a time series. This is a scatter plot of the jth residual 
versus the jth-1 residual. The purpose of this plot is to check for first-order autocorrelation.  

You would like to see a random pattern of these plotted residuals, i.e., a rectangular or uniform 
distribution. A strong positive or negative trend would indicate a need to redefine the model with 
some type of autocorrelation component. Positive autocorrelation or serial correlation means that 
the residual in time period j tends to have the same sign as the residual in time period (j-1). On 
the other hand, a strong negative autocorrelation means that the residual in time period j tends to 
have the opposite sign as the residual in time period (j-1). Be sure to check the Durbin-Watson 
statistic.  
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Sequence Plot 
Sequence plots may be useful in finding variables that are not accounted for by the regression 
equation. They are especially useful if the data were taken over time.  
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RStudent vs Hat Diagonal Plot 
In light of the earlier discussion in the Regression Diagnostics Section, Rstudent is one of the best 
single-case diagnostics for capturing large residuals, while the hat diagonal flags observations 
that are remote in the X-space. The purpose of this plot is to give a quick visual spotting of 
observations that are very different from the norm. It is best to rely on the actual regression 
diagnostics for any formal conclusions on influence. There are three influential realms you might 
be concerned with  

1. Observations that are extreme along the rstudent (vertical) axis are outliers that need 
closer attention. They may have a major impact on the predictability of the model. 

2. Observations that were extreme to the right (i.e., hii>2p/n) are outliers in the X-space. 
These kinds of observations could be data entry errors, so be sure the data is correct 
before proceeding.  

3. Observations that are extreme on both axes are the most influential of all. Double-check 
these values. 
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Residual vs Predicted Plot 
This plot should always be examined. The preferred pattern to look for is a point cloud or a 
horizontal band. A wedge or bowtie pattern is an indicator of nonconstant variance, a violation of 
a critical regression assumption. The sloping or curved band signifies inadequate specification of 
the model. The sloping band with increasing or decreasing variability suggests nonconstant 
variance and inadequate specification of the model. 
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Residual vs Predictor(s) Plot 
This is a scatter plot of the residuals versus each independent variable. Again, the preferred 
pattern is a rectangular shape or point cloud. Any other nonrandom pattern may require a 
redefining of the regression model.  
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RStudent vs Predictor(s) 
This is a scatter plot of the RStudent residuals versus each independent variable. The preferred 
pattern is a rectangular shape or point cloud. These plots are very helpful in visually identifying 
any outliers and nonlinear patterns. 
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Partial Residual Plots 
The scatter plot of the partial residuals against each independent variable allows you to examine 
the relationship between Y and each IV after the effects of the other IV’s have been removed. 
These plots can be used to assess the extent and direction of linearity for each independent 
variable. In addition, they provide insight as to the correct transformation to apply and 
information on influential observations. One would like to see a linear pattern between the partial 
residuals and the independent variable.  
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Example 2 – Bootstrapping 
This section presents an example of how to generate bootstrap confidence intervals with a 
multiple regression analysis. The tutorial will use the data are in the IQ database. This example 
will run a regression of IQ on Test1, Test2, and Test4.   

You may follow along here by making the appropriate entries or load the completed template 
Example2 from the Template tab of the Multiple Regression window. 

1 Open the IQ dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file IQ.s0. 
• Click Open. 

2 Open the Multiple Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Multiple 

Regression. The Multiple Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Multiple Regression window, select the Variables tab.  
• Set the Y: Dependent Variables box to IQ.  
• Set the X’s: Numeric Independent Variables box to Test1, Test2, Test4.  
• Check the Calculate Bootstrap C.I.’s box. 

4 Specify the reports. 
• Select the Reports tab. 
• Set the Select a Group of Reports and Plots to Display only those items that are 

CHECKED BELOW. 
• Check the Regression Coefficients box under the Estimation heading. 

5 Specify the bootstrap parameters. 
• Select the Resampling tab. 
• Set the Samples (N) to 3000. 
• You may change any of the other parameters as you see fit. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Regression Coefficient Section 
 
Independent Regression Standard Lower Upper Standardized 
Variable Coefficient Error 95% C.L. 95% C.L. Coefficient 
Intercept 90.7327 12.8272 62.5003 118.9651 0.0000 
Test1 -1.9650 0.9406 -4.0353 0.1053 -3.1020 
Test2 -1.6485 0.7980 -3.4048 0.1078 -2.9024 
Test4 3.7890 1.6801 0.0912 7.4869 4.7988 

 

This report gives the confidence limits calculated under the assumption of normality. We have 
displayed it so that we can compare these to the bootstrap confidence intervals. 

Bootstrap Section 
 
---  Estimation Results ------ | --- Bootstrap Confidence Limits ---- 
Intercept 
Original Value 90.7327 | 0.9000 68.2414 109.0262 
Bootstrap Mean 92.1790 | 0.9500 61.6979 113.2208 
Bias (BM - OV) 1.4463 | 0.9900 44.6644 123.0653 
Bias Corrected 89.2863    
Standard Error 13.1402    
B(Test1) 
Original Value -1.9650 | 0.9000 -3.0486 -0.1051 
Bootstrap Mean -2.1094 | 0.9500 -3.3245 0.4579 
Bias (BM - OV) -0.1444 | 0.9900 -4.1334 1.5529 
Bias Corrected -1.8206    
Standard Error 0.9482    
B(Test2) 
Original Value -1.6485 | 0.9000 -2.5591 0.0014 
Bootstrap Mean -1.8020 | 0.9500 -2.8343 0.4772 
Bias (BM - OV) -0.1535 | 0.9900 -3.6419 1.7330 
Bias Corrected -1.4951    
Standard Error 0.8336    
B(Test4) 
Original Value 3.7890 | 0.9000 0.4503 5.7739 
Bootstrap Mean 4.0637 | 0.9500 -0.6646 6.3992 
Bias (BM - OV) 0.2747 | 0.9900 -2.3355 7.9171 
Bias Corrected 3.5144    
Standard Error 1.7159    
Predicted Mean and Confidence Limits of IQ When Row = 16 
Original Value 99.509 | 0.9000 93.047 105.295 
Bootstrap Mean 99.796 | 0.9500 90.629 106.717 
Bias (BM - OV) 0.287 | 0.9900 85.355 109.743 
Bias Corrected 99.222    
Standard Error 3.982    
Predicted Mean and Confidence Limits of IQ When Row = 17 
Original Value 101.264 | 0.9000 96.723 105.457 
Bootstrap Mean 101.319 | 0.9500 95.576 106.753 
Bias (BM - OV) 0.055 | 0.9900 92.511 108.933 
Bias Corrected 101.209    
Standard Error 2.810    
Predicted Value and Prediction Limits of IQ When Row = 16 
Original Value 99.509 | 0.9000 69.984 122.901 
Bootstrap Mean 101.009 | 0.9500 63.420 126.959 
Bias (BM - OV) 1.500 | 0.9900 44.415 137.078 
Bias Corrected 98.009    
Standard Error 16.323    
Predicted Value and Prediction Limits of IQ When Row = 17 
Original Value 101.264 | 0.9000 72.296 123.954 
Bootstrap Mean 103.159 | 0.9500 66.145 128.934 
Bias (BM - OV) 1.895 | 0.9900 50.664 137.938 
Bias Corrected 99.370    
Standard Error 15.971    
Sampling Method = Observation, Confidence Limit Type = Reflection, Number of Samples = 3000. 
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This report provides bootstrap intervals of the regression coefficients and predicted values for 
rows 16 and 17 which did not have an IQ (Y) value. Details of the bootstrap method were 
presented earlier in this chapter.  

It is interesting to compare these confidence intervals with those provided in the Regression 
Coefficient report. The most striking difference is that the lower limit of the 95% bootstrap 
confidence interval for B(Test4) is now negative. When the lower limit is negative and the upper 
limit is positive, we know that a hypothesis test would not find the parameter significantly 
different from zero. Thus, while the regular confidence interval of B(Test4) indicates statistical 
significance (since both limits are positive), the bootstrap confidence interval does not. 

Note that since these results are based on 3000 random bootstrap samples, they will differ slightly 
from the results you obtain when you run this report. 

Original Value 
This is the parameter estimate obtained from the complete sample without bootstrapping. 

Bootstrap Mean 
This is the average of the parameter estimates of the bootstrap samples. 

Bias (BM - OV) 
This is an estimate of the bias in the original estimate. It is computed by subtracting the original 
value from the bootstrap mean. 

Bias Corrected 
This is an estimated of the parameter that has been corrected for its bias. The correction is made 
by subtracting the estimated bias from the original parameter estimate. 

Standard Error 
This is the bootstrap method’s estimate of the standard error of the parameter estimate. It is 
simply the standard deviation of the parameter estimate computed from the bootstrap estimates. 

Conf. Level 
This is the confidence coefficient of the bootstrap confidence interval given to the right. 

Bootstrap Confidence Limits - Lower and Upper 
These are the limits of the bootstrap confidence interval with the confidence coefficient given to 
the left. These limits are computed using the confidence interval method (percentile or reflection) 
designated on the Bootstrap panel. 

Note that to be accurate, these intervals must be based on over a thousand bootstrap samples and 
the original sample must be representative of the population. 
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Bootstrap Histograms Section 
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Each histogram shows the distribution of the corresponding parameter estimate.  
Note that the number of decimal places shown in the horizontal axis is controlled by which 
histogram style file is selected. In this example, we selected Bootstrap2, which was created to 
provide two decimal places. 
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Example 3 – Robust Regression 
This section presents an example of how to generate bootstrap confidence intervals with a 
multiple regression analysis. The tutorial will use the data are in the IQ database. This example 
will run a regression of IQ on Test1 through Test5.  

You may follow along here by making the appropriate entries or load the completed template 
Example3 from the Template tab of the Multiple Regression window. 

1 Open the IQ dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file IQ.s0. 
• Click Open. 

2 Open the Multiple Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Multiple 

Regression. The Multiple Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Multiple Regression window, select the Variables tab.  
• Set the Y: Dependent Variables box to IQ.  
• Set the X’s: Numeric Independent Variables box to Test1-Test5.  
• Check the Perform Robust Regression box. 

4 Specify the reports. 
• Select the Reports tab. 
• Set the Select a Group of Reports and Plots to Display only those items that are 

CHECKED BELOW. 
• Check the Equation box. 
• Check the Robust Coefficients box. 
• Check the Robust Percentiles box. 
• Check the Robust Residuals box. 

5 Specify the robust regression parameters. 
• Select the Robust tab. 
• Set the Robust Method to Huber’s Method. 
• Set the Minimum % Beta Change to 1.0. 
• You may change any of the other parameters as you see fit. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Regression Equation Section 
 
 Regression Standard T-Value  Reject Power 
Independent Coefficient Error to test  Prob H0 at of Test 
Variable b(i) Sb(i) H0:B(i)=0 Level 5%? at 5% 
Intercept 61.6716 16.5684 3.722 0.0048 Yes 0.9105 
Test1 -1.4481 0.6706 -2.159 0.0591 No 0.4873 
Test2 -1.2148 0.5713 -2.126 0.0624 No 0.4756 
Test3 0.1945 0.1463 1.329 0.2165 No 0.2216 
Test4 2.9261 1.1947 2.449 0.0368 Yes 0.5888 
Test5 0.1186 0.1389 0.854 0.4152 No 0.1195 

 

This report gives the robust regression coefficients as well as t-tests. Note that the statistical tests 
are approximate because we are using robust regression. You could generate bootstrap robust 
confidence intervals to supplement these results. 

Robust Regression Coefficient Section 
 
Robust Max % Change Robust Robust Robust Robust 
Iteration in any Beta B(0) B(1) B(2) B(3) 
0 100.000 85.2404 -1.9336 -1.6599 0.1050 
1 136.537 77.6730 -1.7920 -1.5307 0.1384 
2 209.779 73.4249 -1.7126 -1.4582 0.1571 
3 33.306 71.3356 -1.6735 -1.4225 0.1663 
4 24.365 69.2981 -1.6354 -1.3877 0.1753 
5 30.744 66.1007 -1.5756 -1.3331 0.1894 
6 18.776 61.8967 -1.4569 -1.2239 0.1960 
7 0.794 61.8156 -1.4534 -1.2196 0.1944 

  

This report shows the largest percent change in any of the regression coefficients as well as the 
first four regression coefficients. The first iteration always shows the ordinary least squares 
estimates on the full dataset so that you can compare these value with those that occur after a few 
robust iterations.  
This report allows you to determine if enough iterations have been run for the coefficients to have 
stabilized. In this example, the coefficients have stabilized. If they had not, we would decrease 
the value of the Minimum % Beta Change and rerun the analysis. 

Robust Percentiles of Residuals Section 
 
Iter. Max % Change -------------------- Percentiles of Absolute Residuals ------------------------ 
No. in any Beta 25th 50th 75th 100th 
0 100.000 2.767 5.073 9.167 22.154 
1 136.537 2.693 4.225 8.314 25.177 
2 209.779 1.917 4.493 7.834 26.874 
3 33.306 1.695 4.341 7.599 27.709 
4 24.365 1.641 3.714 7.369 28.523 
5 30.744 1.555 3.118 7.008 29.800 
6 18.776 1.526 2.529 7.115 30.702 
7 0.794 1.508 2.460 7.137 30.677 

 

The purpose of this report is to highlight the maximum percentage changes among the regression 
coefficients and to show the convergence of the absolute value of the residuals after a selected 
number of iterations. 
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Iter. No. 
This is the robust iteration number. 

Max % Change in any Beta 
This is the maximum percentage change in any of the regression coefficients from one iteration to 
the next. This quantity can be used to determine if enough iterations have been run. Once this value 
is less than five percent, little is gained by further iterations.  

Percentiles of Absolute Residuals 
The absolute values of the residuals for this iteration are sorted and the percentiles are calculated. We 
want to terminate the iteration process when there is little change in median of the absolute residuals.  

Robust Residuals and Weights Section 
 
    Absolute  
 Actual Predicted  Percent Robust 
Row IQ IQ Residual Error Weight 
1 106.000 104.752 1.248 1.177 1.0000 
2 92.000 97.256 -5.256 5.713 1.0000 
3 102.000 99.878 2.122 2.080 1.0000 
4 121.000 121.532 -0.532 0.440 1.0000 
5 102.000 98.350 3.650 3.578 1.0000 
6 105.000 99.843 5.157 4.911 1.0000 
7 97.000 98.237 -1.237 1.275 1.0000 
8 92.000 94.433 -2.433 2.644 1.0000 
9 94.000 96.407 -2.407 2.561 1.0000 
10 112.000 104.221 7.779 6.945 0.7702 
11 130.000 99.319 30.681 23.601 0.1927 
12 115.000 113.485 1.515 1.318 1.0000 
13 98.000 105.163 -7.163 7.310 0.8318 
14 96.000 104.776 -8.776 9.142 0.6842 
15 103.000 104.767 -1.767 1.715 1.0000 

  

The predicted values, the residuals, and the robust weights are reported for the last iteration. 
These robust weights can be saved for use in a weighted regression analysis, or they can be used 
as a filter to delete observations with a weight less than some number, say 0.20, in an ordinary 
least squares regression analysis.  
Note that in this analysis, row 11 appears to be an outlier. 

Row 
This is the number of the row. Rows whose weight is less than 0.1 are starred. 

Actual 
This is the actual value of the dependent variable. 

Predicted 
This is the predicted value of Y based on the robust regression equation from the final iteration. 

Residual 
The residual is the difference between the Actual and Predicted values of Y. 

Robust Weight 
Once the convergence criteria for the robust procedure have been met, these are the final weights for 
each observation.  
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These weights will range from zero to one. Observations with a low weight make a minimal 
contribution to the determination of the regression coefficients. In fact, observations with a weight of 
zero have been deleted from the analysis. These weights can be saved and used again in a weighted 
least squares regression. 

Example 4 – Variable Subset Selection 
This section presents an example of how to select a subset of the available IV’s that are the most 
useful in predicting Y. The tutorial will use the data are in the IQ database. In this example, we 
will select a subset from the five IV’s available.  

You may follow along here by making the appropriate entries or load the completed template 
Example4 from the Template tab of the Multiple Regression window.  

1 Open the IQ dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file IQ.s0. 
• Click Open. 

2 Open the Multiple Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Multiple 

Regression. The Multiple Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Multiple Regression window, select the Variables tab.  
• Set the Y: Dependent Variables box to IQ.  
• Set the X’s: Numeric Independent Variables box to Test1-Test5.  

4 Specify the subset selection method. 
• On the Multiple Regression window, select the Model tab.  
• Set the Subset Selection box to Hierarchical Forward with Switching.  
• Set the Max Terms in Subset box to 6.  
• Set the Which Model Terms box to Up to 2-Way.  

5 Specify the reports. 
• Select the Reports tab. 
• Set the Select a Group of Reports and Plots to Display items appropriate for a 

STANDARD ANALYSIS. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Subset Selection Summary Section 
 
No. No. R-Squared R-Squared 
Terms X's Value Change 
1 1 0.1379 0.1379 
2 2 0.1542 0.0163 
3 3 0.2466 0.0924 
4 4 0.3587 0.1121 
5 5 0.5681 0.2094 
6 6 0.5877 0.0196 

 

This report shows the number of terms, number of IV’s, and R-squared values for each subset 
size. This report is used to determine an appropriate subset size for a second run. You search the 
table for a subset size after which the R-squared increases only slightly as more variables are 
added.  
In this example, there appears to be two places where a break occurs: from 1 to 2 terms and from 
5 to 6 terms. Under normal circumstances, we would pick from a subset size of 5 for a second 
run. However, because the sample size in this example is only 15, we would not want to go above 
a subset size of 3 (our rule of thumb is N/#IV’s > 5). 

Subset Selection Detail Section 
 
  No. of No. of  Term Term 
Step Action Terms X's R2 Entered Removed 
0 Add 0 0 0.0000 Intercept  
1 Add 1 1 0.1379 Test4  
2 Add 2 2 0.1542 Test3  
3 Add 3 3 0.2466 Test3*Test3  
4 Add 4 4 0.3587 Test4*Test4  
5 Add 5 5 0.4149 Test2  
6 Switch 5 5 0.4203 Test1 Test3*Test3 
7 Switch 5 5 0.5681 Test2*Test2 Test4*Test4 
8 Add 6 6 0.5877 Test1*Test1  
  

This report shows the details of which variables were added or removed at each step in the search 
procedure. The final model for three IV’s would include Test4, Test3, and Test3*Test3. 
Because of the restrictions due to our use of hierarchical models, you might run an analysis using 
the Forward with Switching option as well as a search without 2-way interactions. Because of the 
small sample size, these options produce models with much larger R-squared values. However, it 
is our feeling that this larger R-squared values occur because the extra variables are actually 
fitting random error rather than a reproducible pattern. 
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Example 5 – Sales Price Prediction 
This section presents an example of using multiple regression to construct an equation that 
predicts the sales price of a home based on a few basic IV’s such as square footage, lot size, and 
so on. The RESALE database contains several variables relating to the sales price of a house. 
These include year built, number of bedrooms, number of bathrooms, size of garage, number of 
fireplaces, overall quality rating, amount of building with brick, finished square footage, total 
square footage, and lot size.   

The RESALE database contains data on 150 sales that took place recently. Our task is to develop 
a mathematical model that relates sales price to the IV’s listed about and then use this model to 
predict the eventual sales price for two additional properties. 

Step 1 – View Scatter Plots 
The starting point in such an analysis is to view individual scatter plots of sales price versus each 
of the potential IV’s looking for outliers, curvilinear patterns, and other anomalies. Although we 
could create these scatter plots in other procedures, we will use the Multiple Regression 
procedure to do so. 

You may follow along here by making the appropriate entries or load the completed template 
Example5-1 from the Template tab of the Multiple Regression window. 

1 Open the RESALE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file RESALE.s0. 
• Click Open. 

2 Open the Multiple Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Multiple 

Regression. The Multiple Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Multiple Regression window, select the Variables tab.  
• Set the Y: Dependent Variables box to Price.  
• Set the X’s: Numeric Independent Variables box to Year-Lotsize.   

4 Specify the reports. 
• Select the Reports tab. 
• Set the Select a Group of Reports and Plots to Display only those items that are 

CHECKED BELOW. 
• Check the Y-X’s Plots box under Select Plots. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 



305-82  Multiple Regression  

Scatter Plot Output 
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Looking at these plots, we notice that Bathrooms, Quality, and Year appear to have the most 
direct relationship with price. We cannot spot any outliers, so we procedure to the next step.  

Step 2 – Use Robust Regression to Find Outliers 
Although we could not spot any outliers on the scatter plots, it is important to make sure that we 
have not missed any. To do this, we run a robust regression analysis and search the robust 
weights for values less that 0.20 (which we define as an outlier).  

This analysis assumes that you have just completed Example 5-1. You may follow along here by 
making the appropriate entries or load the completed template Example5-2 from the Template 
tab of the Multiple Regression window. 

1 On the Variables tab. 
• Check the Perform Robust Regression box.  

2 On the Reports tab. 
• Check the Robust Coefficients box. 
• Check the Robust Residuals box. 

3 On the Robust tab. 
• Set the Minimum % Beta Change to 0.1. 
• Set the Cutoff for Weight Report to 0.40. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Robust Regression Output 
 
Robust Regression Coefficients Section 
Robust Max % Change Robust Robust Robust Robust 
Iteration in any Beta B(0) B(1) B(2) B(3) 
0 100.000 -6975033.8132 -377.5098 9068.0709 8419.6302 
1 165.840 -6924967.1956 248.5524 8082.0650 5634.3540 
2 13.563 -6909107.4943 279.5934 8041.3988 5375.8683 
3 13.681 -6903260.9959 278.5935 8053.7521 5328.9806 
4 4.179 -6902010.4388 281.6196 8059.4888 5310.6893 
5 1.071 -6901686.6682 283.5483 8060.9746 5305.8389 
6 0.269 -6901619.0601 284.3109 8061.4158 5304.5386 
7 0.089 -6901609.4729 284.5639 8061.5290 5304.1372 
 
Robust Residuals and Weights 
    Absolute  
 Actual Predicted  Percent Robust 
Row Price Price Residual Error Weight 
55 32900.000 -70304.342 103204.342 313.691 0.3468 
120 117800.000 210523.459 -92723.459 78.713 0.3860 
150 487200.000 373867.349 113332.651 23.262 0.3158 
 

From a perusal of these reports, we learn that there are three potential outliers: rows 55, 120, and 
150. However, their robust weights are much larger than the cutoff value of 0.200 which we set as 
an indicator of when an observation is an outlier. So, even though these three observations are 
predicted poorly, we decide to leave them in the dataset for the rest of the analysis. 
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Step 3 – Variable Selection 
The next step is to search for the most useful subset of the IV’s. To do this, we made an initial 
search for each subset up to ten IV’s. We will study the R-squared values to determine a 
reasonable subset size. 

This analysis assumes that you have just completed Example 5-2. You may follow along here by 
making the appropriate entries or load the completed template Example5-3 from the Template 
tab of the Multiple Regression window. 

1 On the Variables tab. 
• Make sure the Perform Robust Regression box is not checked.  

2 On the Model tab. 
• Set the Subset Selection box to Hierarchical Forward with Switching. 
• Set the Max Terms in Subset to 10. 
• Set the Which Model Terms to Up to 2-Way. 

3 On the Reports tab. 
• Check the Subset Summary box. 
• Check the Subset Detail box. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Variable Selection Output 
 
Subset Selection Summary Section 
No. No. R-Squared R-Squared 
Terms X's Value Change 
1 1 0.5212 0.5212 
2 2 0.7676 0.2464 
3 3 0.8440 0.0764 
4 4 0.8929 0.0489 
5 5 0.8956 0.0027 
6 6 0.8969 0.0014 
7 7 0.9009 0.0039 
8 8 0.9020 0.0011 
9 9 0.9031 0.0011 
10 10 0.9037 0.0006 
 
Subset Selection Detail Section 
  No. of No. of  Term Term 
Step Action Terms X's R2 Entered Removed 
0 Add 0 0 0.0000 Intercept  
1 Add 1 1 0.5212 Quality  
2 Add 2 2 0.7676 Year  
3 Add 3 3 0.8440 TotalSqft  
4 Add 4 4 0.8929 LotSize  
5 Add 5 5 0.8956 Bedrooms  
6 Add 6 6 0.8968 Brick  
7 Switch 6 6 0.8969 Brick*Brick Bedrooms 
8 Add 7 7 0.9009 Bedrooms  
9 Add 8 8 0.9020 Fireplace  
10 Add 9 9 0.9031 Fireplace*Fireplace  
11 Add 10 10 0.9037 Brick*Fireplace  
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Scanning down the R-squared values, it is easy to see that the appropriate subset size is four. With 
four IV’s, an R-squared of 0.8929 is achieved which is impressive for this type of data. From the 
Subset Selection Detail report, we learn that the four IV’s are Quality, Year, TotalSqrt, and 
LotSize. These seem to be a reasonable basis for sales price estimation. 

Step 4 – Standard Regression 
The next step is to generate a standard regression analysis using the four IV’s that were selected 
in the last step. 

This analysis assumes that you have just completed Example 5-3. You may follow along here by 
making the appropriate entries or load the completed template Example5-4 from the Template 
tab of the Multiple Regression window. 

1 On the Variables tab. 
• Set the X’s: Numeric Independent Variables box to YEAR, QUALITY, 

TOTALSQRT, LOTSIZE.  

2 On the Model tab. 
• Set the Subset Selection box to None. 
• Set the Which Model Terms to Up to 1-Way. 

3 On the Reports tab. 
• Set the Select a Group of Reports and Plots option to Display items appropriate for a 

Standard Analysis. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Standard Regression Output 
 
Run Summary Section 
Parameter Value Parameter Value 
Dependent Variable Price Rows Processed 150 
Number Ind. Variables 4 Rows Filtered Out 0 
Weight Variable None Rows with X's Missing 0 
R2 0.8929 Rows with Weight Missing 0 
Adj R2 0.8899 Rows with Y Missing 0 
Coefficient of Variation 0.1858 Rows Used in Estimation 150 
Mean Square Error 1.049649E+09 Sum of Weights 150.000 
Square Root of MSE 32398.29 Completion Status Normal Completion 
Ave Abs Pct Error 22.636   
 

We have only included the Run Summary report here. You can look at the complete output when 
you run this example. We note that the final R-squared value is 0.8929, which is pretty good, but 
the average absolute percent error is 22.636%, which is disturbing. 
This completes this analysis. If you wanted to use these results to predict the sales price of 
additional properties, you would simple add the data to the bottom of the database, leaving the 
Price variable blank. The Predicted Individuals report will give the estimates and prediction limits 
for these additional properties. 
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Example 6 – Checking the Parallel Slopes Assumption in 
Analysis of Covariance 
An example of how to test the parallel slopes assumption is given in the General Linear Models 
chapter. Unfortunately, hand calculations and extensive data transformations are required to 
complete this test. This example will show you how to run this test without either transformations 
or hand calculations.  

The ANCOVA database contains three variables: State, Age, and IQ. The researcher wants to test 
for IQ differences across the three states while controlling for each subjects age. An analysis of 
covariance should include a preliminary test of the assumption that the slopes between age and IQ 
are equal across the three states. Without parallel slopes, differences among mean state IQ’s 
depend on age. 

It turns out that a test for parallel slopes is a test for an Age by State interaction. All that needs to 
be done is to include this term in the model and the appropriate test will be generated.  

You may follow along here by making the appropriate entries or load the completed template 
Example6 from the Template tab of the Multiple Regression window.  

1 Open the ANCOVA dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file ANCOVA.s0. 
• Click Open. 

2 Open the Multiple Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Multiple 

Regression. The Multiple Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Multiple Regression window, select the Variables tab.  
• Set the Y: Dependent Variables box to IQ.  
• Set the X’s: Numeric Independent Variables box to AGE.  
• Set the X’s: Categorical Independent Variables box to STATE.  
• Set the Default Contrast Type to Standard Set. 

4 Specify the model. 
• Select the Model tab. 
• Set the Which Model Terms box to Full Model. This will cause the State by Age 

interaction to be added to the model. 

5 Specify which reports. 
• Select the Reports tab. 
• Set the Select a Group of Reports and Plots window to Display only those items that 

are CHECKED BELOW. 
• Check the box next to ANOVA Detail. 
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6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Analysis of Variance Detail Section 
 
Model   Sum of Mean  Prob Power 
Term DF R2 Squares Square F-Ratio Level (5%) 
Intercept 1  313345.2 313345.2 
Model 5 0.2438 80.15984 16.03197 1.547 0.2128 0.4472 
Age 1 0.0296 9.740934 9.740934 0.940 0.3419 0.1537 
State 2 0.1417 46.57466 23.28733 2.248 0.1274 0.4123 
Age*State 2 0.1178 38.72052 19.36026 1.869 0.1761 0.3500 
Error 24 0.7562 248.6402 10.36001 
Total(Adjusted)29 1.0000 328.8 11.33793 

 

The F-Value for the Age*State interaction term is 1.869. This matches the result that was 
obtained by hand calculations in the General Linear Model example. Since the probability level 
of 0.1761 is not significant, we cannot reject the assumption that the three slopes are equal. 

Example 7 – Analyzing Pre-Post Data with both 
Categorical and Numeric IV’s 
The PREPOST database contains the results of a study involving 144 subjects that were divided 
into three groups. The first group (Control) received a placebo, the second group (Dose20) 
received a small dose of the drug of interest, and the third group (Dose40) received a large dose 
of the drug of interest. Each subject response was measured before (Pre) and after (Post) the drug 
was administered, and the gain from Pre to Post was calculated. Also, each subject’s propensity 
score was measured. This Propensity is a combined index created from several demographic 
variables. The age group (Age) of each subject was also recorded.  

The goal of the research is to build a regression model from this data that will allow the gain 
scores to be predicted. The model should include all significant interaction terms. 

Step 1 – Scan for Outliers Using Robust Regression 
The first step is to scan for outliers using robust regression. Of course, you should also look at the 
scatter plots of Y versus each IV. The robust regression is useful because it provides a list of 
potential outliers even when interactions are included. It is often difficult to find true outliers 
when interactions are included.  

You may follow along here by making the appropriate entries or load the completed template 
Example7-1 from the Template tab of the Multiple Regression window. 

1 Open the PREPOST dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file PREPOST.s0. 
• Click Open. 
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2 Open the Multiple Regression window. 
• On the menus, select Analysis, then Regression/Correlation, then Multiple Regression. 

The Multiple Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Multiple Regression window, select the Variables tab.  
• Set the Y: Dependent Variables box to Gain.  
• Set the X’s: Numeric Independent Variables box to Pre, Propensity.  
• Set the X’s: Categorical Independent Variables box to Group, Age.  
• Check the Perform Robust Regression box.  

4 Specify the model. 
• Select the Model tab. 
• Set the Which Model Terms box to Up to 2-Way. This will cause the interactions and 

powers to be added to the model. 

5 On the Reports tab. 
• Set the Select a Group of Reports and Plots box to Display only those items that are 

CHECKED BELOW.  
• Check the Run Summary box. 
• Check the Robust Coefficients box. 
• Check the Robust Percentiles box. 
• Check the Robust Residuals box. 

6 On the Robust tab. 
• Set the Minimum % Beta Change to 1.0. 
• Set the Maximum Iterations to 20. 
• Set the Cutoff for Weight Report to 0.50. 

7 Run the procedure. 
• From the Run menu, select Run Procedure.  

Robust Regression Output 
 
Robust Regression Coefficients Section 
Robust Max % Change Robust Robust Robust Robust 
Iteration in any Beta B(0) B(1) B(2) B(3) 
0 100.000 -20.2420 -1.2082 -2.8321 33.2946 
1 1428.034 -20.8166 -0.5774 -2.7455 32.6539 
2 33.511 -20.8870 -0.4605 -2.7529 32.4686 
3 13.860 -20.9568 -0.5066 -2.8545 32.1934 
4 11.311 -20.9678 -0.5639 -2.9666 31.9287 
5 5.393 -20.9945 -0.5826 -3.0258 31.6974 
6 6.463 -21.0137 -0.5903 -3.0500 31.5122 
7 5.753 -21.0157 -0.5951 -3.0674 31.3985 
8 4.314 -21.0250 -0.5964 -3.0758 31.3085 
9 3.430 -21.0304 -0.5968 -3.0831 31.2475 
10 2.585 -21.0323 -0.5970 -3.0894 31.2096 
11 1.809 -21.0334 -0.5972 -3.0940 31.1859 
12 1.215 -21.0340 -0.5972 -3.0972 31.1710 
13 0.797 -21.0344 -0.5973 -3.0993 31.1616 
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Robust Residuals and Weights 
    Absolute  
 Actual Predicted  Percent Robust 
Row Price Price Residual Error Weight 
9 222.000 204.114 17.886 8.057 0.3178 
16 174.000 159.132 14.868 8.545 0.3824 
45 214.000 196.278 17.722 8.281 0.3207 
54 57.000 69.430 -12.430 21.807 0.4569 
99 260.000 232.567 27.433 10.551 0.2072 
105 73.000 85.346 -12.346 16.913 0.4598 
116 204.000 187.501 16.499 8.088 0.3445 
144 6.000 -6.211 12.211 203.520 0.4650 

 

There are only a few suspected outliers. Row 99 was especially suspicious since its weight is 
almost down to 0.20. We also looked at the Regression Diagnostics report and found that these 
rows also had large values RStudent and Dffits. However, since we could find nothing wrong 
with the data for these subjects and since we want our final equation to represent as wide of a 
population as possible, we decided to include these rows in the rest of the analysis.   

Step 2 – Search for a Parsimonious Model 
Once we have determined that our data is as free of large outliers as we wish, our next task is to 
conduct a variable selection phase to find a model with as few IV’s as possible which still 
achieves a high R-squared value. The Run Summary report (not shown above) listed the an R-
squared of 0.9894 with a total of 21 IV’s. Our goal in this phase is to substantially decrease the 
number of IV’s while achieving an R-squared near 0.9894. Because we are fitting interactions, we 
will conduct as hierarchical forward search with switching. 

Note that the changes listed below assume that you have just completed Step 1. You may follow 
along here by making the appropriate entries or load the completed template Example7-2 from 
the Template tab of the Multiple Regression window. 

1 Specify the variables. 
• On the Multiple Regression window, select the Variables tab.  
• Make sure the Perform Robust Regression box is not checked.  

2 Specify the model. 
• Select the Model tab. 
• Set the Subset Selection box to Hierarchical Forward with Switching.  
• Set the Max Terms in Subset box to 10.  
• Set the Which Model Terms box to Up to 2-Way.  

3 On the Reports tab. 
• Set the Select a Group of Reports and Plots box to Display only those items that are 

CHECKED BELOW.  
• Check the Run Summary box. 
• Check the Subset Summary box. 
• Check the Subset Detail box. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. 
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Variable Selection Output 
 
Subset Selection Summary Section 
No. No. R-Squared R-Squared 
Terms X's Value Change 
1 1 0.3514 0.3514 
2 3 0.7334 0.3821 
3 5 0.7433 0.0099 
4 9 0.7618 0.0185 
5 7 0.9854 0.2236 
6 8 0.9862 0.0008 
7 10 0.9879 0.0017 
8 11 0.9880 0.0001 
9 16 0.9885 0.0005 
10 18 0.9889 0.0003 
 
Subset Selection Detail Section 
  No. of No. of  Term Term 
Step Action Terms X's R2 Entered Removed 
0 Add 0 0 0.0000 Intercept  
1 Add 1 1 0.3514 Propensity  
2 Add 2 2 0.7290 Group  
3 Switch 2 3 0.7334 Pre Propensity 
4 Add 3 4 0.7433 Age  
5 Add 4 6 0.7618 Age*Group  
6 Add 5 10 0.7690 Pre*Pre  
7 Switch 5 8 0.9822 Group*Pre Age*Group 
8 Switch 5 7 0.9854 Propensity Age 
9 Add 6 8 0.9862 Propensity*Propensity  
10 Add 7 9 0.9879 Group*Propensity  
11 Add 8 11 0.9880 Pre*Propensity  
12 Add 9 13 0.9880 Age  
13 Switch 9 15 0.9884 Age*Group Group*Propensity 
14 Switch 9 16 0.9885 Age*Pre Pre*Propensity 
15 Add 10 17 0.9889 Age*Propensity 
 

We notice from the Subset Selection Summary report that the first five terms achieve an R-
squared of 0.9854. After that, additional terms increase R-squared very little. We decide to 
include the first five terms in our model. 
The Subset Selection Detail report shows that these five terms are: Group, Pre, Propensity, 
Pre*Pre, and Group*Pre. 

Step 3 – Estimate the Model 
The next step is to estimate the regression equation and evaluate the residual plots. There are two 
ways to create the model. The first way is to reset the maximum number of terms to five and 
rerun the subset selection. The second way is enter the final model in the Custom Model box. 
This has the advantage that you can run other analyses, such as robust regression, which are not 
possible during a variable search. So we setup the analysis using the second method. 

Note that the changes listed below assume that you have just completed Step 2. You may follow 
along here by making the appropriate entries or load the completed template Example7-3 from 
the Template tab of the Multiple Regression window. 

1 Specify the variables. 
• On the Multiple Regression window, select the Variables tab.  
• Remove Age from the list of Categorical Independent Variables since it was not included 

in the final model.  
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2 Specify the model. 
• Select the Model tab. 
• Set the Subset Selection box to None.  
• Set the Which Model Terms box to Custom Model.  
• Set the Custom Model box to Group Pre Pre*Pre Group*Pre Propensity.  

3 On the Reports tab. 
• Set the Select a Group of Reports and Plots box to Display only those items that are 

CHECKED BELOW.  
• Check the Run Summary box. 
• Check the Equation box. 
• Check the Regression Coefficients box. 
• Check the ANOVA Detail box. 
• Check the Residuals vs X Plots box. 

4 Run the procedure. 
• From the Run menu, select Run Procedure.  

Standard Regression Output 
 
Run Summary Section 
Parameter Value Parameter Value 
Dependent Variable Gain Rows Processed 144 
Number Ind. Variables 7 Rows Filtered Out 0 
Weight Variable None Rows with X's Missing 0 
R2 0.9854 Rows with Weight Missing 0 
Adj R2 0.9847 Rows with Y Missing 0 
Coefficient of Variation 0.1496 Rows Used in Estimation 144 
Mean Square Error 38.70051 Sum of Weights 144.000 
Square Root of MSE 6.220973 Completion Status Normal Completion 
Ave Abs Pct Error 47.269   
 
Regression Equation Section 
 Regression Standard T-Value  Reject Power 
Independent Coefficient Error to test  Prob H0 at of Test 
Variable b(i) Sb(i) H0:B(i)=0 Level 5%? at 5% 
Intercept 11.5547 2.5123 4.599 0.0000 Yes 0.9954 
(Group="DOSE20") 
 -5.1942 2.7863 -1.864 0.0645 No 0.4567 
(Group="DOSE40") 
 -35.5054 2.7570 -12.878 0.0000 Yes 1.0000 
Pre -2.0806 0.2045 -10.173 0.0000 Yes 1.0000 
Propensity 0.7301 0.0818 8.924 0.0000 Yes 1.0000 
(Group="DOSE20")*Pre 
 0.6312 0.0708 8.915 0.0000 Yes 1.0000 
(Group="DOSE40")*Pre 
 3.2646 0.0730 44.724 0.0000 Yes 1.0000 
Pre*Pre 0.0241 0.0019 12.591 0.0000 Yes 1.0000 
 
Estimated Model 
11.5547265061703-5.19417863950441*(Group="DOSE20")-35.5053879443792*(Group="DOSE40")- 
2.08055379387359*Pre+ .730124848180777*Propensity+ .631245843237725*(Group="DOSE20")*Pre+  
3.26462104811019*(Group="DOSE40")*Pre+ .024058147508664*Pre*Pre 
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Regression Coefficient Section 
Independent Regression Standard Lower Upper Standardized 
Variable Coefficient Error 95% C.L. 95% C.L. Coefficient 
Intercept 11.5547 2.5123 6.5866 16.5229 0.0000 
(Group="DOSE20") 
 -5.1942 2.7863 -10.7043 0.3159 -0.0489 
(Group="DOSE40") 
 -35.5054 2.7570 -40.9575 -30.0532 -0.3345 
Pre -2.0806 0.2045 -2.4850 -1.6761 -0.7314 
Propensity 0.7301 0.0818 0.5683 0.8919 0.3453 
(Group="DOSE20")*Pre 
 0.6312 0.0708 0.4912 0.7713 0.2465 
(Group="DOSE40")*Pre 
 3.2646 0.0730 3.1203 3.4090 1.1848 
Pre*Pre 0.0241 0.0019 0.0203 0.0278 0.6285 
 
Note that several residual plots are output, but not shown here. 
 

This concludes the regression analysis. We have estimated a regression equation that contains 
only seven IV’s, yet accounts for over 98% of the variability in the Gain score. 
Note that the interpretation of the regression coefficients is difficult because of the inclusion of 
the Group*Pre interaction term. For example, the equation seems to indicate that the Gain is 
reduced by 5.1942 for the Dose20 group as compared to the Control group. However, the 
(Group=DOSE2)*Pre regression coefficient of 0.6312 will more than offset this value for most 
subjects because typical pretest values are greater than 10. That is, 10*0.6312 = 6.312 which is 
greater than 5.1942.  
For example, a subject in the Dose20 group with a pretest score of 50 has an estimated gain score 
which is 26.3658 = -5.1942+0.6312(50) higher than a similar subject in the Control group. 

As a final note, you may wish to adjust the structure of the Group variable. If you wanted to 
change the reference value to DOSE40 rather than the default of CONTROL, you would change 
the Default Reference Value on the Variables tab to Last Value after Sorting or the X’s: 
Categorical Independent Variables box from Group to Group(DOSE40) and rerun the analysis. 
This would yield the following table (you can generate this table by loading the completed 
template Example7-4 from the Template tab of the Multiple Regression window). 

Standard Regression Output 
 
Regression Equation Section 
 Regression Standard T-Value  Reject Power 
Independent Coefficient Error to test  Prob H0 at of Test 
Variable b(i) Sb(i) H0:B(i)=0 Level 5%? at 5% 
Intercept -23.9507 2.6621 -8.997 0.0000 Yes 1.0000 
(Group="CONTROL") 
 35.5054 2.7570 12.878 0.0000 Yes 1.0000 
(Group="DOSE20") 
 30.3112 2.8590 10.602 0.0000 Yes 1.0000 
Pre 1.1841 0.2087 5.674 0.0000 Yes 0.9999 
Propensity 0.7301 0.0818 8.924 0.0000 Yes 1.0000 
(Group="CONTROL")*Pre 
 -3.2646 0.0730 -44.724 0.0000 Yes 1.0000 
(Group="DOSE20")*Pre 
 -2.6334 0.0753 -34.989 0.0000 Yes 1.0000 
Pre*Pre 0.0241 0.0019 12.591 0.0000 Yes 1.0000 
 
Estimated Model 
-23.9506614382099+ 35.5053879443799*(Group="CONTROL")+ 30.3112093048753*(Group="DOSE20")+  
1.1840672542367*Pre+ .730124848180749*Propensity-3.2646210481102*(Group="CONTROL")*Pre- 
2.63337520487247*(Group="DOSE20")*Pre+ 2.40581475086632E-02*Pre*Pre 
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Chapter 306 

Multiple 
Regression with 
Serial Correlation 
Introduction  
The regular Multiple Regression routine assumes that the random-error components are 
independent from one observation to the next. However, this assumption is often not appropriate 
for business and economic data. Instead, it is more appropriate to assume that the error terms are 
positively correlated over time. These are called autocorrelated or serially correlated data.  

Consequences of the error terms being serially correlated include inefficient estimation of the 
regression coefficients, under estimation of the error variance (MSE), under estimation of the 
variance of the regression coefficients, and inaccurate confidence intervals. 

The presence of serial correlation can be detected by the Durbin-Watson test and by plotting the 
residuals against their lags.  

Autoregressive Error Model 
When serial correlation is detected, there are several remedies. Since autocorrelation is often 
caused by leaving important independent variables out of the regression model, an obvious 
remedy is to add other, appropriate independent variables to the model. When this is not possible, 
another remedy is to use an autoregressive model. The usual multiple regression model  

tptpttt +X++X+X+Y εββββ L22110=  

is modified by adding the equation 

ttt u+= −1ρεε  

where 

1<ρ  is the serial correlation 

( )2,0~ σNut  
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The subscript t represents the time period. In econometric work, these u’s are often called the 
disturbances. They are the ultimate error terms. Further details on this model can be found in 
chapter 12 of Neter, Kutner, Nachtsheim, and Wasserman (1996). 

Cochrane-Orcutt Procedure 
Several methods have been suggested to estimate the autoregressive error model. We have 
adopted the Cochrane-Orcutt procedure as given in Neter, Kutner, Nachtsheim, and Wasserman 
(1996). This is an iterative procedure that involves several steps. 

1.  Ordinary least squares. The regression coefficients are estimated using ordinary least 
squares. The array of residuals is calculated.  

2.  Estimation of ρ . The serial correlation is estimated from the current residuals 

( )ttt YYe ˆ−=  using the formula 
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3.  Obtain transformed data. A new set of data is created using the formulas. 
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4.  Fit model to transformed data. Ordinary least squares is used to fit the following multiple 
regression to the transformed data. 

ptpttt Xb++Xb+Xb+bY ′′′′=′ L22110  

5.  Create the regression model for the untransformed data. The regression equation of the 
untransformed data is created using the following equations. 
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The estimated standard errors of the regression coefficients are given by 

( ) ( )
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6. Iterate until convergence is reached. Steps 2 – 4 are then repeated until the value of P 
stabilizes. Usually, only four or five iterations are necessary.  

7.  Calculate Durbin-Watson test on transformed residuals. As a final diagnostic check, the 
Durbin-Watson test may be run on the residuals ( )ttt YYe ′−′=′ ˆ  from the transformed 
regression model.  

Durbin-Watson Test 
The Durbin-Watson test is often used to test for positive or negative, first-order, serial correlation. 
It is calculated as follows 
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The distribution of this test is difficult because it involves the X values. Originally, Durbin-Watson 
(1950, 1951) gave a pair of bounds to be used. However, there is a large range of ‘inclusion’ found 
when using these bounds. Instead of using these bounds, we calculate the exact probability using the 
beta distribution approximation suggested by Durbin-Watson (1951). This approximation has been 
shown to be accurate to three decimal places in most cases which is all that are needed for practical 
work.  

Forecasts 
The predicted value for a specific set of independent variable values is given by 

ptpttt Xb++Xb+XbbY ˆˆˆˆˆ
22110 L+=  

For forecasts j periods into the future after the end of the series (period n is the final period on 
which we have data), the formula is 

n
j

jnppjnjnjn eXb++Xb+XbbF ρ̂ˆˆˆˆ
,,22,110 ++= ++++ L  

where  is the residual from the final observation. That is, ne

nnn YYe ˆ−=  
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The approximate α−1  prediction interval for this forecast is 

Fnjn stF 3,2/1 −−+ ± α  

where  is the standard error of the prediction interval based on the transformed data.  Fs

Data Structure 
The data are entered in two or more variables. An example of data appropriate for this procedure 
is shown below. These data give the annual values for several economic statistics. Later in this 
chapter, these data will be used in an example in which Housing is forecast from Mort5Yr and 
DispInc. These data are stored in a dataset called HOUSING.S0. Note that only two decimal 
places are displayed here, while on the database, more decimal places are stored.  

 

HOUSING dataset (subset) 

Year Housing Mort5Yr DispInc TBill Unemp_rt 
1981 403.34 18.25 27006.90 17.72 7.57 
1982 407.92 17.93 26896.58 13.66 10.97 
1983 446.87 13.17 26582.63 9.31 11.94 
1984 457.22 13.54 27662.41 11.06 11.30 
1985 485.25 12.08 28710.13 9.43 10.65 
1986 475.87 11.17 29057.02 8.97 9.64 
1987 491.30 11.12 29626.58 8.15 8.82 
1988 493.23 11.61 31070.52 9.48 7.75 
1989 487.14 12.01 32417.38 12.05 7.55 
1990 491.00 13.31 32683.10 12.81 8.12 
1991 512.39 11.07 31980.30 8.73 10.32 
1992 523.07 9.50 32224.67 6.59 11.16 
1993 533.20 8.76 32412.84 4.84 11.36 
1994 497.75 9.53 32789.41 5.54 10.36 
1995 502.59 9.14 33242.99 6.89 9.45 
1996 522.73 7.91 33256.65 4.21 9.64 
1997 538.72 7.05 33839.28 3.26 9.10 
1998 533.61 6.92 34915.04 4.73 8.29 
1999 531.89 7.54 35971.46 4.72 7.57 
2000 528.09 8.32 37566.34 5.49 6.81 
2001 544.91 7.38 38228.92 3.77 7.20 
2002 547.70 6.99 38806.22 2.59 7.66 
2003 561.19 6.36 38896.05 2.87 7.63 
2004 581.54 5.38 39870.12 2.30 7.45 
2005  6.00 41000.00   
2006  6.25 42000.00   
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Dependent Variable 

Y: Dependent Variable(s) 
This option specifies one or more dependent (Y) variables. If more than one variable is specified, 
a separate analysis is run for each. 

Numeric Independent Variables 

X’s: Numeric Independent Variable(s) 
Specify any numeric independent variables in this box. Numeric variables are those whose values 
are numeric and are at least ordinal. Nominal variables, even when coded with numbers, should 
be specified as Categorical Independent Variables. Although you may specify binary (0-1) 
variables here, they are more appropriately analyzed when you specify them as Categorical 
Independent Variables. 

If you want to create powers and cross-products of these variables, specify an appropriate model 
in the ‘Custom Model’ field under the Model tab. 

If you want to create predicted values of Y for values of X not in your database, add the X values 
to the bottom of the database. These rows will not be used during estimation phase, but predicted 
values will be generated for them on the reports.  

Categorical Independent Variables 

X’s: Categorical Independent Variable(s) 
Specify categorical (nominal) independent variables in this box. By categorical we mean that the 
variable has only a few unique, numeric or text, values like 1, 2, 3 or Yes, No, Maybe. The values 
are used to identify categories. For further details about categorical variables, see the discussion 
on this topic in the Multiple Regression chapter. 

Default Reference Value 
This option specifies the default reference value to be used when automatically generating 
indicator variables during the processing of selected categorical independent variables. The 
reference value is often the baseline, and the other values are compared to it. For further details 
about this value, see the discussion on this topic in the Multiple Regression chapter. 

Default Contrast Type 
Select the default type of numeric variable that will be generated when processing categorical 
independent variables. The values in a categorical variable are not used directly in regression 
analysis. Instead, a set of numeric variables is automatically created and substituted for them. 
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This option allows you to specify what type of numeric variable will be created. For further 
details about this option, see the discussion on this topic in the Multiple Regression chapter. 

Estimation Options 

Maximum Cochrane-Orcutt Iterations 
This is the maximum number of iterations that the procedure will cycle through. Some authors 
recommend only one iteration. Others recommend stopping once the Durbin-Watson test is not 
significant. This option lets you stop after a specific number of iterations. Usually, four or five 
iterations should be plenty. 

Minimum Rho Change 
If the change is rho (serial correlation) from one iteration to the next is less than this amount, the 
algorithm will stop iterating. We suggest you use a small amount such as 0.00001.  

Alpha Levels 

Alpha of C.I.’s and Tests 
The value of alpha for the statistical tests and confidence intervals is specified here. Usually, this 
number will range from 0.1 to 0.001. A common choice for alpha is 0.05, but this value is a 
legacy from the age before computers when only printed tables were available. You should 
determine a value appropriate for your particular study. 

Alpha of Assumptions 
This value specifies the significance level that must be achieved to reject a preliminary test of an 
assumption. In regular hypothesis tests, common values of alpha are 0.05 and 0.01. However, 
most statisticians recommend that preliminary tests use a larger alpha such as 0.10, 0.15, or 0.20.  

We recommend 0.20. 

Model Tab 
These options control the regression model.  

Model Specification 

Which Model Terms 
This option specifies which terms (terms, powers, cross-products, and interactions) are included 
in the regression model. For a time-series regression model, select Up to 1-Way.  

The other options on this tab are covered in detail in the Multiple Regression chapter. We refer 
you to that chapter for further details. 



   Multiple Regression with Serial Correlation  306-7 

Reports Tab 
The following options control which reports and plots are displayed.  

Select Reports 

Run Summary ... Residuals 
Each of these options specifies whether the indicated report is calculated and displayed. Note that 
since some of these reports provide results for each row, they may be too long for normal use 
when requested on large databases. 

Select Plots 

Histogram ... Residuals vs X Plot 
Indicate whether to display these plots.  

Report Options 

Show All Rows 
This option makes it possible to display predicted values for only a few designated rows. 

When checked predicted values, residuals, and other row-by-row statistics, will be displayed for 
all rows used in the analysis.  

When not checked, predicted values and other row-by-row statistics will be displayed for only 
those rows in which the dependent variable’s value is missing. 

Format Tab 
These options specify the number of decimal places shown when the indicated value is displayed 
in a report. The number of decimal places shown in plots is controlled by the Tick Label Settings 
buttons on the Axes tabs.  

Report Options 

Precision 
Specifies the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Skip Line After 
The names of the indicator variables can be too long to fit in the space provided. If the name 
contains more characters than the number specified here, only the name is shown on the first line 
of the report and the rest of the output is placed on the next line.  

Enter 1 when you want the each variable’s results printed on two lines. 

Enter 100 when you want each variable’s results printed on a single line. 
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Report Options – Decimal Places 

Probability ... Mean Square Decimals 
Specify the number of digits after the decimal point to display on the output of values of this type. 
Note that this option in no way influences the accuracy with which the calculations are done. 

Enter 'All' to display all digits available. The number of digits displayed by this option is 
controlled by whether the PRECISION option is SINGLE or DOUBLE. 

Plot Options Tab 
These options control the titles and style files used on each of the plots.  

Plot Titles and Style Files 

Plot Titles 
This is the text of the title. The characters {Y} are replaced by the name of the variable. Press the 
button on the right of the field to specify the font of the text.  

Plot Style Files 
Designate various plot style files. These files set all plot options that are not set directly by this 
procedure. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the various graphics procedures, depending on the plot type.  

Plotting Symbol 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Histogram Options 

Number of Bars 
Specify the number of intervals, bins, or bars used in the histogram. Select ‘0 - Automatic’ to 
have the program select an appropriate number based on the number of residuals. 

Axes Tabs 
The options on these panels control the appearance of the X variables, Y variable, residuals, 
RStudent, Hat Diagonal, Rows Numbers, Counts, and Expected axes whenever they are included 
on a plot. This makes it easy to give a consistent look to all of your plots without modifying them 
individually.  

Y-Variable ... Expected Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by the names of the 
corresponding variables. Press the button on the right of the field to specify the font of the text. 
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Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the axis associated 
with this variable. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the associated axis. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on the associated axes. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Storage Tab 
These options let you specify if, and where on the database, various statistics are stored.  

Warning: Any data already in these variables are replaced by the new data. Be careful not to 
specify variables that contain important data. 

Data Storage Options 

Storage Option 
This option controls whether the values indicated below are stored on the database when the 
procedure is run. 

• Do not store data 
No data are stored even if they are checked. 

• Store in empty columns only 
The values are stored in empty columns only. Columns containing data are not used for data 
storage, so no data can be lost. 

• Store in designated columns 
Beginning at the First Storage Variable, the values are stored in this column and those to the 
right. If a column contains data, the data are replaced by the storage values. Care must be 
used with this option because it cannot be undone. 

Store First Variable In 
The first item is stored in this variable. Each additional item that is checked is stored in the 
variables immediately to the right of this variable.  

Leave this value blank if you want the data storage to begin in the first blank column on the right-
hand side of the data. 

Warning: any existing data in these variables is automatically replaced, so be careful. 
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Data Storage Options – Select Items 
to Store 

Predicted Y ... Upper C.L. Individual 
Indicate whether to store these row-by-row values, beginning at the variable indicated by the 
Store First Variable In option.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Generating Forecasts (All Reports) 
This section presents an example of how to generate forecasts for housing data that was presented 
earlier in this chapter. This data is stored in the HOUSING.S0 database. We suggest that you 
open it now. 

This example will run an adjusted multiple regression of Housing on Mort5Yr and DispInc. The 
adjustment will use the Cochrane-Orcutt procedure. The data for housing ends in 2004. Forecasts 
will be generated for the years 2005 and 2006.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Multiple Regression with Serial Correlation window. 

1 Open the Housing dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data folder of your NCSS folder. 
• Click on the file Housing.s0. 
• Click Open. 
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2 Open the Multiple Regression with Serial Correlation window. 
• On the menus, select Analysis, then Regression / Correlation, then Other Regression 

Routines, then Multiple Regression with Serial Correlation. The Multiple Regression 
with Serial Correlation procedure will be displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Multiple Regression with Serial Correlation window, select the Variables tab.  
• Set the Y: Dependent Variables box to Housing.  
• Set the X’s: Numeric Independent Variables box to Mort5Yr - DispInc.  
• Set the Maximum Cochrane-Orcutt Iterations to 1. 

4 Specify the reports. 
• Select the Reports tab. 
• Make sure all reports and plots are checked. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Run Summary Section 
 
Parameter Value Parameter Value 
Dependent Variable Housing Rows Processed 32 
Number Ind. Variables 2 Rows Filtered Out 0 
Weight Variable None Rows with X's Missing 0 
R2 0.8941 Rows with Weight Missing 0 
Adj R2 0.8860 Rows with Y Missing 2 
Coefficient of Variation 0.0361 Rows Used in Estimation 30 
Mean Square Error 77.15598 Sum of Weights 29.000 
Square Root of MSE 8.783848 Completion Status Normal Completion 
Ave Abs Pct Error 1.801 Autocorrelation (Rho) 0.5121 
  

 

This report summarizes the multiple regression results. It presents the variables used, the number 
of rows used, and the basic results. The estimated value of the autocorrelation (rho) has been 
added to this report. Otherwise, it is identical to the corresponding report in the regular Multiple 
Regression report. 
Note that values such as R2, Mean Square Error, etc., are calculated on the transformed data.  

Descriptive Statistics Section 
 
   Standard 
Variable Count Mean Deviation Minimum Maximum 
DispInc 29 31000.94 5157.438 21780.1 39870.13 
Mort5Yr 29 10.53919 3.183494 5.380194 18.25095 
Housing 29 491.0214 48.53722 403.3378 581.5398 

 

For each variable, the count, arithmetic mean, standard deviation, minimum, and maximum are 
computed. This report is particularly useful for checking that the correct variables were selected.  
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Correlation Matrix Section 
 
 DispInc Mort5Yr Housing 
DispInc 1.0000 -0.5962 0.7913 
Mort5Yr -0.5962 1.0000 -0.8874 
Housing 0.7913 -0.8874 1.0000 
 

Pearson correlations are given for all variables. 

Regression Equation Section 
 
 Regression Standard T-Value  Reject 
Independent Coefficient Error to test  Prob H0 at 
Variable b(i) Sb(i) H0:B(i)=0 Level 5%? 
Intercept 445.1365 35.4690 12.550 0.0000 Yes  
DispInc 0.0044 0.0009 5.118 0.0000 Yes  
Mort5Yr -8.5371 1.0522 -8.113 0.0000 Yes  
 
Estimated Model 
445.136489079996+ 4.4434007069797E-03*DispInc-8.53714263704248*Mort5Yr 

   

This section reports the values and significance tests of the regression coefficients. Note that the 
intercept has been corrected by dividing by 1-rho. Other than this, the report has the same 
definitions as in regular Multiple Regression. 

Regression Coefficient Section 
 
Independent Regression Standard Lower Upper Standardized 
Variable Coefficient Error 95% C.L. 95% C.L. Coefficient 
Intercept 445.1365 35.4690 372.2289 518.0441 0.0000 
DispInc 0.0044 0.0009 0.0027 0.0062 0.4068 
Mort5Yr -8.5371 1.0522 -10.7000 -6.3743 -0.6449 
Note: The T-Value used to calculate these confidence limits was 2.056. 

 

The report has the same definitions as in regular Multiple Regression. 

Analysis of Variance Section 
 
   Sum of Mean  Prob Power 
Source DF R2 Squares Square F-Ratio Level (5%) 
Intercept 1  1720724 1720724 
Model 2 0.8941 16943.61 8471.806 109.801 0.0000  
Error 26 0.1059 2006.055 77.15598 
Total(Adjusted) 28 1.0000 18949.67 676.7738 

  

This section reports the analysis of variance table. Note it was calculated from the transformed 
data on the last iteration. Other than this, the report has the same definitions as in regular Multiple 
Regression. 
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Serial-Correlation and Durbin-Watson Test 
 
Serial Correlation of Residuals from Uncorrected Model 
 Serial  Serial  Serial 
Lag Correlation Lag Correlation Lag Correlation 
1 0.5090 9 -0.4075 17 -0.1140 
2 0.1980 10 -0.5085 18 -0.0147 
3 0.0802 11 -0.3018 19 0.1512 
4 0.0505 12 -0.1962 20 0.1290 
5 0.2072 13 -0.1042 21 0.0519 
6 0.2165 14 -0.1067 22 0.0275 
7 -0.0649 15 -0.3178 23 0.0457 
8 -0.0979 16 -0.2177 24 0.0875 
Above serial correlations significant if their absolute values are greater than 0.365148 
 
Serial Correlation of Residuals from Corrected Model 
 Serial  Serial  Serial 
Lag Correlation Lag Correlation Lag Correlation 
1 0.0261 9 -0.2371 17 0.0817 
2 -0.0349 10 -0.3626 18 0.0420 
3 0.0972 11 -0.0584 19 0.0314 
4 -0.1182 12 0.0042 20 0.0473 
5 0.1002 13 -0.0671 21 0.0248 
6 0.2071 14 -0.0042 22 0.0761 
7 -0.3095 15 -0.2443 23 0.0038 
8 0.1301 16 0.0617 24 0.0388 
Above serial correlations significant if their absolute values are greater than 0.371391 
 
Durbin-Watson Test For Serial Correlation of Uncorrected Model 
  Did the Test Reject 
Parameter Value H0: Rho(1) = 0? 
Durbin-Watson Value 0.9234 
Prob. Level: Positive Serial Correlation 0.0002 Yes 
Prob. Level: Negative Serial Correlation 0.9974 No 
 
Durbin-Watson Test For Serial Correlation of Corrected Model 
  Did the Test Reject 
Parameter Value H0: Rho(1) = 0? 
Durbin-Watson Value 1.9221 
Prob. Level: Positive Serial Correlation 0.3273 No 
Prob. Level: Negative Serial Correlation 0.4923 No 
 

This section reports the autocorrelation structure of the residuals both before and after the model 
is corrected for serial correlation. It has the same definitions as in the regular Multiple Regression 
report. 
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Predicted Values with Confidence Limits of Means 
 
   Standard 95% Lower 95% Upper 
 Actual Predicted Error Of Conf. Limit Conf. Limit 
Row Housing Housing Predicted Of Mean Of Mean 
1 420.722 445.738    
2 431.522 447.504 3.273 440.776 454.232 
3 448.085 462.874 4.140 454.364 471.384 
. . . . . . 
. . . . . . 
. . . . . . 
26 528.086 541.005 3.211 534.406 547.605 
27 544.913 552.012 2.883 546.086 557.938 
28 547.703 557.854 3.010 551.667 564.041 
29 561.186 563.635 2.950 557.571 569.698 
30 581.540 576.364 3.536 569.095 583.633 
31  578.744 3.901 570.725 586.762 
32  579.760 4.192 571.143 588.377 
 

Confidence intervals for the mean response of Y given specific levels for the IV’s are provided 
here.  

Predicted Values with Prediction Limits of Individuals 
 
   Standard 95% Lower 95% Upper 
 Actual Predicted Error Of Pred. Limit Pred. Limit 
Row Housing Housing Predicted Of Individual Of Individual 
1 420.722 445.738    
2 431.522 447.504 9.374 428.235 466.772 
3 448.085 462.874 9.711 442.914 482.835 
. . . . . . 
. . . . . . 
. . . . . . 
26 528.086 541.005 9.352 521.782 560.229 
27 544.913 552.012 9.245 533.009 571.015 
28 547.703 557.854 9.285 538.768 576.940 
29 561.186 563.635 9.266 544.588 582.681 
30 581.540 576.364 9.469 556.900 595.828 
31  578.744 9.611 558.988 598.500 
32  579.760 9.733 559.753 599.766 
 

A prediction interval for the individual response of Y given specific values of the IV’s is provided 
here for each row. Note that the forecasts start where the actual housing values are blank. 
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Residual Report 
 
    Absolute 
 Actual Predicted  Percent 
Row Housing Housing Residual Error 
1 420.722 445.738    
2 431.522 447.504 -15.982 3.704  
3 448.085 462.874 -14.789 3.300  
4 447.923 464.696 -16.773 3.745  
5 451.401 454.340 -2.939 0.651  
6 432.474 438.269 -5.795 1.340  
7 403.338 409.328 -5.990 1.485  
8 407.922 411.549 -3.627 0.889 
. . . . . 
. . . . . 
. . . . . 
 

This section reports on the sample residuals, or ei’s.  

Histogram 
The purpose of the histogram and density trace of the residuals is to evaluate whether they are 
normally distributed. A dot plot is also given that highlights the distribution of points in each bin 
of the histogram. Unless you have a large sample size, it is best not to rely on the histogram for 
visually evaluating normality of the residuals. The better choice would be the normal probability 
plot.  
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Probability Plot of Residuals 
If the residuals are normally distributed, the data points of the normal probability plot will fall 
along a straight line through the origin with a slope of 1.0. Major deviations from this ideal 
picture reflect departures from normality. Stragglers at either end of the normal probability plot 
indicate outliers, curvature at both ends of the plot indicates long or short distributional tails, 
convex or concave curvature indicates a lack of symmetry, and gaps or plateaus or segmentation 
in the normal probability plot may require a closer examination of the data or model. Of course, 
use of this graphic tool with very small sample sizes is not recommended.  

If the residuals are not normally distributed, then the t-tests on regression coefficients, the F-tests, 
and any interval estimates are not valid. This is a critical assumption to check.  
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Plots of Y versus each IV 
Actually, a regression analysis should always begin with a plot of Y versus each IV. These plots 
often show outliers, curvilinear relationships, and other anomalies. 
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Serial Correlation of Residuals Plot 
This is a scatter plot of the jth residual versus the jth-1 residual. The purpose of this plot is to check 
for first-order autocorrelation. Positive autocorrelation or serial correlation means that the 
residual in time period j tends to have the same sign as the residual in time period (j-1). On the 
other hand, a strong negative autocorrelation means that the residual in time period j tends to have 
the opposite sign as the residual in time period (j-1).  
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Sequence Plot 
Sequence plots may be useful in finding variables that are not accounted for by the regression 
equation. They are especially useful if the data were taken over time.  
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Residual vs Predicted Plot 
This plot should always be examined. The preferred pattern to look for is a point cloud or a 
horizontal band. A wedge or bowtie pattern is an indicator of nonconstant variance, a violation of 
a critical regression assumption. The sloping or curved band signifies inadequate specification of 
the model. The sloping band with increasing or decreasing variability suggests nonconstant 
variance and inadequate specification of the model. 
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Residual vs Predictor(s) Plot 
This is a scatter plot of the residuals versus each independent variable. Again, the preferred 
pattern is a rectangular shape or point cloud. Any other nonrandom pattern may require a 
redefining of the regression model.  
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Chapter 310 

Variable Selection 
for Multivariate 
Regression 
Introduction 
Often theory and experience give only general direction as to which of a pool of candidate 
variables should be included in the regression model. The actual set of predictor variables used in 
the final regression model must be determined by analysis of the data. Determining this subset is 
called the variable selection problem.  

Finding this subset of regressor (independent) variables involves two opposing objectives. First, 
we want the regression model to be as complete and realistic as possible. We want every 
regressor that is even remotely related to the dependent variable to be included. Second, we want 
to include as few variables as possible because each irrelevant regressor decreases the precision 
of the estimated coefficients and predicted values. Also, the presence of extra variables increases 
the complexity of data collection and model maintenance. The goal of variable selection becomes 
one of parsimony: achieve a balance between simplicity (as few regressors as possible) and fit (as 
many regressors as needed). 

There are many different strategies for selecting variables for a regression model. If there are no 
more than fifteen candidate variables, the All Possible Regressions procedure should be used since it 
will always give as good or better models than the stepping procedures available in this procedure. 
On the other hand, when there are more than fifteen candidate variables, the search procedure 
contained in this procedure is an excellent choice. 

While studying at Texas A&M University, Dr. Claude McHenry (1978) developed a heuristic 
algorithm that usually yields the same subset as the all possible regressions routine, but with a lot less 
work. The algorithm is of a more general nature than the other variable selection procedures in NCSS 
because it allows more than one dependent variable to be studied. Hence, it is useful for variable 
selection in multivariate multiple regression and in discriminant analysis. 

McHenry’s Select Algorithm 
The algorithm seeks a subset that provides a maximum value of R-Squared (or a minimum Wilks’ 
lambda in the multivariate case). The algorithm first finds the best single variable. To find the best 
pair of variables, it tries each of the remaining variables and selects the one that adds the most. It 
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then omits the first variable and determines if any other variable would add more. If a better 
variable is found, it is kept and the worst variable is removed. Another search is now made through 
the remaining variables. This switching process continues until no switching will result in a better 
subset.  

Once the optimal pair of variables is found, the best three variables is searched for in much the same 
manner. First, the best third variable is found to add to the optimal pair of variables from the last 
step. Next, each of the first two variables is omitted and another, even better, variable is searched 
for. The algorithm continues until no switching improves R-Squared.  

This algorithm is extremely fast. It seems to find the best (or very near best) subset in most 
situations. An interesting feature is the ability to specify more than one dependent variable. This is 
useful in discriminant analysis where each group may be considered as a binary (0, 1) variable. It is 
also useful when you want to predict several dependent variables using a minimum number of 
independent variables. 

Assumptions and Limitations 
The same assumptions and qualifications apply here as applied to multiple regression. We refer 
you to the Assumptions section in the Multiple Regression chapter for a discussion of these 
assumptions. We will here mention a couple of restrictions necessary for this algorithm to work. 

Number of Observations 
The number of observations must be at least one greater than the number of candidate regressors. 
A popular rule-of-thumb when using any variable selection procedure is that you have at least 
five observations for each candidate variable. 

No Linear Dependencies 
This algorithm begins by fitting the full model with all candidate variables. In order to solve this 
full model, no linear dependencies may exist in the data. A linear dependency occurs when one 
variable is a weighted average of the rest. For example, if one variable is the total of several 
others, it cannot be included in the candidate pool. 

This same restriction applies to the set of dependent variables. 

Using This Procedure 
This procedure performs one portion of a regression analysis: it obtains a set of independent 
variables from a pool of candidate variables. Once the set of variables is obtained, you should 
proceed to the Multiple Regression procedure to estimate the regression coefficients, study the 
residuals, and so on. 
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Data Structure 
The data are entered in two or more variables. An example of data appropriate for this procedure 
is shown below. These data are contained in the SAMPLE database.  

SAMPLE dataset 

Test1 Test2 Test3 Test4 Test5 IQ 
83 34 65 63 64 106 
73 19 73 48 82 92 
54 81 82 65 73 102 
96 72 91 88 94 121 
84 53 72 68 82 102 
86 72 63 79 57 105 
76 62 64 69 64 97 
54 49 43 52 84 92 
37 43 92 39 72 94 
42 54 96 48 83 112 
71 63 52 69 42 130 
63 74 74 71 91 115 
69 81 82 75 54 98 
81 89 64 85 62 96 
50 75 72 64 45 103 

Missing Values 
Rows with missing values in the variable pool are ignored. This may cause differences in the 
results between this procedure and regression analysis. Suppose that through the selection 
process, none of the variables with missing values end up in the final subset. When a regression 
analysis is run on the subset, the rows with missing values will not be deleted (since those 
variables are no longer active). This will obviously change the estimated values. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variables on which to run the analysis. 

Dependent Variables 

Y’s: Dependent Variable 
Specify one or more dependent (Y) variables. If more than one variable is specified, the analysis 
becomes multivariate multiple regression subset selection. The best subset for fitting the block of 
dependent variables is found. 

 



310-4  Variable Selection for Multivariate Regression  

Independent Variables 

X’s: Independent Variables 
Specify the independent (X) variables. 

Forced X  Variables 
List any independent variables that are to be forced into the model. These variables will be kept in 
the model, even if they are not significant. 

Model Selection 

Maximum Variables 
The largest subset that you would like to find. Under normal conditions, a maximum subset size 
of ten is reasonable. 

Reports Tab 
The following options control which reports and plots are displayed. 

Select Additional Reports 

Coded Report and Long Variable Names Report 
Specifies whether these reports are displayed. 

Select Plots 

R-Squared Plot 
Specifies whether to show the R-Squared Plot. 

Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you specify whether to display only variable names, variable labels, or both. 
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R-Squared Plot Tab 
A scatter plot comparing the value of R-Squared to the subset size is available to help you select 
the appropriate model size. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This option contains the text of the plot title. The characters {Y} and {X} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 
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Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Variable Selection Analysis 
This section presents an example of how to run a variable selection analysis of the data contained 
in the SAMPLE database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Variable Selection for Multivariate Regression window. 

1 Open the SAMPLE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Sample.s0. 
• Click Open. 

2 Open the Variable Selection for Multivariate Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Variable Selection 

Routines, then Variable Selection for Multivariate Regression. The Variable Selection 
for Multivariate Regression procedure will be displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Variable Selection for Multivariate Regression window, select the Variables tab.  
• Double-click in the Y’s: Dependent Variables text box. This will bring up the variable 

selection window.  
• Select IQ from the list of variables and then click Ok. “IQ” will appear in the Y’s: 

Dependent Variable box.  
• Double-click in the X’s: Independent Variables text box. This will bring up the variable 

selection window.  
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• Select Test1 through Test5 from the list of variables and then click Ok. “Test1-Test5” 
will appear in the X’s: Independent Variables.  

• Enter 5 in the Alternative Models box. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Code Cross-Reference Section 
 
 Code Cross-Reference Section  
  
 Code Variable Count Mean 
  IQ 15 104.3333 
 A Test1 15 67.93333 
 B Test2 15 61.4 
 C Test3 15 72.33334 
 D Test4 15 65.53333 
 E Test5 15 69.93333 
 

The code, count, and mean are displayed for each variable. This report is particularly useful for 
checking that the correct variables were selected. The letters A to Z are assigned to each of the 
independent variables involved in the regression model. These are used to specify which variables 
are in each subset. 

Selection Results Section 
 
 Selection Results Section 
   
 Model  R-Squared Coded 
 Size R-Squared Change Variables 
 1 0.137941 0.137941 D 
 2 0.154246 0.016305 CD 
 3 0.383854 0.229608 ABD 
 4 0.396353 0.012499 ABCD 
 5 0.399068 0.002715 ABCDE 
  

This report presents the results of the search procedure. The model for each subset (model) size is 
presented. To use this report, you scan down the R-Squared values, looking for the subset size 
where R-Squared stabilizes. In this example, the R-Squared value for the best three-variable 
model is 0.383854, and the R-Squared for the best four-variable model is 0.396353. This is a 
minor increase. We would select the three-variable model as our final model.  
If more the one dependent variable is specified, the R-Squared column will be replaced by a 
Wilks’ Lambda column. 

Model Size 
This is the number of independent variables in the model. 

R-Squared 
This is the value of R-Squared achieved for this subset. Note that if multiple dependent variables 
are specified, this column will be labeled Wilks’ Lambda. Wilks’ Lambda is the multivariate 
extension of R-Squared. It behaves like 1-(R-Squared). Hence, when you have multiple 
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dependent variables, you look for a value close to zero, rather than close to one as you do with R-
Squared. 

R-Squared Change 
This is the amount that is added to R-Squared (or Wilks’ Lambda) when an additional variable is 
added to the model.  

Coded Variables 
This is a list of the variables in the model. The variable which each letter represents is listed in the 
Code Cross-Reference Section. 

R-Squared vs Variable Count Plot 
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This plot displays the values of R-Squared on the vertical axis and the subset size on the 
horizontal axis for the data displayed in the Selection Results Section, above. Note the large jump 
between the two-variable model and the three-variable model. We quickly see that the four and 
five variable models do not do much better. Hence, our conclusion is to use the three-variable 
model. The three-variable model is ABD, which translates to variables Test1, Test2, and Test4. 
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Chapter 311 

Stepwise 
Regression 
Introduction 
Often, theory and experience give only general direction as to which of a pool of candidate 
variables (including transformed variables) should be included in the regression model. The 
actual set of predictor variables used in the final regression model must be determined by analysis 
of the data. Determining this subset is called the variable selection problem.  

Finding this subset of regressor (independent) variables involves two opposing objectives. First, 
we want the regression model to be as complete and realistic as possible. We want every 
regressor that is even remotely related to the dependent variable to be included. Second, we want 
to include as few variables as possible because each irrelevant regressor decreases the precision 
of the estimated coefficients and predicted values. Also, the presence of extra variables increases 
the complexity of data collection and model maintenance. The goal of variable selection becomes 
one of parsimony: achieve a balance between simplicity (as few regressors as possible) and fit (as 
many regressors as needed). 

There are many different strategies for selecting variables for a regression model. If there are no 
more than fifteen candidate variables, the All Possible Regressions procedure (discussed in the next 
chapter) should be used since it will always give as good or better models than the stepping 
procedures available in this procedure. On the other hand, when there are more than fifteen candidate 
variables, the four search procedures contained in this procedure may be of use. 

These search procedures will often find very different models. Outliers and collinearity can cause 
this. If there is very little correlation among the candidate variables and no outlier problems, the four 
procedures should find the same model. 

We will now briefly discuss each of these procedures. 

Variable Selection Procedures 

Forward (Step-Up) Selection 
This method is often used to provide an initial screening of the candidate variables when a large 
group of variables exists. For example, suppose you have fifty to one hundred variables to choose 
from, way outside the realm of the all-possible regressions procedure. A reasonable approach would 
be to use this forward selection procedure to obtain the best ten to fifteen variables and then apply the 



311-2  Stepwise Regression  

all-possible algorithm to the variables in this subset. This procedure is also a good choice when 
multicollinearity is a problem. 

The forward selection method is simple to define. You begin with no candidate variables in the 
model. Select the variable that has the highest R-Squared. At each step, select the candidate variable 
that increases R-Squared the most. Stop adding variables when none of the remaining variables are 
significant. Note that once a variable enters the model, it cannot be deleted. 

Backward (Step-Down) Selection 
This method is less popular because it begins with a model in which all candidate variables have 
been included. However, because it works its way down instead of up, you are always retaining a 
large value of R-Squared. The problem is that the models selected by this procedure may include 
variables that are not really necessary. The user sets the significance level at which variables can 
enter the model. 

The backward selection model starts with all candidate variables in the model. At each step, the 
variable that is the least significant is removed. This process continues until no nonsignificant 
variables remain. The user sets the significance level at which variables can be removed from the 
model. 

Stepwise Selection 
Stepwise regression is a combination of the forward and backward selection techniques. It was very 
popular at one time, but the Multivariate Variable Selection procedure described in a later chapter 
will always do at least as well and usually better. 

Stepwise regression is a modification of the forward selection so that after each step in which a 
variable was added, all candidate variables in the model are checked to see if their significance has 
been reduced below the specified tolerance level. If a nonsignificant variable is found, it is removed 
from the model.  

Stepwise regression requires two significance levels: one for adding variables and one for removing 
variables. The cutoff probability for adding variables should be less than the cutoff probability for 
removing variables so that the procedure does not get into an infinite loop. 

Min MSE 
This procedure is similar to the Stepwise Selection search procedure. However, instead of using 
probabilities to add and remove, you specify a minimum change in the root mean square error. At 
each step, the variable whose status change (in or out of the model) will decrease the mean square 
error the most is selected and its status is reversed. If it is currently in the model, it is removed. If it is 
not in the model, it is added. This process continues until no variable can be found that will cause a 
change larger than the user-specified minimum change amount. 
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Assumptions and Limitations 
The same assumptions and qualifications apply here as applied to multiple regression. Note that 
outliers can have a large impact on these stepping procedures, so you must make some attempt to 
remove outliers from consideration before applying these methods to your data. 

The greatest limitation with these procedures is one of sample size. A good rule of thumb is that 
you have at least five observations for each variable in the candidate pool. If you have 50 
variables, you should have 250 observations. With less data per variable, these search procedures 
may fit the randomness that is inherent in most datasets and spurious models will be obtained.  

This point is critical. To see what can happen when sample sizes are too small, generate a set of 
random numbers for 20 variables with 30 observations. Run any of these procedures and see what 
a magnificent value of R-Squared is obtained, even though its theoretical value is zero! 

Using This Procedure 
This procedure performs one portion of a regression analysis: it obtains a set of independent 
variables from a pool of candidate variables. Once the subset of variables is obtained, you should 
proceed to the Multiple Regression procedure to estimate the regression coefficients, study the 
residuals, and so on. 

Data Structure 
An example of data appropriate for this procedure is shown in the table below. This data is from a 
study of the relationships of several variables with a person’s IQ. Fifteen people were studied. 
Each person’s IQ was recorded along with scores on five different personality tests. The data are 
contained in the SAMPLE database. We suggest that you open this database now so that you can 
follow along with the example. 

SAMPLE dataset 

Test1 Test2 Test3 Test4 Test5 IQ 
83 34 65 63 64 106 
73 19 73 48 82 92 
54 81 82 65 73 102 
96 72 91 88 94 121 
84 53 72 68 82 102 
86 72 63 79 57 105 
76 62 64 69 64 97 
54 49 43 52 84 92 
37 43 92 39 72 94 
42 54 96 48 83 112 
71 63 52 69 42 130 
63 74 74 71 91 115 
69 81 82 75 54 98 
81 89 64 85 62 96 
50 75 72 64 45 103 
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Missing Values 
Rows with missing values in the active variables are ignored. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variables on which to run the analysis. 

Dependent Variable 

Y: Dependent Variable 
Specifies a dependent (Y) variable. If more than one variable is specified, a separate analysis is 
run for each. 

Weight Variable 

Weight Variable 
Specifies a variable containing observation (row) weights for generating weighted regression 
analysis. These weights might be those saved during a robust regression analysis. 

Independent Variables 

X’s: Independent Variables 
Specify the independent (X or candidate) variables. 

Model Selection 

Selection Method 
This option specifies which of the four search procedures should be used: Forward, Backward, 
Stepwise, or Min MSE.  

Prob to Enter 
Sometimes call PIN, this is the probability required to enter the equation. This value is used by 
the Forward and the Stepwise procedures. A variable, not currently in the model, must have a t-
test probability value less than or equal to this in order to be considered for entry into the 
regression equation. You must set PIN < POUT. 

Prob to Remove 
Sometimes call POUT, this is the probability required to be removed from the equation. This 
value is used by the Backward and the Stepwise procedures. A variable, currently in the model, 
must have a t-test probability value greater than this in order to be considered for removal from 
the regression equation. You must set PIN < POUT. 
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Min RMSE Change 
This value is used by the Minimum MSE procedure to determine when to stop. The procedure 
stops when the maximum relative decrease in the square root of the mean square error brought 
about by changing the status of a variable is less than this amount.  

Maximum Iterations 
This is the maximum number of iterations that will be allowed. This option is useful to prevent 
the unlimited looping that may occur. You should set this to a high value, say 50 or 100.  

Remove Intercept 
Unchecked indicates that the intercept term is to be included in the regression. Checked indicates 
that the intercept should be omitted from the regression model. Note that deleting the intercept 
distorts most of the diagnostic statistics (R-Squared, etc.).  

Reports Tab 
These options control the reports that are displayed.  

Select Reports 

Descriptive Statistics and Selected Variables Reports 
This option specifies whether the indicated report is displayed. 

Report Options 

Report Format 
Two output formats are available: brief and verbose. The Brief output format consists of a single 
line for each step (scan through the variables). The Verbose output format gives a complete table 
of each variable’s statistics at each step. If you have many variables, the Verbose option can 
produce a lot of output. 

Precision 
Specifies the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Stepwise Regression Analysis  
This section presents an example of how to run a stepwise regression analysis of the data 
presented in the SAMPLE dataset.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Stepwise Regression window. 

1 Open the SAMPLE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Sample.s0. 
• Click Open. 

2 Open the Stepwise Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Variable Selection 

Routines, then Stepwise Regression. The Stepwise Regression procedure will be 
displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Stepwise Regression window, select the Variables tab.  
• Double-click in the Y: Dependent Variable text box. This will bring up the variable 

selection window.  
• Select IQ from the list of variables and then click Ok. “IQ” will appear in the Y: 

Dependent Variable box.  
• Double-click in the X’s: Independent Variables text box. This will bring up the variable 

selection window.  
• Select Test1 through Test5 from the list of variables and then click Ok. “Test1-Test5” 

will appear in the X’s: Independent Variables.  
• In the Selection Method list box, select Backward. 

4 Specify the reports. 
• On the Stepwise Regression window, select the Reports tab.  
• In the Report Format list box, select Verbose. 
• Check the Descriptive Statistics checkbox.  
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5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Descriptive Statistics Section 
 
 Descriptive Statistics Section 
   
 Variable Count Mean Standard Deviation 
 Test1 15 67.93333 17.39239 
 Test2 15 61.4 19.39735 
 Test3 15 72.33334 14.73415 
 Test4 15 65.53333 13.95332 
 Test5 15 69.93333 16.15314 
 IQ 15 104.3333 11.0173 
   

For each variable, the Count, Mean, and Standard Deviation are calculated. This report is 
especially useful for making certain that you have selected the right variables and that the 
appropriate number of rows was used. 

Iteration Detail Section (Verbose Version) 
  
 Iteration Detail Section 
   
 Iteration 0:  Unchanged 
   
   Standard. R-Squared R-Squared  Prob Pct Change 
 In Variable Coefficient Increment Other X's T-Value Level Sqrt(MSE)  
 Yes Test1 -3.0524 .2357 .9747 -1.8789 .0930 11.9387 
 Yes Test2 -2.9224 .2414 .9717 -1.9016 .0897 12.3210 
 Yes Test3 .1404 .0152 .2280 .4773 .6445 -3.9386 
 Yes Test4 4.7853 .2832 .9876 2.0596 .0695 15.0741 
 Yes Test5 -.0595 .0027 .2329 -.2017 .8447 -4.9176 
 R-Squared=0.3991 Sqrt(MSE)=10.65198 
  
 Iteration 1:  Removed Test5 from equation 
  
   Standard. R-Squared R-Squared  Prob Pct Change 
 In Variable Coefficient Increment Other X's T-Value Level Sqrt(MSE)  
 Yes Test1 -3.0612 .2373 .9747 -1.9825 .0756 12.5340 
 Yes Test2 -2.9032 .2392 .9716 -1.9906 .0745 12.6640 
 Yes Test3 .1163 .0125 .0752 .4550 .6588 -3.6717 
 Yes Test4 4.7850 .2832 .9876 2.1660 .0555 15.5681 
 No Test5  .0027 .2329 .2017 .8447 5.1719 
 R-Squared=0.3964 Sqrt(MSE)=10.12816 
  
 Iteration 2:  Removed Test3 from equation 
   
   Standard. R-Squared R-Squared  Prob Pct Change 
 In Variable Coefficient Increment Other X's T-Value Level Sqrt(MSE)  
 Yes Test1 -3.1020 .2444 .9746 -2.0890 .0607 13.1519 
 Yes Test2 -2.9024 .2391 .9716 -2.0659 .0632 12.7977 
 Yes Test4 4.7988 .2849 .9876 2.2553 .0455 15.7808 
 No Test3  .0125 .0752 .4550 .6588 3.8116 
 No Test5  .0000 .0810 .0087 .9932 4.8805 
 R-Squared=.3839 Sqrt(MSE)=9.756291 
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 Iteration 3:  Unchanged  
   
   Standard. R-Squared R-Squared  Prob Pct Change 
 In Variable Coefficient Increment Other X's T-Value Level Sqrt(MSE)  
 Yes Test1 -3.1020 .2444 .9746 -2.0890 .0607 13.1519 
 Yes Test2 -2.9024 .2391 .9716 -2.0659 .0632 12.7977 
 Yes Test4 4.7988 .2849 .9876 2.2553 .0455 15.7808 
 No Test3  .0125 .0752 .4550 .6588 3.8116 
 No Test5  .0000 .0810 .0087 .9932 4.8805 
 R-Squared=.3839 Sqrt(MSE)=9.756291 
     

This report presents information about each step of the search procedures. You can scan this 
report to see if you would have made the same choice. Each report shows the statistics after the 
specified action (entry or removal) was taken.  
For each iteration, there are three possible actions:  

1.  Unchanged. No action was taken because of the scan in this step. Because of the 
“backward look” in the stepwise search method, this will show up a lot when this method 
is used. Otherwise, it will usually show up as the first and last steps. 

2. Removal. A variable was removed from the model. 

3. Entry. A variable was added to the model. 

Individual definitions of the items on the report are as follows: 

In 
A Yes means the variable is in the model. A No means it is not. 

Variable 
This is the name of the candidate variable. 

Standard. Coefficient 
Standardized regression coefficients are the coefficients that would be obtained if you 
standardized each independent and dependent variable. Here standardizing is defined as 
subtracting the mean and dividing by the standard deviation of a variable. A regression analysis 
on these standardized variables would yield these standardized coefficients.  

When there are vastly different units involved for the variables, this is a way of making 
comparisons between variables. The formula for the standardized regression coefficient is: 

j, std j
y

x
b  =  b

s
s j

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  

where sy and are the standard deviations for the dependent variable and the corresponding js x j

th 
independent variable. 

R-Squared Increment 
This is the amount that R-Squared would be changed if the status of this variable were changed. If 
the variable is currently in the model, this is the amount the R-Squared value would be decreased 
if it were removed. If the variable is currently out of the model, this is the amount the overall R-
Squared would be increased if it were added. Large values here indicate important independent 
variables. 

You want to add variables that make a large contribution to R-Squared and to delete variables that 
make a small contribution to R-Squared. 
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R-Squared Other X’s 
This is a collinearity measure, which should be as small as possible. This is the R-Squared value that 
would result if this independent variable were regressed on all of the other independent variables 
currently in the model. 

T-Value 
This is the t-value for testing the hypothesis that this variable should be added to, or deleted from, the 
model. The test is adjusted for the rest of the variables in the model. The larger this t-value is, the 
more important the variable. 

Prob Level 
This is the two-tail p-value for the above t-value. The smaller this p-value, the more important the 
independent variable is. This is the significance value that is compared to the values of PIN and 
POUT (see Stepwise Method above). 

Pct Change Sqrt(MSE) 
This is the percentage change in the square root of the mean square error that would occur if the 
specified variable were added to, or deleted from, the model. This is the value that is used by the 
Min MSE search procedure. This percentage change in root mean square error (RMSE) is 
computed as follows: 

Percent change =  
RMSE  -  RMSE

RMSE
100previous current

current

⎡
⎣⎢

⎤
⎦⎥

 

R-Squared 
This is the R-Squared value for the current model. 

Sqrt(MSE) 
This is the square root of the mean square error for the current model. 

Iteration Detail Section (Brief Version) 
This report was not printed because the Report Format box was set to Verbose. If this option had 
been set to Brief, this is the output that would have been displayed. 
 
 Iteration Detail Section 
 
 Iter.     Max R-Squared 
 No. Action Variable R-Squared Sqrt(MSE) Other X's 
 0 Unchanged  0.399068 10.65198 0.987631 
 1 Removed Test5 0.396353 10.12816 0.987631 
 2 Removed Test3 0.383854 9.756291 0.987628 
 3 Unchanged  0.383854 9.756291 0.987628 
  

This is an abbreviated report summarizing the statistics at each iteration. Individual definitions of 
the items on the report are as follows: 

Iter. No. 
The number of this iteration. 
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Action 
For each iteration, there are three possible actions:  

1.  Unchanged. No action was taken because of the scan in this step. Because of the 
“backward look” in the stepwise search method, this will show up a lot when this method 
is used. Otherwise, it will show up at the first and last steps. 

2. Removed. A variable was removed from the model. 

3. Added. A variable was added to the model. 

Variable 
This is the name of the variable whose status is being changed. 

R-Squared 
The value of R-Squared for the current model. 

Sqrt(MSE) 
This is the square root of the mean square error for the current model. 

Max R-Squared Other X’s 
This is the maximum value of R-Squared Other X’s (see verbose report definitions) for all the 
variables in the model. This is a collinearity model. You want this value to be as small as 
possible. If it approaches 0.99, you should be concerned with the possibility that multicollinearity 
is distorting your results. 
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Chapter 312 

All Possible 
Regressions 
Introduction 
Often, theory and experience give only general direction as to which of a pool of candidate 
variables (including transformed variables) should be included in the regression model. The 
actual set of predictor variables used in the final regression model must be determined by analysis 
of the data. Determining this subset is called the variable selection problem.  

Finding this subset of regressor (independent) variables involves two opposing objectives. First, 
we want the regression model to be as complete and realistic as possible. We want every 
regressor that is even remotely related to the dependent variable to be included. The phrase 
“throw in the kitchen sink” takes on new meaning here. Second, we want to include as few 
variables as possible because each irrelevant regressor decreases the precision of the estimated 
coefficients and predicted values. Also, the presence of extra variables increases the complexity 
of data collection and model maintenance. The goal of variable selection becomes one of 
parsimony: achieve a balance between simplicity (as few regressors as possible) and fit (as many 
regressors as needed). 

After a pool of candidate variables has been formed, the next task is to establish a basis for 
comparing two models. How do we decide if model A is better than model B? Three statistics 
have been found useful for selecting among various regression models. These are R-Squared, 
mean square error, and Cp. Other criteria have been suggested, but these three are the most 
popular. 

Once we have a pool of variables and a selection criterion, the final task in variable selection is to 
plan a strategy to see how each of the possible models does on the criterion. The problem that 
now arises is that there are too many possible models to choose from. The number of possible 
models that can be formed from p regressors is 2 to the power p. If we have p = 4 regressors, 
there are 16 possible models to choose from. With 15 regressors, there are 32,768 possible 
models. With 20 regressors, there are 1,048,576 models. Obviously, the number of possible 
models grows exponentially with the number of regressors. However, with up to 15 regressors, 
the problem does seem manageable. 

This procedure was programmed so that it will efficiently look at up to 32,768 models for up to 
15 regressors. That is why it is called all possible regressions. It guarantees that you will find the 
“best” model, since it looks at all of them. Unfortunately, no automatic procedure will find the 
“best” model in every sense. It will, however, find the model that is best according to your 
selection criterion. It is still left up to you to determine if the model makes theoretical and 
practical sense. 
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All Possible Regressions 
This algorithm fits all regressions involving one regressor, two regressors, three regressors, and 
so on. The selection criterion is recorded for each regression. Once the procedure finishes, the 
champion for each subset size is determined. You then determine which subset size is optimum 
for your case. 

The All Possible Regressions solution is the target of the popular step-regression procedures. 
Although it takes longer to run, it guarantees the right answer. Hence, when you have 15 or fewer 
independent variables to choose from, this is the variable selection procedure you should use. 

Assumptions and Limitations 
The same assumptions and qualifications apply here as applied to multiple regression. We refer 
you to the Assumptions section in the Multiple Regression chapter (Chapter 15) for a discussion 
of these assumptions. We will here mention restrictions necessary for this algorithm to work. 

Number of Regressor Variables 
This procedure will work with up to fifteen regressor variables, not including the intercept. The 
intercept is always included in the regression model. 

Number of Observations 
The number of observations must be at least one greater than the number of candidate regressors. 
A popular rule-of-thumb when using any variable selection procedure is that you have at least 
five observations for each candidate variable. 

No Linear Dependencies 
Since one of the models that must be solved involves all of the candidate variables (the full 
model), no linear dependencies can exist among these variables. A linear dependency occurs 
when one variable is a weighted average of the rest. For example, if one variable is the total of 
several others, it cannot be included in the candidate pool. 

