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Preface 
Number Cruncher Statistical System (NCSS) is an advanced, easy-to-use statistical analysis 
software package. The system was designed and written by Dr. Jerry L. Hintze over the last 
several years. Dr. Hintze drew upon his experience both in teaching statistics at the university 
level and in various types of statistical consulting. 

The present version, written for 32-bit versions of Microsoft Windows (95, 98, ME, 2000, NT, 
etc.) computer systems, is the result of several iterations. Experience over the years with several 
different types of users has helped the program evolve into its present form. 

Statistics is a broad, rapidly developing field. Updates and additions are constantly being made to 
the program. If you would like to be kept informed about updates, additions, and corrections, 
please send your name, address, and phone number to: 

 
 User Registration 
 NCSS 
 329 North 1000 East 
 Kaysville, Utah 84037 
  
or Email you name, address, and phone number to: 
 
 Sales@NCSS.COM 
 
NCSS maintains a website at WWW.NCSS.COM where we make the latest edition of NCSS 
available for free downloading. The software is password protected, so only users with valid 
serial numbers may use this downloaded edition. We hope that you will download the latest 
edition routinely and thus avoid any bugs that have been corrected since you purchased your 
copy. 

NCSS maintains the following program and documentation copying policy. Copies are limited to 
a one person / one machine basis for “BACKUP” purposes only. You may make as many backup 
copies as you wish. Further distribution constitutes a violation of this copy agreement and will be 
prosecuted to the fullest extent of the law. 

NCSS is not “copy protected.”  You may freely load the program onto your hard disk. We have 
avoided copy protection in order to make the system more convenient for you. Please honor our 
good faith (and low price) by avoiding the temptation to distribute copies to friends and 
associates. 

We believe this to be an accurate, exciting, easy-to-use system. If you find any portion that you 
feel needs to be changed, please let us know. Also, we openly welcome suggestions for additions 
to the system. 
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Chapter 400 

Canonical 
Correlation 
Introduction 
Canonical correlation analysis is the study of the linear relations between two sets of variables. It 
is the multivariate extension of correlation analysis. Although we will present a brief introduction 
to the subject here, you will probably need a text that covers the subject in depth such as 
Tabachnick (1989). 

Suppose you have given a group of students two tests of ten questions each and wish to determine 
the overall correlation between these two tests. Canonical correlation finds a weighted average of 
the questions from the first test and correlates this with a weighted average of the questions from 
the second test. The weights are constructed to maximize the correlation between these two 
averages. This correlation is called the first canonical correlation coefficient. 

You can create another set of weighted averages unrelated to the first and calculate their 
correlation. This correlation is the second canonical correlation coefficient. This process 
continues until the number of canonical correlations equals the number of variables in the 
smallest group. 

Discriminant analysis, MANOVA, and multiple regression are all special cases of canonical 
correlation. It provides the most general multivariate framework. Because of this generality, it is 
probably the least used of the multivariate procedures. Researchers would rather use the specific 
procedure designed for their data. However, there are instances when canonical correlation 
techniques are useful. 

Variates and Variables 
Canonical correlation terminology makes an important distinction between the words variables 
and variates. The term variables is reserved for referring to the original variables being analyzed. 
The term variates is used to refer to variables that are constructed as weighted averages of the 
original variables. Thus a set of Y variates is constructed from the original Y variables. Likewise, 
a set of X variates is constructed from the original X variables.  

Basic Issues 
Some of the issues that must be dealt with during a canonical correlation analysis are: 

1. Determining the number of canonical variate pairs to use. The number of pairs possible is 
equal to the smaller of the number of variables in each set. 
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2. The canonical variates themselves often need to be interpreted. As in factor analysis, you 
are dealing with mathematically constructed variates that are usually difficult to interpret. 
However, in this case, you must relate two constructed variates to each other. 

3. The importance of each variate must be evaluated from two points of view. You have to 
determine the strength of the relationship between the variate and the variables from 
which it was created. You also need to study the strength of the relationship between the 
corresponding X and Y variates. 

4. Do you have a large enough sample size? In social science work you will often need a 
minimum of ten cases per variable. In fields with more reliable data, you can get by with 
a little less. 

Canonical Correlation Checklist 
Tabachnick (1989) provides the following checklist for conducting a canonical correlation 
analysis. We suggest that you consider these issues and guidelines carefully.  

Missing Data 
You should begin by screening your data for outliers. Pay particular attention to patterns of 
missing values. The program ignores rows with missing values. If it appears that most of the 
missing values occur in one or two variables, you might want to leave these out of the analysis in 
order to obtain more data on the remaining variables.  

Multivariate Normality and Outliers 
Canonical correlation analysis does not make strong normality assumptions. However, as with all 
least squares procedures, outliers can cause severe problems. You should screen your data 
carefully for outliers using the various univariate normality tests and plots. 

Linearity 
Canonical correlation analysis assumes linear relations among the variables. You should study 
scatter plots of each pair of variables, watching carefully for curvilinear patterns and for outliers. 
The occurrence of curvilinear relationship will reduce the effectiveness of the analysis. 

Multicollinearity and Singularity 
Multicollinearity occurs when one variable is almost a weighted average of the others. Singularity 
occurs when this relationship is exact. Since inverse matrices are needed during the analysis, you 
must check for this. Try running a principal components analysis on each set of variables, 
separately. If you have eigenvalues at or near zero, you have multicollinearity problems. You 
must omit the offending variables. 
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Technical Details 
As the name suggests, canonical correlation analysis is based on the correlations between two sets 
of variables which we call Y and X. 

The correlation matrix of all the variables is divided into four parts:  

1. Rxx . The correlations among the X variables.  

2. Ryy . The correlations among the Y variables.  

3. Rxy . The correlations between the X and Y variables.  

4. Ryx . The correlations between the Y and X variables.  

Canonical correlation analysis may be defined using the singular value decomposition of a matrix 
C where: 

C = R R R Ryy
-1

yx xx
-1

xy  

Define the singular value decomposition of C as: 

C = U B′Λ $   

The diagonal matrix of the singular values of C is made up of the eigenvalues of C. The  
eigenvalue  of the matrix C is equal to the square of the canonical correlation which is called 

. Hence, the i canonical correlation is the square root of the eigenvalue of C. 

Λ i th

iλ i th

ci
2r th i th

Two sets of canonical coefficients (like regression coefficients) are used for each canonical 
correlation: one for the X variables and another for the Y variables. These coefficients are defined 
as follows: 

y yy
-1/ 2B = R B$  

x xx
-1

xy yB = R R BΛ  

The canonical scores for X and Y (denoted $X and ) are calculated by multiplying the 
standardized data (subtract the mean and divide by the standard deviation) by these coefficient 
matrices. Thus we have: 

$Y

$X = Z Bx x  

and 

$Y = Z By y  

where  and represent the standardized versions of X and Y. xZ yZ

To aid in the interpretation of the canonical variates, loading matrices are computed. These are 
the correlations between the original variables and the constructed variates. They are computed as 
follows: 

x xxA = R Bx

y

 

y yyA = R B  
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The average squared loadings are given by 

xc
i=1

k
ixc
2

x
pv = 100 a

k

x

∑  

yc
i=1

k
iyc
2

y
pv = 100 a

k

y

∑  

The redundancy indices are given by: 

rd = (pv)( r )c
2  

Data Structure 
The data are entered in the standard columnar format in which each column represents a single 
variable. 

Missing Values 
Rows with missing values in any of the variables used in the analysis are ignored. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Data Variables 

Y Variables 
Specify the first set of one or more variables to be correlated with the second set of variables. 
Although we call these the Y variables, they are not dependent variables. Canonical correlation 
does not assume a dependent versus independent relationship between the two sets of variables. 
Rather, it analyzes their association. The results would be the same if the X and Y variables were 
reversed. 

X Variables 
Specify the second set of one or more variables to be correlated with the first set of variables. 

Partial Variables 
An optional set of variables whose influence on the X and Y variables is removed using partial 
correlation techniques. 

The linear influence of these variables is removed from the X and Y variables using a statistical 
adjustment mechanism called partial correlation. This operation involves running a multiple 
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regression using each of the X and Y variables as the dependent variable and the partial variables 
as the independent variables. The residuals from each of these multiple regressions are used to 
calculate a partial correlation matrix. 

Partial correlation analysis has some serious limitations. First, partial correlation techniques only 
remove linear (straight-line) patterns. Curvilinear patterns are ignored. Second, like all algorithms 
based on least squares, the results may be severely distorted by the data outliers. 

Labels 

Y Variate Label 
This is a label that will be associated with the Y variates (constructed as weighted averages from 
the Y variables). 

X Variate Label 
This is a label that will be associated with the X variates (constructed as weighted averages from 
the X variables). 

Options 

Zero Exponent 
This is the exponent of the value used as zero by the least squares algorithm. To remove the 
effects of rounding error, values lower than this value are reset to zero. If unexpected results are 
obtained, try using a smaller value, such as 1E-16. Note that 1E-5 is an abbreviation for the 
number 0.00001. 

You enter the exponent only. For example, if you wanted to use 1E-16, you enter 16 here. 

Reports Tab 
The following options control which reports and plots are displayed.  

Select Reports 

Descriptive Statistics ... Scores Reports 
Specify whether to display the indicated reports. 

Report Options 

Number of Correlations 
This option specifies the number of canonical correlations that are reported on. One of the major 
attractions to canonical correlation analysis is the reduction in variable count, so this value is 
usually set to two or three. You would approach the selection of this number in much the same 
way as selecting the number of factors in factor analysis. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 
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Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Select Plots 

Scores Plot 
Specify whether to display the scores plot. 

Plot Options 

Plot Size 
This option controls the size of the plots that are displayed. You can select small, medium, or 
large. Medium and large are displayed one per line, while small are displayed two per line. 

Scores Plot Tab 
These options control the attributes of the scores plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 
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Titles 

Plot Title 
This option contains the text of the plot title. The characters {Y} and {X} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 

Storage Tab 
The constructed variates may be stored on the current database for further analysis. This group of 
options lets you designate which variates (if any) should be stored and which variables should 
receive these variates. The data are automatically stored while the program is executing. 

Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Data Storage Variables 

Y Variates 
Store the values of the Y Variates in these variables. 

X Variates 
Store the values of the X Variates in these variables. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Canonical Correlation Analysis 
This section presents an example of how to run a canonical correlation analysis using data 
contained on the SAMPLE database. As an example, we will correlate variables Test1, Test2, and 
Test3 with variables Test4, Test5, and IQ.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Canonical Correlation window. 

1 Open the SAMPLE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Sample.s0. 
• Click Open. 

2 Open the Canonical Correlation window. 
• On the menus, select Analysis, then Multivariate Analysis, then Canonical 

Correlation. The Canonical Correlation procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Canonical Correlation window, select the Variables tab.  
• Double-click in the Y Variables text box. This will bring up the variable selection 

window.  
• Select Test4, Test5, IQ from the list of variables and then click Ok. “Test4-IQ” will 

appear in the Y Variables box.  
• Double-click in the X Variables text box. This will bring up the variable selection 

window.  
• Select Test1, Test2, Test3 from the list of variables and then click Ok. “Test1-Test3” 

will appear in the X Variables box.  

4 Specify the reports. 
• Select the Reports tab. 
• Enter 3 in the Number of Correlations box. 
• Check all reports and plots. Normally you would only view a few of these reports, but we 

are selecting them all so that we can document them. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Descriptive Statistics Section 
 

Descriptive Statistics Section 
   Standard Non-Missing 
Type Variable Mean Deviation Rows 
Y Test4 65.53333 13.95332 15 
Y Test5 69.93333 16.15314 15 
Y IQ 104.3333 11.0173 15 
X Test1 67.93333 17.39239 15 
X Test2 61.4 19.39735 15 
X Test3 72.33334 14.73415 15 
 

This report displays the descriptive statistics for each variable. You should check that the mean is 
reasonable and that the number of nonmissing rows is accurate.  

Correlation Section 
 

Correlation Section 
 
 Test4 Test5 IQ Test1 Test2 Test3 
Test4 1.000000 -0.172864 0.371404 0.753937 0.719623 -0.140941 
Test5 -0.172864 1.000000 -0.058064 0.013967 -0.281449 0.347335 
IQ 0.371404 -0.058064 1.000000 0.225648 0.240651 0.074070 
Test1 0.753937 0.013967 0.225648 1.000000 0.100018 -0.260801 
Test2 0.719623 -0.281449 0.240651 0.100018 1.000000 0.057232 
Test3 -0.140941 0.347335 0.074070 -0.260801 0.057232 1.000000 
 

This report presents the simple correlations among all variables specified. 

Canonical Correlations Section 
 
Canonical Correlations Section 
 
Variate Canonical   Num Den Prob Wilks' 
Number Correlation R-Squared F-Value DF DF Level Lambda 
1 0.995600 0.991219 16.58 9 22 0.000000 0.006819 
2 0.467461 0.218519 0.67 4 20 0.617695 0.776503 
3 0.079810 0.006370 0.07 1 11 0.795498 0.993630 
F-value tests whether this canonical correlation and those following are zero. 
 

This report presents the canonical correlations plus supporting material to aid in their 
interpretation. 

Variate Number 
This is the sequence number of the canonical correlation. Remember that the first correlation will 
be the largest, the second will be the next to largest, and so on. 

Canonical Correlation 
The value of the canonical correlation coefficient. This coefficient has the same properties as any 
other correlation: it ranges between minus one and one, a value near zero indicates low 
correlation, and an absolute value near one indicates near perfect correlation. 

R-Squared 
The square of the canonical correlation coefficient. This gives the R-squared value of fitting the Y 
canonical variate to the corresponding X canonical variate. 
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F-Value 
The value of the F approximation for testing the significance of the Wilks’ lambda corresponding 
to this row and those below it. In this example, the first F-Value tests the significance of the first, 
second, and third canonical correlations while the second F-value tests the significance of only 
the second and third. 

Num DF 
The numerator degrees of freedom of the above F-ratio. 

Den DF 
The denominator degrees of freedom of the above F-ratio. 

Prob Level 
This is the probability value for the above F statistic. A value near zero indicates a significant 
canonical correlation. A cutoff value of 0.05 or 0.01 is often used to determine significance. 

Wilks’ Lambda 
The Wilks’ lambda value for the canonical correlation on this report row. Wilks’ lambda is the 
multivariate generalization of R-Squared. The Wilks’ lambda statistic is interpreted just the 
opposite of R-Squared: a value near zero indicates high correlation while a value near one 
indicates low correlation. 

Variance Explained Section 
 
Variation Explained Section 
 
Canonical Variation Explained Individual Cumulative Canonical 
Variate in these by these Percent Percent Correlation 
Number Variables Variates Explained Explained Squared 
1 Y Y 37.6 37.6 0.9912 
2 Y Y 32.1 69.7 0.2185 
3 Y Y 30.3 100.0 0.0064 
 
1 Y X 37.2 37.2 0.9912 
2 Y X 7.0 44.3 0.2185 
3 Y X 0.2 44.5 0.0064 
 
1 X Y 37.1 37.1 0.9912 
2 X Y 5.4 42.5 0.2185 
3 X Y 0.2 42.8 0.0064 
 
1 X X 37.4 37.4 0.9912 
2 X X 24.8 62.2 0.2185 
3 X X 37.8 100.0 0.0064 
 

This report displays the percent of the variation in each set of variables explained by other sets of 
variables. 

Canonical Variate Number 
This is the sequence number of the canonical variable being reported on. Remember that the 
maximum number of variates is the minimum of the number of variables in each set. 

Variation in these Variables 
Each row of the report presents the results of how well a set of variables is explained by a 
particular canonical variate. This column designates which set of variables is being reported on. 
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Explained by these Variates 
Each row of the report presents the results of how well a set of variables is explained by a 
particular canonical variate. This column designates which set of canonical variates is being 
reported on. 

Individual Percent Explained 
This column indicates the percentage of the variation in the designated set of variables that is 
explained by this canonical variate. 

Cumulative Percent Explained 
This column indicates the cumulative percentage of the variation in the designated set of variables 
that is explained by this canonical variate and those listed above it. 

Canonical Correlation Squared 
The square of the canonical correlation coefficient. This is repeated from an earlier report. 

Standardized Canonical Coefficients Section 
 
Standardized Y Canonical Coefficients Section 
 Y1 Y2 Y3 
Test4 1.021375 0.104989 0.370860 
Test5 -0.005995 0.990267 0.224017 
IQ -0.065358 0.229775 -1.050237 
 
Standardized X Canonical Coefficients Section 
 X1 X2 X3 
Test1 0.690657 0.592485 0.510311 
Test2 0.655584 -0.428196 -0.636097 
Test3 -0.008941 0.919574 -0.485199 
 

These coefficients are used to estimate the standardized scores for the X and Y variates. They aid 
the interpretation of the variates by showing the weight given each variable in the construction of 
the variate. They are analogous to standardized beta coefficients in multiple regression. 

Variable - Variate Correlations Section 
 

Variable - Variate Correlations Section 
 Y1 Y2 Y3 X1 X2 
Test4 0.998137 0.019146 -0.057927 0.993745 0.008950 
Test5 -0.178759 0.958777 0.220890 -0.177972 0.448190 
IQ 0.314333 0.211270 -0.925505 0.312950 0.098760 
Test1 0.755221 0.144834 0.045750 0.758559 0.309832 
Test2 0.720964 -0.147861 -0.048910 0.724151 -0.316308 
Test3 -0.150877 0.346177 -0.052251 -0.151544 0.740547 
 
 X3 
Test4 -0.004623 
Test5 0.017629 
IQ -0.073865 
Test1 0.573230 
Test2 -0.612826 
Test3 -0.654694 

 

This report shows the correlations between the variables and the variates. By determining which 
variables are highly correlated with a particular variate, it is hoped that you can determine its 
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interpretation. For example, you can see that variate Y1 is highly correlated with Test4. Hence, 
we assume that Y1 has the same interpretation as Test4. 

Scores Section 
 

Scores Section 
 
Row Y1 Y2 Y3 X1 X2 X3 
1 -0.193124 -0.348044 -0.308495 -0.323303 0.660431 1.582089 
2 -1.214743 0.350598 0.877022 -1.232224 1.150186 1.517131 
3 -0.026336 0.135325 0.250782 0.103271 -0.304012 -1.369888 
4 1.536744 1.992049 -0.657871 1.461462 1.887123 -0.138798 
5 0.189923 0.709643 0.455333 0.354314 0.711949 0.757851 
6 0.986597 -0.677646 0.115011 1.081350 -0.201044 0.489839 
. . . . . . . 
. . . . . . . 
. . . . . . . 

  

This report provides the canonical scores of each set of variates for each row of non-missing data. 
These are the values that are plotted in the score plots shown next. 

Scores Plots 
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 (seven more plots are displayed) 
 

These reports show the relationship between each pair of canonical variates. The correlation 
coefficient of the data in the first plot (Y1 versus X1) is the first canonical correlation coefficient. 
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Chapter 401 

Correlation Matrix 
Introduction 
This program calculates Pearsonian and Spearman-rank correlation matrices. It allows missing 
values to be deleted in a pair-wise or row-wise fashion.  

When someone speaks of a correlation matrix, they usually mean a matrix of Pearson-type 
correlations. Unfortunately, these correlations are unduly influenced by outliers, unequal 
variances, nonnormality, and nonlinearities. One of the chief competitors of the Pearson 
correlation coefficient is the Spearman-rank correlation coefficient. This latter correlation is 
calculated by applying the Pearson correlation formulas to the ranks of the data rather than to the 
actual data values themselves. In so doing, many of the distortions that infect the Pearson 
correlation are reduced considerably.  

To allow you to compare the two types of correlation matrices, a matrix of differences can be 
displayed. This allows you to determine which pairs of variables require further investigation.  

This program lets you specify a set of partial variables. The linear influence of these variables is 
removed by sweeping them out of the matrix. This provides a statistical adjustment to the 
remaining variables using multiple regression. Note that in the case of Spearman correlations, this 
sweeping occurs after the complete correlation matrix has been formed.  

Discussion 
When there is more than one independent variable, the collection of all pair-wise correlations are 
succinctly represented in a correlation form. In regression analysis, the purpose of examining these 
correlations is two-fold:  to find outliers and to identify collinearity. In the case of outliers, there 
should be major differences between the parametric measure, the Pearson correlation coefficient, and 
the nonparametric measure, the Spearman rank correlation coefficient. In the case of collinearity, 
high pair-wise correlations could be the first indicators of collinearity problems.  

The Pearson correlation coefficient is unduly influenced by outliers, unequal variances, 
nonnormality, and nonlinearities. As a result of these problems, the Spearman correlation coefficient, 
which is based on the ranks of the data rather than the actual data, may be a better choice for 
examining the relationships between variables.  

Finally, the patterns of missingness in multiple regression and correlation analysis can be very 
complex. As a result, missing values can be deleted in a pair-wise or a row-wise fashion. If there are 
only a few observations with missing values, it might be preferable to use the row-wise deletion, 
especially for large data sets. The row-wise deletion procedure omits the entire observation from the 
analysis. On the other hand, if the pattern of missingness is randomly dispersed throughout the data 
and the use of the row-wise deletion would omit at least 25% of the observations, the pair-wise 
deletion procedure for missing values would be a safer way to capture the essence of the 
relationships between variables. While this method appears to make full use of all your data, the 
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resulting correlation matrix may have mathematical and interpretation difficulties. Mathematically, 
this correlation matrix may not have a positive determinant. Since each correlation may be based on 
a different set of rows, practical interpretations could be difficult, if not illogical.  

The Spearman correlation coefficient measures the monotonic association between two variables in 
terms of ranks. It measures whether one variable increases or decreases with another even when the 
relationship between the two variables is not linear or bivariate normal. Computationally, each of the 
two variables is ranked separately, and the ordinary Pearson correlation coefficient is computed on 
the ranks. This nonparametric correlation coefficient is a good measure of the association between 
two variables when outliers, nonnormality, nonconstant variance, and nonlinearity may exist between 
the two variables being investigated. 

Data Structure 
The data are entered in two or more variables. An example of data appropriate for this procedure 
is shown in the table below. These data are contained in the SAMPLE database. We suggest that 
you open this database now so that you can follow along with the example. 

 

SAMPLE dataset (subset) 

YldA YldB YldC 
452 546 785 
874 547 458 
554 774 886 
447 465 536 
356 459  
754 665 669 
558 467 857 
574 365 821 
664 589 772 
682 534 732 
 456 689 
547 651 654 
 654  
435 665 297 
 546 830 
245 537 827 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variables on which to run the analysis. 

Data Variables 

Correlation Variables 
Specify the variables whose correlations are to be formed. Only numeric data are analyzed. 

Partial Variables 
An optional set of variables that are to be “partialled out” of the correlation matrix. The influence 
of these variables is removed by sweeping them from the remaining variables. For the Pearson-
type correlations, the resulting matrix is the same that would be formed if the regular variables 
were regressed on the partial variables, the residuals were stored, and the correlation matrix of 
these residuals was formed. The correlations that are formed are the partial correlations.  

Options 

Correlation Type 
Specify the type of correlation to be computed 

• Pearson Product-Moment 
Display the Pearson product-moment correlation matrix.  

• Spearman Rank 
Display the Spearman-Rank correlation matrix. 

• Both 
Display both the Pearson product-moment and the Spearman-Rank correlation matrices. 

Missing Value Removal 
This option indicates how you want the program to handle missing values. 

• Pair-wise 
Pair-wise removal of missing values. Each correlation is based on all pairs of data values in 
which no missing values occur. Missing values occurring in other variables do not influence 
the calculations. Note that although this method appears to make full use of all your data, the 
resulting correlation matrix is difficult to analyze. Mathematically, it may not have a positive 
determinant. Practically, each correlation may be based on a different set of rows, making it 
difficult to interpret. 

• Row-wise 
Row-wise removal of missing values. If a missing value occurs in any of the variables 
specified, the row of data is ignored in the calculation of all correlations. 
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Reports Tab 
These options specify the reports. 

Select Reports 

Difference Report 
Specify whether to display the matrix of differences between the Pearson and the Spearman 
correlations. 

Report Options 

Report Format 
Specifies the length and format of the correlation matrix. 

• Short 
Display only the correlation matrix. 

• Full 
Display the full report with sample sizes and significance levels. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Storage Tab 
Specify if and where the correlation matrices are to be stored. 

Data Storage Variables 

Pearson Correlations Storage Variables 
A list of variables into which the Pearson correlation matrix is stored. 

Spearman Correlations Storage Variables 
A list of variables into which the Spearman correlation matrix is stored. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Creating a Correlation Matrix 
This section presents an example of how to run an analysis of the data contained in the SAMPLE 
database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Correlation Matrix window. 

1 Open the SAMPLE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Sample.s0. 
• Click Open. 

2 Open the Correlation Matrix window. 
• On the menus, select Analysis, then Regression/Correlation, then Correlation 

Routines, then Correlation Matrix. The Correlation Matrix procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Correlation Matrix window, select the Variables tab.  
• Double-click in the Correlation Variables text box. This will bring up the variable 

selection window.  
• Select YldA, YldB, YldC from the list of variables and then click Ok. “YldA-

YldB,YldC” will appear in the Correlation Variables box.  
• Enter Both in the Correlation Type box. 
• Enter Pair Wise in the Missing Value Removal box. 

4 Specify the reports. 
• On the Correlation Matrix window, select the Reports tab.  
• Check the Different Report box. 
• Enter Full in the Report Format box. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Pearson Correlations Section  

Full Report Format 
 

 Pearson Correlations Section   (Pair-Wise Deletion)  
   
  YldA YldB YldC 
 YldA 1.000000 .170692 -.361414 
  .000000 .577154 .248377 
  12.000000 13.000000 12.000000 
 YldB .170692 1.000000 -.004071 
  .577154 .000000 .988980 
  13.000000 14.000000 14.000000 
 YldC -.361414 -.004071 1.000000 
  .248377 .988980 .000000 
  12.000000 14.000000 14.000000 
 Cronbachs Alpha = -0.250337      Standardized Cronbachs Alpha = -0.223864 
 

The above report displays the correlations, significance level, and sample size of each pair of 
variables. This format is obtained when Report Format is set to “Full.” 

Reliability 
Because of the central role of measurement in science, scientists of all disciplines are concerned 
with the accuracy of their measurements. Item analysis is a methodology for assessing the 
accuracy of measurements that are obtained in the social sciences where precise measurements 
are often hard to secure. The accuracy of a measurement may be broken down into two main 
categories: validity and reliability. The validity of an instrument refers to whether it accurately 
measures the attribute of interest. The reliability of an instrument concerns whether it produces 
identical results in repeated applications. An instrument may be reliable but not valid. However, it 
cannot be valid without being reliable. 

The methods described here assess the reliability of an instrument. They do not assess its validity. 
This should be kept in mind when using the techniques of item analysis since they address 
reliability, not validity.  

An instrument may be valid for one attribute but not for another. For example, a driver’s license 
exam may accurately measure an individual’s ability to drive. However, it does not accurately 
measure that individual’s ability to do well in college. Hence the exam is reliable and valid for 
measuring driving ability. It is reliable and invalid for measuring success in college. 

Several methods have been proposed for assessing the reliability of an instrument. These include 
the retest method, alternative-form method, split-halves method, and the internal consistency 
method. We will focus on internal consistency here. 

Cronbach’s Alpha 
Cronbach’s alpha (or coefficient alpha) is the most popular of the internal consistency 
coefficients. It is calculated as follows: 
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where K is the number of items (questions) and σ ij is the estimated covariance between items i 

and j. Note theσ ii is the variance (not standard deviation) of item i. 

If the data are standardized by subtracting the item means and dividing by the item standard 
deviations before the above formula is used, we get the standardized version of Cronbach’s alpha. 
A little algebra will show that this is equivalent to the following calculations based directly on the 
correlation matrix of the items: 

( )
α ρ

ρ
=

+ −
K

K1 1
 

where K is the number of items (variables) and ρ  is the average of all the correlations among the 
K items. 

Cronbach’s alpha has several interpretations. It is equal to the average value of alpha coefficients 
obtained for all possible combinations of dividing 2K items into two groups of K items each and 
calculating the two-half tests. Also, alpha estimates the expected correlation of one instrument 
with an alternative form containing the same number of items. Furthermore, alpha estimates the 
expected correlation between an actual test and a hypothetical test which may never by written. 

Since Cronbach’s alpha is suppose to be a correlation, it should range between -1 and 1. 
However, it is possible for alpha to be less than -1 when several of the covariances are relatively 
large, negative numbers. In most cases, alpha is positive, although negative values arise 
occasionally. What value of alpha should be achieved? Carmines (1990) stipulates that as a rule, a 
value of at least 0.8 should be achieved for widely used instruments. An instrument’s alpha value 
may be improved by either adding more items or by increasing the average correlation among the 
items. 

Short Report Format 
 

 Pearson Correlations Section   (Pair-Wise Deletion)  
   
  YldA YldB YldC 
 YldA 1.000000 .170692 -.361414 
 YldB .170692 1.000000 -.004071 
 YldC -.361414 -.004071 1.000000 
 Cronbachs Alpha = 0.219908      Standardized Cronbachs Alpha = 0.311396 
 

The above report displays the correlation matrix only. This format is obtained when Report 
Format is set to “Short.” 
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Spearman Correlations Section 

Full Report Format 
 

 Spearman Correlations Section   (Pair-Wise Deletion)  
   
  YldA YldB YldC 
 YldA 1.000000 .184319 -.153846 
  .000000 .546634 .633091 
  12.000000 13.000000 12.000000 
 YldB .184319 1.000000 -.088106 
  .546634 .000000 .764552 
  13.000000 14.000000 14.000000 
 YldC -.153846 -.088106 1.000000 
  .633091 .764552 .000000 
  12.000000 14.000000 14.000000 
 
The above report displays the correlations, significance level, and sample size of each pair of 
variables. This format is obtained when Report Format is set to “Full.” 

Short Report Format 
  
 Spearman Correlations Section   (Pair-Wise Deletion)  
   
  YldA YldB YldC 
 YldA 1.000000 .184319 -.153846 
 YldB .184319 1.000000 -.088106 
 YldC -.153846 -.088106 1.000000 
 

The above report displays the correlation matrix only. This format is obtained when Report 
Format is set to “Short.” 

Difference Between Correlations Section 
 

 Difference Between Pearson and Spearman Correlations Section   (Pair-Wise Deletion)  
   
  YldA YldB YldC 
 YldA .000000 -.013627 -.207568 
 YldB -.013627 .000000 .084035 
 YldC -.207568 .084035 .000000 
 

The above report displays the difference between the Pearson and the Spearman correlation 
coefficients. The report lets you find those pairs of variables for which these two correlation 
coefficients are very different. A large difference here indicates the presence of outliers, 
nonlinearity, nonnormality, and the like. You should investigate scatter plots of pairs of variables 
with large differences. 

Storing the Correlations on the Database 
When you specify variables in either the Pearson Correlations or the Spearman Correlations 
boxes, the correlation matrix will be stored in those variables during the execution of the 
program. 
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Chapter 402 

Equality of 
Covariance  
Introduction 
Discriminant analysis, MANOVA, and other multivariate procedures assume that the individual 
group covariance matrices are equal (homogeneous across groups). This NCSS module lets you 
test this hypothesis using Box’s M test, which was first presented by Box (1949). This module 
also performs Bartlett’s univariate homogeneity of variance test for testing equality of variance 
among individual variables.  

Box’s M Test 
The calculation of Box’s M test proceeds as follows. Suppose you have k groups measured on each 
of p variables, with ni observations per group. Represent the estimated within-group covariance as 
Si (the divisor is ni - 1). The calculations for Box’s M and Bartlett’s test are identical. Box’s M 
simply an extension of Bartlett’s test to the multivariate case. To calculate Bartlett’s test, set p = 1. 
The value of M is given by 

is 
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We use the Chi-square and F-ratio to test the significance of the M value. These approximations are 
constructed as follows: 
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Box’s M test is very sensitive to non-normality, so that a significant value indicates either 
unequal covariance matrices or non-normality or both. Hence, it is important to establish 
multivariate normality before using Box’s M test. 

The Chi-square approximation should be used when all ni > 20, p < 6, and k < 6. Otherwise, the F 
approximation is more accurate. 

NCSS supplies both the multivariate Box’s M test and the individual Bartlett’s tests so that when 
Box’s M test is significant, you can determine which variables contribute to the variance 
inequality. 

Data Structure 
The data given in the table below are the first eight rows (out of the 150 in the database) of the 
famous “iris data” published by Fisher (1936). These data are measurements in millimeters of 
sepal length, sepal width, petal length, and petal width of fifty plants for each of three varieties of 
iris: (1) Iris setosa, (2) Iris versicolor, and (3) Iris virginica.  