Data Structure 
An example of data appropriate for this procedure is shown in the table below. These data are 
from a study of the relationships of several variables with a person’s IQ. Fifteen people were 
studied. Each person’s IQ was recorded along with scores on five different personality tests. The 
data are contained in the SAMPLE database. We suggest that you open this database now so that 
you can follow along with the example. 
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SAMPLE dataset 

Test1 Test2 Test3 Test4 Test5 IQ 
83 34 65 63 64 106 
73 19 73 48 82 92 
54 81 82 65 73 102 
96 72 91 88 94 121 
84 53 72 68 82 102 
86 72 63 79 57 105 
76 62 64 69 64 97 
54 49 43 52 84 92 
37 43 92 39 72 94 
42 54 96 48 83 112 
71 63 52 69 42 130 
63 74 74 71 91 115 
69 81 82 75 54 98 
81 89 64 85 62 96 
50 75 72 64 45 103 

Missing Values 
Rows with missing values in the variable pool are ignored. The program does not run a separate 
analysis for each pattern of missing values. It is possible to get slightly different results when you 
analyze a subset because variables in the subset may not contain missing values. Without the 
missing values, the rows that were deleted in the original analysis are included in the subset 
analysis. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variables on which to run the analysis. 

Dependent Variable 

Y: Dependent Variable 
Specifies a dependent variable. If more than one variable is specified, a separate analysis is run 
for each. 

Weight Variable 

Weight Variable 
Specifies a variable containing observation (row) weights for generating weighted-regression 
analysis.  



312-4  All Possible Regressions  

Independent Variables 

X’s: Independent Variables 
Specify the independent variables. 

Model Selection 

Best-Model Criterion 
This option lets you specify whether the model selection is based on the model’s R-Squared or 
mean square error (MSE) value. 

Alternative Models 
While the algorithm is scanning for the “best” model for each subset size, it can retain 
information on the “near-best” models as well. This option specifies how many of these near-best 
models you want to see information on. It is often useful to see information reported on five to 
ten extra models. 

Reports Tab 
The following options control which reports and plots are displayed. 

Select Reports 

Descriptive Statistics and Selected Variables Reports 
Specifies whether these reports are displayed. 

Select Plots 

R-Squared Plot ... Cp Plot 
Specifies whether these plots are displayed. 

Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 
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R-Squared Plot ... Cp Plot Tabs 
Various plots may be displayed to help you interpret the results of your search. Since all three of 
these panels have the same options, they will only be discussed once. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This option contains the text of the plot title. The characters {Y} and {X} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 



312-6  All Possible Regressions  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – All Possible Regressions Analysis 
This section presents an example of how to run a all possible regressions analysis of the data 
contained in the SAMPLE database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the All Possible Regressions window. 

1 Open the SAMPLE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Sample.s0. 
• Click Open. 

2 Open the All Possible Regressions window. 
• On the menus, select Analysis, then Regression / Correlation, then Variable Selection 

Routines, then All Possible Regressions. The All Possible Regressions procedure will 
be displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the All Possible Regressions window, select the Variables tab.  
• Double-click in the Y: Dependent Variable text box. This will bring up the variable 

selection window.  
• Select IQ from the list of variables and then click Ok. “IQ” will appear in the Y: 

Dependent Variable box.  
• Double-click in the X’s: Independent Variable(s) text box. This will bring up the 

variable selection window.  
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• Select Test1 through Test5 from the list of variables and then click Ok. “Test1-Test5” 
will appear in the X’s: Independent Variable(s).  

• Enter 5 in the Alternative Models box. 

4 Specify the reports. 
• On the All Possible Regressions window, select the Reports tab.  
• Check the Descriptive Statistics checkbox.  

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Descriptive Statistics Section 
 
 Descriptive Statistics Section 
   
 Variable Count Mean Standard Deviation 
 Test1 15 67.93333 17.39239 
 Test2 15 61.4 19.39735 
 Test3 15 72.33334 14.73415 
 Test4 15 65.53333 13.95332 
 Test5 15 69.93333 16.15314 
 IQ 15 104.3333 11.0173 
 

For each variable, the count of nonmissing values, the arithmetic mean of the nonmissing values, 
and the standard deviation of the nonmissing values are computed. This report is particularly 
useful for checking that the correct variables were selected. 

All Possible Results Section 
 
 All Possible Results Section 
   
 Model  Root 
 Size R-Squared MSE Cp Model 
 1 .137941 10.61539 1.910838 D  (Test4)  
 1 .057913 11.09719 3.109405 B  (Test2)  
 1 .050917 11.13832 3.214175 A  (Test1)  
 1 .005486 11.40179 3.894581 C  (Test3)  
 1 .003371 11.41391 3.926255 E  (Test5)  
   
 2 .154246 10.94386 3.666643 CD 
 2 .144790 11.00487 3.808266 AD 
 2 .139411 11.03943 3.888825 BD 
 2 .137980 11.0486 3.910256 DE 
 2 .098957 11.29591 4.494690 AB 
   
 3 .383854 9.756291 2.227864 ABD 
 3 .159103 11.39763 5.593906 BCD 
 3 .157158 11.4108 5.623033 ACD 
 3 .155707 11.42062 5.644768 CDE 
 3 .145431 11.48991 5.798660 ADE 
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 4 .396353 10.12816 4.040666 ABCD 
 4 .383859 10.23245 4.227794 ABDE 
 4 .163351 11.92369 7.530276 BCDE 
 4 .157627 11.96441 7.616005 ACDE 
 4 .115826 12.25768 8.242057 ABCE 
   
 5 .399068 10.65198 6.000000 ABCDE 
 

This report presents the results of the all possible regressions search procedure. The models for 
each subset (model) size are sorted from best to worst. To use this report, you scan down a 
criterion column, say R-Squared, for the subset size where this value stabilizes. In this example, 
the R-Squared value for the best three-variable model is 0.383854 and the R-Squared for the best 
four-variable model is 0.396353. This is a minor increase. We would select the three-variable 
model as our final model.  

Model Size 
This is the number of independent variables in the model. Model size will range from 1 to p. The 
option, Alternative Models, controls the number of models reported from each model subset size.  

R-Squared 
R-Squared is the ratio of the variation explained by the model to the total variation in the 
dependent variable. R-Squared ranges from zero to one. The larger the R-Squared, the better the 
model. A comprehensive definition of R-Squared is given in the Multiple Regression chapter. 

Root MSE 
This is the square root of the mean square error. The smaller this value is, the better the model. 

Cp 
Another criterion for variable selection and importance is Mallow’s Cp statistic. The optimum 
model will have a Cp value close to p+1, where p is the number of independent variables. A Cp 
greater than (p+1) indicates that the regression model is overspecified (contains too many 
variables and stands a chance of having collinearity problems). On the other hand, a model with a 
Cp less than (p+1) indicates that the regression model is underspecified (at least one important 
independent variable has been omitted). The formula for the Cp statistic is as follows, where k is 
the maximum number of independent variables available: 

p
p

k
C  =  

MSE
MSE

[n - p -1] -  [n - 2(p+1)]
⎡
⎣⎢

⎤
⎦⎥  

Model 
This column labels the model whose statistics are being reported. Letters are given in a shorthand 
notation to represent the independent variables. The letter A is associated with the first variable, 
the letter B with the second, and so on. The letters and corresponding variable names are 
displayed for all variables in the first section of the report. Two-variable models are represented 
by two letters. Hence, in this example, the model CD represents the two-variable model 
consisting of variables Test3 and Test4. 
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R-Squared vs. Variable Count Plot 
This plot displays the values of R-Squared on the vertical axis and the number of independent 
variables on the horizontal axis for the data displayed in the All Possible Results Section above. Note 
the large disparity in the three-variable models. There is one model that is way above the rest. We 
can also quickly see that the four- and five-variable models do not do much better. 
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Root MSE vs. Variable Count Plot 
This plot displays the values of the square root of the mean square error on the vertical axis and 
the number of independent variables on the horizontal axis for the data displayed in the All 
Possible Results Section above. Note the large disparity in the three-variable models. There is one 
model that is way below the rest.  

Root MSE is often considered a better criterion for choosing a best model than R-Squared. The root 
MSE decreases initially as p increases, stabilizes at some subset size, and eventually begins to 
increase with further increments of p. You should choose a best model based on the minimum MSE 
or a value of p near the point where the smallest MSE turns upward. The model subset that 
minimizes MSE will usually maximize R-Squared. 
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Cp vs. Variable Count Plot 
This plot displays the values of Cp on the vertical axis and the number of independent variables 
on the horizontal axis for the data displayed in the All Possible Results Section above. The Cp 
plot is more difficult to interpret because we are looking for the model where Cp is closest to p+1. 
You will most likely want to stick with the numeric report when considering Cp. 
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Chapter 315 

Nonlinear 
Regression 
Introduction 
Multiple regression deals with models that are linear in the parameters. That is, the multiple 
regression model may be thought of as a weighted average of the independent variables. A linear 
model is usually a good first approximation, but occasionally, you will require the ability to use 
more complex, nonlinear, models.  Nonlinear regression models are those that are not linear in the 
parameters. Examples of nonlinear equations are: 

Y = A + B EXP(-CX) 

Y = (A +BX)/(1+CX) 

Y = A + B/(C+X) 

This program estimates the parameters in nonlinear models using the Levenberg-Marquardt 
nonlinear least-squares algorithm as presented in Nash (1987). We have implemented Nash’s 
MRT algorithm with numerical derivatives. This has been a popular algorithm for solving 
nonlinear least squares problems, since the use of numerical derivatives means you do not have to 
supply program code for the derivatives. 

Starting Values 
Many people become frustrated with the complexity of nonlinear regression after dealing with the 
simplicity of multiple linear regression. Perhaps the biggest nuisance with the algorithm used in 
this program is the need to supply bounds and starting values. The convergence of the algorithm 
depends heavily upon supplying appropriate starting values. 

Sometimes you will be able to use zeros or ones as starting values, but often you will have to 
come up with better values. One accepted method for obtaining a good set of starting values is to 
estimate them from the data. We will show you how this is done with the example that we will be 
using throughout this chapter.  

Suppose you have 44 observations on X and Y (the data are shown below). Suppose further that 
you want to fit the specific nonlinear model:  

Y = A + (0.49 - A) Exp (-B(X - 8)). 

Since there are two unknown parameters, A and B, we select two observations. To make the 
estimates as representative as possible, we select observations from each end of the range of X 
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values. The two observations we select are (10, 0.48) and (42, 0.39). Putting these two 
observations into our model yields two equations with two unknowns: 

(1) 0.48 = A + (0.49 - A) Exp (-B(10 - 8)) 

(2) 0.39 = A + (0.49 - A) Exp (-B(42 - 8)). 

Solving (1) for B yields 

(3) B={log((0.48 - A)/(0.49 - A)}/(-2). 

Putting this result into the second equation yields 

(4) {(0.39 - A)/(0.49 - A)}={(0.48 - A)/(0.49 - A)}^17. 

These equations appear difficult, but since we are only after starting values, we can analyze them 
for possible values of A and B. From (3), we see that A must be less than 0.48 and greater than 0. 
Suppose we pick a number in this range, say 0.1. Next, using (3), we calculate B as 0.013. These 
are our starting values. 

Reviewing the steps we have taken: 

1. Select one data value for each parameter. 

2. Plug the selected data values into the model and solve for the parameters. If the model is 
too difficult, analyze the resulting equations for possible ranges of each parameter.  

3. Try these starting values in the program. Remember, you do not have to be too accurate, 
just in the ball park.  

Assumptions and Limitations 
Usually, nonlinear regression is used to estimate the parameters in a nonlinear model without 
performing hypothesis tests. In this case, the usual assumption about the normality of the 
residuals is not needed. Instead, the main assumption needed is that the data may be well 
represented by the model.  

Data Structure 
The data are entered in one dependent variable and one or more independent variables. An 
example of data appropriate for this procedure, taken from page 476 of Draper and Smith (1981), 
is shown below. These data are contained in the DS746 dataset. In this example, the dependent 
variable (Y) is the proportion of available chlorine in a certain quantity of chlorine solution and 
the independent variable (X) is the length of time in weeks since the product was produced. When 
the product is produced, the proportion of chlorine is 0.50. During the 8 weeks that it takes to 
reach the consumer, the proportion declines to 0.49. The hypothesized model for predicting Y 
from X is  

Y = A + (0.49 - A) EXP(- B(X-8)) + e. 

Here, A and B are the parameters and e is the error or residual. 
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DS476 dataset 

Row X Y  Row X Y 
1 8 0.49  23 22 0.41 
2 8 0.49  24 22 0.40 
3 10 0.48  25 24 0.42 
4 10 0.47  26 24 0.40 
5 10 0.48  27 24 0.40 
6 10 0.47  28 26 0.41 
7 12 0.46  29 26 0.40 
8 12 0.46  30 26 0.41 
9 12 0.45  31 28 0.41 
10 12 0.43  32 28 0.40 
11 14 0.45  33 30 0.40 
12 14 0.43  34 30 0.40 
13 14 0.43  35 30 0.38 
14 16 0.44  36 32 0.41 
15 16 0.43  37 32 0.40 
16 16 0.43  38 34 0.40 
17 18 0.46  39 36 0.41 
18 18 0.45  40 36 0.38 
19 20 0.42  41 38 0.40 
20 20 0.42  42 38 0.40 
21 20 0.43  43 40 0.39 
22 22 0.41  44 42 0.39 

Missing Values 
Rows with missing values in the variables being analyzed are ignored in the calculations. When 
only the value of the dependent variable is missing, predicted values are generated. 

Procedure Options 
This section describes the options available in this procedure. 

Model Tab and Parameters - Cont Tab 
These panels specify the model and variables used in the analysis. 

Dependent Variable 

Y: Dependent Variable 
Specifies a single dependent (Y) variable from the current database. 
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Options 

Alpha Level 
The value of alpha for the asymptotic confidence limits of the parameter estimates. Usually, this 
number will range from 0.1 to 0.001. A common choice for alpha is 0.05, but this value is a 
legacy from the age before computers when only printed tables were available. You should 
determine a value appropriate for your particular study. 

Model 

Model 
This box contains the nonlinear equation.  

This expression is made up of  

1. Symbols:  +, -, *,  /,  ^, <, >, =, (, and ). 

2. Functions:  

 ABS(X) Absolute value of X 

 ASN(X) Arc sine of X 

 ATN (X) Arc tangent of X 

 COS(X) Cosine of X 

 EXP(X) Exponential of X 

 INT(X) Integer part of X 

 LN(X) Log base e of X 

 LOG(X) Log base 10 of X 

 SGN(X) Sign of X 

 SIN(X) Sine of X 

 SQR(X) Square root of X 

 TAN(X) Tangent of X 

3. One or more variables referenced by name. 

4. Parameters, which are defined below.  

5. Constants.  

The syntax of the model expression follows that of the variable transformations, so we will not go 
into syntax here, but refer you to the Variable Transformations chapter. Note that only a subset of 
the functions available as transformations are also available here. 
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Model Parameters 

Parameter 
The model may contain up to thirty parameters. Each parameter used in the model must be 
defined in this section by entering a name, bounds, and starting value. 

The parameter name is any combination of letters and numbers, except that the name must begin 
with a letter. You should not use symbols in the parameter name. All letters are converted to 
upper case internally, so it does not matter whether you use upper or lower case. The name cannot 
be one of the internal mathematical functions like SIN or TAN, as this will confuse the function 
parser. Also, the parameter name should not be the same as a variable name. 

The name may be as long as you want, but, for readability, you should keep it short.  

The model may contain up to thirty parameters. 

Min Start Max 
The minimum, starting value, and maximum are entered in this box. The three values must be 
separated with blanks or commas. 

• Minimum 
This is the smallest value that the parameter can take on. The algorithm searches for a value 
between this and the Maximum Value. If you want to search in an unlimited range, enter a 
large negative number such as -1E9, which is -1000000000. 

Since this is a search algorithm, the narrower the range that you search in, the quicker the 
process will converge. 

Care should be taken to specify minima and maxima that keep calculations in range. Suppose, 
for example, that your equation includes the expression LOG(B*X) and that values of X are 
positive. Since you cannot take the logarithm of zero or a negative number, you should set the 
minimum of B as a positive number. This will insure that the estimation procedure will not 
fail because of impossible calculations. 

• Starting Value 
This is the beginning value of the parameter. The algorithm searches for a value between the 
Minimum Value and the Maximum Value, beginning with this number. The closer this value 
is to the final value, the quicker the algorithm will converge. 

Although specific instructions for finding starting values are given at the beginning of this 
chapter, we would like to make the following suggestions here. 

1. Make sure that the starting values you supply are legitimate. For example, if the 
model you were estimating included the phrase 1/B, you would not want to start with 
B=0. 

2. Before you go to a lot of effort, make a few trial runs using starting values of 0.0, 0.5, 
and 1.0. Often, one of these values will converge. 

3. If you have a large number of observations, take a small sample of observations from 
your original database and work with this subset database. When you find a set of 
starting values that converges on this subset database, use the resulting parameter 
estimates as starting values with the complete database. Since nonlinear regression is 
iterative and each iteration must pass through the complete database, this can save a 
considerable amount of time while you are searching for starting values. 
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• Maximum 
This is the largest value that the parameter can take on. The algorithm searches for a value 
between the Minimum Value and this value, beginning at the Starting Value. If you want to 
search in an unlimited range, enter a large positive number such as 1E9, which is 
1000000000.  

Since this is a search algorithm, the narrower the range that you search in, the quicker the 
process will converge. 

Care should be taken to specify minima and maxima that keep calculations in check. 
Suppose, for example, that your equation includes the expression LOG(B*X) and that values 
of X are negative. Since you cannot take the logarithm of zero or a negative number, you 
should set the maximum of B as a negative number near zero. This will insure that the 
estimation procedure will not fail because of impossible calculations. 

Options Tab 

Options 

Lambda 
This is the starting value of the lambda parameter as defined in Marquardt’s procedure. We 
recommend that you do not change this value unless you are very familiar with both your model 
and the Marquardt nonlinear regression procedure. Changing this value will influence the speed at 
which the algorithm converges. 

Nash Phi 
Nash supplies a factor he calls phi for modifying lambda. When the residual sum of squares is 
large, increasing this value may speed convergence. 

Lambda Inc. 
This is a factor used for increasing lambda when necessary. It influences the rate at which the 
algorithm converges. 

Lambda Dec. 
This is a factor used for decreasing lambda when necessary. It also influences the rate at which 
the algorithm converges. 

Max Iterations 
This sets the maximum number of iterations before the program aborts. If the starting values you 
have supplied are not appropriate or the model does not fit the data, the algorithm may diverge. 
Setting this value to an appropriate number (say 50) causes the algorithm to abort after this many 
iterations. 

Zero 
This is the value used as zero by the least squares algorithm. To remove the effects of rounding 
error, values lower than this value are reset to zero. If unexpected results are obtained, try using a 
smaller value, such as 1E-16. Note that 1E-5 is an abbreviation for the number 0.00001. 
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Reports Tab 
The following options control which reports and plots are displayed.  

Select Additional Reports 

Iteration Report ... Predicted Value and Residual Report 
Each of these options specifies whether the indicated report is displayed. 

Select Plots 

Probability Plot ... Residuals vs X Plot 
Each of these options specifies whether the indicated plot is displayed. 

Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Prob Plot to Resid vs X Plot Tabs 
Various plots may be displayed to help you validate the assumptions of your regression analysis 
as well as investigate the fit of your estimated equation. The actual uses of these plots will be 
described later. Each of these plots includes the following options. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tick marks displayed on each axis. 
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Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. An {M} 
is replaced by model expression. Press the button on the right of the field to specify the font of the 
text. 

Storage Tab 
The predicted values and residuals may be stored on the current database for further analysis. 
This group of options lets you designate which statistics (if any) should be stored and which 
variables should receive these statistics. The selected statistics are automatically stored to the 
current database while the program is executing. 

Note that the variables you specify must already have been named on the current database. 

Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Data Storage Variables 

Predicted Values 
The predicted (Yhat) values. 

Lower Prediction Limit 
The lower confidence limit of the predicted value.  

Upper Prediction Limit 
The upper confidence limit of the predicted value.  

Residuals 
The residuals (Y-Yhat).  
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Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Nonlinear Regression Analysis 
This section presents an example of how to run a nonlinear regression analysis of the data that 
was presented above in the Data Structure section. In this example, we will fit the model  

Y = A + (0.49 - A) EXP(- B(X-8)) 

to the data contained in the variables Y and X on the database DS476.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Nonlinear Regression window. 

1 Open the DS476 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file DS476.s0. 
• Click Open. 

2 Open the Nonlinear Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Nonlinear 

Routines, then Nonlinear Regression. The Nonlinear Regression procedure will be 
displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Nonlinear Regression window, select the Model tab.  
• Double-click in the Y: Dependent Variable box. This will bring up the variable 

selection window.  
• Select Y from the list of variables and then click Ok. “Y” will appear in the Y: 

Dependent Variable box.  
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• In the Model box, enter A+(0.49-A)*EXP(-B*(X-8)). Note that A and B are parameters 
to be defined below, X is a variable on the database, and EXP is the name of a function. 

• Enter A in the first Parameter box.  
• Enter 0 0.1 1 in the first Min Start Max box.  
• Enter B in the second Parameter box.  
• Enter 0 0.013 1 in the second Min Start Max box.  

4 Specify the reports. 
• Select the Reports tab. 
• Check all reports and plots. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Minimization Phase Section 
 
 Minimization Phase Section 
 

Itn Error Sum  
No. of Squares Lambda A B   
0 1.643321E-02 0.00004 0.1 0.013   
Stepsize reduced to .6032159 by bounds. 
Stepsize reduced to .8185954 by bounds. 
1 0.0147339 0.016 0.1464944 1.375224E-02   
2 1.461316E-02 0.0064 0.2331648 1.792601E-02   
3 1.278996E-02 0.0256 0.2486083 2.104608E-02   
4 1.218322E-02 0.01024 0.3052482 2.783621E-02   
5 0.0102341 0.04096 0.3141184 3.271746E-02   
6 9.077431E-03 0.016384 0.3472015 0.0425624   
7 7.713023E-03 0.065536 0.3519653 4.887892E-02   
8 6.631856E-03 0.0262144 0.3685163 6.024325E-02   
9 5.852748E-03 1.048576E-02 0.386985 8.150943E-02   
10 5.045347E-03 4.194304E-03 0.3904939 9.880718E-02   
11 5.001693E-03 1.677722E-03 0.390121 0.1015279   
12 5.00168E-03 6.710886E-04 0.39014 0.101633   
Convergence criterion met. 

 

This report displays the error (residual) sum of squares, lambda, and parameter estimates for each 
iteration. It allows you to observe the algorithm’s progress toward the solution. 

Model Estimation Section 
 

 Model Estimation Section 
 

Parameter Parameter Asymptotic Lower Upper 
Name Estimate Standard Error 95% C.L. 95% C.L. 
A 0.39014 5.033759E-03 0.3799815 0.4002985 
B 0.101633 1.336168E-02 7.466801E-02 0.1285979 
 
Model Y = A+(0.49-A)*EXP(-B*(X-8)) 
R-Squared 0.873375 
Iterations 12 
Estimated Model 
(.39014)+(0.49-(.39014))*EXP(-(.101633)*((X)-8)) 
 

This section reports the parameter estimates. 
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Parameter Name 
The name of the parameter whose results are shown on this line. 

Parameter Estimate 
The estimated value of this parameter. 

Asymptotic Standard Error 
An estimate of the standard error of the parameter based on asymptotic (large sample) results. 

Lower 95% C.L. 
The lower value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. 

Upper 95% C.L. 
The upper value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. 

Model 
The model that was estimated. Use this to double check that the model estimated was what you 
wanted. 

R-Squared 
There is no direct R-Squared defined for nonlinear regression. This is a pseudo R-Squared 
constructed to approximate the usual R-Squared value used in multiple regression. We use the 
following generalization of the usual R-Squared formula: 

R-Squared = (ModelSS - MeanSS)/(TotalSS-MeanSS) 

where 

MeanSS is the sum of squares due to the mean, ModelSS is the sum of squares due to the model, 
and TotalSS is the total (uncorrected) sum of squares of Y (the dependent variable). 

This version of R-Squared tells you how well the model performs after removing the influence of 
the mean of Y. Since many nonlinear models do not explicitly include a parameter for the mean 
of Y, this R-Squared may be negative (in which case we set it to zero) or difficult to interpret. 
However, if you think of it as a direct extension of the R-Squared that you use in multiple 
regression, it will serve well for comparative purposes.  

Iterations 
The number of iterations that were completed before the nonlinear algorithm terminated. If the 
number of iterations is equal to the Maximum Iterations that you set, the algorithm did not 
converge, but was aborted. 

Estimated Model 
This expression displays the estimated nonlinear-regression model. It is displayed in this format 
so that it may be copied to the clipboard and used elsewhere. For example, you could copy this 
expression here and paste it as a Variable Transformation. 
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Analysis of Variance Table 
   

Analysis of Variance Table 
  Sum of Mean 
Source DF Squares Square 
Mean 1 7.9475 7.9475 
Model 2 7.981998 3.990999 
Model (Adjusted) 1 3.449832E-02 3.449832E-02 
Error 42 5.00168E-03 1.190876E-04 
Total (Adjusted) 43 0.0395 
Total 44 7.987 

 

The section presents an analysis of variance table. 

Source 
The labels of the various sources of variation. 

DF 
The degrees of freedom. 

Sum of Squares 
The sum of squares associated with this term. Note that these sums of squares are based on Y, the 
dependent variable. Individual terms are defined as follows: 

Mean The sum of squares associated with the mean of Y. This may or may not 
be a part of the model. It is presented since it is the amount used to adjust 
the other sums of squares. 

Model The sum of squares associated with the model. 

Model (Adjusted) The model sum of squares minus the mean sum of squares. 

Error The sum of the squared residuals. This is often called the sum of squares 
error or just SSE. 

Total The sum of the squared Y values. 

Total (Adjusted) The sum of the squared Y values minus the mean sum of squares. 

Mean Square  
The sum of squares divided by the degrees of freedom. The Mean Square for Error is an estimate 
of the underlying variation in the data. 

Asymptotic Correlation Matrix of Parameters 
  

Asymptotic Correlation Matrix of Parameters 
 
 A B 
A 1.000000 0.887330 
B 0.887330 1.000000 

  

This report displays the asymptotic correlations of the parameter estimates. When these 
correlations are high (absolute value greater than 0.95), the precision of the parameter estimates is 
suspect. 
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Predicted Values and Residuals Section 
 
 Predicted Values and Residuals Section 
 

Row  Predicted Actual 
No. Residual Y Y X 
1 0 0.49 0.49 8 
2 0 0.49 0.49 8 
3 -8.368287E-03 0.4716317 0.48 10 
4 1.631713E-03 0.4716317 0.47 10 
. . . . . 
. . . . . 
. . . . . 
 

This section shows the values of the residuals and predicted values. If you have observations in 
which the independent variables were given, but the dependent (Y) variable is missing, a 
predicted value will be generated and displayed in this report. 

Residual Plots 
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Normal Probability Plot 
If the residuals are normally distributed, the data points of the normal probability plot will fall 
along a straight line. Major deviations from this ideal picture reflect departures from normality. 
Stragglers at either end of the normal probability plot indicate outliers, curvature at both ends of 
the plot indicates long or short distributional tails, convex or concave curvature indicates a lack of 
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symmetry, and gaps, plateaus, or segmentation in the normal probability plot may require a closer 
examination of the data or model. We do not recommend that you use this diagnostic with small 
sample sizes. 

Residual versus Predicted Plot 
This plot should always be examined. The preferred pattern to look for is a point cloud or a 
horizontal band. A wedge or bowtie pattern is an indicator of nonconstant variance. A sloping or 
curved band signifies inadequate specification of the model. A sloping band with increasing or 
decreasing variability could suggest nonconstant variance and inadequate specification of the 
model. 

Residual versus Independent Variable(s) Plot 
This is a scatter plot of the residuals versus each independent variable. Again, the preferred 
pattern is a rectangular shape or point cloud. Any nonrandom pattern may require a redefining of 
the model. 

Predicting for New Values 
You can use your model to predict Y for new values of the independent variables. Here is how. 
Add new rows to the bottom of your database containing the values of the independent variable(s) 
that you want to create predictions from. Leave the dependent variable blank. When the program 
analyzes your data, it will skip these rows during the estimation phase, but it will generate 
predicted values for all rows with a complete set of independent variables, regardless of whether 
the Y variable is available. 
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Chapter 320 

Logistic 
Regression  
Introduction 
Logistic regression analysis studies the association between a categorical dependent variable and 
a set of independent (explanatory) variables. The name logistic regression is often used when the 
dependent variable has only two values. The name multiple-group logistic regression (MGLR) is 
usually reserved for the case when the dependent variable has three or more unique values. 
Multiple-group logistic regression is sometimes called multinomial, polytomous, polychotomous, 
or nominal logistic regression. Although the data structure is different from that of multiple 
regression, the practical use of the procedure is similar.  

Logistic regression competes with discriminant analysis as a method for analyzing discrete 
response variables. In fact, the current feeling among many statisticians is that logistic regression 
is more versatile and better suited for most situations than is discriminant analysis because it does 
not assume that the independent variables are normally distributed, as discriminant analysis does.  

This program computes both regular (binary) logistic regression and multiple-group logistic 
regression on both numeric and categorical variables. It reports on the regression equation as well 
as the goodness of fit, odds ratios, confidence limits, likelihood, and deviance. It performs a 
comprehensive residual analysis including diagnostic residual reports and plots. It can perform a 
subset selection search, looking for the best regression model with the fewest independent 
variables. It provides confidence intervals on predicted values, and provides ROC curves to help 
determine the best cutoff point for classification. It allows you to validate your results by 
automatically classifying rows that are not used during the analysis. 

The Logit and Logistic Transformations 
In multiple regression, a mathematical model of a set of explanatory variables is used to predict 
the mean of the dependent variable. In logistic regression, a mathematical model of a set of 
explanatory variables is used to predict a transformation of the dependent variable. This is the 
logit transformation.  

Suppose the numerical values of 0 and 1 are assigned to the two categories of a binary variable. 
Often, the 0 represents a negative response and the 1 represents a positive response. The mean of 
this variable will be the proportion of positive responses. Because of this, you might try to model 
the relationship between the probability (proportion) of a positive response and the explanatory 
variables.  
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If p is the proportion of observations with a response of 1, then 1-p is the probability of a 
response of 0. The ratio p/(1-p) is call the odds and the logit is the logarithm of the odds, or just 
log odds. Mathematically, the logit transformation is written 
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−

=
p

ppl
1

lnlogit=  

The following table shows the logit for various values of p. 

P Logit(P) P Logit(P) 

0.001 -6.907 0.999 6.907 
0.01 -4.595 0.99 4.595 
0.05 -2.944 0.95 2.944 
0.10 -2.197 0.90 2.197 
0.20 -1.386 0.80 1.386 
0.30 -0.847 0.70 0.847 
0.40 -0.405 0.60 0.405 
0.50 0.000 

Note that while p ranges between zero and one, the logit ranges between minus and plus infinity. 
Also note that the zero logit occurs when p is 0.50.  

The logistic transformation is the inverse of the logit transformation. It is written 
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The Log Odds Ratio Transformation 
The difference between two log odds can be used to compare two proportions, such as that of  
males versus females. Mathematically, this difference is written 
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This difference is often referred to as the log odds ratio. The odds ratio is often used to compare 
proportions across groups. Note that the logistic transformation is closely related to the odds ratio. 
The reverse relationship is 

( )OR l l
1 2

2
, = e 1 −  
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The Logistic Regression and Logit Models 
In multiple-group logistic regression, a discrete dependent variable Y having G unique values 

 is regressed on a set of p independent variables . Y represents a way of 
partitioning the population of interest. For example, Y may be presence or absence of a disease, 
condition after surgery, or marital status. Since the names of these partitions are arbitrary, refer to 
them by consecutive numbers. That is, in the discussion below, Y will take on the values 1, 2, …, 
G. In fact, NCSS allows Y to have both numeric and text values, but the notation is much simpler 
if integers are used. 

( )2≥G X X X p1 2, ,...,

In the discussion to follow, let 
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The logistic regression model is given by the G equations 
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Here,  is the probability that an individual with values  is in group g. That is, 

( )X|Pr gYpg  = =

Usually  (that is, an intercept is included),  but this is not necessary. The quantities 
 represent the prior probabilities of group membership. If these prior probabilities are 

assumed equal, then the term 

11 ≡X
PP ,...,, 21 GP

( )1/ln PPg

p11211 ,,,

 becomes zero and drops out. If the priors are not 
assumed equal, they change the values of the intercepts in the logistic regression equation. 

Group one is called the reference group. The regression coefficients β β βL

s'

 for the 
reference group are set to zero. The choice of the reference group is arbitrary. Usually, it is the 
largest group or a control group to which the other groups are to be compared. This leaves G-1 
logistic regression equations in the multinomial logistic model. 

The β  are population regression coefficients that are to be estimated from the data. Their 
estimates are represented by b’s. The s'β  represents the unknown parameters, while the b’s are 
their estimates. 

These equations are linear in the logits of p. However, in terms of the probabilities, they are 
nonlinear. The corresponding nonlinear equations are  
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since  because all of its regression coefficients are zero. 
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A note on the names of the models. Often, all of these models are referred to as logistic 
regression models. However, when the independent variables are coded as ANOVA type models, 
they are sometimes called logit models. 

A note about the interpretation of  may be useful. Using the fact that eXΒ ( )( )baba eee =+ ,  
may be re-expressed as follows  
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This shows that the final value is the product of its individual terms. 

Solving the Likelihood Equations 
To improve notation, let 
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The likelihood for a sample of N observations is then given by 
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Maximum likelihood estimates of the β 's  are found by finding those values that maximize this 
log likelihood equation. This is accomplished by calculating the partial derivatives and setting 
them to zero. The resulting likelihood equations are 
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for g = 1, 2, …, G and k = 1, 2, …, p. Actually, since all coefficients are zero for g = 1, the range 
of g is from 2 to G.  

Because of the nonlinear nature of the parameters, there is no closed-form solution to these 
equations and they must be solved iteratively. The Newton-Raphson method as described in 
Albert and Harris (1987) is used to solve these equations. This method makes use of the 
information matrix, ( )βI , which is formed from the matrix of second partial derivatives. The 
elements of the information matrix are given by 
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The information matrix is used because the asymptotic covariance matrix of the maximum 
likelihood estimates is equal to the inverse of the information matrix. That is,  

( ) ( ) 1ˆ −= ββ IV  

This covariance matrix is used in the calculation of confidence intervals for the regression 
coefficients, odds ratios, and predicted probabilities. 

Interpretation of Regression Coefficients 
The interpretation of the estimated regression coefficients is not as easy as in multiple regression. 
In multinomial logistic regression, not only is the relationship between X and Y nonlinear, but 
also, if the dependent variable has more than two unique values, there are several regression 
equations.  

Consider the simple case of a binary dependent variable, Y, and a single independent variable, X. 
Assume that Y is coded so it takes on the values 0 and 1. In this case, the logistic regression 
equation is 
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Now consider impact of a unit increase in X. The logistic regression equation becomes 
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We can isolate the slope by taking the difference between these two equations. We have 
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That is, β1  is the log of the ratio of the odds at X+1 and X. Removing the logarithm by 
exponentiating both sides gives 

odds
sodde
′

=1β  

The regression coefficient β1  is interpreted as the log of the odds ratio comparing the odds after a 
one unit increase in X to the original odds. Note that, unlike multiple regression, the interpretation 
of β1  depends on the particular value of X since the probability values, the p’s, will vary for 
different X. 

Binary X 
When X can take on only two values, say 0 and 1, the above interpretation becomes even simpler. 
Since there are only two possible values of X, there is a unique interpretation for β1  given by the 
log of the odds ratio. In mathematical terms, the meaning of β1  is then 
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To understand this equation further, consider first what the odds are. The odds is itself the ratio of 
two probabilities, p and 1-p. Consider the following table of odds values for various values of p. 
Note that 9:1 is read ‘9 to 1.’ 

Value of p Odds of p 
0.9 9:1 
0.8 4:1 
0.6 1.5:1 
0.5 1:1 
0.4 0.67:1 
0.2 0.25:1 
0.1 0.11:1 
 
Now, using a simple example from horse racing, if one horse has 8:1 odds of winning and a 
second horse has 4:1 odds of winning, how do you compare these two horses? One obvious way 
is to look at the ratio of their odds. The first horse has twice the odds of winning as the second.  

Consider a second example of two slow horses whose odds of winning are 0.1:1 and 0.05:1. Here 
again, their odds ratio is 2. The message here: the odds ratio gives a relative number. Even though 
the first horse is twice as likely to win as the first, it is still a long shot. 
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To completely understand β1 , we must take the logarithm of the odds ratio. It is difficult to think 
in terms of logarithms. However, we can remember that the log of one is zero. So a positive value 
of β1  indicates that the odds of the numerator are large while a negative value indicates that the 
odds of the denominator are larger.  

It is probability easiest to think in terms of  rather than eβ1 β1 , because  is the odds ratio while eβ1

β1  is the log of the odds ratio. Both quantities are displayed in the reports. 

Multiple Independent Variables  
When there are multiple independent variables, the interpretation of each regression coefficient 
becomes more difficult, especially if interaction terms are included in the model. In general, 
however, the regression coefficient is interpreted the same as above, except that the caveat 
‘holding all other independent variables constant’ must be added. That is, can the value of this 
independent variable be increased by one without changing any of the other variables. If it can, 
then the interpretation is as before. If not, then some type of conditional statement must be added 
that accounts for the values of the other variables. 

Multinomial Dependent Variable  
When the dependent variable has more than two values, there will be more than one regression 
equation. In fact, the number of regression equations is equal to one less than the number of 
values. This makes interpretation more difficult because there are several regression coefficients 
associated with each independent variable. In this case, care must be taken to understand what 
each regression equation is predicting. Once this is understood, interpretation of each of the K-1 
regression coefficients for each variable can proceed as above. 

Consider the following example in which there are two independent variables, X1 and X2, and 
the dependent variable has three groups: A, B, and C.  

Row Y X1 X2 GA GB GC 
1 A 3.2 5.8 1 0 0 
2 A 4.7 6.1 1 0 0 
3 B 2.8 3.5 0 1 0 
4 B 3.3 4.6 0 1 0 
5 B 3.9 5.2 0 1 0 
6 C 4.2 3.7 0 0 1 
7 C 7.3 4.4 0 0 1 
8 C 5.3 5.1 0 0 1 
9 C 6.8 4.5 0 0 1 

Look at the three indicator variables: GA, GB, and GC. They are set to one or zero depending on 
whether Y takes on the corresponding value. Two regression equations will be generated 
corresponding to any two of these indicator variables. The value that is not used is called the 
reference value. Suppose the reference value is C. The two regression equations would be 
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and 
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The two coefficients for X1 in these equations, βA1  and βB1 , give the change in the log odds of A 
versus C and B versus C for a one unit change in X1, respectively. 
 

Statistical Tests and Confidence Intervals 
Inferences about individual regression coefficients, groups of regression coefficients, goodness-
of-fit, mean responses, and predictions of group membership of new observations are all of 
interest. These inference procedures can be treated by considering hypothesis tests and/or 
confidence intervals. The inference procedures in logistic regression rely on large sample sizes 
for accuracy.  

Two procedures are available for testing the significance of one or more independent variables in 
a logistic regression: likelihood ratio tests and Wald tests. Simulation studies usually show that 
the likelihood ratio test performs better than the Wald test. However, the Wald test is still used to 
test the significance of individual regression coefficients because of its ease of calculation.  

These two testing procedures will be described next. 

Likelihood Ratio and Deviance 
The Likelihood Ratio test statistic is -2 times the difference between the log likelihoods of two 
models, one of which is a subset of the other. The distribution of the LR statistic is closely 
approximated by the chi-square distribution for large sample sizes. The degrees of freedom (DF) 
of the approximating chi-square distribution is equal to the difference in the number of regression 
coefficients in the two models. The test is named as a ratio rather than a difference since the 
difference between two log likelihoods is equal to the log of the ratio of the two likelihoods. That 
is, if   is the log likelihood of the full model and  is the log likelihood of a subset of the 
full model, the likelihood ratio is defined as 
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Note that the -2 adjusts LR so the chi-square distribution can be used to approximate its 
distribution.  

The likelihood ratio test is the test of choice in logistic regression. Various simulation studies 
have shown that it is more accurate than the Wald test in situations with small to moderate sample 
sizes. In large samples, it performs about the same. Unfortunately, the likelihood ratio test 
requires more calculations than the Wald test, since it requires that two maximum-likelihood 
models must be fit.  

Deviance 
When the full model in the likelihood ratio test statistic is the saturated model, LR is referred to as 
the deviance. A saturated model is one which includes all possible terms (including interactions) 
so that the predicted values from the model equal the original data. The formula for the deviance 
is 
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[ ]SaturatedReduced2 LLD −−=  

The deviance may be calculated directly using the formula for the deviance residuals (discussed 
below). This formula is 
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This expression may be used to calculate the log likelihood of the saturated model without 
actually fitting a saturated model. The formula is 

2ReducedSaturated
DLL +=  

The deviance in logistic regression is analogous to the residual sum of squares in multiple 
regression. In fact, when the deviance is calculated in multiple regression, it is equal to the sum of 
the squared residuals. Deviance residuals, to be discussed later, may be squared and summed as 
an alternative way to calculate the deviance, D. 

The change in deviance, ΔD , due to excluding (or including) one or more variables is used in 
logistic regression just as the partial F test is used in multiple regression. Many texts use the letter 
G to represent ΔD , but we have already used G to represent the number of groups in Y. Instead 
of using the F distribution, the distribution of the change in deviance is approximated by the chi-
square distribution. Note that since the log likelihood for the saturated model is common to both 
deviance values, ΔD  is calculated without actually estimating the saturated model. This fact 
becomes very important during subset selection. The formula for ΔD  for testing the significance 
of the regression coefficient(s) associated with the independent variable X1 is 
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Note that this formula looks identical to the likelihood ratio statistic. Because of the similarity 
between the change in deviance test and the likelihood ratio test, their names are often used 
interchangeably.  

Wald Test 
The Wald test will be familiar to those who use multiple regression. In multiple regression, the 
common t-test for testing the significance of a particular regression coefficient is a Wald test. In 
logistic regression, the Wald test is calculated in the same manner. The formula for the Wald 
statistic is 

jb
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where  is an estimate of the standard error of  provided by the square root of the 

corresponding diagonal element of the covariance matrix, 

sb j
bj

( )β̂V .  

With large sample sizes, the distribution of  is closely approximated by the normal distribution. 
With small and moderate sample sizes, the normal approximation is described as ‘adequate.’  

z j
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The Wald test is used in NCSS to test the statistical significance of individual regression 
coefficients. 

Confidence Intervals 
Confidence intervals for the regression coefficients are based on the Wald statistics. The formula 
for the limits of a ( )%1100 α−  two-sided confidence interval is  

jbj szb 2/α±  

R-Squared 
The following discussion summarizes the material on this subject in Hosmer and Lemeshow 
(1989). In multiple regression,  represents the proportion of variation in the dependent 
variable accounted for by the independent variables. (The subscript “M” emphasizes that this 
statistic is for multiple regression.) It is the ratio of the regression sum of squares to the total sum 
of squares. When the residuals from the multiple regression can be assumed to be normally 
distributed,  can be calculated as 

2
MR

2
MR

0

02

L
LL

R p
M

−
=  

where  is the log likelihood of the intercept-only model and  is the log likelihood of the 

model that includes the independent variables. Note that  varies from  to 0.  varies 
between zero and one. 

0L pL

pL L0
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This quantity has been proposed for use in logistic regression. Unfortunately, when  (the R-
squared for logistic regression) is calculated using the above formula, it does not necessarily 
range between zero and one. This is because the maximum value of  is not always 0 as it is in 

multiple regression. Instead, the maximum value of  is , the log likelihood of the saturated 

model. To allow  to vary from zero to one, it is calculated as follows 
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The introduction of  into this formula causes a degree of ambiguity with  that does not exist 
with . This ambiguity is due to the fact that the value of  depends on the configuration of 
independent variables. The following example will point out the problem. 

SL 2
LR

2
MR SL

Consider a logistic regression problem consisting of a binary dependent variable and a pool of 
four independent variables. The data for this example are given in the following table. 

Y X1 X2 X3 X4 
0 1 1 2.3 5.9 
0 1 1 3.6 4.8 
1 1 1 4.1 5.6 
0 1 2 5.3 4.1 
0 1 2 2.8 3.1 
1 1 2 1.9 3.7 
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(Table Continued) 

Y X1 X2 X3 X4 
1 1 2 2.5 5.4 
1 2 1 2.3 2.6 
1 2 1 3.9 4.6 
0 2 1 5.6 4.9 
0 2 2 4.2 5.9 
0 2 2 3.8 5.7 
0 2 2 3.1 4.5 
1 2 2 3.2 5.5 
1 2 2 4.5 5.2 

Notice that if only X1 and X2 are included in the model, the dataset may be collapsed because of 
the number of repeats. In this case, the value of  will be less than zero. However, if X3 or X4 
are used there are no repeats and the value of  will be zero. Hence, the denominator of  
depends on which of the independent variables is used. This is not the case for . This 
ambiguity comes into play especially during subset selection. It means that as you enter and 
remove independent variables, the target value  can change. 

SL

SL 2
LR

2
MR

SL

Hosmer and Lemeshow (1989) recommend against the use  as a goodness of fit measure. 
However, we have included it in our output because it does provide a comparative measure of the 
proportion of the log likelihood that is accounted for by the model. Just remember than an  
value of 1.0 indicates that the logistic regression model achieves the same log likelihood as the 
saturated model. However, this does not mean that it fits the data perfectly. Instead, it means that 
it fits the data as well as could be hoped for.  

2
LR

2
LR

Residual Diagnostics 
Residuals are the discrepancies between the data values and the their predicted values from the 
fitted model. A residual analysis detects outliers, identifies influential observations, and diagnoses 
the appropriateness of the logistic model. An analysis of the residuals should be conducted before 
a regression model is used.   

Unfortunately, the residuals are more difficult to define in logistic regression than in regular 
multiple regression because of the nonlinearity of the logistic model and because more than one 
regression equation is used. The discussion that follows provides an introduction to the residuals 
that are produced by the logistic regression procedure. Pregibon (1981) presented this material for 
the case of the two-group logistic regression. Extensions of Pregibon’s results to the multiple-
group case are provided in an article by Lesaffre and Albert (1989) and in the book by Hosmer 
and Lemeshow (1989). Lesaffre and Albert provide formulas for these extensions. On the other 
hand, Hosmer and Lemeshow recommend that individual logistic regressions be run in which the 
each group is treated separately. Hence, if you have three groups A, B, and C, you would run 
group A versus groups B and C, group B versus groups A and C, and group C versus groups and 
A and B. You would conduct a residual analysis for each of these regressions using Pregibon’s 
two-group formulas. In NCSS, we have adopted the approach of Hosmer and Lemeshow. 
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Data Configuration 
When dealing with residuals, it is important to understand the data configuration. Often, residual 
formulations are presented for the case when each observation has a different combination of 
values of the independent variables. When some observations have identical independent 
variables or when you have specified a frequency variable, these observations are combined to 
form a single row of data. The N original observations are combined to form J unique rows. The 
response indicator variables  for the original observations are replaced by two variables:  
and . The variable  is the total number of observations with this independent variable 
configuration. The variable  is the number of the  observations that are in group g.  

gjy gjw

jn jn

gjw jn

NCSS automatically collapses the dataset of N observations into a combined dataset of J rows for 
analysis. The residuals are calculated using this last formula. However, the residuals are reported 
in the original observation order. Thus, if two identical observations have been combined, the 
residual is shown for each. If corrective action needs to be taken because a residual is too large, 
both observations must be deleted. Also, if you want to calculate the deviance or Pearson chi-
square from the corresponding residuals, care must be taken that you use only the J collapsed 
rows, not the N original observations. 

Simple Residuals 
Each of the g logistic regression equations can be used to estimate the probabilities that an 
observation of independent variable values given by  belongs to the corresponding group. The 
actual values of these probabilities were defined earlier as 

X j

( )jgj gY X|Prob= =π  

The estimated values of these probabilities are called . If the hat symbol is used to represent an 
estimated parameter, then 

pgj

gjgjp π̂=  

These estimated probabilities can be compared to the actual probabilities occurring in the 
database by subtracting the two quantities, forming a residual. The actual values were defined as 
the indicator variables . Thus, simple residuals may be defined as ygj

gjgjgj pyr −=  

Note that, unlike multiple regression, there are g residuals for each observation instead of just 
one. This makes residual analysis much more difficult. If the logistic regression model fits an 
observation closely, all of its residuals will be small. Hence, when  is one,  will be close to 
one and when  is zero,  will be close to zero. 

gjy gjp

gjy gjp

Unfortunately, the simple residuals have unequal variance equal to ( )gjgjjn ππ −1 , where  is 
the number of observations with the same values of the independent variables as observation j. 
This unequal variance makes comparisons among the simple residuals difficult and alternative 
types of residuals are necessary. 

jn
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Pearson Residuals 
One popular alternative to the simple residuals are the Pearson residuals which are so named 
because they give the contribution of each observation to the Pearson chi-square goodness of fit 
statistic. When the values of the independent variables of each observation are unique, the 
formula this residual is 

( )
Nj

p
pyG

g gj

gjgj
j ,,2,1   ,
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±=′ ∑
=

χ  

The negative sign is used when 0=gjy  and the positive sign is used when . 1=gjy

When some of the observations are duplicates and the database has been collapsed (see Data 
Configuration above) the formula is 
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where the plus (minus) is used if  is greater (less) than . Note that this is the formula 
used by NCSS. 

jgj nw / gjp

By definition, the sum of the squared Pearson residuals is the Pearson chi-square goodness of fit 
statistics. That is, 
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Deviance Residuals 
Remember that the deviance is -2 times the difference between log likelihoods of a reduced 
model and the saturated model. The deviance is calculated using 
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This formula uses the fact that the saturated model reproduces the original data exactly and that, 
in these sums, the value of 0 ln(0) is defined as 0 and that the ln(1) is also 0. 

The deviance residuals are the square roots of the contribution of each observation to the overall 
deviance. Thus, the formula for the deviance residual is 
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The negative sign is used when  and the positive sign is used when 0=gjy 1=gjy .  

When some of the observations are duplicates and the database has been collapsed (see Data 
Configuration above) the formula is 
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where the plus (minus) is used if  is greater (less) than . Note that this is the 
formula used by NCSS. 

jjgREF nw /),( jgREFp ),(

By definition, the sum of the squared deviance residuals is the deviance. That is, 

∑
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Hat Matrix Diagonal 
The diagonal elements of the hat matrix can be used to detect points that are extreme in the 
independent variable space. These are often called leverage design points. The larger the value of 
this statistic, the more the observation influences that estimates of the regression coefficients. An 
observation that is discrepant, but has low leverage, should not cause much concern. However, an 
observation with a large leverage and a large residual should be checked very carefully. The use 
of these hat diagonals is discussed further in the multiple regression chapter.  

The formula for the hat diagonal associated with the jth observation and gth group is   
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where  is the portion of the covariance matrix of the regression coefficients associated with 
the gth regression equation. The interpretation of this diagnostic is not as clear in logistic 
regression as in multiple regression because it involves the predicted values which in turn involve 
the dependent variable. In multiple regression, the hat diagonals only involve the independent 
variables. 

gikV̂

Note that this formula matches Pregibon (1981) in the two-group case. In the multiple-group case, 
the two-group formula is applied to each group. 

DFBETA 
One way to study the impact of an observation on each regression coefficient is to determine how 
much that coefficient changes when the observation is deleted. The DFBETA statistic is the 
standardized difference between a regression coefficient before and after the removal of the jth 
observation.  

The formula for DFBETA is approximated by 
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where  is the portion of the covariance matrix associated with the gth regression equation. gikV̂

Note that this formula matches Pregibon (1981) in the two-group case, but is different from 
Lesaffre (1989) in the multi-group case. 

Cooks Distance: C and Cbar 
C and Cbar are extensions of Cooks distance for logistic regression. Quoting from Pregibon 
(1981), page 719:  

“Cbar measures the overall change in fitted logits due to deleting the lth observation for all points 
excluding the one deleted. Conversely, C includes the deleted point. Although C will usually be 
the preferred diagnostic to measure overall coefficients changes, in the examples examined to 
date, the one-step approximations were more accurate for Cbar than C.” 

The formulas for C and Cbar are 
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Note that this formula matches Pregibon (1981) in the two-group case. In the multiple-group case, 
the two-group formula is applied to each group. 

DFDEV and DFCHI2 
DFDEV and DFCHI2 are statistics that measure the change in deviance and in Pearson’s chi-
square, respectively, that occurs when an observation is deleted from the dataset. Large values of 
these statistics indicate observations that have not been fitted well.  

The formulas for these statistics are 

JjCdDFDEV gjjgj ,,2,1    ,2 L=+=  

Jj
h
C
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Note that this formula matches Pregibon (1981) in the two-group case. In the multiple-group case, 
the two-group formula is applied to each group. 
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Predicted Probabilities 
This section describes how to calculate the predicted probabilities of group membership and 
associated confidence intervals. Recall that the regression equation is linear when expressed in 
logit form. That is,  
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The adjustment for the prior probabilities changes the value of the intercepts, so this expression 
may be simplified to 
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if we assume that the intercepts have been appropriately adjusted. Assuming that the estimated 
matrix of regression coefficients is distributed asymptotically as a multivariate normal, the point 
estimates of this quantity for a specific set of X values is given by 
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and the corresponding confidence interval is given by 

( )jgj2/ XVX′± αzl j  

where  is that portion of the covariance matrix gV ( )BV ˆ  that deals with the gth regression 
equation.  

When there are only two groups, these confidence limits can be inverted to give confidence limits 
on the predicted probabilities as 
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where 

jgj XVX′=Bσ  

When there are more than two groups, the confidence limits on the logits are still given by 

( )jgj2/ XVX′± αzl j  

However, this set of confidence limits of the logits cannot be inverted to give confidence limits 
for the predicted probabilities. We have found no presentation that gives an appropriate set of 
confidence limits. In order to provide an approximate answer, we provide approximate 
confidence limits by applying the inversion as if there were only two groups. This method ignores 
the correlation between the coefficients of the individual equations. However, we hope that it 
provides a useful approximation to the confidence intervals. 
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Subset Selection 
Subset selection refers to the task of finding a small subset of the available independent variables 
that does a good job of predicting the dependent variable. Because logistic regression must be 
solved iteratively, the task of finding the best subset can be very time consuming. Hence, 
techniques that search all possible combinations of the independent variables are not feasible. 
Instead, algorithms that add or remove a variable at each step must be used. Two such searching 
algorithms are available in this module: forward selection and forward selection with switching.  

Before discussing the details of these two algorithms, it is important to comment on a couple of 
issues that can come up. First of all, since there is more than one regression equation when there 
are more than two categories in the dependent variable, it is possible that a variable is important 
in one of the equations and not in the others. The algorithms presented here are based on the 
overall likelihood. This means that if an independent variable is important in at least one of the 
regression equations, it will be kept. 

A second issue is what to do with the individual-degree of freedom variables that are generated 
for a categorical independent variable. If such a variable has six categories, five binary variables 
are generated. You can see that with two or three categorical variables, a large number of binary 
variables may result, which greatly increases the total number of variables that must be searched. 
To avoid this problem, the algorithms search on model terms rather than on the individual binary 
variables. Thus, the whole set of binary variables associated with a given term are considered 
together for inclusion in, or deletion from, the model. It is all or none. Because of the time 
consuming nature of the algorithm, this is the only feasible way to deal with categorical variables. 
If you want the subset algorithm to deal with them individually, you can generate the set of binary 
variables manually and designate them as Numeric Variables. 

Hierarchical Models 
A third issue is what to do with interactions. Usually, an interaction is not entered in the model 
unless the individual terms that make up that interaction are also in the model. For example, the 
interaction term A*B*C is not included unless the terms A, B, C, A*B, A*C, and B*C are already 
in the model. Such models are said to be hierarchical. You have the option during the search to 
force the algorithm to consider only hierarchical models during its search. Thus, if C is not in the 
model, interactions involving C are not even considered. Even though the option for non-
hierarchical models is available, we recommend that you only consider hierarchical models. 

Forward Selection 
The method of forward selection proceeds as follows.  

1.  Begin with no terms in the model. 

2.  Find the term that, when added to the model, achieves the largest value of the log 
likelihood. Enter this term into the model. 

3.  Continue adding terms until a target value for the log-likelihood is achieved or until a 
preset limit on the maximum number of terms in the model is reached. Note that these 
terms can be limited to those keeping the model hierarchical. 

This method is comparatively fast, but it does not guarantee that the best model is found except 
for the first step when it finds the best single term. You might use it when you have a large 
number of observations and terms so that other, more time consuming, methods are not feasible. 
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Forward Selection with Switching 
This method is similar to the method of Forward Selection discussed above. However, at each 
step when a term is added, all terms in the model are switched one at a time with all candidate 
terms not in the model to determine if they increase the value of the log likelihood. If a switch can 
be found, it is made and the pool of terms is again searched to determine if another switch can be 
made. Note that this switching can be limited to those keeping the model hierarchical. 

When the search for possible switches does not yield a candidate, the subset size is increased by 
one and a new search is begun. The algorithm is terminated when a target subset size is reached 
or all terms are included in the model. 

Discussion 
These algorithms usually require two runs. In the first run, you set the maximum subset size to a 
large value such as 10. By studying the Subset Selection reports from this run, you can quickly 
determine the optimum number of terms. You reset the maximum subset size to this number and 
make the second run. This two-step procedure works better than relying on some F-to-enter and 
F-to-remove tests whose properties are not well understood to begin with. 

Data Structure 
The data given below are the first few rows of a set of data about leukemia patients published in 
Lee (1980). The response variable is whether leukemia remission occurred (REMISS). The 
independent variables are cellularity of the marrow clot section (CELL), smear differential 
percentage of blasts (SMEAR), percentage of absolute marrow leukemia cell infiltrate (INFIL), 
percentage labeling index of the bone marrow leukemia cells (LI), absolute number of blasts in 
the peripheral blood (BLAST), and the highest temperature prior to start of treatment (TEMP). 
This dataset is stored in the LEUKEMIA database in the Data directory. 

 

LEUKEMIA dataset (subset) 

REMISS CELL SMEAR INFIL LI BLAST TEMP 
1 80 83 66 190 11.6 996 
1 90 36 32 140 4.5 992 
0 80 88 70 80 0.5 982 
0 100 87 87 70 10.3 986 
1 90 75 68 130 2.3 980 
0 100 65 65 60 2.3 982 
1 95 97 92 100 16.0 992 
0 95 87 83 190 21.6 1020 

Missing Values 
If missing values are found in any of the independent variables being used, the row is omitted. If 
only the dependent variable is missing, the row will not be used in the formation of the coefficient 
estimates, but a predicted value will be generated for that row.  
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Dependent Variable 

Y: Group Variable 
This discrete variable identifies the group to which each observation belongs. Values may be text 
or numeric. The variable should have only a few unique values, such as 0 and 1, Yes and No, or 
A, B, and C. When there are only two unique values, the analysis is called logistic regression. 
When there are three or more unique values, the analysis is called multiple-group logistic 
regression. 

In a logistic regression with G groups, only G-1 logistic regression equations are needed. The 
group for which a regression equation is not created is called the reference group. This group is 
often the baseline group. In the analysis, the other groups are compared to this group. 

The reference group may be designated within parentheses after the name of the variable; 
otherwise, the reference group is determined by the Default Reference Group setting. For 
example, suppose the group variable, CATEGORY, has three values: A, B, and C. 

1. To designate A as the reference group, enter 'CATEGORY(A)' or change Default 
Reference Group to 'First Group after Sorting'. 

2. To designate B as the reference group, enter 'CATEGORY(B)'.  

3. To designate C as the reference group, enter 'CATEGORY(C)' or change Default 
Reference Group to 'Last Group after Sorting'. 

Default Reference Group 
This option specifies the default reference group for the logistic regression. The reference group 
is the group for which a regression equation is not created. In a logistic regression with G groups, 
only G-1 logistic regression equations are needed. This group is often the baseline group. 

• First Group after Sorting 
Use the first group in alpha-numeric sorted order as the reference group. 

• Last Group after Sorting 
Use the last group in alpha-numeric sorted order as the reference group. 

The reference group may also be designated within parentheses after the name of the Y: Group 
Variable name, in which case the default reference group is ignored. Suppose the group variable, 
CATEGORY, has four values: A, B, C, and D.  

1. If this option is set to 'First Group after Sorting' and the group variable is entered as 
'CATEGORY', the reference group would be A.  

2. If this option is set to 'Last Group after Sorting' and the group variable is entered as 
'CATEGORY', the reference group would be D.  
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3. If the group variable is entered as 'CATEGORY(B)', the choice for this setting would 
be ignored, and the reference value would be B. 

Frequency Variable 

Frequency Variable 
Specify an optional frequency (count) variable. This variable contains integers that represent the 
number of observations (or frequency) associated with each observation. 

If left blank, each observation has a frequency of one. This variable lets you modify that 
frequency. This is especially useful when your data are already tabulated and you want to enter 
the counts. 

Numeric Independent Variables 

X’s: Numeric Independent Variables 
Specify the numeric (continuous) independent variables. By numeric, we mean that the values are 
numeric and at least ordinal. Nominal variables, even when coded with numbers, should be 
specified as Categorical Independent Variables. Although you may specify binary (0-1) variables 
here, they are better analyzed when you specify them as Categorical Independent Variables. 

If you want to create powers and cross-products of these variables, specify an appropriate model 
in the ‘Custom Model’ field under the Model tab. 

If you want to create predicted values of Y for values of X not in your database, add the X values 
to the bottom of the database. They will not be used during estimation, but predicted values will 
be generated for them.  

Categorical Independent Variables 

X’s: Categorical Independent Variable(s) 
Specify categorical (nominal) independent variables in this box. By categorical we mean that the 
variable has only a few unique, numeric or text, values like 1, 2, 3 or Yes, No, Maybe. The values 
are used to identify categories.  

The values in a categorical variable are not used directly in the regression analysis. Instead, a set 
of numeric variables is substituted for them. Suppose a categorical variable has G categories. 
NCSS automatically generates the G-1 indicator variables that are needed for the analysis. The 
type of indicator variable created is determined by the selection for the Default Reference Value 
and the Default Contrast Type. The type of indicator created can also be controlled by entering 
the reference value and contrast type directly according to the syntax below. See the Default 
Reference Value and Default Contrast Type sections below for a discussion of the reference value 
and contrast type options.  

You can create the interactions among these variables automatically using the Custom Model 
field under the Model tab.  
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Syntax 
The syntax for specifying a categorical variable is VarName(RefValue;CType) where VarName is 
the name of the variable, RefValue is the reference value, and CType is the type of numeric 
variables generated: B for binary, P for polynomial, R for contrast with the reference value, and S 
for a standard set of contrasts.  

For example, suppose a categorical variable, STATE, has four values: Texas, California, Florida, 
and New York. To process this variable, the values are arranged in sorted order: California, 
Florida, New York, and Texas. Next, the reference value is selected. If a reference value is not 
specified, the default value specified in the Default Reference Value window is used. Finally, the 
method of generating numeric variables is selected. If such a method is not specified, the contrast 
type selected in the Default Contrast Type window is used. Possible ways of specifying this 
variable are 
STATE RefValue = Default, CType = Default 
STATE(New York) RefValue = New York, CType = Default 
STATE(California;R) RefValue = California, CType = Contrast with Reference 
STATE(Texas;S) RefValue = Texas, CType = Standard Set 

 

More than one category variable may be designated using a list. Examples of specifying three 
variables with various options are shown next. 
STATE  BLOODTYPE  GENDER 
STATE(California;R)  BLOODTYPE(O)  GENDER(F) 
STATE(Texas;S)  BLOODTYPE(O;R)  GENDER(F;B) 
 

Default Reference Value 
This option specifies the default reference value to be used when automatically generating 
indicator variables during the processing of selected categorical independent variables. The 
reference value is often the baseline, and the other values are compared to it. The choices are 

• First Value after Sorting 
Use the first value in alpha-numeric sorted order as the reference value. 

• Last Value after Sorting 
Use the last value in alpha-numeric sorted order as the reference value. 

The reference value may also be designated within parentheses after the name of the categorical 
independent variable, in which case the default reference value is ignored. For example, suppose 
that the categorical independent variable, STATE, has four values: 1, 3, 4, and 5.  

1. If this option is set to 'First Value after Sorting' and the categorical independent variable 
is entered as 'STATE', the reference value would be 1.  

2. If this option is set to 'Last Value after Sorting' and the categorical independent variable 
is entered as 'STATE', the reference value would be 5.  

3. If the categorical independent variable is entered as 'STATE(4)', the choice for this 
setting would be ignored, and the reference value would be 4. 
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Default Contrast Type 
Select the default type of numeric variable that will be generated when processing categorical 
independent variables. The values in a categorical variable are not used directly in regression 
analysis. Instead, a set of numeric variables is automatically created and substituted for them. 
This option allows you to specify what type of numeric variable will be created. The options are 
outlined in the sections below. 

The contrast type may also be designated within parentheses after the name of each categorical 
independent variable, in which case the default contrast type is ignored. 

If your model includes interactions of categorical variables, this option should be set to something 
other than 'Binary'. 

• Binary (This is the default) 
Categories are converted to numbers using a set of binary indicator variables by assigning a 
'1' to the active category and a '0' to all other values. For example, suppose a categorical 
variable has G categories. NCSS automatically generates the G-1 binary (indicator) variables 
that are used in the regression. These indicator variables are set to 1 for those rows in which 
the value of this variable is equal to a certain value. They are set to 0 otherwise. The G-1 
occurs because the Gth indicator variable is redundant (when all G-1 indicators are 0, wIfe 
know that the Gth indicator variable would be a 1). The value that is skipped is called the 
Reference Value. 

If your model includes interactions, using the binary indicator type may cause strange results.   

For the STATE variable, three binary variables would be generated. Suppose that the Default 
Contrast Type was 'Binary' and the statement used was 'STATE(Florida)'. The categories 
would be converted to numbers as follows: 

STATE B1 B2 B3 
California 1 0 0 
Florida 0 0 0 
New York 0 1 0 
Texas 0 0 1 

• Contrast with Reference 
Categories are converted to numbers using a set of contrast variables by assigning a '1' to the 
active category, a '-1' to the reference value, and a '0' to all other values. A separate contrast is 
generated for each value other than the reference value.  

For the STATE variable, three numeric variables would be generated. Suppose the Default 
Contrast Type was 'Contrast with Reference', the Default Reference Type was 'Last Value 
after Sorting', and the variable was entered as 'STATE'. The categories would be converted to 
numbers as follows: 

STATE R1 R2 R3 
California 1 0 0 
Florida 0 1 0 
New York 0 0 1 
Texas -1 -1 -1 
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• Polynomial 
If a variable has five or fewer categories, it can be converted to a set of polynomial contrast 
variables that account for the linear, quadratic, cubic, quartic, and quintic relationships. Note 
that these assignments are made after the values are sorted. Usually, the polynomial method 
is used on a variable for which the categories represent the actual values. That is, the values 
themselves are ordinal, not just category identifiers. Also, it is assumed that these values are 
equally spaced. Note that with this method, the reference value is ignored.  

For the STATE variable, linear, quadratic, and cubic variables are generated. Suppose that the 
Default Contrast Type was 'Polynomial' and the statement used was 'STATE'.  The categories 
would be converted to numbers as follows: 

STATE Linear Quadratic Cubic 
California -3 1 -1 
Florida -1 -1 3 
New York 1 -1 -3 
Texas 3 1 1 

• Standard Set 
A variable can be converted to a set of contrast variables using a standard set of contrasts. 
This set is formed by comparing each value with those below it. Those above it are ignored. 
Note that these assignments are made after the values are sorted. The reference value is 
ignored.  

For the STATE variable, three numeric variables are generated. Suppose that the Default 
Contrast Type was 'Standard Set' and the statement used was 'STATE'. The categories would 
be converted to numbers as follows: 

STATE S1 S2 S3 
California -3 0 0 
Florida 1 -2 0 
New York 1 1 -1 
Texas 1 1 1 

Validation 

Validation Variable 
This variable allows you to validate your logistic regression equations by forcing some 
observations to be ignored during the estimation phase and then predicted during the 
classification phase. This provides independent verification of your results. 

The values in this variable determine whether the observation is used during the estimation of the 
logistic regression. If the value of this variable is one, the observation is used in estimating the 
logistic regression coefficients. If the value of this variable is zero, this observation is not used 
during the estimation phase. However, it is used during the validation run in which the estimated 
regression equations are used to classify these observations. The results are displayed in the 
Classification of Validation Data report. 
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Alpha Level 

Alpha Level 
This is the alpha level used in the confidence limits of the odds ratios. 

Model Tab 
These options control the logistic regression model. 

Subset Selection 

Subset Selection 
This option specifies the subset selection algorithm used to reduce the number of independent 
variables used in the regression model. Note that since the solution algorithm is iterative, the 
selection process can be very time consuming. The Forward algorithm is much quicker than the 
Forward with Switching algorithm, but the Forward algorithm does not usually find as good of a 
model.  

Also note that in the case of categorical independent variables, the algorithm searches among the 
original categorical variables, not among the generated individual binary variables. That is, either 
all numeric variables associated with a particular categorical variable are included or not—they 
are not considered individually. 

Hierarchical models are such that if an interaction is in the model, so are the terms that can be 
derived from it. For example, if A*B*C is in the model, so are A, B, C, A*B, A*C, and B*C. 
Statisticians usually adopt hierarchical models rather than non-hierarchical models. The subset 
selection procedure can be made to consider only hierarchical models during its search. 

The subset selection options are: 

• None 
No subset selection is attempted. All specified independent variables are used in the logistic 
regression equation. 

• (Hierarchical) Forward 
With this algorithm, the term with the largest log likelihood is entered into the model. Next, 
the term that increases the log likelihood the most is added. This selection is continued until 
all the terms have been entered or until the maximum subset size has been reach. 

If hierarchical models are selected, only those terms that will keep the model hierarchical are 
candidates for selection. For example, the interaction term A*B will not be considered unless 
both A and B are already in the model. 

When using this algorithm, you must make one run that allows a large number of terms to 
find the appropriate number of terms. Next, a second run is made in which you decrease the 
maximum terms in the subset to the number after which the log likelihood does not change 
significantly. 
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• (Hierarchical) Forward with Switching 
This algorithm is similar to the Forward algorithm described above. The term with the largest 
log likelihood is entered into the regression model. The term which increases the log 
likelihood the most when combined with the first term is entered next. Now, each term in the 
current model is removed and the rest of the terms are checked to determine if, when they are 
used instead, the likelihood function is increased. If a term can be found by this switching 
process, the switch is made and the whole switching operation is begun again. The algorithm 
continues until no term can be found that improves the likelihood. This model then becomes 
the best two-term model.  

Next, the subset size is increased by one, the best third term is entered into the model, and the 
switching process is repeated. This process is repeated until the maximum subset size is 
reached. Hence, this model finds the optimum subset for each subset size. You must make 
one run to find an appropriate subset size by looking at the change in the log likelihood. You 
then reset the maximum subset size to this value and rerun the analysis. 

If hierarchical models are selected, only those terms that will keep the model hierarchical are 
candidates for addition or deletion. For example, the interaction term A*B will not be 
considered unless both A and B are already in the model. Likewise, the term A cannot be 
removed from a model that contains A*B. 

Max Terms in Subset 
Once this number of terms has been entered into the model, the subset selection algorithm is 
terminated. Often you will have to run the Logistic Regression procedure twice to find an 
appropriate value. You would set this value high for the first run and then reset it appropriately 
for the second run, depending upon the values of the log likelihood. 

Note that the intercept is counted in this number. 

Estimation Options 
The following options are used during the likelihood maximization process. 

Maximum Iterations 
The value specifies the maximum number of iterations allowed during the iteration procedure. If 
this number is reached, the procedure is terminated prematurely. Usually, no more than ten 
iterations are necessary for the algorithm to converge. If you reach this maximum before normal 
convergence occurs, you should try doubling this number. If the algorithm still does not converge 
before this maximum is reached, you should try omitting (or adding) other independent variables. 

This value is used to prevent an infinite loop. 

Iteration Termination 
Unless the Maximum Iteration limit is reached, the maximum likelihood algorithm continues 
iterating until the relative change in the log likelihood from one step to the next is less than this 
amount. The smaller it is, the larger the average number of iterations that will be needed to solve 
the maximum likelihood equations. 
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Prior Probabilities 
The prior probabilities are your estimates of the probabilities that a new individual falls in each 
group. Among other things, this value will change the estimated intercept(s). 

• Equal Priors 
If this option is left blank, the prior probabilities of group membership are assumed equal and 
only the data values are used in the classification process.  

• Numeric List 
Blanks or commas are used to separate the numbers in the list that represents the prior 
probabilities of group membership. You do not have to enter decimal points since the 
numbers you enter will be scaled so that they sum to one. For example, you could enter ‘4 4 
2’ or ‘2 2 1’ when you have three groups whose population proportions are known to be 0.4, 
0.4, and 0.2, respectively. Care must be taken that the number of entries matches the number 
of groups. 

• Ni/N 
Enter ‘Ni/N’ when you want the priors to be estimated from group frequencies in the dataset. 
For example, say you have samples of 50, 100, and 250 from three groups and you select this 
option. The estimated priors would be 50/400=0.125, 100/400=0.25, and 250/400=0.625. 

Model Specification 

Which Model Terms 
This option specifies which terms (terms, powers, cross-products, and interactions) are included 
in the regression model. For a straight-forward logistic regression model, select Up to 1-Way.  

The options are: 

• Full Model 
The complete, saturated model (all terms and their interactions) is generated. This requires a 
dataset with no missing categorical-variable combinations (you can have unequal numbers of 
observations for each combination of the categorical variables). 

For example, if you have three independent variables A, B, and C, this would generate the 
model: 

A + B + C + A*B + A*C + B*C + A*B*C  

Note that the discussion of the Custom Model option discusses the interpretation of this 
model. 

• Up to 1-Way 
This option generates a model in which each variable is represented by a single model term. 
No cross-products or interaction terms are added. Use this option when you want to use the 
variables you have specified, but you do not want to generate other terms.  

This is the option to select when you want to analyze the independent variables specified 
without adding any other terms. 
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For example, if you have three independent variables A, B, and C, this would generate the 
model: 

A + B + C 

• Up to 2-Way 
This option specifies that all main effects and two-way interactions are included in the model. 
For example, if you have three independent variables A, B, and C, this would generate the 
model: 

A + B + C + A*B + A*C + B*C 

• Up to 3-Way 
All main effects, two-way interactions, and three-way interactions are included in the model. 
For example, if you have three independent variables A, B, and C, this would generate the 
model: 

A + B + C + A*B + A*C + B*C + A*B*C 

• Up to 4-Way 
All main effects, two-way interactions, three-way interactions, and four-way interactions are 
included in the model. For example, if you have four independent variables A, B, C, and D, 
this would generate the model: 

A + B + C + D + A*B + A*C + A*D + B*C + B*D + C*D + A*B*C + A*B*D + A*C*D + 
B*C*D + A*B*C*D 

• Custom Model 
The model specified in the Custom Model box is used. 

Include Intercept 
Check this box to include the intercept (B0) in the model. Under most circumstances, you will 
want to include an intercept in your model.  

Write Model in Custom Model Field 
When this option is checked, no data analysis is performed when the procedure is run. Instead, a 
copy of the full model is stored in the Custom Model box. You can then edit the model as desired. 
This option is useful when you have several variables and you want to be selective about which 
terms are used. 

Note that the program will not do any calculations while this option is checked. 

Model Specification – Custom Model 

Max Term Order 
This option specifies that maximum number of variables that can occur in an interaction term in a 
custom model. For example, A*B*C is a third order interaction term and if this option were set to 
2, the A*B*C term would be excluded from the model. 

This option is particularly useful when used with the bar notation of a custom model to allow a 
simple way to remove unwanted high-order interactions. 
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Custom Model 
This options specifies a custom model. It is only used when the Which Model Terms option is set 
to Custom Model. A custom model specifies the terms (single variables and interactions) that are 
to be kept in the model.  

Interactions 
An interaction expresses the combined relationship between two or more variables and the 
dependent variable by creating a new variable that is the product of the variables. The interaction 
between two numeric variables is generated by multiplying them. The interaction between to 
categorical variables is generated by multiplying each pair of indicator variables. The interaction 
between a numeric variable and a categorical variable is created by generating all products 
between the numeric variable and the indicator variables generated from the categorical variable.  

Syntax 
A model is written by listing one or more terms.  The terms are separated by a blank or plus sign. 
Terms include variables and interactions. Specify regular variables (main effects) by entering the 
variable names. Specify interactions by listing each variable in the interaction separated by an 
asterisk (*), such as Fruit*Nuts or A*B*C.  

You can use the bar (|) symbol as a shorthand technique for specifying many interactions quickly. 
When several variables are separated by bars, all of their interactions are generated. For example, 
A|B|C is interpreted as A + B + C + A*B + A*C + B*C + A*B*C. 

You can use parentheses. For example, A*(B+C) is interpreted as A*B + A*C. 

Some examples will help to indicate how the model syntax works: 

A|B = A + B + A*B 

A|B A*A B*B = A + B + A*B + A*A + B*B 

Note that you should only repeat numeric variables. That is, A*A is valid for a numeric variable, 
but not for a categorical variable. 

A|A|B|B (Max Term Order=2) = A + B + A*A + A*B + B*B 

A|B|C = A + B + C + A*B + A*C + B*C + A*B*C 

(A + B)*(C + D) = A*C + A*D + B*C + B*D 

(A + B)|C = (A + B) + C + (A + B)*C = A + B + C + A*C + B*C 

Reports Tab 
The following options control which reports are displayed. 

Select Reports – Summaries 

Run Summary and Response Analysis 
Each of these options specifies whether the indicated report is calculated and displayed.  
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Select Reports – Subset Selection 

Subset Selection - Summary and Subset Selection - Detail 
Indicate whether to display these subset selection reports.  

Select Reports – Estimation 

Parameter Significance Tests ... Write Estimated Model 
Indicate whether to display these estimation reports.  

Select Reports – Goodness-of-Fit 

Analysis of Deviance and Log-Likelihood / R-Squared 
Indicate whether to display these model goodness-of-fit reports.  

Select Reports – Classification 

Classification Matrix ... ROC Report 
Indicate whether to display these classification reports.  

Select Reports – Row-by-Row Lists 

Row Classification Report ... Simple Residuals Report 
This option specifies which rows, if any, are displayed on the row classification, row 
probabilities, and simple residuals reports. When you have a lot of data, you may wish to limit 
this report to only those rows that were classified incorrectly. 

Note that Unused Rows are those that were not used during the parameter estimation phase. 
However, group probabilities are still generated for these rows. 

Residuals ... Residual Diagnostics 
Indicate whether to display these list reports. Note that since these reports provide results for each 
row, they may be too long for normal use when requested on large databases. 

Select Plots 

Y vs X Plot ... Pr(Correct) vs Cutoff Plot 
Indicate whether to display these plots.  
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Format Tab 
The following options control the format of the reports. 

Report Options 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also, note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option applies to the Group Variable. It lets you select whether to display data values, value 
labels, or both. Use this option if you want the output to automatically attach labels to the values 
(like 1=Yes, 2=No, etc.). See the section on specifying Value Labels elsewhere in this manual.  

Skip Line After 
The names of the indicator variables can be too long to fit in the space provided. If the name 
contains more characters than the number specified here, only the name is shown on the first line 
of the report and the rest of the output is placed on the next line. 

Enter 1 when you want the each variable’s results printed on two lines. 

Enter 100 when you want each variable’s results printed on a single line. 

Report Options – Decimal Places 

Probability ... DFBeta Decimals 
Specify the number of digits after the decimal point to display on the output of values of this type. 
Note that this option in no way influences the accuracy with which the calculations are done. 

Enter 'All' to display all digits available. The number of digits displayed by this option is 
controlled by whether the PRECISION option is SINGLE or DOUBLE. 

Report Options – ROC Curves and 
Prob(Correct) vs Cutoff Plot 
Options 

Number Cutoffs  
The probability range (0 to 1) is divided into this many cutoff points and a point for the ROC 
curve is generated for each. To accurately compute the area under the ROC curve a value of at 
least 29 should be used here. Values ending in 9, such as 19, 29, or 39, provide the best scales of 
the PC plot. 
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Y vs X, Residual vs X, ROC, and Prob vs Cutoff Plot Tabs 
These options control the attributes of the various plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Show Row Number 
Specify whether to display each point’s row number next to the symbol on the plot. 

Skip Reference Group (Residual vs X Plots only) 
When checked, the residuals associated with the equation for the reference group are not 
displayed on the residual plots, since they are redundant and tend to clutter the plot. This option is 
most useful when the dependent variable has only two groups. 

Plot Settings – Legend 

Show Legend 
Specify whether to display the legend. 

Legend Text 
Specify the text of the legend title. The characters {G} are replaced with an appropriate legend 
title, such as the group variable name. 
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Titles 

Plot Title 
This option contains the text of the plot title. The characters {Y} and {X} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 

Symbols/Lines Tab 
These options specify the attributes of the symbols and lines used for each group in the various 
plots. 

Plotting Symbols 

Symbol 1 – 15 
These options specify the attributes of the symbols used in the plots. The first symbol is used by 
the first group, the second symbol by the second group, and so on. 

Clicking on a symbol box (or the small button to the right of the line box) will bring up a window 
that allows the attributes to be changed. 

Plotting Lines 

Line 1 – 15 
These options specify the color, width, and pattern of the lines used in the plots. The first line is 
used by the first group, the second line by the second group, and so on. These line attributes are 
provided to allow the various groups to be indicated on black-and-white printers. 

Clicking on a line box (or the small button to the right of the line box) will bring up a window 
that allows the color, width, and pattern of the line to be changed. 

Storage Tab 
These options let you specify if, and where on the database, various statistics are stored. 

Warning: Any data already in these variables are replaced by the new data. Be careful not to 
specify variables that contain important data. 

Data Storage Options 

Storage Option 
This option controls whether the values indicated below are stored on the database when the 
procedure is run. 

• Do not store data 
No data are stored even if some of the storage items are checked. 

• Store in empty columns 
The values are stored in empty columns only. Columns containing data are not used for data 
storage, so no data can be lost. 
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• Store in all columns 
Beginning at the First Storage Variable, the values are stored in this column and those to the 
right. If a column contains data, the data are replaced by the storage values. Care must be 
used with this option because it cannot be undone. 

Store First Variable In 
The first item is stored in this variable. Each additional item that is checked is stored in the 
variables immediately to the right of this variable.  

Leave this value blank if you want the data storage to begin in the first blank column on the right-
hand side of the data. 

Warning: any existing data in these variables is automatically replaced, so be careful. 

Data Storage Options – Select Items 
to Store on the Spreadsheet 

Expanded X Values ... Covariance Matrix 
Indicate whether to store these row-by-row values, beginning at the variable indicated by the 
Store First Variable In option. Note that several of these values include a different value for each 
group and so they require several columns when they are stored. 

Expanded X Values 
This option refers to the experimental design matrix. They include all binary and interaction 
variables generated.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Logistic Regression Analysis 
This section presents an introductory example of how to run a logistic regression analysis. The 
data used are stored in the LEUKEMIA database. In this analysis, a logistic regression will be run 
to determine the relationship between CELL, LI, and TEMP on the binary dependent variable 
REMISS.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Logistic Regression window. 

1 Open the LEUKEMIA dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file LEUKEMIA.S0. 
• Click Open. 

2 Open the Logistic Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Logistic 

Regression. The Logistic Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Logistic Regression window, select the Variables tab.  
• Double-click in the Y: Group Variable box. This will bring up the variable selection 

window.  
• Select REMISS from the list of variables and then click Ok. “REMISS” will appear in 

the Y: Group Variable box.  
• Click on the Default Reference Group box and select Last Group after Sorting. 
• Double-click in the X’s: Numeric Independent Variables box. This will bring up the 

variable selection window.  
• Select CELL, LI, TEMP from the list of variables and then click Ok. “CELL,LI,TEMP” 

will appear in the X’s: Numeric Independent Variables box. Remember to use the Ctrl 
key to select non-contiguous variables from the list. 

4 Specify the reports. 
• Select the Reports tab. 
• Set the options Row Classification Report, Row Classification Probabilities Report, 

and Simple Residuals Report to All Rows. 
• Check all reports except Subset Selection - Summary, Subset Selection - Detail, and 

Validation Matrix. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Run Summary Section 
 
Parameter Value Parameter Value 
Dependent Variable REMISS Rows Processed 29 
Reference Group 1 Rows Used 27 
Number of Groups 2 Rows for Validation 0 
Frequency Variable None Rows X's Missing 0 
Numeric Ind. Variables 3 Rows Freq Miss. or 0 0 
Categorical Ind. Variables 0 Rows Prediction Only 2 
Final Log Likelihood -10.97669 Unique Row Patterns 28 
Model R-Squared 0.36130 Sum of Frequencies 27 
Actual Convergence 2.94261E-07 Likelihood Iterations 7 
Target Convergence 0.000001 Maximum Iterations 20 
Model D.F. 4 Max Like Message Normal Completion 
Model CELL|LI|TEMP 
 

This report provides useful information about the reports to follow. It should be studied to make 
sure that the data were read in properly and that the logistic regression procedure terminated 
normally. We will only discuss those parameters that need special explanation. 

Reference Group 
The reference group is that category of the dependent variable that is defined implicitly in terms 
of the other categories. This is the category that is skipped on much of the output. If you did not 
specify the reference group with the Y Variable, the reference group is chosen according to the 
'Default Reference Group' setting. This value is critical to interpretation of the rest of the output.  

Number of Groups 
This is the number of unique categories that were found for the dependent variable. Check this 
count to make certain it agrees with what you anticipated. 

Final Log Likelihood 
This is the log likelihood of the model that is reported on here.  

Model R-Squared 
This is the R-Squared that was achieved by your regression. Read the discussion of R-Squared 
that was given earlier to better understand how to interpret R-Squared in the case of logistic 
regression.  

Actual and Target Convergence 
The Target Convergence is the amount that is used to stop the iterative fitting of the maximum 
likelihood algorithm. If the Actual Convergence amount is larger than the Target amount, the 
algorithm ended before converging and care must be taken in using any of the results. If this 
happens, the usual remedy is to increase the maximum number of iterations. If this does not solve 
the problem, you will have to change the variables in the model. 

Rows Processed, Used, etc. 
These values record how many of each type of observation were encountered when the database 
was read. You should make sure that these amounts are what you expect. 

Unique Row Patterns 
This gives the number of unique patterns found in the variables. Both the dependent and 
independent variables are considered in forming this count. 
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Likelihood and Maximum Iterations 
The Likelihood Iterations are the number of iterations necessary to solve the likelihood equations. 
Usually, fewer than ten iterations are necessary. If the number of Likelihood Iterations is equal to 
the Maximum Iterations, the maximum likelihood algorithm did not converge and you should 
take some remedial action such as increasing the Maximum Iterations or changing the regression 
model. 

Max Like Message 
This is the message that was returned when the maximum likelihood algorithm ended. Unless the 
message “Normal Completion” is received, you should take appropriate corrective action. 

Model D.F. 
This is the number of degrees of freedom in the G-1 logistic regression models. 

Model 
This is an abbreviated representation of the regression model that was fit to the data. 

Response Analysis Section 
 
REMISS  Unique  Act vs Pred % Correctly 
Categories Count Rows Prior R-Squared Classified 
0 18 17 0.50000 0.17842 83.333 
1 9 9 0.50000 0.32704 77.778 
Total 27 26   81.481 
 

This report describes the dependent variable. Use it to understand the dependent variable and how 
well the regression model approximates it. 

Categories 
These are the unique values found for the dependent variable. Check to make sure that no 
unexpected categories were found.  

Count 
This is the sum of the frequencies (counts) for each category of the dependent variable.  

Unique Rows 
This is the number of unique rows in each category as determined by the values of the 
independent variables.  

Prior 
This is the prior probability of each category as given by the user in the Prior Probabilities option 
box. 

Act vs Pred R-Squared 
This is the R-Squared that is achieved when the indicator variable for this category is regressed 
on the predicted probability of being in this category.  

% Correctly Classified 
This is the percent of the observations from this category that were correctly classified as such by 
the multinomial logistic regression model.  
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Parameter Significance Tests Section 
 
Parameter Significance Tests Section (Reference Group: REMISS = 1) 
 Regression  Wald Wald Odds 
 Coefficient Standard Z-Value Prob Ratio 
Parameter (B or Beta) Error (Beta=0) Level Exp(B) 
B0: Intercept -68.32696 56.88604 -1.201 0.22970 0.00000 
B1: CELL -9.65213 7.75107 -1.245 0.21303 0.00006 
B2: LI -3.86710 1.77828 -2.175 0.02966 0.02092 
B3: TEMP 82.07365 61.71233 1.330 0.18354 10000+ 
 

This report gives the estimated logistic regression equation and associated significance tests. The 
reference group of the dependent variable is shown in the title. If the dependent variable has more 
than two categories, the appropriate information is displayed for each of the G-1 equations. 

Parameter 
This is the variable from the model that is displayed on this line. If the variable is continuous, it is 
displayed directly. If the variable is discrete, the definition of the binary variable that was 
generated is given. For example, suppose that a discrete independent GRADE variable has three 
values: A, B, and C. The name shown here would be something like B2: GRADE=B. This refers 
to a binary variable that is one for those rows in which GRADE  was B and zero otherwise. 

Note that the placement of the name is controlled by the Skip Line After option of the Format tab. 

Regression Coefficient (B or Beta) 
This is the estimated value of the corresponding regression coefficient, sometimes referred to as 
B or Beta. The interpretation of the regression coefficients is difficult. We refer you to the 
discussion given at that beginning of this chapter for more details. 

Standard Error 
This is , the large-sample estimate of the standard error of the regression coefficient. This is 

an estimate of the precision of the regression coefficient. It is used as the denominator of the 
Wald test. 

sb j

Wald Z-Value (Beta=0) 
This is the z value of the Wald test used for testing the hypothesis that βgj = 0  against the 
alternative βgj ≠ 0 . The Wald test is calculated using the formula  

z
b
sgj

gj

bgj

=  

The distribution of the Wald statistic is closely approximated by the normal distribution in large 
samples. However, in small samples, the normal approximation may be poor. For small samples, 
the deviance tests should be used instead to test significance since they perform better. 

One problem that occurs in multiple-group logistic regression is that the test may be significant 
for the regression coefficient associated with one category, but not for the same coefficient 
associated with another category. In this case, we recommend that the independent variable be 
kept in the model if it is significant in at least one of the G-1 regression equations.  
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Wald Prob Level 
This is the significance level of the Wald test. If this value is less than some predefined alpha 
level, say 0.05, the variable is said to be statistically significant. Otherwise, the variable is not 
significant. 

Odds Ratio Exp(B) 
This is the estimated odds ratio associated with this regression coefficient. It is only useful for 
binary independent variables in which the two values are zero and one. These are the values that 
are generated for categorical independent variables. The formula used is 

OR eb=   

Because of formatting limitations, the value is not displayed if it is larger than 10000. 

Parameter Confidence Limits Section 
 
Parameter Confidence Limits Section (Reference Group: REMISS = 1) 
 Regression  Lower 95% Upper 95% Odds 
 Coefficient Standard Confidence Confidence Ratio 
Parameter (B or Beta) Error Limit Limit Exp(B) 
B0: Intercept -68.32696 56.88604 -179.82155 43.16763 0.00000 
B1: CELL -9.65213 7.75107 -24.84394 5.53968 0.00006 
B2: LI -3.86710 1.77828 -7.35245 -0.38174 0.02092 
B3: TEMP 82.07365 61.71233 -38.88029 203.02760 10000+ 
 

This report gives the estimated logistic regression equation and associated confidence limits. The 
reference group of the dependent variable is shown in the title. If the dependent variable has more 
than two categories, the information is displayed for each of the G-1 equations. 

Parameter 
This is the independent variable that is displayed on this line. If the variable is continuous, it is 
displayed directly. If the variable is discrete, the definition of the binary variable that was 
generated is given. For example, suppose that a discrete independent GRADE variable has three 
values: A, B, and C. The name shown here would be something like B2: GRADE=B. This refers 
to a binary variable that is one for those rows in which GRADE  was B and zero otherwise. 

Note that the placement of the name is controlled by the Skip Line After option of the Format tab. 

Regression Coefficient (B or Beta) 
This is the estimated value of the regression coefficient, sometimes referred to as B or Beta. The 
interpretation of the regression coefficients is difficult. We refer you to the discussion given at 
that beginning of this chapter for more details. 

Standard Error 
This is , the large-sample estimate of the standard error of the regression coefficient. This is 

an estimate of the precision of the regression coefficient. It is used as the denominator of the 
Wald test. 

sb j
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Confidence Limits 
These are the lower and upper confidences limits for βgj  based on the Wald statistic. These 
confidence limits are use the formula  

b z sgj bgj
± −1 2α /  

Since they are based on the Wald test, they are only valid for large samples. 

Odds Ratio Exp(B) 
This is the estimated odds ratio associated with this regression coefficient. It is only useful for 
binary independent variables in which the two values are zero and one. These are the values that 
are generated for categorical independent variables. The formula used is 

OR eb=   

Because of formatting limitations, the value is not displayed if it is larger than 10000. 

Odds Ratio Estimation Section 
 
Odds Ratios Section (Reference Group: REMISS = 1) 
 Regression Odds Lower 95% Upper 95% 
 Coefficient Ratio Confidence Confidence 
Parameter (B or Beta) Exp(B) Limit Limit 
B0: Intercept -68.32696 0.00000 0.00000 10000+  
B1: CELL -9.65213 0.00006 0.00000 254.59635  
B2: LI -3.86710 0.02092 0.00064 0.68267  
B3: TEMP 82.07365 10000+ 0.00000 10000+  
 

This report presents estimates of the odds ratios and associated confidence limits associated with 
each variable in the model. 

Parameter 
This is the independent variable that is displayed on this line. If the variable is continuous, it is 
displayed directly. If the variable is discrete, the definition of the binary variable that was 
generated is given. For example, suppose that a discrete independent GRADE variable has three 
values: A, B, and C. The name shown here would be something like B2: GRADE=B. This refers 
to a binary variable that is one for those rows in which GRADE  was B and zero otherwise. 

Note that the placement of the name is controlled by the Skip Line After option of the Format tab. 

This is the estimated value of the corresponding regression coefficient, sometimes referred to as 
B or Beta. The interpretation of the regression coefficients is difficult. We refer you to the 
discussion given at that beginning of this chapter for more details. 

Odds Ratio Exp(B) 
This is the estimated odds ratio associated with this regression coefficient. It is only useful for 
binary independent variables in which the two values are zero and one. These are the values that 
are generated for categorical independent variables. The formula used is 

OR eb=   

Because of formatting limitations, the value is not displayed if it is larger than 10000. 
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Confidence Limits 
The lower and upper confidence limits yield an interval estimate of the odds ratio. The confidence 
coefficient is one minus alpha. Thus, when alpha is 0.05, the confidence coefficient is 0.95 or 
95%. The formula used is  

e b z Si bi( )/± −1 2α  

Since these confidence limits are based on Wald statistics, they are only valid for large samples. 

Estimated Logistic Regression Model(s) 
 
Model For REMISS = 0 
-68.3269603055054 -9.65212973757993*CELL -3.86709587172716*LI + 82.0736535775605*TEMP 
 
Note that each model estimates B for a specific group, where Logit(Y) = XB.  
To calculate a probability, transform the logit using Prob(Y=group) = 1/(1+Exp(-XB))  
or Prob(Y<>group) = Exp(-XB)/(1+Exp(-XB)). 
 
Transformation Note: 
Regular transformations must be less the 255 characters. If this expression is longer the 255 characters, 
copy this expression and paste it into a text file, then use the transformation FILE(filename.txt) 
access the text file. 
 

This report gives the logistic regression model in a regular text format that can be used as a 
transformation formula. A separate model is displayed for each of the G-1 categories of the 
dependent variable. The regression coefficients are displayed in double precision because a 
single-precision formula does not include the accuracy necessary to calculate the scores (logits) 
and predicted probabilities. 
Note that a transformation must be less than 255 characters. Since these formulas are often 
greater than 255 characters in length, you must use the FILE(filename) transformation. To do so, 
copy the formula to a text file using Notepad, Windows Write, or Word to receive the model text. 
Be sure to save the file as an unformatted text (ASCII) file. The transformation is FILE(filename) 
where filename is the name of the text file, including directory information. When the 
transformation is executed, it will load the file and use the transformation stored there. 

Analysis of Deviance Section 
 
   Increase   
   From Model   
Term   Deviance Prob  
Omitted DF Deviance (Chi Square) Level  
All 3 34.37177 12.41839 0.00608   
CELL 1 24.64782 2.69445 0.10070  
LI 1 30.82856 8.87518 0.00289  
TEMP 1 24.34072 2.38734 0.12232  
None(Model) 3 21.95337  
   

This report is the logistic regression analog of the analysis of variance table. It displays the results 
of a chi-square test used to test whether each of the individual terms in the regression are 
statistically significant after adjusting for all other terms in the model.  
This report is not produced during a subset selection run. 

Note that this report requires that a separate logistic regression be run for each line. Thus, if the 
running time is too long, you might consider omitting this report. 
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Term Omitted 
This is the model term that is being tested. The test is formed by comparing the deviance statistic 
when the term is removed with the deviance of the complete model. Thus, the deviance when the 
term is left out of the model is shown. 

The “All” line refers to the intercept-only model. This line tests the significance of the full model. 
The “None(Model)” refers to the complete model with no terms removed. 

Note that it is usually not advisable to include an interaction term in a model when one of the 
associated main effects is missing—which is what happens here. However, in this case, we 
believe this to be a useful test. 

Note that the name may become very long, especially for interaction terms. These long names 
may misalign the report. You can force the rest of the items to be printed on the next line by using 
the Skip Line After option in the Format tab. This should create a better looking report when the 
names are extra long. 

DF 
This is the degrees of freedom of the chi-square test displayed on this line. DF is equal to (G-
1)DFt where DFt is the degrees of freedom of the term. 

Deviance 
The deviance is equal to minus two times the log likelihood achieved by the model being 
described on this line of the report. See the discussion given earlier in this chapter for a technical 
discussion of the deviance. A useful way to interpret the deviance is as the analog of the residual 
sum of squares in multiple regression. This value is used to create the difference in deviance that 
is used in the chi-square test. 

Increase From Model Deviance (Chi Square) 
This is the difference between the deviance for the model described on this line and the deviance 
of the complete model. This value follows the chi-square distribution in medium to large samples. 
See the discussion given earlier in this chapter for a technical discussion of this value. This value 
can be thought of as the analog of the residual sum of squares in multiple regression. Thus, you 
can think of this value as the increase in the residual sum of squares that occurs when this term is 
removed from the model. 

Another way to interpret this test is as a redundancy test because it tests whether this term is 
redundant after considering all of the other terms in the model. 

Note that the first line gives a test for the whole model. 

Prob Level 
This is the significance level of the chi-square test. This is the probability that a chi-square value 
with degrees of freedom DF is equal to this value or greater. If this value is less than 0.05 (or 
other appropriate value), the term is said to be statistically significant. 
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Log Likelihood & R-Squared Section 
 
   R-Squared Reduction Reduction 
Term(s)  Log Of Remaining From Model From Saturated 
Omitted DF Likelihood Term(s) R-Squared R-Squared 
All 1 -17.18588 0.00000   
CELL 1 -12.32391 0.28290 0.07839 0.71710 
LI 1 -15.41428 0.10308 0.25821 0.89692 
TEMP 1 -12.17036 0.29184 0.06946 0.70816 
None(Model) 3 -10.97669 0.36130 0.00000 0.63870 
None(Saturated) 28 0.00000 1.00000  0.00000 
 

This report provides the log likelihoods and R-squared values of various models. This report is 
not produced during a subset selection run. 
Note that this report requires that a separate logistic regression be run for each line. Thus, if the 
running time is too long, you might consider omitting this report. 

Term Omitted 
This is the term that is omitted from the model. The “All” line refers to the intercept-only model. 
The “None(Model)” refers to the complete model with no terms removed. The “None(Saturated)” 
line gives the results for the saturated model. 

Note that the name may become very long, especially for interaction terms. These long names 
may misalign the report. You can force the rest of the items to be printed on the next line by using 
the Skip Line After option in the Format tab. This should create a better looking report when the 
names are extra long. 

DF 
This is the degrees of freedom of the term displayed on this line. DF is equal to (G-1)DFt where 
DFt is the degrees of freedom of the term. 

Log Likelihood 
This is the log likelihood of the model displayed on this line. Note that this is the log likelihood 
of the logistic regression without the term listed. 

R-Squared of Remaining Term(s) 
This is the R-squared of the model displayed on this line, . Note that the model does not 
include the term listed at the beginning of the line.  

RL
2

This R-squared is analogous to the R-squared in multiple regression, but it is not the same. This 
value is discussed in detail under the heading R-Squared above. Refer to that section for more 
details about this statistic. We repeat the summary of the interpretation of R-squared in logistic 
regression. 

Hosmer and Lemeshow (1989) recommend against the use  as a goodness of fit measure. 
However, we have included it in our output because it does provide a comparative measure of the 
proportion of the log likelihood that is accounted for by the model. Just remember than an  
value of 1.0 indicates that the logistic regression model achieves the same log likelihood as the 
saturated model. However, this does not mean that it fits the data perfectly. Instead, it means that 
it fits the data as well as could be hoped for.  

RL
2

RL
2
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Reduction From Model R-Squared 
This is amount that R-squared is reduced when the term is omitted from the regression model. 
This reduction is calculated from the R-squared achieved by the full model. 

This quantity is used to determine if removing a term causes a large reduction in R-squared. If it 
does not, then the term can be safely removed from the model. 

Reduction From Saturated R-Squared 
This is the amount that R-squared is reduced when the term is omitted from the regression model. 
This reduction is calculated from the R-squared achieved by the saturated model. This item is 
included because it shows how removal of this term impacts the best R-squared that is possible. 

Classification Table 
 
 Estimated 
Actual 0 1 Total 
0 15 3 18 
1 2 7 9 
Total 17 10 27 
Percent Correctly classified = 81.5% 
 

This table displays the results of classifying the data based on the logistic regression equations. 
The table presents the counts for each category. 
The Percent Correctly Classified is also presented. This is the percent of the total count that fall 
on the diagonal of the table. 

ROC Section 
 
ROC Section for Value 0 
Prob N(1|1) N(1|0) N(0|1) N(0|0) Sensitivity Specificity Sensitivity Proportion  
Cutoff A B C D A/(A+C) D/(B+D) +Specificity Correct  
0.05000 18 8 0 1 1.00000 0.11111 1.11111 0.70370  
0.10000 17 8 1 1 0.94444 0.11111 1.05556 0.66667  
0.15000 17 8 1 1 0.94444 0.11111 1.05556 0.66667  
0.20000 17 5 1 4 0.94444 0.44444 1.38889 0.77778  
0.25000 16 4 2 5 0.88889 0.55556 1.44444 0.77778  
0.30000 15 3 3 6 0.83333 0.66667 1.50000 0.77778  
0.35000 15 3 3 6 0.83333 0.66667 1.50000 0.77778  
0.40000 15 2 3 7 0.83333 0.77778 1.61111 0.81481  
0.45000 15 2 3 7 0.83333 0.77778 1.61111 0.81481  
0.50000 15 2 3 7 0.83333 0.77778 1.61111 0.81481  
0.55000 15 1 3 8 0.83333 0.88889 1.72222 0.85185  
0.60000 12 0 6 9 0.66667 1.00000 1.66667 0.77778  
0.65000 11 0 7 9 0.61111 1.00000 1.61111 0.74074  
0.70000 11 0 7 9 0.61111 1.00000 1.61111 0.74074  
0.75000 9 0 9 9 0.50000 1.00000 1.50000 0.66667  
0.80000 9 0 9 9 0.50000 1.00000 1.50000 0.66667  
0.85000 8 0 10 9 0.44444 1.00000 1.44444 0.62963  
0.90000 7 0 11 9 0.38889 1.00000 1.38889 0.59259  
0.95000 7 0 11 9 0.38889 1.00000 1.38889 0.59259  
Area Under ROC Curve = 0.89198 
 

One ROC report is generated for each category. Only the report for category 0 is displayed here. 
ROC curves can be used to determine appropriate cutoff values for classification by letting you 
compare the sensitivity and specificity of various cutoff values. When classifying, you usually 
classify a row into that category that has the highest membership probability. However, this is not 
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always the optimum strategy. This table shows you what happens when various cutoff values are 
selected. 
Classifying an observation can have any one of four possible results. An observation from the 
group can be correctly classified as being from that group (state A) or incorrectly classified as 
being from another group (state C). An observation from another group can be incorrectly 
classified as being from the group (state B) or correctly classified as being from another group 
(state D).  

The number of observations in each state is computed for each cutoff value between zero and 
one. A number of measures can be calculated from these values. The measures used in ROC 
analysis are called sensitivity and specificity. Sensitivity is the proportion of those from this group 
that are correctly identified as such. In terms of the four states, sensitivity = A/(A+C). Specificity 
is the proportion of those from other groups that are correctly identified as such. In terms of four 
states, specificity = D/(B+D). Thus, the optimum cutoff value is that one for which the sum of 
sensitivity and specificity is the maximum. This may be found be investigating the report. An 
ROC plot is also generated for each report that gives a graphical display of this report. 

An ROC analysis is most useful in the two-group case. In the multiple-group case, it is of only 
marginal usefulness, since a cutoff value is not specified. Rather, each observation is classified 
into that group which has the highest membership probability. 

Prob Cutoff 
This is the probability cutoff for classification into this group. If an observation’s predicted 
probability for membership in this group is greater than this amount, the observation is classified 
in this group. Otherwise, it is classified as being in some other group. 

A B C D 
The counts for each of the four states. These counts are represented using the notation N(i|j) 
where i is the classified group and j is the actual group. 

Sensitivity 
Sensitivity is the proportion of those from this group that are correctly identified as such. In terms 
of the four states, sensitivity = A/(A+C). 

Specificity 
Specificity is the proportion of those from other groups that are correctly identified as such. In 
terms of four states, specificity = D/(B+D). 

Sensitivity + Specificity 
A common rule for selecting an appropriate cutoff value is to choose the cutoff with the largest 
total of sensitivity and specificity. This column allows you to do this very quickly. 

Proportion Correct 
Another rule for selecting an appropriate cutoff value is to choose that cutoff which maximizes 
the number of observations that are correctly classified. This column of the report allows you to 
quickly find the optimum cutoff value. Unfortunately, when one group has many more rows than  

the others, this rule may not be useful since it will lead you to classify everyone into the most 
prevalent group. 
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Area Under ROC Curve 
The area under the ROC curve is a popular measure associated with ROC curves. When applied 
to classification in logistic regression, its maximum value of one occurs when all rows are 
correctly classified. Its minimum value of zero occurs when all rows are incorrectly classified. 
Thus, the nearer this value is to one, the better the classification. 

Row Classification Section 
 
   Estimated Lower 95% Upper 95% 
 Actual Estimated REMISS Confidence Confidence 
Row REMISS REMISS Probability Limit Limit 
1 1 1 0.83900 0.31617 0.98326   
2 1 1 0.73317 0.48928 0.88739   
3 0 0 0.81061 0.24565 0.98253   
4 0 0 0.55936 0.24511 0.83230   
5 1 1 0.83326 0.44347 0.96908   
6 0 0 0.57370 0.21384 0.86943   
7* 1 0 0.51337 0.32143 0.70145   
8* 0 1 0.75562 0.21175 0.97267   
9 0 0 0.71480 0.31903 0.93059   
10 0 0 0.99687 0.19043 1.00000 
. . . . . . 
. . . . . . 
. . . . . . 
 

This report displays the actual and predicted group and membership probability for each row of 
the report. It also provides confidence limits for the predicted group-membership probability. 

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Group 
This is the group to which this row belongs (if known).  

Estimated Group 
This is the group with the largest membership probability.  

Estimated Probability 
This is the estimated probability that the row belongs to the group listed in the Estimated Group 
column.  

These values allow you to determine how certain the classification is. When the value is near one 
(above 0.7), the logistic regression is convinced that the observation belongs in the designated 
group. When the value is near 0.5 or less, the classification was not as clear. 

Lower and Upper Confidence Limits 
These values provide a confidence interval for the estimated membership probability. Note that 
this confidence interval is only approximate in the multiple-group case. Formulas and technical 
details are given above in the section entitled Predicted Probabilities. 
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Row Classification Probabilities 
 
  Estimated Estimated    
 Actual Prob. in Prob. in    
Row REMISS 0 1    
1 1 0.16100 0.83900     
2 1 0.26683 0.73317     
3 0 0.81061 0.18939     
4 0 0.55936 0.44064     
5 1 0.16674 0.83326     
6 0 0.57370 0.42630     
7* 1 0.51337 0.48663     
8* 0 0.24438 0.75562     
9 0 0.71480 0.28520     
10 0 0.99687 0.00313     
. . . .  
. . . .  
. . . .  
 

This report displays the actual group and the membership probabilities for each group and each 
row. This allows you investigate how certain each classification is. 

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Group 
This is the group to which this row belongs (if known).  

Estimated Prob. In Group 
This is the estimated probability that the row belongs in each group. These values allow you to 
determine how certain the classification is.  

Simple Residual Report 
 
  Residual Residual    
 Actual for Group for Group    
Row REMISS 0 1    
1 1 -0.16100 0.16100     
2 1 -0.26683 0.26683     
3 0 0.18939 -0.18939     
4 0 0.44064 -0.44064     
5 1 -0.16674 0.16674     
6 0 0.42630 -0.42630     
7* 1 -0.51337 0.51337     
8* 0 0.75562 -0.75562     
9 0 0.28520 -0.28520     
10 0 0.00313 -0.00313     
. . . .  
. . . .  
. . . .  
 

This report displays the simple residuals for each group. Each of the g logistic regression 
equations can be used to estimate the probabilities that each observation belongs to the 
corresponding group.  

Row 
This is the row from the database. Rows that are starred are misclassified. 
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Actual Group 
This is the group to which this row belongs (if known).  

Residual for Group 
These residuals are defined as 

r y pgj gj gj= −  

where  is the estimated membership probability and  is an indicator variable that is one if 
the actual group is g and zero otherwise. 

pgj ygj

Note that, unlike multiple regression, there are g residuals for each observation instead of just 
one. This makes residual analysis much more difficult. If the logistic regression model fits an 
observation closely, all of its residuals will be small, but never zero.  

Unfortunately, the simple residuals have unequal variance equal to , where  is 

the number of observations with the same values of the independent variables as observation j. 
This unequal variance makes comparisons among the simple residuals difficult and alternative 
types of residuals are necessary. 

(n j gj gjπ π1− ) nj

Residual Report 
 
 Actual Pearson  Deviance  Maximum  
Row REMISS Residual  Residual  Hat Diagonal  
1 1 -0.43806 |.............. -0.59253 |||............ 0.20631 ||||........... 
2 1 -0.60328 ||............. -0.78789 |||||.......... 0.05654 |.............. 
3 0 0.48336 |.............. 0.64802 ||||........... 0.26518 ||||||......... 
4 0 1.25520 |||||.......... 1.52442 |||||||||...... 0.23855 |||||.......... 
5 1 -0.44733 |.............. -0.60400 |||............ 0.12192 ||............. 
6 0 0.86201 |||............ 1.05417 ||||||......... 0.16277 |||............ 
7* 1 -1.02710 ||||........... -1.20021 |||||||........ 0.04169 |.............. 
8* 0 1.75843 |||||||........ 1.67872 ||||||||||..... 0.28695 ||||||......... 
9 0 0.63166 ||............. 0.81945 |||||.......... 0.14925 |||............ 
10 0 0.05607 |.............. 0.07923 |.............. 0.04227 |.............. 
. . . . . . . .  
. . . . . . . . 
. . . . . . . . 
 

This report displays the Pearson residuals, the deviance residuals, and the hat diagonal for each 
row. These are the residuals that most textbooks on logistic regression recommend that you use.  

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Group 
This is the group to which this row belongs (if known).  

Pearson Residual 
The Pearson residuals give the contribution of each row to the Pearson chi-square goodness of fit 
statistic. When the values of the independent variables of each observation are unique, the 
formula for this residual is 
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where the plus (minus) is used if  is greater (less) than . By definition, the sum of the 
squared Pearson residuals is the Pearson chi-square goodness of fit statistics.  

w ngj j/ pgj

Deviance Residuals 
Remember that the deviance is -2 times the difference between log likelihoods of a reduced 
model and the saturated model. The formula for a deviance residual is 
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where the plus (minus) is used if  is greater (less) than . By definition, the 
sum of the squared deviance residuals is the deviance.  

wREF g j j( ), / pREF g j( ),

Maximum Hat Diagonal 
The diagonal elements of the hat matrix can be used to detect points that are extreme in the 
independent variable space. These are often called leverage design points. The larger the value of 
the hat diagonal, the more the observation influences estimates of the regression coefficients. 
There is a separate hat diagonal defined for each category. The value reported here is the 
maximum of all G of the hat diagonals for each row. 

An observation that has a large residual, but has low leverage, does not cause much concern. 
However, an observation with a large leverage and a large residual should be checked very 
carefully. The formula for the hat diagonal associated with the jth observation and gth group is   

( )h n p p X X V jgj j gj gj ij kj gik
k

p

i

p

= − =
==
∑∑1 1

11

$ , , ,L  

where  is the portion of the covariance matrix of the regression coefficients associated with 
the gth regression equation. The interpretation of this diagnostic is not as clear in logistic 
regression as in multiple regression because it involves the predicted values which in turn involve 
the dependent variable. In multiple regression, the hat diagonals only involve the independent 
variables. 

$Vgik

Note that this formula matches Pregibon (1981) in the two-group case. In the multiple-group case, 
the two-group formula is applied to each group. 
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DFBetas Report 
 
DFBetas Report For REMISS = 0 
 Actual DFBeta  DFBeta  DFBeta  
Row REMISS Intercept  CELL  LI  
1 1 -0.05383 |.............. 0.11561 |.............. -0.12403 |.............. 
2 1 -0.06191 |.............. 0.03603 |.............. -0.07986 |.............. 
3 0 -0.03248 |.............. -0.29680 |||............ -0.19367 ||............. 
4 0 0.07853 |.............. 0.22408 ||............. -0.36761 |||||.......... 
5 1 -0.15954 ||............. -0.02455 |.............. -0.11640 |.............. 
6 0 0.10146 |.............. 0.11173 |.............. -0.16597 ||............. 
7* 1 0.05201 |.............. 0.05264 |.............. 0.12518 |.............. 
8* 0 -0.83713 ||||||||||||||| -0.10576 |.............. 0.19110 ||............. 
9 0 -0.20605 |||............ -0.03081 |.............. -0.23153 |||............ 
10 0 -0.01139 |.............. -0.00613 |.............. -0.01005 |.............. 
9 0 0.63166 ||............. 0.81945 |||||.......... 0.14925 |||............ 
10 0 0.05607 |.............. 0.07923 |.............. 0.04227 |.............. 
. . . . . . . .  
. . . . . . . . 
. . . . . . . . 
 

One way to study the impact of an observation on each regression coefficient is to determine how 
much that coefficient changes when the observation is deleted. The DFBETA statistic is the 
standardized difference between a regression coefficient before and after the removal of the jth 
observation. 

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Group 
This is the group to which this row belongs (if known).  

DFBeta 
The DFBeta statistic is the standardized difference between a regression coefficient before and 
after the removal of the jth observation.  

The formula for DFBeta is approximated by 

( )
DFBetagij

gj j gj
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kj gik
k

pw n p
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−
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=
∑

1
1 2

1$
$ , , ,L,  

where  is the portion of the covariance matrix associated with the gth regression equation. 
Note that this formula matches Pregibon (1981) in the two group case, but is different from 
Lesaffre (1989) in the multi-group case. 

$Vgik
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Influence Diagnostics Report 
 
Influence Diagnostics Report For REMISS = 0 
    Cook's  Cook's  
 Actual Hat  Distance  Distance  
Row REMISS Diagonal  (C)  (CBar)  
1 1 0.20631 ||||........... 0.06285 |.............. 0.04988 |.............. 
2 1 0.05654 |.............. 0.02312 |.............. 0.02181 |.............. 
3 0 0.26518 ||||||......... 0.11474 |.............. 0.08432 |.............. 
4 0 0.23855 |||||.......... 0.64822 |||||.......... 0.49359 |||||.......... 
5 1 0.12192 ||............. 0.03164 |.............. 0.02778 |.............. 
6 0 0.16277 |||............ 0.17254 |.............. 0.14446 |.............. 
7* 1 0.04169 |.............. 0.04790 |.............. 0.04590 |.............. 
8* 0 0.28695 ||||||......... 1.74508 ||||||||||||||. 1.24433 ||||||||||||||| 
9 0 0.14925 |||............ 0.08228 |.............. 0.07000 |.............. 
10 0 0.04227 |.............. 0.00014 |.............. 0.00014 |.............. 
. . . . . . . .  
. . . . . . . . 
. . . . . . . . 
 

This report gives two distance measures similar to Cook’s distance in multiple regression. 

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Group 
This is the group to which this row belongs (if known).  

Hat Diagonal 
The diagonal elements of the hat matrix can be used to detect points that are extreme in the 
independent variable space. They are discussed in more detail in the Residual Report. 

Cook’s Distance (C) and (CBar) 
C and Cbar are extensions of Cooks distance for logistic regression. Quoting from Pregibon 
(1981), page 719: 

“Cbar measures the overall change in fitted logits due to deleting the lth observation for all points 
excluding the one deleted. Conversely, C includes the deleted point. Although C will usually be 
the preferred diagnostic to measure overall coefficients’ changes, in the examples examined to 
date, the one-step approximations were more accurate for Cbar than C.” 

The formulas for C and Cbar are 
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C

h

h
j Jgj

j gj

gj

=
−

=
χ 2

2
1

1 2, , ,L,  

( )C
h
h

j Jgj
j gj

gj

=
−

=
χ 2

1
1 2, , ,L,  

Note that this formula matches Pregibon (1981) in the two-group case. In the multiple-group case, 
the two-group formula is applied to each group. 
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Residual Diagnostics Report 
 
Residual Diagnostics Report For REMISS = 0 
    Deviance  Chi-Square  
 Actual Hat  Change  Change  
Row REMISS Diagonal  (DFDev)  (DFChi2)  
1 1 0.20631 ||||........... 0.40098 |.............. 0.24178 |.............. 
2 1 0.05654 |.............. 0.64257 |.............. 0.38576 |.............. 
3 0 0.26518 ||||||......... 0.50425 |.............. 0.31795 |.............. 
4 0 0.23855 |||||.......... 2.81743 ||||||......... 2.06910 ||............. 
5 1 0.12192 ||............. 0.39260 |.............. 0.22789 |.............. 
6 0 0.16277 |||............ 1.25574 ||............. 0.88752 |.............. 
7* 1 0.04169 |.............. 1.48639 |||............ 1.10084 |.............. 
8* 0 0.28695 ||||||......... 4.06243 |||||||||...... 4.33640 ||||........... 
9 0 0.14925 |||............ 0.74150 |.............. 0.46899 |.............. 
10 0 0.04227 |.............. 0.00642 |.............. 0.00328 |.............. 
. . . . . . . .  
. . . . . . . . 
. . . . . . . . 
 

This report gives statistics that help detect observations that have not been fitted well by the 
model. 

Row 
This is the row from the database. Rows that are starred are misclassified. 

Actual Group 
This is the group to which this row belongs (if known).  

Hat Diagonal 
The diagonal elements of the hat matrix can be used to detect points that are extreme in the 
independent variable space. They are discussed in more detail in the Residual Report. 

Deviance Change (DFDev) and Chi-Square Change (DFChi2) 
DFDEV and DFCHI2 are statistics that measure the change in deviance and in Pearson’s chi-
square, respectively, that occurs when an observation is deleted from the dataset. Large values of 
these statistics indicate observations that have not been fitted well. 

The formulas for these statistics are 

DFDEV d C j Jgj j gj= + =2 1 2, , ,L,  

DFCHI
C
h

j Jgj
gj

gj

2 1= =, , ,L2 ,  

Note that this formula matches Pregibon (1981) in the two-group case. In the multiple-group case, 
the two-group formula is applied to each group. 
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Y versus X Plots 
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This section shows scatter plots with the dependent variable on the vertical axis and each of the 
independent variables on the horizontal axis. The plot is useful for finding typos, outliers, and 
other anomalies in that data.   

Vertical Axis 
The categories of the dependent variable are shown on the vertical axis. Each category is assigned 
a whole number, beginning with the number one. The numbers are assigned in sorted order. Thus, 
if your dependent variable has values A, B, and C, it would be plotted on a numeric scale ranging 
from about 0.8 to 3.2. The groups would be plotted as the numbers 1, 2, and 3. 

Horizontal Axis 
The independent variables are shown on the horizontal axis. When the independent variable is 
categorical, binary variables are generated for each of the categories and a separate scatter plot is 
generated for each binary variable.  
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Simple Residuals versus X Plots 
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This section shows scatter plots with the simple residuals on the vertical axis and each of the 
independent variables on the horizontal axis. The plots are useful for finding outliers and other 
anomalies in the data.   

Vertical Axis 
The residuals are displayed on the vertical axis. Note that the G residuals for each row 
corresponding to the simple residuals are displayed. Thus, if you have N rows, you will have GN 
points displayed on the plot. 

Horizontal Axis 
The independent variables are shown on the horizontal axis. When the independent variable is 
categorical, binary variables are generated for each of the categories and a separate scatter plot is 
generated for each binary variable.  
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Deviance Residuals versus X Plots 
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This section shows scatter plots with the deviance residuals on the vertical axis and each of the 
independent variables on the horizontal axis. The plots are useful for finding outliers and other 
anomalies in the data.   

Vertical Axis 
The deviance residuals are displayed on the vertical axis.  

Horizontal Axis 
The independent variables are shown on the horizontal axis. When the independent variable is 
categorical, binary variables are generated for each of the categories and a separate scatter plot is 
generated for each binary variable.  
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Pearson Residuals versus X Plots 
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This section shows scatter plots with the Pearson residuals on the vertical axis and each of the 
independent variables on the horizontal axis. The plots are useful for finding outliers and other 
anomalies in the data.   

Vertical Axis 
The Pearson residuals are displayed on the vertical axis.  

Horizontal Axis 
The independent variables are shown on the horizontal axis. When the independent variable is 
categorical, binary variables are generated for each of the categories and a separate scatter plot is 
generated for each binary variable.  
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ROC Curves - Combined and Separate 
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This section displays the ROC curves that can be used to help you find the best cutoff points to 
use for classification. The cutoff point nearest the top-left corner of the plot is the optimum 
cutoff. You will have to refer to the ROC Report to determine the exact value of the cutoff.  

Vertical Axis 
The sensitivity is displayed on the vertical axis.  

Horizontal Axis 
One minus the specificity is displayed on the horizontal axis.  
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Prob Correct versus Cutoff Plot 
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This section displays a plot that shows the proportion correct versus the cutoff. It is useful to help 
determine the cutoff point used in classification. This plot may be difficult to use with three or 
more categories because of the ambiguity in the plot. 

Vertical Axis 
The proportion correctly classified for various cutoff values are displayed on the vertical axis.  

Horizontal Axis 
The cutoff values are displayed on the horizontal axis. These cutoff values are in terms of the 
estimated group-membership probabilities. Thus a cutoff of 0.4 means that any rows with a 
group-membership probability of 0.4 or more are classified into this group. 

Example 2 – Subset Selection 
This section presents an example of how to conduct a subset selection. The data used are stored in 
the LEUKEMIA database. This analysis will search for the best model from among a pool of the 
six numeric variables. 

You may follow along here by making the appropriate entries or load the completed template 
Example2 from the Template tab of the Logistic Regression window. 

1 Open the LEUKEMIA dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file LEUKEMIA.S0. 
• Click Open. 

2 Open the Logistic Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Logistic 

Regression. The Logistic Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  
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3 Specify the variables. 
• On the Logistic Regression window, select the Variables tab.  
• Double-click in the Y: Group Variable box. This will bring up the variable selection 

window.  
• Select REMISS from the list of variables and then click Ok. “REMISS” will appear in 

the Y: Group Variable box.  
• Click on the Default Reference Group box and select Last Group after Sorting. 
• Double-click in the X’s: Numeric Independent Variables box. This will bring up the 

variable selection window.  
• Select the variables from CELL to TEMP from the list of variables and then click Ok. 

“CELL-TEMP” will appear in the X’s: Numeric Independent Variables box.  

4 Specify the model. 
• On the Logistic Regression window, select the Model tab.  
• Select Hierarchical Forward with Switching in the Subset Selection box.  
• Set the Max Terms in Subset to 6. 
• Set the Which Model Terms box to Up to 1-Way. 

5 Specify the reports. 
• Select the Reports tab. 
• Set the options Row Classification Report, Row Classification Probabilities Report, 

and Simple Residuals Report to None. 
• Check the Run Summary, Subset Selection - Summary, Subset Selection - Detail, and 

Parameter Significance Tests reports. All other reports should be unchecked. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. 

Run Summary Section 
 
Parameter Value Parameter Value 
Dependent Variable REMISS Rows Processed 29 
Reference Value 1 Rows Used 27 
Number of Values 2 Rows for Validation 0 
Frequency Variable None Rows X's Missing 2 
Numeric Ind. Variables 6 Rows Freq Miss. or 0 0 
Categorical Ind. Variables 0 Rows Prediction Only 0 
Final Log Likelihood -10.87752 Unique Row Patterns 27 
Model R-Squared 0.36707 Sum of Frequencies 27 
Actual Convergence 2.081623E-06 Likelihood Iterations 9 
Target Convergence 0.000001 Maximum Iterations 20 
Model D.F. 6 Max Like Message Quasi-Separation 
Model CELL|SMEAR|INFIL|LI|BLAST|TEMP 
 
******** WARNING ******** WARNING ******** WARNING ******** WARNING ******** WARNING ******** 
Your dataset had QUASI-COMPLETE SEPARATION which means that the maximum likelihood routine 
did NOT converge so the statistical tests are not valid. Although the prediction equations 
correctly classified much of your data, they may not do so for other observations. 
Quasi-Complete Separation often occurs because your sample size is too small. 
******** WARNING ******** WARNING ******** WARNING ******** WARNING ******** WARNING ******** 
 

The first thing we notice is the warning message about quasi-separation. If quasi-separation 
occurs, the maximum likelihood estimates do not exist and all results are suspect. We note that 9 
likelihood iterations occurred and the Actual Convergence is near the Target Convergence. We 
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decide to rerun the analysis after resetting the Max Terms in Subset box from 6 to 5. Note that 
this error message often occurs when a small set of data is fit with a model with too many terms. 
At this point, either reset the value of Max Terms in Subset (on the Model tab) to 5 manually or 
load the template Example2a. Now, rerun the analysis. 

Run Summary Section 
 
Parameter Value Parameter Value 
Dependent Variable REMISS Rows Processed 29 
Reference Value 1 Rows Used 27 
Number of Values 2 Rows for Validation 0 
Frequency Variable None Rows X's Missing 2 
Numeric Ind. Variables 6 Rows Freq Miss. or 0 0 
Categorical Ind. Variables 0 Rows Prediction Only 0 
Final Log Likelihood -10.92900 Unique Row Patterns 27 
Model R-Squared 0.36407 Sum of Frequencies 27 
Actual Convergence 7.136538E-07 Likelihood Iterations 7 
Target Convergence 0.000001 Maximum Iterations 20 
Model D.F. 5 Max Like Message Normal Completion 
Model CELL|SMEAR|INFIL|LI|BLAST|TEMP 
 

The warning message has disappeared and the algorithm finished normally. 

Subset Selection Summary Section 
 
No. No. Log R-Squared R-Squared 
Terms X's Likelihood Value Change 
1 1 -17.18588 0.00000 0.00000 
2 2 -13.03648 0.24144 0.24144 
3 3 -12.17036 0.29184 0.05040 
4 4 -10.97669 0.36130 0.06946 
5 5 -10.92900 0.36407 0.00277 
 

This report shows the best log-likelihood value for each subset size. In this example, it appears 
that four terms (the intercept and three variables) provides the best model. Note that adding the 
fifth variable does not increase the R-squared value very much. 

No. Terms 
The number of terms. Note that this includes the intercept.  

No. X’s  
The number of X’s that were included in the model. Note that in this case, the number of terms 
matches the number of X’s. This would not be the case if some of the terms were categorical 
variables. 

Log Likelihood 
This is the value of the log likelihood function evaluated at the maximum likelihood estimates. 
Our goal is to find a subset size above which little is gained by adding more variables. 
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R-Squared Value 
This is the value of R-squared calculated using the formula 

R
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L LL
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2 0

0

=
−
−

 

as discussed in the introduction. We are looking for the subset size at which this value does not 
increase by a meaningful amount. 

R-Squared Change 
This is the increase in R-squared that occurs when each new subset size is reached. Search for the 
subset size below which the R-squared value does not increase by more than 0.02 for small 
samples or 0.01 for large samples.  

In this example, the optimum subset size appears to be four terms. 

Subset Selection Detail Section 
 
  No. of No. of Log Term Terms 
Step Action Terms X's Likelihood Entered Removed 
1 Add 1 1 -17.18588 Intercept  
2 Add 2 2 -13.03648 LI  
3 Add 3 3 -12.17036 CELL  
4 Add 4 4 -10.97669 TEMP  
5 Add 5 5 -10.92900 SMEAR 
 

This report shows the highest log likelihood for each subset size. In this example, it appears that 
four terms (the intercept and three variables) provide the best model. Note that adding the fifth 
variable does not increase the R-squared value very much. 

Action 
This item identifies the action that was taken at this step. A term was added, removed, or two 
were switched.  

No. Terms 
The number of terms. Note that this includes the intercept.  

No. X’s  
The number of X’s that were included in the model. Note that in this case, the number of terms 
matches the number of X’s. This would not be the case if some of the terms were categorical 
variables. 

Log Likelihood 
This is the value of the log likelihood function after the completion of this step. Our goal is to 
find a subset size above which little is gained by adding more variables. 

Terms Entered and Removed 
These columns identify the terms added, removed, or switched. 
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Discussion of Example 2 
After considering these reports, it was decided to include CELL, LI, and TEMP in the final 
logistic regression model. Another run should now take place using only these independent 
variables. A complete residual analysis would be necessary before the equation is finally adopted. 

Example 3 – One Categorical Variable 
The independent variables in logistic regression may be categorical as well as numerical. This 
example is of the simplest categorical case of a binary response and a binary independent 
variable. More complicated examples will be shown below.  

In this example, a simple yes-no question is asked of each member of two groups. The following 
two-by-two table presents the results. The analyst wants to understand the relationship between 
group membership and response to the question. 

 Response 
Group Yes No Total 
A 91 9 100 
B 93 27 120 
Total 184 36 220 

These data would normally be analyzed using the methods for comparing two proportions such as 
Fisher’s exact test or the chi-square test for independence in a contingency table. The following 
table presents the results of this analysis. 

Two Proportions Output 
 

Data Section 
 Sample Number in Number in Proportion In Proportion In  
Sample Size Group One Group Two Group One Group Two  
One 100 9 91 0.090000 0.910000  
Two 120 27 93 0.225000 0.775000 
Total 220 36 184 0.163636 0.836364 
 
Hypothesis Test Section 
 Fisher's Exact Test Normal Approximation Yates Chi-Square Test 
Alternative Prob Decision  Prob Decision Chi-Square Prob 
Hypothesis Level (5%) Z-Value Level (5%) Value Level 
P1-P2<>0 0.009733 Reject Ho -2.6951 0.007037 Reject Ho 6.3107 0.012001 
P1-P2<0 0.005272 Reject Ho -2.6951 0.003518 Reject Ho 
P1-P2>0 0.998394 Accept Ho -2.6951 0.996482 Accept Ho 
 
Odds Ratio and Relative Risk Section 
 Common Original Iterated Log Odds Relative 
Parameter Odds Ratio Odds Ratio Odds Ratio Ratio Risk 
Upper  95% C.L.  0.779298 0.809907 -0.249362 0.838047 
Estimate 0.340659 0.353005 0.353005 -1.041272 0.400000 
Lower  95% C.L.  0.159904 0.139852 -1.833182 0.180300 
 

The conclusion of this analysis is to reject the null hypothesis that the two proportions are equal. 
The significance levels are 0.009733 using Fisher’s exact test and 0.007037 using the normal 
approximation which is equivalent to the chi-square test for independence. Note that the odds 
ratio is 0.340659. 
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We will now see how to analyze these data using logistic regression. The data must be entered 
into a database so that they can be processed. The following table shows how these data are 
rearranged and entered. These data have been entered into a database named 2BY2.  

 

2BY2 dataset (subset) 

Group Response Count 
A No 9 
A Yes 91 
B No 27 
B Yes 93 

 

You may follow along here by making the appropriate entries or load the completed template 
Example3 from the Template tab of the Logistic Regression window. 

1 Open the 2BY2 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file 2BY2.S0. 
• Click Open. 

2 Open the Logistic Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Logistic 

Regression. The Logistic Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Logistic Regression window, select the Variables tab.  
• Double-click in the Y: Group Variable box. This will bring up the variable selection 

window.  
• Select Response from the list of variables and then click Ok. “Response” will appear in 

the Y: Group Variable box.  
• Click on the Default Reference Group box and select Last Group after Sorting. 
• Double-click in the X’s: Categorical Independent Variables box. This will bring up the 

variable selection window.  
• Select the variable Group from the list of variables and then click Ok. “Group” will 

appear in the X’s: Categorical Independent Variables box.  
• Click on the Default Reference Value box and select Last Value after Sorting. 
• Double-click in the Frequency Variable box. This will bring up the variable selection 

window.  
• Select the variable Count from the list of variables and then click Ok. “Count” will 

appear in the Frequency Variable box.  
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4 Specify the reports. 
• Select the Reports tab. 
• Set the options Row Classification Report, Row Classification Probabilities Report, 

and Simple Residuals Report to None. 
• Check the Run Summary, Response Analysis, Parameter Significance Tests, Odds 

Ratios, Analysis of Deviance, and Log-Likelihood and R-Squared reports. All other 
reports should be unchecked. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. 

 

Selected portions of the output reports are shown below. 

Logistic Regression Output 
 
Run Summary Section 
Parameter Value Parameter Value 
Dependent Variable Response Rows Processed 4 
Reference Value YES Rows Used 4 
Number of Values 2 Rows for Validation 0 
Frequency Variable Count Rows X's Missing 0 
Numeric Ind. Variables 0 Rows Freq Miss. or 0 0 
Categorical Ind. Variables 1 Rows Prediction Only 0 
Final Log Likelihood -94.23344 Unique Row Patterns 4 
Model R-Squared 0.06908 Sum of Frequencies 220 
Actual Convergence 2.559022E-11 Likelihood Iterations 6 
Target Convergence 0.000001 Maximum Iterations 20 
Model D.F. 2 Max Like Message Normal Completion 
Model Group 
 
Response Analysis Section 
Response  Unique  Act vs Pred % Correctly 
Categories Count Rows Prior R-Squared Classified 
NO 36 2 0.50000 0.03302 75.000 
YES 184 2 0.50000 0.03302 49.457 
Total 220 4   53.636 
 
Parameter Significance Tests Section (Reference Value: Response = YES) 
 Regression  Wald Wald Odds 
 Coefficient Standard Z-Value Prob Ratio 
Parameter (B or Beta) Error (Beta=0) Level Exp(B) 
B0: Intercept 0.39465 0.12074 3.269 0.00108 1.48387 
B1: (Group=”A”) -1.07687 0.41218 -2.613 0.00898 0.34066 
 
Odds Ratios Section (Reference Value: Response = YES) 
 Regression Odds Lower 95% Upper 95% 
 Coefficient Ratio Confidence Confidence 
Parameter (B or Beta) Exp(B) Limit Limit 
B0: Intercept 0.39465 1.48387 1.17119 1.88004  
B1: (Group=”A”) -1.07687 0.34066 0.15187 0.76413 
 
Analysis of Deviance Section 
   Increase   
   From Model   
Term   Deviance Prob  
Omitted DF Deviance (Chi Square) Level  
All 1 196.08640 7.61951 0.00577  
GROUP 1 196.08640 7.61951 0.00577  
None(Model) 1 188.46689    
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Log Likelihood & R-Squared Section 
   R-Squared Reduction Reduction 
Term(s)  Log Of Remaining From Model From Saturated 
Omitted DF Likelihood Term(s) R-Squared R-Squared 
All 1 -98.04320 0.00000   
GROUP 1 -98.04320 0.00000 0.06908 1.00000 
None(Model) 1 -94.23344 0.06908 0.00000 0.93092 
None(Saturated) 4 -42.89226 1.00000  0.00000  
 

Although a casual comparison between this report and that of the Two Proportion procedure 
shows little in common, a more detailed report shows many similarities. First of all, notice that 
the significance level of the test of GROUP in the Analysis of Deviance Section of 0.00577 
compares very closely with the 0.007037 from the chi-square test. Also notice that the odds ratios 
from both reports round to 0.34066. The confidence limits of these two reports are not exactly the 
same, but they are close. 
To summarize the logistic regression analysis, we can conclude that there is a significant 
relationship between response and group. 
This example has shown the similarities between these two approaches to the analysis of two 
proportions. Usually, you would analyze these data using the two proportions approach. 
However, that approach is not as easily extended to the case of several independent variables 
including a mixture of categorical and numeric. 

Example 4 – Logit Model Validation with BMDP PR 
This example will serve three purposes. First of all, it will be the first example of a dataset whose 
response variable has more than two outcomes. Second, it will be an example of what the output 
looks like when all of the independent variables are categorical. And finally, it will validate the 
procedure by allowing the comparison of the NCSS output with that of the BMDP PR program 
which also performs multiple-group logistic regression. This example comes from the BMDP 
manual. The database containing the data used in this example is named NC CRIMINAL.  

The NC CRIMINAL database contains data that will be used to study the relationship between a 
cases verdict and three factors: race, county, and type of offense. The variables that are on the 
database are as follows. 

Count contains the number of individuals with the characteristics specified on that row. 

Verdict is the response variable. Three outcomes are given in the database: G for guilty, NG for 
not guilty, and NP for not prosecuted. 

Race gives the race of the individual. It has two values: A and B. 

County refers to county in North Carolina in which the offense was considered. The possible 
values are: Durham and Orange. 

Offense contains the particular offense that the individual was accused of. These are Drunk, 
Violence, Property, Major Traffic, and Speeding. 

You can view the data by loading the NC CRIMINAL database, so they will not be displayed 
here. 
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You may follow along here by making the appropriate entries or load the completed template 
Example4 from the Template tab of the Logistic Regression window. 

1 Open the NC CRIMINAL dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file NC CRIMINAL.S0. 
• Click Open. 

2 Open the Logistic Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Logistic 

Regression. The Logistic Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Logistic Regression window, select the Variables tab.  
• Select VERDICT(NP) in the Y: Group Variable box. The NP value specifies that this 

category is to be used as the reference group. 
• Enter the RACE(A) COUNTY(DURHAM) OFFENSE(DRUNK) in the X’s: 

Categorical Independent Variables box. Note that the values in parentheses specify the 
reference value for each variable. These are specified so that the output will match that 
found in BMDP. 

• Double-click in the Frequency Variable box. This will bring up the variable selection 
window.  

• Select the variable Count from the list of variables and then click Ok. “Count” will 
appear in the Frequency Variable box.  

4 Specify the Prior Probabilities. 
• Select the Model tab. 
• Set the Prior Probabilities to Ni/N. This indicates that the outcome frequencies found in 

the data will be used as the prior probabilities of group membership. 

5 Specify the reports. 
• Select the Reports tab. 
• Set the options Row Classification Report, Row Classification Probabilities Report, 

and Simple Residuals Report to None. 
• Check the Run Summary, Response Analysis, Parameter Significance Tests, Analysis 

of Deviance, and Log-Likelihood and R-Squared reports. All other reports should be 
unchecked. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. 

 

Selected portions of the output reports are shown next. 
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Logistic Regression Output 
 
Run Summary Section 
Parameter Value Parameter Value 
Dependent Variable Verdict Rows Processed 60 
Reference Value NP Rows Used 57 
Number of Values 3 Rows for Validation 0 
Frequency Variable Count Rows X's Missing 0 
Numeric Ind. Variables 0 Rows Freq Miss. or 0 3 
Categorical Ind. Variables 3 Rows Prediction Only 0 
Final Log Likelihood -408.29185 Unique Row Patterns 60 
Model R-Squared 0.69779 Sum of Frequencies 615 
Actual Convergence 4.751901E-11 Likelihood Iterations 6 
Target Convergence 0.000001 Maximum Iterations 20 
Model D.F. 14 Max Like Message Normal Completion 
 
Response Analysis Section 
Verdict  Unique  Act vs Pred % Correctly 
Categories Count Rows Prior R-Squared Classified 
G 445 20 0.72358 0.17107 93.933 
NG 123 20 0.20000 0.10397 20.325 
NP 47 20 0.07642 0.06628 0.000 
Total 615 60   72.033 
 
Parameter Significance Tests Section (Reference Value: Verdict = NP) 
 Regression  Wald Wald Odds 
 Coefficient Standard Z-Value Prob Ratio 
Parameter (B or Beta) Error (Beta=0) Level Exp(B) 
B0: Intercept 
   G 2.82983 0.44457 6.365 0.00000 16.94253 
   NG 1.24012 0.48781 2.542 0.01102 3.45604 
B1: (County="ORANGE") 
   G -0.89593 0.33719 -2.657 0.00788 0.40823 
   NG -0.12175 0.36036 -0.338 0.73547 0.88537 
B2: (Offense="MJTRAFFIC") 
   G -0.21380 0.62893 -0.340 0.73390 0.80751 
   NG 0.48012 0.67038 0.716 0.47387 1.61627 
B3: (Offense="PROPERTY") 
   G -0.91853 0.57784 -1.590 0.11193 0.39911 
   NG 0.00928 0.61911 0.015 0.98804 1.00932 
B4: (Offense="SPEED") 
   G 0.49546 0.51245 0.967 0.33361 1.64126 
   NG -0.26697 0.57599 -0.463 0.64301 0.76570 
B5: (Offense="VIOLENCE") 
   G -2.23014 0.51372 -4.341 0.00001 0.10751 
   NG -0.57863 0.53748 -1.077 0.28168 0.56067 
B6: (Race="B") 
   G 0.26083 0.33984 0.767 0.44279 1.29800 
   NG -0.10324 0.36248 -0.285 0.77579 0.90191 
 
Analysis of Deviance Section  Increase   
   From Model   
Term   Deviance Prob  
Omitted DF Deviance (Chi Square) Level  
All 12 925.59805 109.01434 0.00000   
COUNTY 2 832.03780 15.45409 0.00044  
OFFENSE 8 898.18115 81.59744 0.00000  
RACE 2 819.21845 2.63475 0.26784  
None(Model) 12 816.58371    
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Log Likelihood & R-Squared Section 
   R-Squared Reduction Reduction 
Term(s)  Log Of Remaining From Model From Saturated 
Omitted DF Likelihood Term(s) R-Squared R-Squared 
All 2 -462.79903 0.00000   
COUNTY 2 -416.01890 0.59887 0.09892 0.40113 
OFFENSE 8 -449.09057 0.17549 0.52230 0.82451 
RACE 2 -409.60923 0.68093 0.01686 0.31907 
None(Model) 12 -408.29185 0.69779 0.00000 0.30221 
None(Saturated) 120 -384.68551 1.00000  0.00000 
 

The output format is similar to previous examples. Notice in the analysis of deviance section that 
the variable race is not significant. That is, in these data, the race of the defendant is not related to 
the verdict. 
The Parameter Significance Tests report combines the two logistic regression equations on one 
report. This makes it a bit more complicated to read, but it allows a quick comparison to be made 
of the corresponding regression coefficients. For each independent variable, the regression 
coefficient from each equation is shown. Thus, 2.82983 is the intercept for the G equation and 
1.24012 is the intercept for the NG equation. Of course, no coefficient is show for NP because it 
is the reference value. 
Also note that the definition of the binary variables is as before. Thus the parameter B1: 
County=ORANGE refers to a binary variable that was generated from the County variable. This 
binary variable is one when the county value is ORANGE and zero otherwise. 

Validation 
In order to validate this module, the estimated regression coefficients and the log likelihood 
generated by the BMDP (refer to page 1165 of version 7.0 of the BMDP manual) are displayed 
below. 
Outcome: G Coefficient Std Error 
1 RACE 0.2608 0.340 
2 COUNTY -0.8959 0.337 
3 OFFENSE(1) -2.230 0.514 
4 OFFENSE(2) -0.9185 0.578 
5 OFFENSE(3) -0.2138 0.629 
6 OFFENSE(4) 0.4955 0.512 
7 CONST1 2.830 0.445 
 
Outcome: NG Coefficient Std Error 
8 RACE -0.1032 0.362 
9 COUNTY -0.1218 0.360 
10 OFFENSE(1) -0.5786 0.537 
11 OFFENSE(2) 0.9281E-02 0.619 
12 OFFENSE(3) 0.4801 0.670 
13 OFFENSE(4) -0.2670 0.576 
14 CONST1 1.240 0.488 

 
As you can see, these results match those displayed by NCSS exactly.  
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Example 5 – Logit Model with Interaction 
This example continues with the analysis of the data given in Example 4. In that example, no 
interactions were included in the model. This example will include the two-way interactions in 
the model.  

You may follow along here by making the appropriate entries or load the completed template 
Example5 from the Template tab of the Logistic Regression window. 

1 Open the NC CRIMINAL dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file NC CRIMINAL.S0. 
• Click Open. 

2 Open the Logistic Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Logistic 

Regression. The Logistic Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Logistic Regression window, select the Variables tab.  
• Select VERDICT(NP) in the Y: Group Variable box. The NP value specifies that this 

category is to be used as the reference value. 
• Enter the RACE(A) COUNTY(DURHAM) OFFENSE(DRUNK) in the X’s: 

Categorical Independent Variables box. Note that the values in parentheses specify the 
reference value for each variable. These are specified so that the output will match that 
found in BMDP. 

• Double-click in the Frequency Variable box. This will bring up the variable selection 
window.  

• Select the variable Count from the list of variables and then click Ok. “Count” will 
appear in the Frequency Variable box.  

4 Specify the Model with Interaction and Prior Probabilities. 
• Select the Model tab. 
• Set Which Model Terms to Up to 2-Way. This will include the two-way interactions in 

the model. 
• Set the Prior Probabilities to Ni/N. This indicates that the outcome frequencies found in 

the data will be used as the prior probabilities of group membership. 

5 Specify the reports. 
• Select the Reports tab. 
• Set the options Row Classification Report, Row Classification Probabilities Report, 

and Simple Residuals Report to None. 
• Check the Parameter Significance Tests, Analysis of Deviance, and Log-Likelihood 

and R-Squared reports. All other reports should be unchecked. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. 
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Selected portions of the output reports are shown below. 

Logistic Regression Output 
 
Parameter Significance Tests Section (Reference Value: Verdict = NP) 
 Regression  Wald Wald Odds 
 Coefficient Standard Z-Value Prob Ratio 
Parameter (B or Beta) Error (Beta=0) Level Exp(B) 
B0: Intercept 
   G 2.00583 0.50400 3.980 0.00007 7.43225 
   NG 0.72258 0.57465 1.257 0.20860 2.05975 
B1: (County="ORANGE") 
   G 0.14731 1.15368 0.128 0.89840 1.15871 
   NG 1.83395 1.18755 1.544 0.12251 6.25854 
B2: (Offense="MJTRAFFIC") 
   G -0.30745 1.10221 -0.279 0.78029 0.73532 
   NG -0.25450 1.23436 -0.206 0.83665 0.77531 
B3: (Offense="PROPERTY") 
   G -0.72178 0.83542 -0.864 0.38760 0.48589 
   NG 0.35757 0.89267 0.401 0.68874 1.42985 
B4: (Offense="SPEED") 
   G 1.93682 1.08041 1.793 0.07303 6.93666 
   NG 0.87254 1.19650 0.729 0.46586 2.39297 
B5: (Offense="VIOLENCE") 
   G -0.15836 0.87409 -0.181 0.85624 0.85354 
   NG 1.07460 0.91294 1.177 0.23916 2.92882 
B6: (Race="B") 
   G 1.44835 0.86924 1.666 0.09567 4.25608 
   NG -1.10628 1.08369 -1.021 0.30733 0.33079 
B7: (County="ORANGE")*(Offense="MJTRAFFIC") 
   G 0.45137 1.52019 0.297 0.76653 1.57046 
   NG -0.53668 1.61710 -0.332 0.73998 0.58469 
B8: (County="ORANGE")*(Offense="PROPERTY") 
   G 0.04871 1.41697 0.034 0.97258 1.04992 
   NG -2.10279 1.47544 -1.425 0.15410 0.12212 
B9: (County="ORANGE")*(Offense="SPEED") 
   G -1.39431 1.37573 -1.014 0.31082 0.24800 
   NG -2.66093 1.48387 -1.793 0.07294 0.06988 
B10: (County="ORANGE")*(Offense="VIOLENCE") 
   G -2.42314 1.36627 -1.774 0.07614 0.08864 
   NG -3.93664 1.38198 -2.849 0.00439 0.01951 
B11: (County="ORANGE")*(Race="B") 
   G 0.19528 0.81517 0.240 0.81067 1.21566 
   NG 0.83286 0.85899 0.970 0.33225 2.29990 
B12: (Offense="MJTRAFFIC")*(Race="B") 
   G -1.17876 1.35078 -0.873 0.38285 0.30766 
   NG 1.16592 1.50638 0.774 0.43894 3.20886 
B13: (Offense="PROPERTY")*(Race="B") 
   G -0.83367 1.27452 -0.654 0.51305 0.43445 
   NG 1.35214 1.42888 0.946 0.34400 3.86569 
 
B14: (Offense="SPEED")*(Race="B") 
   G -1.78987 1.25551 -1.426 0.15398 0.16698 
   NG 0.24862 1.45010 0.171 0.86387 1.28225 
B15: (Offense="VIOLENCE")*(Race="B") 
   G -2.31322 1.19041 -1.943 0.05199 0.09894 
   NG 0.51640 1.30133 0.397 0.69150 1.67598 
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Analysis of Deviance Section  Increase   
   From Model   
Term   Deviance Prob  
Omitted DF Deviance (Chi Square) Level  
All 2 925.59805 146.82239 0.00000   
COUNTY 2 788.31126 9.53560 0.00850  
OFFENSE 8 802.98614 24.21048 0.00211  
RACE 2 797.83870 19.06304 0.00007  
COUNTY*OFFENSE 8 798.81172 20.03607 0.01020  
COUNTY*RACE 2 780.53878 1.76312 0.41414  
OFFENSE*RACE 8 795.98619 17.21053 0.02799  
None(Model) 30 778.77566    
 
Log Likelihood & R-Squared Section 
   R-Squared Reduction Reduction 
Term(s)  Log Of Remaining From Model From Saturated 
Omitted DF Likelihood Term(s) R-Squared R-Squared 
All 30 -462.79903 0.00000   
COUNTY 2 -394.15563 0.87877 0.06104 0.12123 
OFFENSE 8 -401.49307 0.78483 0.15497 0.21517 
RACE 2 -398.91935 0.81778 0.12202 0.18222 
COUNTY*OFFENSE 8 -399.40586 0.81155 0.12825 0.18845 
COUNTY*RACE 2 -390.26939 0.92852 0.01129 0.07148 
OFFENSE*RACE 8 -397.99309 0.82964 0.11016 0.17036 
None(Model) 30 -389.38783 0.93980 0.00000 0.06020 
None(Saturated) 120 -384.68554 1.00000  0.00000 
 

Notice how the interactions are labeled. For example, B15 is labeled (OFFENSE=VIOLENCE)* 
(RACE=B). This interaction variable is generated by multiplying the binary variable defined by 
(OFFENSE=VIOLENCE) with the binary variable defined by (RACE=B). The resulting variable 
is one if both of these conditions are true and zero otherwise. 
Note that the R-squared is now 0.93980, so this model is almost as good as the saturated model.  

Looking at the analysis of deviance table, we note that all terms are significant except for the 
County*Race interaction. 
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Example 6 – Odds Ratios 
Lachin (2000) pages 90, 91, and 257 presents an analysis of hypothetical data from an ulcer 
healing clinical trial conducted to study the effectiveness of a drug over a placebo. There were 
100 patients assigned to the group receiving the drug and another 100 patients assigned to the 
group receiving the placebo. The ulcers were stratified into one of three types: 1. Acid-dependent, 
2. Drug dependent, and 3. Intermediate. Each ulcer was followed for a period of time after which 
it was considered healed or not. The data for this experiment are given below. These data have 
been entered into a database named LACHIN91.  

 

LACHIN91 dataset (subset) 

Count Ulcer Drug Healed 
16 1 1 1 
26 1 1 0 
20 1 0 1 
27 1 0 0 
9 2 1 1 
3 2 1 0 
4 2 0 1 
5 2 0 0 
28 3 1 1 
18 3 1 0 
16 3 0 1 
28 3 0 0 

 

You may follow along here by making the appropriate entries or load the completed template 
Example6 from the Template tab of the Logistic Regression window. 

1 Open the LACHIN91 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file LACHIN91.S0. 
• Click Open. 

2 Open the Logistic Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Logistic 

Regression. The Logistic Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Logistic Regression window, select the Variables tab.  
• Set the Y: Group Variable box to HEALED(0). The zero in parentheses indicates that 

the value “0” is to be the reference value. 
• Set the X’s Categorical Independent Variables box to ULCER(1) DRUG(0). The 

numbers in parentheses indicate the reference values of the two variables. 
• Set the Frequency Variable box to Count.  
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4 Specify the reports. 
• Select the Reports tab. 
• Set the options Row Classification Report, Row Classification Probabilities Report, 

and Simple Residuals Report to None. 
• Check the Run Summary, Parameter Significance Tests, Analysis of Deviance, Odds 

Ratios, Write Estimated Model, and Log-Likelihood and R-Squared reports. All other 
reports should be unchecked. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. 

Selected portions of the output reports are shown below. 

Logistic Regression Output 
 
Parameter Significance Tests Section (Reference Value: Healed = 0) 
 Regression  Wald Wald Odds 
 Coefficient Standard Z-Value Prob Ratio 
Parameter (B or Beta) Error (Beta=0) Level Exp(B) 
B0: Intercept -0.48951 0.21833 -2.242 0.02496 0.61293 
B1: (Drug=1) 0.50234 0.28845 1.742 0.08159 1.65259 
B2: (Ulcer=2) 0.83527 0.50247 1.662 0.09645 2.30543 
B3: (Ulcer=3) 0.32777 0.30424 1.077 0.28132 1.38787 
 
Odds Ratios Section (Reference Value: Healed = 0) 
 Regression Odds Lower 95% Upper 95% 
 Coefficient Ratio Confidence Confidence 
Parameter (B or Beta) Exp(B) Limit Limit 
B0: Intercept -0.48951 0.61293 0.39955 0.94027  
B1: (Drug=1) 0.50234 1.65259 0.93894 2.90864  
B2: (Ulcer=2) 0.83527 2.30543 0.86109 6.17243  
B3: (Ulcer=3) 0.32777 1.38787 0.76451 2.51949  
 
Analysis of Deviance Section 
   Increase   
   From Model   
Term   Deviance Prob  
Omitted DF Deviance (Chi Square) Level  
All 3 276.27807 6.58746 0.08628   
DRUG 1 272.74521 3.05460 0.08051  
ULCER 2 272.87155 3.18094 0.20383  
None(Model) 3 269.69061 
 

We note that neither DRUG nor ULCER is statistically significant at the 0.05 level using either 
the deviance tests in the Analysis of Deviance table or the Wald tests in the Parameter 
Significance Tests section. From the Odds Ratios section, we see that the odds of healing are 
increased 1.65259 when the drug is administered. 
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Example 7 – Matched Case-Control Study 
Matched case-control studies should be analyzed using conditional logistic regression, a 
technique not currently available in NCSS. However, 1:1 matched case-control studies may be 
analyzed using NCSS. This type of design occurs when only one control is matched with each 
case. Collett (1991) describes the steps needed to analyze a 1:1 match case-control study using a 
regular logistic regression program. We will describe these steps using the same dataset as Collett 
(1991). 

A matched case-control study was conducted to look at the impact of driving habits and place of 
residence on lower-back pain. A total of 217 matched pairs were recruited. In each pair, one 
individual was diagnosed as having an acute herniated disc (the case) and the other did not (the 
control). Controls were matched with cases on the basis of age (within ten years) and sex. The 
results were tabulated into the first five columns of the following dataset. These data have been 
entered into a database named COLLETT266.  

 

COLLETT266 dataset 

Count Case 
Driver 

Cntl 
Driver 

Case 
Sub 

Cntl 
Sub 

Case 
DS 

Cntl 
DS Driver Sub DS 

9 0 0 0 0 0 0 0 0 0 
2 0 0 1 0 0 0 0 1 0 
14 1 0 0 0 0 0 1 0 0 
22 1 0 1 0 1 0 1 1 1 
2 0 0 1 1 0 0 0 0 0 
1 1 0 0 1 0 0 1 -1 0 
4 1 0 1 1 1 0 1 0 1 
10 0 1 0 0 0 0 -1 0 0 
1 0 1 1 0 0 0 -1 1 0 
20 1 1 0 0 0 0 0 0 0 
32 1 1 1 0 1 0 0 1 1 
7 0 1 0 1 0 1 -1 -1 -1 
1 0 1 1 1 0 1 -1 0 -1 
29 1 1 0 1 0 1 0 -1 -1 
63 1 1 1 1 1 1 0 0 0 
63 1 1 1 1 1 1 1 0 0 

 

The columns in this table are defined as follows.  

Count is the number of pairs with the indicated characteristics.  
Case Driver is 1 if the case individual was a driver and 0 if not. 
Cntl Driver is 1 if the control individual was a driver and 0 if not. 
Case Sub is 1 if the case individual was a suburban resident and 0 if they lived in the city. 
Cntl Sub is 1 if the control individual was a suburban resident and 0 if they lived in the city. 
Case DS is the product of CaseDrv and CaseSub. This measures the case interaction. 
Cntl DS is the product of CntlDrv and CntlSub. This measures the control interaction. 
Driver is the difference between CaseDrv and CntlDrv. 
Sub is the difference between CaseSub and CntlSub. 
DS is the difference between CaseDS and CntlDS. 
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Only the last three columns are used in the analysis. A column of 1’s is added at the end of the 
dataset and labeled Y. This is the dependent variable. NCSS automatically adds a second group 
with a group value of zero. This group will be empty, but it is necessary to complete the analysis.  

The method given by Collett (1991) is to use the differences between the case and control 
independent variable values as the regressor variables in a logistic regression. Also, the intercept 
term is not included in the model. We will do this in the following example. 

You may follow along here by making the appropriate entries or load the completed template 
Example7 from the Template tab of the Logistic Regression window. 

1 Open the COLLETT266 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file COLLETT266.S0. 
• Click Open. 

2 Open the Logistic Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Logistic 

Regression. The Logistic Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Logistic Regression window, select the Variables tab.  
• Set the Y: Group Variable box to Y. Note that the reference value will be an imaginary 

group zero. 
• Set the X’s Numeric Independent Variables box to Driver-DS. 
• Set the Frequency Variable box to Count.  

4 Specify the model. 
• On the Logistic Regression window, select the Model tab.  
• Make sure the Include Intercept box is not checked. 

5 Specify the reports. 
• Select the Reports tab. 
• Set the options Row Classification Report, Row Classification Probabilities Report, 

and Simple Residuals Report to None. 
• Check the Run Summary, Parameter Significance Tests, Analysis of Deviance, Odds 

Ratios, Write Estimated Model, and Log-Likelihood and R-Squared reports. All other 
reports should be unchecked. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. 

 
Selected portions of the output reports are shown below. 
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Logistic Regression Output 
 
Analysis of Deviance Section 
   Increase   
   From Model   
Term   Deviance Prob  
Omitted DF Deviance (Chi Square) Level  
DRIVER 1 296.14391 4.93901 0.02626  
DS 1 291.28031 0.07542 0.78361  
SUB 1 291.57933 0.37444 0.54060  
None(Model) 3 291.20489  
    
Parameter Significance Tests Section (Reference Value: Y = 0) 
 Regression  Wald Wald Odds 
 Coefficient Standard Z-Value Prob Ratio 
Parameter (B or Beta) Error (Beta=0) Level Exp(B) 
B1: Driver 0.69131 0.31893 2.168 0.03019 1.99633 
B2: DS -0.20579 0.66418 -0.310 0.75668 0.81400 
B3: Sub 0.44385 0.72034 0.616 0.53778 1.55869 
 
Odds Ratios Section (Reference Value: Y = 0) 
 Regression Odds Lower 95% Upper 95% 
 Coefficient Ratio Confidence Confidence 
Parameter (B or Beta) Exp(B) Limit Limit 
B1: Driver 0.69131 1.99633 1.06846 3.72998  
B2: DS -0.20579 0.81400 0.22145 2.99212  
B3: Sub 0.44385 1.55869 0.37985 6.39607  
    

The first step is to test the significance of the interaction term, DS. The deviance value, 0.07542, 
is not significant, so we decide to make another run without the interaction to enable us to more 
directly study the main effects: DRIVER and SUB. 
Rerunning without the interaction produces the following report. 

 
Parameter Significance Tests Section (Reference Value: Y = 0) 
 Regression  Wald Wald Odds 
 Coefficient Standard Z-Value Prob Ratio 
Parameter (B or Beta) Error (Beta=0) Level Exp(B) 
B1: Driver 0.65787 0.29398 2.238 0.02523 1.93068 
B2: Sub 0.25546 0.22583 1.131 0.25797 1.29106 
  
Odds Ratios Section (Reference Value: Y = 0) 
 Regression Odds Lower 95% Upper 95% 
 Coefficient Ratio Confidence Confidence 
Parameter (B or Beta) Exp(B) Limit Limit 
B1: Driver 0.65787 1.93068 1.08512 3.43514 
B2: Sub 0.25546 1.29106 0.82931 2.00990  
 
Analysis of Deviance Section 
   Increase   
   From Model   
Term   Deviance Prob  
Omitted DF Deviance (Chi Square) Level  
DRIVER 1 296.53786 5.25755 0.02185  
SUB 1 292.56797 1.28766 0.25648  
None(Model) 2 291.28031    
   

The deviance tests indicate that DRIVER is significant, but Sub (suburban residence) is not. The 
point estimate for the odds ratio associated with driver is 1.93068. The 95% confidence interval 
for the odds ratio of DRIVER is 1.085 to 3.435. We conclude that the risk of a herniated disc is 
about twice as much for drivers as for non-drivers.  
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Chapter 325 

Poisson 
Regression 
Introduction 
Poisson regression is similar to regular multiple regression except that the dependent (Y) variable 
is an observed count that follows the Poisson distribution. Thus, the possible values of Y are the 
nonnegative integers: 0, 1, 2, 3, and so on. It is assumed that large counts are rare. Hence, Poisson 
regression is similar to logistic regression, which also has a discrete response variable. However, 
the response is not limited to specific values as it is in logistic regression.  

One example of an appropriate application of Poisson regression is a study of how the colony 
counts of bacteria are related to various environmental conditions and dilutions. Another example 
is the number of failures for a certain machine at various operating conditions. Still another 
example is vital statistics concerning infant mortality or cancer incidence among groups with 
different demographics. 

Most books on regression analysis briefly discuss Poisson regression. We are aware of only one 
book that is completely dedicated to the discussion of the topic. This is the book by Cameron and 
Trivedi (1998). Most of the methods presented here were obtained from their book. 

This program computes Poisson regression on both numeric and categorical variables. It reports 
on the regression equation as well as the goodness of fit, confidence limits, likelihood, and 
deviance. It performs a comprehensive residual analysis including diagnostic residual reports and 
plots. It can perform a subset selection search, looking for the best regression model with the 
fewest independent variables. It provides confidence intervals on predicted values. 

The Poisson Distribution 
The Poisson distribution models the probability of y events (i.e. failure, death, or existence) with 
the formula 
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Notice that the Poisson distribution is specified with a single parameter μ . This is the mean 
incidence rate of a rare event per unit of exposure. Exposure may be time, space, distance, area, 
volume, or population size. Because exposure is often a period of time, we use the symbol t to 
represent the exposure. When no exposure value is given, it is assumed to be one.  
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The parameter μ  may be interpreted as the risk of a new occurrence of the event during a 
specified exposure period, t. The probability of y events is then given by 
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The Poisson distribution has the property that its mean and variance are equal. 

The Poisson Regression Model 
In Poisson regression, we suppose that the Poisson incidence rate μ  is determined by a set of k 
regressor variables (the X’s). The expression relating these quantities is 
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Note that often,  and 11 ≡X 1β  is called the intercept. The regression coefficients kβββ ,,, 21 L  
are unknown parameters that are estimated from a set of data. Their estimates are labeled 

.  kbbb ,,, 21 L

Using this notation, the fundamental Poisson regression model for an observation i is written as 
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That is, for a given set of values of the regressor variables, the outcome follows the Poisson 
distribution. 

Solution by Maximum Likelihood Estimation 
The regression coefficients are estimated using the method of maximum likelihood. The 
logarithm of the likelihood function is 
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Note that some statistical packages ignore the last term since it does not involve the regression 
parameters. This will make their calculated log-likelihoods different from ours. 

The likelihood equations may be formed by taking the derivatives with respect to each regression 
coefficient and setting the result equal to zero. Doing this leads to a set of nonlinear equations that 
admits no closed-form solution. Thus, an iterative algorithm must be used to find the set of 
regression coefficients that maximum the log-likelihood. Using the method of iteratively 
reweighted least squares, a solution may be found in five or six iterations. However, the algorithm 
requires a complete pass through the data at each iteration, so it is relatively slow for problems 
with a large number of rows. With today’s computers, this is becoming less and less of an issue. 
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Distribution of the MLE’s 
Applying the usual maximum likelihood theory, the asymptotic distribution of the maximum 
likelihood estimates (MLE’s) is multivariate normal. That is, 
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Remember that in the Poisson model the mean and the variance are equal. In practice, the data 
almost always reject this restriction. Usually, the variance is greater than the mean—a situation 
called overdispersion. The increase in variance is represented in the model by a constant multiple 
of the variance-covariance matrix. That is, we use 
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where φ  is estimated using 
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NCSS provides the option of using φ  (phi) in the calculation of the variances of the regression 
coefficients. 

Goodness of Fit Tests 
Overall performance of the model is measured by two chi-square tests. These are the Pearson 
statistic 
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and the deviance, or G, statistic 
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Both of these statistics are approximately chi-square distributed with n - k degrees of freedom. 
When a test is rejected, there is a significant lack of fit. When a test is not rejected, there is no 
evidence of lack of fit. 

The Pearson statistic is only chi-square distributed when you are analyzing grouped data, so if 
you are not using a frequency variable, you should not use the Pearson statistic as a goodness of 
fit test. The Pearson statistic is often used as a test of overdispersion.  
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Deviance 
The deviance is twice the difference between the maximum achievable log-likelihood and the 
log-likelihood of the fitted model. In multiple regression under normality, the deviance is the 
residual sum of squares. In the case of Poisson regression, the deviance is a generalization of the 
sum of squares. The formula for the deviance is 

( ) { }μyμy ˆ2ˆ, LLLLD −=  

Pseudo R-Squared Measures 
The R-squared statistic does not extend to Poisson regression models. Various pseudo R-squared 
tests have been proposed. These pseudo measures have the property that, when applied to the 
linear model, they match the interpretation of the linear model R-squared. In Poisson regression, 
the most popular pseudo R-squared measure is function of the log-likelihoods of three models: 
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Note that  is the log-likelihood of the intercept-only model,  is the log-likelihood of the 

current model, and  is the maximum log-likelihood possible. The maximum log-likelihood 
occurs when the actual responses (the ’s) exactly equal the predicted responses (the

0LL fitLL

maxLL

iy iμ ’s). 

Notice that this value of R-squared varies between zero and one, with a perfect fit occurring at 
one. Also note that it assumes that there is an intercept in the model. This may be an actual 
explicit intercept or an implicit intercept (as when you use a complete set of indicator variables to 
represent a categorical variable). 

Residuals 
As in any regression analysis, a complete residual analysis should be employed. This involves 
plotting the residuals against various other quantities such as the regressor variables (to check for 
outliers and curvature) and the response variable. Various residuals may be of interest. These will 
be presented next. 
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Raw Residual 
The raw residual is the difference between the actual response and the estimated value from the 
model. Because in the Poisson case, the variance is equal to the mean, we expect that the 
variances of the residuals are unequal. This can lead to difficulties in the interpretation of the raw 
residuals. However, it is still popular. The formula for the raw residual is 
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Pearson Residual 
The Pearson residual corrects for the unequal variance in the residuals by dividing by the standard 
deviation. The formula for the Pearson residual is 
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Deviance Residual 
The deviance residual is another popular residual. It is popular because the sum of squares of 
these residuals is the deviance statistic. The formula for the deviance residual is 
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Hat Values 
The Hat matrix is used in residual diagnostics to measure the influence of each observation. The 
hat values, , are the diagonal entries of the Hat matrix which is calculated using hii

( ) 2/112/1 '' WXWXXXWH −=  

where W is a diagonal matrix made up of iμ̂ . 

The hat values should be studied themselves, to understand which observations have a large 
influence on the fitted regression coefficients. Large hat values are those that are larger than 2k/n. 
They are also used to further standardize residuals as is shown next. 

Studentized Pearson Residual 
The formula for the studentized Pearson residual is 
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Studentized Deviance Residual 
The formula for the studentized deviance residual is 
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Subset Selection 
Subset selection refers to the task of finding a small subset of the available regressor variables 
that does a good job of predicting the dependent variable. Because Poisson regression must be 
solved iteratively, the task of finding the best subset can be time consuming. Hence, techniques 
which look at all possible combinations of the regressor variables are not feasible. Instead, 
algorithms that add or remove a variable at each step must be used. Two such searching 
algorithms are available in this module: forward selection and forward selection with switching. 

Before discussing the details of these two algorithms, it is important to comment on a couple of 
issues that can come up. The first issue is what to do about the binary variables that are generated 
for a categorical independent variable. If such a variable has six categories, five binary variables 
are generated. You can see that with two or three categorical variables, a large number of binary 
variables may result, which greatly increases the total number of variables that must be searched. 
To avoid this problem, the algorithms used here search on model terms rather than on the 
individual variables. Thus, the whole set of binary variables associated with a given term are 
considered together for inclusion in, or deletion from, the model. Its all or none. Because of the 
time consuming nature of the algorithm, this is the only feasible way to deal with categorical 
variables. If you want the subset algorithm to deal with them individually, you can generate the 
set of binary variables manually and designate them as Numeric Variables. 

Hierarchical Models 
A second issue is what to do with interactions. Usually, an interaction is not entered in the model 
unless the individual terms that make up that interaction are also in the model. For example, the 
interaction term A*B*C is not included unless the terms A, B, C, A*B, A*C, and B*C are already 
in the model. Such models are said to be hierarchical. You have the option during the search to 
force the algorithm to only consider hierarchical models during its search. Thus, if C is not in the 
model, interactions involving C are not even considered. Even though the option for non-
hierarchical models is available, we recommend that you only consider hierarchical models. 

Forward Selection 
The method of forward selection proceeds as follows.  

1.  Begin with no terms in the model. 

2.  Find the term that, when added to the model, achieves the largest value of R-squared. 
Enter this term into the model. 

3.  Continue adding terms until a preset limit on the maximum number of terms in the model 
is reached. 

This method is comparatively fast, but it does not guarantee that the best model is found except 
for the first step when it finds the best single term. You might use it when you have a large 
number of observations so that other, more time consuming methods, are not feasible, or when 
you have far too many possible regressor variables and you want to reduce the number of terms in 
the selection pool. 
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Forward Selection with Switching 
This method is similar to the method of Forward Selection discussed above. However, at each 
step when a term is added, all terms in the model are switched one at a time with all candidate 
terms not in the model to determine if they increase the value of R-squared. If a switch can be 
found, it is made and the candidate terms are again searched to determine if another switch can be 
made. 

When the search for possible switches does not yield a candidate, the subset size is increased by 
one and a new search is begun. The algorithm is terminated when a target subset size is reached 
or all terms are included in the model. 

Discussion 
These algorithms usually require two runs. In the first run, you set the maximum subset size to a 
large value such as 10. By studying the Subset Selection reports from this run, you can quickly 
determine the optimum number of terms. You reset the maximum subset size to this number and 
make the second run. This two-step procedure works better than relying on some F-to-enter and 
F-to-remove tests whose properties are not well understood to begin with. 

Data Structure 
At a minimum, datasets to be analyzed by Poisson regression must contain a dependent variable 
and one or more independent variables. For each categorical variable, the program generates a set 
of binary (0 and 1) variables that express the same information. For example, in the table below, 
the discrete variable AgeGroup will be replaced by the variables Ag2 through Ag6 (Ag1 is not 
needed).  

Koch et. al. (1986) present the following data taken from the Third National Cancer Survey. This 
dataset contains the number of new melanoma cases in 1969-1971 among white males in two 
areas for various age groups. The size of the estimated population at risk is given in the variable 
Population. 

 

KOCH36 dataset 

Melanoma Area AgeGroup Population AG1 AG2 AG3 AG4 AG5 AG6 
61 0 <35 2880262 1 0 0 0 0 0 
76 0 35-44 564535 0 1 0 0 0 0 
98 0 45-54 592983 0 0 1 0 0 0 
104 0 54-64 450740 0 0 0 1 0 0 
63 0 65-74 270908 0 0 0 0 1 0 
80 0 >74 161850 0 0 0 0 0 1 
64 1 <35 1074246 1 0 0 0 0 0 
75 1 35-44 220407 0 1 0 0 0 0 
68 1 45-54 198119 0 0 1 0 0 0 
63 1 54-64 134084 0 0 0 1 0 0 
45 1 65-74 70708 0 0 0 0 1 0 
27 1 >74 34233 0 0 0 0 0 1 
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Missing Values 
If missing values are found in any of the independent variables being used, the row is omitted. If 
only the value of the dependent variable is missing, that row will not be used during the 
estimation process, but its predicted value will be generated and reported on.  

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Dependent Variable 

Y: Dependent Variable 
Specify the dependent (response) variable. This is the variable to be predicted by the independent 
variables. The values in this variable should be non-negative integers (zero is okay).  

Frequency Variable 

Frequency Variable 
This is an optional variable containing the frequency (observation count) for each row. Usually, 
you would leave this option blank and let each row receive the default frequency of one.  

If your data have already been summarized, this option lets you specify how many actual rows 
each physical row represents.  

Numeric Independent Variables 

X’s: Numeric Independent Variables 
Specify the numeric (continuous) independent variables. By numeric, we mean that the values are 
numeric and at least ordinal. Nominal variables, even when coded with numbers, should be 
specified as Categorical Independent Variables. Although you may specify binary (0-1) variables 
here, they are better analyzed when you specify them as Categorical Independent Variables. 

If you want to create powers and cross-products of these variables, specify an appropriate model 
in the ‘Custom Model’ field under the Model tab. 

If you want to create predicted values of Y for values of X not in your database, add the X values 
to the bottom of the database. They will not be used during estimation, but predicted values will 
be generated for them.  
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Categorical Independent Variables 

X’s: Categorical Independent Variable(s) 
Specify categorical (nominal) independent variables in this box. By categorical we mean that the 
variable has only a few unique, numeric or text, values like 1, 2, 3 or Yes, No, Maybe. The values 
are used to identify categories.  

The values in a categorical variable are not used directly in the regression analysis. Instead, a set 
of numeric variables is substituted for them. Suppose a categorical variable has G categories. 
NCSS automatically generates the G-1 indicator variables that are needed for the analysis. The 
type of indicator variable created is determined by the selection for the Default Reference Value 
and the Default Contrast Type. The type of indicator created can also be controlled by entering 
the reference value and contrast type directly according to the syntax below. See the Default 
Reference Value and Default Contrast Type sections below for a discussion of the reference value 
and contrast type options.  

You can create the interactions among these variables automatically using the Custom Model 
field under the Model tab.  

Syntax 
The syntax for specifying a categorical variable is VarName(RefValue;CType) where VarName is 
the name of the variable, RefValue is the reference value, and CType is the type of numeric 
variables generated: B for binary, P for polynomial, R for contrast with the reference value, and S 
for a standard set of contrasts.   

For example, suppose a categorical variable, STATE, has four values: Texas, California, Florida, 
and New York. To process this variable, the values are arranged in sorted order: California, 
Florida, New York, and Texas. Next, the reference value is selected. If a reference value is not 
specified, the default value specified in the Default Reference Value window is used. Finally, the 
method of generating numeric variables is selected. If such a method is not specified, the contrast 
type selected in the Default Contrast Type window is used. Possible ways of specifying this 
variable are 
STATE RefValue = Default, CType = Default 
STATE(New York) RefValue = New York, CType = Default 
STATE(California;R) RefValue = California, CType = Contrast with Reference 
STATE(Texas;S) RefValue = Texas, CType = Standard Set 

 

More than one category variable may be designated using a list. Examples of specifying three 
variables with various options are shown next. 
STATE  BLOODTYPE  GENDER 
STATE(California;R)  BLOODTYPE(O)  GENDER(F) 
STATE(Texas;S)  BLOODTYPE(O;R)  GENDER(F;B) 
 

Default Reference Value 
This option specifies the default reference value to be used when automatically generating 
indicator variables during the processing of selected categorical independent variables. The 
reference value is often the baseline, and the other values are compared to it. The choices are 
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• First Value after Sorting 
Use the first value in alpha-numeric sorted order as the reference value. 

• Last Value after Sorting 
Use the last value in alpha-numeric sorted order as the reference value. 

The reference value may also be designated within parentheses after the name of the categorical 
independent variable, in which case the default reference value is ignored. For example, suppose 
that the categorical independent variable, STATE, has four values: 1, 3, 4, and 5.  

1. If this option is set to 'First Value after Sorting' and the categorical independent variable 
is entered as 'STATE', the reference value would be 1.  

2. If this option is set to 'Last Value after Sorting' and the categorical independent variable 
is entered as 'STATE', the reference value would be 5.  

3. If the categorical independent variable is entered as 'STATE(4)', the choice for this 
setting would be ignored, and the reference value would be 4. 

Default Contrast Type 
Select the default type of numeric variable that will be generated when processing categorical 
independent variables. The values in a categorical variable are not used directly in regression 
analysis. Instead, a set of numeric variables is automatically created and substituted for them. 
This option allows you to specify what type of numeric variable will be created. The options are 
outlined in the sections below. 

The contrast type may also be designated within parentheses after the name of each categorical 
independent variable, in which case the default contrast type is ignored. 

If your model includes interactions of categorical variables, this option should be set to something 
other than 'Binary'. 

• Binary (This is the default) 
Categories are converted to numbers using a set of binary indicator variables by assigning a 
'1' to the active category and a '0' to all other values. For example, suppose a categorical 
variable has G categories. NCSS automatically generates the G-1 binary (indicator) variables 
that are used in the regression. These indicator variables are set to 1 for those rows in which 
the value of this variable is equal to a certain value. They are set to 0 otherwise. The G-1 
occurs because the Gth indicator variable is redundant (when all G-1 indicators are 0, wIfe 
know that the Gth indicator variable would be a 1). The value that is skipped is called the 
Reference Value. 

If your model includes interactions, using the binary indicator type may cause strange results.   

For the STATE variable, three binary variables would be generated. Suppose that the Default 
Contrast Type was 'Binary' and the statement used was 'STATE(Florida)'. The categories 
would be converted to numbers as follows: 

STATE B1 B2 B3 
California 1 0 0 
Florida 0 0 0 
New York 0 1 0 
Texas 0 0 1 
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• Contrast with Reference 
Categories are converted to numbers using a set of contrast variables by assigning a '1' to the 
active category, a '-1' to the reference value, and a '0' to all other values. A separate contrast is 
generated for each value other than the reference value.  

For the STATE variable, three numeric variables would be generated. Suppose the Default 
Contrast Type was 'Contrast with Reference', the Default Reference Type was 'Last Value 
after Sorting', and the variable was entered as 'STATE'. The categories would be converted to 
numbers as follows: 

STATE R1 R2 R3 
California 1 0 0 
Florida 0 1 0 
New York 0 0 1 
Texas -1 -1 -1 

• Polynomial 
If a variable has five or fewer categories, it can be converted to a set of polynomial contrast 
variables that account for the linear, quadratic, cubic, quartic, and quintic relationships. Note 
that these assignments are made after the values are sorted. Usually, the polynomial method 
is used on a variable for which the categories represent the actual values. That is, the values 
themselves are ordinal, not just category identifiers. Also, it is assumed that these values are 
equally spaced. Note that with this method, the reference value is ignored.  

For the STATE variable, linear, quadratic, and cubic variables are generated. Suppose that the 
Default Contrast Type was 'Polynomial' and the statement used was 'STATE'.  The categories 
would be converted to numbers as follows: 

STATE Linear Quadratic Cubic 
California -3 1 -1 
Florida -1 -1 3 
New York 1 -1 -3 
Texas 3 1 1 

• Standard Set 
A variable can be converted to a set of contrast variables using a standard set of contrasts. 
This set is formed by comparing each value with those below it. Those above it are ignored. 
Note that these assignments are made after the values are sorted. The reference value is 
ignored.  

For the STATE variable, three numeric variables are generated. Suppose that the Default 
Contrast Type was 'Standard Set' and the statement used was 'STATE'. The categories would 
be converted to numbers as follows: 

STATE S1 S2 S3 
California -3 0 0 
Florida 1 -2 0 
New York 1 1 -1 
Texas 1 1 1 
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Exposure Variable 

T: Exposure Variable 
Specify an optional variable containing exposure values. If this option is left blank, all exposures 
will be set to 1.0. This variable is specified when the exposures are different for each row.  

The exposure is the amount of time, space, distance, volume, or population size from which the 
dependent variable is counted. For example, exposure may be the time in days, months, or years 
during which the values on that row were obtained. It may be the number of individuals at risk or 
the number of man-years from which the dependent variable is measured. 

Each exposure must be a positive (non-zero) number or the row is ignored during the estimation 
phase. 

Options 

Alpha Level 
Alpha is the significance level used in the hypothesis tests. One minus alpha is the confidence 
level of the confidence intervals. A value of 0.05 is most commonly used. This corresponds to a 
chance of error of 1 in 20. You should not be afraid to use other values since 0.05 became popular 
in pre-computer days when it was the only value available. 

Typical values range from 0.001 to 0.20. 

Use Dispersion Phi in SE’s 
Indicate whether to use the Phi multiplier in the calculation of the standard errors of the 
regression coefficients.  

The Poisson model assumes that the mean and variance are identical. Usually, the variance is 
larger than the mean (called overdispersion). A correction can be applied to the standard errors by 
multiplying them by the Phi coefficient.  

Note that this correction will not change the estimated regression coefficients.  

Model Tab 
These options control the regression model. 

Subset Selection 

Subset Selection 
This option specifies the subset selection algorithm used to reduce the number of independent 
variables that used in the regression model. Note that since the solution algorithm is iterative, the 
selection process can be very time consuming. The Forward algorithm is much quicker than the 
Forward with Switching algorithm, but the Forward algorithm does not usually find as good of a 
model.  

Also note that in the case of categorical independent variables, the algorithm searches among the 
original categorical variables, not among the generated individual binary variables. That is, either 
all binary variables associated with a particular categorical variable are included or not—they are 
not considered individually. 
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Hierarchical models are such that if an interaction is in the model, so are the terms that can be 
derived from it. For example, if A*B*C is in the model, so are A, B, C, A*B, A*C, and B*C. 
Statisticians usually adopt hierarchical models rather than non-hierarchical models. The subset 
selection procedure can be made to consider only hierarchical models during its search. 

The subset selection options are: 

• None 
No subset selection is attempted. All specified independent variables are used in the 
regression equation. 

•  (Hierarchical) Forward 
With this algorithm, the term with the largest log likelihood is entered into the model. Next, 
the term that increases the log likelihood the most is added. This selection is continued until 
all the terms have been entered or until the maximum subset size has been reach. 

If hierarchical models are selected, only those terms that will keep the model hierarchical are 
candidates for selection. For example, the interaction term A*B will not be considered unless 
both A and B are already in the model. 

When using this algorithm, you must make one run that allows a large number of terms to 
find the appropriate number of terms. Next, a second run is made in which you decrease the 
maximum terms in the subset to the number after which the log likelihood does not change 
significantly. 

• (Hierarchical) Forward with Switching 
This algorithm is similar to the Forward algorithm described above. The term with the largest 
log likelihood is entered into the regression model. The term which increases the log 
likelihood the most when combined with the first term is entered next. Now, each term in the 
current model is removed and the rest of the terms are checked to determine if, when they are 
used instead, the likelihood function is increased. If a term can be found by this switching 
process, the switch is made and the whole switching operation is begun again. The algorithm 
continues until no term can be found that improves the likelihood. This model then becomes 
the best two-term model.  

Next, the subset size is increased by one, the best third term is entered into the model, and the 
switching process is repeated. This process is repeated until the maximum subset size is 
reached. Hence, this model finds the optimum subset for each subset size. You must make 
one run to find an appropriate subset size by looking at the change in the log likelihood. You 
then reset the maximum subset size to this value and rerun the analysis. 

If hierarchical models are selected, only those terms that will keep the model hierarchical are 
candidates for addition or deletion. For example, the interaction term A*B will not be 
considered unless both A and B are already in the model. Likewise, the term A cannot be 
removed from a model that contains A*B. 

Max Terms in Subset 
Once this number of terms has been entered into the model, the subset selection algorithm is 
terminated. Often you will have to run the procedure twice to find an appropriate value. You 
would set this value high for the first run and then reset it appropriately for the second run, 
depending upon the values of the log likelihood. 

Note that the intercept is counted in this number. 
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Estimation Options 
The following options are used during the likelihood maximization process. 

Maximum Iterations 
Specifies the maximum number of iterations allowed during the iteration procedure. If this 
number is reached, the procedure is terminated prematurely. Typically, the maximum likelihood 
procedure converges in five or six iterations, so a value of twenty here should be ample.  

Convergence Zero 
This option specifies the convergence target for the maximum likelihood estimation procedure. 
When all of the maximum likelihood equations are less than this amount, the algorithm is 
assumed to have converged. In theory, all of the equations should be zero. However, about the 
best that can be achieved is 1E-13, so you should set this value to a number a little larger than this 
such as the default of 1E-9. 

The actual value can be found by looking at the Maximum Convergence value on the Run 
Summary report. 

Model Specification 

Which Model Terms 
This option specifies which terms (terms, powers, cross-products, and interactions) are included 
in the regression model. For a straight-forward regression model, select Up to 1-Way.  

The options are: 

• Full Model 
The complete, saturated model (all terms and their interactions) is generated. This requires a 
dataset with no missing categorical-variable combinations (you can have unequal numbers of 
observations for each combination of the categorical variables). 

For example, if you have three independent variables A, B, and C, this would generate the 
model: 

A + B + C + A*B + A*C + B*C + A*B*C  

Note that the discussion of the Custom Model option discusses the interpretation of this 
model. 

• Up to 1-Way 
This option generates a model in which each variable is represented by a single model term. 
No cross-products or interaction terms are added. Use this option when you want to use the 
variables you have specified, but you do not want to generate other terms.  

This is the option to select when you want to analyze the independent variables specified 
without adding any other terms. 

For example, if you have three independent variables A, B, and C, this would generate the 
model: 

A + B + C 
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• Up to 2-Way 
This option specifies that all main effects and two-way interactions are included in the model. 
For example, if you have three independent variables A, B, and C, this would generate the 
model: 

A + B + C + A*B + A*C + B*C 

• Up to 3-Way 
All main effects, two-way interactions, and three-way interactions are included in the model. 
For example, if you have three independent variables A, B, and C, this would generate the 
model: 

A + B + C + A*B + A*C + B*C + A*B*C 

• Up to 4-Way 
All main effects, two-way interactions, three-way interactions, and four-way interactions are 
included in the model. For example, if you have four independent variables A, B, C, and D, 
this would generate the model: 

A + B + C + D + A*B + A*C + A*D + B*C + B*D + C*D + A*B*C + A*B*D + A*C*D + 
B*C*D + A*B*C*D. 

• Custom Model 
The model specified in the Custom Model box is used. 

Include Intercept 
Check this box to include an intercept (constant term) in your model.  

Under most circumstances, you will want to include an intercept. The only time you may not need 
an intercept is when you have generated a set of indicator variables for a discrete variable and you 
want to include all of them instead of omitting one of them. 

Write Model in Custom Model Field 
When this option is checked, no data analysis is performed when the procedure is run. Instead, a 
copy of the full model is stored in the Custom Model box. You can then edit the model as desired. 
This option is useful when you want to be selective about which terms to keep and you have 
several variables. 

Note that the program will not do any calculations while this option is checked. 

Model Specification – Custom Model 

Max Term Order 
This option specifies that maximum number of variables that can occur in an interaction term in a 
custom model. For example, A*B*C is a third order interaction term and if this option were set to 
2, the A*B*C term would be excluded from the model. 

This option is particularly useful when used with the bar notation of a custom model to allow a 
simple way to remove unwanted high-order interactions. 
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Custom Model 
This options specifies a custom model. It is only used when the Which Model Terms option is set 
to Custom Model. A custom model specifies the terms (single variables and interactions) that are 
to be kept in the model.  

Interactions 
An interaction expresses the combined relationship between two or more variables and the 
dependent variable by creating a new variable that is the product of the variables. The interaction 
between two numeric variables is generated by multiplying them. The interaction between to 
categorical variables is generated by multiplying each pair of indicator variables. The interaction 
between a numeric variable and a categorical variable is created by generating all products 
between the numeric variable and the indicator variables generated from the categorical variable.  

Syntax 
A model is written by listing one or more terms.  The terms are separated by a blank or plus sign. 
Terms include variables and interactions. Specify regular variables (main effects) by entering the 
variable names. Specify interactions by listing each variable in the interaction separated by an 
asterisk (*), such as Fruit*Nuts or A*B*C.  

You can use the bar (|) symbol as a shorthand technique for specifying many interactions quickly. 
When several variables are separated by bars, all of their interactions are generated. For example, 
A|B|C is interpreted as A + B + C + A*B + A*C + B*C + A*B*C. 

You can use parentheses. For example, A*(B+C) is interpreted as A*B + A*C. 

Some examples will help to indicate how the model syntax works: 

A|B = A + B + A*B 

A|B A*A B*B = A + B + A*B + A*A + B*B 

Note that you should only repeat numeric variable. That is, A*A is valid for a numeric variable, 
but not for a categorical variable. 

A|A|B|B (Max Term Order=2) = A + B + A*A + A*B + B*B 

A|B|C = A + B + C + A*B + A*C + B*C + A*B*C 

(A + B)*(C + D) = A*C + A*D + B*C + B*D 

(A + B)|C = (A + B) + C + (A + B)*C = A + B + C + A*C + B*C 

Reports Tab 
The following options control which reports are displayed. 