We will test to see if the covariance matrices are equal across the three varieties of iris. Here Iris 
is the group variable while SepalLength, SepalWidth, PetalLength, and PetalWidth are the regular 
variables. 
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FISHER dataset (subset) 

SepalLength SepalWidth PetalLength PetalWidth Iris 
50 33 14 2 1 
64 28 56 22 3 
65 28 46 15 2 
67 31 56 24 3 
63 28 51 15 3 
46 34 14 3 1 
69 31 51 23 3 
62 22 45 15 2 

Missing Values 
If missing values are found in any of the variables being used, the row is omitted. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Group Variable 

Y: Group Variable 
This is the dependent, Y, grouping, or classification variable. It must be discrete--it can only have 
a few unique values. Each unique value represents a separate group of individuals. The values 
may be text or numeric. 

Independent Variables 

X’s: Independent Variables 
Specify the independent (X or Predictor) variables. These should be numeric variables whose 
values are either continuous or binary. 

Reports Tab 
The following options control the format of the reports. 

Select Reports 

Group Means - Box’s M Test 
These options let you specify which reports you want displayed. 
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Report Options 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision, regardless of which 
option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option applies to the Group Variable. It lets you select whether to display data values, value 
labels, or both. Use this option if you want the output to automatically attach labels to the values 
(like 1=Yes, 2=No, etc.). See the section on specifying Value Labels elsewhere in this manual.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Equality of Covariance Analysis 
This section presents an example of how to run an analysis. The data used are shown in the table 
above and found in the FISHER database. In this example, we will test whether the covariance 
matrices of the four measurements (SepalLength, SepalWidth, PetalLength, and PetalWidth) are 
equal across the three iris varieties.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Equality of Covariance window. 

1 Open the Fisher dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Fisher.s0. 
• Click Open. 

2 Open the Equality of Covariance window. 
• On the menus, select Analysis, then Multivariate Analysis, then Equality of 

Covariance. The Equality of Covariance procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Equality of Covariance window, select the Variables tab.  
• Double-click in the Y: Group Variable box. This will bring up the variable selection 

window.  
• Select Iris from the list of variables and then click Ok. “Iris” will appear in the Group 

Variable box.  
• Double-click in the X’s: Independent Variables box. This will bring up the variable 

selection window.  
• Select Sepal Length through PetalWidth from the list of variables and then click Ok. 

“SepalLength-PetalWidth” will appear in the Variables box.  

4 Specify which reports. 
• Select the Reports tab. 
• Check all reports. Normally you would only view a few of these reports, but we are 

selecting them all so that we can document them. 
• Enter Labels in the Variable Names box. 
• Enter Value Labels in the Value Labels box. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Group Means Report 
 

 Group Means 
  Iris 
 Variable Setosa Versicolor Virginica Overall 
 Sepal Length 50.06 59.36 65.88 58.43333 
 Sepal Width 34.28 27.7 29.74 30.57333 
 Petal Length 14.62 42.6 55.52 37.58 
 Petal Width 2.46 13.26 20.26 11.99333 
 Count 50 50 50 150 
 

This report shows the means of each of the variables across each of the groups. The last row 
shows the count (number of observations) in the group. Note that the column headings come from 
the use of value labels for the group variable. 

Group Standard Deviations Report 
 

 Group Standard Deviations 
 
  Iris 
 Variable Setosa Versicolor Virginica Overall 
 Sepal Length 3.524897 5.161712 6.358796 8.280662  
 Sepal Width 3.790644 3.137983 3.224966 4.358663  
 Petal Length 1.73664 4.69911 5.518947 17.65298  
 Petal Width 1.053856 1.977527 2.7465 7.622377  
 Count 50 50 50 150  
 

This report shows the standard deviations of each of the variables across each of the groups. The 
last row shows the count or number of observations in the group.  

Within Group Correlation\Covariance Matrices 
 

 Within-Group Correlation\Covariance For Type of Iris = Total 
   
  Variable 
 Variable Sepal Length Sepal Width Petal Length Petal Width  
 Sepal Length 26.50082 9.272109 16.75143 3.840136  
 Sepal Width .530236 11.53878 5.524354 3.27102  
 Petal Length .756164 .377916 18.51878 4.266531  
 Petal Width .364506 .470535 .484459 4.188163  
 
 Within-Group Correlation\Covariance For Type of Iris = Setosa  
   
 Variable Sepal Length Sepal Width Petal Length Petal Width  
 Sepal Length 12.4249 9.921633 1.63551 1.033061  
 Sepal Width .742547 14.36898 1.169796 .9297959  
 Petal Length .267176 .177700 3.015918 .6069388  
 Petal Width .278098 .232752 .331630 1.110612  
   
 Within-Group Correlation\Covariance For Type of Iris = Versicolor 
   
 Variable Sepal Length Sepal Width Petal Length Petal Width  
 Sepal Length 26.64326 8.518368 18.2898 5.577959  
 Sepal Width .525911 9.846939 8.265306 4.120408  
 Petal Length .754049 .560522 22.08163 7.310204  
 Petal Width .546461 .663999 .786668 3.910612  
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 Within-Group Correlation\Covariance For Type of Iris = Virginica  
   
 Variable Sepal Length Sepal Width Petal Length Petal Width  
 Sepal Length 40.43428 9.376327 30.32898 4.909388  
 Sepal Width .457228 10.40041 7.137959 4.762857  
 Petal Length .864225 .401045 30.45877 4.882449  
 Petal Width .281108 .537728 .322108 7.543265  
 

This report shows the within-group correlations in the lower-left portion of the matrix and the 
within-group covariances in the upper-right portion of the matrix. The within-group variances are 
displayed on the diagonal. The total within-group values are found by forming a weighted 
average of the group covariances, averaging across all groups. 
The three individual-group reports show the correlations and covariances for each of the three iris 
varieties. These are the correlations and covariances that would be obtained if each group was 
analyzed separately. These are the group covariances that will be tested by Box’s M test. 

Bartlett-Box Homogeneity Tests 
 

 Bartlett-Box Homogeneity Tests 
   
  Bartlett   F F Chi2 Chi2 
 Variable Value DF1 DF2 Approx Prob Approx Prob 
 Sepal Length 16.1509 2 48620 8.01 .000334 16.00 .000335 
 Sepal Width 2.1100 2 48620 1.05 .351514 2.09 .351533 
 Petal Length 55.9252 2 48620 27.74 .000000 55.42 .000000 
 Petal Width 39.5688 2 48620 19.62 .000000 39.21 .000000 
 Box's M 146.6632 20 77567 7.05 .000000 140.94 .000000 
 

This report gives Bartlett’s test for each variable followed by the Box’s M test for all variables 
together. These tests are used to determine whether the variances of each of the groups are close 
enough to each other so that they may be considered equal. For example, the first line of the 
report tests for equal group variances of sepal length (SepalLength). Since the probability levels 
are small (less than 0.01), we would assume that the variances are significantly different. As was 
mentioned earlier, this test is also sensitive to departures from normality, so a significant result 
should be interpreted to mean that the variances are different or the data is non-normal. You can 
run a normality test to check this assumption. 
Notice that the probability levels of SepalWidth are 0.35151 and 0.35153. Hence, both tests 
indicate that the variances are essentially equal. This is the only variable that did not fail this test! 
We should also make a point regarding sample size here. The size of the probability level is 
directly related to the size of the sample. This probability level is for statistical significance, 
which may or may not be related to practical significance. You will have to consider this by 
comparing the individual standard deviations from one of the prior reports. 
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Matrix Determinant Report 
 

 Matrix Determinant Section 
   
  Log of Covariance Correlation 
 Type of Iris Determinant Determinant 
 Setosa 5.353320 .353359 
 Versicolor 7.546356 .083594 
 Virginica 9.493622 .137390 
 Pooled (Overall) 8.462142 .199529 
 

This report gives the logarithm (base e) of the determinant of each of the relevant covariance 
matrices and the determinant of each of the correlation matrices. This report is useful since Box’s 
M test compares these values. 

Eigenvalues of Covariance Matrices Report 
 

 Eigenvalues of Covariance Matrices 
   
  Iris 
 Number Setosa Versicolor Virginica Overall  
 1 23.645569 48.787394 69.525484 44.356592  
 2 3.691873 7.238410 10.655123 8.618331  
 3 2.679640 5.477609 5.229543 5.535235  
 4 .903326 .979036 3.426585 2.236372  
 

This report gives the eigenvalues of each of the individual covariance matrices followed by the 
eigenvalues of the within-group covariance matrix. Each column gives a set of eigenvalues.  
This report is useful because the eigenvalues summarize the covariance matrix into a few values. 
By comparing the largest eigenvalues across all groups, you can determine which groups are 
different. Also, eigenvalues near zero indicate singularities in your data. 

Eigenvalues of Correlation Matrices Report 
 

 Eigenvalues of Covariance Matrices 
   
  Iris 
 Number Setosa Versicolor Virginica Overall  
 1 2.05854 2.926341 2.454737 2.503762  
 2 1.022178 .5462747 .9647126 .7251373  
 3 .6678202 .3949976 .4522719 .5824012  
 4 .2514613 .1323871 .1282783 .1886997  
 

This report gives the eigenvalues of each of the individual correlation matrices followed by the 
eigenvalues of the within-group correlation matrix. Each column gives a set of eigenvalues.  
This report is useful because the eigenvalues summarize the correlation matrix into a few values. 
By comparing the largest eigenvalues across all groups, you can determine which groups are 
different. Also, eigenvalues near zero indicate singularities in your data. 
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Chapter 405 

Hotelling’s One-
Sample T2 
Introduction 
The one-sample Hotelling’s T2 is the multivariate extension of the common one-sample or paired 
Student’s t-test. In a one-sample t-test, the mean response is compared against a specific value. 
Hotelling’s one-sample T2 is used when the number of response variables is two or more, 
although it can be used when there is only one response variable.  

T2 makes the usual assumption that the data are approximately multivariate normal. 
Randomization tests are provided that do not rely on this assumption. These randomization tests 
should be used whenever you want exact results that do not rely on several assumptions.  

One-Sample Case 
The one-sample T2 is used to test hypotheses about a set of means simultaneously. Specifically, 
suppose a set of p response variables  is measured. Assume that the population is 
distributed as 

pYYY ,,, 21 L

( Σ, )μpN , where ( )Σ,μpN  is the p-variable multivariate normal distribution with 

mean vector μ and covariance matrix Σ . The null hypothesis that 0μμ = , where 0μ  is a vector 
of p constants (often 0’s), can be tested using the test statistic 

( ) ( )0
1

0 '2 μμ −−= − ySynT  

where y  is the sample mean vector, n is the sample size, and S −1  is the inverse of the sample 
covariance matrix. 

If the null hypothesis that 0μμ =  is true, then T2 follows Hotelling’s T2 distribution. That is, 
. Reject the null hypothesis if . Note that rejecting the null hypothesis 

concludes that at least one of the p means is not equal to its hypothesized value. 

2
1,~2 −npTT 2

1,,12 −−≥ npTT α

Equality of Means 
A second null hypothesis may be of interest. This hypothesis is that all means are equal to each 
other. This hypothesis also tested using the one-sample T2 value calculated using the formula 

( ) ( ) ( )yCCSCyCnT 1'''2 −=  
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where C is a contrast matrix of the form 

−
−

−
0 1 1
0 0 1 1

1 1 0 0
0

2
1,1~'2 −− npT

 C =

Our choice of C tests the hypothesis that all p means are equal. In this case, T . 

Paired-Sample Case 
The one-sample T2 test may also be applied to the situation in which two samples are to be 
compared that had a natural pairing between two observation vectors. An example of this pairing 
occurs when responses are measured on each experimental subject before and after a treatment is 
administered. Thus, the one-sample T2 test may be applied in the one-factor repeated measures 
design. 

When such pairing exists, the differences between the first and second measurements are 
formed—replacing the two observation vectors with one difference vector. This difference vector 
may then be used in the one-sample T2 test as described above. 

Randomization Test 
Because of the strict assumptions that must be made when using this procedure, NCSS also includes a 
randomization test as outlined by Edgington (1987). Randomization tests are becoming more and more 
popular as the speed of computers allows them to be computed in seconds rather than hours. 

A randomization test is conducted by enumerating all possible permutations of the sample data, 
calculating the test statistic for each permutation, and counting the number of permutations that result in 
a T2 value greater than or equal to the actual T2 value. Dividing this count by the number of 
permutations tried gives the significance level of the test. Each permutation is found by randomly 
multiplying each observation by a plus or a minus.  

For even moderate sample sizes, the total number of permutations is in the trillions, so a Monte Carlo 
approach is used in which the permutations are found by random selection rather than complete 
enumeration. Edgington suggests that at least 1,000 permutations by selected. We suggest that this be 
increased to 10,000.  

Permutation results are provided for the equal covariance case, the unequal covariance case, and for all 
individual t tests. 

Assumptions 
The following assumptions are made when using T2. 

1.  The population follows the multivariate normal distribution. 

2.  The members of the sample are independent. 
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Data Structure 
The data must be entered in a format that places the response variables side by side. An example 
of the data structure for a paired Hotelling’s T2 design is shown below. In this example, 
measurements were taken at three points in time before and after a certain drug was administered. 
Each subject performed strenuous exercise between the first and second measurements of the 
before set and the after set. This database is stored in the file T2.  

 

T2 dataset 

Before1 Before2 Before3 After1 After2 After3 
36 34 30 38 35 29 
36 36 28 38 37 27 
41 32 29 43 31 25 
11 10 8 14 11 10 
17 15 13 19 14 12 
21 20 18 24 25 17 
36 33 30 40 34 28 
36 35 34 41 36 30 
37 33 28 36 37 29 
31 28 25 31 25 26 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
These options control which variables are used in the analysis. 

Response Variables 

Response Variables 
One or more numeric response variables are specified here. These variables can contain the 
values to be analyzed or the first values (the X1’s) when paired differences (X1-X2) are to be 
analyzed. 

If the response variables have only two or three unique values, use the randomization test results. 

Paired Variables 

Paired Variables 
Specify matching paired variables (the X2’s) that are to be used with the Response Variables (the 
X1’s) to create differences (X1-X2). The first variable specified here is subtracted from the first 
Response variable, the second variable specified here is subtracted from the second Response 
Variable, and so on. Hence, if these variables are used, their number must equal the number of 
Response Variables specified. 
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Leave this option blank if only the Response Variables are to be used. 

Resampling 

Run Randomization Tests 
Check this option to run randomization tests. Note that these tests are computer-intensive and 
may require a great deal of time to run. 

Monte Carlo Samples 
Specify the number of Monte Carlo samples used when conducting randomization tests. You also 
need to check the ‘Run randomization tests’ box to run these tests.  

Somewhere between 1,000 and 100,000 Monte Carlo samples are usually necessary. We suggest 
the use of 10,000. 

Reports Tab 

Select Reports 

Means and Std. Deviations ... Correlation\Covariance 
Specify whether to display the various reports. 

Report Options 

Confidence Coefficient 
Specify the value of confidence coefficient for the confidence intervals. This is the value of one 
minus alpha. The value 0.95 is commonly used. However, you can specify any value between 
0.50 and 0.99999. 

Variable Names 
Indicate whether to display the variable names or the variable labels.  

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 

Report Options – Decimal Places 

T2 ... Correlation Decimals 
Specify the number of digits after the decimal point to display on the output of values of this type. 
Note that this option in no way influences the accuracy with which the calculations are done. 

Enter 'All' to display all digits available. The number of digits displayed by this option is 
controlled by whether the PRECISION option is SINGLE or DOUBLE. 
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Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Paired T2 Test 
This section presents an example of how to run a paired T2 analysis of the T2 dataset shown 
earlier. In this analysis, the before and after variables will be compared.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Hotelling’s One-Sample T2 window. 