Select Reports – Summaries 

Run Summary ... Means 
Each of these options specifies whether the indicated report is calculated and displayed.  



   Poisson Regression  325-17 

Select Reports – Subset Selection 

Subset Selection - Summary and Subset Selection - Detail 
Indicate whether to display these subset selection reports.  

Select Reports – Estimation 

Regression Coefficients ... Rate Coefficients  
Indicate whether to display these estimation reports.  

Select Reports – Goodness-of-Fit 

Lack-of-Fit Tests ... Log-Likelihood and R-Squared 
Indicate whether to display these model goodness-of-fit reports.  

Select Reports – Row-by-Row Lists 

Residuals ... Incidence 
Indicate whether to display these list reports. Note that since these reports provide results for each 
row, they may be too long for normal use when requested on large databases. 

Incidence Counts 
Up to five incidence counts may be entered. The probabilities of these counts under the Poisson 
regression model will be displayed on the Incidence Report. 

These values must be non-negative integers. 

Exposure Value 
Specify the exposure (time, space, distance, volume, etc.) value to be used as a multiplier on the 
Incidence Report. All items on that report are scaled to this amount. For example, if your data 
was scaled in terms of events per month but you want the Incidence report scaled to events per 
year, you would enter ‘12’ here. 

Select Plots 

Incidence (Y/T) vs X Plot ... Resid vs X Plot 
Indicate whether to display these plots.  

Plot Options 

Residual Plotted 
This option specifies which of the five types of residuals are shown on the residual plots. 
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Format Tab 
These options control format of the reports. 

Report Options 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Skip Line After 
The names of the indicator variables can be too long to fit in the space provided. If the name 
contains more characters than the number specified here, only the name is shown on the first line 
of the report and the rest of the output is placed on the next line. 

Enter 1 when you want the each variable’s results printed on two lines. 

Enter 100 when you want each variable’s results printed on a single line. 

Report Options – Decimal Places 

Y ... Chi-Square Decimals 
These options specify the number of decimal places shown on the reports for the indicated values. 

Incidence vs X Plot to Resid vs X Plot Tabs 
These options control the attributes of the various plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 
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Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This option contains the text of the plot title. The characters {Y} and {X} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 

Storage Tab 
These options let you specify if, and where on the database, various statistics are stored. 

Warning: Any data already in these variables are replaced by the new data. Be careful not to 
specify variables that contain important data. 

Data Storage Options 

Storage Option 
This option controls whether the values indicated below are stored on the database when the 
procedure is run. 

• Do not store data 
No data are stored even if they are checked. 

• Store in empty columns only 
The values are stored in empty columns only. Columns containing data are not used for data 
storage, so no data can be lost. 

• Store in designated columns 
Beginning at the First Storage Variable, the values are stored in this column and those to the 
right. If a column contains data, the data are replaced by the storage values. Care must be 
used with this option because it cannot be undone. 

Store First Variable In 
The first item is stored in this variable. Each additional item that is checked is stored in the 
variables immediately to the right of this variable.  
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Leave this value blank if you want the data storage to begin in the first blank column on the right-
hand side of the data. 

Warning: any existing data in these variables is automatically replaced, so be careful.. 

Data Storage Options – Select Items 
to Store 

Expanded X Values ... Covariance Matrix 
Indicated whether to store these row-by-row values, beginning at the variable indicated by the 
Store First Variable In option. Note that several of these values include a different value for each 
group and so they require several columns when they are stored. 

Expanded X Values 
This option refers to the experimental design matrix. They include all binary and interaction 
variables generated. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Poisson Regression using a Dataset with 
Indicator Variables 
This section presents several examples. In the first example, the data shown earlier in the Data 
Structure section and found in the KOCH36 database will be analyzed. Koch et. al. (1986) 
presented this dataset. It contains the number of new melanoma cases in 1969-1971 among white 
males in two areas for various age groups. The size of the estimated population at risk is given in 
the variable Population.  

This dataset is instructive because it shows how easily categorical variables are dealt with. In this 
example, two categorical variables, AREA and AGEGROUP, will be included in the regression 
model. The dataset can also be used to validate the program since the results are given in Koch 
(1986). 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Poisson Regression window. 

1 Open the KOCH36 database. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file KOCH36.S0. 
• Click Open. 

2 Open the Poisson Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Other Regression 

Routines, then Poisson Regression. The Poisson Regression procedure window will be 
displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Poisson Regression window, select the Variables tab.  
• Double-click in the Y: Dependent Variable box. This will bring up the variable 

selection window.  
• Select Melanoma from the list of variables and click Ok. “Melanoma” will appear in the 

Y: Dependent Variable box.  
• Double-click in the X’s: Categorical Independent Variables box.  
• Enter Area(0) AgeGroup(<35) in the X’s: Categorical Independent Variables box. 

The values in parentheses give the reference value for each variable.  
• Double-click in the T: Exposure Variable box.  
• Select Population from the list of variables and click Ok. 
• The rest of this panel can be left at the default values. 

4 Specify the model. 
• Select the Model tab. 
• Set the Subset Selection option to None. 
• Set the Which Model option to Up to 1-Way. 
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5 Specify the reports. 
• Select the Reports tab. 
• Check all of the reports and plots. Normally, you would not want all of them, but we need 

them now so we can document them. 
• Set the Incidence Counts to 5 10 15 20 25. 
• Set the Exposure Value to 100000. 

6 Specify the decimals. 
• Select the Format tab. 
• Set the number of decimal places for Probability to 6. 

7 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top) or press the F9 function key. 

Run Summary Report 
 
Parameter Value Parameter Value 
Dependent Variable Melanoma Subset Method None 
Exposure Variable Population Ind. Var's Available 6 
Frequency Variable None Ind. Var's Selected 6 
Rows Used 12 Iterations 5 
Sum of Frequencies 12 Final Likelihood -39.2199 
Maximum Convergence 4.718004E-12 Convergence Zero 1E-09 
Dispersion Phi 1.2230 Phi was not used to correct standard errors. 
 

This report provides several details about the data and the MLE algorithm. 

Dependent, Exposure, and Frequency Variables 
These variables are listed to provide a record of the variables that were analyzed. 

Rows Used 
This is the number of rows used by the estimation algorithm. Rows with missing values and 
filtered rows are not included. Always check this value to make sure that you are analyzing all of 
the data you intended to. 

Sum of Frequencies 
This is the number of observations used by the estimation algorithm. If you specified a Frequency 
Variable, this will be greater than the number of rows. If not, they will be equal. 

Subset Method 
This is the type of subset selection that was run. 

Ind. Var’s Available 
This is the number of independent variables that you have selected. 

No. of X’s in Model 
This is the number of actual X-variables generated from the terms in the model that was used in 
the analysis.  
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Iterations 
This is number of iterations used by the estimation algorithm. Usually, the algorithm will 
terminate in five or six iterations. 

Maximum Convergence 
The estimation algorithm continues until all of the likelihood equations are close to zero. This is 
largest value of all of these equations. It should be close to zero or the algorithm was terminated 
before it had converged. 

Convergence Zero 
The estimation algorithm continues until all of the likelihood equations are close to zero. This is 
zero to the algorithm. When the maximum convergence value is less than this amount, the 
algorithm has converged. Compare this value to the Maximum Convergence value. 

Final Likelihood 
This is the value of the log likelihood that was achieved for this run. 

Dispersion Phi 
This line gives the estimated value of the dispersion phi. It also indicates whether phi was used to 
adjust the standard errors of the regression coefficients and the predicted values. 

Model Summary Section 
 
 Model Error Log   Pseudo 
Model DF DF Likelihood Deviance AIC R-Squared 
Intercept 1 11 -484.0223 895.8197 897.8197 0.0000 
Model 7 5 -39.2199 6.2149 20.2149 0.9931 
Maximum 12 0 -36.1125 0.0000 24.0000 1.0000 
 

This report is analogous to the analysis of variance table. It summarizes the goodness of fit of the 
model. 

Model 
This is the term(s) that are reported about on this row of the report. Note that the model line 
includes the intercept. 

Model DF 
This is the number of variables in the model. 

Error DF 
This is the number of observations minus the number of variables. 

Log Likelihood 
This is the value of the log-likelihood function for the intercept only model, the chosen model, 
and the saturated model that fits the data perfectly. By comparing these values, you obtain an 
understanding of how well you model fits the data.  

Deviance 
The deviance is the generalization of the sum of squares in regular multiple regression. It 
measures the discrepancy between the fitted values and the data. 
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AIC 
This is Akaike’s information criterion (AIC). It is equal to the deviance plus twice the number of 
parameters in the model. It combines a measure of the discrepancy between the fitted values and 
the data (the deviance) with a measure of the simplicity of the model (twice the number of 
parameters). It has been shown that using AIC to compare competing models with different 
numbers of parameters amounts to selecting the model with the minimum estimate of the mean 
squared error of prediction.  

Pseudo R-Squared 
This is the generalization of regular R-squared in multiple regression. This value is discussed in 
detail in the Technical Details section of the chapter. Its formula is 
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Lack-of-Fit Tests Section 
 
  Chi^2 Prob 
Test DF Value Level 
Pearson 5 6.12 0.295180 
G Statistic 5 6.21 0.285867 
These tests indicate whether there is a significant lack of fit to the data by the model. 
 

This report provides the results of two goodness-of-fit tests. They indicate whether the current 
model adequately fits the data. The tests themselves are described in the Technical Details section 
of this chapter. 

Test 
Indicates which of the two tests is shown on this line. Note that the G Statistic test is more 
accurate in small samples. The Pearson test is often used as a test for overdispersion. 

DF 
Both of these tests are chi-square tests. This is the value of the degrees of freedom. It is equal to 
the number of observations minus the number of parameters in the regression model. 

Chi^2 Value 
This is the value of the chi-square test statistic. 

Prob Level 
This is the probability level of the test. The null hypothesis is that the model fits the data 
adequately. The alternative hypothesis is that the model is an inadequate representation of the 
data. If this probability level is less than some cutoff value such as 0.10 or 0.05, there is a 
significant lack of fit.  



   Poisson Regression  325-25 

Means Report 
 
Variable Mean Minimum Maximum 
Melanoma 68.667 27.000 104.000 
Population 554422.917 34233.000 2880262.000 
 

This report gives the mean, minimum, and maximum for each of the numeric variables in the 
analysis. Use it to check for obvious data errors. 

Regression Coefficients Section 
 
 Regression  Wald's  Lower 95.0% Upper 95.0% 
Independent  Coefficient Standard Chi^2 Prob Confidence Confidence 
Variable (B) Error (Ho:B=0) Level Limit Limit 
Intercept -10.65831 0.09518 12538.43 0.000000 -10.84487 -10.47175 
(AgeGroup="35-44") 
 1.79737 0.12093 220.92 0.000000 1.56036 2.03439 
(AgeGroup="45-54") 
 1.91309 0.11844 260.90 0.000000 1.68095 2.14522 
(AgeGroup="54-64") 
 2.24180 0.11834 358.89 0.000000 2.00987 2.47374 
(AgeGroup="65-74") 
 2.36572 0.13152 323.56 0.000000 2.10795 2.62349 
(AgeGroup=">74") 
 2.94468 0.13205 497.30 0.000000 2.68587 3.20349 
(Area=1) 0.81948 0.07103 133.11 0.000000 0.68027 0.95870 
Dispersion Phi  1.2230 
 
Estimated Poisson Regression Model 
Exp( -10.6583092620666 + 1.79737495802663*(AgeGroup="35-44") + 1.91308772800916*(AgeGroup="45-54") +  
2.24180245796945*(AgeGroup="54-64") + 2.36572417048965*(AgeGroup="65-74") +  
2.94467922306083*(AgeGroup=">74") + .819484586814038*(Area=1) ) 
 

This report provides the estimated regression model and associated statistics. It provides the main 
results of the analysis. 

Validation 
Koch (1986) gives the following estimates and standard errors. 
Independent  ML Standard 
Variable Estimate Error 
Intercept -10.66 0.01  
Area 0.82 0.07 
AG2 1.80 0.12 
AG3 1.91 0.12 
AG4 2.24 0.12 
AG5 2.37 0.13 
AG6 2.94 0.13 
 

As you can see, these results match those provided by NCSS exactly—validating our algorithms. 
These results were also validated using SAS. 
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Independent Variable 
This item provides the name of the independent variable shown on this line of the report. The 
Intercept refers to the optional constant term. The Dispersion Phi is the estimated value of the phi 
coefficient. 

Note that whether a line is skipped after the name of the independent variable is displayed is 
controlled by the Skip Lines After option in the Format tab. 

Regression Coefficient 
These are the maximum-likelihood estimates of the regression coefficients, . Their 
direct interpretation is difficult because the formula for the predicted value involves the 
exponential function. 

b b bk1 2, , ,L

Standard Error 
These are the asymptotic standard errors of the regression coefficients, the . The estimate the 
precision of the regression coefficient. The standard errors are the square roots of the diagonal 
elements of this covariance matrix. The covariance matrix is obtained by inverting the observed 
information matrix evaluated at the maximum likelihood estimates.  

sbi

If you Use Dispersion Phi option, the corrected standard error is shown. This is found by 
multiplying the simple standard error by the square root of phi. That is, the value displayed is ′sbi

 
where 

φ
ii bb ss =′  

Wald’s Chi^2 (Ho:b=0) 
This is the one degree of freedom chi-square statistic for testing the null hypothesis that βi = 0  
against the alternative that βi ≠ 0 . The chi-square value is called a Wald statistic. This test has 
been found to follow the chi-square distribution only in large samples. 

The test is calculated using  
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Prob Level 
The probability of obtaining a chi-square value greater than the above. This is the significance 
level of the test. If this value is less than some predefined alpha level, say 0.05, the variable is 
said to be statistically significant.  

Lower and Upper Confidence Limits 
These provide a large-sample confidence interval for the values of the coefficients. The width of 
the confidence interval provides you with a sense of how precise the regression coefficients are. 
Also, if the confidence interval includes zero, the variable is not statistically significant. The 
formula for the calculation of the confidence interval is  

b z si bi
± ′−1 2α /  

where α−1  is the confidence coefficient of the confidence interval and z is the appropriate value 
from the standard normal distribution. 
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Dispersion Phi 
This is the estimate of the overdispersion correction multiplier, phi. Remember that in the Poisson 
model the mean and the variance are equal. In practice, the data almost always reject this 
restriction. Usually, the variance is greater than the mean—a situation called overdispersion. The 
increase in variance is represented in the model by a constant multiple of the variance-covariance 
matrix. That is, we use 
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Estimated Poisson Regression Model 
This expression displays the estimated regression model in written format. It may be copied to the 
clipboard and used elsewhere. For example, you could copy it and paste it as a Variable 
Transformation. 

Note that transformation must be less than 255 characters. Since this formula is often greater than 
255 characters in length, you must use the FILE(filename) transformation. To do so, copy the 
formula to a text file using Notepad, Windows Write, or Word to receive the model text. Be sure 
to save the file as an unformatted text (ASCII) file. The transformation is FILE(filename) where 
filename is the name of the text file, including directory information. When the transformation is 
executed, it will load the file and use the transformation stored there. 

Analysis of Deviance Section 
 
   Increase   
   From Model   
Term   Deviance Prob  
Omitted DF Deviance (Chi Square) Level  
All 1 968.0446    
AGEGROUP 5 875.1835 796.74 0.000000  
AREA 1 202.6602 124.22 0.000000  
None(Model) 7 78.4398  
 

This report is the Poisson regression analog of the analysis of variance table. It displays the 
results of a chi-square test used to test whether each of the individual terms in the regression are 
statistically significant after adjusting for all other terms in the model.  
This report is not produced during a subset selection run. 

Note that this report requires that a separate regression be run for each line. Thus, if the running 
time is too long, you might consider omitting this report. 

Term Omitted 
This is the model term that is being tested. The test is formed by comparing the deviance statistic 
when the term is removed with the deviance of the complete model. Thus, the deviance when the 
term is left out of the model is shown. 
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The “All” line refers to the intercept-only model. The “None(Model)” refers to the complete 
model with no terms removed. 

Note that it is usually not advisable to include an interaction term in a model when one of the 
associated main effects is missing—which is what happens here. However, in this case, we 
believe this to be a useful test. 

Note that the name may become very long, especially for interaction terms. These long names 
may misalign the report. You can force the rest of the items to be printed on the next line by using 
the Skip Line After option in the Format tab. This should create a better looking report when the 
names are extra long. 

DF 
This is the degrees of freedom of the chi-square test displayed on this line.  

Deviance 
The deviance is equal to minus two times the log likelihood achieved by the model being 
described on this line of the report. See the discussion given earlier in this chapter for a technical 
discussion of the deviance. A useful way to interpret the deviance is as the analog of the residual 
sum of squares in multiple regression. This value is used to create the difference in deviance that 
is used in the chi-square test. 

Increase From Model Deviance (Chi Square) 
This is the difference between the deviance for the model described on this line and the deviance 
of the complete model. This value follows the chi-square distribution in medium to large samples. 
This value can the thought of as the analog of the residual sum of squares in multiple regression. 
Thus, you can think of this value as the increase in the residual sum of squares that occurs when 
this term is removed from the model. 

Another way to interpret this test is as a redundancy test because it tests whether this term is 
redundant after considering all of the other terms in the model. 

Prob Level 
This is the significance level of the chi-square test. This is the probability that a chi-square value 
with degrees of freedom DF is equal to this value or greater. If this value is less than 0.05 (or 
other appropriate value), the term is said to be statistically significant. 

Log Likelihood & R-Squared Section 
 
   R-Squared Reduction Reduction 
Term(s)  Log Of Remaining From Model From Saturated 
Omitted DF Likelihood Term(s) R-Squared R-Squared 
All 1 -17.18588 0.00000   
All 1 -484.0223 0.0000   
AGEGROUP 5 -437.5917 0.1037 0.8894 0.8963 
AREA 1 -101.3301 0.8544 0.1387 0.1456 
None(Model) 7 -39.2199 0.9931 0.0000 0.0069 
None(Saturated) 12 -36.1125 1.0000  0.0000 
 

This report provides the log likelihoods and R-squared values of various models. This report is 
not produced during a subset selection run. 
Note that this report requires that a separate regression be run for each line. Thus, if the running 
time is too long, you might consider omitting this report. 
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Term Omitted 
This is the term that is omitted from the model. The “All” line refers to the intercept-only model. 
The “None(Model)” refers to the complete model with no terms removed. The “None(Saturated)” 
line gives the results for the saturated model. 

Note that the name may become very long, especially for interaction terms. These long names 
may misalign the report. You can force the rest of the items to be printed on the next line by using 
the Skip Line After option in the Format tab. This should create a better looking report when the 
names are extra long. 

DF 
This is the degrees of freedom of the term displayed on this line.  

Log Likelihood 
This is the log likelihood of the model displayed on this line. Note that this is the log likelihood 
of the regression without the term listed. 

R-Squared of Remaining Term(s) 
This is the R-squared of the model displayed on this line. Note that the model does not include the 
term listed at the beginning of the line.  

Note that this is a pseudo R-squared as discussed earlier in this chapter. 

Reduction From Model R-Squared 
This is amount that R-squared is reduced when the term is omitted from the regression model. 
This reduction is calculated from the R-squared achieved by the full model. 

This quantity is used to determine if removing a term causes a large reduction in R-squared. If it 
does not, then the term can be safely removed from the model. 

Reduction From Saturated R-Squared 
This is amount that R-squared is reduced when the term is omitted from the regression model. 
This reduction is calculated from the R-squared achieved by the saturated model. This item is 
included because it shows how removal of this term impacts the best R-squared that is possible. 

Rate Section 
 
 Regression Rate Lower 95.0% Upper 95.0% 
Independent Coefficient Ratio Confidence Confidence 
Variable (B) [Exp(B)] Limit Limit 
Intercept -10.65831 0.00002 0.00002 0.00003 
(AgeGroup="35-44") 
 1.79737 6.03379 4.76055 7.64756 
(AgeGroup="45-54") 
 1.91309 6.77397 5.37066 8.54396 
(AgeGroup="54-64") 
 2.24180 9.41028 7.46233 11.86672 
(AgeGroup="65-74") 
 2.36572 10.65175 8.23138 13.78381 
(AgeGroup=">74") 
 2.94468 19.00457 14.67098 24.61823 
(Area=1) 0.81948 2.26933 1.97442 2.60830 
 

This report provides the rate ratio for each independent variable. 
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Independent Variable 
This item provides the name of the independent variable shown on this line of the report. The 
Intercept refers to the optional constant term. 

Regression Coefficient 
These are the maximum-likelihood estimates of the regression coefficients, . Their 
direct interpretation is difficult because the formula for the predicted value involves the 
exponential function. 

b b bk1 2, , ,L

Rate Ratio 
These are the exponentiated values of the regression coefficients. The formula used to calculate 
these is 

ib
i eRR =  

The rate ratio is mainly useful for interpretation of the regression coefficients of indicator 
variables. In this case, they estimate the incidence of the response variable (melanoma in this 
example) in the given category relative to the category whose indicator variable was omitted 
(usually called the control group). 

Lower and Upper Confidence Limits 
These provide a large-sample confidence interval for the rate ratios. The formula for the 
calculation of the confidence interval is  

( )
ibi szb ′± − 2/1exp α  

where α−1  is the confidence coefficient of the confidence interval and z is the appropriate value 
from the standard normal distribution. 

Covariances of Regression Coefficients Section 
The covariance matrix of the regression coefficients is not displayed as a report. However, it may 
be stored on the database for further investigation and use. 
The covariance matrix is obtained by inverting the observed information matrix evaluated at the 
maximum likelihood estimates. If the Use Dispersion Phi option was checked, the original values 
are multiplied by phi. 

Residuals Section 
 
 Melanoma Predicted Raw Pearson Deviance Population 
Row (Y) Value Residual Residual Residual (T) 
1 61 67.6998 -6.6998 -0.8143 -0.8283 2880262 
2 76 80.0638 -4.0638 -0.4542 -0.4581 564535 
3 98 94.4150 3.5850 0.3690 0.3667 592983 
4 104 99.6974 4.3026 0.4309 0.4279 450740 
5 63 67.8263 -4.8263 -0.5860 -0.5932 270908 
6 80 72.2979 7.7021 0.9058 0.8904 161850 
7 64 57.3002 6.6998 0.8851 0.8686 1074246 
8 75 70.9362 4.0638 0.4825 0.4780 220407 
9 68 71.5850 -3.5850 -0.4237 -0.4273 198119 
10 63 67.3026 -4.3026 -0.5245 -0.5302 134084 
11 45 40.1737 4.8263 0.7614 0.7469 70708 
12 27 34.7021 -7.7021 -1.3075 -1.3609 34233 
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This report provides the predicted values and various types of residuals. Large residuals indicate 
data points that were not fit well by the regression model. You may consider removing rows with 
large residuals and refitting, but you must be certain that you have a good reason for doing so. 
You cannot remove them simply because they have large residuals. 

Row 
The row number of the item. If you have excluded some rows by using a filter or if some of the 
rows had missing values, the row number identifies the original row on the database. 

Y 
This is the value of the dependent variable.  

Predicted Value 
This is the predicted value of Y.  It is the Poisson incidence rate, $μi , estimated by 
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Raw Residual 
The raw residual is the different between the actual response and the estimated value from the 
model. The formula for the raw residual is 

iii yr μ̂−=  

Pearson Residual 
The Pearson residual corrects for the unequal variance in the residuals by dividing by the standard 
deviation. The formula for the Pearson residual is 
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Deviance Residual 
The deviance residual is another popular residual. It is popular because the sum of squares of 
these residuals is the deviance statistic. The formula for the deviance residual is 
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where sign(x) is 1 if x is greater than or equal to 0 and -1 otherwise. 

T 
The value of the exposure variable (if active) is provided for your reference.  
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Predicted Values Section 
 
    Lower 95.0% Upper 95.0% 
 Melanoma Predicted Standard Confidence Confidence Population 
Row (Y) Value Error Limit Limit (T) 
1 61 67.6998 6.4440 55.0698 80.3297 2880262 
2 76 80.0638 7.0419 66.2619 93.8657 564535 
3 98 94.4150 7.8780 78.9743 109.8556 592983 
4 104 99.6974 8.2257 83.5752 115.8195 450740 
5 63 67.8263 6.7681 54.5610 81.0916 270908 
6 80 72.2979 7.1850 58.2156 86.3802 161850 
7 64 57.3002 5.5790 46.3656 68.2349 1074246 
8 75 70.9362 6.3609 58.4691 83.4034 220407 
9 68 71.5850 6.2636 59.3085 83.8615 198119 
10 63 67.3026 5.9387 55.6630 78.9423 134084 
11 45 40.1737 4.2609 31.8226 48.5249 70708 
12 27 34.7021 3.7454 27.3612 42.0430 34233 
 

This report provides the predicted values along with their standard errors and confidence limits.  
If you want to generate predicted values and confidence limits for X values not on your database, 
you should add them to the bottom of the database, leaving Y blank (if you are using an exposure 
variable, set the value of T to a desired value). These rows will not be included in the estimation 
algorithm, but they will appear on this report with estimated Y’s. 

Row 
The row number of the item. If you have excluded some rows by using a filter or if some of the 
rows had missing values, the row number identifies the original row on the database. 

Y 
This is the value of the dependent variable.  

Predicted Value 
This is the predicted value of Y.  It is the predicted mean of the Poisson distribution, $μi , 
estimated by 
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Standard Error 
The standard error of the predicted value is a measure of the precision of the estimated value. The 
formula for the standard error is 
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Note that if φ  is not used, it is set to one in the above formulas. 
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Confidence Limits 
These limits define a large-sample confidence interval for μi . The formula is 

( )( )
i

sezi μαμ ˆ2/1ˆ −±  

T 
The value of the exposure variable (if active) is provided for you reference.  

Residual Diagnostics Section 
 
    Studentized Studentized  
 Melanoma Predicted Raw Pearson Deviance Hat 
Row (Y) Value Residual Residual Residual Diagonal 
1 61 67.6998 -6.6998 -1.3095 -1.3321 0.6134 
2 76 80.0638 -4.0638 -0.7361 -0.7425 0.6194 
3 98 94.4150 3.5850 0.6303 0.6264 0.6573 
4 104 99.6974 4.3026 0.7602 0.7548 0.6787 
5 63 67.8263 -4.8263 -1.0285 -1.0411 0.6754 
6 80 72.2979 7.7021 1.6939 1.6651 0.7140 
7 64 57.3002 6.6998 1.3095 1.2852 0.5432 
8 75 70.9362 4.0638 0.7361 0.7293 0.5704 
9 68 71.5850 -3.5850 -0.6303 -0.6357 0.5481 
10 63 67.3026 -4.3026 -0.7602 -0.7685 0.5240 
11 45 40.1737 4.8263 1.0285 1.0089 0.4519 
12 27 34.7021 -7.7021 -1.6939 -1.7632 0.4042 
High Leverage Cutoff     1.166667 
 

This report provides the hat diagonals and studentized residuals. It allows you to study the 
leverage (influence) of each observation. 

Row 
The row number of the item. If you have excluded some rows by using a filter or if some of the 
rows had missing values, the row number identifies the original row on the database. 

Y 
This is the value of the dependent variable.  

Predicted Value 
This is the predicted value of Y.  It is the Poisson incidence rate, $μi , estimated by 
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Raw Residual 
The raw residual is the difference between the actual response and the estimated value from the 
model. The formula for the raw residual is 

iii yr μ̂−=  
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Studentized Pearson Residual 
The studentized Pearson residual is found be dividing the regular Pearson residual by the square 
root of one minus the hat diagonal. The formula is 
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Studentized Deviance Residual 
The studentized deviance residual is found be dividing the regular deviance residual by the square 
root of one minus the hat diagonal. The formula is 
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Hat Diagonal 
This is the value of the influence measure, . The Hat matrix is used in residual diagnostics to 
measure the influence of each observation. The hat values, , are the diagonal entries of the Hat 
matrix which is calculated using 

hii

hii
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where W is a diagonal matrix made up of iμ̂ . 

The hat values should be studied to understand which observations have the greatest influence on 
the fitted regression coefficients. Large hat values are those that are larger than 2k/n. 

Incidence Section when Exposure = 100000 
 
 Average Prob that Prob that Prob that Prob that Prob that 
 Incidence Count is Count is Count is Count is Count is 
Row Rate 5 10 15 20 25 
1 2.3505 0.056990 0.000135 0.000000 0.000000 0.000000 
2 14.1822 0.003313 0.062866 0.100093 0.030868 0.002778 
3 15.9220 0.001037 0.035105 0.099684 0.054827 0.008800 
4 22.1186 0.000011 0.001914 0.028111 0.079991 0.066422 
5 25.0366 0.000001 0.000357 0.009747 0.051537 0.079521 
6 44.6697 0.000000 0.000000 0.000000 0.000016 0.000457 
7 5.3340 0.173603 0.024788 0.000297 0.000001 0.000000 
8 32.1842 0.000000 0.000003 0.000332 0.006156 0.033343 
9 36.1323 0.000000 0.000000 0.000036 0.001201 0.011606 
10 50.1944 0.000000 0.000000 0.000000 0.000001 0.000034 
11 56.8164 0.000000 0.000000 0.000000 0.000000 0.000001 
12 101.3703 0.000000 0.000000 0.000000 0.000000 0.000000 
 

This report gives the predicted incidence rate and Poisson probabilities for various counts. 

Row 
The row number of the item. If you have excluded some rows by using a filter or if some of the 
rows had missing values, the row number identifies the original row on the database. 

Average Incidence Rate 
This is the predicted incidence rate calculated using the formula 
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( )bxi′= μμ ˆˆ Ti  

Note that the calculation is made for a specific exposure value, not the value of T on the database. 
This allows you to make valid comparisons of the incidence rates. 

Prob that Count is Y 
Using the Poisson probability distribution, the probability of obtaining exactly Y events during the 
exposure amount given in the Exposure Value box is calculated for the values of Y specified in 
the Incidence Counts box. 

Plots of Y/T (Incidence) vs X 
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These plots show each of the independent variables plotted against the incidence as measured by 
Y/T. They should be scanned for outliers and curvilinear patterns. 
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Plots of Residuals vs. Y and Predicted Y 
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These plots show the residuals versus the dependent variable and the predicted value of the 
dependent variable. They are used to spot outliers.  

Plots of Residuals and Hats vs. Row 
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These plots show the residuals and the hat values versus the row numbers. They are used to 
quickly spot rows that have large residuals or large hat values. 

Plots of Residuals and X’s 
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These plots show the residuals plotted against the independent variables. They are used to spot 
outliers. They are also used to find curvilinear patterns that are not represented in the regression 
model. 

Example 2a – Subset Selection 
This example will demonstrate how to select an appropriate subset of the independent variables 
that are available. The dataset to be analyzed consists of ten independent variables, a dependent 
variable, a frequency variable, and an exposure variable. The dependent variable was generated 
using independent variables X1, X2, and X3 using the formula 

( )[ ]33.022.011.06.0 XXXExpTimeIntCount +++=  

Variables X4, X5, and X6 were copies of X1 plus a small random component. Similarly, X7 and 
X8 were near copies of X2 and X9 and X10 were near copies of X3. These near copies of the 
original variables were added to cause confusion to the selection algorithm. The forty rows of 
data are stored in the POISREG database.  

Now we assume that we do not know how the data were generated. Our task is to find a subset of 
the ten independent variables that does a good job of fitting the data. We plan to make two runs. 
The goal of the first run will be to find an appropriate subset size. Then, in the second run, we 
will identify the variables in this subset and estimate the various regression statistics. 
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You may follow along here by making the appropriate entries or load the completed template 
Example2a from the Template tab of the Poisson Regression window. 

1 Open the POISREG database. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file POISREG.S0. 
• Click Open. 

2 Open the Poisson Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Other Regression 

Routines, then Poisson Regression. The Poisson Regression procedure window will be 
displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Poisson Regression window, select the Variables tab.  
• Set the Y: Dependent Variable to Count.  
• Set the Frequency Variable to Cases.  
• Set the X’s: Numeric Independent Variables to X1-X10.  
• Set the T: Exposure Variable to Time.  

4 Specify the model. 
• On the Poisson Regression window, select the Model tab.  
• Set the Subset Selection to Hierarchical Forward with Switching.  
• Set the Max Terms in Subset to 6.  
• Set the Which Model to Up to 1-Way.  
• The rest of this panel can be left at the default values. 

5 Specify the reports. 
• Select the Reports tab. 
• Uncheck all of the reports and plots except Run Summary, Subset Selection - 

Summary, and Subset Selection - Detail (these should be checked). 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top) or press the F9 function key. 
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Run Summary Report 
 
Parameter Value Parameter Value 
Dependent Variable Count Subset Method Forward/Switching 
Exposure Variable Time Ind. Var's Available 10 
Frequency Variable Cases No. of X's in Model 5 
Rows Used 40 Iterations 20 
Sum of Frequencies 130 Final Likelihood -288.8153 
Maximum Convergence 3.420807E-06 Convergence Zero 1E-09 
Dispersion Phi 0.0138 Phi was not used to correct standard errors. 
 

This report provides several details about the data and the MLE algorithm as it fit the best model 
found during the search. We note that, as expected, there were 40 rows used. The fact that 20 
iterations were needed to solve the likelihood equations is a source of concern because this shows 
that the algorithm may not have converged. This may have been due to our fitting of a model that 
had too many terms. 

Subset Selection Summary Section 
 
Number of Log    
Terms Likelihood R-Squared Deviance AIC 
1 -730.6939 0.0000 885.5007 887.5007 
2 -434.0619 0.6700 292.2366 296.2366 
3 -348.4077 0.8634 120.9282 126.9282 
4 -288.8552 0.9979 1.8233 9.8233 
5 -288.8343 0.9980 1.7815 11.7815 
6 -288.8153 0.9980 1.7434 13.7434 
 

This report will help us determine an appropriate subset size. By scanning each column, we can 
see that three variables are needed. All of these measures are functions of each other. However, 
they each offer insight into the appropriate subset size.  
In this example, the four measures unanimously point to three as the appropriate subset size. 

Number of Variables 
This is the number of terms in the model including the intercept. Each line presents the results for 
the best model found for that subset size. The first line presents the results for the intercept-only 
model. 

Log Likelihood 
This is the value of the log likelihood function. Since the goal of maximum likelihood is to 
maximize this value, we want to select a subset size after which the log likelihood is not increased 
significantly. 

In this example, after three terms are added (in addition to the intercept) the log likelihood does 
not change a great deal. The log likelihood points to a subset size of three terms plus the intercept 
for a total of four. 

R-Squared 
This is the value of pseudo R-squared—a measure of the adequacy of the model. Since our goal is 
to maximize this value, we want to select a subset size after which the this value is not increased 
significantly. 

In this example, after four terms are included, the R-squared is 0.9979 and it does not change a 
great deal. The R-squared values point to a subset size of four. 
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Deviance 
Deviance is a measure of the lack of fit. Hence, we want to select a subset size after which the 
deviance is not significantly decreased.  

In this example, after four terms are included, the Deviance is 1.8233 and it does not change a 
great deal. The Deviance values point to a subset size of four. 

AIC 
These are the Akaike information criterion values for each subset size. This criterion measures 
both the lack of fit and the size of the regression model. Our goal is to minimize this value. 

In this example, the subset size of four gives the lowest value AIC and is thus the subset size 
implied by this statistic. 

Subset Selection Detail Section 
 
  No. of No. of Log  Term Term 
Step Action Terms X's Likelihood R-Squared Entered Removed 
1 Add 1 1 -730.6939 0.0000 Intercept  
2 Add 2 2 -434.0619 0.6700 X3  
3 Add 3 3 -348.4423 0.8634 X2  
4 Switch 3 3 -348.4077 0.8634 X9 X3 
5 Add 4 4 -289.2634 0.9970 X6  
6 Switch 4 4 -289.0943 0.9974 X8 X2 
7 Switch 4 4 -288.8552 0.9979 X3 X9 
8 Add 5 5 -288.8343 0.9980 X5  
9 Add 6 6 -288.8201 0.9980 X7  
10 Switch 6 6 -288.8153 0.9980 X2 X5 
 

This report shows the progress of the subset selection algorithm through its various steps. It 
shows the original term added at each step and any switching that was done. 

Step 
This is the number of the step in the subset selection process. 

Action 
Two actions are possible at each step: Add or Switch. Add means that the subset size was 
increased and the term entered as added to the set of active regressor variables. Switch means that 
the subset size remained the same while one active regressor was removed and another was 
activated. 

No. of Terms 
This is the number of active terms (including the intercept) at the end of this step. 

No. of X’s 
This is the number of active variables (excluding the intercept) at the end of this step. This 
reminds you of how many X variables were generated for each term involving a categorical 
variable. 

Log Likelihood 
This is the value of the log likelihood after this step was completed. 

R-Squared 
This is the pseudo R-squared value after this step was completed. 
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Variable Entered 
This is the name of the regressor that was added to the list of active regressor variables. 

Variable Removed 
In switching steps, this is the name of the variable that was removed from the list of active 
regressor variables. 

Example 2b – Subset Selection Continued 
Example 2a completed the first step in the subset selection process by indicating that a subset of 
four terms is appropriate. Now, a second run must be made to find those terms. 

The instructions provide here assume that you have just completed Example 2a. If you have not, 
you must complete it first since we will only tell you want needs to be changed. 

You may follow along here by making the appropriate entries or load the completed template 
Example2b from the Template tab of the Poisson Regression window. 

1 Specify the model. 
• On the Poisson Regression window, select the Model tab.  
• Set the Max Terms in Subset to 4.  
• The rest of this panel can be left at the default values. 

2 Specify the reports. 
• Select the Reports tab. 
• Uncheck all of the reports and plots except Run Summary, Subset Selection - 

Summary, Subset Selection – Detail, Regression Coefficients, and Residuals (these 
should be checked). 

3 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top) or press the F9 function key. 

Run Summary Report 
 
Parameter Value Parameter Value 
Dependent Variable Count Subset Method Forward/Switching 
Exposure Variable Time Ind. Var's Available 10 
Frequency Variable Cases No. of X's in Model 3 
Rows Used 40 Iterations 7 
Sum of Frequencies 130 Final Likelihood -288.8552 
Maximum Convergence 6.193126E-10 Convergence Zero 1E-09 
Dispersion Phi 0.0142 Phi was not used to correct standard errors. 
 

We note that the final model converged in only five iterations and the Maximum Convergence is 
less than Convergence Zero. This means that the algorithm terminated normally. 
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Subset Selection Summary Section 
 
Number of Log    
Terms Likelihood R-Squared Deviance AIC 
1 -730.6939 0.0000 885.5007 887.5007 
2 -434.0619 0.6700 292.2366 296.2366 
3 -348.4077 0.8634 120.9282 126.9282 
4 -288.8552 0.9979 1.8233 9.8233 
 

This report again shows us that a subset size of four is a reasonable choice. 

Subset Selection Detail Section 
 
  No. of No. of Log  Term Term 
Step Action Terms X's Likelihood R-Squared Entered Removed 
1 Add 1 1 -730.6939 0.0000 Intercept  
2 Add 2 2 -434.0619 0.6700 X3  
3 Add 3 3 -348.4423 0.8634 X2  
4 Switch 3 3 -348.4077 0.8634 X9 X3 
5 Add 4 4 -289.2634 0.9970 X6  
6 Switch 4 4 -289.0943 0.9974 X8 X2 
7 Switch 4 4 -288.8552 0.9979 X3 X9 
 

This report shows the algorithm’s journey through the maze of possible models. During the 
process, three variables were switched in order to achieve a better model. 

Regression Coefficients Section 
 
 Regression  Wald's  Lower 95.0% Upper 95.0% 
Independent  Coefficient Standard Chi^2 Prob Confidence Confidence 
Variable (B) Error (Ho:B=0) Level Limit Limit 
Intercept -0.12374 0.10638 1.35 0.2448 -0.33224 0.08476 
X3 0.01047 0.00041 656.32 0.0000 0.00967 0.01127 
X8 0.00677 0.00043 245.70 0.0000 0.00592 0.00761 
X6 0.00345 0.00031 121.68 0.0000 0.00283 0.00406 
Dispersion Phi  0.0142 
 

This report provides the details of the model that was selected. We note the X3, X8, and X6 were 
included in the model. We assume that X8 is taking the place of X2 and X6 is taking the place of 
X1. In fact, we ran a Poisson regression with X1, X2, and X3 in the model. The log likelihood for 
this model was -288.9466, which is slightly less than the -288.8552 achieved by our best model. 
This concludes our discussion of this example. Usually, we would go on to study the residual 
plots and complete the analysis by making a third run with only the variables X3, X6, and X8 
specified. 
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Chapter 330 

Response Surface 
Regression 
Introduction 
This Response Surface Analysis (RSA) program fits a polynomial regression model with cross-
product terms of variables that may be raised up to the third power. It calculates the minimum or 
maximum of the surface. The program also has a variable selection feature that helps you find the 
most parsimonious hierarchical model. NCSS automatically scans the data for duplicates so that a 
lack-of-fit test may be calculated using pure error.  

One of the main goals of RSA is to find a polynomial approximation of the true nonlinear model, 
similar to the Taylor’s series expansion used in calculus. Hence, you are searching for an 
approximation that works well in a specified region. As the region is reduced, the number of 
terms may also be reduced. In a very small region, a linear (first-order) approximation may be 
adequate. A larger region may require a quadratic (second-order) approximation.  

Hierarchical Models 
In the following discussion, the X’s are independent variables with at least three distinct values 
(up to six X’s may be specified). Y is the dependent variable. Z is a covariate (note that covariates 
do not have to have three or more levels). The β’s are the regression coefficients or beta weights.  

A polynomial model is one in which the X’s occur as multiples of each other. Examples of 
polynomial models are: 

j1j10j + Xß + ß = Y ε  

Y  =  ß  +  ß X  +  ß X  +  ß X X  +j 0 1 1j 2 2j 3 1j 2j ε j  

Y  =  ß  +  ß X  +  ß X  +  ß X X  +j 0 1 1j 2 2j
2

3 1j
2

2j
3

jε  

A hierarchical model obeys the following rule: all lower-order terms that can be constructed by 
reducing the exponents of the variables in a term are also in the model. For example, if the term 
X1X2

2 is in the model, so are X1, X2, X1X2, and X2
2.Notice that each of these terms can be 

created be decreasing the exponents of the two variables that form the original term (noting that 
X0j = 1). Note that the first two models are hierarchical, but the third is not. 

Hierarchical models enjoy several useful properties, including stability, the ability to change the 
scale (coding) of a variable, and a general relationship with ANOVA modeling. However, they 
usually require the fitting of more parameters than nonhierarchical models. This NCSS procedure 



330-2  Response Surface Regression  

fits only hierarchical models. If nonhierarchical models are desired, they can be fit using the 
Multiple Regression module.  

Model Selection 
There are several strategies to variable selection and model building in regression analysis: 
forward selection, backward elimination, stepwise, all possible regressions, and more. However, 
none of these methods guarantee hierarchical models.  We need a method that does. This NCSS 
program adopts a strategy that has been used for quite a while in dealing with hierarchical 
models. The strategy may be outlined as follows:  

1. Begin with the most complicated model desired. NCSS allows terms of the form X1
iX2

j, 
where i and j are each less than or equal to three. 

2. Search through all terms, marking those that are not necessary to maintain the 
hierarchical constraint on the model. This group of terms is available for removal. 

3. Check each of the available terms to determine how much R-Squared is decreased if they 
are removed. 

4. Remove the term that decreases R-Squared the least. Return to step 2. Note that this 
variable is never reconsidered for inclusion in the model. 

5. If no available term can be identified that reduces R-Squared by an amount that is less 
than the specified cutoff value, the model selection procedure is terminated. 

Assumptions and Limitations 
The same assumptions and qualifications apply here as applied to multiple regression. We refer 
you to the Assumptions section in the Multiple Regression chapter for a discussion of these 
assumptions. We will here mention a couple of restrictions necessary for this algorithm to work. 

Number of Observations 
The number of observations must be at least one greater than the number of terms (including all 
cross products). A popular rule-of-thumb when using any variable selection procedure is that you 
have at least five observations for each term. 

Unique Data Values 
Since various powers of the variables are included, the structure of your data must allow for these 
powers to be fit. This means that if the maximum exponent on a variable is k, the number of 
unique values in that variable must be at least k+1. For example, suppose a variable consisted of 
two values: -1 and 1. You could not fit a model that included more than a linear (k=1) term in this 
variable. Again, suppose your data consisted of three values: -1,0,1. The maximum exponent that 
could be used with this variable is 2. 
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Data Structure 
The data are entered in two or more variables. An example of data appropriate for this procedure 
is shown in the following table and is found in the ODOR database. This database relates a 
measurement of odor to three variables in a chemical process. Fifteen rows of data were obtained. 
The values of the three independent variables have been recoded so that they are -1, 0, and 1. A 
sixteenth row has been added. Notice that it does not contain a value in the Odor column. A 
predicted value will be generated for this row, but its values will not be used in the estimation 
process.  

We suggest that you open this database now so that you can follow along with the example. 

 

ODOR dataset 

Odor Temp Ratio Height 
66 -1 -1 0
58 -1 0 -1
65 0 -1 -1

-31 0 0 0
39 1 -1 0
17 1 0 -1

7 0 1 -1
-35 0 0 0
43 -1 1 0
-5 -1 0 1
43 0 -1 1

-26 0 0 0
49 1 1 0

-40 1 0 1
-22 0 1 1

 1 1 0

Missing Values 
Rows with missing values in the variables being analyzed are ignored. If data are present for all 
but the dependent variable, a predicted value is generated for this row. 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Dependent Variable 

Dependent Variable 
Specifies the dependent (Y) variable. 

Minimum 
This option lets you set a minimum for the depth (dependent variable) axis. If left blank, it is 
determined from the data. 

Maximum 
This option lets you set a maximum for the depth (dependent variable) axis. If left blank, it is 
determined from the data. 

Decimals 
This specifies the number of decimal places displayed in the reference numbers on the dependent 
(depth) axis. 

Factor Variables 

Factor Variable (A - F) 
Specifies the variables to be used as independent variables. Each of these variables must be 
categorical—have only a few unique values. Think of A as X1, B as X2, etc. The terms of the 
hierarchical model will be generated from these variables. Note that each variable must have 
enough unique values to fit the highest exponent required of it in the model: 

Number of Unique Values Largest Exponent Possible 
2    1 (linear) 
3    2 (quadratic) 
4    3 (cubic) 

Constant 
This option lets you specify a constant value to be used for this variable when it is not one of the 
pair of factors being displayed on the grid plot. If you leave this option blank, the factor average 
will be used. 

Minimum 
This option lets you set a minimum for the axis related to this factor. If left blank, it is determined 
from the data. 
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Maximum 
This option lets you set a maximum for the axis related to this factor. If left blank, it is 
determined from the data. 

Decimals 
This specifies the number of decimal places displayed in the reference numbers on axis showing 
this factor. 

Covariates 

Covariate Variables 
These are other independent variables included in the regression model, but their powers and 
cross-products will not be generated. They are not part of the “response surface.”  

Model Tab 
These boxes define the hierarchical model in a shorthand notation. 

Model Specification – Order 

Order (A - F) 
These boxes define the maximum exponent for each factor. Values from one to three are allowed. 
All terms of order less than or equal to this value are included in the model. For example, a ‘2’ 
implies that X and X2 are included. 

Model Specification – Maximum 
Orders of Two-Way Terms 

Maximum Orders of Two-Way Terms (AB - EF) 
These boxes define the maximum exponent for each factor in the cross-product term of the 
corresponding variables. For example, “AC” represents the product of factors A and C. 

All subset terms (children) are also included in the model, so that the hierarchical nature of the 
model is maintained. 

A code is used to specify the maximum exponents of each term. Up to three of these may be 
needed to specify the desired hierarchical model. The following table relates each coded value to 
the terms that it generates. This table will be generated for the AB term. The pattern extends in an 
obvious manner to the other cross-products. Note that a “10” is used to represent A, a “01” 
represents B, a “20” represents A2, and so on. 

Code Term(s) Cross Product Terms Actually Included 
1 11 AB  
2 12 AB, AB2  
3 21 AB, A2B  
23 12,21 AB, AB2, A2B  
4 22 AB, A2B, AB2, A2B2  
5 13 AB, AB2, AB3 
35 21,13 AB, A2B, AB2, AB3 
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Code Term(s) Cross Product Terms Actually Included 
45 22,13 AB, A2B, AB2, A2B2, AB3 
6 31 AB, A2B, A3B 
26 12,31 AB, AB2, A2B, A3B 
46 22,31 AB, AB2, A2B, A2B2, A3B 
56 13,31 AB, AB2, A2B, AB3, A3B 
456 22,13,31 AB, AB2, A2B, AB3, A3B, A2B2 
7 23 AB, A2B, AB2, A2B2, AB3, A2B3 
67 31,23 AB, A2B, AB2, A2B2, AB3, A3B, A2B3 
8 32 AB, AB2, A2B, A2B2, A3B, A3B2 
58 13,32 AB, AB2, A2B, A2B2, AB3, A3B, A3B2 
78 23,32 AB, AB2, A2B, A2B2, AB3, A3B, A2B3, A3B2 
9 33 AB, AB2, A2B, A2B2, A3B, A3B2, AB3, A2B3, A3A3 
 

The following tree diagram shows the hierarchical structure of this system. Each term generates 
all terms to the right of it. These terms are called children. A term that is a child of one term is not 
specified with that term. For example, terms 13, 22, and 31 could be selected together. However, 
the terms 23 and 21 could not be entered together since 21 is a child of 23 and will automatically 
be included when 23 is specified. Note the cross-product terms include their codes in parentheses. 
Also note that terms like 03 and 20 are specified in the One-Way Terms section. 

 

 

33(9)

23(7)

32(8)

13(5)

22(4)

31(6)

03

12(2)

21(3)

30

02

11(1)

20

01

10

 
 

The actual specification of the term is accomplished by selecting one or more codes from a list of 
possible models. For example, you might select “58.” This model represents the 13 and the 32 
terms plus all their children.  

The usual quadratic model is specified by selecting 2’s for the Order terms and 1’s for the Two-
Way terms. 
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Model Selection 

Conduct Model Selection 
Specifies whether to search (checked) for the most parsimonious hierarchical model or simply fit 
the one that is specified (unchecked). 

Minimum R-Squared Kept 
Sets the minimum amount that an available term must add to the overall R-Squared to avoid 
being removed from the model. Note that this is the amount that the R-Squared is decreased if 
only this term is removed, leaving all other terms in the model.  

Optimization Tab 
These options control the Hooke and Jeeves optimization routine as described in Nash (1987). 

Optimization Options 

Optimization Goal 
Specifies whether a minimum or maximum is sought. 

Maximum Evaluations 
Specifies the maximum number of function evaluations before the routine is aborted. 

Set Linear Factors to Mean Values 
Specifies whether linear-only variables should be set to their mean values or left to vary. Usually, 
you would set these to their mean values since a straight line has no minimum or maximum. 

Set Cubic Factors to Mean Values 
Specifies whether cubic variables should be set to their mean values or left to vary. Usually, you 
would set these to their mean values since a cubic function has no minimum or maximum. 

Reports Tab 
The following options control which reports are displayed.  

Select Reports 

Descriptive Statistics ... Residuals Reports 
Specifies whether to output the various reports. 

Select Plots 

Probability Plot and Grid Plots 
Specifies whether to output these plots. 
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Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Report Options – Decimal Places 

Response and Beta Decimals 
Specify the number of digits after the decimal point to display on the output of values of this type. 
Note that this option in no way influences the accuracy with which the calculations are done. 

Probability Plot Tab 
The options on this panel control the appearance of the probability plot of the residuals. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 
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Grid Plots Tab 
A grid plot of the response surface may be generated for each pair of factor variables. The 
following options control these plots. 

Vertical Axis 

Label 
The text that will appear on the vertical axis of the plot. 

Number of Slices 
The number of divisions (blocks or symbols) along the vertical axis. This controls the coarseness 
of the grid. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on the vertical axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Horizontal Axis 

Label 
The text that will appear on the horizontal axis of the plot. 

Number of Slices 
The number of divisions (blocks or symbols) along the horizontal axis. This controls the 
coarseness of the grid. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on the horizontal axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Z Axis 

Label 
The text that will appear in the legend. 

Number of Slices 
The number of divisions along the dependent variable axis. 

Plot Settings 

Plot Style File 
The style of the grid plot is set here by selecting a grid plot style file. If you want to change 
options on the grid plot that are not given below, you should change them in the Default Grid Plot 
procedure and load that style here. 
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Plot Style 
This option lets you specify what plotting symbols to use in the plot. You can select blocks, 
regular symbols, or multicolored symbols. The actual symbols are specified in the Default Grid 
Plot template. 

Show Legend 
Indicate whether a legend of the dependent variable divisions should be generated. 

Titles 

Plot Title 
The text that will be the title of the plot. Abbreviations of {Z}, {X}, and {Y} for the variables 
may also be used in the title to represent variable names.  

Storage Tab 
Various statistics calculated for each row may be stored on the current database for further 
analysis. This group of options lets you designate which statistics (if any) should be stored and 
which variables should receive these statistics. The selected statistics are automatically stored to 
the current database while the program is running. 

The variables you specify must already have been defined on the current database. Remember 
that existing data will be replaced. Following is a description of the statistics that can be stored. 

Data Storage Variables 

Predicted Values 
The predicted (Yhat) values. 

Residuals 
The residuals (Y-Yhat).  

Expanded Factors 
If you are going to analyze your data further using another regression module, you will need to 
generate the squares, cubes, and cross-product terms using Variable Transformations. This option 
lets you store these variables directly on the database. New variables containing all Xi

I Xj
J for all 

values of i, I, j, and J in the current model will be created. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 



   Response Surface Regression  330-11 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Response Surface Analysis 
This section presents an example of how to run a response surface analysis of the data contained 
in the ODOR database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Response Surface Regression window. 

1 Open the ODOR dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file ODOR.s0. 
• Click Open. 

2 Open the Response Surface Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Other Regression 

Routines, then Response Surface Regression. The Response Surface Regression 
procedure will be displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Response Surface Regression window, select the Variables tab.  
• Double-click in the Dependent Variable text box. This will bring up the variable 

selection window.  
• Select Odor from the list of variables and then click Ok. “Odor” will appear in the 

Dependent Variable box.  
• Double-click in the Factor Variable - A text box. This will bring up the variable 

selection window.  
• Select Temp from the list of variables and then click Ok.  
• Double-click in the Factor Variable - B text box. This will bring up the variable 

selection window.  
• Select Ratio from the list of variables and then click Ok.  
• Double-click in the Factor Variable - C text box. This will bring up the variable 

selection window.  
• Select Height from the list of variables and then click Ok.  

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Descriptive Statistics Section 
 
 Descriptive Statistics Section 
  
 Variable Count Mean Minimum Maximum 
 Temp 15 0 -1 1 
 Ratio 15 0 -1 1 
 Height 15 0 -1 1 
 Odor 15 15.2 -40 66 
 

This report provides the count, mean, minimum, and maximum of each of the variables in the 
analysis. It allows you to determine if the data fall within reasonable limits. 

Hierarchical Model Summary Section 
 
 Hierarchical Model Summary Section 
   
 Number of Terms Removed 0 
 Number of Terms Remaining 9 
 R-Squared Cutoff Value  0.010000 
 R-Squared of Final Model  0.881989 
   
 Coded Hierarchical Model  
  A B C 
 A Temp 2 1(11) 1(11) 
 B Ratio   2 1(11) 
 C Height     2 
   
 Notes:  
    For off-diagonal entries:  
       1=u1w1, 2=u1w2, 3=u2w1, 4=u2w2, 5=u1w3, 6=u3w1, 7=u2w3, 8=u3w2, 9=u3w3.  
    For diagonal entries:  
       1=u1, 2=u2, 3=u3.  
    Where u1=u, u2=u^2=u*u, and u3=u^3=u*u*u.  
  

This report shows the hierarchical model that was specified. It also shows the final R-Squared 
value as well as the R-Squared cutoff that was used. It is mainly used to document the model 
used.  
The specified model is determined by considering all nonzero entries. The Notes section at the 
bottom shows how the model is determined. For example, the first line is nonzero for the terms 
AA, AB, and AC. These codes represent the terms: Temp2, (Temp)(Ratio), and (Temp)(Height). 
All child terms necessary to make this a hierarchical model are also generated. 
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Sequential ANOVA Section 
 
 Sequential ANOVA Section 
   Sequential Mean  Prob Incremental 
 Source DF Sum-Squares Square F-Ratio Level R-Squared 
 Regression 9 18881.98 2097.998 4.15 0.065691 0.881989 
  Linear 3 7143.25 2381.083 4.71 0.064071 0.333666 
  Quadratic 3 11445.23 3815.078 7.55 0.026426 0.534614 
  Lin x Lin 3 293.5 97.83334 0.19 0.896470 0.013710 
 Total Error 5 2526.417 505.2833   0.118011 
  Lack of Fit 3 2485.75 828.5833 40.75 0.024047 0.116111 
  Pure Error 2 40.66667 20.33333   0.001900 
  
 Sequential ANOVA Section Using Pure Error  
   Sequential Mean  Prob Incremental 
 Source DF Sum-Squares Square F-Ratio Level R-Squared 
 Regression 9 18881.98 2097.998 103.18 0.009635 0.881989 
  Linear 3 7143.25 2381.083 117.10 0.008479 0.333666 
  Quadratic 3 11445.23 3815.078 187.63 0.005306 0.534614 
  Lin x Lin 3 293.5 97.83334 4.81 0.176872 0.013710 
 Total Error 5 2526.417 505.2833   0.118011 
  Lack of Fit 3 2485.75 828.5833 40.75 0.024047 0.116111 
  Pure Error 2 40.66667 20.33333   0.001900 
  

This display actually shows two reports. The top is the regular Sequential ANOVA Section 
defined below. Note that the denominator of the F-Ratios is the Total Error Mean Square. The 
bottom report is identical to the top, except that the denominator of the F-Ratios is now the Pure 
Error Mean Square. 
This report is designed with two main goals: 

1. Determine the sequential influence of the various power and cross-product terms. 

2. Test for model lack of fit if repeated observations are available.  

Source 
The group of independent variables being tested. 

Regression  Total of all terms in the model.  
Linear  The total for Xi terms.  
Quadratic  The total for Xi

2 terms.  
Cubic  The total for Xi

3 terms.  
Lin x Lin  The total for XiXj terms.  
Lin x Quad  The total for XiXj

2 terms.  
Quad x Quad The total for Xi

2Xj
2 terms.  

Lin x Cubic  The total for XiXj
3 terms.  

Quad x Cubic The total for Xi
2Xj

3 terms.  
Cubic x Cubic The total for Xi

3Xj
3 terms.  

DF 
The degrees of freedom associated with the group of terms. 

Sequential Sum-Squares 
The regression sum of squares added sequentially by each group of terms. Each group of terms 
adds this amount of sum of squares after accounting for the terms above it in the report. 

Mean Square 
The sum of squares divided by the degrees of freedom. 
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F-Ratio 
The F-value formed by dividing the Mean Square by the Total Error Mean Square. Note that 
these tests are sequential in nature and should be considered from the bottom up. Note that in the 
second report, the Total Error Mean Square is replaced by the Pure Error Mean Square as the 
denominator of the F-ratio. 

In the above example, the Lin x Lin F-ratio tests whether the linear-by-linear terms are significant 
in the regression model after considering the linear and quadratic terms. The Quadratic F-ratio 
tests whether the quadratic terms add significantly to a model consisting of the linear terms 
(ignoring the linear-by-linear terms). 

In terms of the ODOR data, the tests are interpreted as follows: 

Group Terms  Hypothesis Tested 
Lin x Lin Temp x Ratio All coefficients of these variables are zero. 
 Temp x Height 
 Ratio x Height 
Quadratic Temp x Temp All coefficients of these variables are zero, 
  Ratio x Ratio ignoring the influence of the cross-product 
 Height x Height terms. 
Linear Temp All coefficients of these variables are zero, 
 Ratio ignoring the influence of the cross-product and 
 Height quadratic terms 

Prob Level 
This is the right-tail probability or significance level of this test. Reject the hypothesis that the 
influence of the terms is zero when this value is less than a predetermined value of alpha, say 
0.05. 

Incremental R-Squared 
The first line displays the total R-Squared for the complete model. The other lines display the 
amount of R-Squared that is added by each group of terms. Hence, the total of the rest of the lines 
equals the first. 

Lack of Fit and Pure Error 
These lines are only displayed if you have repeated observations from which the variability 
between identical observations may be estimated. The lack of fit tests the adequacy of the 
specified model. A significant F-test implies that a higher-order polynomial (such as cubic) or a 
different functional form would fit the data better. 

If pure error is available, the F-tests are recalculated using the Pure Error Mean Square as the 
denominator rather than the Total Error Mean Square. 
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ANOVA Section 
 
 ANOVA Section 
   Last Mean  Prob Term 
 Factor DF Sum-Squares Square F-Ratio Level R-Squared 
 Temp 4 5258.016 1314.504 2.60 0.161334 0.245605 
 Ratio 4 11044.6 2761.151 5.46 0.045377 0.515900 
 Height 4 3813.016 953.254 1.89 0.251025 0.178108 
 Total Error 5 2526.417 505.2833   0.118011 
  Lack of Fit 3 2485.75 828.5833 40.75 0.024047 0.116111 
  Pure Error 2 40.66667 20.33333   0.001900 
   
 ANOVA Section Using Pure Error  
   Last Mean  Prob Term 
 Factor DF Sum-Squares Square F-Ratio Level R-Squared 
 Temp 4 5258.016 1314.504 64.65 0.015291 0.245605 
 Ratio 4 11044.6 2761.151 135.79 0.007324 0.515900 
 Height 4 3813.016 953.254 46.88 0.020994 0.178108 
 Total Error 5 2526.417 505.2833   0.118011 
  Lack of Fit 3 2485.75 828.5833 40.75 0.024047 0.116111 
  Pure Error 2 40.66667 20.33333   0.001900 
  

This report tests the significance of each factor. This display actually shows two reports. The top 
is the regular ANOVA Section defined below. Note that the denominator of the F-Ratios is the 
Total Error Mean Square. The second report is identical to the top, except that the denominator of 
the F-Ratios is now the Pure Error Mean Square. 

Factor 
This line lists the factor being tested for deletion. All terms that include this factor are included in 
the test. In our example, the terms being tested are as follows: 

Factor Individual Terms Referred To 
Temp Temp, Temp x Ratio, Temp x Height, Temp x Temp. 
Ratio Ratio, Temp x Ratio, Ratio x Height, Ratio x Ratio. 
Height Height, Height x Ratio, Height x Temp, Height x Height. 
 
Note that there is overlap in these terms (some cross-products occur twice).  

DF 
The degrees of freedom associated with the term(s). 

Last Sum-Squares 
The regression sum of squares that would be lost if this factor were omitted. 

Mean Square 
The sum of squares divided by the degrees of freedom. 

F-Ratio 
In the top report, the F-value is formed by dividing the Mean Square by the Total Error Mean 
Square. In the second report, the F-value is formed by dividing the Mean Square by the Pure 
Error Mean Square. Note that these tests are not sequential, but each tests the importance of the 
factor after considering all other factors.  
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Prob Level 
This is the right-tail probability or significance level of this test. Reject the hypothesis that the 
influence of the terms is zero when this value is less than a predetermined value of alpha, say 
0.05. 

Term R-Squared 
The amount that the R-Squared would decrease if this factor were removed from the model. 

Lack of Fit / Pure Error 
These lines are only displayed if you have repeated observations from which the variability 
between like observations may be estimated. The lack of fit tests the adequacy of the specified 
model. If this test is significant, conclude that a higher order polynomial (such as cubic), or a 
different functional form, would fit the data better. 

Estimation Section 
 
 Estimation Section 
   Regression Standard  Prob Last 
 Parameter DF Coefficient Error T-Ratio Level R-Squared 
 Intercept 1 -30.66667 
 Temp 1 -12.125 7.947353 -1.53 0.187613 0.054938 
 Ratio 1 -17 7.947353 -2.14 0.085417 0.107995 
 Height 1 -21.375 7.947353 -2.69 0.043321 0.170733 
 Temp^2 1 32.08333 11.69819 2.74 0.040667 0.177530 
 Ratio^2 1 47.83333 11.69819 4.09 0.009457 0.394616 
 Height^2 1 6.083333 11.69819 0.52 0.625242 0.006383 
 Temp*Ratio 1 8.25 11.23925 0.73 0.495884 0.012717 
 Temp*Height 1 1.5 11.23925 0.13 0.899034 0.000420 
 Ratio*Height 1 -1.75 11.23925 -0.16 0.882357 0.000572 
   
 Estimation Section Using Pure Error 
   Regression Standard  Prob Last 
 Parameter DF Coefficient Error T-Ratio Level R-Squared 
 Intercept 1 -30.66667 
 Temp 1 -12.125 1.594261 -7.61 0.016853 0.054938 
 Ratio 1 -17 1.594261 -10.66 0.008680 0.107995 
 Height 1 -21.375 1.594261 -13.41 0.005517 0.170733 
 Temp^2 1 32.08333 2.346688 13.67 0.005307 0.177530 
 Ratio^2 1 47.83333 2.346688 20.38 0.002398 0.394616 
 Height^2 1 6.083333 2.346688 2.59 0.122137 0.006383 
 Temp*Ratio 1 8.25 2.254625 3.66 0.067241 0.012717 
 Temp*Height 1 1.5 2.254625 0.67 0.574315 0.000420 
 Ratio*Height 1 -1.75 2.254625 -0.78 0.518860 0.000572 
  

This report shows the regression coefficient estimates of each term and their test of significance. 
This display actually shows two reports. The top is the regular Estimation Section defined below. 
Note that the Standard Errors are based on the Total Error Mean Square. The second report is 
identical to the top, except that the Standard Errors are now based on the Pure Error Mean 
Square.  

Parameter 
The particular term being displayed.  

DF 
The degrees of freedom associated with the term.  
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Regression Coefficient 
The estimated value of the regression coefficient.  

Standard Error 
The standard error of the above regression coefficient. Note that the Total Error Mean Square is 
used for the top report, and the Pure Error Mean Square is used for the bottom report. 

T-Ratio 
The t-value for testing that this regression coefficient is zero after considering all other terms in 
the model. Note that the Total Error Mean Square is used for the top report, and the Pure Error 
Mean Square is used for the bottom report. 

Prob Level 
The probability or significance level of this test. If you were testing at the alpha equals 0.05 level 
of significance, this value would have to be less than 0.05 in order for the test to be deemed 
significant and the regression coefficient different from zero.  

Last R-Squared 
The amount that the R-Squared would decrease if this term were removed from the model. 

Optimum Solution Section 
 
 Optimum Solution Section 
 
  Maximum Optimum 
 Parameter Exponent Value 
 Temp 2 0.1219125 
 Ratio 2 0.1995746 
 Height 2 1.770525 
   
 Function at optimum -52.02463 
 Number of Function Evaluations 359 
 Maximum Functions Evaluations 500 
  

This report gives the results of the function minimization (or maximization) calculation.  

Optimum Value 
The value for each of the factors at the computed critical point. Covariates were evaluated at their 
means. Note that this solution is not constrained to fall within the design space. Note also that the 
values of some variables may be very large or small. This indicates that the function did not have 
a minimum (maximum) and that the search procedure was terminated by the maximum number of 
function evaluations. In this case, you might switch from finding a minimum to finding a 
maximum in the Optimization Goal box.  

Function at Optimum 
The value of the estimated function evaluated at the optimal values of each of the factors.  
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Residual Section 
 
 Residual Section 
 
 Row Odor Predicted Residual 
 1 66 86.625 -20.625 
 2 58 42.5 15.5 
 3 65 59.875 5.125 
 4 -31 -30.66667 -.3333333 
 5 39 45.875 -6.875 
 6 17 15.25 1.75 
 7 7 29.375 -22.375 
 8 -35 -30.66667 -4.333333 
 9 43 36.125 6.875 
 10 -5 -3.25 -1.75 
 11 43 20.625 22.375 
 12 -26 -30.66667 4.666667 
 13 49 28.375 20.625 
 14 -40 -24.5 -15.5 
 15 -22 -16.875 -5.125 
 16   28.375   
 

This report shows the response variable, the predicted value based on the response surface 
equation, and the residual (the difference between the two).  
Notice that a predicted value is given for row sixteen, but no residual or Odor value is given. If 
you look at row sixteen on the database, you will note that it has a missing value for Odor and 
thus was not used in estimating the regression equation. However, since there are values for the 
three independent variables, a predicted value can be generated. This shows how to automatically 
generate predicted values for a set of X’s when the observed Y is not on your database. 

Normal Probability Plot 
This plot displays a normal probability plot of the residuals for assessing the validity of the 
assumption of normality. Note that you should ignore this plot when you have less than about five 
observations per term in the model, since the assumption of independence of residuals cannot be 
demonstrated and thus the probability plot may give inaccurate results. 
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Contour Plot 
This contour (or grid) plot shows the value of the estimated equation at the center of each grid of 
rectangles. All factors not on either axis are evaluated at their mean value (unless a constant value 
was specified in the Factor Constant box). 

The legend lists the lower end of each range. Hence, the first contour is -40 <= Odor < -20.  
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Contour Plot with Symbols 
If you had set the Plot Style option to Symbol - Many Colors, you would have obtained the 
following plot. This plot is not as pretty, but is easier to view when printed in black and white. 
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Chapter 335 

Ridge Regression 
Introduction  
Ridge Regression is a technique for analyzing multiple regression data that suffer from 
multicollinearity. When multicollinearity occurs, least squares estimates are unbiased, but their 
variances are large so they may be far from the true value. By adding a degree of bias to the 
regression estimates, ridge regression reduces the standard errors. It is hoped that the net effect 
will be to give estimates that are more reliable. Another biased regression technique, principal 
components regression, is also available in NCSS. Ridge regression is the more popular of the 
two methods.  

Multicollinearity 
Multicollinearity, or collinearity, is the existence of near-linear relationships among the 
independent variables. For example, suppose that the three ingredients of a mixture are studied by 
including their percentages of the total. These variables will have the (perfect) linear relationship: 
P1 + P2 + P3 = 100. During regression calculations, this relationship causes a division by zero 
which in turn causes the calculations to be aborted. When the relationship is not exact, the 
division by zero does not occur and the calculations are not aborted. However, the division by a 
very small quantity still distorts the results. Hence, one of the first steps in a regression analysis is 
to determine if multicollinearity is a problem. 

Effects of Multicollinearity 
Multicollinearity can create inaccurate estimates of the regression coefficients, inflate the 
standard errors of the regression coefficients, deflate the partial t-tests for the regression 
coefficients, give false, nonsignificant, p-values, and degrade the predictability of the model (and 
that’s just for starters). 

Sources of Multicollinearity 
To deal with multicollinearity, you must be able to identify its source. The source of the 
multicollinearity impacts the analysis, the corrections, and the interpretation of the linear model. 
There are five sources (see Montgomery [1982] for details): 

1.  Data collection. In this case, the data have been collected from a narrow subspace of the 
independent variables. The multicollinearity has been created by the sampling 
methodology—it does not exist in the population. Obtaining more data on an expanded 
range would cure this multicollinearity problem. The extreme example of this is when 
you try to fit a line to a single point. 
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2.  Physical constraints of the linear model or population. This source of multicollinearity 
will exist no matter what sampling technique is used. Many manufacturing or service 
processes have constraints on independent variables (as to their range), either physically, 
politically, or legally, which will create multicollinearity. 

3.  Over-defined model. Here, there are more variables than observations. This situation 
should be avoided. 

4.  Model choice or specification. This source of multicollinearity comes from using 
independent variables that are powers or interactions of an original set of variables. It 
should be noted that if the sampling subspace of independent variables is narrow, then 
any combination of those variables will increase the multicollinearity problem even 
further. 

5.  Outliers. Extreme values or outliers in the X-space can cause multicollinearity as well as 
hide it. We call this outlier-induced multicollinearity. This should be corrected by 
removing the outliers before ridge regression is applied. 

Detection of Multicollinearity 
There are several methods of detecting multicollinearity. We mention a few. 

1. Begin by studying pairwise scatter plots of pairs of independent variables, looking for 
near-perfect relationships. Also glance at the correlation matrix for high correlations. 
Unfortunately, multicollinearity does not always show up when considering the variables 
two at a time.  

2. Consider the variance inflation factors (VIF). VIFs over 10 indicate collinear variables.  

3. Eigenvalues of the correlation matrix of the independent variables near zero indicate 
multicollinearity. Instead of looking at the numerical size of the eigenvalue, use the 
condition number. Large condition numbers indicate multicollinearity. 

4. Investigate the signs of the regression coefficients. Variables whose regression 
coefficients are opposite in sign from what you would expect may indicate 
multicollinearity. 

Correction for Multicollinearity 
Depending on what the source of multicollinearity is, the solutions will vary. If the 
multicollinearity has been created by the data collection, collect additional data over a wider X-
subspace. If the choice of the linear model has increased the multicollinearity, simplify the model 
by using variable selection techniques. If an observation or two has induced the multicollinearity, 
remove those observations. Above all, use care in selecting the variables at the outset. 

When these steps are not possible, you might try ridge regression. 
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Ridge Regression Models 
Following the usual notation, suppose our regression equation is written in matrix form as 

Y XB e= +  

where Y is the dependent variable, X represents the independent variables, B is the regression 
coefficients to be estimated, and e represents the errors are residuals.  

Standardization 
In ridge regression, the first step is to standardize the variables (both dependent and independent) 
by subtracting their means and dividing by their standard deviations. This causes a challenge in 
notation, since we must somehow indicate whether the variables in a particular formula are 
standardized or not. To keep the presentation simple, we will make the following general 
statement and then forget about standardization and its confusing notation.  

As far as standardization is concerned, all ridge regression calculations are based on standardized 
variables. When the final regression coefficients are displayed, they are adjusted back into their 
original scale. However, the ridge trace is in a standardized scale. 

Ridge Regression Basics 
In ordinary least squares, the regression coefficients are estimated using the formula 

( )$B X'X X'Y= −1  

Note that since the variables are standardized, X’X = R, where R is the correlation matrix of 
independent variables. These estimates are unbiased so that the expected value of the estimates 
are the population values. That is, 

( )E $B B=  

The variance-covariance matrix of the estimates is 

( )V $B R= −σ 2 1  

and since we are assuming that the y’s are standardized, . σ 2 1=
From the above, we find that  

( )V b r
Rj

jj

j

$ = =
−
1

1 2  

where is the R-squared value obtained from regression XRj
2

j on the other independent variables. 
In this case, this variance is the VIF. We see that as the R-squared in the denominator gets closer 
and closer to one, the variance (and thus VIF) will get larger and larger. The rule of thumb cut-off 
value for VIF is 10. Solving backwards, this translates into an R-squared value of 0.90. Hence, 
whenever the R-squared value between one independent variable and the rest is greater than or 
equal to 0.90, you will have to face multicollinearity. 
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Now, ridge regression proceeds by adding a small value, k, to the diagonal elements of the 
correlation matrix. (This is where ridge regression gets its name since the diagonal of ones in the 
correlation matrix may be thought of as a ridge.) That is, 

( )~B R I X'Y= + −k 1  

k is a positive quantity less than one (usually less than 0.3).  

The amount of bias in this estimator is given by 

( ) ( )[ ]E k~B B X'X I X'X I B− = + −−1  

and the covariance matrix is given by 

( ) ( ) ( )V k k~B X'X I X'X X'X I= + +− −1 1  

It can be shown that there exists a value of k for which the mean squared error (the variance plus 
the bias squared) of the ridge estimator is less than that of the least squares estimator. 
Unfortunately, the appropriate value of k depends on knowing the true regression coefficients 
(which are being estimated) and an analytic solution has not been found that guarantees the 
optimality of the ridge solution. We will discuss more about determining k later. 

Alternative Interpretations of Ridge Regression 
1. Ridge regression may be given a Bayesian interpretation. If we assume that each regression 

coefficient has expectation zero and variance 1/k, then ridge regression can be shown to be 
the Bayesian solution. 

2. Another viewpoint is referred to by detractors as the “phoney data” viewpoint. It can be 
shown that the ridge regression solution is achieved by adding rows of data to the original 
data matrix. These rows are constructed using 0 for the dependent variables and the square 
root of k or zero for the independent variables. One extra row is added for each independent 
variable. The idea that manufacturing data yields the ridge regression results has caused a lot 
of concern and has increased the controversy in its use and interpretation. 

Choosing k 

Ridge Trace 
One of the main obstacles in using ridge regression is in choosing an appropriate value of k. Hoerl 
and Kennard (1970), the inventors of ridge regression, suggested using a graphic which they 
called the ridge trace. This plot shows the ridge regression coefficients as a function of k. When 
viewing the ridge trace, the analyst picks a value for k for which the regression coefficients have 
stabilized. Often, the regression coefficients will vary widely for small values of k and then 
stabilize. Choose the smallest value of k possible (which introduces the smallest bias) after which 
the regression coefficients have seem to remain constant. Note that increasing k will eventually 
drive the regression coefficients to zero. Following is an example of a ridge trace. 
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In this example, the values of k are shown on a logarithmic scale. We have drawn a vertical line 
at the selected value of k which is 0.006. A few notes are in order here. 

First of all, the vertical axis contains the points for the least squares solution. These are labeled as 
0.000001. This was done so that these coefficients may be seen. In actual fact, the logarithm of 
zero is minus infinity, so the least squares values cannot be displayed when the horizontal axis is 
put in a log scale. 

We have displayed a large range of values. We see that adding k has little impact until k is about 
0.0001. The action seems to stop somewhere near 0.006. 

Analytic k 
Hoerl and Kinnard (1976) proposed an iterative method for selecting k. This method is based on 
the formula 

k ps
=

2

~ ~B'B
 

To obtain the first value of k, we use the least squares coefficients. This produces a value of k. 
Using this new k, a new set of coefficients is found, and so on. Unfortunately, this procedure does 
not necessarily converge. In NCSS, we have modified this routine so that if the resulting k is 
greater than one, the new value of k is equal to the last value of k divided by two.  

This calculated value of k is often used because humans tend to pick a k from the ridge trace that 
is too large. 

Assumptions 
The assumptions are the same as those used in regular multiple regression: linearity, constant 
variance (no outliers), and independence. Since ridge regression does not provide confidence 
limits, normality need not be assumed. 
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What the Professionals Say 
Ridge regression remains controversial. In this section we will present the comments made in 
several books on regression analysis. 

Neter, Wasserman, and Kutner (1983) state:  

“Ridge regression estimates tend to be stable in the sense that they are usually little affected by 
small changes in the data on which the fitted regression is based. In contrast, ordinary least 
squares estimates may be highly unstable under these conditions when the independent variables 
are highly multicollinear. Also, the ridge estimated regression function at times will provide good 
estimates of mean responses or predictions of new observations for levels of the independent 
variables outside the region of the observations on which the regression function is based. In 
contrast, the estimated regression function based on ordinary least squares may perform quite 
poorly in such instances. Of course, any estimation or prediction well outside the region of the 
observations should always be made with great caution. 

“A major limitation of ridge regression is that ordinary inference procedures are not applicable 
and exact distributional properties are not known. Another limitation is that the choice of the 
biasing constant k is a judgmental one. While formal methods have been developed fo making 
this choice, these methods have their own limitations.”  

John O. Rawlings (1988) states: 

“While multicollinearity does not affect the precision of the estimated responses (and predictions) 
at the observed points in the X-space, it does cause variance inflation of estimated responses at 
other points. Park shows that the restrictions on the parameter estimates implicit in principal 
component regression are also optimal in MSE sense for estimation of responses over certain 
regions of the X-space. This suggests that biased regression methods may be beneficial in certain 
cases for estimation of responses also. The biased regression methods do not seem to have much 
to offer when the objective is to assign some measure of “relative importance” to the independent 
variables involved in a multicollinearity… Ridge regression attacks the multicollinearity by 
reducing the apparent magnitude of the correlations.” 

Raymond H. Myers (1990) states: 

“Ridge regression is one of the more popular, albeit controversial, estimation procedures for 
combating multicollinearity. The procedures discussed in this and subsequent sections fall into 
the category of biased estimation techniques. They are based on this notion: though ordinary least 
squares gives unbiased estimates and indeed enjoy the minimum variance of all linear unbiased 
estimators, there is no upper bound on the variance of the estimators and the presence of 
multicollinearity may produce large variances. As a result, one can visualize that, under the 
condition of multicollinearity, a huge price is paid for the unbiasedness property that one achieves 
by using ordinary least squares. Biased estimation is used to attain a substantial reduction in 
variance with an accompanied increase in stability of the regression coefficients. The coefficients 
become biased and, simply put, if one is successful, the reduction in variance is of greater 
magnitude than the bias induced in the estimators… 

“Although, clearly, ridge regression should not be used to solve all model-fitting problems 
involving multicollinearity, enough positive evidence about ridge regression exists to suggest that 
it should be a part of any model builder’s arsenal of techniques.” 
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Draper and Smith (1981) state: 

“From this discussion, we can see that the use of ridge regression is perfectly sensible in 
circumstances in which it is believed that large beta-values are unrealistic from a practical point 
of view. However, it must be realized that the choice of k is essentially equivalent to an 
expression of how big one believes those betas to be. In circumstances where one cannot accept 
the idea of restrictions on the betas, ridge regression would be completely inappropriate.” 

“Overall, however, we would advise against the indiscriminate use of ridge regression unless its 
limitations are fully appreciated.” 

Thomas Ryan (1997) states: 

“The reader should note that, for all practical purposes, the ordinary least squares (OLS) estimator 
will also generally be biased because we can be certain that it is unbiased only when the model 
that is being used is the correct model. Since we cannot expect this to be true, we similarly cannot 
expect the OLS estimator to be unbiased. Therefore, although the choice between OLS and a 
ridge estimator is often portrayed as a choice between a biased estimator and an unbiased 
estimator, that really isn’t the case.” 

 “Ridge regression permits the use of a set of regressors that might be deemed inappropriate if 
least squares were used. Specifically, highly correlated variables can be used together, with ridge 
regression used to reduce the multicollinearity. If, however, the multicollinearity were extreme, 
such as when regressors are almost perfectly correlated, we would probably prefer to delete one 
or more regressors before using the ridge approach.” 

Data Structure 
The data are entered as three or more variables. One variable represents the dependent variable. 
The other variables represent the independent variables. An example of data appropriate for this 
procedure is shown below. These data were concocted to have a high degree of multicollinearity 
as follows. We put a sequence of numbers in X1. Next, we put another series of numbers in X3 
that were selected to be unrelated to X1. We created X2 by adding X1 and X3. We made a few 
changes in X2 so that there was not perfect correlation. Finally, we added all three variables and 
some random error to form Y. 

The data are contained in the RIDGEREG database. We suggest that you open this database now 
so that you can follow along with the example. 

 

RIDGEREG dataset (subset) 

X1 X2 X3 Y 
1 2 1 3 
2 4 2 9 
3 6 4 11 
4 7 3 15 
5 7 2 13 
6 7 1 13 
7 8 1 17 
8 10 2 21 
9 12 4 25 
10 13 3 27 
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Missing Values 
Rows with missing values in the variables being analyzed are ignored. If data are present on a 
row for all but the dependent variable, a predicted value is generated for that row. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Dependent Variable 

Y: Dependent Variables 
Specifies a dependent (Y) variable. If more than one variable is specified, a separate analysis is 
run for each. 

Weight Variable 

Weight Variable 
Specifies a variable containing observation (row) weights for generating weighted-regression 
analysis. Rows which have zero or negative weights are dropped. 

Independent Variables 

X’s: Independent Variables 
Specifies the variable(s) to be used as independent (X) variables. 

K Value Specification 

Final K (On Reports) 
This is the value of k that is used in the reports. You may specify a value or enter “Optimum,” 
which will cause the value found in the analytic search for k to be used in the reports. 

K Value Specification – K Trial Values 

Values of K 
Various trial values of k may be specified. The check boxes on the left select groups of values. 
For example, checking 0.001 to 0.009 indicates that you want to try the values 0.001, 0.002, 
0.003, …, 0.009. 

Minimum, Maximum, Increment 
Use these options to enter a series of trial k values. For example, entering 0.1, 0.2, and 0.02 will 
cause the following k values to be used: 0.10, 0.12, 0.14, 0.16, 0.18, 0.20.  
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K Value Specification – K Search 

K Search 
This will cause a search to be made for the optimal value of k using the Hoerl’s (1976) algorithm 
(described above). If “Optimum” is entered for the Final K value, this value will be used in the 
final reports. 

Max Iterations 
This value limits the number of k values tried in the search procedure. It is provided since it is 
possible for the search algorithm to go into an infinite loop. A value between 20 and 50 should be 
ample. 

Reports Tab 
The following options control the reports and plots that are displayed.  

Select Reports 

Descriptive Statistics ... Predicted Values & Residuals 
These options specify which reports are displayed. 

Select Plots 

Ridge Trace ... Residuals vs X's 
These options specify which plots are displayed. 

Report Options 

Precision 
Specifies the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Report Options – Decimal Places 

Beta ... VIF Decimals 
Each of these options specifies the number of decimal places to display for that particular item. 

Plot Options 

Show Legend 
Indicate whether the legend is to be displayed. 
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Legend Text 
Indicate the title text of the legend. Note that if two factors are being plotted, {G} is replaced by 
the word “Variables.” 

Ridge Trace and VIF Plot Tabs 
The options on this panel control the appearance of the ridge trace and the VIF plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Log Scale  
This option lets you select logarithmic scale for the corresponding axis of the plot. In the case of 
the Ridge Trace plot, this is useful since the trial values of k will often span several orders of 
magnitude. 

• No 
Use regular scaling. 

• Yes: Numbers 
Use logarithmic scaling (base 10) in which the tick reference numbers are displayed as 
decimal numbers (e.g., 0.001, 0.01, 0.1). 

• Yes: Powers of Ten 
Use logarithmic scaling (base 10) in which the tick reference numbers are displayed as the 
exponents of ten (10-3, 10-2, 10-1). 
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Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Connect Line(s) 
This option lets you specify whether you want to connect the points with a line. 

Titles 

Plot Title 
This option contains the text of the plot title. The characters {Y} and {X} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 

Reference Lines 

K Line 
This option controls the characteristics of the vertical line at the specified value of k that may be 
displayed on the plot. This is the value of Final K that was specified in the Variables Tab. 

0 Line 
This option controls the characteristics of the horizontal line at zero that may be displayed on the 
plot. 

Ridge & VIF Symbols Tab 
These options specify the symbols used to represent the variables on the Ridge Trace and the VIF 
Plot. 

Plotting Symbols 

Variable (1-15)  
The symbols used to represent the variables. Variable 1 represents the first variable, Variable 2 
represents the second variable, and so on. 

Histogram Tab 
The options on this panel control the appearance of the histogram. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 
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Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a histogram style file. This file sets all histogram options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Histogram procedure. 

Number of Bars 
Specify the number of intervals, bins, or bars used in the histogram. 

Titles 

Plot Title 
This is the text of the title. The characters {X} are replaced by the name of the variable. Press the 
button on the right of the field to specify the font of the text. 

Probability Plot Tab 
The options on this panel control the appearance of the probability plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 
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Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} are replaced by the name of the variable. Press the 
button on the right of the field to specify the font of the text. 

Resid vs Yhat Plot and Resid vs X Plot Tabs 
Various residual plots may be displayed to help you validate the assumptions of your regression 
analysis as well as investigate the fit of your estimated equation. The actual uses of these plots 
will be described later. The options on these panels control the appearance of the corresponding 
residual scatter plot.  

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 
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Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This option contains the text of the plot title. The characters {Y} and {X} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 

Storage Tab 
Predicted values and residuals may be calculated for each row and stored on the current database 
for further analysis. The selected statistics are automatically stored to the current database. 

Note that existing data are replaced. Also, if you specify more than one dependent variable, you 
should specify a corresponding number of storage variables here. Following is a description of 
the statistics that can be stored. 

Data Storage Variables 

Predicted Values 
The predicted (Yhat) values. 

Residuals 
The residuals (Y-Yhat).  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 
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Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Ridge Regression Analysis 
This section presents an example of how to run a ridge regression analysis of the data presented 
earlier in this chapter. The data are in the RIDGEREG database. In this example, we will run a 
regression of Y on X1 - X3.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Ridge Regression window.  

1 Open the RIDGEREG dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file RidgeReg.s0. 
• Click Open. 

2 Open the Ridge Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Other Regression 

Routines, then Ridge Regression. The Ridge Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Ridge Regression window, select the Variables tab.  
• Double-click in the Y: Dependent Variable(s) text box. This will bring up the variable 

selection window.  
• Select Y from the list of variables and then click Ok. “Y” will appear in the Y: 

Dependent Variable(s) box.  
• Double-click in the X’s: Independent Variables text box. This will bring up the variable 

selection window.  
• Select X1 - X3 from the list of variables and then click Ok. “X1-X3” will appear in the 

X’s: Independent Variables.  
• Select Optimum in the Final K (On Reports) box. This will cause the optimum value 

found in the search procedure to be used in all of the reports. 
• Check the box for 0.0001 to 0.0009 to include these values of k.  
• Check the K Search box so that the optimal value of k will be found. 

4 Specify the reports. 
• Select the Reports tab. 
• Check all reports and plots. We are selecting all of them so that we can document them. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Descriptive Statistics Section 
 
Descriptive Statistics Section 
Standard 
Variable Count Mean Deviation Minimum Maximum 
X1 18 9.5 5.338539 1 18 
X2 18 11.5 5.404247 2 19 
X3 18 2.166667 1.098127 1 4 
Y 18 23.11111 10.87841 3 39 
 

For each variable, the descriptive statistics of the nonmissing values are computed. This report is 
particularly useful for checking that the correct variables were selected. 

Correlation Matrix Section 
 
 Correlation Matrix Section 

 X1 X2 X3 Y 
X1 1.000000 0.987841 -0.015051 0.985544 
X2 0.987841 1.000000 0.133813 0.995574 
X3 -0.015051 0.133813 1.000000 0.116539 
Y 0.985544 0.995574 0.116539 1.000000 
 

Pearson correlations are given for all variables. Outliers, nonnormality, nonconstant variance, and 
nonlinearities can all impact these correlations. Note that these correlations may differ from pair-
wise correlations generated by the correlation matrix program because of the different ways the 
two programs treat rows with missing values. The method used here is row-wise deletion. 
These correlation coefficients show which independent variables are highly correlated with the 
dependent variable and with each other. Independent variables that are highly correlated with one 
another may cause multicollinearity problems. 

Least Squares Multicollinearity Section 
 
Least Squares Multicollinearity Section  
Independent Variance R-Squared  
Variable Inflation Vs Other X’s Tolerance 
X1 477.2665 0.9979 0.0021 
X2 485.8581 0.9979 0.0021 
X3 11.7455 0.9149 0.0851 
Since some VIF’s are greater than 10, multicollinearity is a problem. 
 

This report provides information useful in assessing the amount of multicollinearity in your data. 

Variance Inflation 
The variance inflation factor (VIF) is a measure of multicollinearity. It is the reciprocal of 1-RRx

2, 
where Rx

2 is the R  obtained when this variable is regressed on the remaining independent 
variables. A VIF of 10 or more for large data sets indicates a multicollinearity problem since the 
Rx

2

R

2 with the remaining X’s is 90 percent. For small data sets, even VIF’s of 5 or more can signify 
multicollinearity.  

j
j
2VIF   1

1 -  R
=
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R-Squared vs Other X’s 
RRx

2 is the R  obtained when this variable is regressed on the remaining independent variables. A 
high R

2

x
2 indicates a lot of overlap in explaining the variation among the remaining independent 

variables. 

Tolerance 
Tolerance is 1- Rx

2, the denominator of the variance inflation factor. 

Eigenvalues of Correlations  
 
Eigenvalues of Correlations  
  Incremental Cumulative Condition 
No. Eigenvalue Percent Percent Number 
1 1.994969 66.50 66.50 1.00 
2 1.004003 33.47 99.97 1.99 
3 0.001027 0.03 100.00 1941.85 
Some Condition Numbers greater than 1000. Multicollinearity is a SEVERE problem. 
 

This section gives an eigenvalue analysis of the independent variables after they have been 
centered and scaled. Notice that in this example, the third eigenvalue is very small.  

Eigenvalue 
The eigenvalues of the correlation matrix. The sum of the eigenvalues is equal to the number of 
independent variables. Eigenvalues near zero indicate a multicollinearity problem in your data. 

Incremental Percent  
Incremental percent is the percent this eigenvalue is of the total. In an ideal situation, these 
percentages would be equal. Percents near zero indicate a multicollinearity problem in your data. 

Cumulative Percent 
This is the running total of the Incremental Percent. 

Condition Number 
The condition number is the largest eigenvalue divided by each corresponding eigenvalue. Since 
the eigenvalues are really variances, the condition number is a ratio of variances. Condition 
numbers greater than 1000 indicate a severe multicollinearity problem while condition numbers 
between 100 and 1000 indicate a mild multicollinearity problem. 

Eigenvector of Correlations  
 
Eigenvector of Correlations  
No. Eigenvalue X1 X2 X3 
1 1.994969 0.701391 0.707741 0.084573 
2 1.004003 -0.134162 0.014553 0.990853 
3 0.001027 0.700036 -0.706322 0.105159 
 

This report displays the eigenvectors associated with each eigenvalue. The notion behind 
eigenvalue analysis is that the axes are rotated from the ones defined by the variables to a new set 
defined by the variances of the variables. Rotating is accomplished by taking weighted averages 
of the original variables. Thus, the first new axis could be the average of X1 and X2. The first 
new variable is constructed to account for the largest amount of variance possible from a single 
axis. 
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No. 
The number of the eigenvalue. 

Eigenvalue 
The eigenvalues of the correlation matrix. The sum of the eigenvalues is equal to the number of 
independent variables. Eigenvalues near zero mean that there is multicollinearity in your data. 
The eigenvalues represent the spread (variance) in the direction defined by this new axis. Hence, 
small eigenvalues indicate directions in which there is no spread. Since regression analysis seeks 
to find trends across values, when there is not a spread, the trends cannot be computed. 

Table-Values 
The table values give the eigenvectors. The eigenvectors give the weights that are used to create 
the new axis. By studying the weights, you can gain an understanding of what is happening in the 
data. 

In the example above, we can see that the first factor (new variable associated with the first 
eigenvalue) is constructed by adding X1 and X2. Note that the weights are almost equal. X3 has a 
small weight, indicating that it does not play a role in this factor. 

Factor 2 seems to be created complete from X3. X1 and X2 play only a small role in its 
construction. 

Factor 3 seems to be the difference between X1 and X2. Again X3 plays only a small role. Hence, 
the interpretation of these eigenvectors leads to the following statements: 

1.  Most of the variation in X1, X2, and X3 can be accounted for by considering only two variables: Z 
= X1+X2 and X3. 

2.  The third dimension, calculated as X1-X2, is almost negligible and might be ignored.  

Ridge Trace Section 
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This is the famous ridge trace that is the signature of this technique. The plot is really very 
straight forward to read. It presents the standardized regression coefficients on the vertical axis 
and various values of k along the horizontal axis. Since the values of k span several orders of 
magnitude, we adopt a logarithmic scale along this axis. 
The points on the left vertical axis (the left ends of the lines) are the ordinary least squares 
regression values. These occur for k equal zero. As k is increased, the values of the regression 
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estimates change, often wildly at first. At some point, the coefficients seem to settle down and 
then gradually drift towards zero. 

The task of the ridge regression analyst is to determine at what value of k these coefficients are at 
their stable values. A vertical line is drawn at the value selected for reporting purposes. It is 
anticipated that you would run the program several times until an appropriate value of k is 
determined. In this example, our search would be between 0.0001 and 0.1. The value selected on 
this graph happens to be 0.066237, the value obtained from the analytic search. We might be 
inclined to use an even smaller value of k such as 0.01. Remember, the smaller the value of k, the 
smaller the amount of bias that is included in the estimates. 

Variance Inflation Factor Plot 
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This is a plot that we have added that shows the impact of k on the variance inflation factors. 
Since the major goal of ridge regression is to remove the impact of multicollinearity, it is 
important to know at what point multicollinearity has been dealt with. This plot shows this.  
The currently selected value of k is shown by a vertical line. 

Since the rule-of-thumb is that multicollinearity is not a problem once all VIFs are less than 10, 
we inspect the graph for this point. In this example, it appears that all VIFs are small enough once 
k is greater than 0.007. Hence, this is the value of k that this plot would indicate we use. 

Since this plot indicates k = 0.007 and the ridge trace indicates a value near 0.01, we would select 
0.007 as our final result. The rest of the reports are generated for this value of k. 
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Standardized Ridge Regression Coefficients Section  
  
 Standardized Ridge Regression Coefficients Section 

k X1 X2 X3 
0.000000 -0.2034 1.2029 -0.0475 
0.000100 -0.1415 1.1404 -0.0382 
0.000200 -0.0897 1.0881 -0.0304 
0.000300 -0.0457 1.0436 -0.0238 
0.000400 -0.0079 1.0054 -0.0181 
0.000500 0.0249 0.9722 -0.0132 
0.000600 0.0538 0.9431 -0.0088 
0.000700 0.0793 0.9173 -0.0050 
0.000800 0.1019 0.8944 -0.0016 
0.000900 0.1223 0.8738 0.0015 
0.001000 0.1406 0.8553 0.0042 
0.002000 0.2572 0.7371 0.0217 
0.003000 0.3157 0.6776 0.0305 
0.004000 0.3509 0.6416 0.0358 
0.005000 0.3743 0.6174 0.0394 
0.006000 0.3910 0.6001 0.0419 
0.007000 0.4035 0.5870 0.0438 
0.008000 0.4131 0.5768 0.0452 
0.009000 0.4208 0.5686 0.0464 
0.010000 0.4270 0.5618 0.0473 
0.020000 0.4555 0.5281 0.0517 
0.030000 0.4641 0.5146 0.0531 
0.040000 0.4673 0.5065 0.0537 
0.050000 0.4684 0.5006 0.0539 
0.060000 0.4683 0.4960 0.0540 
0.066237 0.4680 0.4934 0.0540 
0.070000 0.4677 0.4919 0.0540 
0.080000 0.4666 0.4884 0.0539 
0.090000 0.4653 0.4851 0.0538 
 

This report gives the values that are plotted on the ridge trace. Note that the value found by the 
analytic search (0.066237) sticks out as you glance down the first column because it does not end 
in zeros. 
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Variance Inflation Factor Section  
  
 Variance Inflation Factor Section 

k X1 X2 X3 
0.000000 477.2665 485.8581 11.7455 
0.000100 396.3965 403.5292 9.9204 
0.000200 334.4756 340.4914 8.5229 
0.000300 286.0151 291.1566 7.4291 
0.000400 247.3784 251.8230 6.5570 
0.000500 216.0793 219.9592 5.8505 
0.000600 190.3708 193.7870 5.2702 
0.000700 168.9966 172.0273 4.7877 
0.000800 151.0345 153.7411 4.3822 
0.000900 135.7951 138.2268 4.0381 
0.001000 122.7546 124.9510 3.7436 
0.002000 55.1972 56.1749 2.2172 
0.003000 31.3037 31.8505 1.6761 
0.004000 20.1831 20.5293 1.4232 
0.005000 14.1214 14.3583 1.2845 
0.006000 10.4576 10.6285 1.1999 
0.007000 8.0755 8.2035 1.1442 
0.008000 6.4402 6.5386 1.1054 
0.009000 5.2691 5.3465 1.0771 
0.010000 4.4019 4.4637 1.0557 
0.020000 1.3976 1.4055 0.9693 
0.030000 0.7792 0.7763 0.9372 
0.040000 0.5527 0.5460 0.9146 
0.050000 0.4443 0.4360 0.8951 
0.060000 0.3835 0.3744 0.8771 
0.066237 0.3581 0.3487 0.8664 
0.070000 0.3456 0.3361 0.8602 
0.080000 0.3200 0.3103 0.8439 
0.090000 0.3016 0.2919 0.8283 
0.100000 0.2878 0.2781 0.8131 
 

This report gives the values that are plotted on the variance inflation factor plot. Note how easy it 
is to determine when all three VIFs are less than 10. 
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K Analysis Section  
 
 K Analysis Section 

k R2 Sigma B'B Ave VIF Max VIF 
0.000000 0.9915 1.1028 1.4905 324.9567 485.8581 
0.000100 0.9914 1.1119 1.3219 269.9487 403.5292 
0.000200 0.9913 1.1199 1.1929 227.8300 340.4914 
0.000300 0.9912 1.1272 1.0918 194.8669 291.1566 
0.000400 0.9911 1.1339 1.0113 168.5862 251.8230 
0.000500 0.9910 1.1401 0.9460 147.2964 219.9592 
0.000600 0.9909 1.1459 0.8924 129.8093 193.7870 
0.000700 0.9908 1.1513 0.8478 115.2705 172.0273 
0.000800 0.9907 1.1565 0.8103 103.0526 153.7411 
0.000900 0.9906 1.1614 0.7785 92.6867 138.2268 
0.001000 0.9905 1.1661 0.7513 83.8164 124.9510 
0.002000 0.9899 1.2065 0.6100 37.8631 56.1749 
0.003000 0.9893 1.2406 0.5597 21.6101 31.8505 
0.004000 0.9887 1.2719 0.5360 14.0452 20.5293 
0.005000 0.9882 1.3014 0.5229 9.9214 14.3583 
0.006000 0.9877 1.3297 0.5148 7.4287 10.6285 
0.007000 0.9872 1.3571 0.5093 5.8077 8.2035 
0.008000 0.9867 1.3837 0.5054 4.6947 6.5386 
0.009000 0.9862 1.4096 0.5025 3.8976 5.3465 
0.010000 0.9857 1.4349 0.5002 3.3071 4.4637 
0.020000 0.9807 1.6639 0.4891 1.2575 1.4055 
0.030000 0.9759 1.8619 0.4830 0.8309 0.9372 
0.040000 0.9711 2.0389 0.4778 0.6711 0.9146 
0.050000 0.9663 2.2000 0.4729 0.5918 0.8951 
0.060000 0.9616 2.3487 0.4682 0.5450 0.8771 
0.066237 0.9587 2.4361 0.4653 0.5244 0.8664 
0.070000 0.9570 2.4871 0.4636 0.5140 0.8602 
0.080000 0.9523 2.6170 0.4591 0.4914 0.8439 
0.090000 0.9478 2.7396 0.4547 0.4739 0.8283 
0.100000 0.9432 2.8558 0.4503 0.4597 0.8131 
 

This report provides a quick summary of the various statistics that might go into the choice of k. 

k 
This is the actual value of k. Note that the value found by the analytic search (0.066237) sticks 
out as you glance down this column because it does not end in zeros. 

R2 
This is the value of R-squared. Since the least squares solution maximizes R-squared, the largest 
value of R-squared occurs when k is zero. We want to select a value of k that does not stray very 
much from this value. 

Sigma 
This is the square root of the mean squared error. Least squares minimizes this value, so we want 
to select a value of k that does not stray very much from the least squares value. 

B’B 
This is the sum of the squared standardized regression coefficients. Ridge regression assumes that 
this value is too large and so the method tries to reduce this. We want to find a value for k at 
which this value has stabilized. 

Ave VIF 
This is the average of the variance inflation factors.  
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Max VIF 
This is the maximum variance inflation factor. Since we are looking for that value of k which 
results in all VIFs being less than 10, this value is very helpful in your selection of k. 

Ridge vs. Least Squares Comparison Section  
 
 Ridge vs. Least Squares Comparison Section for k = 0.007000 

 Regular Regular Stand'zed Stand'zed Ridge L.S. 
Independent Ridge L.S. Ridge L.S. Standard Standard 
Variable Coeff's Coeff's Coeff's Coeff's Error Error 
Intercept 0.7721754 0.2230599     
X1 0.8221589 -0.4144863 0.4035 -0.2034 0.1752076 1.094502 
X2 1.181684 2.421286 0.5870 1.2029 0.1744428 1.090883 
X3 0.4334136 -0.4703622 0.0438 -0.0475 0.3206249 0.8347205 
 
R-Squared 0.9872 0.9915 
Sigma 1.3571 1.1028 
 

This report provides a detailed comparison between the ridge regression solution and the ordinary 
least squares solution to the estimation of the regression coefficients. 

Independent Variable 
The names of the independent variables are listed here. The intercept is the value of b0. 

Regular Ridge (and L.S.) Coeff’s 
These are the estimated values of the regression coefficients b0, b1, ..., bp. The first column gives 
the values for ridge regression and the second column gives the values for regular least squares 
regression. 

The value indicates how much change in Y occurs for a one-unit change in x when the remaining 
X’s are held constant. These coefficients are also called partial-regression coefficients since the 
effect of the other X’s is removed. 

Stand’zed Ridge (and L.S.) Coeff’s 
These are the estimated values of the standardized regression coefficients. The first column gives 
the values for ridge regression and the second column gives the values for regular least squares 
regression. 

Standardized regression coefficients are the coefficients that would be obtained if you 
standardized each independent and dependent variable. Here standardizing is defined as 
subtracting the mean and dividing by the standard deviation of a variable. A regression analysis 
on these standardized variables would yield these standardized coefficients.  

When there are vastly different units involved for the variables, this is a way of making 
comparisons between variables. The formula for the standardized regression coefficient is: 

j, std j
y

x
b  =  b

s
s j

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  

where sy and are the standard deviations for the dependent variable and the corresponding js x j

th 
independent variable. 
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Ridge (and L.S.) Standard Error 
These are the estimated standard errors (precision) of the regression coefficients. The first column 
gives the values for ridge regression and the second column gives the values for regular least 
squares regression. 

The standard error of the regression coefficient, s , is the standard deviation of the estimate. 
Since one of the objects of ridge regression is to reduce this (make the estimates more precise), it 
is of interest to see how much reduction has taken place. 

b j

R-Squared 
R-squared is the coefficient of determination. It represents the percent of variation in the 
dependent variable explained by the independent variables in the model. The R-squared values of 
both the ridge and regular regressions are shown. 

Sigma 
This is the square root of the mean square error. It provides a measure of the standard deviation of 
the residuals from the regression model. 

 It represents the percent of variation in the dependent variable explained by the independent 
variables in the model. The R-squared values of both the ridge and regular regressions are shown. 

Ridge Regression Coefficient Section  
 
 Ridge Regression Coefficient Section for k = 0.007000 

   Stand'zed 
Independent Regression Standard Regression 
Variable Coefficient Error Coefficient VIF 
Intercept 0.7721754    
X1 0.8221589 0.1752076 0.4035 8.0755 
X2 1.181684 0.1744428 0.5870 8.2035 
X3 0.4334136 0.3206249 0.0438 1.1442 
 

This report provides the details of the ridge regression solution. 

Independent Variable 
The names of the independent variables are listed here. The intercept is the value of b0. 

Regression Coefficient 
These are the estimated values of the regression coefficients b0, b1, ..., bp. The value indicates 
how much change in Y occurs for a one-unit change in x when the remaining X’s are held 
constant. These coefficients are also called partial-regression coefficients since the effect of the 
other X’s is removed. 

Standard Error 
These are the estimated standard errors (precision) of the ridge regression coefficients. The 
standard error of the regression coefficient, s , is the standard deviation of the estimate. In 
regular regression, we divide the coefficient by the standard error to obtain a t statistic. However, 
this is not possible here because of the bias in the estimates. 

b j

Stand’zed Regression Coefficient 
These are the estimated values of the standardized regression coefficients. Standardized 
regression coefficients are the coefficients that would be obtained if you standardized each 
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independent and dependent variable. Here standardizing is defined as subtracting the mean and 
dividing by the standard deviation of a variable. A regression analysis on these standardized 
variables would yield these standardized coefficients.  

When there are vastly different units involved for the variables, this is a way of making 
comparisons between variables. The formula for the standardized regression coefficient is  

j, std j
y

x
b  =  b

s
s j

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  

where sy and are the standard deviations for the dependent variable and the corresponding js x j

th 
independent variable. 

VIF 
These are the values of the variance inflation factors associated with the variables. When 
multicollinearity has been conquered, these values will all be less than 10. Details of what VIF is 
were given earlier. 

Analysis of Variance Section 
 

Analysis of Variance Section 
   Sum of Mean  Prob 
Source DF Squares Square F-Ratio Level 
Intercept 1 9614.223 9614.223 
Model 3 1985.993 661.9978 359.4414 0.000000 
Error 14 25.78437 1.841741 
Total(Adjusted) 17 2011.778 118.3399 
 
Mean of Dependent 23.11111 
Root Mean Square Error 1.357108 
R-Squared 0.9872 
Coefficient of Variation 0.058721 

  

An analysis of variance (ANOVA) table summarizes the information related to the sources of 
variation in data.  

Source 
This represents the partitions of the variation in y. There are four sources of variation listed: 
intercept, model, error, and total (adjusted for the mean).  

DF 
The degrees of freedom are the number of dimensions associated with this term. Note that each 
observation can be interpreted as a dimension in n-dimensional space. The degrees of freedom for 
the intercept, model, error, and adjusted total are 1, p, n-p-1, and n-1, respectively. 

Sum of Squares 
These are the sums of squares associated with the corresponding sources of variation. Note that 
these values are in terms of the dependent variable, y. 

Mean Square 
The mean square is the sum of squares divided by the degrees of freedom. This mean square is an 
estimated variance. For example, the mean square error is the estimated variance of the residuals 
(the residuals are sometimes called the errors). 
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F-Ratio 
This is the F statistic for testing the null hypothesis that all βj = 0. This F-statistic has p degrees of 
freedom for the numerator variance and n-p-1 degrees of freedom for the denominator variance. 

Since ridge regression produces biased estimates, this F-Ratio is not a valid test. It serves as an 
index, but it would not stand up under close scrutiny.  

Prob Level 
This is the p-value for the above F test. The p-value is the probability that the test statistic will 
take on a value at least as extreme as the observed value, assuming that the null hypothesis is true. 
If the p-value is less than α, say 0.05, the null hypothesis is rejected. If the p-value is greater than 
α, then the null hypothesis is accepted.  

Root Mean Square Error 
This is the square root of the mean square error. It is an estimate of σ, the standard deviation of 
the ei’s. 

Mean of Dependent Variable 
This is the arithmetic mean of the dependent variable.  

R-Squared 
This is the coefficient of determination. It is defined in full in the Multiple Regression chapter. 

Coefficient of Variation 
The coefficient of variation is a relative measure of dispersion, computed by dividing root mean 
square error by the mean of the dependent variable. By itself, it has little value, but it can be 
useful in comparative studies. 

CV
MSE
y

=
 

Predicted Values and Residuals Section 
 
 Predicted Values and Residuals Section 

Row Actual Predicted Residual 
1 3 4.391116 -1.391116 
2 9 8.010056 0.9899445 
3 11 12.06241 -1.062409 
4 15 13.63284 1.367162 
5 13 14.02158 -1.021584 
6 13 14.41033 -1.410329 
7 17 16.41417 0.5858285 
8 21 20.03311 0.9668885 
9 25 24.08546 0.9145348 
10 27 25.65589 1.344106 
11 25 26.04464 -1.044639 
12 27 26.43338 0.5666152 
13 29 28.43723 0.5627726 
14 33 32.05617 0.9438325 
15 35 36.10852 -1.108521 
16 37 37.67895 -0.6789502 
17 37 38.0677 -1.067695 
18 39 38.45644 0.5435593 
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This section reports the predicted values and the sample residuals, or ei’s. When you want to 
generate predicted values for individuals not in your sample, add their values to the bottom of 
your database, leaving the dependent variable blank. Their predicted values will be shown on this 
report. 

Actual 
This is the actual value of Y for the ith row. 

Predicted 
The predicted value of Y for the ith row. It is predicted using the levels of the X’s for this row. 

Residual 
This is the estimated value of ei. This is equal to the Actual minus the Predicted. 

Histogram 
The purpose of the histogram and density trace of the residuals is to display the distribution of the 
residuals. 
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The odd shape of this histogram occurs because of the way in which these particular data were 
manufactured. 
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Probability Plot of Residuals 
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Residual vs Predicted Plot 
This plot should always be examined. The preferred pattern to look for is a point cloud or a 
horizontal band. A wedge or bowtie pattern is an indicator of nonconstant variance, a violation of 
a critical regression assumption. A sloping or curved band signifies inadequate specification of 
the model. A sloping band with increasing or decreasing variability suggests nonconstant 
variance and inadequate specification of the model. 
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Residual vs Predictor(s) Plot 
This is a scatter plot of the residuals versus each independent variable. Again, the preferred 
pattern is a rectangular shape or point cloud. Any other nonrandom pattern may require a 
redefining of the regression model. 
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Chapter 340 

Principal 
Components 
Regression 
Introduction  
Principal Components Regression is a technique for analyzing multiple regression data that suffer 
from multicollinearity. When multicollinearity occurs, least squares estimates are unbiased, but 
their variances are large so they may be far from the true value. By adding a degree of bias to the 
regression estimates, principal components regression reduces the standard errors. It is hoped that 
the net effect will be to give more reliable estimates. Another biased regression technique, ridge 
regression, is also available in NCSS. Ridge regression is the more popular of the two methods.  

Multicollinearity 
Multicollinearity is discussed both in the Multiple Regression chapter and in the Ridge 
Regression chapter, so we will not repeat the discussion here. However, it is important to 
understand the impact of multicollinearity so that you can decide if some evasive action (like pc 
regression) would be beneficial. 

Principal Components Regression Models 
Following the usual notation, suppose our regression equation may be written in matrix form as 

Y XB e= +  

where Y is the dependent variable, X represents the independent variables, B is the regression 
coefficients to be estimated, and e represents the errors or residuals.  

Standardization 
The first step is to standardize the variables (both dependent and independent) by subtracting their 
means and dividing by their standard deviations. This causes a challenge in notation, since we 
must somehow indicate whether the variables in a particular formula are standardized or not. To 
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keep the presentation simple, we will make the following general statement and then forget about 
standardization and its confusing notation.  

As far as standardization is concerned, all calculations are based on standardized variables. When 
the final regression coefficients are displayed, they are adjusted back to their original scale. 

PC Regression Basics 
In ordinary least squares, the regression coefficients are estimated using the formula 

( )$B X'X X'Y= −1  

Note that since the variables are standardized, X’X = R, where R is the correlation matrix of 
independent variables.  

To perform principal components (PC) regression, we transform the independent variables to 
their principal components. Mathematically, we write 

X'X PDP' Z'Z= =  

where D is a diagonal matrix of the eigenvalues of X’X, P is the eigenvector matrix of X’X, and 
Z is a data matrix (similar in structure to X) made up of the principal components. P is orthogonal 
so that P’P = I.  

We have created new variables Z as weighted averages of the original variables X. This is 
nothing new to us since we are used to using transformations such as the logarithm and the square 
root on our data values prior to performing the regression calculations. Since these new variables 
are principal components, their correlations with each other are all zero. If we begin with 
variables X1, X2, and X3, we will end up with Z1, Z2, and X3. 

Severe multicollinearity will be detected as very small eigenvalues. To rid the data of the 
multicollinearity, we omit the components (the z’s) associated with small eigenvalues. Usually, 
only one or two relatively small eigenvalues will be obtained. For example, if only one small 
eigenvalue were detected on a problem with three independent variables, we would omit Z3 (the 
third principal component). 

When we regress Y on Z1 and Z2, multicollinearity is no longer a problem. We can then 
transform our results back to the X scale to obtain estimates of B. These estimates will be biased, 
but we hope that the size of this bias is more than compensated for by the decrease in variance. 
That is, we hope that the mean squared error of these estimates is less than that for least squares. 

Mathematically, the estimation formula becomes 

( )$A Z'Z Z'Y D Z'Y= =− −1 1  

because of the special nature of principal components. Notice that this is ordinary least squares 
regression applied to a different set of independent variables.  

The two sets of regression coefficients, A and B, are related using the formulas 

A P'B=  

and 

B PA=  
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Omitting a principal component may be accomplished by setting the corresponding element of A 
equal to zero. Hence, the principal components regression may be outlined as follows: 

1.  Complete a principal components analysis of the X matrix and save the principal 
components in Z. 

2.  Fit the regression of Y on Z obtaining least squares estimates of A. 

3.  Set the last element of A equal to zero. 

4.  Transform back to the original coefficients using B = PA. 

Alternative Interpretation of PC Regression 
It can be shown that omitting a principal component amounts to setting a linear constraint on the 
regression coefficients. That is, in the case of three independent variables, we add the constraint 

p b p b p b13 1 23 2 33 3 0+ + =  

Note that this is a constraint on the coefficients, not a constraint on the dependent variable. 
Essentially, we have avoided the multicollinearity problem by avoiding the region of the solution 
space in which it occurs. 

How Many PC’s Should Be Omitted 
Unlike the selection of k in ridge regression, the selection of the number of PC’s to omit is 
relatively straight forward. We omit the PC’s corresponding to small eigenvalues. Since the size 
of the typical eigenvalue of a correlation matrix is one, we omit those that are much smaller than 
one. Usually, the choice will be obvious. 

Assumptions 
The assumptions are the same as those used in regular multiple regression: linearity, constant 
variance (no outliers), and independence. Since PC regression does not provide confidence limits, 
normality need not be assumed. 

Data Structure 
The data are entered as three or more variables. One variable represents the dependent variable. 
The other variables represent the independent variables. An example of data appropriate for this 
procedure is shown below. These data were concocted to have a high degree of multicollinearity 
as follows. We put a sequence of numbers in X1. Next, we put another series of numbers in X3 
that were selected to be unrelated to X1. We created X2 by adding X1 and X3. We made a few 
changes in X2 so that there was not perfect correlation. Finally, we added all three variables and 
some random error to form Y. 

The data are contained in the RIDGEREG database. We suggest that you open this database now 
so that you can follow along with the example. 
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RIDGEREG dataset (subset) 

X1 X2 X3 Y 
1 2 1 3 
2 4 2 9 
3 6 4 11 
4 7 3 15 
5 7 2 13 
6 7 1 13 
7 8 1 17 
8 10 2 21 
9 12 4 25 
10 13 3 27 
11 13 2 25 
12 13 1 27 
13 14 1 29 
14 16 2 33 
15 18 4 35 
16 19 3 37 
17 19 2 37 
18 19 1 39 

Missing Values 
Rows with missing values in the variables being analyzed are ignored. If data are present on a 
row for all but the dependent variable, a predicted value is generated for that row. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Dependent Variables 

Y: Dependent Variable(s) 
Specifies a dependent (Y) variable. If more than one variable is specified, a separate analysis is 
run for each. 

Weight Variable 

Weight Variable 
Specifies a variable containing observation (row) weights for generating weighted-regression 
analysis. Rows which have zero or negative weights are dropped. 
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Independent Variables 

X’s: Independent Variables 
Specifies the variable(s) to be used as independent (X) variables. 

Estimation Options 

PC’s Omitted 
This is the number of principal components that are omitted during the estimation procedure. PC 
regression is most useful in those cases where this value is set to one or two. If more than two 
eigenvalues are small, you probably should take some other evasive action such as completely 
removing the offending variable(s) from consideration. 

Reports Tab 
The following options control which reports and plots are displayed.  

Select Reports 

Descriptive Statistics ... Predicted Values & Residuals 
These options specify which reports are displayed. 

Select Plots 

Beta Trace ... Residuals vs X's 
These options specify which plots are displayed. 

Report Options 

Precision 
Specifies the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Report Options – Decimal Places 

Beta ... VIF Decimals 
Each of these options specifies the number of decimal places to display for that particular item. 

Plot Options 

Show Legend 
Indicate whether the legend is to be displayed. 
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Legend Text 
Indicate the title text of the legend. Note that if two factors are being plotted, {G} is replaced by 
the word “Variables.” 

Beta Trace and VIF Plot Tabs 
The options on this panel control the appearance of the beta trace and the VIF plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Log Scale (VIF Plot only) 
This option lets you select logarithmic scale for the vertical axis of the VIF plot.  

No 
Use regular scaling. 

Yes: Numbers 
Use logarithmic scaling (base 10) in which the tick reference numbers are displayed as decimal 
numbers (e.g., 0.001, 0.01, 0.1). 

Yes: Powers of Ten 
Use logarithmic scaling (base 10) in which the tick reference numbers are displayed as the 
exponents of ten (10-3, 10-2, 10-1). 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 
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Connect Line(s) 
This option lets you specify whether you want to connect the points with a line. 

Titles 

Plot Title 
This option contains the text of the plot title. The characters {Y} and {X} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 

Reference Lines 

PC’s Line 
This option controls the characteristics of the vertical line drawn at the specified value of the 
principal components.  

0 Line 
This option controls the characteristics of the horizontal line at zero that may be displayed on the 
plot. 

Beta & VIF Symbols Tab 
These options specify the symbols used to represent the variables on the Beta Trace and the VIF 
Plot. 

Plotting Symbols 

Variable (1-15)  
The symbols used to represent the variables. Variable 1 represents the first variable, Variable 2 
represents the second variable, and so on. 

Histogram Tab 
The options on this panel control the appearance of the histogram. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 
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Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a histogram style file. This file sets all histogram options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Histogram procedure. 

Number of Bars 
Specify the number of intervals, bins, or bars used in the histogram. 

Titles 

Plot Title 
This is the text of the title. The characters {X} are replaced by the name of the variable. Press the 
button on the right of the field to specify the font of the text. 

Probability Plot Tab 
The options on this panel control the appearance of the probability plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 
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Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} are replaced by the name of the variable. Press the 
button on the right of the field to specify the font of the text. 

Resid vs Yhat Plot and Resid vs X Plot Tabs 
Various residual plots may be displayed to help you validate the assumptions of your regression 
analysis as well as investigate the fit of your estimated equation. The actual uses of these plots 
will be described later. The options on these panels control the appearance of the corresponding 
residual scatter plot.  

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 
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Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This option contains the text of the plot title. The characters {Y} and {X} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 

Storage Tab 
Predicted values and residuals may be calculated for each row and stored on the current database 
for further analysis. The selected statistics are automatically stored to the current database. 

Note that existing data are replaced. Also, if you specify more than one dependent variable, you 
should specify a corresponding number of storage variables here. Following is a description of 
the statistics that can be stored. 

Data Storage Variables 

Predicted Values 
The predicted (Yhat) values. 

Residuals 
The residuals (Y-Yhat).  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 
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Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Principal Components Regression 
This section presents an example of how to run a principal components regression analysis of the 
data presented above. The data are in the RIDGEREG database. In this example, we will run a 
regression of Y on X1 - X3.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Principal Components Regression window. 

1 Open the RIDGEREG dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file RidgeReg.s0. 
• Click Open. 

2 Open the Principal Components Regression window. 
• On the menus, select Analysis, then Regression/Correlation, then Other Regression 

Routines, then Principal Components Regression. The Principal Components 
Regression procedure will be displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Principal Components Regression window, select the Variables tab.  
• Double-click in the Y: Dependent Variable(s) text box. This will bring up the variable 

selection window.  
• Select Y from the list of variables and then click Ok. “Y” will appear in the Y: 

Dependent Variable(s) box.  
• Double-click in the X’s: Independent Variables text box. This will bring up the variable 

selection window.  
• Select X1 - X3 from the list of variables and then click Ok. “X1-X3” will appear in the 

X’s: Independent Variables.  

4 Specify the reports. 
• Select the Reports tab. 
• Check all reports and plots. We are selecting all of them so that we can document them. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Descriptive Statistics Section 
 
Descriptive Statistics Section 
Standard 
Variable Count Mean Deviation Minimum Maximum 
X1 18 9.5 5.338539 1 18 
X2 18 11.5 5.404247 2 19 
X3 18 2.166667 1.098127 1 4 
Y 18 23.11111 10.87841 3 39 
 

For each variable, the descriptive statistics of the nonmissing values are computed. This report is 
particularly useful for checking that the correct variables were selected. 

Correlation Matrix Section 
  
 Correlation Matrix Section 

 X1 X2 X3 Y 
X1 1.000000 0.987841 -0.015051 0.985544 
X2 0.987841 1.000000 0.133813 0.995574 
X3 -0.015051 0.133813 1.000000 0.116539 
Y 0.985544 0.995574 0.116539 1.000000 
 

Pearson correlations are given for all variables. Outliers, nonnormality, nonconstant variance, and 
nonlinearities can all impact these correlations. Note that these correlations may differ from pair-
wise correlations generated by the correlation matrix program because of the different ways the 
two programs treat rows with missing values. The method used here is row-wise deletion. 
These correlation coefficients show which independent variables are highly correlated with the 
dependent variable and with each other. Independent variables that are highly correlated with one 
another may cause multicollinearity problems. 

Least Squares Multicollinearity Section 
 
Least Squares Multicollinearity Section  
Independent Variance R-Squared  
Variable Inflation Vs Other X’s Tolerance 
X1 477.2665 0.9979 0.0021 
X2 485.8581 0.9979 0.0021 
X3 11.7455 0.9149 0.0851 
Since some VIF’s are greater than 10, multicollinearity is a problem. 
 

This report provides information useful in assessing the amount of multicollinearity in your data. 

Variance Inflation 
The variance inflation factor (VIF) is a measure of multicollinearity. It is the reciprocal of 1-RRx

2, 
where Rx

2 is the R  obtained when this variable is regressed on the remaining independent 
variables. A VIF of 10 or more for large data sets indicates a multicollinearity problem since the 
Rx

2

R

2 with the remaining X’s is 90 percent. For small data sets, even VIF’s of 5 or more can signify 
multicollinearity.  

j
j
2VIF   1

1 -  R
=
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R-Squared vs Other X’s 
RRx

2 is the R-squared obtained when this variable is regressed on the remaining independent 
variables. A high Rx

2 indicates a lot of overlap in explaining the variation among the remaining 
independent variables. 

Tolerance 
Tolerance is just 1- Rx

2, the denominator of the variance inflation factor. 

Eigenvalues of Correlations  
 
Eigenvalues of Correlations  
  Incremental Cumulative Condition 
No. Eigenvalue Percent Percent Number 
1 1.994969 66.50 66.50 1.00 
2 1.004003 33.47 99.97 1.99 
3 0.001027 0.03 100.00 1941.85 
Some Condition Numbers greater than 1000. Multicollinearity is a SEVERE problem. 
 

This section gives an eigenvalue analysis of the independent variables after they have been 
centered and scaled. Notice that in this example, the third eigenvalue is very small. 

Eigenvalue 
The eigenvalues of the correlation matrix. The sum of the eigenvalues is equal to the number of 
independent variables. Eigenvalues near zero indicate a multicollinearity problem in your data. 

Incremental Percent  
Incremental percent is the percent this eigenvalue is of the total. In an ideal situation, these 
percentages would be equal. Percents near zero indicate a multicollinearity problem in your data. 

Cumulative Percent 
This is the running total of the Incremental Percent. 

Condition Number 
The condition number is the largest eigenvalue divided by each corresponding eigenvalue. Since 
the eigenvalues are really variances, the condition number is a ratio of variances. Condition 
numbers greater than 1000 indicate a severe multicollinearity problem while condition numbers 
between 100 and 1000 indicate a mild multicollinearity problem. 

Eigenvector of Correlations  
 
Eigenvector of Correlations  
No. Eigenvalue X1 X2 X3 
1 1.994969 0.701391 0.707741 0.084573 
2 1.004003 -0.134162 0.014553 0.990853 
3 0.001027 0.700036 -0.706322 0.105159 
 

This report displays the eigenvectors associated with each eigenvalue. The notion behind 
eigenvalue analysis is that the axes are rotated from those defined by the variables to a new set 
defined by the variances of the variables. Rotation is accomplished by taking weighted averages 
of the standardized original variables. The first new variable is constructed to account for the 
largest amount of variance possible from a single axis. 
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No. 
The number of the eigenvalue. 

Eigenvalue 
The eigenvalues of the correlation matrix. The sum of the eigenvalues is equal to the number of 
independent variables. Eigenvalues near zero indicate multicollinearity in your data. The 
eigenvalues represent the spread (variance) in the direction defined by this new axis. Hence, small 
eigenvalues indicate directions in which there is no spread. Since regression analysis seeks to find 
trends across values, when there is not a spread, the trends cannot be computed accurately. 

Table-Values 
The table values give the eigenvectors. The eigenvectors give the weights that are used to create 
the new axis. By studying the weights, you can gain an understanding of what is happening in the 
data. 

In the example above, we can see that the first factor (new variable associated with the first 
eigenvalue) is constructed by adding X1 and X2. Note that the weights are almost equal. X3 has a 
small weight, indicating that it does not play a role in this factor. 

Factor 2 seems to be completely created from X3. X1 and X2 play only a small role in its 
construction. 

Factor 3 seems to be the difference between X1 and X2. Again X3 plays only a small role. Hence, 
the interpretation of these eigenvectors leads to the following statements: 

1. Most of the variation in X1, X2, and X3 can be accounted for by considering only two 
variables: Z = X1+X2 and X3. 

2. The third dimension, calculated as X1-X2, is almost negligible and might be ignored.  

Beta Trace Section 
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This plot shows the standardized regression coefficients (often referred to as the betas) on the 
vertical axis and the number of principal components (PC’s) included along the horizontal axis. 
Thus, the set on the right is the least squares set. 
By studying this plot, you can determine what omitting a certain number of PC’s has done to the 
estimated regression coefficients.  
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Variance Inflation Factor Plot 
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This is a plot that shows the effect of the omitted PC’s on the variance inflation factors. Since the 
major goal of PC regression is to remove the impact of multicollinearity, it is important to know 
at what point multicollinearity has been dealt with. This plot shows this.  
Since the rule-of-thumb is that multicollinearity is not a problem once all VIFs are less than 10, 
we inspect the graph for this point. In this example, it appears that all VIFs are less than 10 if only 
two of the three PC’s are included. 

Standardized Regression Coefficients Section  
  
 Standardized Regression Coefficients Section 

PC’s X1 X2 X3 
1 0.4942 0.4987 0.0596 
2 0.4945 0.4987 0.0574 
3 -0.2034 1.2029 -0.0475 
 

This report gives the values that are plotted on the beta trace. 

Variance Inflation Factor Section  
  
 Variance Inflation Factor Section 

PC’s X1 X2 X3 
1 0.2466 0.2511 0.0036 
2 0.2645 0.2513 0.9815 
3 477.2665 485.8581 11.7455 
 

This report gives the values that are plotted on the variance inflation factor plot. Note how easy it 
is to determine when all three VIFs are less than 10. 
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Components Analysis Section  
  
 Components Analysis Section 

PC’s R2 Sigma B'B Ave VIF Max VIF 
1 0.9905 1.1677 0.4965 0.1671 0.2511 
2 0.9905 1.1674 0.4965 0.4991 0.9815 
3 0.9915 1.1028 1.4905 324.9567 485.8581 
 

This report provides a quick summary of the various statistics that might go into the choice of k. 

PC’s 
This is the number of principal components included in the regression reported on this line. 

R2 
This is the value of R-squared. Since the least squares solution maximizes R-squared, the largest 
value of R-squared occurs at bottom of the report (when all PC’s are included). 

Sigma 
This is the square root of the mean squared error. Least squares minimizes this value, so we want 
to select the number of PC’s that does not stray very much from the least squares value. 

B’B 
This is the sum of the squared standardized regression coefficients. PC regression assumes that 
this value is too large and so the method tries to reduce this. We want to find the number of PC’s 
at which this value has stabilized. 

Ave VIF 
This is the average of the variance inflation factors.  

Max VIF 
This is the maximum variance inflation factor. Since we are looking for the number of PC’s 
which results in all VIFs being less than 10, this value is very helpful. 

P.C. versus L.S. Comparison Section  
 
 P.C. vs. Least Squares Comparison Section with 1 Component Omitted 

 Regular Regular Stand'zed Stand'zed Component L.S. 
Independent Component L.S. Component L.S. Standard Standard 
Variable Coeff's Coeff's Coeff's Coeff's Error Error 
Intercept 0.763326 0.2230599     
X1 1.007698 -0.4144863 0.4945 -0.2034 0.0272776 1.094502 
X2 1.003778 2.421286 0.4987 1.2029 2.626337E-02 1.090883 
X3 0.568248 -0.4703622 0.0574 -0.0475 0.2554352 0.8347205 
 
R-Squared 0.9905 0.9915 
Sigma 1.1674 1.1028 
 

This report provides a detailed comparison between the PC regression solution and the ordinary 
least squares solution to the estimation of the regression coefficients. 

Independent Variable 
The names of the independent variables are listed here. The intercept is the value of b0. 
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Regular Component (and L.S.) Coeff’s 
These are the estimated values of the regression coefficients b0, b1, ..., bp. The first column gives 
the values for PC regression and the second column gives the values for regular least squares 
regression. 

The value indicates how much change in Y occurs for a one-unit change in X when the remaining 
X’s are held constant. These coefficients are also called partial-regression coefficients since the 
effect of the other X’s is removed. 

Stand’zed Component (and L.S.) Coeff’s 
These are the estimated values of the standardized regression coefficients. The first column gives 
the values for PC regression and the second column gives the values for regular least squares 
regression. 

Standardized regression coefficients are the coefficients that would be obtained if you 
standardized each independent and dependent variable. Here standardizing is defined as 
subtracting the mean and dividing by the standard deviation of a variable. A regression analysis 
on these standardized variables would yield these standardized coefficients.  

When there are vastly different units involved for the variables, this is a way of making 
comparisons between variables. The formula for the standardized regression coefficient is: 

j, std j
y

x
b  =  b

s
s j

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  

where sy and are the standard deviations for the dependent variable and the corresponding js x j

th 
independent variable. 

Component (and L.S.) Standard Error 
These are the estimated standard errors (precision) of the regression coefficients. The first column 
gives the values for PC regression and the second column gives the values for regular least 
squares regression. 

The standard error of the regression coefficient, s , is the standard deviation of the estimate. 
Since one of the objects of PC regression is to reduce this (make the estimates more precise), it is 
of interest to see how much reduction has taken place. 

b j

R-Squared 
R-squared is the coefficient of determination. It represents the percent of variation in the 
dependent variable explained by the independent variables in the model. The R-squared values of 
both the PC and regular regressions are shown. 

Sigma 
This is the square root of the mean squared error. It provides a measure of the standard deviation 
of the residuals from the regression model. 

 It represents the percent of variation in the dependent variable explained by the independent 
variables in the model. The R-squared values of both the PC and regular regressions are shown. 
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PC Coefficient Section  
 
 PC Coefficient Section 

Principal PC Individual 
Component Coefficient R-Squared Eigenvalue 
PC1 7.6653 0.9905 1.994969 
PC2 -0.0245 0.0000 1.004003 
PC3 -10.8457 0.0010 0.001027 
 

This report provides the details of the regression based on the principal components (the Z’s). 

Principal Component 
This is the number of the principal component being reported about on this line. The order here 
corresponds to the order of the eigenvalues. Thus, the first is associated with the largest 
eigenvalue and the last is associated with the smallest. 

PC Coefficient 
These are the estimated values of the regression coefficients a1, ..., ap. The value indicates how 
much change in Y occurs for a one-unit change in z when the remaining z’s are held constant.  

Individual R-Squared 
This is the amount contributed to R-squared by this component.  

Eigenvalue 
This is the eigenvalue of this component.  

PC Regression Coefficient Section  
  
 Regression Coefficient Section with 1 Component Omitted 

   Stand'zed 
Independent Regression Standard Regression 
Variable Coefficient Error Coefficient VIF 
Intercept 0.763326    
X1 1.007698 0.0272776 0.4945 0.2645 
X2 1.003778 2.626337E-02 0.4987 0.2513 
X3 0.568248 0.2554352 0.0574 0.9815 
 

This report provides the details of the PC regression solution. 

Independent Variable 
The names of the independent variables are listed here. The intercept is the value of b0. 

Regression Coefficient 
These are the estimated values of the regression coefficients b0, b1, ..., bp. The value indicates 
how much change in Y occurs for a one-unit change in x when the remaining X’s are held 
constant. These coefficients are also called partial-regression coefficients since the effect of the 
other X’s is removed. 

Standard Error 
These are the estimated standard errors (precision) of the PC regression coefficients. The standard 
error of the regression coefficient, s , is the standard deviation of the estimate. In regular 
regression, we divide the coefficient by the standard error to obtain a t statistic. However, this is 
not possible here because of the bias in the estimates. 

b j
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Stand’zed Regression Coefficient 
These are the estimated values of the standardized regression coefficients. Standardized 
regression coefficients are the coefficients that would be obtained if you standardized each 
independent and dependent variable. Here standardizing is defined as subtracting the mean and 
dividing by the standard deviation of a variable. A regression analysis on these standardized 
variables would yield these standardized coefficients.  

When there are vastly different units involved for the variables, this is a way of making 
comparisons between variables. The formula for the standardized regression coefficient is: 

j, std j
y

x
b  =  b

s
s j

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  

where sy and are the standard deviations for the dependent variable and the corresponding js x j

th 
independent variable. 

VIF 
These are the values of the variance inflation factors associated with the variables. When 
multicollinearity has been conquered, these values will all be less than 10. Details of what VIF is 
were given earlier. 

Analysis of Variance Section 
 
Analysis of Variance Section with 1 Component Omitted 
   Sum of Mean Prob 
Source DF Squares Square F-Ratio Level 
Intercept 1 9614.223 9614.223 
Model 3 1992.698 664.2327 487.3907 0.000000 
Error 14 19.07968 1.362834 
Total(Adjusted) 17 2011.778 118.3399 
 
Mean of Dependent 23.11111 
Root Mean Square Error 1.167405 
R-Squared 0.9905 
Coefficient of Variation 5.051271E-02 

  

An analysis of variance (ANOVA) table summarizes the information related to the sources of 
variation in the data.  

Source 
This represents the partitions of the variation in y. There are four sources of variation listed: 
intercept, model, error, and total (adjusted for the mean).  

DF 
The degrees of freedom are the number of dimensions associated with this term. Note that each 
observation can be interpreted as a dimension in n-dimensional space. The degrees of freedom for 
the intercept, model, error, and adjusted total are 1, p, n-p-1, and n-1, respectively. 

Sum of Squares 
These are the sums of squares associated with the corresponding sources of variation. Note that 
these values are in terms of the dependent variable, y. The formulas for each are:  
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Mean Square 
The mean square is the sum of squares divided by the degrees of freedom. This mean square is an 
estimated variance. For example, the mean square error is the estimated variance of the residuals 
(the residuals are sometimes called the errors). 

F-Ratio 
This is the F statistic for testing the null hypothesis that all βj = 0. This F-statistic has p degrees of 
freedom for the numerator variance and n-p-1 degrees of freedom for the denominator variance. 

Since PC regression produces biased estimates, this F-Ratio is not a valid test. It serves as an 
index, but it would not stand up under close scrutiny.  

Prob Level 
This is the p-value for the above F test. The p-value is the probability that the test statistic will 
take on a value at least as extreme as the observed value, assuming that the null hypothesis is true. 
If the p-value is less than α, say 0.05, the null hypothesis is rejected. If the p-value is greater than 
α, then the null hypothesis is accepted.  

Root Mean Square Error 
This is the square root of the mean square error. It is an estimate of σ, the standard deviation of 
the ei’s. 

Mean of Dependent Variable 
This is the arithmetic mean of the dependent variable.  

R-Squared 
This is the coefficient of determination. It is defined in full in the Multiple Regression chapter. 

Coefficient of Variation 
The coefficient of variation is a relative measure of dispersion, computed by dividing root mean 
square error by the mean of the dependent variable. By itself, it has little value, but it can be 
useful in comparative studies. 

CV MSE
y

=  
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Predicted Values and Residuals Section 
  
 Predicted Values and Residuals Section with 1 Component Omitted 

Row Actual Predicted Residual 
1 3 4.346828 -1.346828 
2 9 7.930331 1.069669 
3 11 12.08208 -1.082081 
4 15 13.52531 1.47469 
5 13 13.96476 -0.9647598 
6 13 14.40421 -1.40421 
7 17 16.41569 0.5843138 
8 21 19.99919 1.000811 
9 25 24.15094 0.849061 
10 27 25.59417 1.405833 
11 25 26.03362 -1.033618 
12 27 26.47307 0.5269322 
13 29 28.48454 0.5154559 
14 33 32.06805 0.9319535 
15 35 36.2198 -1.219797 
16 37 37.66302 -0.6630252 
17 37 38.10247 -1.102475 
18 39 38.54193 0.4580744  
 

This section reports the predicted values and the sample residuals, or ei’s. When you want to 
generate predicted values for individuals not in your sample, add their values to the bottom of 
your database, leaving the dependent variable blank. Their predicted values will be shown on this 
report. 

Actual 
This is the actual value of Y for the ith row. 

Predicted 
The predicted value of Y for the ith row. It is predicted using the levels of the X’s for this row. 

Residual 
This is the estimated value of ei. This is equal to the Actual minus the Predicted. 
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Histogram 
The purpose of the histogram and density trace of the residuals is to display the distribution of the 
residuals. 
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The odd shape of this histogram occurs because of the way in which these particular data were 
manufactured. 

Probability Plot of Residuals 
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Residual vs Predicted Plot 
This plot should always be examined. The preferred pattern to look for is a point cloud or a 
horizontal band. A wedge or bowtie pattern is an indicator of nonconstant variance, a violation of 
a critical regression assumption. A sloping or curved band signifies inadequate specification of 
the model. A sloping band with increasing or decreasing variability suggests nonconstant 
variance and inadequate specification of the model. 
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Residual vs Predictor(s) Plot 
This is a scatter plot of the residuals versus each independent variable. Again, the preferred 
pattern is a rectangular shape or point cloud. Any other nonrandom pattern may require a 
redefining of the regression model. 
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Chapter 345 

Nondetects 
Regression 
Introduction 
This module fits the regression relationship between a positive-valued dependent variable (with, 
possibly, some nondetected responses) and one or more independent variables. The distribution of 
the residuals (errors) is assumed to follow the exponential, extreme value, logistic, log-logistic, 
lognormal, lognormal10, normal, or Weibull distribution. The Distribution Fitting module may be 
useful for determining a suitable distribution for use in Nondetects Regression. 

Nondetects analysis is the analysis of data in which one or more of the values cannot be measured 
exactly because they fall below one or more detection limits. Detection limits often arise in 
environmental studies because of the inability of instruments to measure small concentrations. 
Some examples of sampling scenarios that lead to datasets with nondetects values are finding 
pesticide concentrations in water, determining chemical composition of soils, or establishing the 
number of particulates of a compound in the air.  

A common practice for dealing with values which fall below the detection threshold is 
substitution. Often, each value which is below the detection limit is substituted with one half the 
detection limit. Evaluation of relationships among variables are then carried out using standard 
techniques (multiple regression) with the substituted data. Helsel (2005) warns of the potential 
data analysis biases that result if nondetects values are substituted. He particularly warns about 
the arbitrariness of substituting one half the detection limit (or zero, or the detection limit). 
Alternatively, if a proper distribution can be assumed for the variable with nondetects values, 
maximum likelihood distribution regression is a more appropriate analog to multiple regression 
with substituted values.  

For a complete account of nondetects analysis, we suggest the book by Helsel (2005). 

Technical Details 
The linear regression equation is 

Y B B X B X Se= + + + +0 1 1 2 2 L  

Here, S represents the value of a constant standard deviation, Y is the response or a transformation 
of the response (ln() or log()), the X’s are one or more independent variables, the B’s are the 
regression coefficients, and e is the residual (error) that is assumed to follow a particular 
probability distribution. The problem reduces to estimating the B’s and S. The density functions 
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of the eight distributions that are fit by this module are given in the Distribution Fitting section 
and will not be repeated here. 

As an example, we give detailed results for the lognormal distribution. The results for other 
distributions follow a similar pattern. 

The lognormal probability density function may be written as 
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If we replace the location parameter, M, with the regression model, the density now becomes 
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Maximum likelihood estimation consists of finding the values of the distribution parameters that 
maximize the log-likelihood of the data values. Loosely speaking, these are the values of the 
parameters, which maximize the probability that the current set of data values occur. 

NCSS employs the Newton-Raphson algorithm with numerical differentiation to obtain the 
maximum likelihood estimates. These estimates have been shown to have optimality 
characteristics in large samples (number of responses greater than 20).   

Data Structure 
Nondetects responses are specified using up to three components: the response value (e.g., 
concentration or amount), an optional indicator of whether or not each observation was detected, 
and an optional frequency (count) specification. If no detection indicator is included, all response 
values represent detected responses. If the frequency (count) variable is omitted, all counts are 
assumed to be one. 

Any number of independent variables may be specified as separate columns. In Nondetects 
Distribution Regression, all independent variables must be numeric. If categorical variables are to 
be used, corresponding zero-one variables must first be created. 

Sample Dataset 
The table below shows a dataset (fictitious) reporting 1,3-dichloropropene (1,3-DCP) 
concentrations (in μg/L) for 53 randomly chosen soil locations. Concentrations were determined 
following addition of one of two solutions to each sample: water or NaHSO4. Some of the soil 
samples resulted in concentrations below the laboratory minimum reporting limit of 0.13μg/L. 
The percent moisture in the soil sample is also reported. A value of zero in the DNondet column 
indicates 1,3-DCP was detected. A value of one in the DNondet column indicates 1,3-DCP was 
not detected. The Solution column is repeated with an appropriate zero-one variable column. 
These data are contained in the DCP dataset. 
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DCP dataset (subset) 

DCP DNondet Moisture Solution Solution2
0.17 0 8.14 water 0 
0.25 0 6.23 water 0 
0.22 0 4.56 NaHSO4 1 
0.28 0 7.39 water 0 
0.13 1 11.91 water 0 
0.18 0 6.43 NaHSO4 1 
0.13 1 6.97 water 0 
0.18 0 5.48 NaHSO4 1 
0.26 0 6.12 NaHSO4 1 
0.13 1 5.42 NaHSO4 1 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the probability distribution that is fit and the variables used in the analysis. 

Response Variable 

Response Variable 
The values of this variable represent either the magnitude of a detected observations or detection 
limits, depending on the corresponding values of the Nondetection (Censor) Variable.  

The values in this variable must be greater than zero. If the value is missing or non-positive, it is 
not used during the estimation phase. 

Frequency Variable 

Frequency Variable 
This variable gives the count, or frequency, of the response displayed on that row. When omitted, 
each row receives a frequency of one. Frequency values should be positive integers. A frequency 
variable is often used to indicate the number of Nondetects. 

Nondetection Variable 

Nondetection (Censor) Variable 
The values in this variable indicate whether the value of the Response Variable represents a 
nondetected (censored) observation or a detected observation. When a particular value of this 
variable indicates a Nondetect, the corresponding value of the Response Variable represents a 
lower detection limit.  

These values may be text or numeric. The interpretation of these codes is specified by the 
'Detected' and 'Not Detected' (Censored) options to the right of this option. 
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Only two values are used, the Detected value and the Not Detected value. The Unknown Censor 
option specifies what is to be done with values that do not match either the Detected value or the 
Not Detected value.  

Rows with missing values (blanks) in this variable are omitted from the estimation phase, but 
results are shown in any reports that output predicted values. 

Detected 
When this value is encountered under the Nondetection (Censor) Variable it indicates that the 
value under the Response Variable was observed or detected. The value may be a number or a 
letter.  

We suggest the letter 'D' or the number '0' when you are in doubt as to what to use. 

A detected observation is one in which the value was measured exactly; for example, the 
concentration was such that the instrument was able to measure it. 

Not Detected 
When this value is encountered under the Nondetection (Censor) Variable it indicates that the 
value under the Response Variable was not actually observed (i.e., a nondetect) but represents a 
lower detection limit. That is, the observation is left-censored, and the actual value of the 
response is something below the detection limit.  

The value may be a number or a letter. We suggest the letter 'N' or the number '1' when you are in 
doubt as to what to use. 

A nondetect is a response in which the value was not measured exactly; for example, the 
concentration was such that the instrument was not able to measure it. 

Probability Distribution 

Distribution 
This option specifies the probability distribution of the residuals (errors). All results are based on 
the probability distribution specified here.  

Alpha Level 

Alpha Level 
This is the value of alpha used in the calculation of confidence limits. For example, if you specify 
0.04 here, then 96% confidence limits will be calculated. 

Independent Variables 

X’s: Independent Variables 
Specify the independent variables. At least one independent variable must be specified here.  

These variables may be thought of as additional variables for which statistical adjustment is 
desired. Discrete and/or continuous variables may be specified here. If discrete variables are to be 
specified, you should create and specify the appropriate number of indicator (dummy) variables. 
For example, if three groups are to be compared, two indicator variables will be needed to 
distinguish these groups. 
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Estimation Tab 
The following options control the searching algorithms used during parameter estimation. 

Estimation Options 

Maximum Iterations 
Many of the parameter estimation algorithms are iterative. This option assigns a maximum to the 
number of iterations used in any one algorithm. We suggest a value of at least 100. This should be 
large enough to let the algorithm converge, but small enough to avoid a large delay if 
convergence cannot be obtained. If the number of iterations reaches this amount, you should re-
run your analysis with a larger value. 

Minimum Relative Change 
This value is used to control the iterative algorithms used in maximum likelihood estimation. 
When the relative change in all of the parameters is less than this amount, the iterative procedure 
is terminated. 

Parameter Adjustment 
Newton’s method calculates a change for each parameter value at each step. Instead of taking the 
whole parameter change, this option lets you take only a fraction of the indicated change. For 
datasets that diverge, taking only partial steps may allow the algorithm to converge. In essence, 
the algorithm tends to over correct the parameter values. This factor allows you to dampen this 
over correction. We suggest a value of about 0.2. This may increase the number of iterations (and 
you will have to increase the Maximum Iterations accordingly), but it provides a greater 
likelihood that the algorithm will converge. 

Starting Sigma 
Specify a starting value for S, the standard deviation of the residuals (errors). Select ‘0 - Data’ to 
calculate an appropriate value from the data. If convergence fails, try a different value.  

Derivatives 
This value specifies the machine precision value used in calculating numerical derivatives. Slight 
adjustments to this value can change the accuracy of the numerical derivatives (which impacts the 
variance/covariance matrix estimation).  

Remember from calculus that the derivative is the slope calculated at a point along the function. It 
is the limit found by calculating the slope between two points on the function curve that are very 
close together. Numerical differentiation mimics this limit by calculating the slope between two 
function points that are very close together and then computing the slope. This value controls how 
close together these two function points are.  

Numerical analysis suggests that this distance should be proportional to the machine precision of 
the computer. We have found that our algorithm achieves four-place accuracy in the variance-
covariance matrix no matter what value is selected here (within reason). However, increasing or 
decreasing this value by two orders of magnitude may achieve six or seven place accuracy in the 
variance-covariance matrix. We have found no way to find the optimal value except trial and 
error. 

Note that the parameter estimates do not seem to be influenced a great deal, only their standard 
errors. 
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Reports Tab 
The following options control which reports are displayed and the format of those reports. 

Select Reports 

Data Summary Report ... Residual Report 
Each of these options specifies whether the indicated report is calculated and displayed.  

Select Plots 

X - Y Plots ... X - Residual Plots 
Each of these options specifies whether the indicated plot is displayed.  

Report Options 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also, note that all calculations are performed in double precision regardless of which 
option you select here. Single precision is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option lets you select whether to display only values, only value labels, or both for values of 
the group variable. Use this option if you want to automatically attach labels to the values of the 
group variable (such as 1=Male, 2=Female, etc.). See the section on specifying Value Labels 
elsewhere in this manual. 

Report Options – Decimal Places 

Response and Probability Decimals 
This option specifies the number of decimal places shown on reported response and probability 
values. 

Plot Options 

Show Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies legend label. A {G} is replaced by the appropriate legend name. 
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X - Y Plots to X - Resid Plots Tabs 
These options control the attributes of the plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Number Predicted 
This options sets resolution of the plot along the horizontal axis. A value near 50 is usually 
adequate. 

Titles 

Plot Title 
This option contains the text of the plot title. The characters {Y} and {X} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 
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Symbols Tab 
These options specify the attributes of the symbols used in the plots. 

Plotting Symbols 

Detected ... Predicted 
This option specifies the symbol used for each type of data, censored, failed, and predicted. These 
symbols are provided to allow the various censoring types to be identified, even on black and 
white printers. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Nondetects Regression 
This section presents an example of how to perform a nondetects normal distribution regression. 
The DCP dataset that will be used was described above. Suppose the researchers wish to establish 
the relationship between percent moisture in the soil sample and 1,3-DCP concentration. Further, 
they wish to determine if there are differences in the two solutions used for determining 1,3-DCP 
concentrations.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Nondetects Regression window. 

1 Open the DCP dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file DCP.S0. 
• Click Open. 

2 Open the Nondetects Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Other Regression 

Routines, then Nondetects Regression. The Nondetects Regression procedure will be 
displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Nondetects Regression window, select the Variables tab. 
• Double-click in the Response Variable box. This will bring up the variable selection 

window.   
• Select DCP from the list of variables and then click Ok. 
• Double-click in the Nondetection (Censor) Variable box. This will bring up the variable 

selection window.  
• Select DNondet from the list of variables and then click Ok.  
• Enter the values 0 and 1 for the Detected and Not Detected fields, respectively. 
• Double-click in the X’s: Independent Variables box. This will bring up the variable 

selection window. 
• Select Moisture and Solution2 (you can use the control key) from the list of variables 

and then click Ok. 
• Set the Distribution to Normal. 

4 Specify the reports. 
• On the Nondetects Regression window, select the Reports tab.  
• Check the boxes of all the report options. 

5 Adjust the axes. 
• Select the X - Y Plots tab.  
• Under Vertical (Y) Axis, click on Tick Label Settings. 
• Change Decimals to 2. 



345-10  Nondetects Regression  

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Data Summary Section 
  
 Data Summary Section 
  
 Type of   Hours Hours 
 Observation Rows Count Minimum Maximum 
 Missing or Prediction 0 
    Detected 39 39 0.140 0.350 
    Not Detected 13 13 0.130 0.130 
    Total (Nonmissing) 52 52 0.130 0.350 
 
 
 Means 
 Variable Mean 
    DCP 0.2071154 
    Moisture 7.520385 
    Solution2 0.5769231 
  

This report displays a summary of the data that were analyzed. Scan this report to determine if 
there are any obvious data-entry errors by double-checking the counts and the minimum and 
maximum. 
The means given for each variable are for detected and nondetected rows combined. 

Parameter Estimation Section 
 
    Maximum Likelihood Parameter Estimation Section 
 
    Parameter Parameter Standard  Prob Lower Upper 
    Name Estimate Error Z Value Level 95.0% C.L. 95.0% C.L. 
    Intercept 0.1821519 3.239192E-02 5.6234 0.0000 0.1186649 0.2456388 
    Moisture -2.174437E-03 3.457449E-03 -0.6289 0.5294 -8.950911E-03 4.602039E-03 
    Solution2 5.185126E-02 2.305901E-02 2.2486 0.0245 6.656426E-03 9.704609E-02 
    Sigma 7.899636E-02 9.540465E-03 8.2801 0.0000 6.234572E-02 0.1000939 
 
    Approximate R-Squared  
    Log Likelihood 30.68732 
    Iterations 32 
 

This report displays parameter estimates along with standard errors, significance tests, and 
confidence limits. Note that the significance levels and confidence limits all use large sample 
formulas. We suggest that you only use these results when the number of detected items is greater 
than twenty. 

Parameter Estimates 
These are the maximum likelihood estimates (MLE) of the parameters. They are the estimates 
that maximize the likelihood function. Details are found in Nelson (1990) pages 287 - 295.  

Standard Error 
The standard errors are the square roots of the diagonal elements of the estimated Variance 
Covariance matrix.  
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Z Value 
The z value is equal to the parameter estimate divided by the estimated standard error. This ratio, 
for large samples, follows the normal distribution. It is used to test the hypothesis that the 
parameter value is zero. This value corresponds to the t value that is used in multiple regression. 

Prob Level 
This is the two-tailed p-value for testing the significance of the corresponding parameter. You 
would deem independent variables with small p-values (less than 0.05) important in the 
regression equation.  

Upper and Lower 100(1-Alpha)% Confidence Limits 
These are the lower and upper confidence limits for the corresponding parameters. They are large 
sample limits. They should be ignored when the number of detected items is less than thirty. For 
the regression coefficients B, the formulas are  
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of the standard normal distribution. 
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Approximate R-Squared 
R-Squared reflects the percent of variation in response explained by the independent variables in 
the model. A value near zero indicates a complete lack of fit, while a value near one indicates 
nearly a perfect fit. 

This value is an 'approximate' R-squared because it is computed using the failed observations 
with regression coefficients which were based on all observations. The formula used is 
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where δi is one if the observation was a failure, and zero otherwise. Approximate R-Squared values 
greater than one or less than zero are not reported. 

Log Likelihood 
This is the value of the log likelihood function. This is the value being maximized. It is often used 
as a goodness-of-fit statistic. You can compare the log likelihood value from the fits of your data 
to several distributions and select as the best fitting the one with the largest value. 

Iterations 
This is the number of iterations that were required to solve the likelihood equations. If this is 
greater than the maximum you specified, you will receive a warning message. You should then 
increase the Maximum Iterations and rerun the analysis. 
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Variance Covariance Matrix 
 
 Variance Covariance Matrix 
 
  Intercept Moisture Solution2 Sigma 
    Intercept 1.049237E-03 -9.388014E-05 -3.744217E-04 -9.745229E-06 
    Moisture -9.388014E-05 1.195395E-05 8.386759E-06 -1.413499E-06 
    Solution2 -3.744217E-04 8.386759E-06 5.317181E-04 4.005026E-06 
    Sigma -9.745229E-06 -1.413499E-06 4.005026E-06 9.102048E-05 
 

This table gives an estimate of the asymptotic variance covariance matrix which is the inverse of 
the Fisher information matrix. The elements of the Fisher information matrix are calculated using 
numerical differentiation. 

Residual Section 
 
    Residual Section 
      (T)  Predicted Raw Standardized Cox-Snell 
    Row DCP T T Residual Residual Residual 
    1 0.170 0.17 0.1644519 5.548064E-03 7.023189E-02 0.7507667 
    2 0.250 0.25 0.1686051 8.139489E-02 1.030363 1.887698 
    3 0.220 0.22 0.2240877 -4.08768E-03 -5.174517E-02 0.6527078 
    4 0.280 0.28 0.1660828 0.1139172 1.442057 2.595036 
    5L 0.130 0.13 0.1562543 -2.625431E-02 -0.3323483 0.4617389 
    6 0.180 0.18 0.2200215 -4.002148E-02 -0.5066244 0.3655848 
    7L 0.130 0.13 0.166996 -3.699603E-02 -0.4683257 0.3853329 
    8 0.180 0.18 0.2220872 -0.0420872 -0.5327739 0.3525336 
    9 0.260 0.26 0.2206956 3.930444E-02 0.4975475 1.173115 
    10L 0.130 0.13 0.2222177 -9.221766E-02 -1.167366 0.129575 
    11 0.170 0.17 0.1652347 4.765267E-03 6.032261E-02 0.7424439 
    12 0.330 0.33 0.220065 0.109935 1.391647 2.500857 
    . . . . . . .  
    . . . . . . .  
    . . . . . . . 
  

This report displays the predicted value and residual for each row. The report provides predicted 
values for all rows with values for the independent variables. Hence, you can add rows of data 
with missing time values to the bottom of your database and obtain the predicted values for them 
from this report. The report also allows you to obtain predicted values for nondetects 
observations. 
You should ignore the residuals for nondetects observations, since the residual is calculated as if 
the response value were an actual response. 

Row 
This is the number of the observation being reported on. Nondetects observations have a letter (L 
for left-censored) appended to the row number. 

(T) Response 
This is the original value of the dependent variable. 
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Predicted T 
This is the predicted transformed value of the dependent variable (usually time). Note that y 
depends on the distribution being fit. For the Weibull, exponential, lognormal, and log-logistic 
distributions, the y is ln(t). For the lognormal10 distribution, y is log(t). For the extreme value, 
normal, and logistic distributions, y is t. The formula for y is 
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Raw Residual 
This is the residual in the y scale. The formula is 
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Note that the residuals of censored observations are not directly interpretable, since there is no 
obvious value of y. The row is displayed so that you can see the predicted value for this censored 
observation. 

Standardized Residual 
This is the residual standardized by dividing by the standard deviation. The formula is 

′ =
− ∑

=r
y x

Sk

k i
i

p

0
$

Bi
 

Cox-Snell Residual 
The Cox-Snell residual is defined as 

′′= − −
− ∑⎛
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Here again, the residual does not have a direct interpretation for censored values.  
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X-Y, X-Trans(Y), and X-Resid Plots 
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The first two pairs of plots show the data values from which the analysis was run. The plots on 
the left show the response versus the independent variable in the original scale. The plots on the 
right show the response versus the independent variable in the transformed metric (for the normal 
distribution there is no transformation, so that the plots on the left and right are the same). The 
third pair of plots shows the residuals in the transformed scale (again, here, there is no 
transformation because the normal distribution is used). 
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Example 2 – Validation using Helsel (2005) 
On pages 134-138, Helsel (2005) presents an example of using nondetects lognormal distribution 
regression to compare zinc concentrations among two zones. The estimate of the zone effect is 
given as -0.257408. The corresponding Z value and probability level are -1.60 and 0.110, 
respectively. The Log-likelihood is -407.296. The data are contained in the ZINC.S0 dataset. 

These data can be run in this procedure to see that NCSS gets the same results. You may follow 
along here by making the appropriate entries or load the completed template Example2 from the 
Template tab of the Nondetects Regression window. 

1 Open the ZINC dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file ZINC.S0. 
• Click Open. 

2 Open the Nondetects Regression window. 
• On the menus, select Analysis, then Regression / Correlation, then Other Regression 

Routines, then Nondetects Regression. The Nondetects Regression procedure will be 
displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Nondetects Regression window, select the Variables tab.  
• Double-click in the Response Variable box. This will bring up the variable selection 

window.  
• Select Zinc from the list of variables and then click Ok. 
• Double-click in the Nondetection (Censor) Variable box. This will bring up the variable 

selection window.  
• Select ZNondet from the list of variables and then click Ok. 
• Enter the values 0 and 1 for the Detected and Not Detected fields, respectively.  
• Double-click in the X’s: Independent Variable box. This will bring up the variable 

selection window.  
• Select Zone from the list of variables and then click Ok. Note that the values of Zone are 

appropriate for this problem. 
• Set the Distribution to Lognormal. 

4 Specify the estimation parameters. 
• On the Nondetects Regression window, select the Estimation tab. 
• Set Derivatives to 0.0005.  

5 Specify the reports. 
• On the Nondetects Regression window, select the Reports tab.  
• Uncheck all boxes except Parameter Report. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Parameter Estimation Section 
 
    Maximum Likelihood Parameter Estimation Section 
 
    Parameter Parameter Standard  Prob Lower Upper 
    Name Estimate Error Z Value Level 95.0% C.L. 95.0% C.L. 
    Intercept 2.723747 0.1203683 22.6284 0.0000 2.48783 2.959665 
    Zone -0.2574348 0.1612933 -1.5961 0.1105 -0.5735639 0.0586942 
    Sigma 0.8428832 6.194304E-02 13.6074 0.0000 0.7298154 0.9734681 
 
    Approximate R-Squared  
    Log Likelihood -407.2973 
    Iterations 39 
 

The results of NCSS match those of Helsel (2005) to several decimal places. 
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Chapter 350 

Introduction to 
Curve Fitting 
Introduction 
Historians attribute the phrase regression analysis to Sir Francis Galton (1822-1911), a British 
anthropologist and meteorologist, who used the term regression in an address that was published 
in Nature in 1885. Galton used the term while talking of his discovery that offspring of seeds “did 
not tend to resemble their parent seeds in size, but to be always more mediocre [i.e., more 
average] than they.... The experiments showed further that the mean filial regression towards 
mediocrity was directly proportional to the parental deviation from it.”  

The content of Galton’s paper would probably be called correlation analysis today, a term which 
he also coined. However, the term regression soon was applied to situations other than Galton’s 
and it has been used ever since. 

Regression Analysis refers to the study of the relationship between a response (dependent) 
variable, Y, and one or more independent variables, the X’s. When this relationship is reasonably 
approximated by a straight line, it is said to be linear, and we talk of linear regression. When the 
relationship follows a curve, we call it curvilinear regression. 

Usually, you assume that the independent variables are measured exactly (without random error) 
while the dependent variable is measured with random error. Frequently, this assumption is not 
completely true, but when it cannot be justified, a much more complicated fitting procedure is 
required. However, if the size of the measurement error in an independent variable is small 
relative to the range of values of that variable, least squares regression analysis may be used with 
legitimacy. 

Linear Regression Models 
Perhaps the simplest example of a regression model is the familiar straight-line regression 
between two variables, X and Y, expressed by the formula: 

(1)  Y B B X= +0 1

where B0 and B1 are called parameters, which are known constants linking Y and X. B0 is the y-
intercept, B1 is the slope. 

The relationship in (1) is exact. If you know X, you can determine Y exactly. Exact relationships 
are hard to find in applied science. Usually, you have to deal with empirical approximations 
determined from observed data. These relationships are represented as follows: 
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(2)  i 0 1 iY = B + B X + ei

). 

where Yi and Xi are the ith observed values of the dependent variable and the explanatory 
(regressor, predictor, or independent) variable, respectively. B0 and B1 are unknown parameter 
constants which must be estimated. The error term, ei, represents the error at the ith data point. It 
is customary to assume that E(ei)=0 (unbiased) and V(ei)=s2 (constant variance

Actually, linear models include a broader range of models than those represented by equation (2). 
The main requirement is that the model is linear in the parameters (the B-coefficients). Other 
linear models are: 

(3) i  ln ln(Y )= B + B ( X )+ ei 0 1 i

and 

(4) i
B

1
X

iY = e + B e + e0 i  

At first, (4) appears nonlinear in the parameters. However, if you set 0
B

1C = e ,  C = B ,0
1

i

 and 
 you will notice that it reduces to the form of (2). Models which may be reduced to linear 

models with suitable transformations are called intrinsically linear models. Model (5) is a second 
example of an intrinsically linear model. 

i
XZ = e i

(5)  i 0
B X

iY = B [ e ] e1 i

Notice that applying a logarithmic transformation to both sides of (5) results in the following: 

(6)  ln ln ln(Y )= ( B )+ B X + ( e )i 0 1 i

This is now easily recognized as an intrinsically linear model. 

You should note that if the errors are normally distributed in (5), their logarithms in model (6) 
will not be so distributed. Likewise, if the errors, log(ei), in (6) are normally distributed, the 
detransformed errors, ei, in (5) will not be. Hence, when you are applying transformations to 
simplify models, you should check to see that the resulting error term has the desired properties. 
We will come back to this point later. 

Nonlinear Regression Models 
Nonlinear regression models are those which are not linear in the parameters to begin with nor 
can they be made so by transformation. A general representation for the nonlinear regression 
model is: 

(7)  i i i 1 2Y = f( X ,e ; B ,B ,...,B )p

 where B1, B2, ..., Bp are the p parameters to be estimated from your data, and ei is the error term. 

Note that ei is not necessarily additive as in (2), although this is a common form. An example of 
an additive model is: 

(8)  i 0
B ( X )

iY = B e + e1 i

Linear models, such as those in (5), are preferred over nonlinear models, such as (8), for two 
main reasons. First, the linear model is mathematically easier to work with. Parameters may be 
estimated with explicit expressions. Nonlinear models must use iterative schemes, which may 



   Introduction to Curve Fitting  350-3 

converge to several solutions. Second, often the investigator does not know the actual form of the 
relationship and is looking for an approximation. The linear model is an obvious place to start. 

Least Squares Estimation of Nonlinear Models 
The method of least squares minimizes the error sum of squares, Q, which is given by 

(9)  Q = (Y Y )
i=1

n

i i
2∑ − $

where  is the value predicted for a specific Xi i 1 2Y = f( X ;B ,B ,... )$ $ $ i using the parameters 
estimated by least squares. If the errors are normally distributed, the least squares estimates are 
also the maximum likelihood estimates. This is one of the reasons we strive for normally 
distributed errors.  

The values of the B’s that minimize Q in (9) may be found either of two ways. First, if f() is a 
simple function, such as in (2), you may find an analytic solution by differentiating Q with 
respect to B1, B2, ..., Bp, setting the resulting partial derivatives equal to zero, and solving the 
resulting p normal equations. Unfortunately, very few nonlinear models may be estimated this 
way. 

The second method is to try different values for the parameters, calculating Q each time, and 
work towards the smallest Q possible. Three general procedures work toward a solution in this 
manner.  

The Gauss-Newton, or linearization, method uses a Taylor series expansion to approximate the 
nonlinear model with linear terms. These may be used in a linear regression to come up with trial 
parameter estimates which may then be used to form new linear terms. The process iterates until a 
solution is reached.  

The steepest descent method searches for the minimum Q value by iteratively determining the 
direction in which the parameter estimates should be changed. It is particularly useful when poor 
starting values are used. 

The Marquardt algorithm uses the best features of both the Gauss-Newton and the steepest 
descent methods. This is the procedure that is implemented in this program. Note that numerical 
derivatives are used whenever derivatives are called for. 

Starting Values 
All iterative procedures require starting values for the parameters. This program finds the starting 
values for you. However, the values so found may fail to converge or you may be using a user-
defined function which does not have preprogrammed starting values. Hence, you will have to 
supply your own starting values. 

Unfortunately, there is no easy method for generating starting values for the B's in every case. 
However, we can provide you with some guidelines and a general method of attack that will work 
in many cases.  

1. Try entering a 1 or 0 for each parameter and letting the program crank through a few iterations 
for you. You must be careful not to give impossible values (like taking the square root of a 
negative number), or the procedure will halt immediately. Even though the procedure may take 
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longer to converge, the elapsed time will often be shorter than when using steps 2 and 3 below, 
since they require much more time and effort on your part.  

2. Pick p observations that spread across the range of the independent variable and solve the 
model ignoring the error term. The resulting solution will often provide reasonable starting 
values. This includes transforming the model to a simpler form. 

3. Consider the behavior of f() as X approaches zero or infinity and substitute in appropriate 
observations that most closely approximate these conditions. This might be accomplished from a 
plot of your data or from an examination of the data directly. Once some of the parameters have 
been estimated in this manner, others may be found by applying step 2 above. 

Inferences about Nonlinear Regression Parameters 
The following results are from Seber (1989), chapter 5. They require the assumption that the 
errors are normally distributed with equal variance.  

Confidence Intervals for Parameters 
Let 

(10)  i i 1 2 iY = f( X ;B ,B ,... )+ e     (i = 1,2,...,n)

represent the nonlinear model that we are interested in fitting. Let B represent the parameters B1, 
B2, ..., Bp. The asymptotic distribution of the estimates of B, which we call $B , is given by 

(11) $B N (B, C ),   C = F. F.,   F.= [( f
Bj

)]p
2 -1~ σ ′

∂
∂

 

For large n we have, approximately,  

(12) r n- p
/ 2 rrB t s c$ $± α  

which gives approximate, large-sample 100(1-a)% confidence limits for the individual 
parameters. Note the s is an estimate of σ  in (11), based on the residuals from the fit of (10).  

These intervals are often referred to as the asymptotic-linearization confidence intervals because 
they are based on a local linearization of the function (10). If the curvature of (10) is sharp near 

, then the approximation will have considerable error and (12) will be unreliable. iB$

Confidence Intervals for a Predicted Value 
Using (10) - (12) it is easy to give approximate, asymptotic 100(1-a)% confidence intervals (or 
prediction intervals) for predicted values. These are: 

(13) 0 n- p
/ 2

0
-1

0
1/ 2

0
0

1

0

2
Y t s[1+ f (F. F. ) f ] ,   f = ( f( X )

B
, f( X )

B
,... )$ ± ′

∂
∂

∂
∂′

α  

Note that f0 and F. must be estimated using the $B . Hence, if the fit of (10) is good and there is 
little curvature, these confidence intervals will be accurate. If the fit is poor or there is sharp 
curvature near the region of interest, these confidence limits may be unsatisfactory. 
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Parameterization 
One of the first choices you must make is the way parameters are attached to the functional form 
of a model. For example, consider the following two models:  

(14) i
0 i

i 1
iY = B X

X + B
+ e  

(15) i
i

0 i 1
iY = X

C X + C
+ e  

These are actually the same basic model. Note that if we let C0=1/B0 and C1=B1/B0, model (15) 
is simply a rearrangement of (14). However, the statistical properties of these two models are 
very different. Equations (14) and (15) are two parameterizations of the same basic model. 

If there is no precedent for a particular model parameterization, then you should use that model 
with the best statistical properties. If this case, trial-and-error methods will have to be used to find 
a model. Often this will include comparing a plot of your data to a plot of the functional forms 
that are available, until a good match is found. If there are several models possible, a careful 
study of the error terms (residuals) is necessary to help in your selection. 

A common misconception is the view that whether a parameter appears linearly or nonlinearly in 
the nonlinear model relates directly to its estimation behavior. This is just not the case. (See 
Ratkowsky (1989) section 2.5.2.) 

Another common misconception is that a complicated model is superior to a simple model. In 
general, the simpler the model, the better the behavior of the estimation process. Adding an extra 
parameter has unpredictable results on the estimation process. In some cases, it has little effect, 
while in others it has disastrous consequences.  

Overparameterization (using too complicated a model) often leads to convergence problems. 
These models may have multiple solutions. The estimates from these models are usually biased 
and nonnormally distributed. They show high correlation among the parameter estimates. This 
problem may also occur when you use only a portion of a complicated function to fit a set of data. 
It is always better to find a simpler function that exhibits the functional behavior of your data. 
(See Ratkowsky (1989) section 2.5.4.) 

The Stochastic Term ei 
A regression model such as (10) may be thought of as having a deterministic part f(X;B1,B2,...) 
and a stochastic (random) part ei. Often, assumptions about the ei are necessary. The most 
common are: 

1. Independently distributed 

2. Identically distributed with constant variance 

3. Normally distributed 

Independence 
Independence means that the error at one value of i (say i=4) is not related to the error at another 
value of i (say i=5). Independence is often violated when data are taken over time and some 
carry-over effects are active.  
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Identicalness 
Identicalness means that the distribution of the errors is the same for all values of i (for all data 
pairs Xi and Yi). In practice, this assumption is equated with constant variance in the errors. If the 
variance of the ei increases or decreases, then this assumption is violated.  

Normality 
The question of normality is very difficult to assess with small sample sizes (under 100). With 
large sample sizes, normal probability plots (discussed later) do a pretty good job. Least-squares 
methods (those used by this program) tend to create normality in the observed residuals even if 
the actual ei’s are not normal.  

Some normality tests are available in the Descriptive Statistics module, so you can try them on 
your residuals. However, most technicians agree that if your observed residuals have a bell-
shaped distribution with no outliers, the normality assumption is okay. 

Summary 
These assumptions are ideals that are only approximately met in practice. Least squares tends to 
be robust to minor departures from these assumptions. Only when there are major departures such 
as outliers, a large shift in the size of the variance, or a large serial correlation between successive 
residuals will estimates be significantly in error. 

Interpretation of R-Squared 
R-Squared is computed as 

(16) 2 1

n

i i
2

1

n

i
2

R = 1 -
(Y - Y )

(Y - Y )

∑

∑

$

 

That is, it measures the variance accounted for by the nonlinear model over and above that which 
is accounted for by the mean of Y. When the model does not contain an intercept-type term, this 
representation of R-Squared must be used carefully. You should also note that the predicted 
values, , might be in the original (detransformed) metric or in a transformed metric. The 
program selects what we feel is the appropriate metric in each situation. 

iY$

A common misconception is the view that R-Squared, the proportion of explained variation, is 
useful as a goodness-of-fit index in all nonlinear regression situations. Only when you have a 
linear model with a constant term does R-Squared represent the proportion of variation explained. 
(See Ratkowsky (1989) section 2.5.3.) 
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Transformed Y and Unequal Variance 
One of the challenges of nonlinear modeling is selecting the appropriate form of the error term. 
For example, consider the two models (17) and (18) which differ only in the way the error term is 
represented. 

(17)   Y = AX + eB
1

(18)   Y = CX eD
2

If you take the logs of both sides in (18) you will get 

(19)  ln ln ln ln(T)= (C)+ D (X)+ (e )2

which is linear in the parameters and can be estimated using simple linear regression. Most of us 
would rather fit (19) with linear regression than fit (17) with a nonlinear least-squares algorithm. 
Does it matter? Of course it does. 

The difference lies in the pattern of the residuals, the e’s. If the true relationship is (17) and you 
fit (19), you will see a strange pattern in the plot of the residuals. They will exhibit nonconstant 
variance. Again, if the true relationship is (18), then using (17) will result in an improper model.  

The point is, the pattern of the residuals, not convenience, dictates the form of the error term. 
Hence, you should not use (18) and (19) on a curve with constant variance. Instead, you should 
use (17). Similarly, if the variance is increasing, a variance-stabilizing transformation of Y (like 
the log) will be useful in making the variance constant across all values of X. 

In summary, there are three reasons for transforming Y: firstly, to obtain linearity; secondly, to 
obtain errors that are normally distributed; and thirdly to obtain a constant error variance. An 
examination of the residuals both from the fits before and after transformation is the only way to 
assess which model is appropriate 

Reducing Transformation Bias in Curve Fitting 
This material is taken from Miller (1984). If possible, read his article. 

One of the most common ways of modeling a nonlinear relationship between two variables is to 
find a transformation for either the dependent or independent variables (or both) that results in a 
linear relationship. This relationship may then be estimated with standard linear regression 
methods. The residuals, calculated from the fit after the transformations, are studied to see that 
the various assumptions hold. This is taught in many courses and textbooks. 

In many situations, the real interest lies in the relationship between the variables in the original 
metric. When the dependent variable has been transformed, a reverse transformation is used to 
return a transformed predicted value to the original metric. Prediction intervals in the fitted 
(transformed) metric are detransformed to arrive at corresponding prediction intervals in the 
original metric. These detransformed predicted values and prediction intervals give values for the 
median response, not the mean response as is often supposed.  

When the estimated mean response is sought and the above methods are used, the resulting 
estimates are severely biased. This program provides bias correction factors that may be applied 
when an estimate of the mean response is desired.  

Without going into the details of how and why this biasing occurs, we present the following 
correction procedures that may be used to correct for this bias. Remember, if the median response 
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is okay then these correction factors do not have to be applied. Note that is the mean square 
error from the transformed model. Also refers to the detransformed predicted value of Y. 

σ̂ 2

$Y

The following table shows the dependent variable transformation and the bias correction factor 
used. 

Transformation  Bias Correction Formula 

Ln(Y)    $ $Y exp
2

2σ⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟  

Sqrt(Y)     $ $Y + 2σ

1/Y     $ $ $Y(1+ Y )2 2σ

Further Reading 
This has been a brief introduction to curve fitting. If you want to get into the issues of variable 
transformations more deeply, we suggest that you begin with Box and Draper (1987), chapters 7 
and 8.  

If you want to see examples of fitting curves to data, we suggest Draper and Smith (1981), 
Hastings (1957), Davis (1962), and Ezekiel and Fox (1967). The first of these is a modern 
account of nonlinear regression, which goes through several examples. The last three books were 
written before the computer revolution when the emphasis was on hand calculation. Even though 
the calculation methods are out of date in these books, they work many examples and provide a 
great deal of insight into the art of curve fitting. 



  351-1 

Chapter 351 

Curve Fitting – 
General 
Introduction 
Curve fitting refers to finding an appropriate mathematical model that expresses the relationship 
between a dependent variable Y and a single independent variable X and estimating the values of 
its parameters using nonlinear regression. An introduction to curve fitting and nonlinear 
regression can be found in the chapter entitled Curve Fitting, so these details will not repeated 
here. Here are some examples of the curve fitting that can be accomplished with this procedure.  
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This program is general purpose curve fitting procedure providing many new technologies that 
have not been easily available. It is preprogrammed to fit over forty common mathematical 
models including growth models like linear-growth and Michaelis-Menten. It also fits many 
approximating models such as regular polynomials, piecewise polynomials and polynomial ratios. 
In addition to these preprogrammed models, it also fits models that you write yourself.  

This routine includes several innovative features. First, it can fit curves to several batches of data 
simultaneously. Second, it compares fitted models across groups using graphics and numerical 
tests such as an approximate F-test for curve coincidence and a computer-intensive randomization 
test that compares curve coincidence and individual parameter values. Third, this routine 
computes bootstrap confidence intervals for parameter values, predicted means, and predicted 
values using the latest computer-intensive bootstrapping technology. 
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Selecting a Preset Model 
Over thirty preset models are available. These models provide a variety of curve shapes. Several 
of the models were developed for quite different physical processes, but yield similar results. We 
now present examples and details of several of the preset models available.  

1. Linear: Y=A+BX  
This common model is usually fit using standard linear regression techniques. We include it here 
to allow for various special forms made by transforming X and Y 

Plot of Y = 1+X

X

Y

 

2. Quadratic: Y=A+BX+CX^2  
The quadratic or second-order polynomial model results in the familiar parabola.  

Plot of Y = 1+X+X^2

X

Y

 

3. Cubic: Y=A+BX+CX^2+DX^3 
This is the cubic or third-order polynomial model.  

Plot of Y = 1+X+X^2+X^3

X

Y
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4. PolyRatio(1,1): Y=(A+BX)/(1+CX) 
The ratio of first-order polynomials model is a slight extension of the Michaelis-Menten model. It 
may be used to approximate many more complicated models. 

Plot of Y = (5+X)/(1+2*X)

X

Y

Plot of Y = (1+X)/(1-X)

X

Y

 

5. PolyRatio(2,2): Y=(A+BX+CX^2)/(1+DX+EX^2) 
The ratio of second-order polynomials model may be used to approximate many complicated 
models. 

Plot of Y = (1+X-X^2)/(1-X+X^2)

X

Y

 

Plot of Y = (1+X+X^2)/(5-X+X^2)

X

Y

 

6. PolyRatio(3,3): Y=(A+BX+CX^2+DX^3)/(1+EX+FX^2+GX^3) 
The ratio of third-order polynomials model may be used to approximate many complicated 
models. However, care must be used when estimating such high-degree models. 

Plot of Y = (1+X+X^2+X^3)/(1-X+X^2-X^3)

X

Y

 

Plot of Y = (1+2*X+X^2+X^3)/(1+X+8*X^2+X^3)

X

Y

 



351-4  Curve Fitting – General  

7. PolyRatio(4,4): Y=(A+BX+CX^2+DX^3+EX^4) / (1+FX+GX^2+HX^3+IX^4) 
The ratio of fourth-order polynomials model may be used to approximate many complicated 
models. However, care must be used when estimating such high-degree models. 

Plot of Y = (1+X^3+X^4)/(1-X^3+X^4)

X

Y

 

Plot of Y = (1+X^3-X^4)/(1+X^3+X^4)

X

Y
 

8. Michaelis-Menten: Y=AX/(B+X) 
This is a popular growth model.  

Plot of Y = X/(1+X)

X

Y

  

9. Reciprocal: Y=1/(A+BX)   
This model, known as the reciprocal or Shinozaki and Kira model, is mentioned in Ratkowsky 
(1989, page 89) and Seber (1989, page 362).  

Plot of Y = 1/(1+X)

X

Y

 

Plot of Y = 1/(4+2*X^2)

X

Y
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10. Bleasdale-Nelder: Y=(A+BX)^(-1/C) 
This model, known as the Bleasdale-Nelder model, is mentioned in Ratkowsky (1989, page 103) 
and Seber (1989, page 362).  

Plot of Y = (1+X)^(-1)

X

Y

 

Plot of Y = (35-X)^(-1/2)

X

Y

 

11. Farazdaghi and Harris: Y=1/(A+BX^C)   
This model, known as the Farazdaghi and Harris model, is mentioned in Ratkowsky (1989, pages 
99 and 104) and Seber (1989, page 362).  

Plot of Y = 1/(1+X^1)

X

Y

 

Plot of Y = 1/(1+X^2)

X

Y

 
Plot of Y = 1/(1+X^3)

X

Y

 

Plot of Y = 1/(1-X^3)

X

Y

 

12. Holliday: Y=1/(A+BX+CX^2)   
This model, known as the Holliday model, is mentioned in Seber (1989, page 362).  

Plot of Y = 1/(1+X+X^2)

X

Y
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13. Exponential: Y=EXP(A(X-B)) 
This model, known as the exponential model, is mentioned in Seber (1989, page 327). Note that 
taking the log of both sides reduces this equation to a linear model.  

Plot of Y = EXP(X)

X

Y

 

Plot of Y = EXP(-X)

X

Y
 

14. Monomolecular: Y=A(1-EXP(-B(X-C))) 
This model, known as the monomolecular model, is mentioned in Seber (1989, page 328).  

Plot of Y = 1-EXP(-X)

X

Y

 

Plot of Y = 1-EXP(X)

X

Y

 

15. Three Parameter Logistic: Y=A/(1+B(EXP(-CX)))   
This model, known as the three-parameter logistic model, is mentioned in Seber (1989, page 
330).  

Plot of Y = 1/(1+EXP(-X))

X

Y
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16. Four Parameter Logistic: Y=D+(A-D)/(1+B(EXP(-CX)))   
This model, known as the four-parameter logistic model, is mentioned in Seber (1989, page 338). 
Note that the extra parameter, D, has the effect of shifting the graph vertically. Otherwise, this 
plot is the same as the three-parameter logistic. 

Plot of Y = .5+.5/(1+EXP(-X))

X

Y

  

17. Gompertz: Y=A(EXP(-EXP(-B(X-C)))) 
This model, known as the Gompertz model, is mentioned in Seber (1989, page 331).  

Plot of Y = EXP(-EXP(-X))

X

Y

 

Plot of Y = EXP(-EXP(X))

X

Y

 

18. Weibull: Y=A-(A-B)EXP(-(C|X|)^D) 
This model, known as the Weibull model, is mentioned in Seber (1989, page 338).  

Plot of Y = EXP(-ABS(X)^2)

X

Y

 

Plot of Y = EXP(-ABS(X)^3)

X

Y

  



351-8  Curve Fitting – General  

19. Morgan-Mercer-Floding: Y=A-(A-B)/(1+(C|X|)^D) 
This model, known as the Morgan-Mercer-Floding model, is mentioned in Seber (1989, page 
340).  

Plot of Y = 1/(1+ABS(X)^2)

X

Y

 

Plot of Y = 1/(1+ABS(X)^(-2))

X

Y
 

20. Richards: Y=A(1+(B-1)EXP(-C(X-D)))^(1/(1-B))   
This model, known as the Richards model, is mentioned in Seber (1989, page 333).  

Plot of Y = 1/(1+EXP(-X))

X

Y

 

Plot of Y = 1/(1+EXP(X))

X

Y

 

21. Logarithmic: Y=B(LN(|X|-A)) 
Plot of Y = LOG(ABS(X))

X

Y

 

22. Power: Y=A(1-B^X) 
Plot of Y = 1-2^X

X

Y

Plot of Y = 1+2^X

X

Y
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23. Power^Power: Y=AX^(BX^C) 
Plot of Y = X^X

X

Y

 

Plot of Y = X^(-X)

X

Y

 

24. Sum of Exponentials: Y=A(EXP(-BX))+C(EXP(-DX))   
Plot of Y = EXP(-X)+EXP(X)

X

Y

 

Plot of Y = EXP(-X)-EXP(X)

X

Y

 

25. Exponential Type 1: Y=A(X^B)EXP(-CX) 
Plot of Y = X*EXP(-X)

X

Y

 

Plot of Y = 1/X*EXP(X)

X

Y

 

26. Exponential Type 2: Y=(A+BX)EXP(-CX)+D 
Plot of Y = (1+(9*X))*EXP(-X)

X

Y
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27. Normal: Y=A+B(EXP(-C(X-D)^2)) 
Plot of Y = EXP(-X^2)

X

Y

 

28. Lognormal: Y=A+(B/X)EXP(-C(LN(|X|)-D)^2) 
Plot of Y = EXP(-LOG(ABS(X))^2)

X

Y

  

29. Exponential: Y=A Exp(-BX) 
Plot of Y = EXP(-X)

X

Y

  

30. Michaelis-Menten(2): Y=AX/(B+X) + CX/(D+X) 
Plot of Y = X/(1+X)+X/(2+X)

X

Y
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31. Michaelis-Menten(3): Y=AX/(B+X) + CX/(D+X) + EX/(F+X) 
Plot of Y = X/(1+X)+X/(2+X)+X/(.1+X)

X

Y

  

32. Linear-Linear: Y=A + BX + C(X-D)SIGN(X-D) 
Common Equation 
Y = a1 + b1X,  X<J 
Y = a2 + b2X,  X³J 

Parameter Identities  
A=(a1+a2)/2 B=(b1+b2)/2 a1=A+DC b1=B-C  J=D 
C=(b2-b1)/2 D=J  a2=A-DC b2=B+C 

Plot of Y = 1+X+2*(X-2)*SGN(X-2)

X

Y

  

33. Linear-Quadratic: Y=A+BX+CX^2+(X-D)SIGN(X-D)[C(X+D)+E] 
Common Equation 
Y=a1+b1X,    X<=a 
Y=a2+b2X+c2X^2, X>a 

Parameter Identities  
A=(a1+a2)/2 B=(b1+b2)/2 C=c2/2  
D=a E=(b2-b1)/2 
a1=A+CD2+DE b1=B-E a=D 
a2=A-CD2-DE b2=B+E c2=2C 

Plot of Y = Linear-Quaratic

X

Y
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34. Quadratic-Linear: Y=A+BX+CX^2+(X-D)SIGN(X-D)[E(X+D)+F] 
Common Equation 
Y=a1+b1X+c1X^2, X<=a 
Y=a2+b2X,  X>a 

Parameter Identities  
A=(a1+a2)/2 B=(b1+b2)/2 C=c1/2  
D=a  E=(b2-b1)/2 
a1=A-CD2+DE b1=B-E a=D 
a2=A+CD2-DE b2=B+E c1=2C 

Plot of Y = Linear-Quaratic

X

Y

  

35. Quadratic-Quadratic: Y=A+BX+CX^2+(X-D)SIGN(X-D)[E(X+D)+F] 
Common Equation 
Y=a1+b1X+c1X^2, X<=a 
Y=a2+b2X+c2X^2, X>a 

Parameter Identities  
A=(a1+a2)/2 B=(b1+b2)/2 C=(c1+c2)/2  
D=a E=(c2-c1)/2 F=(b2-b1)/2 
a1=A-ED2+DF b1=B-F a=D 
a2=A+eD2-DF b2=B+F 
c1=C-E c2=C+E 

Plot of Y = Quadratic-Quadratic

X

Y
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36. Linear-Linear-Linear: Y=A+BX+C(X-D)SIGN(X-D)+E(X-F)SIGN(X-F) 
Common Equation 
Y=a1+b1X X<J1 
Y=a2+b2X a1<X<=J2 
Y=a3+b3X X>J2 

Parameter Identities  
A=(a1+a3)/2 B=(b1+b3)/2 C=(b2-b1)/2  
D=J1 E=(b3-b2)/2 F=J2 
a1=A+CD+EF b1=B-C-E J1=D 
a2=A-CD-EF b2=B+C-E J2=F 
a3=A-CD+EF b3=B+C+E 
 

Plot of Y = Quadratic-Quadratic

X

Y

  

37. Gompertz 2: Y=Exp((A/B)(1-Exp(BX))) 
Plot of Y = EXP((4/2)*(1-EXP(2*X)))

X

Y

  

38. Hill: Y=AX^C/(B^C+X^C) 
Plot of Y = X^1.5/(2^1.5+X^1.5)

X

Y
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39. Sum of 3 Exponentials: Y=A(Exp(-BX))-C(Exp(-DX))+E(Exp(-FX))  
This model is intended for the case when all parameters are positive. Note that the default starting 
values may not work for this model. You should be prepared to try different starting values.  