1 Open the T2 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file T2.s0. 
• Click Open. 

2 Open the Hotelling’s One-Sample T2 window. 
• On the menus, select Analysis, then Multivariate Analysis, then Hotelling’s One-

Sample T2. The Hotelling’s One-Sample T2 procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Hotelling’s One-Sample T2 window, select the Variables tab.  
• Set the Response Variables to AFTER1-AFTER3. 
• Set the Paired Variables to BEFORE1-BEFORE3.  
• Check Run Randomization Tests so that these tests will be included in the reports. 
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4 Specify the reports. 
• On the Hotelling’s One-Sample T2 window, select the Reports tab.  
• Check all of the reports. (Although all reports are not necessary, we will check them all 

so that they can all be documented.) 
• Set VC Decimals to 4. 
• Set Means Decimals to 4. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Descriptive Statistics Section 
 
Variable Mean Diff. S.D. of Diff. 
After1-Before1 2.2000 1.7512 
After2-Before2 0.9000 2.3310 
After3-Before3 -1.0000 2.0000 
Count 10 10 
 

This report provides the means, standard deviations, and counts of each difference (or variable). 
Look the values over to be certain that the right variables were selected. 

Hotelling’s T2 Test Section 
 
    Parametric Randomization 
    Test Test 
    Prob Prob 
Hypothesis T2 DF1 DF2 Level Level 
Means All Zero 17.034 3 9.0 0.0483 0.0370 
Means All Equal 9.321 2 9.0 0.0582 0.0400 
The randomization test results are based on 1000 Monte Carlo samples. 

 

This report gives the results of the two T2 tests.  

Hypothesis 
This option indicates the null hypothesis that is tested on this output line. For the case of the 
paired observations, the first line (Means All Zero) is of most interest. 

T2 
The values of T2 are given here. 

DF1 
This is the number of response variables. 

DF2 
This is the degrees of freedom of the covariance matrix which is n - 1. 

Parametric Test Prob Level 
This is the significance level of the T2 test. If this value is less than 0.05, we say that the test was 
significant at the 0.05 level and at least one pair of means are significantly different. If the value 
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is less than 0.01, we say that the test was significant at the 0.01 level. This result is accurate if the 
assumptions are met. 

Randomization Test Prob Level 
This is the significance level of the randomization test. The result is accurate even if the response 
variables were binary.  

Individual Variables Section 
 
Variable T2 Prob T2 Prob T2 Prob 
Omitted Others Level Change Level Alone Level 
After1-Before1 4.399 0.2036 12.635 0.0424 15.783 0.0032 
After2-Before2 16.484 0.0156 0.550 0.7110 1.491 0.2531 
After3-Before3 16.554 0.0154 0.480 0.7294 2.500 0.1483 

 

This report provides information about the influence of each of the individual response variables 
on the overall T2 value. This is accomplished by calculating the change in T2 when a response 
variable is omitted.  

Variable Omitted 
This is the name of the variable shown on this line of the report.  

T2 Others 
This is the value of T2 calculated with all response variables except the variable listed its the left.  

Prob Level 
This is the significance level of the T2 value shown on the report to the left of this value. 

T2 Change 
This is the amount that T2 is reduced when the response variable shown on this line is omitted.  

Prob Level 
This is the significance level of the T2 change value shown on the report to the left of this value. 
It is computed using the fact that the change in T2 is related to an F distribution using the formula 

2
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2
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Note that this quantity tests the drop in T2 when a variable is removed conditional on the other 
response variables that are included. Another way of looking at this quantity is that it tests 
whether the variable omitted significantly increases the distance between the two populations. 
See Rencher (1998) page 68 for further details. 

T2 Alone 
This is the value of T2 calculated when only this response variable is used. It is the square of the 
common one-sample t test. It is the two-sided test of the null hypothesis that the mean for this 
variable is equal to the hypothesized value (which is usually zero), ignoring all other variables.  

Prob Level 
This is the two-sided significance level of the T2 value to its left. 
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Student’s T-Test Section 
 
  Parametric Randomization 
 T2 Test Test 
 or Prob Prob 
Variable |Student's T| Level Level 
All (T2) 17.034 0.0483 0.0370 
After1-Before1 3.973 0.0032 0.0020 
After2-Before2 1.221 0.2531 0.2490 
After3-Before3 1.581 0.1483 0.1980 
 
The randomization test results are based on 1000 Monte Carlo samples. 
These individual t-test significance levels should only be used when the overall T2 value is significant. 

 

This report provides the results of individually conducting a two-sided, paired t-test on each pair 
of response variables. You might think that since there are a series of p t-tests being employed, a 
Bonferroni adjustment should be applied to the significance levels. However, if these individual 
tests are only considered when the overall T2 is significant at the same level, such as 0.05, then 
their significance levels are “protected” by the T2 test and the unadjusted significance levels 
given here can be used. 

Variable 
The variable whose results are presented on this line. Note that the first line gives the overall 
results for T2. 

T2 or |Student’s T| 
The first line is the value of T2. The other lines are the two-sided Student’s t-test values.  

Parametric Test Prob Level 
These are the significance levels of the test statistics given to the left. Note that if the individual 
tests are only used when the overall test is significant, these significance levels are accurate even 
though several individual tests are made. The multivariate T2 test is said to “protect” the 
significance levels of the individual tests. 

Randomization Test Prob Level 
These are the results of randomization tests that are run on each of the variables. These tests are 
exact when the Monte Carlo sample size is large, say over 5000. These tests should be used when 
there is a even a hint that the regular assumptions of the t-tests are not valid. For example, this 
significance level is accurate even when the response variable takes on binary values (the t-test 
assumes a continuous, normal response variable).  

Note that these values will change from run to run. As you increase the number of Monte Carlo 
samples, these values will become more and more stable. You may have to go as large as 100,000 
before the results remain the same from run to run. This instability is due to the our use of a 
random sample of all the trillions of permutations that are possible. As you increase the Monte 
Carlo sample size, you reduce the sampling error (and greatly increase the time it takes to 
generate the results). 
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Confidence Intervals for the Mean Differences 
 
  Lower 95.0% Upper 95.0% Lower 95.0% Upper 95.0% 
  Bonferroni Bonferroni Simultaneous Simultaneous 
Variable Difference Conf. Limit Conf. Limit Conf. Limit Conf. Limit 
After1-Before1 2.2000 0.5756 3.8244 -0.0675 4.4675 
After2-Before2 0.9000 -1.2622 3.0622 -2.1182 3.9182 
After3-Before3 -1.0000 -2.8552 0.8552 -3.5897 1.5897 

 

This report provides confidence intervals for the mean differences (or the means) for each 
response variable. Two intervals are provided: Bonferroni and simultaneous. 

Variable 
The variable(s) whose results are presented on this line.  

Difference 
The actual difference for the corresponding response variable(s).  

Bonferroni Confidence Interval 
Bonferroni confidence intervals are based on the formula   
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This formula is derived by applying a Bonferroni adjustment to the regular univariate confidence 
interval. This adjustment is made by dividing the alpha level by p, the number of such intervals to 
be created. These intervals are usually not as wide as the simultaneous intervals, yet still have an 
appropriate adjustment because of the multiple intervals that are being created. 

Simultaneous Confidence Interval 
Simultaneous confidence intervals are based on the formula   
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This formula is derived from a formula for confidence intervals for any linear combination of the 
mean differences, including those that are generated after looking at the data. Because of this, 
these confidence intervals are extra wide and may not be of must use. 

Correlation\Covariance Matrix 
 
 Variable 
Variable After1-Before1 After2-Before2 After3-Before3 
After1-Before1 3.0667 0.3556 -2.0000 
After2-Before2 0.0871 5.4333 0.4444 
After3-Before3 -0.5710 0.0953 4.0000 
 

This report displays correlations and covariances of the variables, or differences, analyzed. The 
correlations are shown in the lower-left half of the matrix and the covariances are shown on the 
diagonal and in the upper-right half of the matrix.  
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Example 2 – One-Sample T2 Test 
This section presents an example of how to run a one-sample T2 analysis of the T2 dataset shown 
earlier. In this analysis, the analyst wants to test the null hypothesis that the three measurements 
conform to the response pattern: 30, 33, 30. These values are entered into each row of three new 
columns: H01, H02, and H03. The analysis will proceed as in the paired test of Example 1.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Hotelling’s One-Sample T2 window. 

1 Open the T2 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file T2.s0. 
• Click Open. 

2 Open the Hotelling’s One-Sample T2 window. 
• On the menus, select Analysis, then Multivariate Analysis, then Hotelling’s One-

Sample T2. The Hotelling’s One-Sample T2 procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Hotelling’s One-Sample T2 window, select the Variables tab.  
• Set the Response Variables to AFTER1-AFTER3. 
• Set the Paired Variables to H01-H03.  
• Check Run Randomization Tests so that these tests will be included in the reports. 

4 Specify the reports. 
• On the Hotelling’s One-Sample T2 window, select the Reports tab.  
• Check all of the reports. (Although all reports are not necessary, we will check them all 

so that they can all be documented.) 
• Set VC Decimals to 4. 
• Set Means Decimals to 4. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Hotelling’s T2 Test Output 
 
Hotelling's T2 Test Section 
    Parametric Randomization 
    Test Test 
    Prob Prob 
Hypothesis T2 DF1 DF2 Level Level 
Means All Zero 98.484 3 9.0 0.0004 0.0020 
Means All Equal 51.939 2 9.0 0.0005 0.0030 
The randomization test results are based on 1000 Monte Carlo samples. 
 
Individual Variables Section 
Variable T2 Prob T2 Prob T2 Prob 
Omitted Others Level Change Level Alone Level 
After1-H01 22.002 0.0071 76.482 0.0060 0.569 0.4698 
After2-H02 98.226 0.0000 0.259 0.9009 2.221 0.1703 
After3-H03 33.000 0.0021 65.485 0.0163 8.079 0.0193 
 
Student's T-Test Section 
  Parametric Randomization 
 T2 Test Test 
 or Prob Prob 
Variable |Student's T| Level Level 
All (T2) 98.484 0.0004 0.0020 
After1-H01 0.755 0.4698 0.4510 
After2-H02 1.490 0.1703 0.1930 
After3-H03 2.842 0.0193 0.0050 
The randomization test results are based on 1000 Monte Carlo samples. 
These individual t-test significance levels should only be used when the overall T2 value is significant. 

 

The significance of the T2 value indicates that at least one mean does not equal the hypothesized 
value. A look at the individual t-tests indicates that the significance occurs with the third variable: 
After3. After1 and After2 are not significantly different from 30 and 33, respectively. 
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Chapter 410 

Hotelling’s Two-
Sample T2 
Introduction 
The two-sample Hotelling’s T2 is the multivariate extension of the common two-group Student’s 
t-test. In a t-test, differences in the mean response between two populations are studied. T2 is 
used when the number of response variables are two or more, although it can be used when there 
is only one response variable. The null hypothesis is that the group means for all response 
variables are equal.  

T2 makes the usual assumptions of equal variances and normally distributed residuals. 
Preliminary tests are provided that allow these assumptions to be evaluated. Randomization tests 
are provided that do not rely on these assumptions. These randomization tests should be used 
whenever you want exact results that do not rely on several assumptions.  

Technical Details 

Equal Covariance Case 
The two-sample T2 is used to test the equality of the mean vectors of two populations. 
Specifically, suppose a set of p response variables  is measured for each of two 
groups. Assume that population 1 is distributed as 

pYYY ,,, 21 L

( )11,ΣμpN  and population 2 is distributed as 
( 22 ,Σ )μpN , where ( Σ, )μpN  is the p-variable multivariate normal distribution with mean vector 

μ and covariance matrix Σ . The null hypothesis that 21 μμ =  can be tested using the test statistic 
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where 1y  and 2y  are the two sample mean vectors,  and  are the two sample sizes, and  
is the inverse of the pooled covariance matrix which is calculated using 
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Here,  and  are the estimated covariance matrices calculated from the two samples. 1S 2S
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If we make the additional assumption that 21 Σ=Σ , T2 follows Hotelling’s T-squared distribution 
when the null hypothesis is true. That is, . Reject the null hypothesis if 

. Note that rejecting the null hypothesis concludes that at least one pair of the p 
sets of group response means are unequal. 

2
2, 21

~2 −+nnpTT
2

2,,1 21
2 −+−≥ nnpTT α

Unequal Covariance Case 
When the experimental setting or a preliminary test such as Box’s M test leads us to conclude 
that , an alternative to T2 must be used. Several such multivariate Behrens-Fisher tests 
have been suggested in the statistical literature. Following the suggestions of Rencher (1998) 
derived from a large simulation study, we use the procedure suggested by Nel and van der Merwe 
(1986) since it was shown to have near optimal power while maintaining reasonable type-I error 
rates. The test statistic is computed using the formula 

21 Σ≠Σ
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Randomization Test 
Because of the stringent assumptions that must be made when using this procedure, NCSS also 
includes a randomization test as outlined by Edgington (1987). Randomization tests are becoming 
more and more popular as the speed of computers allows them to be computed in seconds rather 
than hours.  

A randomization test is conducted by enumerating all possible permutations of the sample data, 
calculating the test statistic for each permutation, and counting the number of permutations that 
result in a T2 value greater than or equal to the actual T2 value. Dividing this count by the 
number of permutations tried gives the significance level of the test.  

For even moderate sample sizes, the total number of permutations is in the trillions, so a Monte 
Carlo approach is used in which the permutations are found by random selection rather than 
complete enumeration. Edgington suggests that at least 1,000 permutations by selected. We 
suggest that this be increased to 10,000.  

Permutation results are provided for the equal covariance case, the unequal covariance case, and 
for all individual t tests. 
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Assumptions 
The following assumptions are made when using T2. 

1.  Each population follows the multivariate normal distribution. 

2.  The two samples are independent. 

3.  The two covariance matrices are equal. 

These are a set of restrictive assumptions that must be evaluated for each set of data. Box’s M test 
may be used to test whether two covariances matrices are equal. Unfortunately, the accuracy of 
Box’s M test is very sensitive to departures form multivariate normality (assumption 1).  

Data Structure 
The data must be entered in a format that places the response variables and values for the group 
side by side. An example of the data structure for a Hotelling’s T2 design is shown below. In this 
example, WRATR and WRATA are the two response variables. Treatment is the group variable. 
Note that this database has a fourth variable, Disability, that is ignored in this analysis. This 
database is stored in the file MANOVA1. 

 

MANOVA1 dataset 

WRATR WRATA Treatment Disability
115 108 1 1 
98 105 1 1 
107 98 1 1 
90 92 2 1 
85 95 2 1 
80 81 2 1 
100 105 1 2 
105 95 1 2 
95 98 1 2 
70 80 2 2 
85 68 2 2 
78 82 2 2 
89 78 1 3 
100 85 1 3 
90 95 1 3 
65 62 2 3 
80 70 2 3 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
These options control which variables are used in the analysis. 

Response Variables 

Response Variables 
One or more numeric response variables are specified here. If two or more variables are specified, 
the analysis is based on Hotelling’s T2. If only one variable is specified, the analysis is based on 
Student's t distribution. If the response variables have only two or three unique values, only use 
the randomization test results. 

Group Variable 

Group Variable 
This variable contains values that identify the group to which each row belongs. A separate 
analysis is conducted for each unique pair of group values. 

The values in this variable may be text or numeric. 

Resampling 

Run Randomization Tests 
Check this option to run randomization tests. Note that these tests are computer-intensive and 
may require a great deal of time to run. 

Monte Carlo Samples 
Specify the number of Monte Carlo samples used when conducting randomization tests. You also 
need to check the ‘Run randomization tests’ box to run these tests. 

Somewhere between 1,000 and 100,000 Monte Carlo samples are usually necessary. We suggest 
the use of 10,000. 

Reports Tab 

Select Reports 

Means and Std. Deviations ... VC Determinants 
Specify whether to display the various reports. 
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Report Options 

Confidence Coefficient 
Specify the value of confidence coefficient for the confidence intervals. This is the value of one 
minus alpha. The value 0.95 is commonly used. However, you can specify any value between 
0.50 and 0.99999.  

Variable Names 
Indicate whether to display the variable names or the variable labels.  

Value Labels 
Indicate whether to display the data values or their labels.  

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 

Report Options – Decimal Places 

T2 ... Correlation Decimals 
Specify the number of digits after the decimal point to display on the output of values of this type. 
Note that this option in no way influences the accuracy with which the calculations are done. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Hotelling’s Two-Sample T2 Test 
This section presents an example of how to run an analysis of the MANOVA1 data shown earlier. 
In this analysis, two groups are to be compared on two variables: WRATR and WRATA.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Hotelling’s Two-Sample T2 window.  

1 Open the MANOVA1 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file MANOVA1.s0. 
• Click Open. 

2 Open the Hotelling’s Two-Sample T2 window. 
• On the menus, select Analysis, then Multivariate Analysis, then Hotelling’s Two-

Sample T2. The Hotelling’s Two-Sample T2 procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Hotelling’s Two-Sample T2 window, select the Variables tab.  
• Set the Response Variables to WRATR-WRATA.  
• Set the Group Variable to Treatment. 
• Check Run Randomization Tests so that these tests will be included in the reports. 