Plot of Y = 2*EXP(-.9*X)-3*EXP(-2*X)+2*EXP(-6*X)

X

Y

 

Plot of Y = 3*EXP(-.9*X)-3*EXP(-2*X)+2*EXP(-6*X)

X

Y
 

Custom Models 
You are not limited to the preset models that are shown above. You can enter your own custom 
model using standard mathematical notation. The only difference between using a preset model 
and using your own model is that with a preset model the starting values of the search algorithm 
are chosen based on the model. When using a custom model, you will have to set your own 
starting values based on the data you are trying to fit. When you do not specify starting values, 
the program uses all zeros, which may or may not lead to a reasonable solution. 

Confidence Intervals 
Two methods are used to calculate confidence intervals of the regression parameters and 
predicted values. The first method is based on the usual normality and constant variance of 
residuals assumption. When the data follow these assumptions, standard expressions for the 
confidence intervals are used based on the Student’s t distribution. Unfortunately, nonlinear 
regression dataset rarely follow these assumptions. 

The second method is called the bootstrap method. This is a modern, computer-intensive method 
that has only become available in recent years as extensive computer power has become 
available. 

Bootstrap Confidence Intervals 
Bootstrapping provides standard errors and confidence intervals for nonlinear-regression 
parameter, predicted means, and predicted values. The method is simple in concept, but it 
requires extensive computation time. 

Bootstrap confidence intervals are based on the assumption that your sample is actually 
representative of the population. Beginning with this assumption, B samples are drawn (B is over 
1000) of size N from your original sample with replacement. With replacement sampling means 
that each observation may be selected more than once. For each bootstrap sample, the nonlinear-
regression results are computed and stored.  

Suppose you want the standard error and a confidence interval of a regression parameter. The 
bootstrap sampling process provides B estimates of this parameter. The standard deviation of 
these B estimates is the bootstrap estimate of the standard error of the parameter. The bootstrap 
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confidence interval is found by arranging the B values in sorted order and selecting the 
appropriate percentiles from the list. For example, a 90% bootstrap confidence interval for the 
parameter is given by fifth and ninety-fifth percentiles of the bootstrap parameter values.  

The main assumption made when using the bootstrap is that your sample approximates the 
population. Because of this assumption, bootstrapping does not work well for small samples in 
which there is little likelihood that the sample is representative of the population. Bootstrapping 
should only be used in medium to large samples. 

Bootstrap Prediction Intervals 
Bootstrap confidence intervals for the mean of Y given X are generated from the bootstrap sample 
in the usual way. To calculate prediction intervals for the predicted value (not the mean) of Y 
given X requires a modification to the predicted value of Y to be made to account for the variation 
of Y about its mean. This modification of the predicted Y values in the bootstrap sample, 
suggested by Davison and Hinkley, is as follows. 

$ $ *y y ei i r= +   

where is a randomly selected modified residual (see below). By adding the residual we have 
added an appropriate amount of variation to represent the variance of individual Y’s about their 
mean value. 

e  r
*

Modified Residuals 
Davison and Hinkley (1999) page 279 recommend the use of a special rescaling of the residuals 
when bootstrapping to keep results unbiased. Because of the high amount of computing involved 
in bootstrapping, these modified residuals are calculated using 

e   e

N
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e
e
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1  

Note that there is a different rescaling than Davison and Hinkley recommended. We have used 
this rescaling because it is much quicker to calculate.  

Hypothesis Testing 
When curves are fit to two or more groups, it is often of interest to test whether certain regression 
parameters are equal and whether the fitted curves coincide. Although some approximate results 
have been obtained using indicator variables, these are asymptotic results and little is known about 
their appropriateness in sample samples. We provide a test of the hypothesis that all group curves 
coincide using an F-test that compares the residual sum of squares obtained when the grouping is  

ignored with the total of the residual sum of squares obtained for each group. This test is routinely 
used in the analysis of variance associated with linear models and its application to nonlinear 
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models has occasionally been suggested. However, it is based on naive assumptions that seldom 
occur. 

Because of the availability of fast computing speed in recent years, a second method of hypothesis 
testing, called the randomization test, is now available. This test will be discussed next. 

Randomization Test 
Randomization testing is discussed by Edgington (1987). The details of the randomization test are 
simple: all possible permutations of the group variable while leaving the dependent and independent 
variables in their original order are investigated. For each permutation, the difference between the 
estimated group parameters is calculated. The number of permutations with a magnitude greater 
than or equal to that of the actual sample is counted. Dividing this count by the number of 
permutations gives the significance level of the test.  

The randomization test is suggested because an exact test is achieved without making unrealistic 
assumptions about the data such as constant variance, normality, or model accuracy. The test was 
not used in the past because the amount of computations was prohibitive. In fact, the randomization 
test was originally proposed by Fisher and he chose his F-test because its distribution close 
approximated the randomization distribution.  

The only assumption that a randomization test makes is that the data values are exchangeable under 
the null hypothesis.  

For even moderate sample sizes, the total number of permutations is in the trillions, so a Monte 
Carlo approach is used in which the permutations are found by random selection rather than 
enumeration. Using this approach, a reasonable approximation to the test’s probability level may be 
found by considering only a few thousand permutations rather than the trillions needed for complete 
enumeration. Edgington suggests that at least 1000 permutations by computed. We suggest that this 
be increased to 10000 for important results. 

The program tests two types of hypotheses using randomization tests. The first is that each of the 
estimated model parameters is equal. The second is that the individual fitted curves coincide across 
all groups. 

Randomization Statistics for Testing Parameter Equivalence 
The test statistic for comparing a model parameter is formed by summing the difference between 
the group parameter estimates for each pair of groups. If there are G groups, the test statistic is 
computed using the formula 

BRT i j
j i

G

i

G
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= +=

−

∑∑ $ $β β
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Randomization Statistics for Testing Curve Equivalence 
The test statistic for comparing the whole curve is formed by summing the difference between the 
estimated predicted values for each pair of groups at several points along the curve. If there are G 
groups and K equally spaced test points, the test statistic is computed using the formula 
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Data Structure 
The data are entered in two variables: one dependent variable and one independent variable. 
Additionally, you may specify a frequency variable containing the observation count for each row 
and a group variable that is used to partition the data in to independent groups. 

Missing Values 
Rows with missing values in the variables being analyzed are ignored in the calculations. When 
only the value of the dependent variable is missing, predicted values are generated. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Variables 

Y (Dependent) Variable 
Specifies a single dependent (Y) variable from the current database. This variable is being 
predicted using the (preset or custom) model you specify. The actual values fed into the algorithm 
depend on which transformation (if any) is selected for this variable. 

Y Transformation 
Specifies a power transformation of the dependent variable. Available transformations are 

Y’=1/(Y*Y), Y’=1/Y, Y’=1/SQRT(Y), Y’=LN(Y), Y’=SQRT(Y), Y’=Y  (none), and Y’=Y*Y 

Care must be taken so that you do not apply a transformation that omits much of your data. For 
example, you cannot take the square root of a negative number, so if you apply this 
transformation to negative values, those observations will be treated as missing values and 
ignored. Similarly, you cannot have a zero in the denominator of a quotient and you cannot take 
the logarithm of a number less than or equal to zero. 

X (Independent) Variable 
Specify the independent (X) variable. This variable is used to predict the dependent variable 
using the model you have specified. This variable is referred to as ‘X’ in the Preset and Custom 
model statements. The actual values used depend on which transformation (if any) is selected for 
this variable. 

X Transformation 
Specifies a power transformation of the independent variable. Available transformations are 

X’=1/(X*X), X’=1/X, X’=1/SQRT(X), X’=LN(X), X’=SQRT(X), X’=X  (none), and X’=X*X 

Care must be taken so that you do not apply a transformation that omits much of your data. For 
example, you cannot take the square root of a negative number, so if you apply this 
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transformation to negative values, those observations will be treated as missing values and 
ignored. Similarly, you cannot have a zero in the denominator of a quotient and you cannot take 
the logarithm of a number less than or equal to zero. 

Frequency Variable 
An optional variable containing a set of counts (frequencies). Normally, each row represents one 
observation. On occasion, however, each row of data may represent more than one observation. 
This variable contains the number of observations that a row represents. Rows with zeroes and 
negative values are ignored. 

Group Variable 
This optional variable divides the observations into groups. When specified, a separate analysis is 
generated for each unique value of this variable. Use the Value Label option under the Format tab 
to specify the way in which the group values are displayed. 

Model 

Preset Model 
Select the model that you want to fit.  Select ‘Custom’ to use a model you have entered in the 
‘Custom Model’ box. Whenever possible, use one of the preset models since reasonable starting 
values for the parameters will be calculated for you. The minimum, maximum, and starting 
values of each letter in the preset model are defined in the corresponding MIN START MAX box 
on the Options panel. The preset models available are 
0  Custom  Use the custom model 
1  Y=A+BX  Simple Linear 
2  Y=A+BX+CX^2  Quadratic 
3 Y=A+BX+CX^2+DX^3 Cubic 
4 Y=(A+BX)/(1+CX) PolyRatio(1,1) 
5 Y=(A+BX+CX^2)/(1+DX+EX^2) PolyRatio(2,2) 
6 Y=(A+BX+CX^2+DX^3)/(1+EX+FX^2+GX^3) PolyRatio(3,3) 
7 Y=(A+BX+CX^2+DX^3+EX^4) / 
 (1+FX+GX^2+HX^3+IX^4) PolyRatio(4,4) 
8 Y=AX/(B+X) Michaelis-Menten 
9  Y=1/(A+BX)  Reciprocal  
10 Y=(A+BX)^(-1/C) Bleasdale-Nelder 
11 Y=1/(A+BX^C)  Farazdaghi and Harris 
12  Y=1/(A+BX+CX^2) Holliday 
13  Y=EXP(A(X-B)) Exponential 
14  Y=A(1-EXP(-B(X-C))) Monomolecular 
15  Y=A/(1+B(EXP(-CX)))  Three Parameter Logistic 
16  Y=D+(A-D)/(1+B(EXP(-CX)))  Four Parameter Logistic 
17 Y=A(EXP(-EXP(-B(X-C)))) Gompertz 
18 Y=A-(A-B)EXP(-(C|X|)^D) Weibull 
19 Y=A-(A-B)/(1+(C|X|)^D) Morgan-Mercer-Floding 
20 Y=A(1+(B-1)EXP(-C(X-D)))^(1/(1-B))  Richards 
21 Y=B(LN(|X|-A)) Logarithmic 
22 Y=A(1-B^X) Power 
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23 Y=AX^(BX^C) Power^Power 
24 Y=A(EXP(-BX))+C(EXP(-DX))  Sum of Exponentials 
25 Y=A(X^B)EXP(-CX) Exponential Type 1 
26 Y=(A+BX)EXP(-CX)+D Exponential Type 2 
27 Y=A+B(EXP(-C(X-D)^2)) Normal 
28 Y=A+(B/X)EXP(-C(LN(|X|)-D)^2) Lognormal 
29 Y=A Exp(-BX) Exponential 
30 Y=AX/(B+X) + CX/(D+X) Michaelis-Menten(2) 
31 Y=AX/(B+X) + CX/(D+X) + EX/(F+X) Michaelis-Menten(3) 
32 Y=A + BX + C(X-D)SIGN(X-D) Linear-Linear 
33 Y=A+BX+CX^2+(X-D)SIGN(X-D)[C(X+D)+E] Linear-Quadratic  
34 Y=A+BX+CX^2+(X-D)SIGN(X-D)[E(X+D)+F] Quadratic-Linear 
35 Y=A+BX+CX^2+(X-D)SIGN(X-D)[E(X+D)+F] Quadratic-Quadratic 
36 Y=A+BX+C(X-D)SIGN(X-D)+E(X-F)SIGN(X-F) Linear-Linear-Linear  
37 Y=Exp((A/B)(1-Exp(BX))) Gompertz 2 
38 Y=AX^C/(B^C+X^C) Hill 

Custom Model 
This box is only used when the Preset Model option is set to ‘Custom Model’. When used, it 
contains the regression model written in standard mathematical notation.  

Use ‘X’ to represent the independent variable specified in the X Variable box, not its variable 
name. Hence, if your independent variable is HEAT, you would enter A+B*LN(X), not 
A+B*LN(HEAT).  

Use the letters (case ignored) A,B,C,... (except X and Y) to represent the parameters to be 
estimated from the data. The letters used must be specified in one of the Parameter boxes listed 
under the Search tab. Note that you do not include a ‘Y=’ in the expression. That is, you would 
enter A+B*X, not Y=A+B*X. 

Expression Syntax 
Construct the expression using standard mathematical syntax. Possible symbols and functions are 

Symbols 
+ add 
-  subtract 
*  multiply 
/  divide 
^  exponent (X^2 = X*X) 
()  parentheses 
<  less than.  
>  greater than 
=  equals 
<= less than or equal 
>= greater than or equal 
<> not equal 
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Functions 
(a logic b) Indicator function. If true, result is 1; otherwise, result is 0. Logic 

values are <, >, =, <>, <=, and >=. The symbols a and b are replaced 
by numbers or letters. 

ABS(X) Absolute value of X. 
ARCOSH(X)   Arc cosh of X. 
ARSINH(X)   Arc sinh of X. 
ARTANH(X)   Arc tanh of X. 
ASN(X) Arc sine of X. 
ATN (X) Arc tangent of X. 
COS(X) Cosine of X. 
COSH(X)  Hyperbolic cosine of X. 
ERF(X)   The error function of X 
EXP(X) Exponential of X. 
INT(X) Integer part of X. 
LN(X) Log base e of X. 
LOG(X) Log base 10 of X. 
LOGGAMMA(X)   Log of the gamma function. 
NORMDENS(X)   Normal density. 
NORMPROB(X)   Normal CDF (probability). 
NORMVALUE(X)   Inverse normal CDF. 
SGN(X) Sign of X which is -1 if X<0, 0 if X=0, and 1 if X>0. 
SIN(X) Sine of X. 
SINH(X)   Hyperbolic sine of X. 
SQR(X) Square root of X. 
TAN(X) Tangent of X. 
TANH(X)   Hyperbolic tangent of X. 
TNH(X) Hyperbolic tangent of X. 
TRIGAMMA(X)   Trigamma function. 

Independent Variable 
Use ‘X’ in your expression to represent the independent variable you have specified. 

Parameters 
The letters of the alphabet (except X and Y) may be used to represent the parameters. Parameters 
can be only one character long and case is ignored. Each parameter must be defined in the 
Parameter fields below. 

Numbers 
You can enter numbers in standard format such as 23.456 and 254.43, or you can use scientific 
notation such as 1E-5 (which is 0.00001) and 1E5 (which is 100000). 

Examples 
Standard mathematical syntax is used. This is discussed in detail in the Transformation section. 
Examples of valid expressions are: 
A+B*X 

C+D*X+E*X*X or G+H*X+B*X^2 
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A*EXP(B*X) 

(X<=5)*A+(X>5)*B+C  

Bias Correction 
This option controls whether a bias-correction factor is applied when the dependent variable has 
been transformed. Check it to correct the predicted values for the transformation bias. Uncheck it 
to leave the predicted values unchanged. See the Introduction to Curve Fitting chapter for a 
discussion of the amount of bias that may occur and the bias correction procedures used. 

Model Parameters 
The following options control the nonlinear regression algorithm.  

Parameter 
Enter a letter (other than X and Y) used in the Model. Note that the case of the character is 
ignored. Each letter used in a Model (either Preset or Custom) must be defined in this section by 
entering its letter, bounds, and starting value.  

For example, suppose the model is A + B*X + C*X^2. The parameters in this expression are A, 
B, and C. Each must be defined here. 

Min Start Max 
Enter the minimum, starting value, and maximum of this parameter by entering three numbers 
separated by blanks or commas. You may enter ‘?’ as the starting value to instruct the program 
pick one for you (in which case a zero is often used). The program searches for the best value 
between the minimum and the maximum values, beginning with the starting value. 

Make sure that the starting values you supply are possible. For example, if the model includes the 
phrase 1/B, don’t start with B=0. Before taking a lot of time trying to find a starting value, make a 
few trial runs using starting values of 0.0, 0.1, and 1.0. Often, one of these values will work. 

Examples 
-1000 1 1000 which means starting value = 1, lower bound = -1000, and upper bound = 1000. 

-1 ? 1E9 which means starting value is unspecified, lower bound = -1, and upper bound = 
1000000000. 

• Minimum 
This is the smallest value that the parameter can take on. The algorithm searches for a value 
between this and the maximum. If you want to search in an unlimited range, enter a large 
negative number such as -1E9, which is -1000000000. 

Since this is a search algorithm, the narrower the range that you search in, the quicker it will 
converge. 

Care should be taken to specify minima and maxima that keep calculations in range. Suppose, 
for example, that your equation includes the expression LOG(B*X) and that values of X are 
positive. Since you cannot take the logarithm of zero or a negative number, you should set the 
minimum of B as a small positive number, insuring that the estimation procedure will not fail 
because of impossible calculations. 

• Starting Value 
Enter a starting value for this parameter or enter ‘?’ to have the system estimate a starting 
value for you. When using a custom model, a ‘?’ is replaced by zero. 



351-22  Curve Fitting – General  

• Maximum 
This is the largest value that the parameter can take on. The algorithm searches for a value 
between the minimum and this value, beginning at the Starting Value. If you want to search 
in an unlimited range, enter a large positive number such as 1E9, which is 1000000000.  

Since this is a search algorithm, the narrower the range that you search in, the quicker the 
process will converge. 

Resampling 

Bootstrap Confidence Intervals 
This option causes bootstrap confidence intervals and associated bootstrap reports and plots to be 
generated using resampling simulation as specified under the Resampling tab. 

Bootstrapping may be time consuming when the bootstrap sample size is large. A reasonable 
strategy is to keep this option unchecked until you have considered all other reports. Then run this 
option with a bootstrap size of 100 or 1000 to obtain an idea of the time needed to complete the 
simulation. 

Randomization Hypothesis Tests 
This option hypothesis tests and associated reports to be generated using Monte Carlo simulation 
as specified under the Resampling tab. 

Randomization tests may be time consuming when the Monte Carlo sample size is large. A 
reasonable strategy is to keep this option unchecked until you have run and considered all other 
reports. Then run this option with a Monte Carlo size of 100, then 1000, and then 10000 to obtain 
an idea of the time needed to complete the simulation. 

Options Tab 
The following options control the nonlinear regression algorithm.  

Options 

Lambda 
This is the starting value of the lambda parameter as defined in Marquardt’s procedure. We 
recommend that you do not change this value unless you are very familiar with both your model 
and the Marquardt nonlinear regression procedure. Changing this value will influence the speed at 
which the algorithm converges. 

Nash Phi 
Nash supplies a factor he calls phi for modifying lambda. When the residual sum of squares is 
large, increasing this value may speed convergence. 

Lambda Inc 
This is a factor used for increasing lambda when necessary. It influences the rate at which the 
algorithm converges. 

Lambda Dec 
This is a factor used for decreasing lambda when necessary. It also influences the rate at which 
the algorithm converges. 
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Max Iterations 
This sets the maximum number of iterations before the program aborts. If the starting values you 
have supplied are not appropriate or the model does not fit the data, the algorithm may diverge. 
Setting this value to an appropriate number (say 50) causes the algorithm to abort after this many 
iterations. 

Zero 
This is the value used as zero by the nonlinear algorithm. Because of rounding error, values lower 
than this value are reset to zero. If unexpected results are obtained, you might try using a smaller 
value, such as 1E-16. Note that 1E-5 is an abbreviation for the number 0.00001. 

Reports Tab 
This section controls which reports and plots are displayed. 

Select Reports 

Combined Summary Report ... Residual Report 
These options specify which reports are displayed. 

Select Plots 

Combined Function Plot: Y ... Probability Plot: Trans(Y) 
These options specify which plots are displayed. 

Predicted Values 

Predict Y at these X Values 
Enter an optional list of X values at which to report the predicted value of Y and corresponding 
confidence interval. You can enter a single number or a list of numbers. The list can be separated 
with commas or spaces. The list can also be of the form ‘XX:YY(ZZ)’ which means XX to YY 
by ZZ. 

Examples 
10 

10 20 30 40 50 

0:90(10) which means 0 10 20 30 40 50 60 70 80 90  

100:950(200) which means 100 300 500 700 900 

1000:5000(500) which means 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Legend 

Show Legend 
Specify whether to display the plot legend when a Group Variable is used. 

Legend Text 
Specify the legend title. Note that {G} is replaced by the Group Variable name. 
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Report Options 

Alpha Level 
Enter the value of alpha for the confidence limits. Usually, this number will range from 0.1 to 
0.001. A common choice for alpha is 0.05. You should determine a value appropriate for your 
needs. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 

Value Labels 
Value Labels may be used with the Group Variable to make reports more legible by assigning 
meaningful labels to numbers and codes.  

• Data Values 
All data are displayed in their original format, regardless of whether a value label has been set 
or not.  

• Value Labels  
All values of variables that have a value label variable designated are converted to their 
corresponding value label when they are output. This does not modify their value during 
computation.  

• Both 
Both data value and value label are displayed. 

Example 
A variable named GENDER (used as a grouping variable) contains 1's and 2's. By specifying a 
value label for GENDER, the printout will display Male instead of 1 and Female instead of 2 on 
the reports. This option specifies whether (and how) to use the value labels. 

Reminder 
Value Labels are formed as two adjacent variables. The variable on the left contains the original 
values and the variable on the left contains the labels. A value label is assigned to a variable on 
the Variable Info sheet by designating the left variable of the pair as the Value Label variable. 

Skip Line After 
When writing a row of information to a report, some names and labels may be too long to fit in 
the space allocated. If the name (or label) contains more characters than this, the rest of the output 
for that line is moved down to the next line. Most reports are designed to hold a label of up to 
‘15’ characters. 

Enter ‘1’ when you always want each row’s output to by printed on two lines. Enter ‘100’ when 
you want each row printed on only one line. Note that this may cause some columns to be miss-
aligned. 
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Report Options – Decimal Places 

B ... SS & MS Decimals 
Specify the number of decimal places used when displaying this item. Use ‘General’ to display 
the entire number without special formatting using the number of digits specified in the Precision 
box. 

Function Plot and Residual Plot Tabs 
This section controls the plot(s) showing the data with the fitted function line overlain on top and 
the residual plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Display Prediction Limits (Function Plot) 
This option controls whether the prediction limits (confidence limits on the predicted values) are 
displayed.  

C.L. Line Width (Function Plot) 
Specify the width of the confidence limit lines. Note that the color of this line is the color of the 
corresponding symbol as defined under the Symbols tab. 

Function Line Width (Function Plot) 
Specify the width of the function lines. Note that the color of this line is the color of the 
corresponding symbol as defined under the Symbols tab. 
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Number of Points (Function Plot) 
Specify the number of points along the function at which it is evaluated for plotting. This affects 
the granularity of the line that represents the fitted function. Although valid values are from 20 to 
2000, we recommend 200. 

Symbol (Residual Plot) 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. {M} is 
replaced by the model expression. Press the button on the right of the field to specify the font of 
the text. 

Probability Plot Tab 
The options on this panel control the appearance of the probability plot of the residuals. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 
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Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} are replaced by the name of the variable. Press the 
button on the right of the field to specify the font of the text. 

Symbols Tab 
These options control the shape, color and size of the symbols plotted on the function plot. 

Plotting Symbols 

Group 1 - 15 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color of points plotted on the function plot. Note that the color you specify 
will be used for the function line and confidence limits. 

Resampling Tab 
The following options control the bootstrapping and randomization tests.  

Bootstrap Options – Sampling 

Samples (N) 
This is the number of bootstrap samples used. A general rule of thumb is that you use at least 100 
when standard errors are your focus or at least 1000 when confidence intervals are your focus. If 
computing time is available, it does not hurt to do 10000.  

We recommend setting this value to at least 3000. 

Retries 
If the results from a bootstrap sample cannot be calculated, the sample is discarded and a new 
sample is drawn in its place. This parameter is the number of times that a new sample is drawn 
before the algorithm is terminated. We recommend setting the parameter to at least 50. 

Bootstrap Options – Estimation 

Percentile Type 
The method used to create the percentiles when forming bootstrap confidence limits. You can 
read more about the various types of percentiles in the Descriptive Statistics chapter. We suggest 
you use the Ave X(p[n+1]) option.  
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C.I. Method 
This option specifies the method used to calculate the bootstrap confidence intervals. The 
reflection method is recommended. 

• Percentile 
The confidence limits are the corresponding percentiles of the bootstrap values.  

• Reflection 
The confidence limits are formed by reflecting the percentile limits. If X0 is the original value 
of the parameter estimate and XL and XU are the percentile confidence limits, the Reflection 
interval is (2 X0 - XU, 2 X0 - XL). 

Bootstrap Confidence Coefficients 
These are the confidence coefficients of the bootstrap confidence intervals. Since bootstrapping 
calculations may take several minutes, it may be useful to obtain confidence intervals using 
several different confidence coefficients. 

All values must be between 0.50 and 1.00. You may enter several values, separated by blanks or 
commas. A separate confidence interval is given for each value entered.  

Examples 
0.90 0.95 0.99 

0.90:0.99(0.01) 

0.90 

Bootstrap Options – Histograms 

Vertical and Horizontal Axis Labels 
These are the labels of the vertical and horizontal axes of the bootstrap histograms. 

Plot Style File 
This is the histogram style file. We have provided several different style files to choose from, or 
you can create your own in the Histogram procedure. 

Number of Bars 
The number of bars shown in a bootstrap histogram. We recommend setting this value to at least 
25 when the number of bootstrap samples is over 1000. 

Histogram Title 
This is the title used on the bootstrap histograms. 

Randomization Test Options 

Monte Carlo Samples 
Specify the number of Monte Carlo samples used when running randomization tests. Somewhere 
between 1000 and 100000 are usually necessary. Although we use 1000 as the default value, a 
better value for routine use is 10000.  

You also need to check the ‘Randomization Hypothesis Tests’ box on the Variables tab to run 
these tests. 
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Comparative Points 
Specify the number of X values at which the difference between group curves is computed. This 
is the value of K in the formula given earlier. The sum of the absolute values of these differences 
is use in the randomization test of whether the group curves coincide. 

Random Number Seed 

Random Number Seed 
This option specifies a random seed for the random number generator. Possible values are all 
integers between 1 and 32000. If you want to obtain the same results from one run to the next, use 
the same seed value. If you want to let the program select a random seed based on the time-of-
day, enter ‘RANDOM SEED’. 

Storage Tab 
The predicted values and residuals may be stored on the current database for further analysis. 
This group of options lets you designate which statistics (if any) should be stored and which 
variables should receive these statistics. The selected statistics are automatically stored to the 
current database while the program is executing. 

Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Storage Variables 

Store Predicted Values, Residuals, Lower Prediction Limit, and Upper Prediction 
Limit 
The predicted (Yhat) values, residuals (Y-Yhat), lower 100(1-alpha) prediction limits, and upper 
100(1-alpha) prediction limits may be stored in the variables specified here.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 



351-30  Curve Fitting – General  

Example 1 – Curve Fitting 
This section presents an example of how to fit and compare a Michaelis-Menten model (model 8) 
to two groups of data. This example will use the data in the FNREG5 database. In this example, 
the dependent variable is RESPONSE and the independent variable is TEMP. The groups are 
defined by the values of TYPE.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Curve Fitting – General window. 

1 Open the FNREG5 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file FNREG5.S0. 
• Click Open. 

2 Open the Curve Fitting – General window. 
• On the menus, select Analysis, then Curve Fitting, then One Independent Variable, 

then Curve Fitting – General. The Curve Fitting – General procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• Select the Variables tab.  
• Set the Y Variable to RESPONSE.  
• Set the X Variable to TEMP. 
• Set the Group Variable to TYPE. 
• Set the Preset Model to 8 Y=AX/(B+X) Michaelis-Menten. 
• Check the Bootstrap Confidence Intervals box. 
• Check the Randomization Hypothesis Tests box. 

4 Specify the reports. 
• Select the Reports tab.  
• Check all reports and plots except the Iteration Detail Report. 
• Set the Predict Y at these X Values to 5 10 15 20. 

5 Specify the resampling. 
• Select the Resampling tab.  
• Set Samples (N) to 200. (We are using a small value for illustrative purposes. You 

should use at least 3000 when actually using the results.) 
• Set Monte Carlo Samples to 200. (We are using a small value for illustrative purposes. 

You should use at least 1000 when actually using the results.) 
• Set Random Number Seed to 17448. (Use this number so that our reports agree. Usually 

you would leave this set to ‘RANDOM START’.) 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 



   Curve Fitting – General  351-31 

Parameter Estimates for All Groups 
 

Type Count Iter's R2 A B  
1 21 4 0.98356 10.72798 4.95941  
3 21 6 0.97645 10.31200 1.42325  
Combined 42 4 0.81153 10.20315 2.54358  

 

This report displays a summary of the results for each group and then for the case in which all 
groups are combined into one group. 

Group Name (Type) 
This column, headed by the name of the Group Variable, lists the group value that is displayed on 
this line. Note that the Value Labels option may be used to give more meaningful names to these 
values. 

Count 
This is the number of observations used by the nonlinear regression algorithm. 

Iter’s 
This is the number of iterations used by the nonlinear regression algorithm to find the estimates. 
You should note whether the maximum number of iterations has been reached (in which case the 
algorithm did not converge). 

R2 
This is the value of the pseudo R-squared value. A value near one indicates that the model fits the 
data well. A value near zero indicates that the model does not fit the data well. 

A B 
The final values of the estimated parameters are displayed so that you may compare them across 
groups. 

Analysis of Variance Across Groups 
   

   Model Error Sum Squares Mean Square 
Type Count Iter's R2 DF Error Error 
1 21 4 0.98356 19 1.73157 0.09114 
3 21 6 0.97645 19 2.16427 0.11391 
Combined 42 4 0.81153 40 43.74009 1.09350 
Ignored   0.98321 38 3.89585 0.10252 

 

This report displays goodness of fit results for each group and then for the case in which all 
groups are combined into one dataset. The final row of the report, labeled ‘Ignored’, gives the 
goodness of fit statistics for the model in which a separate curve is fit for each group. 

Group Name (Type) 
This column, headed by the name of the Group Variable, lists the group value that is displayed on 
this line.  

Count 
This is the number of observations used by the nonlinear regression algorithm. 



351-32  Curve Fitting – General  

Iter’s 
This is the number of iterations used by the nonlinear regression algorithm to find the estimates. 
You should note whether the maximum number of iterations has been reached (in which case the 
algorithm did not converge). 

R2 
This is the value of the pseudo R-squared value. A value near one indicates that the model fits the 
data well. A value near zero indicates that the model does not fit the data well. Note  

Error DF 
The degrees of freedom are the number of observations minus the number of parameters fit. 

Sum Squares Error 
This is the sum of the squared residuals for this group. 

Mean Square Error 
This is a rough estimate of the variance of the residuals for this group. 

Curve Inequality F-Test 
   

Curves    F-Test 
Tested DF Mean Square F Ratio Prob Level 
All 2 19.92212 194.3200 0.00000 
Error 38 0.10252  

 

This report displays an F-Test of whether all of the group curves are equal. This test compares the 
residual sum of squares obtained when the grouping is ignored with the total of the residual sum 
of squares obtained for each group. This test is routinely used in analysis linear models and its 
application to nonlinear models has occasionally been suggested. However, it is based on 
normality assumptions which seldom occur. When testing curve coincidence is important, we 
suggest you use a randomization test.  

Curves Tested 
This column indicates the term presented on this row.  

DF 
The degrees of freedom of this term.  

Mean Square 
The mean square associated with this term.  

F Ratio 
The F-ratio for testing the hypothesis that all curves coincide.  

F-Test Prob Level 
This is the probability level of the F-ratio. When this value is less than 0.05 (a common value for 
alpha), the test is ‘significant’ meaning that the hypothesis of equal curves is rejected. If this 
value is larger than the nominal level (0.05), the null hypothesis cannot be rejected. We do not 
have enough evidence to reject.  
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Curve Inequality Randomization Tests 
  
   Number of Points 
Curves Randomization Monte Carlo Compared 
Tested Prob Level Samples Along Curve 
1 vs. 3 0.00000 200 10 

 

This report displays the results of a randomization test whose null hypothesis is that the all the 
group curves coincide. When more than two groups are present, a separate test is provided for 
each pair of groups, plus a combined test of the equality of all groups. 

Curves Tested 
This column indicates the groups whose equality is being test on this row.  

Randomization Prob Level 
This is the two-sided probability level of the randomization test. When this value is less than 
0.05, the test is ‘significant’ meaning that the null hypothesis of equal curves is rejected. If this 
value is larger than the nominal level (0.05), there is not enough evidence in the data to reject the 
null hypothesis of equality.  

(Note: because this is a Monte Carlo test, your results may vary from those displayed here.) 

Monte Carlo Samples 
The number of Monte Carlo samples.  

Number of Points Compared Along the Curve 
The number of values along the X axis at which a comparison between curves is made. Of course, 
the more X values used, the more accurate (and time consuming) will be the test. 

Parameter Inequality Randomization Tests 
  
Curves Parameter Randomization Monte Carlo 
Compared Tested Prob Level Iterations 
1 vs. 3 A 0.74500 200 
1 vs. 3 B 0.03500 200 

 

This report displays the results of randomization tests about the equality of each parameter across 
groups. When more than two groups are present, a separate test is provided for each pair of 
groups, plus a combined test of parameter equality of all groups. 

Curves Compared 
This column indicates the groups being test on this row.  

Parameter Test 
This column indicates model parameter whose equality is being tested.  

Randomization Prob Level 
This is the two-sided probability level of the randomization test. When this value is less than 
0.05, the test is ‘significant’ meaning that the null hypothesis of equal parameter values across 
groups is rejected. If this value is larger than the nominal level (0.05), there is not enough 
evidence in the data to reject the null hypothesis of equality.  

(Note: because this is a Monte Carlo test, your results may vary from those displayed here.) 
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Monte Carlo Samples 
The number of Monte Carlo samples.  

Number of Points Compared Along the Curve 
The number of values along the X axis at which a comparison between curves is made. Of course, 
the more X values used, the more accurate (and time consuming) will be the test. 

Combined Plot Section 
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This plot displays all of the data and fitted curves, allowing you to quickly assess the quality of 
the results. 

Iteration Summary Section for Type=1 
  
Itn Residual 
No. Sum of Squares A B   
1 1.81547 10.51692 4.58046   
2 1.73188 10.71254 4.93394   
3 1.73157 10.72751 4.95871   
4 1.73157 10.72798 4.95941 
 

This report displays the progress of the search algorithm in its search for a solution. It allows you 
to assess whether the algorithm had indeed converged or whether the program should be re-run 
with the Maximum Iterations increased or the model changed. 
Note that if over ten iterations were needed, the program does not display every iteration. 
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Model Estimation Section for Type = 1 
 

Parameter Parameter Asymptotic Lower Upper 
Name Estimate Standard Error 95% C.L. 95% C.L. 
A 10.72798 0.30895 10.08135 11.37461 
B 4.95941 0.44270 4.03282 5.88599 
 
Iterations 4 Rows Read 21 
R-Squared 0.983564 Rows Used 21 
Random Seed 17448 Total Count 21 
 
Estimated Model 
(10.7279796048293)*(x)/((4.95940560335216)+(x)) 

   

This report displays the details of the estimation of the model parameters. 

Parameter Name 
The name of the parameter whose results are shown on this line. 

Parameter Estimate 
The estimated value of this parameter. 

Asymptotic Standard Error 
An estimate of the standard error of the parameter based on asymptotic (large sample) results. 

Lower 95% C.L. 
The lower value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. In most cases, the bootstrap confidence 
interval will be more accurate. 

Upper 95% C.L. 
The upper value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. In most cases, the bootstrap confidence 
interval will be more accurate. 

Iterations 
The number of iterations that were completed before the nonlinear algorithm terminated. If the 
number of iterations is equal to the Maximum Iterations that you set, the algorithm did not 
converge, but was aborted. 

R-Squared 
There is no direct R-squared defined for nonlinear regression. This is a pseudo R-squared 
constructed to approximate the usual R-squared value used in multiple regression. We use the 
following generalization of the usual R-squared formula: 

R-Squared = (ModelSS - MeanSS)/(TotalSS-MeanSS) 

where MeanSS is the sum of squares due to the mean, ModelSS is the sum of squares due to the 
model, and TotalSS is the total (uncorrected) sum of squares of Y (the dependent variable). 

This version of R-squared tells you how well the model performs after removing the influence of 
the mean of Y. Since many nonlinear models do not explicitly include a parameter for the mean 
of Y, this R-squared may be negative (in which case we set it to zero) or difficult to interpret. 
However, if you think of it as a direct extension of the R-squared that you use in multiple 
regression, it will serve well for comparative purposes.  
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Random Seed 
This is the value of the random seed that was used when running the bootstrap confidence 
intervals and randomization tests. If you want to duplicate your results exactly, enter this random 
seed into the Random Seed box under the Simulation tab.  

Estimated Model 
This is the model that was estimated with the parameters replaced with their estimated values. 
This expression may be copied and pasted as a variable transformation in the spreadsheet. This 
will allow you to predict for additional values of X. Note that to insure accuracy, the parameter 
estimates are always given to double-precision accuracy. 

Analysis of Variance Table for Type = 1 
   

  Sum of Mean 
Source DF Squares Square 
Mean 1 847.88494 847.88494 
Model 2 951.50296 475.75148 
Model (Adjusted) 1 103.61802 103.61802 
Error 19 1.73157 0.09114 
Total (Adjusted) 20 105.34959  
Total 21 953.23453  

 

Source 
The labels of the various sources of variation. 

DF 
The degrees of freedom. 

Sum of Squares 
The sum of squares associated with this term. Note that these sums of squares are based on Y, the 
dependent variable. Individual terms are defined as follows: 

Mean The sum of squares associated with the mean of Y. This may or may not 
be a part of the model. It is presented since it is the amount used to adjust 
the other sums of squares. 

Model The sum of squares associated with the model. 

Model (Adjusted) The model sum of squares minus the mean sum of squares. 

Error The sum of the squared residuals. This is often called the sum of squares 
error or just “SSE.” 

Total The sum of the squared Y values. 

Total (Adjusted) The sum of the squared Y values minus the mean sum of squares. 

Mean Square  
The sum of squares divided by the degrees of freedom. The Mean Square for Error is an estimate 
of the underlying variation in the data. 
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Bootstrap Section 
 
---  Estimation Results ------ | --- Bootstrap Confidence Limits ---- 
Parameter Estimate | Conf. Level Lower Upper 
Intercept 
A 
Original Value 10.72798 | 0.90000 10.21652 11.26251 
Bootstrap Mean 10.73831 | 0.95000 10.11747 11.32328 
Bias (BM - OV) 0.01033 | 0.99000 9.81792 11.47991 
Bias Corrected 10.71765    
Standard Error 0.30969    
B 
Original Value 4.95941 | 0.90000 4.30466 5.70459 
Bootstrap Mean 4.97616 | 0.95000 4.07184 5.90947 
Bias (BM - OV) 0.01676 | 0.99000 3.87871 6.09763 
Bias Corrected 4.94265    
Standard Error 0.43834    
 
Predicted Mean and Confidence Limits of Response When Temp = 5.00000 
Original Value 5.38585 | 0.90000 5.21330 5.53273 
Bootstrap Mean 5.38588 | 0.95000 5.15965 5.54946 
Bias (BM - OV) 0.00003 | 0.99000 5.06827 5.58565 
Bias Corrected 5.38582    
Standard Error 0.09954  
Predicted Value and Confidence Limits of Response When Temp = 5.00000 
Original Value 5.38585 | 0.90000 4.76670 5.77922 
Bootstrap Mean 5.41128 | 0.95000 4.70845 5.83435 
Bias (BM - OV) 0.02542 | 0.99000 4.53484 5.89363 
Bias Corrected 5.36043    
Standard Error 0.30921  
  
(Report continues for the other values of Temp) 
 
Sampling Method = Observation, Confidence Limit Type = Reflection, Number of Samples = 3000. 
 

This report provides bootstrap estimates and confidence intervals for the parameters, predicted 
means, and predicted values. Note that bootstrap confidence intervals and prediction intervals are 
provided for each of the X (Temp) value requested. Details of the bootstrap method were 
presented earlier in this chapter. 

Original Value 
This is the parameter estimate obtained from the complete sample without bootstrapping. 

Bootstrap Mean 
This is the average of the parameter estimates of the bootstrap samples. 

Bias (BM - OV) 
This is an estimate of the bias in the original estimate. It is computed by subtracting the original 
value from the bootstrap mean. 

Bias Corrected 
This is an estimated of the parameter that has been corrected for its bias. The correction is made 
by subtracting the estimated bias from the original parameter estimate. 

Standard Error 
This is the bootstrap method’s estimate of the standard error of the parameter estimate. It is 
simply the standard deviation of the parameter estimate computed from the bootstrap estimates. 

Conf. Level 
This is the confidence coefficient of the bootstrap confidence interval given to the right. 
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Bootstrap Confidence Limits - Lower and Upper 
These are the limits of the bootstrap confidence interval with the confidence coefficient given to 
the left. These limits are computed using the confidence interval method (percentile or reflection) 
designated on the Bootstrap panel. 

Note that to be accurate, these intervals must be based on over a thousand bootstrap samples and 
the original sample must be representative of the population. 

Bootstrap Histograms Section 
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(Several more histograms are displayed.) 

  

Each histogram shows the distribution of the corresponding estimate.  
Note that the number of decimal places shown in the horizontal axis is controlled by which 
histogram style file is selected. In this example, we selected Bootstrap2 which was created to 
provide two decimal places. 
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Asymptotic Correlation Matrix of Parameters 
  

Asymptotic Correlation Matrix of Parameters for Type = 1 
 A B 
A 1.000000 0.940484 
B 0.940484 1.000000 
 

This report displays the asymptotic correlations of the parameter estimates. When these 
correlations are high (absolute value greater than 0.98), the precision of the parameter estimates is 
suspect. 

Predicted Values for Specified X Values for Type=1 
 

 Predicted Lower 95.0% Upper 95.0% 
 Value of Prediction Prediction 
Temp Response Limit Limit 
5.00000 5.38585 4.71548 6.05623 
10.00000 7.17139 6.52162 7.82116 
15.00000 8.06235 7.40400 8.72069 
20.00000 8.59634 7.91914 9.27355 

  

This section shows the predicted mean values and asymptotic (large sample) prediction intervals 
for the X values that were specified. Note that these are prediction limits for a new value, not 
confidence limits for the mean of the values. 

Predicted Values and Residuals Section 
 

    Lower 95.0% Upper 95.0% 
Row   Predicted Prediction Prediction 
No. Temp Response Value Limit Limit Residual 
1 0.00000 0.43846 0.00000 -0.63186 0.63186 0.43846 
2 1.00000 2.49732 1.80018 1.14295 2.45740 0.69714 
3 2.00000 2.93207 3.08302 2.40603 3.76000 -0.15094 
4 3.00000 3.76707 4.04351 3.36238 4.72464 -0.27644 
5 4.00000 4.79763 4.78959 4.11244 5.46675 0.00803 
6 5.00000 5.29474 5.38585 4.71548 6.05623 -0.09111 
. . . . . . . 
. . . . . . . 
. . . . . . . 
  

This section shows the values of the predicted values, prediction limits, and residuals. If you have 
observations in which the independent variable is given, but the dependent (Y) variable is blank, 
a predicted value and prediction limits will be generated and displayed in this report. 
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Plots 
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Normal Probability Plot 
If the residuals are normally distributed, the data points of the normal probability plot will fall 
along a straight line. Major deviations from this ideal picture reflect departures from normality. 
Stragglers at either end of the normal probability plot indicate outliers, curvature at both ends of 
the plot indicates long or short distributional tails, convex or concave curvature indicates a lack of 
symmetry, and gaps or plateaus or segmentation in the normal probability plot may require a 
closer examination of the data or model. We do not recommend that you use this diagnostic with 
small sample sizes. 

Residual versus X Plot 
This is a scatter plot of the residuals versus the independent variable, X. The preferred pattern is a 
rectangular shape or point cloud. Any nonrandom pattern may require a redefinition of the model. 

Function Plot 
This plot displays the data along with the estimated function. It is useful in deciding if the fit is 
adequate and the prediction limits are appropriate. 
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Chapter 360 

Growth and Other 
Models 
Introduction 
Models for the study of growth have been studied for a long time. Historically, these models have 
been divided into two classifications: empirical and mechanistic. An empirical model is one that 
was developed to be flexible enough to fit many sets of data well. However, its parameters 
usually do not have direct interpretation in terms of the physical process being modeled. A 
mechanistic model is derived from the mathematics of the physical process producing the data. 
Recently, the differentiation between these two classes of models has narrowed. Mechanistic 
models are usually based on overly simplistic assumptions and some would argue that they are 
really empirical. 

Because of these two competing classifications, many mathematical models have been developed 
that have similar shapes and characteristics. Often, the selection of a model is arbitrary and 
several of the available curves will do an excellent job of fitting the data.  

This program provides thirteen growth models and an additional eight miscellaneous models for 
use in fitting data. The parameters of these models are estimated using the Levenberg-Marquardt 
nonlinear least-squares algorithm as presented in Nash (1987). 

Starting Values 
Starting values may be provided. If you want, the procedure will calculate reasonable starting 
values from your data. 

List of Models 
The models available provide a variety of shapes and forms. Several of the models find their roots 
in quite different physical processes, but yield similar results. We will now present examples and 
details of each of the twenty-one models available. Note that you will often only need part of the 
curve.  
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1. Linear: Y=A+BX  
This common model is usually fit using standard linear regression techniques. We include it here 
to allow for various special forms made by transforming X and Y 

Plot of Y = 1+X

X

Y

Plot of Y = 1+1/X

X

Y

 
Plot of Y = 1+LOG(X)

X

Y

Plot of Y = 1-LOG(X)

X

Y

 

2. Reciprocal: Y=1/(A+BX) 
This model, known as the reciprocal or Shinozaki and Kira model, is mentioned in Ratkowsky 
(1989, page 89) and Seber (1989, page 362).  

Plot of Y = 1/(1+X)

X

Y

Plot of Y = 1/(4+2*X^2)

X

Y
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3. Bleasdale-Nelder: Y=(A+BX)^(-1/C) 
This model, known as the Bleasdale-Nelder model, is mentioned in Ratkowsky (1989, page 103) 
and Seber (1989, page 362).  

Plot of Y = (1+X)^(-1)

X

Y
Plot of Y = (1+X)^(-1/2)

X

Y

 

4. Farazdaghi and Harris: Y=1/(A+BX^C) 
This model, known as the Farazdaghi and Harris model, is mentioned in Ratkowsky (1989, pages 
99 and 104) and Seber (1989, page 362).  

Plot of Y = 1/(1+X^1)

X

Y

Plot of Y = 1/(1+X^2)

X

Y

 
Plot of Y = 1/(1+X^3)

X

Y

Plot of Y = 1/(1+X^5)

X

Y
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5. Holliday: Y=1/(A+BX+CX^2) 
This model, known as the Holliday model, is mentioned in Seber (1989, page 362).  

Plot of Y = 1/(1+X+X^2)

X

Y

 

6. Exponential: Y=EXP(A(X-B)) 
This model, known as the exponential model, is mentioned in Seber (1989, page 327). Note that 
taking the log of both sides reduces this equation to a linear model.  

Plot of Y = EXP(X)

X

Y

Plot of Y = EXP(-X)

X

Y

 

7. Monomolecular: Y=A(1-EXP(-B(X-C))) 
This model, known as the monomolecular model, is mentioned in Seber (1989, page 328).  

Plot of Y = 1-EXP(-X)

X

Y

Plot of Y = 1-EXP(X)

X

Y
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8. Three Parameter Logistic: Y=A/(1+B(EXP(-CX))) 
This model, known as the three-parameter logistic model, is mentioned in Seber (1989, page 
330).  

Plot of Y = 1/(1+EXP(-X))

X

Y
Plot of Y = 1/(1+EXP(-X))

X

Y

 

9. Four Parameter Logistic: Y=D+(A-D)/(1+B(EXP(-CX))) 
This model, known as the four-parameter logistic model, is mentioned in Seber (1989, page 338). 
Note that the extra parameter, D, has the effect of shifting the graph vertically. Otherwise, this 
plot is the same as the three-parameter logistic. 

Plot of Y = 1/(1+EXP(-X))
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Plot of Y = 1/(1+EXP(-X))
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10. Gompertz: Y=A(EXP(-EXP(-B(X-C)))) 
This model, known as the Gompertz model, is mentioned in Seber (1989, page 331).  

Plot of Y = EXP(-EXP(-X))
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Y

Plot of Y = EXP(-EXP(X))

X

Y
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11. Weibull: Y=A-(A-B)EXP(-(C|X|)^D) 
This model, known as the Weibull model, is mentioned in Seber (1989, page 338).  

Plot of Y = EXP(-X)

X

Y

Plot of Y = EXP(-X^2)

X

Y

Plot of Y = EXP(-ABS(X)^3)
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Plot of Y = EXP(-ABS(X)^4)
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12. Morgan-Mercer-Floding: Y=A-(A-B)/(1+(C|X|)^D) 
This model, known as the Morgan-Mercer-Floding model, is mentioned in Seber (1989, page 
340).  

Plot of Y = 1/(1+ABS(X))
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Plot of Y = 1/(1+ABS(X)^(-1))
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Plot of Y = 1/(1+ABS(X)^(-2))
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Plot of Y = 1/(1+ABS(X)^(2))
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13. Richards: Y=A(1+(B-1)EXP(-C(X-D)))^(1/(1-B)) 
This model, known as the Richards model, is mentioned in Seber (1989, page 333).  

Plot of Y = 1/(1+EXP(-X))

X

Y

Plot of Y = 1/(1+EXP(X))

X

Y

 

14. Y=B(LN(|X|-A)) 
Plot of Y = LOG(ABS(X))

X

Y

 

15. Y=A(1-B^X) 
Plot of Y = 1-2^X

X

Y
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16. Y=AX^(BX^C) 
Plot of Y = X^X

X

Y
Plot of Y = X^(-X)

X

Y

 

17. Sum of Exponentials: Y=A(EXP(-BX))+C(EXP(-DX)) 
Plot of Y = EXP(-X)+EXP(X)

X

Y

Plot of Y = EXP(-X)-EXP(X)

X

Y

 

18. Y=A(X^B)EXP(-CX) 
Plot of Y = X*EXP(-X)

X

Y

Plot of Y = 1/X*EXP(X)

X

Y
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19. Y=(A+BX)EXP(-CX)+D 
Plot of Y = (1+(9*X))*EXP(-X)

X

Y

 

20. Normal: Y=A+B(EXP(-C(X-D)^2)) 
Plot of Y = EXP(-X*X)

X

Y

 

21. Lognormal: Y=A+(B/X)EXP(-C(LN(X)-D)^2) 
Plot of Y = EXP(-LOG(ABS(X))^2)

X

Y

Plot of Y = 1/X*EXP(-LOG(X^2)^2)

X

Y

 

Assumptions and Limitations 
Usually, nonlinear regression is used to estimate the parameters in a nonlinear model without 
performing hypothesis tests. In this case, the usual assumption about the normality of the 
residuals is not needed. Instead, the main assumption needed is that the data may be well 
represented by the model.  
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Data Structure 
The data are entered in two variables: one dependent variable and one independent variable.  

Missing Values 
Rows with missing values in the variables being analyzed are ignored in the calculations. When only the 
value of the dependent variable is missing, predicted values are generated. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Variables 

Y (Dependent) Variable 
Specifies a single dependent (Y) variable from the current database.  

Y Transformation 
Specifies a power transformation of the dependent variable. Available transformations are 

Y’=1/(Y*Y), Y’=1/Y, Y’=1/SQRT(Y), Y’=LN(Y), Y’=SQRT(Y), Y’=Y  (none), and Y’=Y*Y 

X (Independent) Variable 
Specifies a single independent (X) variable from the current database. 

X Trans 
Specifies a power transformation of the independent variable. Available transformations are 

X’=1/(X*X), X’=1/X, X’=1/SQRT(X), X’=LN(X), X’=SQRT(X), X’=X  (none), and X’=X*X 

Model 

Model Type 
Specify the model that you want to fit. The available models are: 
1  Y=A+BX  Linear 
2  Y=1/(A+BX)  Reciprocal 
3  Y=(A+BX)^(-1/C)  Bleasdale-Nelder 
4  Y=1/(A+BX^C)  Farazdaghi and Harris 
5  Y=1/(A+BX+CX^2)  Holliday 
6  Y=EXP(A(X-B))  Exponential 
7  Y=A(1-EXP(-B(X-C)))  Monomolecular 
8  Y=A/(1+B(EXP(-CX)))  Three Parameter Logistic 
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9  Y=D+(A-D)/(1+B(EXP(-CX)))  Four Parameter Logistic 
10  Y=A(EXP(-EXP(-B(X-C))))  Gompertz 
11  Y=A-(A-B)EXP(-(C|X|)^D)  Weibull 
12  Y=A-(A-B)/(1+(C|X|)^D)  Morgan-Mercer-Floding 
13  Y=A(1+(B-1)EXP(-C(X-D)))^(1/(1-B))  Richards 
14  Y=B(LN(|X|-A)) 
15  Y=A(1-B^X) 
16  Y=AX^(BX^C) 
17  Y=A(EXP(-BX))+C(EXP(-DX))  Sum of Exponentials 
18  Y=A(X^B)EXP(-CX) 
19  Y=(A+BX)EXP(-CX)+D 
20  Y=A+B(EXP(-C(X-D)^2))  Normal 
21  Y=A+(B/X)EXP(-C(LN(X)-D)^2)  Lognormal 

Bias Correction 
This option controls whether a bias-correction factor is applied when the dependent variable has 
been transformed. Check it to correct the predicted values for the transformation bias. Uncheck it 
to leave the predicted values unchanged. See the Introduction to Curve Fitting chapter for a 
discussion of the amount of bias and the bias correction procedures used. 

Model – Parameter Starting Values 

A ... D 
This is the beginning value of the parameter during the search procedure. If left blank, the 
program will calculate starting values based on simple formulas that use only a few observations. 
If the calculated starting values do not converge, you will have to enter your own (or try a 
different model). 

Options Tab 
The following options control the nonlinear regression algorithm.  

Options 

Lambda 
This is the starting value of the lambda parameter as defined in Marquardt’s procedure. We 
recommend that you do not change this value unless you are very familiar with both your model 
and the Marquardt nonlinear regression procedure. Changing this value will influence the speed at 
which the algorithm converges. 

Nash Phi 
Nash supplies a factor he calls phi for modifying lambda. When the residual sum of squares is 
large, increasing this value may speed convergence. 

Lambda Inc 
This is a factor used for increasing lambda when necessary. It influences the rate at which the 
algorithm converges. 
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Lambda Dec 
This is a factor used for decreasing lambda when necessary. It also influences the rate at which 
the algorithm converges. 

Max Iterations 
This sets the maximum number of iterations before the program aborts. If the starting values you 
have supplied are not appropriate or the model does not fit the data, the algorithm may diverge. 
Setting this value to an appropriate number (say 50) causes the algorithm to abort after this many 
iterations. 

Zero 
This is the value used as zero by the nonlinear algorithm. Because of rounding error, values lower 
than this value are reset to zero. If unexpected results are obtained, you might try using a smaller 
value, such as 1E-16. Note that 1E-5 is an abbreviation for the number 0.00001. 

Reports Tab 
The following options control which reports and plots are displayed.  

Select Reports 

Iteration Report ... Residual Report 
These options specify which reports are displayed. 

Select Plots 

Function Plot with Actual Y ... Probability Plot with Transformed Y 
These options specify which plots are displayed. 

Report Options 

Alpha Level 
The value of alpha for the asymptotic confidence limits of the parameter estimates and predicted 
values. Usually, this number will range from 0.1 to 0.001. A common choice for alpha is 0.05, but 
this value is a legacy from the age before computers when only printed tables were available. You 
should determine a value appropriate for your needs. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 
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Function Plot and Residual Plot Tabs 
This section controls the plot(s) showing the data with the fitted function line overlain on top and 
the residual plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Line (Function Plot) 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Display Prediction Limits (Function Plot) 
This option controls whether the prediction limits (confidence limits on the predicted values) are 
displayed.  

Number of Points (Function Plot) 
This option specifies at how many points the estimated function is calculated to create the overlay 
function that is displayed on the Function Plots. A value between 50 and 150 is usually sufficient. 
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Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. {M} is 
replaced by the model expression. Press the button on the right of the field to specify the font of 
the text. 

Probability Plot Tab 
The options on this panel control the appearance of the probability plot of the residuals. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {M} are replaced by the name of the variable 
and the model expression, respectively. Press the button on the right of the field to specify the 
font of the text.  
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Storage Tab 
The predicted values and residuals may be stored on the current database for further analysis. 
This group of options lets you designate which statistics (if any) should be stored and which 
variables should receive these statistics. The selected statistics are automatically stored to the 
current database while the program is executing. 

Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Storage Variables 

Store Predicted Values, Residuals, Lower Prediction Limit, and Upper Prediction 
Limit 
The predicted (Yhat) values, residuals (Y-Yhat), lower 100(1-alpha) prediction limits, and upper 
100(1-alpha) prediction limits may be stored in the variables specified here.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Fitting a Growth Model 
This section presents an example of how to fit a growth model. In this example, we will fit the 
three-parameter logistic growth model (model 8) to variables Y1 and X1 of the FNREG1 
database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Growth and Other Models window. 

1 Open the FNREG1 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
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• Click on the file FNREG1.S0. 
• Click Open. 

2 Open the Growth and Other Models window. 
• On the menus, select Analysis, then Curve Fitting, then One Independent Variable, 

then Growth and Other Models. The Growth and Other Models procedure will be 
displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Growth and Other Models window, select the Variables tab.  
• Double-click in the Y Variable box. This will bring up the variable selection window.  
• Select Y1 from the list of variables and then click Ok. 
• Double-click in the X Variable box. This will bring up the variable selection window.  
• Select X1 from the list of variables and then click Ok. 
• Select 8 Y=A/(1+B(EXP(-CX))) 3 Parameter Logistic in the Model Type list box. 

4 Specify the reports. 
• On the Growth and Other Models window, select the Reports tab.  
• Check the Residual Report box. Leave all other reports and plots checked. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Minimization Phase Section 
 
 Minimization Phase Section 

Itn Error Sum  
No. Lambda Lambda A B C  
0 40.60853 0.00004 0 1 0  
1 17.50267 0.000016 0.961331 1 0  
2 2.502684 0.0000064 0.9613522 0.9999608 0.5602523  
3 1.460298 2.56E-06 0.8592459 0.6802145 1.055472  
4 0.9565874 1.024E-06 0.9553283 0.8540083 1.291937  
5 0.9563748 4.096E-07 0.955538 0.8655906 1.284907  
6 0.9563742 1.6384E-07 0.9556665 0.8664535 1.284215  
7 0.9563742 0.65536 0.9556671 0.8664643 1.284214 
Convergence criterion met. 

 

This report displays the error (residual) sum of squares, lambda, and parameter estimates for each 
iteration. It allows you to observe the algorithm’s progress. 
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Model Estimation Section 
 

 Model Estimation Section 
 

Parameter Parameter Asymptotic Lower Upper 
Name Estimate Standard Error 95% C.L. 95% C.L. 
A 0.9556671 2.056039E-02 0.9148604 0.9964738 
B 0.8664643 0.1013374 0.6653376 1.067591 
C 1.284214 0.1215541 1.042962 1.525465 
 
Dependent Y1 
Independent X1 
Model Y1=A/(1+B*EXP{-C*(X1)}) 
R-Squared 0.945358 
Iterations 7 
Estimated Model 
(.9556671)/(1+(.8664643)*EXP{-(1.284214)*(X1)}) 

   

Parameter Name 
The name of the parameter whose results are shown on this line. 

Parameter Estimate 
The estimated value of this parameter. 

Asymptotic Standard Error 
An estimate of the standard error of the parameter based on asymptotic (large sample) results. 

Lower 95% C.L. 
The lower value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. 

Upper 95% C.L. 
The upper value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. 

Model 
The model that was estimated. Use this to double check that the model estimated was what you 
wanted. 

R-Squared 
There is no direct R-Squared defined for nonlinear regression. This is a pseudo R-Squared 
constructed to approximate the usual R-Squared value used in multiple regression. We use the 
following generalization of the usual R-Squared formula: 

R-Squared = (ModelSS - MeanSS)/(TotalSS-MeanSS) 

where MeanSS is the sum of squares due to the mean, ModelSS is the sum of squares due to the 
model, and TotalSS is the total (uncorrected) sum of squares of Y (the dependent variable). 

This version of R-Squared tells you how well the model performs after removing the influence of 
the mean of Y. Since many nonlinear models do not explicitly include a parameter for the mean 
of Y, this R-Squared may be negative (in which case we set it to zero) or difficult to interpret. 
However, if you think of it as a direct extension of the R-Squared that you use in multiple 
regression, it will serve well for comparative purposes.  
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Iterations 
The number of iterations that were completed before the nonlinear algorithm terminated. If the 
number of iterations is equal to the Maximum Iterations that you set, the algorithm did not 
converge, but was aborted. 

Estimated Model 
The model that was estimated with the parameters replaced with their estimated values. This 
expression may be copied and pasted as a variable transformation in the spreadsheet. This will 
allow you to predict for additional values of X. 

Analysis of Variance Table 
   

Analysis of Variance Table 
  Sum of Mean 
Source DF Squares Square 
Mean 1 23.10585 23.10585 
Model 3 39.65216 13.21739 
Model (Adjusted) 2 16.5463 8.27315 
Error 97 0.9563742 9.859528E-03 
Total (Adjusted) 99 17.50267 
Total 100 40.60853 

 

Source 
The labels of the various sources of variation. 

DF 
The degrees of freedom. 

Sum of Squares 
The sum of squares associated with this term. Note that these sums of squares are based on Y, the 
dependent variable. Individual terms are defined as follows: 

Mean The sum of squares associated with the mean of Y. This may or may 
not be a part of the model. It is presented since it is the amount used 
to adjust the other sums of squares. 

Model The sum of squares associated with the model. 

Model (Adjusted) The model sum of squares minus the mean sum of squares. 

Error The sum of the squared residuals. This is often called the sum of 
squares error or just “SSE.” 

Total The sum of the squared Y values. 

Total (Adjusted) The sum of the squared Y values minus the mean sum of squares. 

Mean Square  
The sum of squares divided by the degrees of freedom. The Mean Square for Error is an estimate 
of the underlying variation in the data. 
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Asymptotic Correlation Matrix of Parameters 
  

Asymptotic Correlation Matrix of Parameters 
 A B C 
A 1.000000 0.611455 -0.518521 
B 0.611455 1.000000 -0.401338 
C -0.518521 -0.401338 1.000000 

  

This report displays the asymptotic correlations of the parameter estimates. When these 
correlations are high (absolute value greater than 0.95), the precision of the parameter estimates is 
suspect. 

Predicted Values and Residuals Section 
 
 Predicted Values and Residuals Section 

Row   Predicted Lower 95.0% Upper 95.0% 
No. X1 Y1 Value Value Value Residual 
1 -5 -8.793363E-02 1.791046E-03 -0.1952929 0.198875 -8.972467E-02 
2 -4.89899 0.1107571 2.038591E-03 -0.1950479 0.1991251 0.1087185 
3 -4.79798 7.545952E-02 2.320266E-03 -0.1947694 0.1994099 7.313926E-02 
4 -4.69697 -8.788628E-02 2.640754E-03 -0.1944527 0.1997343 -9.052704E-02 
. . . . . 
. . . . . 
. . . . . 

  

This section shows the values of the residuals and predicted values. If you have observations in 
which the independent variable is given, but the dependent (Y) variable is blank, a predicted 
value and prediction limits will be generated and displayed in this report. 

Residual Plots 
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Normal Probability Plot 
If the residuals are normally distributed, the data points of the normal probability plot will fall 
along a straight line. Major deviations from this ideal picture reflect departures from normality. 
Stragglers at either end of the normal probability plot indicate outliers, curvature at both ends of 
the plot indicates long or short distributional tails, convex or concave curvature indicates a lack of 
symmetry, and gaps or plateaus or segmentation in the normal probability plot may require a 
closer examination of the data or model. We do not recommend that you use this diagnostic with 
small sample sizes. 

Residual versus X Plot 
This is a scatter plot of the residuals versus the independent variable, X. The preferred pattern is a 
rectangular shape or point cloud. Any nonrandom pattern may require a redefining of the model. 

Function Plot 
This plot displays the data along with the estimated function and prediction limits. It is useful in 
deciding if the fit is adequate and the prediction limits are appropriate. 

In poorly fit models, we have found that it is often necessary to disable the prediction limits so 
that the data will show up. In these cases, the prediction limits may be so wide that the scale of 
the plot does not allow the data values to be separated. 

Predicting for New Values 
You can use your model to predict Y for new values of X. Here’s how. Add new rows to the 
bottom of your database containing the values of the independent variable that you want to create 
predictions for. Leave the dependent variable blank. When the program analyzes your data, it will 
skip these rows during the estimation phase, but it will generate predicted values for all rows, 
regardless of whether the Y variable is missing or not. 
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Chapter 365 

Piecewise 
Polynomial 
Models 
Introduction 
Piecewise-polynomial models, sometimes referred to as multiphase models (see Seber [1989] 
chapter 9 for a complete discussion), are constructed by combining straight lines and quadratics. 
For example, the multiphase model linear-linear refers to a model made up of two linear 
equations, each active over a different range of X.  

This program fits five types of multiphase models. A special feature is that you do not have to 
enter the change (connecting) point. The algorithm calculates change points for you.  

The change points in multiphase models are often sharp corners. The program allows the use of 
two types of smoothing functions to smooth out these sharp corners. 

Starting Values 
Starting values may be provided. If you want, the procedure will calculate reasonable starting 
values from your data. 

List of Models 
The models available provide a variety of shapes and forms. Several of the models find their roots 
in quite different physical processes, but yield similar results. We will now present examples and 
details of each of the five models available. Note that you will often need only part of the curve.  
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1. Linear-Linear  
Estimation Equation 
Y=A + BX + C(X-D)SIGN(X-D) 

Common Equation 
Y = a1 + b1X,  X<J 
Y = a2 + b2X,  X³J 

Parameter Identities  
A=(a1+a2)/2 B=(b1+b2)/2 a1=A+DC b1=B-C  J=D 
C=(b2-b1)/2 D=J  a2=A-DC b2=B+C 
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2. Linear-Quadratic 
Estimation Equation   
Y=A+BX+CX^2+(X-D)SIGN(X-D)[C(X+D)+E] 

Common Equation 
Y=a1+b1X,    X<=a 
Y=a2+b2X+c2X^2, X>a 

Parameter Identities  
A=(a1+a2)/2 B=(b1+b2)/2 C=c2/2  
D=a E=(b2-b1)/2 
a1=A+CD2+DE b1=B-E a=D 
a2=A-CD2-DE b2=B+E c2=2C 
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3. Quadratic-Linear 
Estimation Equation   
Y=A+BX+CX^2+(X-D)SIGN(X-D)[E-C(X+D)] 

Common Equation 
Y=a1+b1X+c1X^2, X<=a 
Y=a2+b2X,  X>a 

Parameter Identities  
A=(a1+a2)/2 B=(b1+b2)/2 C=c1/2  
D=a E=(b2-b1)/2 
a1=A-CD2+DE b1=B-E a=D 
a2=A+CD2-DE b2=B+E c1=2C 
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4. Quadratic-Quadratic 
Estimation Equation   
Y=A+BX+CX^2+(X-D)SIGN(X-D)[E(X+D)+F] 

Common Equation 
Y=a1+b1X+c1X^2, X<=a 
Y=a2+b2X+c2X^2, X>a 

Parameter Identities  
A=(a1+a2)/2 B=(b1+b2)/2 C=(c1+c2)/2  
D=a E=(c2-c1)/2 F=(b2-b1)/2 
a1=A-ED2+DF b1=B-F a=D 
a2=A+eD2-DF b2=B+F 
c1=C-E c2=C+E 
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5. Linear-Linear-Linear 
Estimation Equation   
Y=A+BX+C(X-D)SIGN(X-D)+E(X-F)SIGN(X-F) 

Common Equation 
Y=a1+b1X X<J1 
Y=a2+b2X a1<X<=J2 
Y=a3+b3X X>J2 

Parameter Identities  
A=(a1+a3)/2 B=(b1+b3)/2 C=(b2-b1)/2  
D=J1 E=(b3-b2)/2 F=J2 
a1=A+CD+EF b1=B-C-E J1=D 
a2=A-CD-EF b2=B+C-E J2=F 
a3=A-CD+EF b3=B+C+E 
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Assumptions and Limitations 
Usually, nonlinear regression is used to estimate the parameters in a nonlinear model without 
performing hypothesis tests. In this case, the usual assumption about the normality of the 
residuals is not needed. Instead, the main assumption needed is that the data may be well 
represented by the model.  
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Data Structure 
The data are entered in two variables: one dependent variable and one independent variable.  

Missing Values 
Rows with missing values in the variables being analyzed are ignored in the calculations. When only the 
value of the dependent variable is missing, predicted values are generated. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Variables 

Y (Dependent) Variable 
Specifies a single dependent (Y) variable from the current database. 

Y Transformation 
Specifies a power transformation of the dependent variable. Available transformations are 

Y’=1/(Y*Y), Y’=1/Y, Y’=1/SQRT(Y), Y’=LN(Y), Y’=SQRT(Y), Y’=Y  (none), and Y’=Y*Y 

X (Independent) Variable 
Specifies a single independent (X) variable from the current database. 

X Transformation 
Specifies a power transformation of the independent variable. Available transformations are 

X’=1/(X*X), X’=1/X, X’=1/SQRT(X), X’=LN(X), X’=SQRT(X), X’=X  (none), and X’=X*X 

Model 

Model Type 
Specify the model that you want to fit. The available models are: 
1  Linear-Linear 
2  Linear-Quadratic 
3  Quadratic-Linear 
4  Quadratic-Quadratic 
5  Linear-Linear-Linear 
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Bias Correction 
This option controls whether a bias-correction factor is applied when the dependent variable has 
been transformed. Check it to correct the predicted values for the transformation bias. Uncheck it 
to leave the predicted values unchanged. See the Introduction to Curve Fitting chapter for a 
discussion of the amount of bias and the bias correction procedures used. 

Model – Curve Transition 

Transition Type 
Specifies the smoothness of transition from one curve to the next.  

Sharp means a corner is used to join the two curves. This is accomplished by using the SIGN(z) 
function. Mathematically, this function is defined as follows: 
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Inside means a smooth transition is made inside the intersecting curves using the HYP(z) 
function. As z, the transition value, approaches 0, HYP(Z) approaches SIGN(z). This function is 
represented mathematically as follows: 

HYP(z)= 1
(X - D)

(X - D ) + z2  

Outside means a smooth transition is made outside the intersecting curves. Here TNH(z) stands 
for the hyperbolic tangent, tanh(z). As z, the transition value, approaches 0, TNH(Z) approaches 
SIGN(z). This function is represented mathematically as follows: 

TNH(z)= e - e

e + e

(X -D)
z

-(X -D)
z

(X -D)
z

-(X -D)
z

 

Transition Value 
A value defining the smoothness of the transition from one curve to the next. Enter a value close 
to zero for very sharp corner or a value close to one for a very smooth corner. 

Note that this option is only used when the Transition Type is Inside or Outside. 

Options Tab 
The following options control the nonlinear regression algorithm.  

Options 

Lambda 
This is the starting value of the lambda parameter as defined in Marquardt’s procedure. We 
recommend that you do not change this value unless you are very familiar with both your model 
and the Marquardt nonlinear regression procedure. Changing this value will influence the speed at 
which the algorithm converges. 
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Nash Phi 
Nash supplies a factor he calls phi for modifying lambda. When the residual sum of squares is 
large, increasing this value may speed convergence. 

Lambda Inc 
This is a factor used for increasing lambda when necessary. It influences the rate at which the 
algorithm converges. 

Lambda Dec 
This is a factor used for decreasing lambda when necessary. It also influences the rate at which 
the algorithm converges. 

Max Iterations 
This sets the maximum number of iterations before the program aborts. If the starting values you 
have supplied are not appropriate or the model does not fit the data, the algorithm may diverge. 
Setting this value to an appropriate number (say 50) causes the algorithm to abort after this many 
iterations. 

Zero 
This is the value used as zero by the nonlinear algorithm. Because of rounding error, values lower 
than this value are reset to zero. If unexpected results are obtained, you might try using a smaller 
value, such as 1E-16. Note that 1E-5 is an abbreviation for the number 0.00001. 

Reports Tab 
The following options control which reports and plots are displayed.  

Select Reports 

Iteration Report ... Residual Report 
These options specify which reports are displayed. 

Select Plots 

Function Plot with Actual Y ... Probability Plot with Transformed Y 
These options specify which plots are displayed. 

Report Options 

Alpha Level 
The value of alpha for the asymptotic confidence limits of the parameter estimates and predicted 
values. Usually, this number will range from 0.1 to 0.001. A common choice for alpha is 0.05, but 
this value is a legacy from the age before computers when only printed tables were available. You 
should determine a value appropriate for your needs. 
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Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 

Function Plot and Residual Plot Tabs 
This section controls the plot(s) showing the data with the fitted function line overlain on top and 
the residual plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Line (Function Plot) 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 
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Display Prediction Limits (Function Plot) 
This option controls whether the prediction limits (confidence limits on the predicted values) are 
displayed.  

Number of Points (Function Plot) 
This option specifies at how many points the estimated function is calculated to create the overlay 
function that is displayed on the Function Plots. A value between 50 and 150 is usually sufficient. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. {M} is 
replaced by the model expression. Press the button on the right of the field to specify the font of 
the text. 

Probability Plot Tab 
The options on this panel control the appearance of the probability plot of the residuals. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 
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Titles 

Plot Title 
This is the text of the title. The characters {Y} and {M} are replaced by the name of the variable 
and the model expression, respectively. Press the button on the right of the field to specify the 
font of the text.  

Storage Tab 
The predicted values and residuals may be stored on the current database for further analysis. 
This group of options lets you designate which statistics (if any) should be stored and which 
variables should receive these statistics. The selected statistics are automatically stored to the 
current database while the program is executing. 

Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Storage Variables 

Store Predicted Values, Residuals, Lower Prediction Limit, and Upper Prediction 
Limit 
The predicted (Yhat) values, residuals (Y-Yhat), lower 100(1-alpha) prediction limits, and upper 
100(1-alpha) prediction limits may be stored in the variables specified here.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Fitting a Piecewise Polynomial Model 
This section presents an example of how to fit a piecewise polynomial model. In this example, we 
will fit the linear-linear-linear model (model 5) to the variables Y1 and X1 of the FNREG2 
database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Piecewise Polynomial Models window. 

1 Open the FNREG2 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file FNREG2.S0. 
• Click Open. 

2 Open the Piecewise Polynomial Models window. 
• On the menus, select Analysis, then Curve Fitting, then One Independent Variable, 

then Piecewise Polynomial Models. The Piecewise Polynomial Models procedure will 
be displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Piecewise Polynomial Models window, select the Variables tab.  
• Double-click in the Y Variable box. This will bring up the variable selection window.  
• Select Y1 from the list of variables and then click Ok. 
• Double-click in the X Variable box. This will bring up the variable selection window.  
• Select X1 from the list of variables and then click Ok. 
• Select 5 Linear-Linear-Linear in the Model Type list box. 

4 Specify the reports. 
• On the Piecewise Polynomial Models window, select the Reports tab.  
• Check the Residual Report box. Leave all other reports and plots checked. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Minimization Phase Section 
 
 Minimization Phase Section 
 
 Itn Error Sum  
 No. Lambda Lambda A B C D 
 0 91978.17 0.00004 13.73333 1.396706 0 32.7044 
 1 128.7423 0.000016 -22.38974 1.439365 -1.41563 32.7044 
 2 98.84669 0.0000064 -18.73867 1.417875 -1.451389 31.90939 
 3 97.88834 2.56E-06 -18.97554 1.433407 -1.477436 31.87549 
 4 97.88829 1.024E-06 -18.97609 1.43342 -1.477446 31.87606 

Convergence criterion met. 
 

This report displays the error (residual) sum of squares, lambda, and parameter estimates for each 
iteration. It allows you to observe the algorithm’s progress. 

Model Estimation Section 
 

 Model Estimation Section 
 

Parameter Parameter Asymptotic Lower Upper 
Name Estimate Standard Error 95% C.L. 95% C.L. 
A -18.97609 2.371069 -23.79468 -14.1575 
B 1.43342 4.792372E-02 1.336028 1.530813 
C -1.477446 5.087956E-02 -1.580845 -1.374046 
D 31.87606 0.5111715 30.83723 32.91488 
E 1.428675 4.940346E-02 1.328275 1.529075 
F 55.26949 0.4470693 54.36093 56.17804 
 
Dependent Y1 
Independent X1 
Model Y1=Linear-Linear-Linear (X1) 
R-Squared 0.975292 
Iterations 4 
Estimated Model 
(-18.97609)+(1.43342)*(X1)+(-1.477446)*((X1)-(31.87606))*SIGN((X1)-(31.87606))+(1.428675)*((X1)-(55.26949)) 
 *SIGN((X1)-(55.26949)) 
 
Common Model 
Y1 = a1 + b1(X1) if X1<=J1 
Y1 = a2 + b2(X1) if J1<X1<=J2 
Y1 = a3 + b3(X1) if X1>J2 
where 
a1 =12.89089 a2 =107.0812 a3 =-50.84307 
b1 =1.482191 b2 =-1.4727 b3 =1.384649 
J1 =31.87606 J2 =55.26949 
 

This section reports the parameter estimates. 

Parameter Name 
The name of the parameter whose results are shown on this line. 

Parameter Estimate 
The estimated value of this parameter. 

Asymptotic Standard Error 
An estimate of the standard error of the parameter based on asymptotic (large sample) results. 
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Lower 95% C.L. 
The lower value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. 

Upper 95% C.L. 
The upper value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. 

Model 
The model that was estimated. Use this to double check that the model estimated was what you 
wanted. 

R-Squared 
There is no direct R-Squared defined for nonlinear regression. This is a pseudo R-Squared 
constructed to approximate the usual R-Squared value used in multiple regression. We use the 
following generalization of the usual R-Squared formula: 

 R-Squared = (ModelSS - MeanSS)/(TotalSS-MeanSS) 

where MeanSS is the sum of squares due to the mean, ModelSS is the sum of squares due to the 
model, and TotalSS is the total (uncorrected) sum of squares of Y (the dependent variable). 

This version of R-Squared tells you how well the model performs after removing the influence of 
the mean of Y. Since many nonlinear models do not explicitly include a parameter for the mean 
of Y, this R-Squared may be negative (in which case we set it to zero) or difficult to interpret. 
However, if you think of it as a direct extension of the R-Squared that you use in multiple 
regression, it will serve well for comparative purposes.  

Iterations 
The number of iterations that were completed before the nonlinear algorithm terminated. If the 
number of iterations is equal to the Maximum Iterations that you set, the algorithm did not 
converge, but was aborted. 

Estimated Model 
The model that was estimated with the parameters replaced with their estimated values. This 
expression may be copied and pasted as a variable transformation in the spreadsheet. This will 
allow you to predict for additional values of X. 

Common Model 
This section shows the model in the usual format giving the individual linear equations and the 
change points. The range of X is shown for which each of the equations is valid. The change 
points are represented by J1 and J2. 
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Analysis of Variance Table 
   

Analysis of Variance Table 
  Sum of Mean 
Source DF Squares Square 
Mean 1 70560 70560 
Model 6 74423.91 12403.99 
Model (Adjusted) 5 3863.911 772.7822 
Error 34 97.88829 2.879067 
Total (Adjusted) 39 3961.799 
Total 40 74521.8 

 

Source 
The labels of the various sources of variation. 

DF 
The degrees of freedom. 

Sum of Squares 
The sum of squares associated with this term. Note that these sums of squares are based on Y, the 
dependent variable. Individual terms are defined as follows: 

Mean The sum of squares associated with the mean of Y. This may or may 
not be a part of the model. It is presented since it is the amount used 
to adjust the other sums of squares. 

Model The sum of squares associated with the model. 

Model (Adjusted) The model sum of squares minus the mean sum of squares. 

Error The sum of the squared residuals. This is often called the sum of 
squares error or just “SSE.” 

Total The sum of the squared Y values. 

Total (Adjusted) The sum of the squared Y values minus the mean sum of squares. 

Mean Square  
The sum of squares divided by the degrees of freedom. The Mean Square for Error is an estimate 
of the underlying variation in the data. 

Asymptotic Correlation Matrix of Parameters 
  

Asymptotic Correlation Matrix of Parameters 
 
 A B C D E F 
A 1.000000 -0.859286 0.199576 0.127212 -0.628010 -0.671159 
B -0.859286 1.000000 -0.501307 -0.411324 0.453763 0.463477 
C 0.199576 -0.501307 1.000000 -0.110813 -0.543587 0.394458 
D 0.127212 -0.411324 -0.110813 1.000000 0.513127 -0.257576 
E -0.628010 0.453763 -0.543587 0.513127 1.000000 0.043351 
F -0.671159 0.463477 0.394458 -0.257576 0.043351 1.000000 
 

This report displays the asymptotic correlations of the parameter estimates. When these 
correlations are high (absolute value greater than 0.95), the precision of the parameter estimates is 
suspect. 
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Predicted Values and Residuals Section 
 
 Predicted Values and Residuals Section 
 

Row   Predicted Lower 95.0% Upper 95.0% 
No. X1 Y1 Value Value Value Residual 
1 9.119497 26.47059 26.40772 22.50505 30.3104 6.286404E-02 
2 10.69182 28.82353 28.73821 24.91603 32.5604 8.531865E-02 
3 12.26415 31.17647 31.0687 27.31541 34.82199 0.1077657 
4 13.83648 35.88235 33.39919 29.70256 37.09583 2.483162 
. . . . . 
. . . . . 
. . . . . 
 

The section shows the values of the residuals and predicted values. If you have observations in 
which the independent variable is given, but the dependent (Y) variable was left blank, a 
predicted value and prediction limits will be generated and displayed in this report. 

Residual Plots 
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Normal Probability Plot 
If the residuals are normally distributed, the data points of the normal probability plot will fall 
along a straight line. Major deviations from this ideal picture reflect departures from normality. 
Stragglers at either end of the normal probability plot indicate outliers, curvature at both ends of 
the plot indicates long or short distributional tails, convex or concave curvature indicates a lack of 
symmetry, and gaps or plateaus or segmentation in the normal probability plot may require a 
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closer examination of the data or model. We do not recommend that you use this diagnostic with 
small sample sizes. 

Residual versus X Plot 
This is a scatter plot of the residuals versus the independent variable, X. The preferred pattern is a 
rectangular shape or point cloud. Any nonrandom pattern may require a redefining of the model. 

In this example, we see a very striking nonrandom pattern. It appears that there might be another 
variable that causes a shift of about two units from one value to the next. This other variable has 
three values. If this were an actual study, we would now hunt for this third variable. 

Function Plot 
This plot displays the data along with the estimated function and prediction limits. It is useful in 
deciding if the fit is adequate and the prediction limits are appropriate. 

In poorly fit models, we have found that it is often necessary to disable the prediction limits so 
that the data will show up. In these cases, the prediction limits may be so wide that the scale of 
the plot does not allow the data values to be separated. 

Predicting for New Values 
You can use your model to predict Y for new values of X. Here’s how. Add new rows to the 
bottom of your database containing the values of the independent variable that you want to create 
predictions for. Leave the dependent variable blank. When the program analyzes your data, it will 
skip these rows during the estimation phase, but it will generate predicted values for all rows, 
regardless of whether the Y variable is missing or not. 
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Chapter 370 

Ratio of 
Polynomials  
Search – One 
Variable 
Introduction 
This procedure searches through hundreds of potential curves looking for the model that fits your 
data the best. The procedure is heuristic in nature, but seems to do well with the data we have 
tried. 

A general class of models called the ratio of polynomials (see the previous chapter) provides a 
wide variety of curves to search from. Normally, fitting these models is a slow, iterative process. 
However, using a shortcut, an approximate solution may be found very quickly so that a large 
number of models may be searched in a short period of time. After the best fitting model is found, 
use the procedure discussed in the Ratio of Polynomials Fit chapter to provide a detailed analysis 
of it.  

For each model, various transformations of X and Y can be tried. This expands the number of 
models that may be tried to several hundred. 

The general ratio of polynomials model fit is 

g(Y)= A + A f(X)+ A f (X)+ A f (X)+ A f (X)+ A f (X)
1+ B f(X)+ B f (X)+ B f (X)+ B f (X)+ B f (X)

+ e
2 3 4 5

2 3 4 5
0 1 2 3 4 5

1 2 3 4 5
. 

Here g(Y) and f(X) represent power transformations of Y and X such as LOG(X), SQRT(X), etc. 
The parameters A0, A1, A2, ..., B5 are constants that are estimated from the data. The value e  
represents the error or residual of that observation. By setting some constants to zero, various 
simplified models are obtained. For example, if only A0 and A1 are nonzero, the familiar linear 
model, Y=A0+A1X+e, is obtained. 
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A Shortcut 
Consider the simple model 

Y = A + A X
B X

+ e0 1
1 1+

. 

If you ignore e (set it to zero for a moment) and multiply both sides of this equation by (1+B1X) 
you will get  

Y+B1XY=A0+A1X. 

Now if you subtract B1XY from both sides you will get 

Y=A0+A1X-B1XY. 

Finally, if you relabel XY as Z you get 

Y=A+BX+CZ.  

Note that the variable Z is a direct transformation of X and Y. This last equation is in standard 
linear form. The parameters A, B, and C may be estimated using standard multiple regression! 
Note that the parameter B1 in our original equation is equal to -C in the final equation. 

One catch in using this procedure is that you have to assume the e to be zero. When the model fits 
well, the e will be near zero. When the model does not fit well, these e will be relatively large and 
our method breaks down. However, the large e will warn us that the model has not fit well. 

Parsimony 
One of the main principles in model building is that you should never use three parameters when 
two parameters will do. Hence, one of our tasks will be to find a model with the fewest number of 
parameters. A second principle in dealing with the ratio-of-polynomials model is that you should 
not fit a model with a numerator of higher polynomial order than that of the denominator. The 
models tried by this program follow these rules. A third rule is that all terms in a polynomial up to 
the desired order must be included. Hence, you would not use Y=A+CX2. Instead you would fit 
Y=A+BX+CX2. 

The program tries the five models having a fifth-order polynomial in the denominator. The 
numerator polynomials are A0+A1X, A0+A1X+A2X2, ..., A0+A1X+A2X2+A3X3+A4X4+A5X5. 
Next the four models having a fourth-order polynomial denominator are tried. This continues on 
down to the simple equation Y=(A0+A1X)/(1+B1X). This process is repeated for each 
combination of transformations that are specified for Y and X. 

Goodness-of-Fit 
The final issue measuring of how well a given model fits the data so that the various models can 
be compared. This is tough since the goodness-of-fit statistics you are familiar with (like R2) do 
not have the same meaning in this setting. However, because of the lack of other general, 
goodness-of-fit indices, we have chosen to base our selection on the value of R2. We justify this 
because this procedure is only an intermediate step in the modeling process. You must take 
several steps before making your final model selection.  
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Assumptions and Limitations 
Usually, nonlinear regression is used to estimate the parameters in a nonlinear model without 
performing hypothesis tests. In this case, the usual assumption about the normality of the 
residuals is not needed. Instead, the main assumption needed is that the data may be well 
represented by the model.  

Data Structure 
The data are entered in two variables: one dependent variable and one independent variable.  

Missing Values 
Rows with missing values in the variables being analyzed are ignored in the calculations. When only the 
value of the dependent variable is missing, predicted values are generated. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Y (Dependent) Variable 

Variable 
Specifies a single dependent (Y) variable from the current database. This is the variable being 
predicted. 

Y (Dependent) Variable – Select Y 
Transformations 

1/Y^2, 1/Y, 1/SQRT(Y), LN(Y), SQRT(Y), Y, Y^2 
Specifies whether this transformation of Y should be searched. 

X (Independent) Variable 

Variable 
Specifies a single independent (X) variable. This is the variable used to predict Y. 
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X (Independent) Variable – Select X 
Transformations 

1/X^2, 1/X, 1/SQRT(X), LN(X), SQRT(X), X, X^2 
Specifies whether this transformation of X should be searched. 

Zero Cutoff 

Zero 
This is the value used as zero by the algorithm. Because of rounding error, values lower than this 
value are reset to zero. If unexpected results are obtained, you might try using a smaller value, 
such as 1E-16.  

Note that 1E-5 is an abbreviation for the number 0.00001. 

Reports Tab 
The following options control the reports and plots output.  

Select Reports 

Models Reported 
This option limits the number of models that are reported on. For example, if you select 20 here, 
then the report shows the 20 best models. 

Select Plots 

Function Plot with Actual Y 
Specifies whether the plot in the actual scale of Y and X should be displayed. 

Function Plot with Transformed Y 
Specifies whether the plot in the transformed scale of Y and X should be displayed. 

Models Plotted 
This option specifies how many of the best models are plotted.  

Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 
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Function Plot Tab 
This section controls the plot(s) showing the data with the fitted function line on top. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Line  
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Number of Points 
This option specifies at how many points the estimated function is calculated to create the overlay 
function that is displayed on the Function Plots. A value between 50 and 150 is usually sufficient. 
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Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. {M} is 
replaced by the model expression. Press the button on the right of the field to specify the font of 
the text. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Searching for the Best Ratio of Polynomials 
Model 
This section presents an example of how to search for the best fitting ratio of polynomials model. 
In this example, we will search for the best fitting model using the variables Y and X of the 
FNREG3 database. We will also consider the log transformation of each variable in our search. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Ratio of Polynomials Search – One Variable window. 

1 Open the FNREG3 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file FNREG3.S0. 
• Click Open. 

2 Open the Ratio of Polynomials Search – One Variable window. 
• On the menus, select Analysis, then Curve Fitting, then One Independent Variable, 

then Ratio of Polynomials Search. The Ratio of Polynomials Search – One Variable 
procedure will be displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  
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3 Specify the variables. 
• On the Ratio of Polynomials Search – One Variable window, select the Variables tab.  
• Double-click in the Y Variable box. This will bring up the variable selection window.  
• Select Y from the list of variables and then click Ok. 
• Double-click in the X Variable box. This will bring up the variable selection window.  
• Select X from the list of variables and then click Ok. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Search Summary Section 
 
 Search Summary Section 
 

Model    Current Best Percent 
No. F(Y) F(X) Model R-Squared R-Squared of Best 
1 y x 3 / 4 0.990115 0.990115 100.00 
2 y x 1 / 4 0.989091 0.990115 99.90 
3 y x 2 / 4 0.989078 0.990115 99.90 
4 LN(y) x 3 / 4 0.988342 0.990115 99.82 
5 y x 0 / 5 0.987972 0.990115 99.78 
6 y x 4 / 4 0.984444 0.990115 99.43 
7 LN(y) x 0 / 5 0.984241 0.990115 99.41 
8 LN(y) x 2 / 4 0.984015 0.990115 99.38 
9 LN(y) x 1 / 4 0.983513 0.990115 99.33 
10 y x 0 / 4 0.983109 0.990115 99.29 
11 LN(y) x 0 / 4 0.977900 0.990115 98.77 
12 LN(y) LN(x) 4 / 5 0.975901 0.990115 98.56 
13 y x 1 / 5 0.975564 0.990115 98.53 
14 LN(y) x 5 / 0 0.974421 0.990115 98.41 
15 y x 2 / 5 0.972910 0.990115 98.26 
16 LN(y) x 1 / 5 0.970396 0.990115 98.01 
17 LN(y) x 4 / 0 0.967638 0.990115 97.73 
18 y LN(x) 4 / 5 0.956059 0.990115 96.56 
19 y x 5 / 0 0.948378 0.990115 95.78 
20 LN(y) LN(x) 3 / 3 0.945165 0.990115 95.46 

 

This report displays a separate line for each model tried. Note that the results have been sorted by 
R-Squared so that the best model is displayed at the top. 
For this example, the best model is the ratio of a third order numerator polynomial and a fourth 
order denominator polynomial, with no transformations of Y or X needed. We would now fit this 
model using the Ratio of Polynomial Fit procedure. 

Model No. 
The ranking of the model displayed on this line. 

F(Y) 
The transformation (if any) applied to the Y (dependent) variable. 

F(X) 
The transformation (if any) applied to the X (independent) variable. 
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Model 
The ratio of polynomial model whose results are displayed on this row. The syntax of the model 
statement is N/D where N represents the order of the numerator polynomial and D represents the 
order of the denominator polynomial. If N or D is set to zero, that polynomial is ignored. 

For example, the model 1/2 means A0+A1X in the numerator and 1+B1X+B2X^2 in the 
denominator. 

Current R-Squared 
The value of pseudo R-Squared for this model and transformations. 

There is no direct R-Squared defined for nonlinear regression. This is a pseudo R-Squared 
constructed to approximate the usual R-Squared value used in multiple regression. We use the 
following generalization of the usual R-Squared formula: 

R-Squared = (ModelSS - MeanSS)/(TotalSS-MeanSS) 

where MeanSS is the sum of squares due to the mean, ModelSS is the sum of squares due to the 
model, and TotalSS is the total (uncorrected) sum of squares of Y (the dependent variable). 

This version of R-Squared tells you how well the model performs after removing the influence of 
the mean of Y. Since many nonlinear models do not explicitly include a parameter for the mean 
of Y, this R-Squared may be negative (in which case we set it to zero) or difficult to interpret. 
However, if you think of it as a direct extension of the R-Squared that you use in multiple 
regression, it will serve well for comparative purposes.  

Best R-Squared 
The pseudo R-Squared of the first (best) model. 

Percent of Best 
The percent that the pseudo R-Squared of this model is of the overall best model. Often you will 
be able to find models that are nearly as good as the best model, but have many fewer parameters. 
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Function Plots 
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These plots show the best few models plotted in the original (on the left) and transformed (on the 
right) scales. They will help you determine which model (or models) you want to evaluate further 
using the Ratio of Polynomial Fit procedure. 
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Chapter 371 

Ratio of 
Polynomials  
Search – Many 
Variables 
Introduction 
This procedure searches through hundreds of potential curves looking for the model that fits your 
data the best. The procedure is heuristic in nature, but seems to do well with the data we have 
tried. This procedure is more general that the Ratio of Polynomials Search procedure because it 
models up to four independent variables. 

A general class of models called the ratio of polynomials (see Multivariate Ratio of Polynomials 
Fit chapter) provides a wide variety of curves to search from. Normally, fitting these models is a 
slow, iterative process. However, using a shortcut, an approximate solution may be found very 
quickly so that a large number of models may be searched in a short period of time. After the best 
fitting model is found, use the procedure discussed in the Multivariate Ratio of Polynomials Fit 
chapter to obtain a detailed analysis. 

Parsimony 
One of the main principles in model building is that you never use three parameters when two 
parameters will do. Hence, one of our tasks will be to find a model with the fewest number of 
parameters. A second principle in dealing with the ratio-of-polynomials model is that you should 
not fit a model with a numerator of higher polynomial order than that of the denominator. The 
models tried by default by this program follow these rules. A third rule is that all terms in a 
polynomial up to the desired order must be included. Hence, you would not use Y=A+CX2. 
Instead you would fit Y=A+BX+CX2. 

Goodness-of-Fit 
Measuring how well a given model fits the data so that the various models can be compared is an 
important part of the search. This is tough since the goodness-of-fit statistics you are familiar with 
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(like R-Squared) do not have the same meaning in this setting. However, because of the lack of 
other general, goodness-of-fit indices, we have chosen to base our selection on the value of R-
Squared. 

Assumptions and Limitations 
Usually, nonlinear regression is used to estimate the parameters in a nonlinear model without 
performing hypothesis tests. In this case, the usual assumption about the normality of the 
residuals is not needed. Instead, the main assumption needed is that the data may be well 
represented by the model.  

Data Structure 
The data are entered in two or more variables: one dependent variable and up to four independent 
variables.  

Missing Values 
Rows with missing values in the variables being analyzed are ignored in the calculations. When 
only the value of the dependent variable is missing, predicted values are generated. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variables on which to run the analysis. 

Variables 

Y (Dependent) Variable 
Specifies a single dependent (Y) variable. This is the variable being predicted. 

Variables – Transformations (Y) 

1/Y^2, 1/Y, 1/SQRT(Y), LN(Y), SQRT(Y), Y, Y^2 
Specifies whether this transformation of Y should be searched. 

Variables – Independent Variables 

U, V, W, X 
Each option specifies a single independent variable. When a variable is selected, designate which 
of the transformations of that variable are searched. 
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Variables – Transformations 
(U,V,W,X) 

1/U^2, 1/U, 1/SQRT(U), LN(U), SQRT(U), U, U^2 
Specifies whether this transformation of U, V, W, and/or X should be searched. 

Model Specification 
These options specify which models are searched. Care must be taken when selecting models 
because it is very easy to overwhelm the algorithm by selecting too many candidate models. 

For each model type, select one of the following options. 

• Omit 
Do not add this type of model to the pool of models searched. 

• Numerator 
Add models involving the numerator polynomial only to the pool of models that is searched. 

• Denominator 
Add models involving the denominator polynomial only to the pool of models that is 
searched. 

• Numer. + Denom. 
Add both numerator only and denominator only models to the pool of models that is 
searched. 

• Ratio  
Add ratio of polynomial models to the pool of models that is searched. 

• Numer. + Ratio 
Add numerator only and ratio models to the pool of models that is searched. 

• All Three 
Add numerator only, denominator only, and ratio models to the pool of models that is 
searched. 

(1-5) Single Variable 
This option selects candidate models consisting of one variable only, up to the order specified to 
the left of the list box (1-5). For example, selecting Numerator in the second row (order 2) would 
include quadratic, single variable models such as  

Y=B0+B1X+B2X^2, Y=B0+B1U+B2U^2, etc. 

(1-5) Hierarchical 
This option selects hierarchical-polynomial models (see Hi below) to the order specified by the 
number on the left (1 to 5).  
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1 Max Power 
This option selects models using the “E”-notation (see below). These models would be of the 
form  

Y = E1.  

2 Max Power 
This option selects models using the “E”-notation (see below). These models would be of the 
form  

Y = E1,E2.  

3 Max Power 
This option selects models using the “E”-notation (see below). These models would be of the 
form  

Y = E1,E2,E3.  

4 Max Power  
This option selects models using the “E”-notation (see below). These models would be of the 
form  

Y = E1,E2,E3,E4.  

5 Max Power 
This option selects models using the “E”-notation (see Ei below). These models would be of the 
form  

Y = E1,E2,E3,E4,E5.  

Pairs - (1 and 2) 
This option selects models consisting of two independent variables with no cross products, up to 
the order first (Pairs -1) or second (Pairs -2) order. For example, selecting Numerator in the Pairs- 
1 box would include models like 

Y=B0+B1X+B2U. 

Triplets - 1 
This option selects models consisting of three independent variables with no cross products, up to 
a first order. For example, selecting Numerator in the Triplets -1 box would include models like 

Y=B0+B1X+B2U+B3V. 

Models Reported 
This option limits the number of models that are reported on. For example, if you select 20 here, 
then the report shows the 20 best models. 

Zero 
This is the value used as zero by the nonlinear algorithm. Because of rounding error, values lower 
than this value are reset to zero. If unexpected results are obtained, you might try using a smaller 
value, such as 1E-16. Note that 1E-5 is an abbreviation for the number 0.00001. 
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Custom Models Tab 
Up to ten custom models may be specified using the basic syntax for model input described 
below by specifying the numerator and denominator polynomials.  

The syntax of these lists of terms follows these rules: 

1. Individual terms may be listed as UiVj. If i or j is one, it may be omitted. For example, 
UV2X3 means (U)(V*V)(X*X*X) and U2 means U^2, which means U*U. A list of 
individual terms is formed by separating such terms with commas. 

2. The Oi notation includes all terms of a particular order. The order is the sum of the 
exponents of the variables in a term. For example, the order of the term U2VW3 is six. If 
you had selected three variables and included “O2” in the list of terms, you would include 
the terms U3, V3, W3, U2V, U2W, V2W, UV2, VW2, and UVW in your model. 

3. The Si notation includes all single variables to the power i. For example, if you had 
selected three variables and included “S2” in the list of terms, you would include the 
terms U, V, W, U2, V2, and W2 in your model. 

4. The Ei notation includes all combinations of variables with at least one variable to the 
power i and none of the other variables to a power greater than i. For example, if you had 
selected three variables and included “E2” in the list of terms, you would include the 
terms U2, V2, W2, U2V, U2W, U2V2, U2W2, UV2, UW2, VW2, V2W, and V2W2 in 
your model. 

5. The Hi notation includes all terms in the hierarchical model of order i. For example, if 
you had selected two variables and included “H2” in the list of terms, you would include 
the terms U, V, U2, V2, and UV in your model. 

6. The P notation includes all simple paired terms. For example, if you had selected three 
variables and included “P” in the list of terms, you would include the terms UV, UW, and 
VW in your model. 

7. The T notation includes all triplet terms. For example, if you had selected four variables 
and included “T” in the list of terms, you would include the terms UVW, UVX, UWX, 
and UWX in your model. 

You can combine these notations however you like. If a term is specified twice, it will be 
included in the model only once. The order in which you specify terms is arbitrary. Examples are: 

E2 

U,V,E2,O1 

O1,U2V2 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Fitting a Multivariate Ratio of Polynomials 
Model 
This section presents an example of how to fit a multivariate ratio of polynomials model. In this 
example, we will search for a model relating the dependent variable Y to the independent 
variables U and X of the FNREG4 database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Ratio of Polynomials Search – Many Variables window. 

1 Open the FNREG4 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file FNREG4.S0. 
• Click Open. 

2 Open the Ratio of Polynomials Search – Many Variables window. 
• On the menus, select Analysis, then Curve Fitting, then Many Independent Variables, 

then Ratio of Polynomials Search. The Ratio of Polynomials Search – Many Variables 
procedure will be displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Ratio of Polynomials Search – Many Variables window, select the Variables tab.  
• Double-click in the Y (Dependent) box. This will bring up the variable selection 

window.  
• Select Y from the list of variables and then click Ok. 
• Check the box next to Ln(Y). 
• Double-click in the U Variable box. This will bring up the variable selection window.  
• Select X from the list of variables and then click Ok. 
• Check the box next to Ln(U). 
• Double-click in the V Variable box. This will bring up the variable selection window.  
• Select U from the list of variables and then click Ok. 
• Check the box next to Ln(V). 
• Leave all other options at their default settings. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Multivariate Search Report 
 

 Results of Multivariate Search 
 

Variables Y=Y, U=X, V=U 
Models Fit 192 
 
 Percent Transformations  No. Model 
R-Squared of Best Y U V W X of X's Numerator / Denominator 
0.991356 100.00 N L L   10 (H2) / (H2) 
0.991349 100.00 L L L   10 (H2) / (H2) 
0.982629 99.12 L N L   10 (H2) / (H2) 
0.982347 99.09 N N L   10 (H2) / (H2) 
0.980970 98.95 N N L   8 (E1,E2) / 1 
0.979765 98.83 N L L   8 (E1,E2) / 1 
0.978064 98.66 L N L   8 (E1,E2) / 1 
0.977188 98.57 N L L   5 (H2) / 1 
0.976036 98.45 L L L   8 (E1,E2) / 1 
0.975872 98.44 N N L   5 (H2) / 1 
0.972253 98.07 L N L   5 (H2) / 1 
0.971677 98.01 L L L   5 (H2) / 1 
0.899874 90.77 L N N   8 (E1,E2) / 1 
0.898429 90.63 N L N   10 (H2) / (H2) 
0.897845 90.57 L L N   8 (E1,E2) / 1 
0.893617 90.14 N N N   8 (E1,E2) / 1 
0.892422 90.02 N L N   8 (E1,E2) / 1 
0.887341 89.51 L N L   4 (U1,V1,U2,V2) / 1 
0.884633 89.23 L L L   4 (U1,V1,U2,V2) / 1 
0.884020 89.17 N N L   4 (U1,V1,U2,V2) / 1 
 
Transformation key: 
2=1/X^2, I=1/X, Q=1/SQRT(X), L=LN(X), R=SQRT(X), N=X, and S=X^2. 

 

This report displays the best models (in terms of R-Squared) found. Each row describes the 
results for a single model. 

Models Fit 
This value is the total number of models that were evaluated. 

R-Squared 
There is no direct R-Squared defined for nonlinear regression. This is a pseudo R-Squared 
constructed to approximate the usual R-Squared value used in multiple regression. We use the 
following generalization of the usual R-Squared formula: 

R-Squared = (ModelSS - MeanSS)/(TotalSS-MeanSS) 

where MeanSS is the sum of squares due to the mean, ModelSS is the sum of squares due to the 
model, and TotalSS is the total (uncorrected) sum of squares of Y (the dependent variable). 

This version of R-Squared tells you how well the model performs after removing the influence of 
the mean of Y. Since many nonlinear models do not explicitly include a parameter for the mean 
of Y, this R-Squared may be negative (in which case we set it to zero) or difficult to interpret. 
However, if you think of it as a direct extension of the R-Squared that you use in multiple 
regression, it will serve well for comparative purposes.  

Percent of Best 
This is the percent that the R-Squared value of this model is of the best (top) model. 
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Transformations  Y U V W X 
The letters correspond to the transformations that were used for each variable. The transformation 
key is listed at the bottom of the report. For example, the entry for the first row is N L L. This 
means that Y was regressed on ln(X) and ln(U). 

No. of X’s 
This is the number of parameters fit in this model. Of course, we want models with only a few 
parameters and a large value of R-Squared. 

Model Numerator/Denominator 
This gives the model using the shorthand notation described in Models - Custom section above. 
You can apply this shorthand notation directly in Multivariate Ratio of Polynomial Fit procedure 
to obtain detailed results for a particular model. 

Note that the numeral one (1) is used when no polynomial is specified. 
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Chapter 375 

Ratio of 
Polynomials Fit –  
One Variable 
Introduction 
This program fits a model that is the ratio of two polynomials of up to fifth order. Examples of 
this type of model are: 

Y A A X A X
B X B X

=
+ +
+ +

0 1 2
1 1 2

2

2  

and 

Y A A X A X A X A X A X
B X B X B X B X B X

=
+ + + + +
+ + + + +

0 1 2 3 4 5
1 1 2 3 4 5

2 3 4

2 3 4

5

5  

These models approximate many different curves. They offer a much wider variety of curves than 
the usual polynomial models. Since these are approximating curves and have no physical 
interpretation, care must be taken outside the range of the data. You must study the resulting 
model graphically to determine that the model behaves properly between data points. 

Usually you would use the Ratio of Polynomials Search procedure first to find an appropriate 
model and then fit that model with this program. 

Starting Values 
Starting values are determined by the program. You do not have to supply starting values. 

Assumptions and Limitations 
Usually, nonlinear regression is used to estimate the parameters in a nonlinear model without 
performing hypothesis tests. In this case, the usual assumption about the normality of the 
residuals is not needed. Instead, the main assumption needed is that the data may be well 
represented by the model.  
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Data Structure 
The data are entered in two variables: one dependent variable and one independent variable.  

Missing Values 
Rows with missing values in the variables being analyzed are ignored in the calculations. When only the 
value of the dependent variable is missing, predicted values are generated. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Variables 

Y (Dependent) Variable 
Specifies a single dependent (Y) variable from the current database. 

Y Transformation 
Specifies a power transformation of the dependent variable. Available transformations are 

Y’=1/(Y*Y), Y’=1/Y, Y’=1/SQRT(Y), Y’=LN(Y), Y’=SQRT(Y), Y’=Y  (none), and Y’=Y*Y 

X (Independent) Variable 
Specifies a single independent (X) variable from the current database. 

X Transformation 
Specifies a power transformation of the independent variable. Available transformations are 

X’=1/(X*X), X’=1/X, X’=1/SQRT(X), X’=LN(X), X’=SQRT(X), X’=X  (none), and X’=X*X 

Model 

Bias Correction 
This option controls whether a bias-correction factor is applied when the dependent variable has 
been transformed. Check it to correct the predicted values for the transformation bias. Uncheck it 
to leave the predicted values unchanged. See the Introduction to Curve Fitting chapter for a 
discussion of the amount of bias and the bias correction procedures used. 

These options specify the polynomials as well as certain values used to control the convergence 
of the nonlinear fitting algorithm. 
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Model – Numerator and Denominator 
Terms 

Numerator and Denominator Terms (A1 X^1 ... B5 X^5) 
These options specify which terms are in the model. The A-terms refer to the numerator and the 
B-terms refer to the denominator. Note that X^3 means X*X*X (X cubed).  

Hence, checking A1 X^1, A2 X^2, B1 X^1, and B2 X^2 specifies the polynomial ratio model: 

Y A A X A X
B X B X

=
+ +
+ +

0 1 2
1 1 2

2

2  

Note that the constant term, A0, is always included in the model. 

We encourage you to follow a hierarchical approach to model building which is that you never fit 
a term without fitting all terms of lesser order. Hence, if you include A3 in your model, you also 
include A1 and A2. Also, never fit a higher order in the numerator than in the denominator. You 
can fit a higher order polynomial in the denominator than in the numerator. 

If you follow these simple rules, you will usually be happy with the performance of your models. 

Options Tab 
The following options control the nonlinear regression algorithm.  

Options 

Lambda 
This is the starting value of the lambda parameter as defined in Marquardt’s procedure. We 
recommend that you do not change this value unless you are very familiar with both your model 
and the Marquardt nonlinear regression procedure. Changing this value will influence the speed at 
which the algorithm converges. 

Nash Phi 
Nash supplies a factor he calls phi for modifying lambda. When the residual sum of squares is 
large, increasing this value may speed convergence. 

Lambda Inc 
This is a factor used for increasing lambda when necessary. It influences the rate at which the 
algorithm converges. 

Lambda Dec 
This is a factor used for decreasing lambda when necessary. It also influences the rate at which 
the algorithm converges. 

Max Iterations 
This sets the maximum number of iterations before the program aborts. If the starting values you 
have supplied are not appropriate or the model does not fit the data, the algorithm may diverge. 
Setting this value to an appropriate number (say 50) causes the algorithm to abort after this many 
iterations. 
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Zero 
This is the value used as zero by the nonlinear algorithm. Because of rounding error, values lower 
than this value are reset to zero. If unexpected results are obtained, you might try using a smaller 
value, such as 1E-16. Note that 1E-5 is an abbreviation for the number 0.00001. 

Reports Tab 
The following options control which reports and plots are displayed.  

Select Reports 

Iteration Report ... Residual Report 
These options specify which reports are displayed. 

Select Plots 

Function Plot with Actual Y ... Probability Plot with Transformed Y 
These options specify which plots are displayed. 

Report Options 

Alpha Level 
The value of alpha for the asymptotic confidence limits of the parameter estimates and predicted 
values. Usually, this number will range from 0.1 to 0.001. A common choice for alpha is 0.05, but 
this value is a legacy from the age before computers when only printed tables were available. You 
should determine a value appropriate for your needs. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 

Function Plot and Residual Plot Tabs 
This section controls the plot(s) showing the data with the fitted function line overlain on top and 
the residual plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 
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Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Line (Function Plot) 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Display Prediction Limits (Function Plot) 
This option controls whether the prediction limits (confidence limits on the predicted values) are 
displayed.  

Number of Points (Function Plot) 
This option specifies at how many points the estimated function is calculated to create the overlay 
function that is displayed on the Function Plots. A value between 50 and 150 is usually sufficient. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. {M} is 
replaced by the model expression. Press the button on the right of the field to specify the font of 
the text. 
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Probability Plot Tab 
The options on this panel control the appearance of the probability plot of the residuals. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {M} are replaced by the name of the variable 
and the model expression, respectively. Press the button on the right of the field to specify the 
font of the text.  
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Storage Tab 
The predicted values and residuals may be stored on the current database for further analysis. 
This group of options lets you designate which statistics (if any) should be stored and which 
variables should receive these statistics. The selected statistics are automatically stored to the 
current database while the program is executing. 

Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Storage Variables 

Store Predicted Values, Residuals, Lower Prediction Limit, and Upper Prediction 
Limit 
The predicted (Yhat) values, residuals (Y-Yhat), lower 100(1-alpha) prediction limits, and upper 
100(1-alpha) prediction limits may be stored in the variables specified here.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 



375-8  Ratio of Polynomials Fit – One Variable  

Example 1 – Fitting a Ratio of Polynomials Model 
This section presents an example of how to fit a ratio of polynomials model. In this example, we 
will fit a third order polynomial in the numerator and a fourth order polynomial in the 
denominator to the variables Y and X of the FNREG3 database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Ratio of Polynomials Fit – One Variable window.  

1 Open the FNREG3 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file FNREG3.S0. 
• Click Open. 

2 Open the Ratio of Polynomials Fit – One Variable window. 
• On the menus, select Analysis, then Curve Fitting, then One Independent Variable, 

then Ratio of Polynomials Fit. The Ratio of Polynomials Fit – One Variable procedure 
will be displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Ratio of Polynomials Fit – One Variable window, select the Variables tab.  
• Double-click in the Y (Dependent) Variable box. This will bring up the variable 

selection window.  
• Select Y from the list of variables and then click Ok. 
• Double-click in the X (Independent) Variable box. This will bring up the variable 

selection window.  
• Select X from the list of variables and then click Ok. 
• Under the Numerator Terms heading, check A1 X^1, A2 X^2, and A3 X^3. 
• Under the Denominator Terms heading, check B1 X^1, B2 X^2, B3 X^3, and B4 X^4. 

4 Specify the options. 
• On the Ratio of Polynomials Fit – One Variable window, select the Options tab.  
• Enter 10 in the Max Iterations box. 

5 Specify the reports. 
• On the Ratio of Polynomials Fit – One Variable window, select the Reports tab.  
• Check the Residual Report box. Leave all other reports and plots checked. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Minimization Phase Section 
 
 Minimization Phase Section 
 

Itn Error Sum  
No. Lambda Lambda A0 A1 A2 A3 
0 70.81162 0.00004 11.78766 -0.2798519 5.809555E-03 -4.172031E-05 
1 70.73225 0.16 11.78725 -0.2798166 5.810308E-03 -4.172031E-05 
2 70.68134 0.064 11.78944 -0.2797599 5.810308E-03 -4.172031E-05 
3 70.61962 0.256 11.78874 -0.2797441 5.810308E-03 -4.172031E-05 
4 70.58868 0.1024 11.78977 -0.2797041 5.810308E-03 -4.172031E-05 
5 70.58413 0.4096 11.78925 -0.2796919 5.810308E-03 -4.172031E-05 
6 70.5548 0.16384 11.78946 -0.2796662 5.810308E-03 -4.172031E-05 
7 70.54813 0.065536 11.79198 -0.2796135 5.810308E-03 -4.172031E-05 
8 70.51613 0.262144 11.7916 -0.2795997 5.810308E-03 -4.172031E-05 
9 70.50236 0.1048576 11.79268 -0.2795659 5.810308E-03 -4.172031E-05 
10 70.49983 0.4194304 11.79228 -0.279557 5.810308E-03 -4.172031E-05 
Maximum iterations before convergence. 

 

This report displays the error (residual) sum of squares, lambda, and parameter estimates for each 
iteration. It allows you to observe the algorithm’s progress. 

Model Estimation Section 
 

 Model Estimation Section 
 

Parameter Parameter Asymptotic Lower Upper 
Name Estimate Standard Error 95% C.L. 95% C.L. 
A0 11.79254 1.012715 9.750206 13.83488 
A1 -0.2795364 9.166186E-02 -0.4643901 -9.468261E-02 
A2 5.810308E-03 3.516727E-03 -1.281847E-03 1.290246E-02 
A3 -4.172031E-05 2.863182E-05 -9.946187E-05 1.602125E-05 
B1 -0.0783304 2.020337E-03 -8.240479E-02 -0.074256 
B2 2.391857E-03 4.689093E-05 2.297292E-03 2.486421E-03 
B3 -2.86472E-05 4.332001E-06 -3.738351E-05 -1.991088E-05 
B4 1.171313E-07 1.025966E-06 -1.951927E-06 2.186189E-06 
 
Dependent Y 
Independent X 
Model Y=(A0+A1X^1+A2X^2+A3X^3) / (1+B1X^1+B2X^2+B3X^3+B4X^4) 
R-Squared 0.990159 
Iterations 10 
Estimated Model 
((11.79254-(.2795364)*(X)+(5.810308E-03)*(X)^2-(4.172031E-05)*(X)^3)/(1-(.0783304)*(X)+(2.391857E-03)*  
(X)^2-(2.86472E-05)*(X)^3+(1.171313E-07)*(X)^4)) 
   

Parameter Name 
The name of the parameter whose results are shown on this line. 

Parameter Estimate 
The estimated value of this parameter. 

Asymptotic Standard Error 
An estimate of the standard error of the parameter based on asymptotic (large sample) results. 

Lower 95% C.L. 
The lower value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. 
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Upper 95% C.L. 
The upper value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. 

Model 
The model that was estimated. Use this to double check that the model estimated was what you 
wanted. 

R-Squared 
There is no direct R-Squared defined for nonlinear regression. This is a pseudo R-Squared 
constructed to approximate the usual R-Squared value used in multiple regression. We use the 
following generalization of the usual R-Squared formula: 

R-Squared = (ModelSS - MeanSS)/(TotalSS-MeanSS) 

where MeanSS is the sum of squares due to the mean, ModelSS is the sum of squares due to the 
model, and TotalSS is the total (uncorrected) sum of squares of Y (the dependent variable). 

This version of R-Squared tells you how well the model performs after removing the influence of 
the mean of Y. Since many nonlinear models do not explicitly include a parameter for the mean 
of Y, this R-Squared may be negative (in which case we set it to zero) or difficult to interpret. 
However, if you think of it as a direct extension of the R-Squared that you use in multiple 
regression, it will serve well for comparative purposes.  

Iterations 
The number of iterations that were completed before the nonlinear algorithm terminated. If the 
number of iterations is equal to the Maximum Iterations that you set, the algorithm did not 
converge, but was aborted. 

Estimated Model 
The model that was estimated with the parameters replaced with their estimated values. This 
expression may be copied and pasted as a variable transformation in the spreadsheet. This will 
allow you to predict for additional values of X. 

Analysis of Variance Table 
   

Analysis of Variance Table 
  Sum of Mean 
Source DF Squares Square 
Mean 1 76141.53 76141.53 
Model 8 83234.82 10404.35 
Model (Adjusted) 7 7093.291 1013.327 
Error 43 70.49983 1.639531 
Total (Adjusted) 50 7163.791 
Total 51 83305.32 

 

Source 
The labels of the various sources of variation. 

DF 
The degrees of freedom. 
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Sum of Squares 
The sum of squares associated with this term. Note that these sums of squares are based on Y, the 
dependent variable. Individual terms are defined as follows: 

Mean The sum of squares associated with the mean of Y. This may or may 
not be a part of the model. It is presented since it is the amount used 
to adjust the other sums of squares. 

Model The sum of squares associated with the model. 

Model (Adjusted) The model sum of squares minus the mean sum of squares. 

Error The sum of the squared residuals. This is often called the sum of 
squares error or just “SSE.” 

Total The sum of the squared Y values. 

Total (Adjusted) The sum of the squared Y values minus the mean sum of squares. 

Mean Square  
The sum of squares divided by the degrees of freedom. The Mean Square for Error is an estimate 
of the underlying variation in the data. 

Asymptotic Correlation Matrix of Parameters 
  

Asymptotic Correlation Matrix of Parameters 
 A0 A1 A2 A3 B1 B2 
A0 1.000000 -0.668342 0.251252 -0.126446 0.045937 0.033491 
A1 -0.668342 1.000000 -0.826039 0.725516 0.586512 -0.664699 
A2 0.251252 -0.826039 1.000000 -0.986996 -0.937223 0.967391 
A3 -0.126446 0.725516 -0.986996 1.000000 0.978499 -0.991658 
B1 0.045937 0.586512 -0.937223 0.978499 1.000000 -0.989097 
B2 0.033491 -0.664699 0.967391 -0.991658 -0.989097 1.000000 
B3 -0.444426 -0.127771 0.655601 -0.765633 -0.867018 0.801153 
B4 0.769239 -0.364811 0.217490 -0.176658 -0.095811 0.123138 
 B3 B4 
A0 -0.444426 0.769239 
A1 -0.127771 -0.364811 
A2 0.655601 0.217490 
A3 -0.765633 -0.176658 
B1 -0.867018 -0.095811 
B2 0.801153 0.123138 
B3 1.000000 -0.139159 
B4 -0.139159 1.000000 
 

  

This report displays the asymptotic correlations of the parameter estimates. When these 
correlations are high (absolute value greater than 0.95), the precision of the parameter estimates is 
suspect. 
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Predicted Values and Residuals Section 
 
 Predicted Values and Residuals Section 
 

Row   Predicted Lower 95.0% Upper 95.0% 
No. X Y Value Value Value Residual 
1 10.69182 21.76471 23.39933 20.2282 26.57045 -1.634617 
2 12.26415 26.47059 26.25687 23.30506 29.20868 0.2137172 
3 13.83648 31.17647 29.50871 26.70471 32.31271 1.667763 
4 15.4088 35.88235 33.16126 30.38701 35.93551 2.721093 
. . . . . 
. . . . . 
. . . . . 

  

The section shows the values of the residuals and predicted values. If you have observations in which 
the independent variable is given, but the dependent (Y) variable was left blank, a predicted value 
and prediction limits will be generated and displayed in this report. 

Residual Plots 
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Normal Probability Plot 
If the residuals are normally distributed, the data points of the normal probability plot will fall 
along a straight line. Major deviations from this ideal picture reflect departures from normality. 
Stragglers at either end of the normal probability plot indicate outliers, curvature at both ends of 
the plot indicates long or short distributional tails, convex or concave curvature indicates a lack of 
symmetry, and gaps or plateaus or segmentation in the normal probability plot may require a 
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closer examination of the data or model. We do not recommend that you use this diagnostic with 
small sample sizes. 

Residual versus X Plot 
This is a scatter plot of the residuals versus the independent variable, X. The preferred pattern is a 
rectangular shape or point cloud. Any nonrandom pattern may require a redefining of the model. 

In this example, it appears that the variance of the residuals decreases as X increases—suggesting 
that the equal variance assumption is violated. If this pattern was very drastic, we might want to 
try a variance stabilizing transformation of Y or using weighted nonlinear regression. However, 
the pattern does not appear severe in this case, so we probably would not take further action. 

Function Plot 
This plot displays the data along with the estimated function and prediction limits. It is useful in 
deciding if the fit is adequate and the prediction limits are appropriate. 

In poorly fit models, we have found that it is often necessary to disable the prediction limits so 
that the data will show up. In these cases, the prediction limits may be so wide that the scale of 
the plot does not allow the data values to be separated. 

Predicting for New Values 
You can use your model to predict Y for new values of X. Here’s how. Add new rows to the 
bottom of your database containing the values of the independent variable that you want to create 
predictions for. Leave the dependent variable blank. When the program analyzes your data, it will 
skip these rows during the estimation phase, but it will generate predicted values for all rows, 
regardless of whether the Y variable is missing or not. 
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Chapter 376 

Ratio of 
Polynomials Fit –  
Many Variables 
Introduction 
This program fits a model that is the ratio of two polynomials of up to fifth order. Instead of a 
single independent variable, these polynomials may involve up to four independent variables (U, 
V, W, and X). An example of this type of model is: 

Y B B X B X B U B U
B X B X B U B U

=
+ + + +
+ + + +

0 1 2 3 4
1 5 6 7 8

2 2

2 2  

These models approximate many different curves. They offer a much wider variety of curves than 
the usual polynomial models. Since these are approximating curves and have no physical 
interpretation, care must be taken outside the range of the data. You must study the resulting 
model graphically to determine that the model behaves properly between data points. 

Usually you would use the Multivariate Ratio of Polynomials Search procedure first to find an 
appropriate model and then fit that model with this program. 

Starting Values 
Starting values are determined by the program. You do not have to supply starting values. 

Assumptions and Limitations 
Usually, nonlinear regression is used to estimate the parameters in a nonlinear model without 
performing hypothesis tests. In this case, the usual assumption about the normality of the 
residuals is not needed. Instead, the main assumption needed is that the data may be well 
represented by the model.  

Data Structure 
The data are entered in two or more variables: one dependent variable and up to four independent 
variables.  
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Missing Values 
Rows with missing values in the variables being analyzed are ignored in the calculations. When 
only the value of the dependent variable is missing, predicted values are generated. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variables on which to run the analysis. 

Variables 

Y (Dependent) Variable 
Specifies a single dependent (Y) variable. 

Y Transformation 
Specifies a power transformation of the dependent variable. Available transformations are 

Y’=1/(Y*Y), Y’=1/Y, Y’=1/SQRT(Y), Y’=LN(Y), Y’=SQRT(Y), Y’=Y  (none), and Y’=Y*Y 

U, V, W, X (Independent) Variable 
Each option specifies an independent variable. At least one independent variable must be 
designated. 

U, V, W, X Transformation 
Specifies a power transformation of this independent variable. When the variable is referenced in 
the model, it refers to the transformed variable. Available transformations are 

X’=1/(X*X), X’=1/X, X’=1/SQRT(X), X’=LN(X), X’=SQRT(X), X’=X  (none), and X’=X*X 

Model 
These options specify the polynomials to be fit.  

Numerator Terms 
These options specify a list of terms that become the numerator polynomial of the model. 

The syntax of these lists of terms follows these rules: 

1. Individual terms may be listed as UiVj. If i or j is one, it may be omitted. For example, 
UV2X3 means (U)(V*V)(X*X*X) and U2 means U^2 which means U*U. A list of 
individual terms is formed by separating such terms with commas. 

2. The Oi notation includes all terms of a particular order. The order is the sum of the 
exponents of the variables in a term. For example, the order of the term U2VW3 is six. If 
you had selected three variables and included “O2” in the list of terms, you would include 
the terms U3, V3, W3, U2V, U2W, V2W, UV2, VW2, and UVW in your model. 
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3. The Si notation includes all single variables to the power i. For example, if you had 
selected three variables and included “S2” in the list of terms, you would include the 
terms U, V, W, U2, V2, and W2 in your model. 

4. The Ei notation includes all combinations of variables with at least one variable to the 
power i and none of the other variables to a power greater than i. For example, if you had 
selected three variables and included “E2” in the list of terms, you would include the 
terms U2, V2, W2, U2V, U2W, U2V2, U2W2, UV2, UW2, VW2, V2W, and V2W2 in 
your model. 

5. The Hi notation includes all terms in the hierarchical model of order i. For example, if 
you had selected two variables and included “H2” in the list of terms, you would include 
the terms U, V, U2, V2, and UV in your model. 

6. The P notation includes all simple paired terms. For example, if you had selected three 
variables and included “P” in the list of terms, you would include the terms UV, UW, and 
VW in your model. 

7. The T notation includes all triplet terms. For example, if you had selected four variables 
and included “T” in the list of terms, you would include the terms UVW, UVX, UWX, 
and UWX in your model. 

You can combine these notations however you like. If a term is specified twice, it will be 
included in the model only once. The order in which you specify terms is arbitrary. Examples are: 

E2 

U,V,E2,O1 

O1,U2V2 

Denominator Terms 
These options specify a list of terms that become the denominator polynomial of the model. The 
syntax of these options follow the same rules as those given for Numerator Terms above. 

Bias Correction 
This option controls whether a bias-correction factor is applied when the dependent variable has 
been transformed. Check it to correct the predicted values for the transformation bias. Uncheck it 
to leave the predicted values unchanged. See the Introduction to Curve Fitting chapter for a 
discussion of the amount of bias and the bias correction procedures used. 

Options Tab 
The following options control the nonlinear regression algorithm.  

Options 

Lambda 
This is the starting value of the lambda parameter as defined in Marquardt’s procedure. We 
recommend that you do not change this value unless you are very familiar with both your model 
and the Marquardt nonlinear regression procedure. Changing this value will influence the speed at 
which the algorithm converges. 
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Nash Phi 
Nash supplies a factor he calls phi for modifying lambda. When the residual sum of squares is 
large, increasing this value may speed convergence. 

Lambda Inc 
This is a factor used for increasing lambda when necessary. It influences the rate at which the 
algorithm converges. 

Lambda Dec 
This is a factor used for decreasing lambda when necessary. It also influences the rate at which 
the algorithm converges. 

Max Iterations 
This sets the maximum number of iterations before the program aborts. If the starting values you 
have supplied are not appropriate or the model does not fit the data, the algorithm may diverge. 
Setting this value to an appropriate number (say 50) causes the algorithm to abort after this many 
iterations. 

Zero 
This is the value used as zero by the nonlinear algorithm. Because of rounding error, values lower 
than this value are reset to zero. If unexpected results are obtained, you might try using a smaller 
value, such as 1E-16. Note that 1E-5 is an abbreviation for the number 0.00001. 

Reports Tab 
The following options control which reports and plots are displayed.  

Select Reports 

Iteration Report ... Residual Report 
These options specify which reports are displayed. 

Select Plots 

Residual Plot with Actual Y ... Probability Plot with Transformed Y 
These options specify which plots are displayed. 

Report Options 

Alpha Level 
The value of alpha for the asymptotic confidence limits of the parameter estimates and predicted 
values. Usually, this number will range from 0.1 to 0.001. A common choice for alpha is 0.05, but 
this value is a legacy from the age before computers when only printed tables were available. You 
should determine a value appropriate for your needs. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 
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Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 

Residual Plot Tab 
This section controls the residual plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 
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Probability Plot Tab 
The options on this panel control the appearance of the probability plot of the residuals. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {M} are replaced by the name of the variable 
and the model expression, respectively. Press the button on the right of the field to specify the 
font of the text.  
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Storage Tab 
The predicted values and residuals may be stored on the current database for further analysis. 
This group of options lets you designate which statistics (if any) should be stored and which 
variables should receive these statistics. The selected statistics are automatically stored to the 
current database while the program is executing. 

Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Storage Variables 

Store Predicted Values, Residuals, Lower Prediction Limit, and Upper Prediction 
Limit 
The predicted (Yhat) values, residuals (Y-Yhat), lower 100(1-alpha) prediction limits, and upper 
100(1-alpha) prediction limits may be stored in the variables specified here.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Fitting a Multivariate Ratio of Polynomials 
Model 
This section presents an example of how to fit a multivariate ratio of polynomials model. In this 
example, we will fit a custom model to the variables Y, U, and X of the FNREG4 database. The 
numerator will include the terms SQRT(X), SQRT(U), and UX. The denominator will include the 
terms SQRT(UX), XU, and U.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Ratio of Polynomials Fit – Many Variables window. 

1 Open the FNREG4 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file FNREG4.S0. 
• Click Open. 

2 Open the Ratio of Polynomials Fit – Many Variables window. 
• On the menus, select Analysis, then Curve Fitting, then Many Independent Variables, 

then Ratio of Polynomials Fit. The Ratio of Polynomials Fit – Many Variables 
procedure will be displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Ratio of Polynomials Fit – Many Variables window, select the Variables tab.  
• Double-click in the Y Variable box. This will bring up the variable selection window.  
• Select Y from the list of variables and then click Ok. 
• Double-click in the U Variable box. This will bring up the variable selection window.  
• Select U from the list of variables and then click Ok. 
• Select SQRT(z) in the U Transformation box. 
• Double-click in the X Variable box. This will bring up the variable selection window.  
• Select X from the list of variables and then click Ok. 
• Select SQRT(z) in the X Transformation box. 

4 Specify the reports. 
• On the Ratio of Polynomials Fit – Many Variables window, select the Reports tab.  
• Check the Residual Report box. Leave all other reports and plots checked. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Minimization Phase Section 
 
 Minimization Phase Section 
 

Itn Error Sum  
No. Lambda Lambda B0 B1 B2 B3 
0 0.0256219 0.00004 2.050828 0.7681349 -1.027562 1.102767 
1 2.246299E-02 0.000016 2.002186 0.960939 -1.019122 1.408448 
2 2.238311E-02 0.0000064 1.995856 0.9876834 -1.019637 1.488163 
3 2.238232E-02 2.56E-06 1.99552 0.989055 -1.019808 1.495897 
4 2.238232E-02 1.024E-06 1.99551 0.9890978 -1.019816 1.496198 
Convergence criterion met. 

 

This report displays the error (residual) sum of squares, lambda, and parameter estimates for each 
iteration. It allows you to observe the algorithm’s progress. 

Model Estimation Section 
 

 Model Estimation Section 
Parameter  Parameter Asymptotic Lower Upper 
Name Term Estimate Standard Error 95% C.L. 95% C.L. 
B0 Intercept 1.99551 0.0128966 1.970092 2.020928 
B1 U 0.9890978 5.595055E-02 0.8788245 1.099371 
B2 X -1.019816 1.188279E-02 -1.043235 -0.9963957 
B3 U2X2 1.496198 0.1342063 1.23169 1.760706 
B4 u2 1.009521 2.531414E-02 0.9596294 1.059413 
B5 ux -1.081743 2.945009E-02 -1.139787 -1.0237 
B6 u2x2 1.36935 0.1003615 1.171546 1.567153 
 
R-Squared 0.993757 
Iterations 4 
 
Symbolic Model 
Y = P1(U,X) / P2(U,X) 
P1(U,X) = B0+B1*U+B2*X+B3*U2X2 
P2(U,X) = 1+B4*U2+B5*UX+B6*U2X2 
where 
Y = Y 
U = SQRT(U) 
X = SQRT(X) 
 
Estimated Model 
((1.99551)+(.9890978)*(SQRT(U))-(1.019816)*(SQRT(X))+(1.496198)*(SQRT(U))^2  
*(SQRT(X))^2) / (1+(1.009521)*(SQRT(U))^2-(1.081743)*(SQRT(U))*(SQRT(X)) 
 +(1.36935)*(SQRT(U))^2*(SQRT(X))^2) 
   

This section reports the parameter estimates. 

Parameter Name 
The name of the parameter whose results are shown on this line. 

Term 
The name of the term in the model. Note that upper case letters are used for numerator terms and 
lower case letters are used for denominator terms. 

Parameter Estimate 
The estimated value of this parameter. 

Asymptotic Standard Error 
An estimate of the standard error of the parameter based on asymptotic (large sample) results. 
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Lower 95% C.L. 
The lower value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. 

Upper 95% C.L. 
The upper value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. 

R-Squared 
There is no direct R-Squared defined for nonlinear regression. This is a pseudo R-Squared 
constructed to approximate the usual R-Squared value used in multiple regression. We use the 
following generalization of the usual R-Squared formula: 

R-Squared = (ModelSS - MeanSS)/(TotalSS-MeanSS) 

where MeanSS is the sum of squares due to the mean, ModelSS is the sum of squares due to the 
model, and TotalSS is the total (uncorrected) sum of squares of Y (the dependent variable). 

This version of R-Squared tells you how well the model performs after removing the influence of 
the mean of Y. Since many nonlinear models do not explicitly include a parameter for the mean 
of Y, this R-Squared may be negative (in which case we set it to zero) or difficult to interpret. 
However, if you think of it as a direct extension of the R-Squared that you use in multiple 
regression, it will serve well for comparative purposes.  

Iterations 
The number of iterations that were completed before the nonlinear algorithm terminated. If the 
number of iterations is equal to the Maximum Iterations that you set, the algorithm did not 
converge, but was aborted. 

Symbolic Model 
The expanded model that was fit. Any of the shortcut terms like O1 and E2 are replaced by the 
individual terms that they represent. Note that one list is presented for the numerator and one for 
the denominator. Any transformations that were applied are also listed. 

Estimated Model 
This is a copy of the symbolic model in which the parameter names have been replaced by their 
estimates. This expression may be used as a variable transformation by copying it and pasting it 
into the Variable Info section of the database. 

Analysis of Variance Table 
   

Analysis of Variance Table 
  Sum of Mean 
Source DF Squares Square 
Mean 1 675.2869 675.2869 
Model 7 678.8495 96.97849 
Model (Adjusted) 6 3.562525 0.5937542 
Error 218 2.238232E-02 1.026712E-04 
Total (Adjusted) 224 3.584907 
Total 225 678.8718 

 

Source 
The labels of the various sources of variation. 
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DF 
The degrees of freedom. 

Sum of Squares 
The sum of squares associated with this term. Note that these sums of squares are based on Y, the 
dependent variable. Individual terms are defined as follows: 

Mean The sum of squares associated with the mean of Y. This may or may 
not be a part of the model. It is presented since it is the amount used 
to adjust the other sums of squares. 

Model The sum of squares associated with the model. 

Model (Adjusted) The model sum of squares minus the mean sum of squares. 

Error The sum of the squared residuals. This is often called the sum of 
squares error or just “SSE.” 

Total The sum of the squared Y values. 

Total (Adjusted) The sum of the squared Y values minus the mean sum of squares. 

Mean Square  
The sum of squares divided by the degrees of freedom. The Mean Square for Error is an estimate 
of the underlying variation in the data. 

Asymptotic Correlation Matrix of Parameters 
  

Asymptotic Correlation Matrix of Parameters 
 
 B0 B1 B2 B3 B4 B5 
B0 1.000000 -0.915182 -0.635169 -0.014330 -0.850024 -0.465655 
B1 -0.915182 1.000000 0.505466 -0.065987 0.969403 0.577334 
B2 -0.635169 0.505466 1.000000 -0.520124 0.301986 0.802626 
B3 -0.014330 -0.065987 -0.520124 1.000000 0.093673 -0.751426 
B4 -0.850024 0.969403 0.301986 0.093673 1.000000 0.405675 
B5 -0.465655 0.577334 0.802626 -0.751426 0.405675 1.000000 
B6 0.041458 -0.150335 -0.553984 0.991271 0.008270 -0.819380 

  

This report displays the asymptotic correlations of the parameter estimates. When these 
correlations are high (absolute value greater than 0.95), the precision of the parameter estimates is 
suspect. 

Predicted Values and Residuals Section 
 
 Predicted Values and Residuals Section 

Row  Predicted Lower 95.0% Upper 95.0% 
No. Y Value Value Value Residual 
1 1.981996 1.992756 1.971384 2.014127 -1.075969E-02 
2 2.028455 2.026659 2.006006 2.047311 1.796112E-03 
3 2.027451 2.014322 1.993759 2.034884 1.312937E-02 
. . . . . 
. . . . . 
. . . . . 

  

The section shows the values of the residuals and predicted values. If you have observations in 
which the independent variables are given, but the dependent (Y) variable was left blank, a 
predicted value and prediction limits will be generated and displayed in this report. 
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Residual Plots 
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Normal Probability Plot 
If the residuals are normally distributed, the data points of the normal probability plot will fall 
along a straight line. Major deviations from this ideal picture reflect departures from normality. 
Stragglers at either end of the normal probability plot indicate outliers, curvature at both ends of 
the plot indicates long or short distributional tails, convex or concave curvature indicates a lack of 
symmetry, and gaps or plateaus or segmentation in the normal probability plot may require a 
closer examination of the data or model. We do not recommend that you use this diagnostic with 
small sample sizes. 

Residual versus X Plot 
This is a scatter plot of the residuals versus each of the independent variables. The preferred 
pattern is a rectangular shape or point cloud. Any nonrandom pattern may require a redefining of 
the model. 

Predicting for New Values 
You can use your model to predict Y for new values of the independent variables. Here’s how. 
Add new rows to the bottom of your database containing the values of the independent variables 
that you want to create predictions for. Leave the dependent variable blank. When the program 
analyzes your data, it will skip these rows during the estimation phase, but it will generate 
predicted values for all rows, regardless of whether the Y variable is missing or not. 



  380-1 

Chapter 380 

Sum of Functions 
Models 
Introduction 
This program fits models that are the ratio of two linear expressions. The general form of a model 
is: 

g(Y)= A + A f (X)+ A f (X)+ A f (X)+ A f (X)+ A f (X)
1+ B (X)+ B h (X)+ B h (X)+ B h (X)+ B h (X)

+ e0 1 2 3 4 5
1h 2 3 4 5

1 2 3 4 5

1 2 3 4 5
 

where fi(X), g(Y), and hi(X) are standard functions such as SIN(X), LN(X+1), SQRT(X/2), etc. 
The A0, A1, ..., B5 are constants (parameters) to be estimated from the data. 

These models approximate many different curves. They offer a much wider variety of curves than 
the usual polynomial models.  

Since these are approximating curves and have no physical interpretation, care must be taken 
outside the range of the data. You must study the resulting model graphically to determine that 
the model behaves properly between data points. 

Starting Values 
Starting values are determined by the program from the data. You do not have to supply starting 
values. 

Assumptions and Limitations 
Usually, nonlinear regression is used to estimate the parameters in a nonlinear model without 
performing hypothesis tests. In this case, the usual assumption about the normality of the 
residuals is not needed. Instead, the main assumption needed is that the data may be well 
represented by the model.  

Data Structure 
The data are entered in two variables: one dependent variable and one independent variable.  
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Missing Values 
Rows with missing values in the variables being analyzed are ignored in the calculations. When 
only the value of the dependent variable is missing, predicted values are generated. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Variables 

Y (Dependent) Variable 
Specifies a single dependent (Y) variable. 

Y Transformation 
Specifies a power transformation of the dependent variable. Available transformations are 

Y’=1/(Y*Y), Y’=1/Y, Y’=1/SQRT(Y), Y’=LN(Y), Y’=SQRT(Y), Y’=Y  (none), and Y’=Y*Y 

X (Independent) Variable 
Specifies a single independent (X) variable.  

Model 

Bias Correction 
This option controls whether a bias-correction factor is applied when the dependent variable has 
been transformed. Check it to correct the predicted values for the transformation bias. Uncheck it 
to leave the predicted values unchanged. See the Introduction to Curve Fitting chapter for a 
discussion of the amount of bias and the bias correction procedures used. 

Model – Numerator and Denominator 
Terms 
These options specify up to five terms for use as the numerator and/or denominator of the model. 
You do not have to have a denominator. 

Function 
Select one of the eighteen possible transformations for this term. 

f(z)=1/(z^2) f(z)=1/z f(z)=1/SQRT(z) 
f(z)=LN(z) f(z)=SQRT(z) f(z)=z  (none) 
f(z)=z^2=z*z f(z)=z^3 f(z)=z^4 
f(z)=z^5 f(z)=EXP(z) f(z)=EXP(-z) 
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f(z)=SIN(z) f(z)=COS(z) f(z)=TAN(z) 
f(z)=SINH(z) f(z)=COSH(z) f(z)=TANH(z) 

where 

z = MX+A; M and A are constants that are supplied in the two options below. 

Add (A) 
X may be scaled using the equation z=MX+A. This option sets the value of A. If you want to 
ignore this option, set A=0. 

Multiply (M) 
X may be scaled using the equation z=MX+A. This option sets the value of M. If you want to 
ignore this option, set M=1. 

Options Tab 
The following options control the nonlinear regression algorithm.  

Options 

Lambda 
This is the starting value of the lambda parameter as defined in Marquardt’s procedure. We 
recommend that you do not change this value unless you are very familiar with both your model 
and the Marquardt nonlinear regression procedure. Changing this value will influence the speed at 
which the algorithm converges. 

Nash Phi 
Nash supplies a factor he calls phi for modifying lambda. When the residual sum of squares is 
large, increasing this value may speed convergence. 

Lambda Inc 
This is a factor used for increasing lambda when necessary. It influences the rate at which the 
algorithm converges. 

Lambda Dec 
This is a factor used for decreasing lambda when necessary. It also influences the rate at which 
the algorithm converges. 

Max Iterations 
This sets the maximum number of iterations before the program aborts. If the starting values you 
have supplied are not appropriate or the model does not fit the data, the algorithm may diverge. 
Setting this value to an appropriate number (say 50) causes the algorithm to abort after this many 
iterations. 

Zero 
This is the value used as zero by the nonlinear algorithm. Because of rounding error, values lower 
than this value are reset to zero. If unexpected results are obtained, you might try using a smaller 
value, such as 1E-16. Note that 1E-5 is an abbreviation for the number 0.00001. 
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Reports Tab 
The following options control which reports and plots are displayed.  

Select Reports 

Iteration Report ... Residual Report 
These options specify which reports are displayed. 

Select Plots 

Function Plot with Actual Y ... Probability Plot with Transformed Y 
These options specify which plots are displayed. 

Report Options 

Alpha Level 
The value of alpha for the asymptotic confidence limits of the parameter estimates and predicted 
values. Usually, this number will range from 0.1 to 0.001. A common choice for alpha is 0.05, but 
this value is a legacy from the age before computers when only printed tables were available. You 
should determine a value appropriate for your needs. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 

Function Plot and Residual Plot Tabs 
This section controls the plot(s) showing the data with the fitted function line overlain on top and 
the residual plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 
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Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Line (Function Plot) 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Display Prediction Limits (Function Plot) 
This option controls whether the prediction limits (confidence limits on the predicted values) are 
displayed.  

Number of Points (Function Plot) 
This option specifies at how many points the estimated function is calculated to create the overlay 
function that is displayed on the Function Plots. A value between 50 and 150 is usually sufficient. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. {M} is 
replaced by the model expression. Press the button on the right of the field to specify the font of 
the text. 

Probability Plot Tab 
The options on this panel control the appearance of the probability plot of the residuals. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 
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Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {M} are replaced by the name of the variable 
and the model expression, respectively. Press the button on the right of the field to specify the 
font of the text.  

Storage Tab 
The predicted values and residuals may be stored on the current database for further analysis. 
This group of options lets you designate which statistics (if any) should be stored and which 
variables should receive these statistics. The selected statistics are automatically stored to the 
current database while the program is executing. 

Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Storage Variables 

Store Predicted Values, Residuals, Lower Prediction Limit, and Upper Prediction 
Limit 
The predicted (Yhat) values, residuals (Y-Yhat), lower 100(1-alpha) prediction limits, and upper 
100(1-alpha) prediction limits may be stored in the variables specified here.  
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Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Fitting a Sum of Functions Model 
This section presents an example of how to fit a sum of functions model. In this example, we will 
fit the model 

Y=A0+A1/(X+0.5)+SIN(X/2)+A3TANH(X) 

to the variables Y and X of the FNREG1 database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Sum of Functions Models window. 

1 Open the FNREG1 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file FNREG1.S0. 
• Click Open. 

2 Open the Sum of Functions Models window. 
• On the menus, select Analysis, then Curve Fitting, then One Independent Variable, 

then Sum of Functions Models. The Sum of Functions Models procedure will be 
displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Sum of Functions Models window, select the Variables tab.  
• Double-click in the Y Variable box. This will bring up the variable selection window.  
• Select Y from the list of variables and then click Ok. 
• Double-click in the X Variable box. This will bring up the variable selection window.  
• Select X from the list of variables and then click Ok. 
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• Under the Numerator Terms heading, select 1/z in the first Function box. 
• Under the Numerator Terms heading, enter 0.5 in the first Add (A) box. 
• Under the Numerator Terms heading, select SIN(z) in the second Function box. 
• Under the Numerator Terms heading, enter 0.5 in the second Mult (M) box. 
• Under the Numerator Terms heading, select Tanh(z) in the third Function box. 

4 Specify the reports. 
• On the Sum of Functions Models window, select the Reports tab.  
• Check the Residual Report box. Leave all other reports and plots checked. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Minimization Phase Section 
 
 Minimization Phase Section 
 

Itn Error Sum  
No. Lambda Lambda A0 A1 A2 A3 
0 5.915745 0.00004 2.070158 4.885924 1.059697 7.084624 
Convergence criterion met. 

 

This report displays the error (residual) sum of squares, lambda, and parameter estimates for each 
iteration. It allows you to observe the algorithm’s progress. Since no denominator terms were 
selected, the model was solved on the first iteration using standard multiple linear regression. 

Model Estimation Section 
 

 Model Estimation Section 
 

Parameter Parameter Asymptotic Lower Upper 
Name Estimate Standard Error 95% C.L. 95% C.L. 
A0 2.070158 1.075332 -6.435943E-02 4.204676 
A1 4.885924 0.5628729 3.768631 6.003218 
A2 1.059697 6.202012E-02 0.9365882 1.182806 
A3 7.084624 0.9798195 5.139698 9.029551 
 
Dependent Y 
Independent X 
Model Y=(A0+A1*(1/(X+.5))+A2*(SIN((.5*X)))+A3*(TANH(X))) / (1) 
R-Squared 0.956784 
Iterations 0 
Estimated Model 
(2.070158+(4.885924)*1/(X+.5)+(1.059697)*SIN((.5*X))+(7.084624)*TANH(X)) 
 

Parameter Name 
The name of the parameter whose results are shown on this line. 

Parameter Estimate 
The estimated value of this parameter. 
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Asymptotic Standard Error 
An estimate of the standard error of the parameter based on asymptotic (large sample) results. 

Lower 95% C.L. 
The lower value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. 

Upper 95% C.L. 
The upper value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. 

Model 
The model that was estimated. Use this to double check that the model estimated was what you 
wanted. Note that the “/(1)” at the end emphasizes that there was no denominator specified. 

R-Squared 
There is no direct R-Squared defined for nonlinear regression. This is a pseudo R-Squared 
constructed to approximate the usual R-Squared value used in multiple regression. We use the 
following generalization of the usual R-Squared formula: 

R-Squared = (ModelSS - MeanSS)/(TotalSS-MeanSS) 

where MeanSS is the sum of squares due to the mean, ModelSS is the sum of squares due to the 
model, and TotalSS is the total (uncorrected) sum of squares of Y (the dependent variable). 

This version of R-Squared tells you how well the model performs after removing the influence of 
the mean of Y. Since many nonlinear models do not explicitly include a parameter for the mean 
of Y, this R-Squared may be negative (in which case we set it to zero) or difficult to interpret. 
However, if you think of it as a direct extension of the R-Squared that you use in multiple 
regression, it will serve well for comparative purposes.  

Iterations 
The number of iterations that were completed before the nonlinear algorithm terminated. If the 
number of iterations is equal to the Maximum Iterations that you set, the algorithm did not 
converge, but was aborted. 

Estimated Model 
The model that was estimated with the parameters replaced with their estimated values. This 
expression may be copied and pasted as a variable transformation in the spreadsheet. This will 
allow you to predict for additional values of X. 

Analysis of Variance Table 
   

Analysis of Variance Table 
  Sum of Mean 
Source DF Squares Square 
Mean 1 10559.48 10559.48 
Model 4 10690.45 2672.613 
Model (Adjusted) 3 130.9726 43.65752 
Error 96 5.915745 6.162234E-02 
Total (Adjusted) 99 136.8883 
Total 100 10696.37 
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Source 
The labels of the various sources of variation. 

DF 
The degrees of freedom. 

Sum of Squares 
The sum of squares associated with this term. Note that these sums of squares are based on Y, the 
dependent variable. Individual terms are defined as follows: 

Mean The sum of squares associated with the mean of Y. This may or may 
not be a part of the model. It is presented since it is the amount used 
to adjust the other sums of squares. 

Model The sum of squares associated with the model. 

Model (Adjusted) The model sum of squares minus the mean sum of squares. 

Error The sum of the squared residuals. This is often called the sum of 
squares error or just “SSE.” 

Total The sum of the squared Y values. 

Total (Adjusted) The sum of the squared Y values minus the mean sum of squares. 

Mean Square  
The sum of squares divided by the degrees of freedom. The Mean Square for Error is an estimate 
of the underlying variation in the data. 

Asymptotic Correlation Matrix of Parameters 
  

Asymptotic Correlation Matrix of Parameters 
 A0 A1 A2 A3 
A0 1.000000 -0.972405 0.786167 -0.999209 
A1 -0.972405 1.000000 -0.831952 0.964719 
A2 0.786167 -0.831952 1.000000 -0.779440 
A3 -0.999209 0.964719 -0.779440 1.000000 

  

This report displays the asymptotic correlations of the parameter estimates. When these 
correlations are high (absolute value greater than 0.95), the precision of the parameter estimates is 
suspect. 

Predicted Values and Residuals Section 
 
 Predicted Values and Residuals Section 
 

Row   Predicted Lower 95.0% Upper 95.0% 
No. X Y Value Value Value Residual 
1 0.5 10.16989 10.49218 9.92255 11.06181 -0.3222909 
2 0.5959596 10.83415 10.62378 10.07584 11.17172 0.2103729 
3 0.6919192 10.93412 10.77391 10.24289 11.30493 0.1602088 
4 0.7878788 10.71519 10.92673 10.40745 11.44602 -0.2115456 
. . . . . . . 
. . . . . . . 
. . . . . . . 
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The section shows the values of the residuals and predicted values. If you have observations in 
which the independent variable is given, but the dependent (Y) variable was left blank, a 
predicted value and prediction limits will be generated and displayed in this report. 

Residual Plots 
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Normal Probability Plot 
If the residuals are normally distributed, the data points of the normal probability plot will fall 
along a straight line. Major deviations from this ideal picture reflect departures from normality. 
Stragglers at either end of the normal probability plot indicate outliers, curvature at both ends of 
the plot indicates long or short distributional tails, convex or concave curvature indicates a lack  

of symmetry, and gaps or plateaus or segmentation in the normal probability plot may require a 
closer examination of the data or model. We do not recommend that you use this diagnostic with 
small sample sizes. 

Residual versus X Plot 
This is a scatter plot of the residuals versus the independent variable, X. The preferred pattern is a 
rectangular shape or point cloud. Any nonrandom pattern may require a redefining of the model. 

Function Plot 
This plot displays the data along with the estimated function and prediction limits. It is useful in 
deciding if the fit is adequate and the prediction limits are appropriate. 
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In poorly fit models, we have found that it is often necessary to disable the prediction limits so 
that the data will show up. In these cases, the prediction limits may be so wide that the scale of 
the plot does not allow the data values to be separated. 

Predicting for New Values 
You can use your model to predict Y for new values of X. Here’s how. Add new rows to the 
bottom of your database containing the values of the independent variable that you want to create 
predictions for. Leave the dependent variable blank. When the program analyzes your data, it will 
skip these rows during the estimation phase, but it will generate predicted values for all rows, 
regardless of whether the Y variable is missing or not. 
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Chapter 385 

User-Written 
Models 
Introduction 
This procedure is a special case of the Nonlinear Regression procedure in which there is only a 
single variable in the model. In this model, there are one or more parameters to be estimated from 
the data. An example of such a model is 

Y = A + B EXP(-CX) 

This program estimates the parameters in nonlinear models using the Levenberg-Marquardt 
nonlinear least-squares algorithm as presented in Nash (1987). We have implemented Nash’s 
MRT algorithm with numerical derivatives. This has been a popular algorithm for solving 
nonlinear least squares problems, since the use of numerical derivatives means you do not have to 
supply program code for the derivatives. 

Starting Values 
Starting values must be provided. Instructions for calculating reasonable starting values are given 
in the chapter on Nonlinear Regression. 

Assumptions and Limitations 
Usually, nonlinear regression is used to estimate the parameters in a nonlinear model without 
performing hypothesis tests. In this case, the usual assumption about the normality of the 
residuals is not needed. Instead, the main assumption needed is that the data may be well 
represented by the model.  

Data Structure 
The data are entered in one dependent variable and one independent variable. An example of data 
appropriate for this procedure, taken from page 476 of Draper and Smith (1981), is shown below. 

In this example, the dependent variable (Y) is the proportion of available chlorine in a certain 
quantity of chlorine solution and the independent variable (X) is the length of time in weeks since 
the product was produced. When the product is produced, the proportion of chlorine is 0.50. 
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During the 8 weeks that it takes to reach the consumer, the proportion declines to 0.49. The 
hypothesized model for predicting Y from X is  

Y = A + (0.49 - A) EXP(- B(X-8)) + e. 

Here, A and B are the parameters and e is the error or residual. Note that only 8 of the 44 
observations contained in the DS476 database are displayed here. 

DS476 dataset (subset) 

X Y 
8 0.49 
8 0.49 
10 0.48 
10 0.47 
10 0.48 
10 0.47 
12 0.46 
12 0.46 

Missing Values 
Rows with missing values in the variables being analyzed are ignored in the calculations. When only the 
value of the dependent variable is missing, predicted values are generated. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
These panels specify the variables and model used in the analysis. 

Variables 

Y (Dependent) Variable 
Specifies a single dependent (Y) variable from the current database.  

Y Transformation 
Specifies a power transformation of the dependent variable. Available transformations are 

Y’=1/(Y*Y), Y’=1/Y, Y’=1/SQRT(Y), Y’=LN(Y), Y’=SQRT(Y), Y’=Y  (none), and Y’=Y*Y 
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Model 

Bias Correction 
This option controls whether a bias-correction factor is applied when the dependent variable has 
been transformed. Check it to correct the predicted values for the transformation bias. Uncheck it 
to leave the predicted values unchanged. See the Introduction to Curve Fitting chapter for a 
discussion of the amount of bias and the bias correction procedures used. 

Model 
This box contains the nonlinear equation. Note that you do not include the “Y=” portion of the 
expression--it is assumed. 

This expression is made up of  

1. Symbols:  +, -, *,  /,  ^, <, >, =, (, and ). 

2. Functions:  
ABS(X) Absolute value of X ASN(X) Arc sine of X 
ATN (X) Arc tangent of X COS(X) Cosine of X 
EXP(X) Exponential of X INT(X) Integer part of X 
LN(X) Log base e of X LOG(X) Log base 10 of X 
SGN(X) Signature of X SIN(X) Sine of X 
SQR(X) Square root of X TAN(X) Tangent of X 
TNH(X) Hyperbolic tangent of X 

3. One variable referenced by name. For example, if your independent variable is called 
DOSE, you would use the word DOSE in the equation. 

4. Parameters which are defined below.  

5. Constants.  

The syntax of the model expression follows that of the variable transformations, so we will not go 
into syntax here, but refer you to the Variable Transformations chapter. Note that only a subset of 
the functions available as transformations are also available here. 

Examples of valid models are 

A+B*X^C 

A+B*EXP(-C*X) 

(A0 + A1*X + A2*X) / (1 + B1*X + B2*X) 

Parameter 
This is the name of a parameter to be estimated as it appears in the model statement above. The 
parameter name is any combination of letters and numbers, except that the name must begin with 
a letter. You should not use symbols in the parameter name. All letters are converted to upper 
case internally, so it does not matter whether you use upper or lower case. The name cannot be 
one of the internal mathematical functions like SIN or TAN, as this will confuse the function 
parser. 

The name may be as long as you want, but, for readability, you should keep it short.  
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Minimum, Starting Value, Maximum 
This box contains the minimum value, staring value, and maximum value for the parameter. The 
three numbers are separated by blanks or commas. 

• Minimum Value 
This is the smallest value that the parameter can take on. The algorithm searches for a value 
between this and the Maximum Value. If you want to search in an unlimited range, enter a 
large negative number such as -1E9, which is -1000000000. 

Since this is a search algorithm, the narrower the range that you search in, the quicker the 
process will converge. 

Care should be taken to specify minima and maxima that keep calculations in check. 
Suppose, for example, that your equation includes the expression LOG(B*X) and that values 
of X are positive. Since you cannot take the logarithm of zero or a negative number, you 
should set the minimum of B as a positive number. This will insure that the estimation 
procedure will not fail because of impossible calculations. 

• Starting Value 
This is the beginning value of the parameter. The algorithm searches for a value between the 
Minimum Value and the Maximum Value, beginning with this number. The closer this value 
is to the final value, the quicker the algorithm will converge. 

Although specific instructions for finding starting values are given at the first of this chapter, 
we would like to make the following suggestions here. 

1. Make sure that the starting values you supply are legitimate. For example, if the 
model you were estimating included the phrase 1/B, you would not want to start with 
B=0. 

2. Before you go to a lot of effort, make a few trial runs using starting values of 0.0, 0.5, 
and 1.0. Often, one of these values will converge. 

3. If you have a large number of observations, take a small sample of observations from 
your original database and work with this subset database. When you find a set of 
starting values that converges on this subset database, use the resulting parameter 
estimates as starting values with the complete database. Since nonlinear regression is 
iterative and each iteration must pass through the complete database, this can save a 
considerable amount of time while you are searching for starting values. 

• Maximum Value 
This is the largest value that the parameter can take on. The algorithm searches for a value 
between the Minimum Value and this value, beginning at the Starting Value. If you want to 
search in an unlimited range, enter a large positive number such as 1E9, which is 
1000000000.  

Since this is a search algorithm, the narrower the range that you search in, the quicker the 
process will converge. 

Care should be taken to specify minima and maxima that keep calculations in check. 
Suppose, for example, that your equation includes the expression LOG(B*X) and that values 
of X are negative. Since you cannot take the logarithm of zero or a negative number, you 
should set the maximum of B as a negative number near zero. This will insure that the 
estimation procedure will not fail because of impossible calculations. 
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Options Tab 
The following options control the nonlinear regression algorithm.  

Options 

Lambda 
This is the starting value of the lambda parameter as defined in Marquardt’s procedure. We 
recommend that you do not change this value unless you are very familiar with both your model 
and the Marquardt nonlinear regression procedure. Changing this value will influence the speed at 
which the algorithm converges. 

Nash Phi 
Nash supplies a factor he calls phi for modifying lambda. When the residual sum of squares is 
large, increasing this value may speed convergence. 

Lambda Inc 
This is a factor used for increasing lambda when necessary. It influences the rate at which the 
algorithm converges. 

Lambda Dec 
This is a factor used for decreasing lambda when necessary. It also influences the rate at which 
the algorithm converges. 

Max Iterations 
This sets the maximum number of iterations before the program aborts. If the starting values you 
have supplied are not appropriate or the model does not fit the data, the algorithm may diverge. 
Setting this value to an appropriate number (say 50) causes the algorithm to abort after this many 
iterations. 

Zero 
This is the value used as zero by the nonlinear algorithm. Because of rounding error, values lower 
than this value are reset to zero. If unexpected results are obtained, you might try using a smaller 
value, such as 1E-16. Note that 1E-5 is an abbreviation for the number 0.00001. 

Reports Tab 
The following options control which reports and plots are displayed.  

Select Reports 

Iteration Report ... Residual Report 
These options specify which reports are displayed. 

Select Plots 

Function Plot with Actual Y ... Probability Plot with Transformed Y 
These options specify which plots are displayed. 
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Report Options 

Alpha Level 
The value of alpha for the asymptotic confidence limits of the parameter estimates and predicted 
values. Usually, this number will range from 0.1 to 0.001. A common choice for alpha is 0.05, but 
this value is a legacy from the age before computers when only printed tables were available. You 
should determine a value appropriate for your needs. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 

Function Plot and Residual Plot Tabs 
This section controls the plot(s) showing the data with the fitted function line overlain on top and 
the residual plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 
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Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Line (Function Plot) 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Display Prediction Limits (Function Plot) 
This option controls whether the prediction limits (confidence limits on the predicted values) are 
displayed.  

Number of Points (Function Plot) 
This option specifies at how many points the estimated function is calculated to create the overlay 
function that is displayed on the Function Plots. A value between 50 and 150 is usually sufficient. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. {M} is 
replaced by the model expression. Press the button on the right of the field to specify the font of 
the text. 

Probability Plot Tab 
The options on this panel control the appearance of the probability plot of the residuals. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 
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Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {M} are replaced by the name of the variable 
and the model expression, respectively. Press the button on the right of the field to specify the 
font of the text.  

Storage Tab 
The predicted values and residuals may be stored on the current database for further analysis. 
This group of options lets you designate which statistics (if any) should be stored and which 
variables should receive these statistics. The selected statistics are automatically stored to the 
current database while the program is executing. 

Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Storage Variables 

Store Predicted Values, Residuals, Lower Prediction Limit, and Upper Prediction 
Limit 
The predicted (Yhat) values, residuals (Y-Yhat), lower 100(1-alpha) prediction limits, and upper 
100(1-alpha) prediction limits may be stored in the variables specified here.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Fitting a User-Written Model 
This section presents an example of how to run a nonlinear regression analysis of the data that 
was presented above in the Data Structure section. In this example, we will fit the model  

Y = A + (0.49 - A) EXP(- B(X-8)) 

to the data contained in the variables Y and X on the database DS476.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the User-Written Models window. 

1 Open the DS476 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file DS476.S0. 
• Click Open. 

2 Open the User-Written Models window. 
• On the menus, select Analysis, then Curve Fitting, then One Independent Variable, 

then User-Written Models. The User-Written Models procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the User-Written Models window, select the Variables tab.  
• Double-click in the Y Variable box. This will bring up the variable selection window.  
• Select Y from the list of variables and then click Ok. 
• Enter A+(0.49-A)*EXP(-B*(X-8)) in the Model box. 
• Enter A in the first Parameter box. 
• Enter 0 0.1 1 in the first Minimum, Starting Value, Maximum box. 
• Enter B in the second Parameter box. 
• Enter 0 0.013 1 in the second Minimum, Starting Value, Maximum box. 

4 Specify the reports. 
• On the User-Written Models window, select the Reports tab.  
• Check the Residual Report box. Leave all other reports and plots checked. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Minimization Phase Section 
 
 Minimization Phase Section 
 

Itn Error Sum  
No. of Squares Lambda A B   
0 1.643321E-02 0.00004 0.1 0.013   
1 0.0147339 0.016 0.1464944 1.375224E-02   
. . . . .  
. . . . . 
13 5.00168E-03 0.2684354 0.3901402 0.101633   
Convergence criterion met. 

 

This report displays the error (residual) sum of squares, lambda, and parameter estimates for each 
iteration. It allows you to observe the algorithm’s progress toward the solution. 

Model Estimation Section 
 

 Model Estimation Section 
 

Parameter Parameter Asymptotic Lower Upper 
Name Estimate Standard Error 95% C.L. 95% C.L. 
A 0.3901402 5.033759E-03 0.3799816 0.4002987 
B 0.101633 1.336168E-02 7.466801E-02 0.1285979 
 
Dependent Y 
Independent X 
Model Y = A+(0.49-A)*EXP(-B*(X-8)) 
R-Squared 0.873375 
Iterations 13 
Estimated Model 
(.3901402)+(0.49-(.3901402))*EXP(-(.101633)*((X)-8)) 

   

Parameter Name 
The name of the parameter whose results are shown on this line. 

Parameter Estimate 
The estimated value of this parameter. 

Asymptotic Standard Error 
An estimate of the standard error of the parameter based on asymptotic (large sample) results. 

Lower 95% C.L. 
The lower value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. 

Upper 95% C.L. 
The upper value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. 

Model 
The model that was estimated. Use this to double check that the model estimated was what you 
wanted. 
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R-Squared 
There is no direct R-Squared defined for nonlinear regression. This is a pseudo R-Squared 
constructed to approximate the usual R-Squared value used in multiple regression. We use the 
following generalization of the usual R-Squared formula: 

R-Squared = (ModelSS - MeanSS)/(TotalSS-MeanSS) 

where MeanSS is the sum of squares due to the mean, ModelSS is the sum of squares due to the 
model, and TotalSS is the total (uncorrected) sum of squares of Y (the dependent variable). 

This version of R-Squared tells you how well the model performs after removing the influence of 
the mean of Y. Since many nonlinear models do not explicitly include a parameter for the mean 
of Y, this R-Squared may be negative (in which case we set it to zero) or difficult to interpret. 
However, if you think of it as a direct extension of the R-Squared that you use in multiple 
regression, it will serve well for comparative purposes.  

Iterations 
The number of iterations that were completed before the nonlinear algorithm terminated. If the 
number of iterations is equal to the Maximum Iterations that you set, the algorithm did not 
converge, but was aborted. 

Estimated Model 
The model that was estimated with the parameters replaced with their estimated values. This 
expression may be copied and pasted as a variable transformation in the spreadsheet. This will 
allow you to predict for additional values of X. 

Analysis of Variance Table 
   

Analysis of Variance Table 
  Sum of Mean 
Source DF Squares Square 
Mean 1 7.9475 7.9475 
Model 2 7.981998 3.990999 
Model (Adjusted) 1 3.449832E-02 3.449832E-02 
Error 42 5.00168E-03 1.190876E-04 
Total (Adjusted) 43 0.0395 
Total 44 7.987 

 

Source 
The labels of the various sources of variation. 

DF 
The degrees of freedom. 

Sum of Squares 
The sum of squares associated with this term. Note that these sums of squares are based on Y, the 
dependent variable. Individual terms are defined as follows: 

Mean The sum of squares associated with the mean of Y. This may or may 
not be a part of the model. It is presented since it is the amount used 
to adjust the other sums of squares. 

Model The sum of squares associated with the model. 
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Model (Adjusted) The model sum of squares minus the mean sum of squares. 

Error The sum of the squared residuals. This is often called the sum of 
squares error or just “SSE.” 

Total The sum of the squared Y values. 

Total (Adjusted) The sum of the squared Y values minus the mean sum of squares. 

Mean Square  
The sum of squares divided by the degrees of freedom. The Mean Square for Error is an estimate 
of the underlying variation in the data. 

Asymptotic Correlation Matrix of Parameters 
  

Asymptotic Correlation Matrix of Parameters 
 A B 
A 1.000000 0.887330 
B 0.887330 1.000000 

  

This report displays the asymptotic correlations of the parameter estimates. When these 
correlations are high (absolute value greater than 0.95), the precision of the parameter estimates is 
suspect. 

Predicted Values and Residuals Section 
 
 Predicted Values and Residuals Section 
 

Row   Predicted Lower 95.0% Upper 95.0% 
No. X Y Value Value Value Residual 
1 8 0.49 0.49 0.4679772 0.5120228 0 
2 8 0.49 0.49 0.4679772 0.5120228 0 
3 10 0.48 0.4716319 0.4494232 0.4938406 0.0083681 
4 10 0.47 0.4716319 0.4494232 0.4938406 -0.0016319 
. . . . . 
. . . . . 
. . . . . 

  

The section shows the values of the residuals and predicted values. If you have observations in 
which the independent variable is available, but the dependent (Y) variable was missing, a 
predicted value and prediction limits will be generated and displayed in this report. 
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Residual Plots 
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Normal Probability Plot 
If the residuals are normally distributed, the data points of the normal probability plot will fall 
along a straight line. Major deviations from this ideal picture reflect departures from normality. 
Stragglers at either end of the normal probability plot indicate outliers, curvature at both ends of 
the plot indicates long or short distributional tails, convex or concave curvature indicates a lack of 
symmetry, and gaps or plateaus or segmentation in the normal probability plot may require a 
closer examination of the data or model. We do not recommend that you use this diagnostic with 
small sample sizes. 

Residual versus X Plot 
This is a scatter plot of the residuals versus the independent variable, X. The preferred pattern is a 
rectangular shape or point cloud. Any nonrandom pattern may require a redefining of the model. 

Function Plot 
This plot displays the data along with the estimated function and prediction limits. It is useful in 
deciding if the fit is adequate and the prediction limits are appropriate. 

In poorly fit models, we have found that it is often necessary to disable the prediction limits so 
that the data will show up. In these cases, the prediction limits may be so wide that the scale of 
the plot does not allow the data values to be separated. 
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Predicting for New Values 
You can use your model to predict Y for new values of X. Here’s how. Add new rows to the 
bottom of your database containing the values of the independent variable that you want to create 
predictions for. Leave the dependent variable blank. When the program analyzes your data, it will 
skip these rows during the estimation phase, but it will generate predicted values for all rows, 
regardless of whether the Y variable is missing or not. 
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Chapter 390 

Area Under Curve 
Introduction 
Suppose you are studying a drug that influences plasma concentration. A popular method of 
looking at the absorption and elimination properties of the drug is to follow the plasma 
concentration across time. When the concentration values are plotted on the vertical axis, the time 
values are plotted on the horizontal axis, and the points are joined with a line, a curve results. One 
method of making comparisons among different types of drugs and different doses of the same 
drug is to compute the area under the curve (AUC). 

AUC is computed by the trapezoidal rule as follows: 

( )(AUC T T C C Bi i i i
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= − + −+ +
=

−
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)  

where is the iTi
th time value, C is the ii

th concentration value, n is the number of time values, and 
B is the baseline value. The area between the baseline and the curve is computed by this formula. 

The AUC should be calculated from zero to a time at which the concentration has returned to its 
regular levels. Also, when making comparisons, you should insure that all AUC’s are computed 
for the same time intervals. 

Data Structure 
Two different data structures may be used to store data for analysis by this procedure. In the first 
format, the X (time) values are stored in one variable and the Y (concentration) values are stored 
in other variables, one variable per group. The AUC dataset is in this format. 

In the other format, the X values are stored in one variable, group values are stored in a second 
variable, and the measurements are stored in a third variable. The data in the AUC dataset was 
reorganized to be in this format in the AUC1 dataset. 
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Format Type 1 
AUC dataset 

Time P1 P2 P3 
0 5 4 6 
1 15 14 17 
2 20 16 22 
3 21 18 23 
4 21 17 25 
5 19 15 22 
10 15 12 18 
50 6 3 7 

Format Type 2 
AUC1 dataset  

Time Subject Concentration 
0 P1 5 
1 P1 15 
2 P1 20 
3 P1 21 
4 P1 21 
5 P1 19 
10 P1 15 
50 P1 6 
0 P2 4 
1 P2 14 
2 P2 16 
3 P2 18 
4 P2 17 
5 P2 15 
10 P2 12 
50 P2 3 
0 P3 6 
1 P3 17 
2 P3 22 
3 P3 23 
4 P3 25 
5 P3 22 
10 P3 18 
50 P3 7 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variables on which to run the analysis. 

Variables 

Y Variables 
Specify one or more vertical (Y) variables. These variables contain the measurements. 

When multiple Y variables are specified, a separate AUC calculation is made for each variable. 
When only one Y variable is given, you must also specify a Break Variable. You cannot specify 
both a break variable and multiple Y variables. 

X Variable 
This option specifies the horizontal (X) variable. Usually, X represents the time at which the 
measurement was made. 

Break Variable 
Specify an optional break variable used to separate the X and Y variables into groups. A separate 
AUC calculation is made for each unique value of this variable. When this variable is specified, 
only one Y variable may be used.  

Model 

Baseline 
This option specifies a baseline value for the area under the curve. Usually, this value is zero. 

The area between a horizontal line at this value and the data points is calculated. Points below this 
amount count as negative area (they are subtracted). Points above this value are added. The 
trapezoidal formula is used to calculate the area. 

Reports Tab 

Select Reports 

AUC Report and Data Report 
These options specify whether the corresponding reports are displayed. 

Select Plots 

Data Plot 
This option specifies whether to display the data plot. 
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Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, whereas the double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option lets you select whether to display only values, value labels, or both. Use this option if 
you want the table to automatically attach labels to the values (like 1=Yes, 2=No, etc.). See the 
section on specifying Value Labels elsewhere in this manual.  

Data Plot Tab 
These options specify the data plot.  

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} are replaced by the name of the Y variable and the 
characters {X} are replaced by the name of the X variable. Press the button on the right of the 
field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 
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Baseline 
Check this box to cause a horizontal line representing the baseline to be displayed. The Baseline 
value is specified on the Variables tab. The color and thickness of the line can be changed using 
the button just below this check box. 

Show Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies legend label. The characters {G} are replaced by the name of the break variable. 

Titles 

Plot Title 
This is the text of the title. Press the button on the right of the field to specify the font of the text. 

Symbols 
These options specify the attributes of the symbols used for each appraiser in the plots. 

Symbol 1 - 15 
These options specify the symbols used in the plot of each appraiser. The first symbol is used by 
the first appraiser, the second symbol by the second appraiser, and so on. These symbols are 
provided to allow the various appraisers to be easily identified, even on black and white printers. 

Clicking on a symbol box (or the small button to the right of the symbol box) will bring up a 
window that allows the color, width, and pattern of the line to be changed. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Calculating Area Under the Curve 
This section presents a tutorial of calculating the AUC for three individuals labeled P1, P2, and 
P3. The data are contained on the AUC database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Area Under Curve window. The corresponding setup for 
the AUC1 dataset is given as the Example2 template. 

1 Open the AUC dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file AUC.S0. 
• Click Open. 

2 Open the Area Under Curve window. 
• On the menus, select Analysis, then Other, then Area Under Curve. The Area Under 

Curve procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Area Under Curve window, select the Variables tab.  
• Double-click in the Y Variables text box. This will bring up the variable selection 

window.  
• Select variables P1, P2, P3 from the list of variables and then click Ok. “P1-P3” will 

appear in this box.  
• Double-click in the X Variable text box. This will bring up the variable selection 

window.  
• Select Time and then click Ok. “Time” will appear in this box. 

4 Specify the reports. 
• On the Area Under Curve window, select the Reports tab.  
• Check the Data Report. The other reports should be checked already. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Area Section  
 

Area Section 
 Area Under Y Time at Time Time 
Y Variables Curve Max Max of Y Min Max Count 
P1 594 21 3 0 10 8 
P2 442 18 3 0 10 8 
P3 701 25 4 0 10 8 
 

This report shows the area under curve as well as supporting information. 
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Y Variables 
This gives the value of the Y variable (if multiple Y variables were specified) or the value of the 
break variable (if a break variable was specified).  

Area Under Curve 
The is the area under the curve calculated in the interval between Time Min and Time Max. It is 
calculated using the trapezoidal formula presented earlier. 

Y Max 
This is the maximum value of the vertical (concentration) variable. This is an alternative measure 
of absorption that is sometimes used. 

Time at Max of Y 
This is the value of the time (X) variable at which the maximum Y value (Y Max) was found. 

Time Min and Max 
These give the horizontal range over which the area was calculated. These values are given so 
that you can compare them. Under normal circumstances, these values should be equal across 
groups. 

Count 
This is the number of X values that were found on the database for this group. This report helps 
you find missing values. 

Data Section  
 

Data Section 
 
Y Variables Time Y 
P1 0 5 
P1 1 15 
P1 2 20 
P1 3 21 
P1 4 21 
P1 5 19 
P1 10 15 
P1 50 6 
P2 0 4 
P2 1 14 
P2 2 16 
P2 3 18 
P2 4 17 
P2 5 15 
P2 10 12 
P2 50 3 
P3 0 6 
P3 1 17 
P3 2 22 
P3 3 23 
P3 4 25 
P3 5 22 
P3 10 18 
P3 50 7 
 

This report displays the data that are plotted. Note that if you have several measurements at the 
same time value, only their average is plotted. 