4 Specify the reports. 
• On the Hotelling’s Two-Sample T2 window, select the Reports tab.  
• Check all of the reports. (Although all reports are not necessary, we will check them all 

so that they can all be documented.) 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Descriptive Statistics Section 
 
 Means  Standard Deviations 
Variable 1 2 1 2 
WRATR 99.88889 78.33334 8.283182 8.046739 
WRATA 96.33334 78.11111 9.746795 10.94811 
Count 9 9 9 9 

 

This report provides the means, standard deviations, and counts of each group. Look the values 
over to be certain that the right variables were selected. 
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Hotelling’s T2 Test Section 
 
    Parametric Randomization 
    Test Test 
Covariance    Prob Prob 
Assumption T2 DF1 DF2 Level Level 
Equal 31.640 2 16.0 0.0003 0.0020 
Unequal 31.640 2 15.9 0.0003 0.0020 
The randomization test results are based on 1000 Monte Carlo samples. 

 

This report gives the results of the two T2 tests: first for equal, and then for unequal, covariance 
matrices.    

Covariance Assumption 
Indicates the type of T2 test displayed on this line. Either Equal or Unequal are possible. Even 
though you actually use only one of these two tests, both are reported here.  

T2 
The values of the two test statistics are shown in this column. The top value is T2. The bottom 
value is T*2. Note that these value will be equal if the two sample sizes are equal. 

DF1 
This is the number of response variables. 

DF2 
For the top line, this is n n1 2 2+ − . For the bottom line, this is the value of v. 

Parametric Test Prob Level 
This is the significance level of the test. If this value is less than 0.05, we say that the test was 
significant at the 0.05 level. If the value is less than 0.01, we say that the test was significant at 
the 0.01 level. This result is accurate if all the assumptions of the corresponding test are met. 

Randomization Test Prob Level 
This is the significance level of the randomization test. If this value is less than 0.05, we say that 
the test was significant at the 0.05 level. If the value is less than 0.01, we say that the test was 
significant at the 0.01 level.  

This result is an exact result even if the data were not obtained by random sampling. The result is 
accurate even if the response variables were binary. 

Individual Variables Section 
 
Variable T2 Prob T2 Prob T2 Prob 
Omitted Others Level Change Level Alone Level 
WRATR 13.909 0.0018 17.731 0.0093 31.357 0.0000 
WRATA 31.357 0.0000 0.283 0.7688 13.909 0.0018 

 

This report provides information about the influence of each of the individual response variables 
on the overall T2 value. This is accomplished by calculating the change in T2 when a response 
variable is omitted.  



410-8  Hotelling's Two-Sample T2  

Variable Omitted 
This is the name of the variable shown on this line of the report.  

T2 Others 
This is the value of T2 calculated with all response variables except the variable listed to the left.  

Prob Level 
This is the significance level of the T2 value shown on the report to the left of this value. 

T2 Change 
This is the amount that T2 is reduced when the response variable shown on this line is omitted.  

Prob Level 
This is the significance level of the T2 change value shown on the report to the left of this value. 
It is computed using the fact that the change in T2 is related to an F distribution using the formula 
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Note that this quantity tests the drop in T2 when a variable is removed conditional on the other 
response variables that are included. Another way of looking at this quantity is that it tests 
whether the variable omitted significantly increases the distance between the two populations. 
See Rencher (1998) page 109 for further details. 

T2 Alone 
This is the value of T2 calculated when only this response variable is used. It is the square of the 
common t test. It is the two-sided test of the null hypothesis that the means for this variable are 
equal, ignoring all other variables.  

Prob Level 
This is the two-sided significance level of the above T2 value. 

Student’s T-Test Section 
 
  Parametric Randomization 
 T2 Test Test 
 or Prob Prob 
Variable |Student's T| Level Level 
All (T2) 31.640 0.0003 0.0030 
WRATR 5.600 0.0000 0.0010 
WRATA 3.729 0.0018 0.0020 
The randomization test results are based on 1000 Monte Carlo samples. 

 

This report provides the results of individually conducting a two-sided t-test on each of the 
response variables. You might think that since there are a series of p t-tests being employed, a 
Bonferroni adjustment should be applied to the significance levels. However, if these individual 
tests are only considered when the overall T2 is significant at the same level, such as 0.05, then 
their significance levels are “protected” by the T2 test and the unadjusted significance levels 
given here can be used. 
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Variable 
The variable whose results are presented on this line. Note that the first line gives the overall 
results for T2. 

T2 or |Student’s T| 
The first line is the value of T2. The other lines are the two-sided Student’s t-test values.  

Parametric Test Prob Level 
These are the significance levels of the test statistics given to the left. Note that if the individual 
tests are only used when the overall test is significant, these significance levels are accurate even 
though several individual tests are made. The multivariate T2 test is said to “protect” the 
significance levels of the individual tests. 

Randomization Test Prob Level 
These are the results of randomization tests that are run on each of the variables. These tests are 
exact when the Monte Carlo sample size is large, say over 5000. These tests should be used when 
there is a even a hint that the regular assumptions of the t-tests are not valid. For example, this 
significance level is accurate even when the response variable takes on binary values (the t-test 
assumes a continuous, normal response variable). 

Note that these values will change from run to run. As you increase the number of Monte Carlo 
samples, these values will become more and more stable. You may have to go as large as 100,000 
before the results remain the same from run to run. This instability is due to the our use of a 
random sample of all the trillions of permutations that are possible. As you increase the Monte 
Carlo sample size, you reduce the sampling error (and greatly increase the time it takes to 
generate the results). 

Confidence Intervals for the Mean Differences 
 
  Lower 95.0% Upper 95.0% Lower 95.0% Upper 95.0% 
  Bonferroni Bonferroni Simultaneous Simultaneous 
Variable Difference Conf. Limit Conf. Limit Conf. Limit Conf. Limit 
WRATR 21.55556 12.03645 31.07466 10.7665 32.34611 
WRATA 18.22222 6.139622 30.30482 4.527671 31.91677 

 

This report provides confidence intervals for the differences between the group means for each 
response variable. Two intervals are provided: Bonferroni and simultaneous. 

Variable 
The variable whose results are presented on this line.  

Difference 
The actual difference between the means for the corresponding response variable.  

Bonferroni Confidence Interval 
Bonferroni confidence intervals are based on the formula   
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This formula is derived by applying a Bonferroni adjustment to the regular univariate confidence 
interval. This adjustment is made by dividing the alpha level by p, the number of such intervals to 
be created. These intervals are usually not as wide as the simultaneous intervals, yet still have an 
appropriate adjustment because of the multiple intervals that are being created. 

Simultaneous Confidence Interval 
Simultaneous confidence intervals are based on the formula   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
±− −+− jjplnnpjj s

nn
nnTyy ,
21

212
2,,121 21α  

This formula is derived from a formula for confidence intervals for any linear combination of the 
mean differences, including those that are generated after looking at the data. Because of this, 
these confidence intervals are extra wide and may not be of must use. 

Bartlett-Box Homogeneity of Variance Tests 
 
Variable(s) Test   F F Chi2 Chi2 
Tested Value DF1 DF2 Approx Prob Approx Prob 
Box's M Test 
ALL 0.153 3 46080 0.044 0.9877 0.133 0.9877 
Bartlett Individual Variable Tests 
WRATR 0.007 1 768 0.006 0.9367 0.006 0.9368 
WRATA 0.108 1 768 0.101 0.7503 0.101 0.7505 

 

This report provides a preliminary test of the assumption of equality of covariance matrices. If the 
data fails this test, you should use the unequal variance version of the T2 test or the randomization 
test. The calculation of these tests is documented in the Technical Details section of the Equality 
of Covariance Matrices chapter and will not be repeated here.   
Box’s M test is very sensitive to non-normality. A significant value indicates either unequal 
covariance matrices, non-normality, or both. Hence, it is important to establish multivariate 
normality before concluding unequal covariance matrices using Box’s M test. 

The Chi-square approximation should be used when all group sample sizes are greater than 20 
and p is less than 6. Otherwise, the F approximation is more accurate. NCSS supplies both the 
multivariate Box’s M test and the individual Bartlett’s tests so that when Box’s M test is 
significant, you can determine which variables contribute to the variance. 

Covariance and Correlation Matrix Determinants 
 
 Log of Covariance Correlation 
Treatment Determinant Determinant 
1 8.3863 0.6730 
2 8.4949 0.6301 
All 8.4502 0.6528 

 

This report gives the logarithm (base e) of the determinant of each of the covariance matrices and 
the determinant of each of the correlation matrices. The assumption of equality of covariance 
matrices forces us to also assume that these values are equal. Box’s M test compares these values. 
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Eigenvalues of Covariance Matrices  
 
 Treatment 
Number 1 2 All 
1 129.8207 152.5590 140.9319 
2 33.7904 32.0521 33.1793 

 

This report gives the eigenvalues of each of the individual covariance matrices as well as the 
pooled covariance matrix. Each column gives a set of eigenvalues. These eigenvalues summarize 
the covariance matrix into a few values. By comparing the largest eigenvalues across both groups, 
you can determine if the groups are different. Also, eigenvalues near zero indicate singularities in 
your data. 

Eigenvalues of Correlation Matrices  
 
 Treatment 
Number 1 2 All 
1 1.5718 1.6082 1.5893 
2 0.4282 0.3918 0.4107 

 

This report gives the eigenvalues of each of the individual correlation matrices followed by the 
eigenvalues of the within-group correlation matrix. Each column gives a set of eigenvalues.  
This report is useful because the eigenvalues summarize the correlation matrix. By comparing the 
largest eigenvalues across all groups, you can determine if the groups are different. Also, 
eigenvalues near zero indicate singularities in your data. 

Within Group Correlations\Covariances 
 
Within Group Correlation\Covariance For Treatment = All 
 Variable 
Variable WRATR WRATA 
WRATR 66.68056 49.875 
WRATA 0.5893 107.4306 
 
Within Group Correlation\Covariance For Treatment = 1 
 Variable 
Variable WRATR WRATA 
WRATR 68.61111 46.16667 
WRATA 0.5718 95 
 
Within Group Correlation\Covariance For Treatment = 2 
 Variable 
Variable WRATR WRATA 
WRATR 64.75 53.58333 
WRATA 0.6082 119.8611 

 

This report displays correlations and covariances. The covariance matrices were labeled 
 in the formulas given earlier in this chapter. The correlations are shown in the 

lower-left half of the matrix and the covariances are shown on the diagonal and in the upper-right 
half of the matrix. 

21  and , , SSSsp
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Chapter 415 

Multivariate 
Analysis of 
Variance 
(MANOVA) 
Introduction 
Multivariate analysis of variance (MANOVA) is an extension of common analysis of variance 
(ANOVA). In ANOVA, differences among various group means on a single-response variable 
are studied. In MANOVA, the number of response variables is increased to two or more. The 
hypothesis concerns a comparison of vectors of group means. When only two groups are being 
compared, the results are identical to Hotelling’s T² procedure. 

The multivariate extension of the F-test is not completely direct. Instead, several test statistics are 
available, such as Wilks’ Lambda and Lawley’s trace. The actual distributions of these statistics 
are difficult to calculate, so we rely on approximations based on the F-distribution. 

Technical Details 
A MANOVA has one or more factors (each with two or more levels) and two or more dependent 
variables. The calculations are extensions of the general linear model approach used for ANOVA. 

Unlike the univariate situation in which there is only one statistical test available (the F-ratio), the 
multivariate situation provides several alternative statistical tests. We will describe these tests in 
terms of two matrices, H and E. H is called the hypothesis matrix and E is the error matrix. These 
matrices may be computed using a number of methods. In NCSS, we use the standard general 
linear models (GLM) approach in which a sum of squares and cross-products matrix is computed. 
This matrix is based on the dependent variables and independent variables generated for each 
degree of freedom in the model. It may be partitioned according to the terms in the model. 
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MANOVA Test Statistics 
For a particular p-variable multivariate test, assume that the matrices H and E have h and e 
degrees of freedom, respectively. Four tests may be defined as follows. See Seber (1984) for 
details. Let θ i , , and φ i λ i  be the eigenvalues of H(E+H)-1, HE-1, and E(E+H)-1 respectively. 
Note that these eigenvalues are related as follows: 
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Wilks’ Lambda 
Define Wilks’ Lambda as follows:  
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The following approximation based on the F-distribution is used to determine significance levels: 
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This approximation is exact if p or h ≥ 2. 



  Multivariate Analysis of Variance (MANOVA)  415-3 

Lawley - Hotelling Trace 
The trace statistic, T , is defined as follows:  2
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The following approximation based on the F-distribution is used to determine significance levels: 
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Pillai’s Trace 
Pillai’s trace statistic, V(s), is defined as follows: 
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The following approximation based on the F-distribution is used to determine significance levels: 
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Roy’s Largest Root 
 
Roy’s largest root, , is defined as the largest of the ’s. The following approximation based 
on the F-distribution is used to determine significance levels: 
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Which Test to Use 
When the hypothesis degrees of freedom, h, is one, all four test statistics will lead to identical 
results. When h>1, the four statistics will usually lead to the same result. When they do not, the 
following guidelines from Tabachnick (1989) may be of some help. 

Wilks’ Lambda, Lawley’s trace, and Roy’s largest root are often more powerful than Pillai’s trace 
if h>1 and one dimension accounts for most of the separation among groups. Pillai’s trace is more 
robust to departures from assumptions than the other three. 

Tabachnick (1989) provides the following checklist for conducting a MANOVA. We suggest that 
you consider these issues and guidelines carefully. 

Assumptions and Limitations 
The following assumptions are made when using a MANOVA. 

1. The response variables are continuous. 

2. The residuals follow the multivariate-normal probability distribution with means equal to 
zero. 

3. The variance-covariance matrices of each group of residuals are equal. 

4. The individuals are independent. 

Multivariate Normality and Outliers 
MANOVA is robust to modest amount of skewness in the data. A sample size that produces 20 
degrees of freedom in the univariate F-test is adequate to ensure robustness. Non-normality 
caused by the presence of outliers can cause severe problems that even the robustness of the test 
will not overcome. You should screen your data for outliers and run it through various univariate 
and multivariate normality tests and plots to determine if the normality assumption is reasonable.  
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Homogeneity of Covariance Matrices 
MANOVA makes the assumption that the within-cell (group) covariance matrices are equal. If 
the design is balanced so that there is an equal number of observations in each cell, the robustness 
of the MANOVA tests is guaranteed. If the design is unbalanced, you should test the equality of 
covariance matrices using Box’s M test. If this test is significant at less than .001, there may be 
severe distortion in the alpha levels of the tests. You should only use Pillai’s trace criterion in this 
situation. 

Linearity 
MANOVA assumes linear relationships among the dependent variables within a particular cell. 
You should study scatter plots of each pair of dependent variables using a different color for each 
level of a factor. Look carefully for curvilinear patterns and for outliers. The occurrence of 
curvilinear relationships will reduce the power of the MANOVA tests.  

Multicollinearity and Singularity 
Multicollinearity occurs when one dependent variable is almost a weighted average of the others. 
This collinearity may only show up when the data are considered one cell at a time. The R²-Other 
Y’s in the Within-Cell Correlations Analysis report lets you determine if multicollinearity is a 
problem. If this R² value is greater than .99 for any variable, you should take corrective action 
(remove one of the variables). To correct for multicollinearity, begin removing the variables one 
at a time until all of the R²’s are less than .99. Do not remove them all at once! Singularity is the 
extreme form of multicollinearity in which the R² value is one.  

Forms of multicollinearity may show up when you have very small cell sample sizes (when the 
number of observations is less than the number of variables). In this case, you must reduce the 
number of dependent variables. 

Data Structure 
The data must be entered in a format that places the dependent variables and values of each factor 
side by side. An example of the data for a MANOVA design is shown in the table below. In this 
example, WRATR and WRATA are the two dependent variables. Treatment and Disability are two 
factor variables. This database is stored in the file MANOVA1. 

MANOVA1 dataset (subset) 

WRATR WRATA Treatment Disability
115 108 1 1 
98 105 1 1 
107 98 1 1 
90 92 2 1 
85 95 2 1 
80 81 2 1 
100 105 1 2 
105 95 1 2 
95 98 1 2 
70 80 2 2 
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Unequal Sample Size and Missing Data 
You should begin by screening your data. Pay particular attention to patterns of missing values. 
When using MANOVA, you should have more observations per factor category than you have 
dependent variables so that you can test the equality of covariance matrices using Box’s M test. 

NCSS ignores rows with missing values. If it appears that most of the missing values occur in one 
or two variables, you might want to leave these out of the analysis in order to obtain more data 
and hence more power.  

NCSS uses the GLM procedure for calculating the hypothesis and error matrices. Each matrix is 
calculated as if it were fit last in the model. This is the recommended way of obtaining these 
matrices. This method is valid even when the sample sizes for the various groups are unequal. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
These options control which variables are used in the analysis. 

Response Variables 

Response Variables 
Specifies the response (dependent) variables to be analyzed. 

Factor Specification 

Factor Variable (1-10) 
At least one factor variable must be specified. This variable’s values indicates how the values of 
the response variable should be categorized. Examples of factor variables are gender, age groups, 
‘yes’ or ‘no’ responses, etc. Note that the values in the variable may be either numeric or text. 
The treatment of text variables is specified for each variable by the Data Type option on the data 
base. 

Type 
This option specifies whether the factor is fixed or random. 

• Fixed 
The factor includes all possible levels, like male and female for gender, includes 
representative values across the possible range of values, like low, medium, and high 
temperatures, or includes a set of values to which inferences will be limited, like New York, 
California, and Maryland. 
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• Random 
The factor is one in which the chosen levels represent a random sample from the population 
of values. For example, you might select four classes from the hundreds in your state or you 
might select ten batches from an industrial process. The key is that a random sample is 
chosen. In NCSS, a random factor is “crossed” with other random and fixed factors. Two 
factors are crossed when each level of one includes all levels of the other. 

Model Specification 
This section specifies the experimental design model. 

Which Model Terms 
A design in which main effect and interaction terms are included is called a saturated model. 
Often, it is useful to omit various interaction terms from the model. This option lets you specify 
which interactions to keep very easily. If the selection provided here is not flexible enough for 
your needs, you can specify custom here and enter the model directly. 

The options included are as follows. 

• Full Model 
The complete, saturated model is analyzed. This option requires that you have no missing 
cells, although you can have an unbalanced design. Hence, you cannot use this option with 
Latin square or fractional factorial designs. 

• Up to 1-Way 
A main-effects only model is run. All interactions are omitted. 

• Up to 2-Way 
All main-effects and two-way interactions are included in the model. 

• Up to 3-Way 
All main-effects, two-way, and three-way interactions are included in the model. 

• Up to 4-Way 
All main-effects, two-way, three-way, and four-way interactions are included in the model. 

• Custom 
This option indicates that you want the Custom Model (given in the next box) to be used. 

Write Model in ‘Custom Model’ Field 
When this option is checked, no analysis is performed when the procedure is run. Instead, a copy 
of the full model is stored in the Custom Model box. You can then delete selected terms from the 
model without having to enter all the terms you want to keep. 

Custom Model 
When a Custom Model is selected (see Which Model Terms), the model itself is entered here. If 
all main effects and interactions are desired, you can enter the word “ALL” here. For complicated 
designs, it is usually easier to check the next option, Write Model in ‘Custom Model’ Field, and 
run the procedure. The appropriate model will be generated and placed in this box. You can then 
edit it as you desire. 
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The model is entered using letters separated by the plus sign. For example, a three-factor factorial 
in which only two-way interactions are needed would be entered as follows: 

A+B+AB+C+AC+BC 

Note that repeated-measures designs are not allowed. 

Reports Tab 

Select Reports 

EMS Report ... Univariate F's 
Specify whether to display the indicated reports. 

Select Plots 

Means Plot(s) and Subject Plot 
Specify whether to display the indicated plots. 

Report Options 

Test Alpha 
The value of alpha for the statistical tests and power analysis. Usually, this number will range 
from 0.1 to 0.001. A common choice for alpha is 0.05, but this value is a legacy from the age 
before computers when only printed tables where available. You should determine a value 
appropriate for your particular study. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 

Variable Names 
Indicate whether to display the variable names or the variable labels.  

Value Labels 
Indicate whether to display the data values or their labels.  

Means Plot Tab 
The following few options specify the plot(s) of group means. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 
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Y Scaling  
Specify the method for calculating the minimum and maximum along the vertical axis. Separately 
means that each plot is scaled independently. Uniform means that all plots use the overall 
minimum and maximum of the data. This option is ignored if a minimum or maximum is 
specified. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tick marks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Connect Lines 
Click this box to connect the points for a particular factor. This makes it easier to spot patterns in 
the means. 

Plot Settings – Legend 

Show Legend 
Indicate whether the legend is to be displayed. 

Legend Text 
Indicate the title text of the legend. Note that if two factors are being plotted, {G} is replaced by 
the appropriate factor name. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 
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Symbols Tab 

Plotting Symbols 

Group (1-15) 
The symbol used to designate a point on the scatter plot. Each option represents the 
corresponding factor. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Multivariate Analysis of Variance 
This section presents an example of how to run an analysis of the data contained in the 
MANOVA1 database.  
You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Multivariate Analysis of Variance (MANOVA) window. 

1 Open the MANOVA1 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file MANOVA1.s0. 
• Click Open. 

2 Open the MANOVA window. 
• On the menus, select Analysis, then Multivariate Analysis, then MANOVA. The 

Multivariate Analysis of Variance (MANOVA) procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  
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3 Specify the variables. 
• On the Multivariate Analysis of Variance (MANOVA) window, select the Variables tab.  
• Double-click in the Response Variable box. This will bring up the variable selection 

window.  
• Select WRATR and WRATA from the list of variables and then click Ok. “WRATR-

WRATA” will appear in the Response Variable box.  
• Double-click in the first Factor Variable box. This will bring up the variable selection 

window.  
• Select Treatment from the list of variables and then click Ok. “Treatment” will appear 

in the first Factor Variable box.  
• Double-click in the second Factor Variable box. This will bring up the variable 

selection window.  
• Select Disability from the list of variables and then click Ok. “Disability” will appear in 

the second Factor Variable box.  

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Expected Mean Squares Section 
 

 Expected Mean Squares Section 
 
 Source  Term Denominator Expected 
 Term DF Fixed? Term Mean Square 
 A (Treatment) 1 Yes S(AB) S+bsA 
 B (Disability) 2 Yes S(AB) S+asB 
 AB 2 Yes S(AB) S+sAB 
 S(AB) 12 No   S 
 Note: Expected Mean Squares are for the balanced cell-frequency case. 
 

The Expected Mean Square expressions are provided to show the appropriate error term for each 
factor. The correct error term for a factor is that term that is identical except for the factor being 
tested. 

Source Term 
The source of variation or term in the model. 

DF 
The degrees of freedom. The number of observations “used” by this term. 

Term Fixed?  
Indicates whether the term is “fixed” or “random.” 

Denominator Term 
Indicates the term used as the denominator in the F-ratio. 

Expected Mean Square 
This expression represents the expected value of the corresponding mean square if the design was 
completely balanced. “S” represents the expected value of the mean square error (sigma). The 
uppercase letters represent either the adjusted sum of squared treatment means if the factor is 
fixed, or the variance component if the factor is random. The lowercase letter represents the 
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number of levels for that factor, and “s” represents the number of replications of the experimental 
layout. 

These EMS expressions are provided to determine the appropriate error term for each factor. The 
correct error term for a factor is that term whose EMS is identical except for the factor being 
tested.  

MANOVA Tests Section 
  

 Manova Tests Section  
   
 Term(DF) Test    Prob Decision 
 Test Statistic Value DF1 DF2 F-Ratio Level (0.05)  
 A(1):Treatment 
 Wilks' Lambda 0.137721 2 11 34.44 0.000018  Reject 
 Hotelling-Lawley Trace 6.261036 2 11 34.44 0.000018 Reject 
 Pillai's Trace 0.862279 2 11 34.44 0.000018 Reject 
 Roy's Largest Root 6.261036 2 11 34.44 0.000018 Reject 
 WRATR 2090.88889 1 12 46.12 0.000019 Reject 
 WRATA 1494.22222 1 12 33.25 0.000089 Reject 
 B(2):Disability 
 Wilks' Lambda 0.255263 4 22 5.39 0.003528 Reject 
 Hotelling-Lawley Trace 2.895034 4 20 7.24 0.000896 Reject 
 Pillai's Trace 0.750481 4 24 3.60 0.019460 Reject 
 Roy's Largest Root 2.887241 2 12 17.32 0.000290 Reject 
 WRATR 260.388889 2 12 5.74 0.017784 Reject 
 WRATA 563.388889 2 12 12.54 0.001151 Reject 
 AB(2) 
 Wilks' Lambda 0.908068 4 22 0.27 0.893037 Accept 
 Hotelling-Lawley Trace 0.100954 4 20 0.25 0.904790 Accept 
 Pillai's Trace 0.092192 4 24 0.29 0.881598 Accept 
 Roy's Largest Root 0.098039 2 12 0.59 0.570550 Accept 
 WRATR 1.055556 2 12 0.02 0.977029 Accept 
 WRATA 26.388889 2 12 0.59 0.571116 Accept 
 

This report gives the results of the various significance tests. Usually, the four multivariate tests 
will lead to the same conclusions. When they do not, refer to the discussion of these tests found 
earlier in this chapter. Once a multivariate test has found a term significant, use the univariate 
ANOVA to determine which of the variables and factors are “causing” the significance. 

Term(DF) 
The term in the design model with the degrees of freedom of the term in parentheses. 

Test Statistic 
The name of the statistical test shown on this row of the report. The four multivariate tests are 
followed by the univariate F-tests of each variable. 

Test Value 
The value of the test statistic. 

DF1 
The numerator degrees of freedom of the F-ratio corresponding to this test. 

DF2 
The denominator degrees of freedom of the F-ratio corresponding to this test. 
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F-Ratio 
The value of the F-test corresponding to this test. In some cases, this is an exact test. In other 
cases, this is an approximation to the exact test. See the discussion of each test to determine if it is 
exact or approximate. 

Prob Level 
The significance level of the above F-ratio. The probability of an F-ratio larger than that obtained 
by this analysis. For example, to test at an alpha of 0.05, this probability would have to be less 
than 0.05 to make the F-ratio significant. 

Decision(0.05) 
The decision to accept or reject the null hypothesis at the given level of significance. Note that 
you specify the level of significance when you select Alpha. 

Within Correlations\Covariances Section 
  

 Within Correlations\Covariances Section 
   
  WRATR WRATA 
 WRATR 45.33333 2.583333 
 WRATA 0.0572313 44.94444 
 

This report displays the correlations and covariances formed by averaging across all the 
individual group covariance matrices. The correlations are shown in the lower-left half of the 
matrix. The within-group covariances are shown on the diagonal and in the upper-right half of the 
matrix. 

Within-Cell Correlations Analysis Section 
  

 Within-Cell Correlations Analysis  
   
  R-Squared Canonical  Percent Cumulative 
 Variable Other Y's Variate Eigenvalue of Total Total 
 Wratr 0.003275 1 1.057231 52.86 52.86 
 Wrata 0.003275 2 0.942769 47.14 100.00 
 

This report analyzes the within-cell correlation matrix. It lets you diagnose multicollinearity 
problems as well as determine the number of dimensions that are being used. This is useful in 
determining if Pillai’s trace should be used. 

R-Squared Other Y’s 
This is the R-Squared index of this variable with the other variables. When this value is larger 
than 0.99, severe multicollinearity problems exist. If this happens, you should remove the 
variable with the largest R-Squared and re-run your analysis. 

Canonical Variate 
The identification numbers of the canonical variates that are generated during the analysis. The 
total number of variates is the smaller of the number of variables and the number of degrees of 
freedom in the model. 
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Eigenvalue 
The eigenvalues of the within correlation matrix. Note that this value is not associated with the 
variable at the beginning of the row, but rather with the canonical variate number directly to the 
left. 

Percent of Total 
The percent that the eigenvalue is of the total. Note that the sum of the eigenvalues will equal the 
number of variates. If the percentage accounted for by the first eigenvalue is relatively large (70 
or 80 percent), Pillai's trace will be less powerful than the other three multivariate tests. 

Cumulative Total 
The cumulative total of the Percent of Total column. 

Univariate Analysis of Variance Section 
  

 Analysis of Variance Table for WRATR 
   
 Source  Sum of Mean  Prob Power 
 Term DF Squares Square F-Ratio Level (Alpha=0.05)  
 A (Treatment) 1 2090.889 2090.889 46.12 0.000019* 0.999988 
 B (Disability) 2 520.7778 260.3889 5.74 0.017784* 0.763859 
 AB 2 2.111111 1.055556 .02 0.977029 0.052757 
 S 12 544 45.33333 
 Total (Adjusted) 17 3157.778 
 Total 18 
   
 * Term significant at alpha = 0.05  
 

This is the standard ANOVA report as documented in the General Linear Models chapter. A 
separate report is displayed for each of the dependent variables. 

Means and Plots Section 
  
 Means and Standard Errors of WRATR  
   
    Standard 
 Term Count Mean Error 
 All 18 89.11111   
 A: Treatment  
 1 9 99.88889 2.234687 
 2 9 78.33334 2.234687 
 B: Disability  
 1 6 95.83334 2.736922 
 2 6 88.83334 2.736922 
 3 6 82.66666 2.736922 
 AB: Treatment,Disability  
 1,1 3 106.6667 3.870592 
 1,2 3 100 3.870592 
 1,3 3 93 3.870592 
 2,1 3 85 3.870592 
 2,2 3 77.66666 3.870592 
 2,3 3 72.33334 3.870592 
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 Plots Section 
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This report provides the least-squares means and standard errors for each variable. Note that the 
standard errors are calculated from the mean square error of the ANOVA table. They are not the 
standard errors that would be calculated from the individual cells. 
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Chapter 420 

Factor Analysis 
Introduction 
Factor Analysis (FA) is an exploratory technique applied to a set of observed variables that seeks 
to find underlying factors (subsets of variables) from which the observed variables were 
generated. For example, an individual’s response to the questions on a college entrance test is 
influenced by underlying variables such as intelligence, years in school, age, emotional state on 
the day of the test, amount of practice taking tests, and so on. The answers to the questions are the 
observed variables. The underlying, influential variables are the factors.  

Factor analysis is carried out on the correlation matrix of the observed variables. A factor is a 
weighted average of the original variables. The factor analyst hopes to find a few factors from 
which the original correlation matrix may be generated.  

Usually the goal of factor analysis is to aid data interpretation. The factor analyst hopes to 
identify each factor as representing a specific theoretical factor. Therefore, many of the reports 
from factor analysis are designed to aid in the interpretation of the factors. 

Another goal of factor analysis is to reduce the number of variables. The analyst hopes to reduce 
the interpretation of a 200-question test to the study of 4 or 5 factors. One of the most subtle tasks 
in factor analysis is determining the appropriate number of factors. 

Factor analysis has an infinite number of solutions. If a solution contains two factors, these may 
be rotated to form a new solution that does just as good a job at reproducing the correlation 
matrix. Hence, one of the biggest complaints of factor analysis is that the solution is not unique. 
Two researchers can find two different sets of factors that are interpreted quite differently yet fit 
the original data equally well. 

NCSS provides the principal axis method of factor analysis. The results may be rotated using 
varimax or quartimax rotation. The factor scores may be stored for further analysis. 

Many books are devoted to factor analysis. We suggest you obtain a book on the subject from an 
author in your own field. An excellent introduction to the subject is provided by Tabachnick 
(1989). 
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Technical Details 

Mathematical Development 
This section will document the basic formulas used by NCSS in performing a factor analysis. The 
following table lists many of the matrices that are used in the discussion to follow. 

Label  Matrix Name Size  Description 
R Correlation pxp Matrix of correlations between each pair of variables. 
X Data Nxp Observed data matrix with N rows (observations) and p 

columns (variables). 
Z Standardized data Nxp Matrix of standardized data. The standardization of each 

variable is made by subtracting its mean and dividing by 
its standard deviation. 

A Factor loading pxm Matrix of correlations between the original variables and 
the factors. Also represents the contribution of each 
factor in estimating the original variables. 

L Eigenvalue mxm Diagonal matrix of eigenvalues. Only the first m 
eigenvalues are considered. 

V Eigenvector pxm Matrix of eigenvectors. Only the first m columns of this 
matrix are used. 

B Factor-score coefficients pxm Matrix of regression weights used to construct the factor 
scores from the original variables. 