390-8  Area Under Curve  

Plots Section  
 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.0 10.0 20.0 30.0 40.0 50.0 60.0

Data Plot

Time

Y

Y Variables
P1
P2
P3

 
 

This is a plot of the three curves under which the area was calculated. These plots let you spot any 
data inadequacies. 
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perspective, 171-6 
projection method, 171-7 
rotation, 171-7 

A 
Ability data points 

item response analysis, 506-4 
Abs transformation, 119-7 
Absolute residuals 

multiple regression, 305-78 
Accelerated testing 

parametric survival regression, 
566-1 

Access exporting, 116-1 
Access importing, 115-1 
Accuracy 

double-precision, 102-4 
Accuracy, 101-2 
Active colors, 180-3 
Add output to log, 106-2 
Adding a datasheet, 103-2 
Additive constant, 585-4 

descriptive statistics, 200-5 
tolerance intervals, 585-4 

Additive seasonality 
exponential smoothing, 467-1 

Adjacent values 
box plot, 152-2 

Adjusted average distance 

medoid partitioning, 447-13 
Adjusted R-squared 

linear regression, 300-46 
A-efficiency 

D-optimal designs, 267-13 
AIC 

mixed models, 220-7 
Poisson regression, 325-24 

Akaike information criterion 
mixed models, 220-7 
Poisson regression, 325-24 

Algorithms 
hierarchical cluster analysis, 450-

2 
Alias 

two level designs, 260-2 
two-level designs, 213-7 

All possible regressions, 312-1 
Alone lambda 

discriminant analysis, 440-13 
Alpha 

Cronbach’s, 401-6, 505-2 
hierarchical clustering, 445-8 
multiple regression, 305-32 

Alpha Four exporting, 116-1 
Alpha level of C.I.’s 

linear regression, 300-26 
Alpha of assumptions 

linear regression, 300-26 
Alphas 

Cox regression, 565-9, 565-38 
Amplitude 

spectral analysis, 468-1 
Analysis of covariance 

GLM, 212-25 
Analysis of two-level designs, 213-1 
Analysis of variance, 211-2 

balanced data, 211-1 
GLM, 212-1 
linear regression, 300-46 
one-way, 210-1 
repeated measures, 214-1 

ANCOVA 
GLM, 212-25 
mixed models, 220-1 
multiple regression, 305-86 

ANCOVA dataset, 212-25, 305-86 
ANCOVA example 

mixed models, 220-85 
And 

if-then transformation, 120-2 
Anderson and Hauck’s test 

cross-over analysis using t-tests, 
235-8 

Anderson-Darling test 
descriptive statistics, 200-22 
linear regression, 300-49 

Andrew’s sine 
multiple regression, 305-26 

Angular data, 230-1 
ANOVA 

balanced data, 211-1 
multiple regression, 305-49 

ANOVA balanced 
assumptions, 211-2 

ANOVA detail report 
multiple regression, 305-50 

Answer variable 
item response analysis, 506-2 

Appraisal models 
hybrid, 487-1 

Appraisal ratios, 485-1 
Appraisal variables, 485-2 
Appraisers 

R & R, 254-11 
AR order (P) 

automatic ARMA, 474-8 
Arc sine transformation, 119-17 
Arc tangent transformation, 119-17 
ArCosh transformation, 119-17 
ArcSine-square root hazard 

Weibull fitting, 550-4 
Area charts, 140-1, 141-1 
Area under curve, 390-1 

ROC curves, 545-26 
ARIMA 

automatic ARMA, 474-1 
Box-Jenkins, 470-1, 471-1 

ARMA 
theoretical, 475-1 

ARMA model 
Box Jenkins, 470-2 

Armitage proportion trend test 
cross tabulation, 501-5 

Armitage test 
cross tabulation, 501-16 

ARSENIC dataset, 240-16 
Arsine transformation, 119-17 
ArSinh transformation, 119-17 
ArTan transformation, 119-17 
ArTanh transformation, 119-17 
ASCII dataset, 12-1 
ASCII delimited exporting, 116-1 
ASCII files 
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importing fixed format, 115-3 
ASCII fixed format exporting, 116-1 
Aspin-Welch, 206-2 
ASSESS dataset, 487-11 
Assessment models 

hybrid appraisal, 487-1 
Assignable causes 

presence of, 250-9 
Association 

partial and marginal, 530-5 
Assumption tests 

linear regression, 300-48 
Assumptions 

analysis of variance, 210-2 
Kruskal-Wallis test, 210-2 
linear regression, 300-3 
multiple regression, 305-6 
one-sample t-test, 205-2 
one-way ANOVA, 210-28 
t-test, 205-22 
two-sample t-test, 206-18, 206-27 
two-sample t-tests, 206-1 

Asymmetric-binary variables 
fuzzy clustering, 448-5 
hierarchical clustering, 445-7 
medoid partitioning, 447-2 

Asymmetry 
probability plots, 144-3 

Attribute chart, 251-1 
AUC, 390-1 

ROC curves, 545-1, 545-6 
AUC dataset, 390-2, 390-6 
AUC1 dataset, 390-2 
Autocorrelation, 472-1 

multiple regression, 305-7 
residuals, 305-53 
type of, 300-56 

Autocorrelation function 
Box Jenkins, 470-1 

Autocorrelation plot, 472-8 
ARIMA, 471-12 
automatic ARMA, 474-12 

Automatic ARMA, 474-1 
Autoregressive parameters 

ARIMA, 471-3 
theoretical ARMA, 475-1 

Average absolute percent error 
multiple regression, 305-45 

Average difference plot 
t-test, 205-20 

Average distance 
medoid partitioning, 447-13 

Average silhouette 
fuzzy clustering, 448-9 
medoid partitioning, 447-13 

Average squared loadings 
canonical correlation, 400-4 

Average transformation, 119-15 
Axis-line settings window, 184-1 

B 
Backcasting 

exponential smoothing, 465-2, 
466-3, 467-3 

Backward links 
double dendrograms, 450-2 
hierarchical clustering, 445-3 

Balanced incomplete block designs, 
262-1 

Band 
linear regression, 300-6 

Bar charts, 140-1, 141-1 
depth, 141-13 
elevation, 141-13 
gap between bars, 141-14 
gap between sets of bars, 141-15 
perspective, 141-12 
projection method, 141-14 
rotation, 141-13 

Barnard’s test of difference 
two proportions, 515-14 

Bartlett test 
factor analysis, 420-14 
principal components analysis, 

425-17 
T2, 410-10 

Bartlett’s test, 402-1 
Baseline 

area under curve, 390-3 
Baseline cumulative survival 

Cox regression, 565-38 
Baseline survival 

Cox regression, 565-8 
Basic palette, 180-2 
Basics, 1-1 
BBALL dataset, 445-5, 445-12, 446-

2, 446-6, 447-6, 447-12 
BEAN dataset, 220-79, 220-82 
Best model 

all possible regressions, 312-4 
Beta 

hierarchical clustering, 445-8 
BETA dataset, 551-2, 551-11 
Beta distribution 

probablility calculator, 135-1 
simulation, 122-3 

Beta distribution fitting, 551-1 
Beta trace 

PC regression, 340-14 
BetaProb transformation, 119-8 
BetaValue transformation, 119-8 
Between subject 

repeated measures, 214-2 
Bias 

R & R, 254-22 
BIB designs, 262-1 
Bimodal data 

simulation, 122-23 
Binary diagnostic tests 

clustered samples, 538-1 
paired samples, 536-1 
two independent samples, 537-1 

Binary response variables, 320-1 
Binary test 

1-sample binary diagnostic test, 
535-1 

BINCLUST dataset, 538-3, 538-7 
Binomial distribution 

probablility calculator, 135-2 
simulation, 122-5 

BinomProb transformation, 119-8 
BinomValue transformation, 119-8 
Binormal 

ROC curves, 545-2 
Bioequivalence 

cross-over analysis using t-tests, 
235-5 

Bisquare weights 
linear regression, 300-14 

Bivariate normal distribution 
probablility calculator, 135-2 

Biweight 
Weibull fitting, 550-17 

Biweight estimator of scale, 200-22 
Biweight kernel 

Kaplan-Meier, 555-9 
Weibull fitting, 550-35 

Blackwelder test 
correlated proportions, 520-5 

Bleasdale-Nelder model 
curve fitting, 351-5 
growth curves, 360-3 

Block size 
balanced incomplete block 

designs, 262-3 
fractional factorial designs, 261-2 

Block variable 
fractional factorial designs, 261-1 
response surface designs, 264-2 

Blocking 
two level designs, 260-2 

BMDP exporting, 116-1 
BMT dataset, 555-43 
Bonferroni 

one-way ANOVA, 210-4 
Bonferroni adjustment 

mixed models, 220-14 
Bonferroni C.I.’s 

T2, 405-9, 410-9 
Bootstrap 

linear regression, 300-42 
Bootstrap C.I. method 

linear regression, 300-30 
two proportions, 515-28 

Bootstrap C.I.’s 
multiple regression, 305-31 

Bootstrap confidence coefficients 
linear regression, 300-30 

Bootstrap histograms 
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linear regression, 300-31, 300-44, 
305-42 

multiple regression, 305-75 
Bootstrap percentile type 

linear regression, 300-30 
two proportions, 515-28 

Bootstrap report 
multiple regression, 305-74 

Bootstrap retries 
linear regression, 300-30 
two proportions, 515-28 

Bootstrap sample size 
linear regression, 300-29 
two proportions, 515-28 

Bootstrap sampling method 
linear regression, 300-30 

Bootstrapping 
curve fitting, 351-14 
linear regression, 300-22 
multiple regression, 305-21 
t-test, 205-3 
two-sample t-test, 206-3 

Bootstrapping example 
multiple regression, 305-72, 305-

76 
Box plot 

adjacent values, 152-2 
fences, 152-6 
interquartile range, 152-1 
whiskers, 152-5 

Box plot style file, 152-13 
Box plots, 140-5, 152-1 

multiple comparisons, 152-2 
Box’s M, 214-1 
Box’s M test, 402-1, 402-7 

Hotelling’s T2, 410-2 
repeated measures, 214-22 
T2, 410-10 

BOX320 dataset, 213-6 
BOX402 dataset, 213-12 
Box-Behnken designs, 264-1 
Box-Jenkins 

ARIMA, 471-1 
automatic ARMA, 474-1 

Box-Jenkins analysis, 470-1 
Box-Pierce-Ljung statistic 

automatic ARMA, 474-12 
Box's M test 

MANOVA, 415-5 
BRAIN WEIGHT dataset, 2-2 
Breslow ties 

Cox regression, 565-6 

C 
C.I.method 

multiple regression, 305-41 
Calibration 

linear regression, 300-6, 300-41 

Caliper matching, 123-4 
Caliper radius, 123-5 
Candidate points 

D-optimal designs, 267-14 
Canonical correlation, 400-1 
Canonical variate 

MANOVA, 415-13 
Capability analysis 

Xbar R, 250-11 
Capacities 

Xbar R, 250-30 
Carryover effect 

cross-over analysis using t-tests, 
235-3 

Cascade, 106-5 
Categorical IV’s 

Cox regression, 565-20 
logistic regression, 320-20 
multiple regression, 305-29 
Poisson regression, 325-9 

Categorical variables 
multiple regression, 305-3, 305-

87 
Cauchy distribution 

simulation, 122-5 
Cbar 

logistic regression, 320-15 
C-chart, 251-2 
Cell edit box, 103-10 
Cell reference, 103-10 
Censor variable 

parametric survival regression, 
566-4 

Censored 
Cox regression, 565-17 
Kaplan-Meier, 555-15 
Weibull fitting, 550-11 

Censored regression, 566-1 
Centering 

Cox regression, 565-19 
Central moments 

descriptive statistics, 200-11 
Central-composite designs, 264-1 
Centroid 

double dendrograms, 450-2 
hierarchical clustering, 445-3 

Charts 
pareto, 253-1 
variables, 250-1 

Checklist 
one sample tests, 205-21 
one-way ANOVA, 210-26 
two-sample tests, 206-25 

Chen’s method 
two proportions, 515-20 

Chi 
loglinear models, 530-20 

Chi-square 
cross tabulation, 501-10 
frequency tables, 500-11 
Poisson regression, 325-26 

Chi-square distribution 
probablility calculator, 135-2 

Chi-square test 
cross tabulation, 501-1 
two proportions, 515-6 

Chi-square test example, 16-1 
CHOWLIU73 dataset, 235-9, 235-15 
Circular correlation, 230-12 
Circular data analysis, 230-1 
Circular histogram, 230-17 
Circular histograms, 230-1 
Circular statistics, 230-1 
Circular uniform distribution, 230-3 
CIRCULAR1 dataset, 230-22 
Circularity 

repeated measures, 214-3, 214-23 
Clear, 103-5 
Cluster analysis 

double dendrograms, 450-1 
K-means, 446-1 

Cluster centers 
K-means clustering, 446-1 

Cluster cutoff 
hierarchical clustering, 445-8 

Cluster means 
K-means clustering, 446-8 

Cluster medoids section 
fuzzy clustering, 448-9 
medoid partitioning, 447-14 

Cluster randomization 
clustered binary diagnostic, 538-1 

Cluster variables 
K-means clustering, 446-3 

Clustering 
centroid, 445-7 
complete linkage, 445-7 
flexible strategy, 445-7 
fuzzy, 448-1 
group average, 445-7 
hierarchical, 445-1 
median, 445-7 
medoid, 447-1 
regression, 449-1 
simple average, 445-7 
single linkage, 445-7 
Ward’s minimum variance, 445-7 

Cochran’s Q test 
meta analysis of hazard ratios, 

458-4 
meta-analysis of correlated 

proportions, 457-4 
meta-analysis of means, 455-3 
meta-analysis of proportions, 

456-4 
Cochran’s test 

two proportions, 515-7 
Cochrane-Orcutt procedure, 306-1 
COD 

appraisal ratios, 485-8 
descriptive statistics, 200-20 
hybrid appraisal models, 487-17 
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Code cross-reference, 310-7 
Coefficient alpha 

item analysis, 505-2 
Coefficient of dispersion 

appraisal ratios, 485-8 
descriptive statistics, 200-18 
hybrid appraisal models, 487-17 

Coefficient of variation 
descriptive statistics, 200-18 
linear regression, 300-38 
multiple regression, 305-45 

Coefficients 
regression, 305-47 
stepwise regression, 311-8 

Collate transformation, 119-12 
COLLETT157 dataset, 565-55 
COLLETT266 dataset, 320-73 
COLLETT5 dataset, 555-42 
Collinearity 

MANOVA, 415-5 
Color 

mixer, 180-2 
model, 180-2 
wheel, 180-3 

Color selection window, 180-1 
Column widths, 103-15 
Communality 

factor analysis, 420-3, 420-12, 
420-16 

principal components analysis, 
425-16 

Communality iterations 
factor analysis, 420-8 

Comparables 
sales price, 486-1 

COMPARABLES dataset, 486-10 
Competing risks 

cumulative incidence, 560-1 
Complete linkage 

double dendrograms, 450-2 
hierarchical clustering, 445-3 

Compound symmetry 
repeated measures, 214-3 

CONCENTRATION dataset, 240-21 
Concordance 

Kendall’s coefficient, 211-15 
Condition number 

multiple regression, 305-58 
PC regression, 340-13 
ridge regression, 335-17 

Conditional tests 
two proportions, 515-5 

Confidence band 
linear regression, 300-6, 300-33, 

300-60 
Confidence coefficient 

multiple regression, 305-32 
T2, 410-5 

Confidence interval 
descriptive statistics, 200-13 
multiple regression, 305-14 

Poisson regression, 325-26 
Confidence intervals 

Cox regression, 565-11 
curve fitting, 350-4 
linear regression, 300-6 
T2, 405-9, 410-9 
two proportions, 515-18 

Confidence intervals of odds ratio 
two proportions, 515-23 

Confidence intervals of ratio 
two proportions, 515-21 

Confidence limits, 200-2 
linear regression, 300-33 
Nelson-Aalen hazard, 550-4 

Confounding 
two level designs, 260-2 

Confounding size, 213-3 
Constant distribution 

simulation, 122-6 
Constraint section 

linear programming, 480-5 
Constraints 

linear programming, 480-1 
Contains transformation, 119-17 
Contaminated normal simulation, 

122-21 
Continuity correction 

two proportions, 515-7 
Contour plots, 140-11, 172-1 

response surface regression, 330-
19 

Contrast type 
multiple regression, 305-29 
Poisson regression, 325-9 

Contrast variables 
multiple regression, 305-4 

Control charts 
attribute, 251-1 
formulas, 250-5 
Xbar R, 250-1 

Control limits 
Xbar R, 250-2 

Cook’s D 
linear regression, 300-20, 300-62, 

300-63, 300-65, 300-66 
multiple regression, 305-20, 305-

64 
Cook’s distance 

logistic regression, 320-15 
Cophenetic correlation 

hierarchical clustering, 445-14 
Cophenetic correlation coefficient, 

445-4 
Copy, 103-4 
Copy output, 106-3 
Copying data, 7-2 
COR 

correspondence analysis, 430-14 
Correlation, 300-1 

canonical, 400-1 
confidence limits, 300-12 

cross, 473-1 
linear regression, 300-2, 300-11, 

300-45 
Pearson, 300-45 
Spearman, 300-45 
Spearman rank, 401-1 
Spearman’s rank, 300-12 

Correlation coefficient 
linear regression, 300-9 

Correlation coefficient distribution 
probablility calculator, 135-3 

Correlation matrices 
factor analysis, 420-5 
principal components analysis, 

425-8 
Correlation matrix, 401-1 
Correlation matrix report 

multiple regression, 305-46 
Correlations 

medoid partitioning, 447-10 
partial, 401-3 
principal components analysis, 

425-17 
Correlogram 

autocorrelation, 472-1 
CORRES1 dataset, 430-6, 430-10, 

430-16 
Correspondence analysis, 430-1 

eigenvalues, 430-12 
CorrProb transformation, 119-8 
CorrValue transformation, 119-8 
Cos transformation, 119-17 
Cosh transformation, 119-17 
Cosine transformation, 119-17 
Cost benefit analysis 

ROC curves, 545-22 
Count tables, 500-1 
Count transformation, 119-15 
Covariance 

analysis of, 212-25 
multiple regression, 305-86 

Covariance matrices, 402-1 
Covariance matrix 

repeated measures, 214-3 
Covariance pattern models 

mixed models, 220-5 
Covariates 

GLM, 212-3 
mixed models, 220-9 
response surface regression, 330-

5 
CovRatio 

linear regression, 300-21, 300-63 
multiple regression, 305-20, 305-

64 
Cox model 

Cox regression, 565-1 
Cox proportional hazards regression 

model, 565-1 
Cox regression, 565-1 
Cox test 
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circular data, 230-9 
Cox-Mantel logrank test 

Kaplan-Meier, 555-41 
COXREG dataset, 565-51 
COXSNELL dataset, 123-23 
Cox-Snell residual 

parametric survival regression, 
566-19 

Cox-Snell residuals 
Cox regression, 565-13, 565-39 
nondetects regression, 345-13 

Cp 
all possible regressions, 312-8 
multiple regression, 305-55 
Xbar R, 250-12 

Cp variable plot 
all possible regressions, 312-10 

Cpk 
Xbar R, 250-12, 250-31 

Cramer’s V 
cross tabulation, 501-14 

Creating a database, 2-1 
Creating a new database 

tutorial, 101-2 
Creating data 

simulation, 122-1 
Cronbach’s alpha 

item analysis, 505-2, 505-6 
Cronbachs alpha 

correlation matrix, 401-6 
CROSS dataset, 220-101 
Cross tabulation, 501-1 

summarized data, 16-1 
Cross-correlations, 473-1 
Crossed factors 

design generator, 268-1 
Crossover analysis, 220-1 
Cross-over analysis using t-tests, 

235-1 
Crossover data example 

mixed models, 220-101 
Crosstabs, 501-1 
CsProb transformation, 119-9 
CsValue transformation, 119-9 
CTR 

correspondence analysis, 430-14 
Cubic fit 

curve fitting, 351-2 
Cubic terms 

response surface regression, 330-
7 

Cum transformation, 119-7 
Cumulative hazard 

Cox regression, 565-2 
Cumulative hazard function 

Kaplan-Meier, 555-2 
Weibull fitting, 550-2 

Cumulative incidence analysis, 560-
1 

Cumulative survival 
Cox regression, 565-2 

Curve equivalence 
curve fitting, 351-16 

Curve fitting, 351-1 
introduction, 350-1 

Curve inequality test 
curve fitting, 351-32 

Custom model 
Cox regression, 565-26 
multiple regression, 305-34 

CUSUM chart, 250-4, 250-8 
CUSUM Charts, 250-37 
Cut, 103-4 
Cut output, 106-3 
Cycle-input variable 

decomposition forecasting, 469-5 

D 
D’Agostino kurtosis 

descriptive statistics, 200-24 
D’Agostino kurtosis test 

linear regression, 300-49 
D’Agostino omnibus 

descriptive statistics, 200-25 
D’Agostino omnibus test 

linear regression, 300-49 
D’Agostino skewness 

descriptive statistics, 200-23 
D’Agostino skewness test 

linear regression, 300-49 
DAT exporting, 116-1 
Data 

entering, 2-1 
estimating missing, 118-1 
importing, 12-1 
numeric, 102-1 
printing, 2-7, 103-3, 117-1 
saving, 2-6 
simulation, 15-1 
simulation of, 122-1 
text, 102-1 

Data features, 200-1 
Data imputation, 118-1 
Data matching 

caliper, 123-4 
caliper radius, 123-5 
distance calculation method, 123-

3 
forced match variable, 123-4 
full (variable), 123-3 
greedy, 123-1, 123-2 
optimal, 123-1, 123-2 
propensity score, 123-2 
standardized difference, 123-15 

Data orientation 
bar charts, 141-2 

Data report, 103-6, 117-1 
Data screening 

T2 alpha, 118-3 

Data screening, 118-1 
Data screening, 200-3 
Data simulator, 122-1 
Data stratification, 124-1 
Data transformation, 3-1 
Data type, 102-10 
Data window, 1-4, 7-1 
Database, 102-1 

clearing, 2-9 
creating, 2-1, 101-2 
Excel compatible, 102-1 
exporting, 115-1, 116-1 
introduction, 101-1 
limits, 102-1 
loading, 2-1, 2-10, 7-1 
opening, 101-3 
printing, 2-7 
S0, 102-1 
s0 and s1 files, 2-6 
S0-type, 2-9 
S0Z (zipped), 102-1 
S0Z-type, 2-9 
saving, 101-2 
size, 102-1 
sorting, 103-6 
subsets, 14-1 

Database/spreadsheet comparison, 
102-4 

Databases 
merging two, 104-1 

Dataset 
2BY2, 320-62 
ANCOVA, 212-25, 305-86 
ARSENIC, 240-16 
ASCII, 12-1 
ASSESS, 487-11 
AUC, 390-2, 390-6 
AUC1, 390-2 
BBALL, 445-5, 445-12, 446-2, 

446-6, 447-6, 447-12 
BEAN, 220-79, 220-82 
BETA, 551-2, 551-11 
BINCLUST, 538-3, 538-7 
BMT, 555-43 
BOX320, 213-6 
BOX402, 213-12 
BRAIN WEIGHT, 2-2 
CHOWLIU73, 235-9, 235-15 
CIRCULAR1, 230-22 
COLLETT157, 565-55 
COLLETT266, 320-73 
COLLETT5, 555-42 
COMPARABLES, 486-10 
CONCENTRATION, 240-21 
CORRES1, 430-6, 430-10, 430-

16 
COXREG, 565-51 
COXSNELL, 123-23 
CROSS, 220-101 
DCP, 345-2, 345-9 
DIOXIN, 240-2, 240-11 
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DOPT_MIXED, 267-22 
DOPT3, 267-20 
DRUGSTUDY, 501-19 
DS476, 315-2, 315-9, 385-2, 385-

9 
EXAMS, 450-12 
EXERCISE, 214-6, 214-16 
FANFAILURE, 550-49 
FISH, 220-90 
FISHER, 143-14, 144-15, 150-8, 

151-13, 152-12, 153-8, 154-8, 
170-2, 170-9, 173-7, 402-2, 
402-5, 440-4, 440-10, 440-20, 
440-22 

FNREG1, 360-15, 380-7 
FNREG2, 365-11 
FNREG3, 163-4, 370-6, 375-8 
FNREG4, 371-6, 376-8 
FNREG5, 351-30 
FRUIT, 141-1, 141-17 
FUZZY, 448-3, 448-8 
HAIR, 220-103 
HEART, 212-23 
HOUSING, 306-4, 306-10 
INTEL, 465-7, 466-9, 471-7, 

473-5 
IQ, 305-27, 305-43, 305-72, 305-

76, 305-79 
ITEM, 505-2, 505-5, 506-2, 506-

6 
KLEIN6, 555-45 
KOCH36, 325-7, 325-21 
LACHIN91, 320-71 
LATINSQR, 212-22 
LEAD, 240-19 
LEE91, 570-4, 570-15 
LEUKEMIA, 320-18, 320-34, 

320-57 
LINREG1, 300-24, 300-37 
LOGLIN1, 530-7, 530-11 
LP, 480-2, 480-4 
LUNGCANCER, 565-15, 565-

31, 565-48 
MAMMALS, 3-1, 4-1, 10-1 
MAMMALS1, 5-1, 6-1 
MANOVA1, 410-3, 410-6, 415-

5, 415-10 
MARUBINI, 560-3, 560-9 
MDS2, 435-6, 435-10 
MDS2, 435-15 
METACPROP, 457-6, 457-14 
METAHR, 458-6, 458-12 
MLCO2, 470-11 
MOTORS, 566-3, 566-11 
NC CRIMINAL, 320-64, 320-68 
NONDETECTS, 240-4 
ODOR, 330-3, 330-11 
PAIN, 220-51 
PCA2, 420-5, 420-11, 425-9, 

425-15 
PCA2, 118-4 

PET, 538-11 
PIE, 142-6 
PLANT, 212-27 
POISREG, 325-37 
POLITIC, 13-1, 14-1 
PREPOST, 305-87 
PROPENSITY, 123-5, 123-12, 

124-4 
QATEST, 250-14, 250-27, 250-

33, 250-35, 250-37, 251-3, 
251-11, 253-2, 253-7, 253-9 

RCBD, 220-94 
REACTION, 214-29 
REACTION, 214-6 
READOUT105, 550-47 
REGCLUS, 449-2, 449-5 
RESALE, 117-4, 151-14, 155-1, 

155-7, 201-1, 201-11, 201-12, 
201-14, 201-15, 201-17, 201-
19, 201-21, 305-81, 500-1, 
500-9, 500-10, 500-12, 500-
14, 501-1, 501-8, 501-11, 
501-17 

RIDGEREG, 335-7, 335-15, 340-
3, 340-11 

RMSF, 545-3 
RNDBLOCK, 211-4, 211-11, 

212-3, 212-12 
ROC, 545-19 
RRSTUDY, 254-1, 254-10 
RRSTUDY1, 254-24 
SALES, 467-9, 469-9 
SALESRATIO, 485-1, 485-6, 

486-4 
SAMPLE, 101-3, 161-20, 162-5, 

171-9, 172-7, 200-4, 200-10, 
205-12, 206-12, 210-16, 310-
3, 310-6, 311-3, 311-6, 312-2, 
312-6, 400-8, 401-2, 401-5, 
585-8 

SERIESA, 470-8, 474-7 
SMOKING, 525-2, 525-5 
SUNSPOT, 468-9, 472-7 
SURVIVAL, 555-14, 555-37, 

575-1, 575-5 
SUTTON 22, 456-6, 456-14 
SUTTON30, 455-6, 455-13 
T2, 405-3, 405-5, 405-10 
TIMECALC, 580-3 
TUTOR, 220-98 
TWOSAMPLE, 220-69, 220-72 
TWOSAMPLE2, 220-70, 220-73 
TWOSAMPLECOV, 220-76 
WEIBULL, 550-12, 550-27, 550-

44, 552-3, 552-12, 555-27 
WEIBULL2, 144-17 
WEIGHTLOSS, 220-85 
WESTGARD, 252-9 
ZHOU 175, 545-33 
ZINC, 345-15 

Datasheet, 101-1 

Datasheets, 102-1 
Date formats, 102-8 
Date function transformations, 119-6 
Day format, 102-8 
Day transformation, 119-6 
DB, 115-1 
Dbase importing, 115-1 
DBF exporting, 116-1 
DBF importing, 115-1 
DCP dataset, 345-2, 345-9 
Death density 

life-table analysis, 570-3 
Decision variables 

linear programming, 480-1 
Decomposition forecasting, 469-1 
Default template, 105-1 
Defects/defectives variable, 251-4 
D-efficiency 

D-optimal designs, 267-12 
Degrees of freedom 

factor analysis, 420-14 
two-sample t-test, 206-13 

Delta 
cluster goodness-of-fit, 445-4 
loglinear models, 530-8 
Mantel-Haenszel test, 525-4 

Dendrogram 
hierarchical clustering, 445-15 

Dendrograms, 445-1 
double, 450-1, 450-3 

Density trace 
histograms, 143-1 
histograms – comparative, 151-2 
violin plot, 154-1 

Dependent variable 
linear regression, 300-25 
multiple regression, 305-1 
Poisson regression, 325-8 

Depth 
3D scatter plot, 170-8 
3D surface plot, 171-7 
bar charts, 141-13 

Derivatives 
Weibull fitting, 550-16 

Descriptive statistics, 4-1, 200-1 
additive constant, 200-5 
Anderson-Darling test, 200-22 
central moments, 200-11 
COD, 200-20 
coefficient of dispersion, 200-18 
coefficient of variation, 200-18 
confidence interval, 200-13 
D’Agostino kurtosis, 200-24 
D’Agostino omnibus, 200-25 
D’Agostino skewness, 200-23 
dispersion, 200-16 
EDF, 200-7 
Fisher's g1, 200-18 
Fisher's g2, 200-18 
geometric mean, 200-14 
harmonic mean, 200-14 
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Histogram, 200-25 
interquartile range, 200-17 
IQR, 200-17 
Kolmogorov-Smirnov, 200-23 
kurtosis, 200-18 
Lilliefors' critical values, 200-23 
MAD, 200-20 
Martinez-Iglewicz, 200-22 
mean, 200-13 
mean absolute deviation, 200-20 
mean deviation, 200-20 
mean-deviation, 200-20 
median, 200-14 
mode, 200-15 
moment, 200-11 
Normal probability plot, 200-26 
normality, 200-21 
normality tests, 200-21 
percentile type, 200-6 
Probability plot, 200-26 
quartiles, 200-21 
range, 200-17 
Shapiro-Wilk test, 200-22 
skewness, 200-17 
Skewness test, 200-24 
standard deviation, 200-16 
standard error, 200-13 
Stem-leaf plot, 200-27 
trim-mean, 200-19 
trimmed, 200-19 
trim-std dev, 200-19 
unbiased Std Dev, 200-17 
variance, 200-15 

Descriptive statistics report 
multiple regression, 305-45 

Descriptive tables, 201-1 
Design generator, 268-1 
Designs 

analysis of, 213-1 
Box-Behnken, 264-1 
central-composite, 264-1 
design generator, 268-1 
factorial, 260-3 
fractional factorial, 261-1 
Plackett-Burman, 265-1 
response surface, 264-1 
screening, 265-1 
Taguchi, 266-1 
two-level factorial, 260-1, 268-1 

Determinant 
D-optimal designs, 267-13 

Determinant analysis 
D-optimal designs, 267-11 

Deviance 
Cox regression, 565-10 
logistic regression, 320-8 
Poisson regression, 325-4, 325-5 

Deviance residuals 
Cox regression, 565-14, 565-40 
logistic regression, 320-13 
Poisson regression, 325-31 

Deviance test 
Poisson regression, 325-3 

DFBETA 
logistic regression, 320-14 

DFBETAS 
linear regression, 300-21, 300-63 
multiple regression, 305-20, 305-

65 
DFCHI2 

logistic regression, 320-15 
DFDEV 

logistic regression, 320-15 
Dffits 

linear regression, 300-63 
DFFITS 

linear regression, 300-20 
multiple regression, 305-19, 305-

64 
Diagnostic test 

1-sample binary diagnostic test, 
535-1 

2-sample binary diagnostic, 537-
1 

paired binary diagnostic, 536-1 
DIF exporting, 116-1 
Differencing 

ARIMA, 471-2 
autocorrelation, 472-2 
Box Jenkins, 470-7 
spectral analysis, 468-4 

Differential evolution 
hybrid appraisal models, 487-2 
Weibull fitting, 550-11 

Digamma 
beta distribution fitting, 551-12 

Dimensions 
multidimensional scaling, 435-4 

DIOXIN dataset, 240-2, 240-11 
Directional test 

meta analysis of hazard ratios, 
458-3 

meta-analysis of correlated 
proportions, 457-4 

meta-analysis of proportions, 
456-4 

Disabling the filter, 121-4 
Discriminant analysis, 440-1 

logistic regression, 320-1 
Discrimination parameter 

item response analysis, 506-8 
Dispersion 

descriptive statistics, 200-16 
Dissimilarities 

medoid partitioning, 447-1 
multidimensional scaling, 435-4 

Distance 
multidimensional scaling, 435-2 

Distance calculation 
medoid partitioning, 447-2 

Distance calculation method 
data matching, 123-3 

Distance method 
fuzzy clustering, 448-5 
hierarchical clustering, 445-8 

Distances 
medoid partitioning, 447-10 

Distinct categories 
R & R, 254-3, 254-19 

Distribution 
circular uniform, 230-3 
Von Mises, 230-5 

Distribution fitting 
Weibull fitting, 550-1 

Distribution statistics, 200-1 
Distributions 

combining, 122-13 
exponential, 550-1 
extreme value, 550-1 
logistic, 550-1 
log-logistic, 550-1 
lognormal, 550-1 
mixing, 122-13 
simulation, 122-1 
Weibull, 550-1 

Dmn-criterion value, 206-23 
DOPT_MIXED dataset, 267-22 
DOPT3 dataset, 267-20 
D-optimal designs, 267-1 
Dose 

probit analysis, 575-1 
Dose-response plot 

probit analysis, 575-9 
Dot plots, 140-4, 150-1 

jittering, 150-1 
Double dendrograms, 450-1 
Double exponential smoothing, 466-

1 
Double-precision accuracy, 101-2, 

102-4 
DRUGSTUDY dataset, 501-19 
DS476 dataset, 315-2, 315-9, 385-2, 

385-9 
Dummy variables 

multiple regression, 305-3 
Duncan’s test 

one-way ANOVA, 210-5 
Dunn’s partition coefficient 

fuzzy clustering, 448-2 
Dunn’s test 

one-way ANOVA, 210-7 
Dunnett’s test 

one-way ANOVA, 210-6 
Duplicates 

D-optimal designs, 267-5 
Durbin-Watson 

linear regression, 300-17 
multiple regression, 305-17 

Durbin-Watson test 
multiple regression, 305-53 
multiple regression with serial 

correlation, 306-3 
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E 
e - using 

Cox regression, 565-4 
E notation, 102-4 
EDF 

descriptive statistics, 200-7 
EDF plot, 240-15 
Edit 

clear, 103-5 
copy, 103-4 
cut, 103-4 
delete, 103-5 
fill, 103-6 
find, 103-6 
insert, 103-5 
paste, 103-4 
undo, 103-4 

Efron ties 
Cox regression, 565-7 

Eigenvalue 
MANOVA, 415-14 
PC regression, 340-13 

Eigenvalues, 425-17 
correspondence analysis, 430-12 
factor analysis, 420-14 
multidimensional scaling, 435-11 
multiple regression, 305-58, 305-

59 
principal components analysis, 

425-12 
ridge regression, 335-17 

Eigenvector 
multiple regression, 305-58, 305-

60 
Eigenvectors 

factor analysis, 420-15 
Elapsed time 

time calculator, 580-1 
Elevation 

3D scatter plot, 170-7 
3D surface plot, 171-6 
bar charts, 141-13 

Ellipse (probability) 
linear regression, 300-8 

Else 
if-then transformation, 120-4 

EM algorithm 
principal components analysis, 

425-5 
Empirical 

ROC curves, 545-2 
Empty cells, 102-5 
Entry date 

time calculator, 580-2 
Entry time 

Cox regression, 565-17 
Kaplan-Meier, 555-15 

Epanechnikov 
Weibull fitting, 550-17 

Epanechnikov kernel 
Kaplan-Meier, 555-8 
Weibull fitting, 550-34 

Epsilon 
Geisser-Greenhouse, 214-4 
repeated measures, 214-20 

Equal slopes 
multiple regression, 305-86 

Equality of covariance matrices, 
402-1 

Equivalence 
2-sample binary diagnostic, 537-

9 
clustered binary diagnostic, 538-8 
cross-over analysis using t-tests, 

235-1 
paired binary diagnostic, 536-7 
ROC curves, 545-30 

Equivalence test 
correlated proportions, 520-8 
two proportions, 515-17 
two-sample, 207-1 

Equivalence tests 
two proportions, 515-38 

Error-bar charts, 140-6, 155-1 
Euclidean distance 

medoid partitioning, 447-2 
Event date 

time calculator, 580-2 
EWMA chart, 250-4, 250-35 
EWMA chart limits, 250-8 
EWMA parameter, 250-19 
Exact test 

two proportions, 515-12 
Exact tests 

two proportions, 515-4, 515-36 
EXAMS dataset, 450-12 
Excel exporting, 116-1 
EXERCISE dataset, 214-6, 214-16 
Exiting NCSS, 101-4 
Exp transformation, 119-7 
Experiment (Run) 

two level designs, 260-2 
Experimental design, 260-1 

two level designs, 260-2 
Experimental error 

two level designs, 260-2 
Experimentwise error rate, 210-3 
Exponential 

curve fitting, 351-10 
using, 565-4 

Exponential distribution 
simulation, 122-6 
Weibull fitting, 550-8 

Exponential model 
curve fitting, 351-6 
growth curves, 360-4 

Exponential regression, 566-1 
Exponential smoothing 

double, 466-1 
horizontal, 465-1 

simple, 465-1 
trend, 466-1 
trend and seasonal, 467-1 

ExpoProb transformation, 119-9 
Export, 103-3 
Export limitations, 116-1 
Exporting data, 116-1 
Exposure 

Poisson regression, 325-1 
Exposure variable 

Poisson regression, 325-12 
ExpoValue transformation, 119-9 
Extract transformation, 119-18 
Extreme value distribution 

Weibull fitting, 550-8 

F 
F distribution 

probablility calculator, 135-3 
simulation, 122-7 

Factor analysis, 420-1 
Factor loadings 

factor analysis, 420-16 
principal components analysis, 

425-2 
Factor rotation 

factor analysis, 420-7 
Factor scaling 

D-optimal designs, 267-2 
Factorial designs 

two level designs, 260-3 
two-level designs, 260-1 

Factors 
how many, 420-3, 425-6 

Failed 
parametric survival regression, 

566-2 
Weibull fitting, 550-11 

Failure 
Cox regression, 565-16 
Kaplan-Meier, 555-15 

Failure distribution 
Weibull fitting, 550-37 

Familywise error rate, 210-3 
FANFAILURE dataset, 550-49 
Farazdaghi and Harris model 

curve fitting, 351-5 
growth curves, 360-3 

Farrington-Manning test 
two proportions, 515-10 

Fast Fourier transform 
spectral analysis, 468-3 

Fast initial restart, 250-9 
Feedback model, 487-1 
Fences 

box plot, 152-6 
File function transformation, 119-15 
Files 
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Access, 115-1 
ASCII, 115-3 
BMDP, 115-1 
creating text, 115-1 
Dbase, 115-1 
Excel, 115-1 
NCSS 5.0, 115-1 
Paradox, 115-1 
SAS, 115-1 
SPSS, 115-1 
text, 115-1 

Fill, 103-6 
Fill functions transformations, 119-6 
Filter, 121-1 

disabling, 10-4 
specifying, 103-7 

Filter statements, 103-7 
Filters, 10-1 
Final Tableau section 

linear programming, 480-6 
Find, 103-6 
Find a procedure, 107-1 
Find in output, 106-4 
Find next in output, 106-4 
FIR, 250-9 
FISH dataset, 220-90 
FISHER dataset, 143-14, 144-15, 

150-8, 151-13, 152-12, 153-8, 
154-8, 170-2, 170-9, 173-7, 402-
2, 402-5, 440-4, 440-10, 440-20, 
440-22 

Fisher information matrix 
beta distribution fitting, 551-14 
gamma distribution fitting, 552-

15 
Weibull fitting, 550-32 

Fisher’s exact test, 501-1, 501-13 
cross tabulation, 501-17 

Fisher’s Z transformation 
linear regression, 300-11 

Fisher's exact test 
cross tabulation, 501-11 

Fisher's g1 
descriptive statistics, 200-18 

Fisher's g2 
descriptive statistics, 200-18 

Fisher's LSD 
one-way ANOVA, 210-6 

Fixed effects 
mixed models, 220-9 

Fixed effects model 
meta-analysis of correlated 

proportions, 457-5 
meta-analysis of hazard ratios, 

458-4 
meta-analysis of means, 455-4 
meta-analysis of proportions, 

456-5 
Fixed effects models 

mixed models, 220-4 
Fixed factor 

ANOVA balanced, 211-5 
GLM, 212-4 
repeated measures, 214-8 

Fixed sigma 
Xbar R, 250-19 

Fixed Xbar 
Xbar R, 250-18 

Fleiss Confidence intervals 
two proportions, 515-24 

Fleming-Harrington tests 
Kaplan-Meier, 555-12 

Flexible strategy 
double dendrograms, 450-3 
hierarchical clustering, 445-4 

Flipping constant, 240-2 
FNREG1 dataset, 360-15, 380-7 
FNREG2 dataset, 365-11 
FNREG3 dataset, 163-4, 370-6, 375-

8 
FNREG4 dataset, 371-6, 376-8 
FNREG5 dataset, 351-30 
Follow-up 

life-table analysis, 570-2 
Forced match variable, 123-4 
Forced points 

D-optimal designs, 267-5 
Forced X’s 

variable selection, 310-4 
Forecast 

ARIMA, 471-11 
automatic ARMA, 474-10 
decomposition forecasting, 469-

10 
exponential smoothing, 465-8, 

466-12, 467-10 
Forecasts 

multiple regression with serial 
correlation, 306-3 

Forest plot 
meta analysis of hazard ratios, 

458-17 
meta-analysis of correlated 

proportions, 457-20 
meta-analysis of means, 455-17 
meta-analysis of proportions, 

456-20 
Format, 102-6 
Forward selection 

Cox regression, 565-23 
logistic regression, 320-17 
Poisson regression, 325-6 

Forward selection with switching 
logistic regression, 320-18 
multiple regression, 305-24 
Poisson regression, 325-7 

Forward variable selection 
multiple regression, 305-23 

Fourier plot 
spectral analysis, 468-10 

Fourier series 
spectral analysis, 468-2 

Fprob transformation, 119-9 
Fraction transformation, 119-7 
Fractional-factorial designs, 261-1 
F-ratio 

linear regression, 300-47 
Freeman-Tukey standardized 

residual 
loglinear models, 530-20 

Frequency 
spectral analysis, 468-1 

Frequency polygon 
histograms, 143-13 

Frequency tables, 500-1 
Frequency variable 

linear regression, 300-25 
Poisson regression, 325-8 

Friedman’s Q statistic, 211-15 
Friedman’s rank test, 211-3 
FRUIT dataset, 141-1, 141-17 
F-test 

multiple regression, 305-50 
FT-SR 

loglinear models, 530-20 
Full matching, 123-3 
Function plots, 160-1 
Functions 

nonlinear regression, 315-4 
Fuzz factor 

filter, 121-2 
in filter comparisons, 103-8 

Fuzzifier 
fuzzy clustering, 448-5 

Fuzzy clustering, 448-1 
FUZZY dataset, 448-3, 448-8 
Fvalue transformation, 119-9 

G 
G statistic test 

Poisson regression, 325-3 
Gamma 

hierarchical clustering, 445-8 
Gamma distribution 

probablility calculator, 135-4 
simulation, 122-7 

Gamma distribution fitting, 552-1 
GammaProb transformation, 119-9 
GammaValue transformation, 119-9 
Gap between bars 

bar charts, 141-14 
Gap between sets of bars 

bar charts, 141-15 
Gart-Nam test 

two proportions, 515-11 
Gehan test 

Kaplan-Meier, 555-12 
nondetects analysis, 240-3 

Geisser-Greenhouse adjustment, 
214-1, 214-5 
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Geisser-Greenhouse epsilon, 214-4, 
214-20 

General linear models, 212-1 
Generating data, 122-1 
Generations 

hybrid appraisal models, 487-8 
Geometric mean 

descriptive statistics, 200-14 
Gleason-Staelin redundancy measure 

principal components analysis, 
425-17 

GLM 
checklist, 212-18 

Gompertz model 
curve fitting, 351-7 
growth curves, 360-5 

Goodness of fit 
loglinear models, 530-4 
Poisson regression, 325-3 

Goodness-of-fit 
hierarchical clustering, 445-4 
K-means clustering, 446-2 
multidimensional scaling, 435-3 
ratio of polynomials, 370-2 

Goto in output, 106-4 
Graeco-Latin square designs, 263-1 
Greedy matching, 123-1, 123-2 
Greenwood’s formula 

Kaplan-Meier, 555-3, 555-29, 
555-33 

Weibull fitting, 550-3 
Grid / tick settings window, 185-1 
Grid lines, 185-1 
Grid plot style file, 173-8 
Grid plots, 140-11, 173-1 

response surface regression, 330-
19 

Grid range 
hybrid appraisal models, 487-9 

Group average 
double dendrograms, 450-2 
hierarchical clustering, 445-4 

Group variables 
logistic regression, 320-19 

Growth curves, 360-1 

H 
HAIR dataset, 220-103 
Harmonic mean 

descriptive statistics, 200-14 
Hat diagonal 

linear regression, 300-19, 300-62 
multiple regression, 305-18, 305-

64 
Hat matrix 

linear regression, 300-18 
logistic regression, 320-14 
multiple regression, 305-18 

Poisson regression, 325-34 
Hat values 

Poisson regression, 325-5 
Hazard 

baseline, 565-8 
cumulative, 565-3 
Nelson-Aalen, 555-4 

Hazard function 
beta distribution fitting, 551-2 
Cox regression, 565-2 
gamma distribution fitting, 552-2 

Hazard function plot 
Kaplan-Meier, 555-36 

Hazard rate 
Kaplan-Meier, 555-2 
life-table analysis, 570-3 
Weibull fitting, 550-2, 550-36 

Hazard rate plot 
Kaplan-Meier, 555-36 

Hazard ratio 
confidence interval, 555-40 
Kaplan-Meier, 555-40 

Hazard ratio test 
Kaplan-Meier, 555-41 

Hazard ratios 
meta analysis, 458-1 

Hazard-baseline 
Cox regression, 565-38 

HEART dataset, 212-23 
Heat map colors, 187-5 
Heat map settings window, 187-1 
Help system, 1-10, 100-1 
Heterogeneity test 

meta-analysis of proportions, 
456-4 

Heteroscedasticity 
linear regression, 300-3 

Hierarchical cluster analysis, 450-1 
dendrograms, 450-3 

Hierarchical clustering, 445-1 
Hierarchical models 

Cox regression, 565-23 
loglinear models, 530-3 
multiple regression, 305-32 
response surface regression, 330-

1 
Hierarchical-classification designs, 

212-27 
Histogram 

bootstrap, 300-31, 305-42 
definition, 140-2 
density trace, 143-1 
descriptive statistics, 200-25 
linear regression, 300-34 
multiple regression, 305-67 
t-test, 205-20 
Xbar R, 250-32 

Histogram style file, 143-16 
Histograms, 140-2, 143-1 
Histograms - comparative, 140-4, 

151-1 

Histograms – comparative 
density trace, 151-2 

Holliday model 
curve fitting, 351-5 
growth curves, 360-4 

Holt’s linear trend, 466-1 
Holt-Winters forecasting 

exponential smoothing, 467-1 
Hotelling’s one sample T2, 405-1 
Hotelling’s T2, 410-1 

1-Sample, 405-1 
Hotelling’s T2 distribution 

probablility calculator, 135-4 
Hotelling’s T2 value, 410-7 
Hotelling’s two-sample T2, 410-1 
Hour format, 102-8 
HOUSING dataset, 306-4, 306-10 
Hsu’s test 

one-way ANOVA, 210-6 
Huber’s method 

multiple regression, 305-26 
Huynh Feldt epsilon, 214-20 
Huynh-Feldt adjustment, 214-1 
Hybrid appraisal models, 487-1 
Hybrid model, 487-1 
HYP(z) 

piecewise polynomial models, 
365-6 

Hypergeometric distribution 
probablility calculator, 135-4 

HypergeoProb transformation, 119-9 
Hypothesis tests 

linear regression, 300-6 
multiple regression, 305-13 

I 
Identicalness 

curve fitting, 350-6 
IEEE format, 102-4 
If-then transformations, 120-1 
Import limitations, 115-1 
Importing, 103-2 
Importing data, 12-1, 115-1 
Imputation, 118-1 

principal components analysis, 
425-4 

Imputing data values, 118-1 
Incidence 

Poisson regression, 325-1 
Incidence rate 

Poisson regression, 325-34 
Inclusion points 

D-optimal designs, 267-6 
Incomplete beta function ratio 

beta distribution fitting, 551-2 
Independence tests 

cross tabulation, 501-1 
Independent variable 
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linear regression, 300-25 
Independent variables 

logistic regression, 320-20 
multiple regression, 305-1 
multiple regression, 305-28 
Poisson regression, 325-8 

Indicator variables 
creating, 119-19 
multiple regression, 305-3 

Individuals 
hybrid appraisal models, 487-8 

Individuals chart, 250-4 
Xbar R, 250-33 

Inertia 
correspondence analysis, 430-13 

Influence 
multiple regression, 305-17 

Influence  report 
linear regression, 300-66 

Influence detection 
linear regression, 300-65 

Information matrix 
Cox regression, 565-7 

Inheritance 
hybrid appraisal models, 487-9 
Weibull fitting, 550-15 

Initial communality 
factor analysis, 420-3 

Initial Tableau section 
linear programming, 480-4 

Initial values 
backcasting, 465-2, 466-3, 467-3 

Insert, 103-5 
Installation, 1-1, 100-1 

folders, 1-1 
Int transformation, 119-7 
INTEL dataset, 465-7, 466-9, 471-7, 

473-5 
Interaction 

two level designs, 260-3 
Interactions 

multiple regression, 305-4 
Intercept 

linear regression, 300-25, 300-39 
multiple regression, 305-34 
Poisson regression, 325-15 

Interquartile range 
box plot, 152-1 
descriptive statistics, 200-17 

Interval censored 
parametric survival regression, 

566-3 
Weibull fitting, 550-11 

Interval data 
Cox regression, 565-17 

Interval failure 
Kaplan-Meier, 555-15 

Interval variables 
fuzzy clustering, 448-4 
hierarchical clustering, 445-6 
medoid partitioning, 447-1 

Intervals 
tolerance, 585-1 

Inverse prediction 
linear regression, 300-6, 300-41, 

300-67, 300-68 
IQ dataset, 305-27, 305-43, 305-72, 

305-76, 305-79 
IQR 

descriptive statistics, 200-17 
Isolines, 140-11 

contour plot, 172-1 
Item analysis, 505-1 
ITEM dataset, 505-2, 505-5, 506-2, 

506-6 
Item response analysis, 506-1 

J 
Jittering 

dot plots, 150-1 
Join transformation, 119-18 
Julian date transformation, 119-6 

K 
K analysis 

ridge regression, 335-22 
K values 

ridge regression, 335-8 
Kaplan-Meier 

Weibull fitting, 550-1 
Kaplan-Meier estimates, 555-1 
Kaplan-Meier product limit 

estimator 
Weibull fitting, 550-3 

Kaplan-Meier product-limit, 555-32 
beta distribution fitting, 551-14 
gamma distribution fitting, 552-

16 
nondetects analysis, 240-14 
Weibull fitting, 550-33 

Kaplan-Meier product-limit 
estimator 
beta distribution fitting, 551-2 

Kappa reliability test 
cross tabulation, 501-15 

Kaufman and Rousseeuw 
medoid partitioning, 447-4 

Kendall’s coefficient 
concordance, 211-15 

Kendall's tau-B 
cross tabulation, 501-15 

Kendall's tau-C 
cross tabulation, 501-15 

Kenward and Roger method 
mixed models, 220-28 

Kernel-smoothed estimators 

Kaplan-Meier, 555-9 
Weibull fitting, 550-35 

Keyboard 
commands, 103-11 

KLEIN6 dataset, 555-45 
K-means cluster analysis, 446-1 
KOCH36 dataset, 325-7, 325-21 
Kolmogorov-Smirnov 

descriptive statistics, 200-23 
Kolmogorov-Smirnov test 

two-sample, 206-1, 206-23 
Kruskall-Wallis test statistic, 210-21 
Kruskal-Wallis test, 210-1 
Kruskal-Wallis Z test 

one-way ANOVA, 210-7 
Kurtosis, 200-2 

descriptive statistics, 200-18 
t-test, 205-15 

L 
L’Abbe plot 

meta-analysis of correlated 
proportions, 457-22 

meta-analysis of means, 455-18 
meta-analysis of proportions, 

456-22 
Labeling values, 102-10 
Labeling variables, 2-4 
Labels 

values, 13-1 
LACHIN91 dataset, 320-71 
Lack of fit 

linear regression, 300-16 
Lack-of-fit test 

response surface regression, 330-
1 

Lagk transformation, 119-16 
Lambda 

canonical correlation, 400-10 
discriminant analysis, 440-12 
loglinear models, 530-18 

Lambda A 
cross tabulation, 501-14 

Lambda B 
cross tabulation, 501-15 

Latin square designs, 263-1 
LATINSQR dataset, 212-22 
Latin-square 

GLM, 212-21 
Lawley-Hotelling trace 

MANOVA, 415-3 
Lcase transformation, 119-18 
LEAD dataset, 240-19 
Least squares 

linear regression, 300-5 
multiple regression, 305-13 

Least squares trend, 466-1 
Ledk transformation, 119-16 
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LEE91 database, 570-15 
LEE91 dataset, 570-4 
Left censored 

parametric survival regression, 
566-3 

Weibull fitting, 550-11 
Left transformation, 119-18 
Length transformation, 119-18 
LEUKEMIA dataset, 320-18, 320-

34, 320-57 
Levenberg-Marquardt algorithm, 

385-1 
Levene test 

linear regression, 300-27 
modified, 206-20 
modified (multiple-groups), 210-

18 
Levene test (modified) 

linear regression, 300-50 
Levey-Jennings control charts, 252-1 
Life-table analysis, 570-1 
Like. ratio chi-square 

loglinear models, 530-13 
Likelihood 

Cox regression, 565-5 
Likelihood ratio 

1-sample binary diagnostic test, 
535-3 

logistic regression, 320-8 
ROC curves, 545-24 

Likelihood ratio test 
Cox regresion, 565-10 

Likelihood ratio test of difference 
two proportions, 515-8 

Likelihood-ratio statistic 
loglinear models, 530-4 

Likert-scale 
simulation, 122-8, 122-22 

Lilliefors' critical values 
descriptive statistics, 200-23 

Limitations 
exporting, 116-1 

Line charts, 140-1, 141-1 
Line granularity 

linear regression, 300-33 
Line settings window, 183-1 
Linear discriminant functions 

discriminant analysis, 440-2 
Linear model, 212-1 
Linear programming, 480-1 
Linear regression, 300-1 

assumptions, 300-3 
Linearity 

MANOVA, 415-5 
multiple regression, 305-6 

Linear-linear fit 
curve fitting, 351-11 

Linear-logistic model, 320-1 
Linkage type 

hierarchical clustering, 445-7 
LINREG1 dataset, 300-24, 300-37 

Ljung statistic 
automatic ARMA, 474-12 

LLM, 530-1 
Ln(X) transformation, 119-7 
Loading a database, 2-1, 2-10, 7-1 
Loess 

robust, 300-14 
LOESS 

linear regression, 300-13 
LOESS %N 

linear regression, 300-33 
LOESS curve 

linear regression, 300-33 
LOESS order 

linear regression, 300-33 
LOESS robust 

linear regression, 300-34 
Loess smooth 

scatter plot, 161-14 
Log document, 106-1 
Log file 

tutorial, 101-4 
Log likelihood 

Poisson regression, 325-23 
Weibull fitting, 550-30 

Log odds ratio transformation 
logistic regression, 320-2 

Log of output, 9-6 
Log transformation, 119-7 
Logarithmic fit 

curve fitting, 351-8 
LogGamma transformation, 119-9 
Logistic distribution 

Weibull fitting, 550-10 
Logistic item characteristic curve 

item response analysis, 506-1 
Logistic model 

curve fitting, 351-6 
growth curves, 360-5 

Logistic regression, 320-1 
parametric survival regression, 

566-1 
Logit transformation, 119-7 

logistic regression, 320-1 
LOGLIN1 dataset, 530-7, 530-11 
Loglinear models, 530-1 
Log-logistic distribution 

Weibull fitting, 550-10 
Log-logistic regression, 566-1 
Lognormal 

curve fitting, 351-10, 351-11 
growth curves, 360-9 

Lognormal distribution 
nondetects regression, 345-2 
Weibull fitting, 550-5 

Lognormal regression, 566-1 
Logrank test 

Kaplan-Meier, 555-41 
Log-rank test 

Kaplan-Meier, 555-12 
nondetects analysis, 240-3 

randomization, 555-1 
Log-rank tests 

Kaplan-Meier, 555-38 
Longitudinal data example 

mixed models, 220-51 
Longitudinal data models 

mixed models, 220-4 
Longitudinal models, 220-1 
Lookup transformation, 119-14 
Lotus 123 exporting, 116-1 
Lotus 123 importing, 115-1 
Lowess smooth 

scatter plot, 161-14 
LP dataset, 480-2, 480-4 
LUNGCANCER dataset, 565-15, 

565-31, 565-48 

M 
MA order (Q) 

automatic ARMA, 474-8 
Macros, 130-1 

command list, 130-25 
commands, 130-6 
examples, 130-26 
syntax, 130-2 

MAD 
descriptive statistics, 200-20 

MAD constant 
multiple regression, 305-40 

MAE 
exponential smoothing, 466-4, 

467-2 
Mallow's Cp 

variable selection and, 312-8 
Mallow's Cp statistic 

multiple regression, 305-55 
MAMMALS dataset, 3-1, 4-1, 10-1 
MAMMALS1 dataset, 5-1, 6-1 
Manhattan distance 

medoid partitioning, 447-3 
Mann-Whitney U test, 206-1, 206-20 
MANOVA, 415-1 

multivariate normality and 
Outliers, 415-4 

MANOVA1 dataset, 410-3, 410-6, 
415-5, 415-10 

Mantel Haenszel test 
two proportions, 515-7 

Mantel-Haenszel logrank test 
Kaplan-Meier, 555-41 

Mantel-Haenszel test, 525-1 
MAPE 

exponential smoothing, 466-4, 
467-2 

Maps 
contour plots, 172-1 
contour plots, 140-11 

Mardia-Watson-Wheeler test 
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circular data, 230-10 
Marginal association 

loglinear models, 530-6 
Martinez-Iglewicz 

descriptive statistics, 200-22 
Martingale residuals 

Cox regression, 565-13, 565-39 
Cox regression, 565-40 

MARUBINI dataset, 560-3, 560-9 
Mass 

correspondence analysis, 430-13 
Matched pairs 

correlated proportions, 520-1 
Matching 

caliper, 123-4 
caliper radius, 123-5 
distance calculation method, 123-

3 
forced match variable, 123-4 
full (variable), 123-3 
greedy, 123-1, 123-2 
optimal, 123-1, 123-2 
propensity score, 123-2 
standardized difference, 123-15 

Mathematical functions 
transformations, 119-7 

Matrix determinant 
equality of covariance, 402-8 

Matrix type 
principal components analysis, 

425-11 
Mauchley’s test of compound 

symmetry, 214-5 
Mavk transformation, 119-16 
Max % change in any beta 

multiple regression, 305-78 
Max terms 

multiple regression, 305-33 
Max transformation, 119-16 
Maximum likelihood 

Cox regression, 565-5 
mixed models, 220-17 
Weibull fitting, 550-10 

Maximum likelihood estimates 
beta distribution fitting, 551-12 

McHenry's select algorithm, 310-1 
McNemar test 

correlated proportions, 520-1, 
520-6 

cross tabulation, 501-16 
McNemar's tests, 501-1 
MDB exporting, 116-1 
MDB importing, 115-1 
MDS, 435-1 
MDS2 dataset, 435-6, 435-10, 435-

15 
Mean 

confidence interval for, 200-13 
descriptive statistics, 200-13 
deviation, 200-20 
geometric, 200-14 

harmonic, 200-14 
standard error of, 200-13 

Mean absolute deviation 
descriptive statistics, 200-20 

Mean deviation 
descriptive statistics, 200-20 
estimate of standard error of, 

200-20 
Mean square 

linear regression, 300-47 
Mean squared error 

linear regression, 300-19 
multiple regression, 305-19 

Mean squares 
multiple regression, 305-50 

Mean-deviation 
descriptive statistics, 200-20 

Means 
meta-analysis of means, 455-1 

Measurement error 
R & R, 254-19 

Measurement error ratio 
R & R, 254-3 

Median 
cluster method, 445-4 
confidence interval, 200-14 
descriptive statistics, 200-14 

Median cluster method 
double dendrograms, 450-2 

Median remaining lifetime 
life-table analysis, 570-4, 570-22 

Median smooth 
scatter plot, 161-15 

Median survival time 
Kaplan-Meier, 555-30 

Medoid clustering, 447-1 
Medoid partitioning, 447-1 
Membership 

fuzzy clustering, 448-1 
Merging two databases, 104-1 
M-estimators 

multiple regression, 305-25 
Meta-analysis 

correlated proportions, 457-1 
Meta-analysis of hazard ratios, 458-1 
Meta-analysis of means, 455-1 
Meta-analysis of proportions, 456-1 
METACPROP dataset, 457-6, 457-

14 
METAHR dataset, 458-6, 458-12 
Method of moments estimates 

beta distribution fitting, 551-12 
Metric multidimensional scaling, 

435-5 
Michaelis-Menten 

curve fitting, 351-1, 351-4 
Miettinen - Nurminen test 

two proportions, 515-8 
Mill’s ratio 

Kaplan-Meier, 555-2 
Weibull fitting, 550-2 

Min transformation, 119-16 
Minimum Percent Beta Change, 305-

40 
Minute format, 102-8 
Missing 

if-then transformation, 120-4 
Missing value estimation 

factor analysis, 420-7 
Missing values, 102-5, 320-8, 320-18, 

425-4 
cross tabs, 501-4 
descriptive tables, 201-7 
estimating, 118-1 
GLM, 212-19 
principal components analysis, 

425-3 
Missing-value imputation 

principal components analysis, 
425-4 

Mixed model 
defined, 220-2 

Mixed models, 220-1 
AIC, 220-7 
Bonferroni adjustment, 220-14 
covariates, 220-9 
differential evolution, 220-29 
F test, 220-28 
Fisher scoring, 220-29 
fixed effects, 220-9 
G matrix, 220-18 
Kenward and Roger method, 220-

28 
L matrix, 220-26 
likelihood formulas, 220-17 
maximum likelihood, 220-17 
MIVQUE, 220-29 
model building, 220-13 
multiple comparisons, 220-14 
Newton-Raphson, 220-29 
R matrix, 220-19 
random vs repeated error, 220-7 
restricted maximum likelihood, 

220-18 
technical details, 220-16 
time, 220-11 
types, 220-4 
zero variance estimate, 220-8 

Mixture design 
D-optimal designs, 267-22 

MLCO2 dataset, 470-11 
Mod transformation, 119-7 
Mode 

descriptive statistics, 200-15 
Model 

Bleasdale-Nelder, 351-5, 360-3 
exponential, 351-6, 360-4 
Farazdaghi and Harris, 351-5, 

360-3 
four-parameter logistic, 351-7, 

360-5 
Gompertz, 351-7, 360-5 
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Holliday, 351-5, 360-4 
Kira, 351-4, 360-2 
monomolecular, 351-6, 360-4 
Morgan-Mercer-Floding, 351-8, 

360-6 
multiple regression, 305-33 
reciprocal, 351-4, 360-2 
Richards, 351-8, 360-7 
Shinozaki, 351-4, 360-2 
three-parameter logistic, 351-6, 

360-5 
Weibull, 351-7, 360-6 

Model size 
all possible regressions, 312-8 

Models 
growth curves, 360-1 
hierarchical, 530-3 
multiphase, 365-1 
multiple regression, 305-35 
piecewise polynomial, 365-1 
ratio of polynomials, 370-1, 375-

1 
sum of functions, 380-1 
user written, 385-1 

Modified Kuiper’s test 
circular data, 230-4 

Moment 
descriptive statistics, 200-11 

Monomolecular model 
curve fitting, 351-6 
growth curves, 360-4 

Monte Carlo samples 
1-Sample T2, 405-4 
linear regression, 300-31 

Monte Carlo simulation, 122-1 
Month format, 102-8 
Month transformation, 119-6 
Morgan-Mercer-Floding model 

curve fitting, 351-8 
growth curves, 360-6 

MOTORS dataset, 566-3, 566-11 
Moving average chart, 250-4 
Moving average chart limits, 250-8 
Moving average parameters 

ARIMA, 471-3 
theoretical ARMA, 475-2 

Moving data, 103-14 
Moving range 

Xbar R, 250-33 
Moving range chart, 250-4 
MSEi 

multiple regression, 305-19 
Multicollinearity 

canonical correlation, 400-2 
discriminant analysis, 440-4 
MANOVA, 415-5 
multiple regression, 305-7 
ridge regression, 335-1 
stepwise regression, 311-2 

Multicollinearity report 
multiple regression, 305-57 

Multidimensional scaling, 435-1 
metric, 435-1 

Multinomial chi-square tests 
frequency tables, 500-1 

Multinomial distribution 
simulation, 122-8 

Multinomial test 
frequency tables, 500-10 

Multiple comparisons 
Bonferroni, 210-4 
box plots, 152-2 
Duncan’s test, 210-5 
Dunn’s test, 210-7 
Dunnett’s test, 210-6 
Fisher's LSD, 210-6 
Hsu’s test, 210-6 
Kruskal-Wallis Z test, 210-7 
mixed models, 220-14 
Newman-Keuls test, 210-8 
one-way ANOVA, 210-3 
recommendations, 210-8 
Scheffe’s test, 210-8 
Tukey-Kramer test, 210-8 

Multiple regression 
robust, 305-24 

Multiple regression, 305-1 
assumptions, 305-6 

Multiple regression 
all possible, 312-1 

Multiple regression 
binary response, 320-8 

Multiple regression with serial 
correlation, 306-1 

Multiplicative seasonality 
exponential smoothing, 467-2 

Multiplicity factor 
t-test, 205-19 

Multivariate analysis of variance, 
415-1 

Multivariate normal 
factor analysis, 420-7 
principal components analysis, 

425-11 
Multivariate polynomial ratio fit, 

376-1 
Multivariate variable selection, 310-

1 
Multiway frequency analysis 

loglinear models, 530-1 
Mutation rate 

hybrid appraisal models, 487-9 
Weibull fitting, 550-15 

N 
Nam and Blackwelder test 

correlated proportions, 520-5 
Nam test 

correlated proportions, 520-7 

Nam’s score 
correlated proportions, 520-2 

Navigator, 107-1 
NC CRIMINAL dataset, 320-64, 

320-68 
NcBetaProb transformation, 119-9 
NcBetaValue transformation, 119-10 
NcCsProb transformation, 119-10 
NcCsValue transformation, 119-10 
NcFprob transformation, 119-10 
NcFvalue transformation, 119-10 
NCSS 

quitting, 101-4 
NcTprob transformation, 119-10 
NcTvalue transformation, 119-10 
Nearest neighbor 

double dendrograms, 450-2 
hierarchical clustering, 445-3 

Negative binomial distribution 
probablility calculator, 135-5 

Negative binomial transformation, 
119-10 

NegBinomProb transformation, 119-
10 

Neighborhood 
appraisal ratios, 485-7 

Nelson-Aalen estimates 
Weibull fitting, 550-1 

Nelson-Aalen estimator, 555-7 
Weibull fitting, 550-33 

Nelson-Aalen hazard 
Kaplan-Meier, 555-1 
Weibull fitting, 550-4 

Nested factor 
GLM, 212-4 

Nested factors 
design generator, 268-1 

New database, 103-1 
New spreadsheet, 103-1 
New template, 105-1 
Newman-Keuls test 

one-way ANOVA, 210-8 
Newton-Raphson 

Weibull fitting, 550-11 
Nominal variables 

fuzzy clustering, 448-4 
hierarchical clustering, 445-7 
medoid partitioning, 447-2 

Non-central Beta transformation, 
119-10 

Non-central Chi-square 
transformation, 119-10 

noncentral-F distribution 
transformation, 119-10 

Noncentral-t distribution 
transformation, 119-10 

Nondetects analysis, 240-1 
confidence limits, 240-7 
flipping constant, 240-2 
Gehan test, 240-3 
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Kaplan-Meier product-limit, 240-
14 

log-rank test, 240-3 
Peto-Peto test, 240-3 
Tarone-Ware test, 240-3 

NONDETECTS dataset, 240-4 
Nondetects regression, 345-1 

confidence limits, 345-11 
Cox-Snell residual, 345-13 
R-squared, 345-11 
standardized residual, 345-13 

Noninferiority 
2-sample binary diagnostic, 537-

10 
clustered binary diagnostic, 538-9 
paired binary diagnostic, 536-8 
ROC curves, 545-31 

Noninferiority test 
correlated proportions, 520-8 
two proportions, 515-17 

Noninferiority tests 
two proportions, 515-37 

Nonlinear regression, 315-1 
appraisal, 487-1 
functions, 315-4 
starting values, 315-1 
user written models, 385-1 

Nonparametric tests 
t-test, 205-17 

Nonstationary models 
Box Jenkins, 470-3 

Normal 
curve fitting, 351-10 
growth curves, 360-9 

Normal distribution 
probablility calculator, 135-5 
simulation, 122-9, 122-20 
Weibull fitting, 550-4 

Normal line 
histograms, 143-12 

Normal probability plot 
descriptive statistics, 200-26 

Normality, 200-4 
descriptive statistics, 200-21 
ROC curves, 545-12 
t-test, 205-15 

Normality test alpha, 118-3 
Normality tests 

Anderson-Darling test, 200-22 
D’Agostino kurtosis, 200-24 
D’Agostino omnibus, 200-25 
D’Agostino skewness, 200-23 
descriptive statistics, 200-21 
Kolmogorov-Smirnov, 200-23 
Lilliefors' critical values, 200-23 
linear regression, 300-48 
Martinez-Iglewicz, 200-22 
multiple regression, 305-52 
Shapiro-Wilk test, 200-22 
skewness test, 200-24 
tolerance intervals, 585-11 

NormalProb transformation, 119-10 
NormalValue transformation, 119-10 
NormScore transformation, 119-16 
Notes 

omitting them in linear 
regression, 300-26 

NP-chart, 251-1 
Number exposed 

life-table analysis, 570-2 
Number of correlations 

canonical correlation, 400-5 
Number of points 

linear regression, 300-33 
Numeric data, 102-1 
Numeric functions, 119-6 

O 
Objective function 

linear programming, 480-1 
Observational study matching, 123-1 
Observational study stratification, 

124-1 
Odds ratio 

1-sample binary diagnostic test, 
535-4 

2-sample binary diagnostic, 537-
9 

confidence interval of, 515-23 
correlated proportions, 520-5 
meta-analysis of correlated 

proportions, 457-2 
meta-analysis of proportions, 

456-2 
two proportions, 515-1, 515-3 

Odds ratios 
Mantel-Haenszel test, 525-1 

ODOR dataset, 330-3, 330-11 
Omission report 

multiple regression, 305-54 
One proportion, 510-1 
One-sample tests, 205-1 
One-sample t-test, 205-1 
One-way analysis of variance, 210-1 
One-way ANOVA 

Bonferroni, 210-4 
Duncan’s test, 210-5 
Dunn’s test, 210-7 
Dunnett’s test, 210-6 
Fisher's LSD, 210-6 
Hsu’s test, 210-6 
Kruskal-Wallis Z test, 210-7 
multiple comparisons, 210-3 
Newman-Keuls test, 210-8 
orthogonal contrasts, 210-11 
orthogonal polynomials, 210-11 
planned comparisons, 210-10 
Scheffe’s test, 210-8 
Tukey-Kramer test, 210-8 

Open database, 103-1 
Open log file, 106-2 
Open output file, 106-2 
Open spreadsheet, 103-1 
Open template, 105-1 
Opening a database 

tutorial, 101-3 
Optimal matching, 123-1, 123-2 
Optimal solution section 

linear programming, 480-5 
Optimal value 

linear programming, 480-5 
Or 

if-then transformation, 120-2 
Ordinal variables 

fuzzy clustering, 448-4 
hierarchical clustering, 445-6 
medoid partitioning, 447-2 

Original cost 
linear programming, 480-5 

Orthogonal arrays, 266-1 
Orthogonal contrasts 

one-way ANOVA, 210-11 
Orthogonal polynomial 

ANOVA balanced, 211-6 
GLM, 212-5 
repeated measures, 214-11 

Orthogonal polynomials 
one-way ANOVA, 210-11 

Orthogonal regression 
linear regression, 300-9, 300-41 

Orthogonal sets of Latin squares, 
263-2 

Outlier detection 
linear regression, 300-64 
multiple regression, 305-83 

Outlier report 
linear regression, 300-66 

Outliers 
Cox regression, 565-14 
linear regression, 300-15 
multiple regression, 305-1, 305-

24, 305-78 
stepwise regression, 311-3 
t-test, 205-22 

Outliers, 200-3 
Output, 106-1 

log of, 9-6 
printing, 9-4 
ruler, 106-4 
saving, 9-5 

Output document, 106-1 
Output window, 1-6, 9-1 
Overdispersion 

Poisson regression, 325-3, 325-12 
Overlay 

scatter plot, 161-3 
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P 
Page setup, 103-2 
PAIN dataset, 220-51 
Paired data 

clustered binary diagnostic, 538-
11 

Paired t-test 
1-Sample T2, 405-1 

Paired t-tests, 205-1 
Pair-wise removal 

correlation matrix, 401-3 
Paradox exporting, 116-1 
Paradox importing, 115-1 
Parallel slopes 

multiple regression, 305-86 
Parameterization 

curve fitting, 350-5 
Pareto chart, 253-1 
Pareto charts, 250-41 
Parsimony 

ratio of polynomials, 370-2 
Partial association 

loglinear models, 530-5 
Partial autocorrelation, 472-1 
Partial autocorrelation function 

Box Jenkins, 470-4 
Partial correlation 

multiple regression, 305-56 
Partial residual plots, 305-71 
Partial variables 

canonical correlation, 400-4 
correlation matrix, 401-3 

Partial-regression coefficients, 305-
47 

Partition coefficient 
fuzzy clustering, 448-3 

Paste, 103-4 
Paste output, 106-3 
Pasting data, 7-2 
PCA, 425-1 
PCA2 dataset, 118-4, 420-5, 420-11, 

425-9, 425-15 
P-chart, 251-1 
Pearson chi-square 

loglinear models, 530-4, 530-13 
Pearson correlation 

linear regression, 300-45 
Pearson correlations 

matrix of, 401-1 
Pearson residuals 

logistic regression, 320-13 
Poisson regression, 325-5, 325-31 

Pearson test 
Poisson regression, 325-3 

Pearson’s contingency coefficient 
cross tabulation, 501-14 

Percentile plots, 140-5 
Percentile Plots, 153-1 
Percentile type 

descriptive statistics, 200-6 
Percentiles, 200-2 
Percentiles of absolute residuals 

multiple regression, 305-78 
Period effect 

cross-over analysis using t-tests, 
235-4 

Period plot 
cross-over analysis using t-tests, 

235-24 
Periodogram 

spectral analysis, 468-1 
Perspective 

3D scatter plot, 170-6 
3D surface plot, 171-6 
bar charts, 141-12 

PET dataset, 538-11 
Peto-Peto test 

Kaplan-Meier, 555-12 
nondetects analysis, 240-3 

Phase 
spectral analysis, 468-1 

Phi 
cross tabulation, 501-14 
factor analysis, 420-13 
Poisson regression, 325-3, 325-

12, 325-27 
principal components analysis, 

425-17 
Phis 

theoretical ARMA, 475-2 
Pie charts, 140-2, 142-1 
PIE dataset, 142-6 
Piecewise polynomial models, 365-1 
Pillai's trace 

MANOVA, 415-3 
Plackett-Burman design, 265-1 
Planned comparisons 

one-way ANOVA, 210-10 
PLANT dataset, 212-27 
Plot size 

linear regression, 300-29 
Plots 

3D scatter plots, 140-10, 170-1 
3D surface plots, 140-10, 171-1 
area charts, 140-1, 141-1 
bar charts, 140-1, 141-1 
box plots, 140-5, 152-1 
contour plots, 140-11, 172-1 
density trace, 143-1 
dot plots, 140-4, 150-1 
error-bar charts, 140-6, 155-1 
function plots, 160-1 
grid plots, 140-11, 173-1 
histograms, 140-2, 143-1 
histograms - comparative, 140-4, 

151-1 
line charts, 140-1, 141-1 
percentile plots, 140-5, 153-1 
pie charts, 140-2 
probability plots, 140-3, 144-1 

scatter plot matrix, 140-8, 162-1 
scatter plot matrix (curve fitting), 

163-1 
scatter plot matrix for curve 

fitting, 140-9 
scatter plots, 140-7, 161-1 
single-variable charts, 140-1 
surface charts, 140-1, 141-1 
surface plots, 140-10, 171-1 
three-variable charts, 140-10 
two-variable charts, 140-4, 140-7 
violin plots, 140-6, 154-1 

POISREG dataset, 325-37 
Poisson distribution 

probablility calculator, 135-5 
simulation, 122-9 

Poisson regression, 325-1 
PoissonProb transformation, 119-11 
POLITIC dataset, 13-1, 14-1 
Polynomial 

logistic regression, 320-23 
multiple regression, 305-31 
multivariate ratio fit, 376-1 
Poisson regression, 325-11 

Polynomial fit 
scatter plot, 161-13 

Polynomial model 
response surface regression, 330-

1 
Polynomial models, 365-1 
Polynomial ratio fit, 375-1 
Polynomial ratios 

model search (many X variables), 
371-1 

Polynomial regression model, 330-1 
Polynomials 

ratio of, 370-1, 375-1 
Pooled terms, 213-2 
POR exporting, 116-1 
Portmanteau test 

ARIMA, 471-12 
automatic ARMA, 474-12 
Box Jenkins, 470-10 

Power 
multiple regression, 305-47 

Power spectral density 
spectral analysis, 468-3 

Power spectrum 
theoretical ARMA, 475-8 

PRD 
appraisal ratios, 485-8 

Precision-to-tolerance 
R & R, 254-20 

Precision-to-tolerance ratio 
R & R, 254-3 

Predicted value 
Poisson regression, 325-32 

Predicted values 
linear regression, 300-27, 300-52 
multiple regression, 305-61 

Prediction interval 
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multiple regression, 305-61 
Prediction limits 

linear regression, 300-33, 300-53, 
300-59 

multiple regression, 305-61 
Pre-post 

multiple regression, 305-87 
PREPOST dataset, 305-87 
PRESS 

linear regression, 300-21, 300-51 
multiple regression, 305-21, 305-

51 
PRESS R2 

multiple regression, 305-52 
Press R-squared 

multiple regression, 305-21 
PRESS R-squared 

linear regression, 300-22 
Prevalence 

ROC curves, 545-5 
Price related differential 

appraisal ratios, 485-8 
hybrid appraisal models, 487-17 

Principal axis method 
factor analysis, 420-1 

Principal components 
linear regression, 300-9 

Principal components analysis, 425-
1 

Principal components regression, 
340-1 

Print 
output, 106-3 

Printer setup, 103-2 
Printing 

data, 2-7, 103-3 
output, 9-4 
output reports, 4-5 

Printing data, 117-1 
Prior probabilities 

discriminant analysis, 440-5 
Prob level, 415-13 

linear regression, 300-47 
Prob to enter 

stepwise regression, 311-4 
Prob to remove 

stepwise regression, 311-4 
Probability Calculator, 135-1 

Beta distribution, 135-1 
Binomial distribution, 135-2 
Bivariate normal distribution, 

135-2 
Chi-square distribution, 135-2 
Correlation coefficient 

distribution, 135-3 
F distribution, 135-3 
Gamma distribution, 135-4 
Hotelling’s T2 distribution, 135-4 
Hypergeometric distribution, 

135-4 

Negative binomial distribution, 
135-5 

Normal distribution, 135-5 
Poisson distribution, 135-5 
Student’s t distribution, 135-6 
Studentized range distribution, 

135-6 
Weibull distribution, 135-6 

Probability ellipse 
linear regression, 300-8, 300-33 

Probability functions 
transformations, 119-8 

Probability plot 
descriptive statistics, 200-26 
linear regression, 300-57 
multiple regression, 305-67 
t-test, 205-20 
Weibull, 144-17 

Probability plot style file, 144-19 
Probability plots, 140-3 

asymmetry, 144-3 
quantile scaling, 144-7 

Probability Plots, 144-1 
Probit analysis, 575-1 
Probit plot 

probit analysis, 575-10 
Procedure, 105-1 

running, 101-3 
Procedure window, 1-5, 8-1 
Product-limit survival distribution 

beta distribution fitting, 551-14 
gamma distribution fitting, 552-

16 
Kaplan-Meier, 555-32 
Weibull fitting, 550-33 

Product-moment correlation 
correlation matrix, 401-3 

Profiles 
correspondence analysis, 430-1 

Projection method 
3D scatter plot, 170-8 
3D surface plot, 171-7 
bar charts, 141-14 

PROPENSITY dataset, 123-5, 123-
12, 124-4 

Propensity score, 123-2 
stratification, 124-1 

Proportion trend test 
Armitage, 501-5 

Proportions 
2-sample binary diagnostic, 537-

1 
clustered binary diagnostic, 538-1 
confidence interval of ratio, 515-

21 
correlated, 520-1 
Meta-analysis of correlated 

proportions, 457-1 
meta-analysis of proportions, 

456-1 
one, 510-1 

paired binary diagnostic, 536-1 
two, 515-1 

Proportions test 
1-sample binary diagnostic test, 

535-1 
Proximity matrix 

multidimensional scaling, 435-1 
Proximity measures 

multidimensional scaling, 435-4 
Pseudo R-squared 

multidimensional scaling, 435-12 
Poisson regression, 325-4 

Pure error 
linear regression, 300-16 

Q 
QATEST dataset, 250-14, 250-27, 

250-33, 250-35, 250-37, 251-3, 
251-11, 253-2, 253-7, 253-9 

Quadratic fit 
curve fitting, 351-2 

Qualitative factors 
D-optimal designs, 267-6, 267-25 

Quality 
correspondence analysis, 430-13 

Quantile scaling 
probability plots, 144-7 

Quantile test, 205-17 
Quantiles 

Kaplan-Meier, 555-30 
Quartiles 

descriptive statistics, 200-21 
Quartimax rotation 

factor analysis, 420-4 
principal components analysis, 

425-8 
Quatro exporting, 116-1 
Quick launch window, 107-1, 107-2 
Quick start, 100-1 
Quitting NCSS, 101-4 

R 
R & R study, 254-1 
Radial plot 

meta analysis of hazard ratios, 
458-18 

meta-analysis of correlated 
proportions, 457-21 

meta-analysis of means, 455-18 
meta-analysis of proportions, 

456-21 
Random coefficients example 

mixed models, 220-103 
Random coefficients models 

mixed models, 220-5 
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Random effects model 
meta-analysis of correlated 

proportions, 457-5 
meta-analysis of hazard ratios, 

458-5 
meta-analysis of means, 455-4 
meta-analysis of proportions, 

456-5 
Random effects models, 220-1 

mixed models, 220-4 
Random factor 

ANOVA balanced, 211-5 
GLM, 212-4 
repeated measures, 214-8 

Random numbers, 122-1 
uniform, 15-1 

Randomization 
Latin square designs, 263-2 

Randomization test 
curve fitting, 351-16 
linear regression, 300-24 
log-rank, 555-1 
T2, 410-7 

Randomization tests 
1-Sample T2, 405-1, 405-8 
T2, 410-1 

Randomized block design 
repeated measures, 214-6 

RandomNormal transformation, 119-
11 

Random-number functions 
transformations, 119-11 

Range 
descriptive statistics, 200-17 
interquartile, 200-17 

Range chart, 250-1 
Rank transformation, 119-16 
Rate ratio 

Poisson regression, 325-30 
Ratio of polynomials 

model search (many X variables), 
371-1 

model search (one X variable), 
370-1 

Ratio of polynomials fit, 375-1 
many variables, 376-1 

Ratio of two proportions 
two proportions, 515-6 

Ratio plot 
decomposition forecasting, 469-

12 
Ratio section 

appraisal ratios, 485-7 
Ratio study 

appraisal ratios, 485-1 
Ratio variables 

fuzzy clustering, 448-4 
hierarchical clustering, 445-6 
medoid partitioning, 447-2 

Rayleigh test 
circular data, 230-4 

Rbar-squared 
linear regression, 300-8 
multiple regression, 305-15 

RCBD data example 
mixed models, 220-94 

RCBD dataset, 220-94 
REACTION dataset, 214-6, 214-29 
Readout 

parametric survival regression, 
566-3 

Weibull fitting, 550-11 
READOUT105 dataset, 550-47 
Rearrangement functions 

transformations, 119-12 
Recalc all, 103-9, 119-4 
Recalc current, 103-8, 119-4 
Reciprocal model 

curve fitting, 351-4 
growth curves, 360-2 

Recode functions transformations, 
119-14 

Recode transformation, 3-4, 119-15 
Recoding, 11-1 
Reduced cost 

linear programming, 480-5 
Redundancy indices 

canonical correlation, 400-4 
Reference group 

logistic regression, 320-19 
Reference value 

logistic regression, 320-21 
multiple regression, 305-3, 305-

29 
Poisson regression, 325-9 
Xbar R, 250-23 

Reflection C.I. method 
multiple regression, 305-41 

Reflection method 
linear regression, 300-30 
two proportions, 515-28 

REGCLUS dataset, 449-2, 449-5 
Regression 

all possible, 312-1 
appraisal model, 487-1 
backward selection, 311-2 
binary response, 320-1, 320-8 
clustering, 449-1 
Cox, 565-1 
diagnostics, 305-63 
exponential, 566-1 
extreme value, 566-1 
forward selection, 311-1 
growth curves, 360-1 
hybrid appraisal model, 487-1 
linear, 300-1 
logistic, 320-1, 566-1 
log-logistic, 566-1 
lognormal, 566-1 
model search (many X variables), 

371-1 
multiple, 312-8 

nondetects, 345-1 
nonlinear, 315-1 
normal, 566-1 
orthogonal regression, 300-9 
Poisson, 325-1 
polynomial ratio, 375-1 
polynomial ratio (search), 370-1 
principal components, 340-1 
proportional hazards, 565-1 
response surface regression, 330-

1 
ridge, 335-1 
stepwise, 311-1 
sum of functions models, 380-1 
user written, 385-1 
variable selection, 311-1 
Weibull, 566-1 

Regression analysis, 6-1 
multiple regression, 305-1 

Regression clustering, 449-1 
Regression coefficients 

Cox regression, 565-32 
Regression coefficients report 

multiple regression, 305-48 
Regression equation report 

multiple regression, 305-46 
Relative risk 

meta-analysis of correlated 
proportions, 457-2 

meta-analysis of proportions, 
456-2 

two proportions, 515-1 
Reliability 

beta distribution fitting, 551-1, 
551-15 

gamma distribution fitting, 552-1 
item analysis, 505-1 
Kaplan-Meier, 555-1 
kappa, 501-15 
Weibull fitting, 550-1 

Reliability analysis 
Weibull fitting, 550-1 

Reliability function 
beta distribution fitting, 551-2 
gamma distribution fitting, 552-2 
Weibull fitting, 550-2 

Remove last sheet, 103-2 
Remove transformation, 119-18 
Removed lambda 

discriminant analysis, 440-12 
Repeat transformation, 119-18 
Repeatability 

R & R, 254-1, 254-14 
Repeated measures, 214-1 

1-Sample T2, 405-6 
mixed models, 220-1 

Repeated measures data example 
mixed models, 220-51 

Repeated measures design 
generating, 268-7 

Repeated-measures design 
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GLM, 212-23 
Replace, 103-6 
Replace in output, 106-4 
Replace transformation, 119-18 
Replication 

two level designs, 260-4 
Reporting data, 117-1 
Reports 

selecting in linear regression, 
300-26 

Reproducibility 
R & R, 254-1, 254-14 

RESALE dataset, 117-4, 151-14, 
155-1, 155-7, 201-1, 201-11, 
201-12, 201-14, 201-15, 201-17, 
201-19, 201-21, 305-81, 500-1, 
500-9, 500-10, 500-12, 500-14, 
501-1, 501-8, 501-11, 501-17 

Resampling tab 
linear regression, 300-29 

Residual 
diagnostics, 305-63 
linear regression, 300-2, 300-18 
multiple regression, 305-17 

Residual diagnostics 
linear regression, 300-15 
multiple regression, 305-15 
Poisson regression, 325-33 

Residual life 
life-table analysis, 570-22 
Weibull fitting, 550-40 

Residual plots 
linear regression, 300-53 
multiple regression, 305-67, 305-

70 
partial residuals, 305-71 

Residual report 
linear regression, 300-61 
multiple regression, 305-62 

Residuals 
Cox regression, 565-13 
Cox regression, 565-39 
logistic regression, 320-11 
multiple regression, 305-1 
Poisson regression, 325-4, 325-31 

Residuals-deviance 
Cox regression, 565-14 

Residuals-Martingale 
Cox regression, 565-13 

Residuals-scaled Schoenfeld 
Cox regression, 565-15 

Residuals-Schoenfeld 
Cox regression, 565-14 

Response surface regression, 330-1 
Response-surface designs, 264-1 
Restart method 

Xbar R, 250-23 
Restricted maximum likelihood 

mixed models, 220-18 
Richards model 

curve fitting, 351-8 

growth curves, 360-7 
Ridge regression, 335-1 
Ridge trace 

ridge regression, 335-4, 335-18 
RIDGEREG dataset, 335-7, 335-15, 

340-3, 340-11 
Right censored 

parametric survival regression, 
566-2 

Weibull fitting, 550-11 
Right transformation, 119-19 
Right-hand sides 

linear programming, 480-1 
Risk ratio 

correlated proportions, 520-4 
Cox regression, 565-33, 565-35 
meta-analysis of correlated 

proportions, 457-2 
meta-analysis of proportions, 

456-2 
Risk set 

Cox regression, 565-16 
Kaplan-Meier, 555-3 

RMSF dataset, 545-3 
RNDBLOCK dataset, 211-4, 211-11, 

212-3, 212-12 
Robins odds ratio C. L. 

Mantel-Haenszel test, 525-11 
Robust estimation 

principal components analysis, 
425-5 

Robust iterations 
Xbar R, 250-18 

Robust loess 
linear regression, 300-14 

Robust method 
multiple regression, 305-39 

Robust regression 
multiple regression, 305-24, 305-

31 
Robust regression reports 

multiple regression, 305-77 
Robust regression tutorial 

multiple regression, 305-76 
Robust sigma multiplier 

Xbar R, 250-18 
Robust tab 

multiple regression, 305-39 
Robust weight 

factor analysis, 420-7 
principal components analysis, 

425-11 
Robust weights 

multiple regression, 305-78 
ROC curves, 545-1 

comparing, 545-9 
ROC dataset, 545-19 
Root MSE 

all possible regressions, 312-8 
Rose plot 

circular data, 230-16 

Rose plots, 230-1 
Rotation 

3D scatter plot, 170-7 
3D surface plot, 171-7 
bar charts, 141-13 
factor analysis, 420-7 
principal components analysis, 

425-11 
Round transformation, 119-7 
Row heights, 103-15 
Row profiles 

correspondence analysis, 430-1 
Rows, 251-4, 251-5 
Row-wise removal 

correlation matrix, 401-3 
Roy’s largest root 

MANOVA, 415-4 
RRSTUDY dataset, 254-1, 254-10 
RRSTUDY1 dataset, 254-24 
R-squared 

adjusted, 300-46 
adjusted, 305-45 
all possible regressions, 312-8 
Cox regression, 565-11 
definition, 305-44 
linear regression, 300-7, 300-46 
logistic regression, 320-10 
multiple regression, 305-14 
Poisson regression, 325-4, 325-24 

R-squared increment 
stepwise regression, 311-8 

R-squared report 
multiple regression, 305-53 

R-squared vs variable count plot, 
310-8 

RStudent 
linear regression, 300-20, 300-62 
multiple regression, 305-19, 305-

63 
RStudent plot 

multiple regression, 305-69 
Rstudent residuals 

scatter plot of, 300-55 
RTF, 106-3 

tutorial, 101-4 
RTF output format, 106-1 
Ruler 

output, 106-4 
Run summary report 

multiple regression, 305-44 
Running a procedure 

tutorial, 101-3 
Running a regression analysis, 6-1 
Running a two-sample t-test, 5-1 
Running descriptive statistics, 4-1 
Runs tests 

attribute charts, 251-3 
Xbar R, 250-9 
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S 
S0 database, 102-1 
S0/S0Z comparison, 102-4 
S0Z/S0 comparison, 102-4 
Sale date variable 

appraisal ratios, 485-4 
comparables, 486-7 

Sale price variables 
appraisal ratios, 485-2 

SALES dataset, 467-9, 469-9 
Sales price 

multiple regression, 305-81 
SALESRATIO dataset, 485-1, 485-

6, 486-4 
SAMPLE dataset, 101-3, 161-20, 

162-5, 171-9, 172-7, 200-4, 200-
10, 205-12, 206-12, 210-16, 310-
3, 310-6, 311-3, 311-6, 312-2, 
312-6, 400-8, 401-2, 401-5, 585-
8 

SAS exporting, 116-1 
SAS importing, 115-1 
Saturated model 

loglinear models, 530-3 
Save, 103-3 
Save as, 103-3 
Save output, 106-3 
Saved colors, 180-3 
Saving 

data, 2-6 
tutorial, 101-2 

output, 9-5 
template, 8-5 

Saving a template, 105-2 
Saving results 

multiple regression, 305-42 
SC 

medoid partitioning, 447-5 
Scaled Schoenfeld residuals 

Cox regression, 565-15, 565-42 
Scaling 

multidimensional, 435-1 
Scaling factors 

D-optimal designs, 267-2 
Scaling method 

fuzzy clustering, 448-5 
hierarchical clustering, 445-8 

Scatter plot 
loess smooth, 161-14 
lowess smooth, 161-14 
median smooth, 161-15 
overlay, 161-3 
polynomial fit, 161-13 
spline, 161-15 
sunflower plot, 161-18 

Scatter plot matrix, 140-8, 162-1 
Scatter plot matrix (curve fitting), 

163-1 

Scatter plot matrix for curve fitting, 
140-9 

Scatter plot style file, 161-22 
Scatter plots, 140-7, 161-1 

3D, 140-10, 170-1 
Scheffe’s test 

one-way ANOVA, 210-8 
Schoenfeld residuals 

Cox regression, 565-14, 565-41 
Schuirmann’s test 

cross-over analysis using t-tests, 
235-7 

Scientific notation, 102-4 
Score, 320-45 
Score coefficients 

factor analysis, 420-17 
principal components analysis, 

425-2 
Scores plots 

canonical correlation, 400-12 
Scree graph 

factor analysis, 420-3 
Scree plot 

factor analysis, 420-15 
principal components analysis, 

425-18 
Screening data, 118-1, 200-3 
Screening designs, 265-1 
Searches 

ratio of polynomials, 370-1, 371-
1 

Seasonal adjustment 
exponential smoothing, 467-1 

Seasonal autoregressive parameters 
ARIMA, 471-3 

Seasonal decomposition forecasting, 
469-1 

Seasonal differencing 
ARIMA, 471-2 

Seasonal moving average parameters 
ARIMA, 471-3 

Seasonal time series 
Box Jenkins, 470-4 

Second format, 102-8 
Select all output, 106-4 
Selecting procedures, 1-7 
Selection method 

stepwise regression, 311-4 
Selection procedure 

forward, 311-1 
Sensitivity 

1-sample binary diagnostic test, 
535-2 

2-sample binary diagnostic, 537-
2 

clustered binary diagnostic, 538-8 
paired binary diagnostic, 536-2 
ROC curves, 545-1, 545-24 

Sequence plot 
multiple regression, 305-69 

Sequence transformation, 119-6 

Sequential models report 
multiple regression, 305-56 

Ser transformation, 119-6 
Serial correlation 

linear regression, 300-4 
residuals, 305-53 

Serial correlation plot 
multiple regression, 305-68 

Serial numbers, 1-3, 100-1 
Serial-correlation 

linear regression, 300-50 
SERIESA dataset, 470-8, 474-7 
Shapiro-Wilk 

linear regression, 300-18 
multiple regression, 305-17 

Shapiro-Wilk test 
descriptive statistics, 200-22 
linear regression, 300-49 

Shinozaki and Kari model 
curve fitting, 351-4 
growth curves, 360-2 

Short transformation, 119-7 
Sigma 

Xbar R, 250-19 
Sigma multiplier 

Xbar R, 250-17 
Sign test, 205-17 
Sign transformation, 119-8 
SIGN(z) 

piecewise polynomial models, 
365-6 

Signal-to-noise ratio 
R & R, 254-3 

Silhouette 
fuzzy clustering, 448-9 
medoid partitioning, 447-13 

Silhouettes 
medoid partitioning, 447-5 

Similarities 
multidimensional scaling, 435-4 

Simple average 
double dendrograms, 450-2 
hierarchical clustering, 445-3 

Simplex algorithm 
linear programming, 480-1 

Simulation, 122-1 
Beta distribution, 122-3 
Binomial distribution, 122-5 
Cauchy distribution, 122-5 
Constant distribution, 122-6 
contaminated normal, 122-21 
data, 15-1 
Exponential distribution, 122-6 
F distribution, 122-7 
Gamma distribution, 122-7 
Likert-scale, 122-8, 122-22 
Multinomial distribution, 122-8 
Normal distribution, 122-9, 122-

20 
Poisson distribution, 122-9 
skewed distribution, 122-10 
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Student's T distribution, 122-10 
syntax, 122-13 
T distribution, 122-10 
Tukey's lambda distribution, 122-

10 
Uniform distribution, 122-11 
Weibull distribution, 122-12 

Simultaneous C.I.’s 
T2, 405-9, 410-10 

Sin transformation, 119-17 
Single linkage 

double dendrograms, 450-2 
hierarchical clustering, 445-3 

Single-to-noise ratio 
R & R, 254-19 

Single-variable charts, 140-1 
Sinh transformation, 119-17 
Skewed distribution 

simulation, 122-10 
Skewness, 200-2 

descriptive statistics, 200-17 
t-test, 205-15 

Skewness test 
descriptive statistics, 200-24 

Slices 
pie charts, 142-1 

Slope 
linear regression, 300-39 

Slopes 
testing for equal 

multiple regression, 305-86 
SMOKING dataset, 525-2, 525-5 
Smooth transformation, 119-16 
Smoothing constant 

exponential smoothing, 465-1, 
466-2 

Smoothing constants 
exponential smoothing, 467-2 

Smoothing interval 
item response analysis, 506-4 

Solo exporting, 116-1 
Solo exporting, 116-1 
Solo importing, 115-1 
Sort, 103-6 
Sort transformation, 119-12 
Spath 

medoid partitioning, 447-4 
SPC fundamentals 

Xbar R, 250-38 
Spearman correlation 

linear regression, 300-45 
Spearman rank 

correlation matrix, 401-3 
Spearman rank correlation 

linear regression, 300-12 
Specificity 

1-sample binary diagnostic test, 
535-2 

2-sample binary diagnostic, 537-
2 

clustered binary diagnostic, 538-8 

paired binary diagnostic, 536-2 
ROC curves, 545-1, 545-24 

Spectral analysis, 468-1 
Spectral density 

spectral analysis, 468-3 
Spectrum 

spectral analysis, 468-1 
Sphericity test 

factor analysis, 420-14 
Splice transformation, 119-12 
Spline 

scatter plot, 161-15 
Split plot analysis 

mixed models, 220-1 
Split plot data example 

mixed models, 220-98 
Spread, 140-5 
Spreadsheet 

limits, 102-1 
overview, 102-1 

Spreadsheet/database comparison, 
102-4 

SPSS importing, 115-1 
Sqrt transformation, 119-8 
Standard deviation, 200-16 

confidence limits, 207-2 
descriptive statistics, 200-16 
ratio, 207-2 
unbiased, 200-17 

Standard error, 200-13 
linear regression, 300-40 
Poisson regression, 325-26 

Standardization 
PC regression, 340-1 
ridge regression, 335-3 

Standardize transformation, 119-16 
Standardized coefficients 

linear regression, 300-40 
multiple regression, 305-49 

Standardized difference, 123-15 
Standardized residual 

linear regression, 300-19, 300-61, 
300-64 

multiple regression, 305-18, 305-
63 

nondetects regression, 345-13 
Start time variable 

Weibull fitting, 550-12 
Starting NCSS, 1-2, 2-1, 100-1, 101-

2 
Starting values 

curve fitting, 350-3 
nonlinear regression, 315-1 

Stata file exporting, 116-1 
Statistical functions transformations, 

119-15 
Std error 

of kurtosis, 200-18 
of skewness, 200-18 
of standard deviation, 200-16 
of variance, 200-15 

of X-mean, 200-20 
Std Error 

of Coefficient of Variation, 200-
18 

Stddev transformation, 119-16 
StdRangeProb transformation, 119-

11 
StdRangeValue transformation, 119-

11 
Stem-leaf 

depth, 200-27 
leaf, 200-28 
stem, 200-27 
unit, 200-28 

Stem-leaf plot 
descriptive statistics, 200-27 

Stephens test 
circular data, 230-7 

Stepwise regression, 311-1 
Cox regression, 565-11 
logistic regression, 320-17 
multiple regression, 305-23 
Poisson regression, 325-6 

Storing results 
linear regression, 300-35 
multiple regression, 305-42 

Stratification based on propensity 
scores, 124-1 

Stratification of a database, 124-1 
Stress 

multidimensional scaling, 435-3 
Stress A 

parametric survival regression, 
566-6 

Stress B 
parametric survival regression, 

566-6 
Stress plot 

parametric survival regression, 
566-19 

Stress variable 
parametric survival regression, 

566-6 
Student’s t distribution 

probablility calculator, 135-6 
Studentized deviance residuals 

Poisson regression, 325-5 
Studentized Pearson residuals 

Poisson regression, 325-5 
Studentized range 

one-way ANOVA, 210-5 
Studentized range distribution 

probablility calculator, 135-6 
Studentized residuals 

Poisson regression, 325-34 
Studentized-range distribution 

transformation, 119-11 
Student's T distribution 

simulation, 122-10 
Style file 

grid plot, 173-8 
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Style file 
box plot, 152-13 
histogram, 143-16 
probability plot, 144-19 
scatter plot, 161-22 

Style files 
multiple regression, 305-38 

Subset of a database, 14-1 
Subset selection 

Cox regression, 565-11, 565-48 
logistic regression, 320-17 
multiple regression, 305-23, 305-

32 
Poisson regression, 325-6, 325-37 

Subset selection report 
multiple regression, 305-80 

Subset selection tutorial 
multiple regression, 305-79 

Sum of exponentials 
curve fitting, 351-9 
growth curves, 360-8 

Sum of functions models, 380-1 
Sum of squares 

multiple regression, 305-49, 305-
55 

Sum transformation, 119-16 
Sunflower plot 

scatter plot, 161-18 
SUNSPOT dataset, 468-9, 472-7 
Support services, 100-2 
Surface charts, 140-1, 141-1 
Surface plot 

depth, 171-7 
elevation, 171-6 
perspective, 171-6 
projection method, 171-7 
rotation, 171-7 

Surface plots, 140-10, 171-1 
Survival 

cumulative, 565-4 
Survival analysis 

Kaplan-Meier, 555-1 
life-table analysis, 570-1 
time calculator, 580-1 
Weibull fitting, 550-1 

Survival curves 
Kaplan-Meier, 555-1 

SURVIVAL dataset, 555-14, 555-
37, 575-1, 575-5 

Survival distribution 
Cox regression, 565-2 

Survival function 
Kaplan-Meier, 555-2 
Weibull fitting, 550-2 

Survival plot 
Kaplan-Meier, 555-35 

Survival quantiles 
Kaplan-Meier, 555-6, 555-30 

SUTTON 22 dataset, 456-6, 456-14 
SUTTON30 dataset, 455-6, 455-13 
Symbol settings window, 181-1 

Symmetric-binary variables 
fuzzy clustering, 448-4 
hierarchical clustering, 445-6 
medoid partitioning, 447-2 

Symmetry, 200-2, 206-25 
Symphony exporting, 116-1 
Syntax 

macros, 130-2 
SYS exporting, 116-1 
Systat exporting, 116-1 
Systat importing, 115-1 
System requirements, 1-1 

T 
T distribution 

simulation, 122-10 
T2 alpha 

data screening, 118-3 
T2 Dataset, 405-3, 405-5, 405-10 
T2 value, 410-7 
Tables 

descriptive, 201-1 
Taguchi designs, 266-1 
Tan transformation, 119-17 
Tanh transformation, 119-17 
Target specification, 250-20 
Tarone-Ware test 

Kaplan-Meier, 555-12 
nondetects analysis, 240-3 

Template, 105-1 
default, 105-1 
new, 105-1 
open, 105-1 
save, 105-2 
saving, 8-5 

Terms 
multiple regression, 305-35 

Text data, 102-1 
Text functions transformations, 119-

17 
Text settings window, 182-1 
Theoretical ARMA, 475-1 
Thetas 

theoretical ARMA, 475-2 
Three-variable charts, 140-10 
Threshold limit 

Xbar R, 250-23 
Tick label settings window, 186-1 
Tick settings window, 185-1 
Tickmarks, 185-1 
Ties method 

Cox regression, 565-17 
Tile horizontally, 106-5 
Tile vertically, 106-5 
Time calculator, 580-1 
Time format, 102-8 
Time remaining 

life-table analysis, 570-4 

Time variable 
Cox regression, 565-16 
life-table analysis, 570-6 
parametric survival regression, 

566-4 
TIMECALC dataset, 580-3 
TNH(Z) 

piecewise polynomial models, 
365-6 

Tolerance 
multiple regression, 305-57 
PC regression, 340-13 
ridge regression, 335-17 

Tolerance intervals, 585-1 
Toolbar 

customizing, 107-3 
Topic search 

goto window, 106-4 
TOST 

two-sample, 207-1 
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Fprob, 119-9 
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GammaProb, 119-9 
GammaValue, 119-9 
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Int, 119-7 
Join, 119-18 
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Weibull fitting, 550-34 
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Uniques transformation, 119-13 
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life-table analysis, 570-6 
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User written models, 385-1 
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properties of, 211-1 
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Value labels, 13-1, 102-10 
Variable 
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format, 102-6 
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numbers, 102-5 
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Variable format, 102-6 
Variable info, 102-5 

tutorial, 101-2 
Variable info file, 102-1 
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Variable labels, 102-6 
Variable matching, 123-3 
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rules for, 2-5 
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Variable selection, 310-1 
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equality of, 206-20 
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density trace, 154-1 
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Von Mises distribution 

circular data, 230-5 

W 
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Westlake’s confidence interval, 235-

6 
Whiskers 

box plot, 152-5 
Wilcoxon rank-sum test, 206-1, 206-

20 
Wilcoxon signed-rank test, 205-18 
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Window 
data, 7-1 
output, 9-1 

Windows 
navigating, 1-4 

Winters forecasting 
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Within factor 
repeated measures, 214-9 

Within subject 
repeated measures, 214-2 

WK exporting, 116-1 
WKQ exporting, 116-1 
Woolf’s odds ratio analysis 

Mantel-Haenszel test, 525-11 
Word processor, 9-1 
Working-Hotelling C.I. band 

linear regression, 300-6 
Working-Hotelling limits 

linear regression, 300-60 
WR1 exporting, 116-1 
WRK exporting, 116-1 
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X 
Xbar chart, 250-1 
Xbar R chart, 250-1 
XLS exporting, 116-1 

Y 
Year format, 102-8 

Year transformation, 119-6 
Yule-Walker 

automatic ARMA, 474-1 

Z 
Zero time replacement 

beta distribution fitting, 551-3 
cumulative incidence, 560-4 
gamma distribution fitting, 552-4 

parametric survival regression, 
566-4 

Weibull fitting, 550-13 
ZHOU 175 dataset, 545-33 
ZINC dataset, 345-15 
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