U Uniqueness pxp Matrix of uniqueness values. 
F Factor score Nxm Matrix of factor scores. For each observation in the 

original data, the values of each of the retained factors 
are estimated. These are the factor scores. 

The principal-axis method is used by NCSS to solve the factor analysis problem. Factor analysis 
assumes the following partition of the correlation matrix, R: 

R = AA +U′  
The principal-axis method proceeds according to the following steps: 

1. Estimate U from the communalities as discussed below. 
2. Find L and V, the eigenvalues and eigenvectors of R-U using standard eigenvalue 

analysis. 
3. Calculate the loading matrix as follows: 

A =VL
1
2  

4. Calculate the score matrix as follows: 

B =VL− 1
2  

5. Calculate the factor scores as follows: 
F = ZB  

Steps 1-3 may be iterated since a new U matrix may be estimated from the current loading matrix. 
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Initial Communality Estimation 
We close this section with a discussion of obtaining an initial value of U. NCSS uses the initial 
estimation of Cureton (1983), which will be outlined here. The initial communality estimates, cii, 
are calculated from the correlation and inverse correlation matrices as follows: 
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where RRii is the i  diagonal element of R-1 and rth
jk is an element of R. The value of U is then 

estimated by 1-cii. 

Missing Values and Robust Estimation 
Missing values and robust estimation are done the same way as in principal components analysis. 
Refer to that chapter for details. 

How Many Factors 
Several methods have been proposed for determining the number of factors that should be kept 
for further analysis. Several of these methods will now be discussed. However, remember that 
important information about possible outliers and linear dependencies may be determined from 
the factors associated with the relatively small eigenvalues, so these should be investigated as 
well. 

Kaiser (1960) proposed dropping factors whose eigenvalues are less than one since these provide 
less information than is provided by a single variable. Jolliffe (1972) feels that Kaiser’s criterion 
is too large. He suggests using a cutoff on the eigenvalues of 0.7 when correlation matrices are 
analyzed. Other authors note that if the largest eigenvalue is close to one, then holding to a cutoff 
of one may cause useful factors to be dropped. However, if the largest factors are several times 
larger than one, then those near one may be reasonably dropped. 

Cattell (1966) documented the scree graph, which will be described later in this chapter. Studying 
this chart is probably the most popular method for determining the number of factors, but it is 
subjective, causing different people to analyze the same data with different results. 

Another criterion is to preset a certain percentage of the variation that must be accounted for and 
then keep enough factors so that this variation is achieved. Usually, however, this cutoff 
percentage is used as a lower limit. That is, if the designated number of factors do not account for 
at least 50% of the variance, then the whole analysis is aborted. 

Varimax and Quartimax Rotation 
Factor analysis finds a set of dimensions (or coordinates) in a subspace of the space defined by 
the set of variables. These coordinates are represented as axes. They are orthogonal 
(perpendicular) to one another. For example, suppose you analyze three variables that are 
represented in three-dimensional space. Each variable becomes one axis. Now suppose that the 
data lie near a two-dimensional plane within the three dimensions. A factor analysis of this data 
should uncover two factors that would account for the two dimensions. You may rotate the axes 
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of this two-dimensional plane while keeping the 90-degree angle between them, just as the blades 
of a helicopter propeller rotate yet maintain the same angles among themselves. The hope is that 
rotating the axes will improve your ability to interpret the “meaning” of each factor. 

Many different types of rotation have been suggested. Most of them were developed for use in 
factor analysis. NCSS provides two orthogonal rotation options: varimax and quartimax.  

Varimax Rotation 
Varimax rotation is the most popular orthogonal rotation technique. In this technique, the axes are 
rotated to maximize the sum of the variances of the squared loadings within each column of the 
loadings matrix. Maximizing according to this criterion forces the loadings to be either large or 
small. The hope is that by rotating the factors, you will obtain new factors that are each highly 
correlated with only a few of the original variables. This simplifies the interpretation of the factor 
to a consideration of these two or three variables. Another way of stating the goal of varimax 
rotation is that it clusters the variables into groups; each “group” is actually a new factor. 

Since varimax seeks to maximize a specific criterion, it produces a unique solution (except for 
differences in sign). This has added to its popularity. Let the matrix G = {gij} represent the 
rotated factors. The goal of varimax rotation is to maximize the quantity: 
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This equation gives the raw varimax rotation. This rotation has the disadvantage of not spreading 
the variance very evenly among the new factors. Instead, it tends to form one large factor 
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where ci is the square root of the communality of variable i. 

Quartimax Rotation 
Quartimax rotation is similar to varimax rotation except that the rows of G are maximized rather 
than the columns of G. This rotation is more likely to produce a “general” factor than will 
varimax. Often, the results are quite similar. The quantity maximized for the quartimax is: 
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Miscellaneous Topics 

Using Correlation Matrices Directly 
Occasionally, you will be provided with only the correlation matrix from a previous analysis. 
This happens frequently when you want to analyze data that is presented in a book or a report. 
You can perform a factor analysis on a correlation matrix using NCSS. 

NCSS can store the correlation matrix on the current database. If it takes a great deal of computer 
time to build the correlation matrix, you might want to save it so you can use it while you 
determine the number of factors. You could then return to the original data to analyze the factor 
scores. 

Principal Component Analysis versus Factor Analysis 
Both principal component analysis (PCA) and factor analysis (FA) seek to reduce the 
dimensionality of a data set. The most obvious difference is that while PCA is concerned with the 
total variation as expressed in the correlation matrix, R, FA is concerned with a correlation in a 
partition of the total variation called the common portion. That is, FA separates R into two 
matrices RRc (common factor portion) and RuR  (unique factor portion). FA models the RRc portion of 
the correlation matrix. Hence, FA requires the discovery of Rc R as well as a model for it. The goals 
of FA are more concerned with finding and interpreting the underlying, common factors. The 
goals of PCA are concerned with a direct reduction in the dimensionality.  

Put another way, PCA is directed towards reducing the diagonal elements of R. Factor analysis is 
directed more towards reducing the off-diagonal elements of R. Since reducing the diagonal 
elements reduces the off-diagonal elements and vice versa, both methods achieve much the same 
thing. 

Data Structure 
The data for a factor analysis consists of two or more variables. We have created an artificial data 
set in which each of the six variables (X1 - X6) were created using weighted averages of two 
original variables (V1 and V2) plus a small random error. For example, X1 = .33 V1 + .65 V2 + 
error. Each variable had a different set of weights (.33 and .65 are the weights) in the weighted 
average.  

Rows two and three of the data set were modified to be outliers so that their influence on the 
analysis could be observed. Note that even though these two rows are outliers, their values on 
each of the individual variables are not outliers. This shows one of the challenges of multivariate 
analysis: multivariate outliers are not necessarily univariate outliers. In other words, a point may 
be an outlier in a multivariate space and yet you cannot detect it by scanning the data one variable 
at a time. 

This data set is contained in the database PCA2. The data given below are the first few rows of 
this data set. 
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PCA2 dataset (subset) 

X1 X2 X3 X4 X5 X6 
50 102 103 70 75 102 
4 2 5 11 11 5 
81 98 94 5 85 97 
31 81 86 46 50 74 
65 50 51 60 57 53 
22 30 39 17 15 17 
36 33 39 29 27 25 
31 91 96 50 56 85 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Input Variables 

Variables 
Designates the variables to be analyzed. If matrix input is selected, indicate the variables 
containing the matrix. Note that for matrix input, the number of rows used is equal to the number 
of variables specified. Other rows will be ignored. 

Data Input Format 
Indicates whether raw data is to be analyzed or if a previously summarized correlation or 
covariance matrix is to be used. 

• Regular Data 
The data is to be input in its raw format. 

• Lower-Triangular  
The data is in a correlation or covariance matrix in lower-triangular format. This matrix could 
have been created by a previous run of an NCSS program or from direct keyboard input. 

• Upper-Triangular  
The data is in a correlation or covariance matrix in upper triangular format. The number of 
rows used is equal to the number of variables specified. This matrix could have been created 
by a previous run of an NCSS program or from direct keyboard input. 
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Covariance Estimation Options 

Robust Covariance Matrix Estimation 
This option indicates whether robust estimation is to be used. A full discussion of robust 
estimation is provided in the PCA chapter. If checked, robust estimates of the means, variances, 
and covariances are formed. 

Robust Weight 
This option specifies the value of ν1 for robust estimation. This parameter controls the weighting 
function in robust estimation of the covariance matrix. Jackson (1991) recommends the value 4.  

Missing Value Estimation 
This option indicates the type of missing value imputation method that you want to use. (Note 
that if the number of iterations is zero, this option is ignored.)  

• None 
No missing value imputation. Rows with missing values in any of the selected variables are 
ignored. 

• Average 
The average-value imputation method is used. Each missing value is estimated by the average 
value of that variable. The process is iterated as many times as is indicated in the second box. 

• Multivariate Normal 
The multivariate-normal method. Each missing value is estimated using a multiple regression 
of the missing variable(s) on the variables that contain data in that row. This process is 
iterated as many times as indicated. See the discussion of missing value imputation methods 
elsewhere in this chapter.  

Maximum Iterations 
This option specifies the number of iterations used by either Missing Value Imputation or Robust 
Covariance Estimation. Robust estimation usually requires only four or five iterations to 
converge. Missing value imputation may require as many as twenty iterations if there are a lot of 
missing values. 

When using this option, it is better to specify too many iterations than too few. After considering 
the Percent Change values in the Iteration Report, you can decide upon an appropriate number of 
iterations and re-run the problem. 

Factor Options 

Factor Rotation 
Specifies the type of rotation, if any, that should be used on the solution. If rotation is desired, 
either varimax or quartimax rotation is available.  

Number of Factors 
This option specifies the number of factors to be used. On the first run, you would set this rather 
large (say eight or so). After viewing the eigenvalues you would reset this appropriately and make 
a second run. 
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Communality Options 

Communality Iterations 
This option specifies how many iterations to use in estimating the communalities. Some authors 
suggest a value of one here. Others suggest as many as four or five.  

Reports Tab 
The following options control the format of the reports. 

Select Reports 

Descriptive Statistics - Scores Report 
These options let you specify which reports are displayed.  

Select Plots 

Scores Plot - Loadings Plot 
These options let you specify which reports and plots are displayed.  

Row Numbers 
Indicates whether to display row numbers on the individual points in the corresponding plot. 

Report Options 

Minimum Loading 
Specifies the minimum absolute value that a loading can have and still remain in the Variable List 
report. 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Plot Options 

Number Factors Plotted 
You can limit the number of plots generated using this parameter. Usually, you will only have 
interest in the first three or four factors. 
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Scores Plot Tab and Loadings Plot Tab 
These sections specify the pair-wise plots of the scores and loadings. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 
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Storage Tab 
The factor scores and/or the correlation matrix may be stored on the current database for further 
analysis. This group of options let you designate which statistics (if any) should be stored and 
which variables should receive these statistics. The selected statistics are automatically stored to 
the current database. Note that existing data are replaced.  

Data Storage Variables 

Factor Scores 
You can automatically store the factor scores for each row into the variables specified here. These 
scores are generated for each row of data in which all independent variable values are 
nonmissing. 

Correlation Matrix 
You can automatically store the correlation matrix to the variables specified here. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Factor Analysis 
This section presents an example of how to run a factor analysis. The data used are shown in the 
table above and found in the PCA2 database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Factor Analysis window. 

1 Open the PCA2 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file PCA2.s0. 
• Click Open. 

2 Open the Factor Analysis window. 
• On the menus, select Analysis, then Multivariate Analysis, then Factor Analysis. The 

Factor Analysis procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Factor Analysis window, select the Variables tab.  
• Double-click in the Variables box. This will bring up the variable selection window.  
• Select X1 through X6 from the list of variables and then click Ok. “X1-X6” will appear 

in the Variables box.  
• Select Varimax in the Factor Rotation list box. 
• Enter 2 in the Number of Factors box. 
• Enter 6 in the Communality Iterations box. 
• Select Robust in the Covariance Estimation list box. 
• Enter 6 in the Maximum Iterations box. 

4 Specify which reports. 
• Select the Reports tab. 
• Check all reports and plots. Normally you would only view a few of these reports, but we 

are selecting them all so that we can document them. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Robust and Missing-Value Iteration Section 
This report is only produced when robust or missing value estimation is used. 

 
 Robust and Missing-Value Estimation Iteration Section 
   Trace of Percent 
 No. Count Covar Matrix Change 
 0 30 4907.795 0.00 
 1 30 4907.795 0.00 
 2 30 4423.718 -9.86 
 3 30 4423.718 0.00 
 4 30 4353.748 -1.58 
 5 30 4353.748 0.00 
 6 30 4335.77 -0.41 
 
This report presents the progress of the robust iterations. The trace of the covariance matrix gives 
a measure of what is happening at each iteration. When this value stabilizes, the program has 
converged. The percent change is reported to let you determine how much the trace has changed. 
In this particular example, we see very little change between iterations five and six. We would 
feel comfortable stopping at this point. A look at the Descriptive Statistics section will let you see 
how much the means and standard deviations have changed. 

A look at the Residual Section will let you see the robust weights that are assigned to each row. 
Those weights that are near zero indicate observations whose influence have been removed by the 
robust procedure. 

Descriptive Statistics Section 
 

 Descriptive Statistics Section 
    Standard 
 Variables Count Mean Deviation Communality 
 X1 30 42.83667 23.18579 0.997983 
 X2 30 53.25062 27.93123 0.999791 
 X3 30 57.13034 26.3737 0.999585 
 X4 30 43.5617 24.56474 0.992023 
 X5 30 43.20835 25.75021 1.00007 
 X6 30 48.61827 32.49559 0.999944 
 

Count, Mean, and Standard Deviation 
These are the familiar summary statistics of each variable. They are displayed to allow you to make 
sure that you have specified the correct variables. Note that using missing value imputation or 
robust estimation will change these values.  

Communality 
The communality shows how well this variable is predicted by the retained factors. It is similar to 
the R-Squared that would be obtained if this variable were regressed on the factors that were kept. 
However, remember that this is not based directly on the correlation matrix. Instead, calculations 
are based on an adjusted correlation matrix. 
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Correlation Section 
 

 Correlation Section 
  Variables 
 Variables X1 X2 X3 X4 X5 
 X1 1.000000 0.271780 0.127016 0.881604 0.814686 
 X2 0.271780 1.000000 0.988909 0.683206 0.778649 
 X3 0.127016 0.988909 1.000000 0.568933 0.677480 
 X4 0.881604 0.683206 0.568933 1.000000 0.986945 
 X5 0.814686 0.778649 0.677480 0.986945 1.000000 
 X6 0.484907 0.973093 0.928454 0.831949 0.901975 
 Phi=0.769781  Log(Det|R|)=-29.547320  Bartlett Test=773.15  DF=15  Prob=0.000000 
 
  Variables 
 Variables X6 
 X1 0.484907 
 X2 0.973093 
 X3 0.928454 
 X4 0.831949 
 X5 0.901975 
 X6 1.000000 
 Phi=0.769781  Log(Det|R|)=-29.547320  Bartlett Test=773.15  DF=15  Prob=0.000000 
 
 Bar Chart of Absolute Correlation Section 
  Variables 
 Variables X1 X2 X3 X4 X5 
 X1  |||||| ||| |||||||||||||||||| ||||||||||||||||| 
 X2 ||||||  |||||||||||||||||||| |||||||||||||| |||||||||||||||| 
 X3 ||| ||||||||||||||||||||  |||||||||||| |||||||||||||| 
 X4 |||||||||||||||||| |||||||||||||| ||||||||||||  |||||||||||||||||||| 
 X5 ||||||||||||||||| |||||||||||||||| |||||||||||||| ||||||||||||||||||||  
 X6 |||||||||| |||||||||||||||||||| ||||||||||||||||||| ||||||||||||||||| ||||||||||||||||||| 
 Phi=0.769781  Log(Det|R|)=-29.547320  Bartlett Test=773.15  DF=15  Prob=0.000000 
 
  Variables 
 Variables X6 
 X1 |||||||||| 
 X2 |||||||||||||||||||| 
 X3 ||||||||||||||||||| 
 X4 ||||||||||||||||| 
 X5 ||||||||||||||||||| 
 X6  
 Phi=0.769781  Log(Det|R|)=-29.547320  Bartlett Test=773.15  DF=15  Prob=0.000000 
 

This report gives the correlations alone for a test of the overall correlation structure in the data. In 
this example, we notice several high correlation values. The Gleason-Staelin redundancy 
measure, phi, is 0.736, which is quite large. There is apparently some correlation structure in this 
data set that can be modeled. If all the correlations are small (say less then .3), there would be no 
need for a factor analysis. 

Correlations 
The simple correlations between each pair of variables. Note that using the missing value 
imputation or robust estimation options will affect the correlations in this report. When the above 
options are not used, the correlations are constructed from those observations having no missing 
values in any of the specified variables. 

Phi 
This is the Gleason-Staelin redundancy measure of how interrelated the variables are. A zero 
value of ϕ2 means that there is no correlation among the variables, while a value of one indicates 
perfect correlation among the variables. This coefficient may have a value less than 0.5 even 
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when there is obvious structure in the data, so care should to be taken when using it. This statistic 
is especially useful for comparing two or more sets of data. The formula for computing ϕ3 is: 

ϕ = i = 1

p

j = 1

p
ij
2r -p

p(p - 1)

∑ ∑

 

Log(Det|R|) 
This is the log (base e) of the determinant of the correlation matrix. If you used the covariance 
matrix, this is the log (base e) of the determinant of the covariance matrix. 

Bartlett Test, df, Prob 
This is Bartlett’s sphericity test (Bartlett, 1950) for testing the null hypothesis that the correlation 
matrix is an identity matrix (all correlations are zero). If you get a probability (Prob) value greater 
than 0.05, you should not perform a factor analysis on the data. The test is valid for large samples 
(N>150). It uses a Chi-square distribution with p(p-1)/2 degrees of freedom. Note that this test is 
only available when you analyze a correlation matrix. The formula for computing this test is:  

( )2
e=

11+ 2p - 6N
6

Rχ Log  

Bar Chart of Absolute Correlation Section 
This chart graphically displays the absolute values of the correlations. It lets you quickly find 
high and low correlations. 

Eigenvalues Section 
 

 Eigenvalues after Varimax Rotation 
   Individual Cumulative 
 No. Eigenvalue Percent Percent Scree Plot 
 1 3.288191 54.89 54.89 ||||||||||| 
 2 2.701207 45.09 99.99 |||||||||| 
 3 0.001207 0.02 100.01 | 
 4 -0.000099 0.00 100.01 | 
 5 -0.000121 0.00 100.00 | 
 6 -0.000295 0.00 100.00 | 
 

Eigenvalues 
The eigenvalues of the R-U matrix. Often, these are used to determine how many factors to retain. 
(In this example, we would retain the first two eigenvalues.) 

One rule-of-thumb is to retain those factors whose eigenvalues are greater than one. The sum of 
the eigenvalues is equal to the number of variables. Hence, in this example, the first factor retains 
the information contained in 3.3 of the original variables. 

Note that, unlike in PCA where all eigenvalues are positive, the eigenvalues may be negative in 
factor analysis. Usually, these factors would be discarded and the analysis would be re-run.  

Individual and Cumulative Percents  
The first column gives the percentage of the total variation in the variables accounted for by this 
factor. The second column is the cumulative total of the percentage. Some authors suggest that 
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the user pick a cumulative percentage, such as 80% or 90%, and keep enough factors to attain this 
percentage. 

Scree Plot 
This is a rough bar plot of the eigenvalues. It enables you to quickly note the relative size of each 
eigenvalue. Many authors recommend it as a method of determining how many factors to retain.  

The word scree, first used by Cattell (1966), is usually defined as the rubble at the bottom of a 
cliff. When using the scree plot, you must determine which eigenvalues form the “cliff” and 
which form the “rubble.” You keep the factors that make up the cliff. Cattell and Jaspers (1967) 
suggest keeping those that make up the cliff plus the first factor of the rubble. 

Interpretation of the Example 
The first question that we would ask is how many factors should be kept. The scree plot shows 
that the first two factors are indeed the largest. The cumulative percentages show that the first two 
factors account for over 99.99% of the variation. 

Eigenvectors Section 
 

 Eigenvectors after Varimax Rotation 
  Factors 
 Variables Factor1 Factor2 
 X1 -0.303444 -0.662220 
 X2 -0.416551 0.378018 
 X3 -0.382768 0.491154 
 X4 -0.428167 -0.317929 
 X5 -0.448606 -0.204840 
 X6 -0.450912 0.185189 
 
 Bar Chart of Absolute Eigenvectors after Varimax Rotation 
  Factors 
 Variables Factor1 Factor2 
 X1 ||||||| ||||||||||||||  
 X2 ||||||||| ||||||||  
 X3 |||||||| ||||||||||  
 X4 ||||||||| |||||||  
 X5 ||||||||| |||||  
 X6 |||||||||| ||||  
   

Eigenvector 
The eigenvectors of the R-U matrix.  

Bar Chart of Absolute Eigenvectors 
This chart graphically displays the absolute values of the eigenvectors. It lets you quickly 
interpret the eigenvector structure. By looking at which variables correlate highly with a factor, 
you can determine what underlying structure it might represent. 
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Factor Loadings Section 
 

 Factor Loadings after Varimax Rotation 
  Factors 
 Variables Factor1 Factor2 
 X1 -0.019936 -0.998792  
 X2 -0.967470 -0.252572  
 X3 -0.994037 -0.107126  
 X4 -0.478418 -0.873578  
 X5 -0.594943 -0.803812  
 X6 -0.883654 -0.468080  
 
 Bar Chart of Absolute Factor Loadings after Varimax Rotation 
  Factors 
 Variables Factor1 Factor2 
 X1 | ||||||||||||||||||||  
 X2 |||||||||||||||||||| ||||||  
 X3 |||||||||||||||||||| |||  
 X4 |||||||||| ||||||||||||||||||  
 X5 |||||||||||| |||||||||||||||||  
 X6 |||||||||||||||||| ||||||||||  
 

Factor Loadings 
These are the correlations between the variables and factors. 

Bar Chart of Absolute Factor Loadings 
This chart graphically displays the absolute values of the factor loadings. It lets you quickly 
interpret the correlation structure. By looking at which variables correlate highly with a factor, 
you can determine what underlying structure it might represent. 

Communality Section 
 
 Communality after Varimax Rotation 
  Factors 
 Variables Factor1 Factor2 Communality 
 X1 0.000397 0.997586 0.997983  
 X2 0.935999 0.063793 0.999791  
 X3 0.988109 0.011476 0.999585  
 X4 0.228883 0.763139 0.992023  
 X5 0.353958 0.646114 1.000072  
 X6 0.780845 0.219099 0.999944  
 
 Bar Chart of Communalities after Varimax Rotation 
  Factors 
 Variables Factor1 Factor2 Communality 
 X1 | |||||||||||||||||||| ||||||||||||||||||||  
 X2 |||||||||||||||||| ||  ||||||||||||||||||||  
 X3 |||||||||||||||||||| |  ||||||||||||||||||||  
 X4 ||||| |||||||||||||||| ||||||||||||||||||||  
 X5 |||||||| ||||||||||||| ||||||||||||||||||||  
 X6 |||||||||||||||| ||||| ||||||||||||||||||||  
 

Communality 
The communality is the proportion of the variation of a variable that is accounted for by the 
factors that are retained. It is similar to the R-Squared value that would be achieved if this 
variable were regressed on the retained factors. This table value gives the amount added to the 
communality by each factor. 
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Bar Chart of Communalities 
This chart graphically displays the values of the communalities. 

Factor Structure Summary Section 
 

 Factor Structure Summary after Varimax Rotation 
  Factors 
 Factor1 Factor2 
 X3 X1 
 X2 X4  
 X6 X5 
 X5 X6 
 X4  
  

Interpretation 
This report is provided to summarize the factor structure. Variables with an absolute loading 
greater than the amount set in the Minimum Loading option are listed under each factor. Using 
this report, you can quickly see which variables are related to each factor. Note that it is possible 
for a variable to have high loadings on several factors, although varimax rotation makes this very 
unlikely.  

Score Coefficients Section 
 

 Score Coefficients after Varimax Rotation 
  Factors 
 Variables Factor1 Factor2 
 X1 0.268188 -0.5366089  
 X2 -0.3613275 0.1312937  
 X3 -0.4135219 0.2176106  
 X4 2.901571E-02 -0.3414549  
 X5 -0.0422971 -0.2712604  
 X6 -0.2641693 -8.934696E-03  
 

Score Coefficients 
These are the coefficients that are used to form the factor scores. The factor scores are the values 
of the factors for a particular row of data. These score coefficients are similar to the eigenvectors. 
They have been scaled so that the scores produced have a variance of one rather than a variance 
equal to the eigenvalue. This causes each of the factors to have the same variance. 

You would use these scores if you wanted to calculate the factor scores for new rows not included 
in your original analysis. 
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Factor Scores Section 
 

 Factor Scores after Varimax Rotation 
  Factors 
 Row Factor1 Factor2 
 1 -1.7219 -0.2752  
 2 1.4002 1.0317  
 3 -1.2231 -0.2862  
 4 -1.1632 0.5302  
 (report continues through all thirty rows) 
 

Factor1 - Factor2 
The factor scores are the values of the factors for a particular row of data. They have been scaled 
so they have a variance of one.  

Factor Score Plots 
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This set of plots shows each factor plotted against every other factor. 

Factor Loading Plots 
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This set of plots shows each of the factor loading columns plotted against each other. 
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Chapter 425 

Principal 
Components 
Analysis 
Introduction 
Principal Components Analysis, or PCA, is a data analysis tool that is usually used to reduce the 
dimensionality (number of variables) of a large number of interrelated variables, while retaining 
as much of the information (variation) as possible. PCA calculates an uncorrelated set of 
variables (factors or pc’s). These factors are ordered so that the first few retain most of the 
variation present in all of the original variables. Unlike its cousin Factor Analysis, PCA always 
yields the same solution from the same data (apart from arbitrary differences in the sign). 

The computations of PCA reduce to an eigenvalue-eigenvector problem. NCSS uses a double-
precision version of the modern QL algorithm as described by Press (1986) to solve the 
eigenvalue-eigenvector problem.  

Note that PCA is a data analytical, rather than statistical, procedure. Hence, you will not find 
many t-tests or F-tests in PCA. Instead, you will make subjective judgments requiring you to 
spend a little extra time getting acquainted with the technique. 

This NCSS program performs a PCA on either a correlation or a covariance matrix. Missing 
values may be dealt with using one of three methods. The analysis may be carried out using 
robust estimation techniques. 

Chapters on PCA are contained in books dealing with multivariate statistical analysis. Books that 
are devoted solely to PCA include Dunteman (1989), Jolliffe (1986), Flury (1988), and Jackson 
(1991). 

Technical Details 

Mathematical Development 
This section will document the basic formulas used by NCSS in performing a principal 
components analysis. We begin with an adjusted data matrix, X, which consists of n observations 
(rows) on p variables (columns). The adjustment is made by subtracting the variable’s mean from 
each value. That is, the mean of each variable is subtracted from all of that variable’s values. This 
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adjustment is made since PCA deals with the covariances among the original variables, so the 
means are irrelevant. 

New variables are constructed as weighted averages of the original variables. These new variables 
are called the factors, latent variables, or principal components. Their specific values on a specific 
row are referred to as the factor scores, the component scores, or simply the scores. The matrix of 
scores will be referred to as the matrix Y. The basic equation of PCA is, in matrix notation, given 
by: 

Y = W X  ′

where W is a matrix of coefficients that is determined by PCA. This matrix is provided in NCSS 
in the Score Coefficients report. For those not familiar with matrix notation, this equation may be 
thought of as a set of p linear equations that form the factors out of the original variables. These 
equations are also written as: 

ij 1i 1j 2i 2j pi pjy = w x +w x +...+w x  
As you can see, the factors are a weighted average of the original variables. The weights, W, are 
constructed so that the variance of y1, Var(y1), is maximized. Also, so that Var(y2) is maximized 
and that the correlation between y1 and y2 is zero. The remaining yi’s are calculated so that their 
variances are maximized, subject to the constraint that the covariance between yi and yj, for all i 
and j (i not equal to j), is zero. 

The matrix of weights, W, is calculated from the variance-covariance matrix, S. This matrix is 
calculated using the formula: 

( )( )
s =

x x x x

n -1ij
k=1

ik i jk j∑ − −
n

 

Later, we will discuss how this equation may be modified both to be robust to outliers and to deal 
with missing values. 

The singular value decomposition of S provides the solution to the PCA problem. This may be 
defined as: 

′U SU = L  
where L is a diagonal matrix of the eigenvalues of S, and U is the matrix of eigenvectors of S. W 
is calculated from L and U, using the relationship: 

W = UL 2−
1

 

It is interesting to note that W is simply the eigenvector matrix U, scaled so that the variance of 
each factor, yi, is one. 

The correlation between an ith factor and the jth original variable may be computed using the 
formula: 

r =
u l

sij
ji i

jj
 

Here uij is an element of U, li is a diagonal element of L, and sjj is a diagonal element of S. The 
correlations are called the factor loadings and are provided in the Factor Loadings report. 

When the correlation matrix, R, is used instead of the covariance matrix, S, the equation for Y 
must be modified. The new equation is: 
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Y = W D' − 1
2 X  

where D is a diagonal matrix made up of the diagonal elements of S. In this case, the correlation 
formula may be simplified since the sjj are equal to one. 

Missing Values 
Missing values may be dealt with by ignoring rows with missing values, estimating the missing 
value with the variable’s average, or estimating the missing value by regressing it on variables 
whose values are not missing. These will now be described in detail. Most of this information 
comes from Jackson (1991) and Little (1987). 

When estimating statistics from data sets with missing values, you should first consider the 
mechanism that created the missing values. This mechanism determines whether your method of 
dealing with the missing values is appropriate. The worst case arises when the probability of 
obtaining a missing value is dependent on one or more variables in your study. For example, 
suppose one of your variables was a person’s income level. You might suspect that the higher a 
person’s income, the less likely he is to reveal it to you. When the probability of obtaining a 
missing value is dependent on one or more variables, serious biases can occur in your results. A 
complete discussion of missing value mechanisms is given in Little (1987). 

NCSS provides three methods of dealing with missing values. In all three cases, the overall 
strategy is to deal with the missing values while estimating the covariance matrix, S. Hence, the 
rest of the section will consider estimating S. 

Complete-Case Missing-Value Analysis 
One method of dealing with missing values is to remove all cases (observations or rows) that 
contain missing values from the analysis. The analysis is then performed only on those cases that 
are “complete.”  

The advantages of this approach are speed (since no iteration is required), comparability (since 
univariate statistics, such as the mean, calculated on individual variables, will be equal to the 
results of the multivariate calculations), and simplicity (since the method is easy to explain). 

Disadvantages of this approach are inefficiency and bias. This method is inefficient since as the 
number of missing values increases, the number of discarded cases also increases. In the extreme 
case, suppose a data set has 100 variables and 200 cases. Suppose one value is missing at random 
in 80 cases, so these cases are deleted from the study. Hence, of the 20,000 values in the study, 80 
values or 0.4% were missing. Yet this method has us omit 8000 values or 40%, even though 7920 
of those values were actually available. This is similar to the saying that one rotten apple ruins the 
whole barrel. 

A certain amount of bias may occur if the pattern of missing values is related to at least one of the 
variables in the study. This could lead to gross distortions if this variable were correlated with 
several other variables. 

One method of determining if the complete-case methodology is causing bias is to compare the 
means of each variable calculated from only complete cases, with the corresponding means of 
each variable calculated from cases that were dropped but had this variable present. This 
comparison could be run using a statistic like the t-test, although we would also be interested in 
comparing the variances, which the t-test does not do. Significant differences would indicate the 
presence of a strong bias introduced by the pattern of missing values. 



425-4  Principal Components Analysis  

A modification of the complete-case method is the pairwise available-case method in which 
covariances are calculated one at a time from all cases that are complete for those two variables. 
This method is not available in this program for three reasons: the univariate statistics change 
from pair to pair causing serious numeric problems (such as correlations greater than one), the 
resulting covariance matrix may not be positive semi-definite, and the method is dominated by 
other methods that are available in this program. 

Filling in Missing Values with Averages 
A growing number of programs offer the ability to fill in (or impute) the missing values. The 
naive choice is to fill in with the variable average. NCSS offers this option, implemented 
iteratively. During the first iteration, no imputation occurs. On the second, third, and additional 
iterations, each missing value is estimated using the mean of that variable from the previous 
iteration. Hence, at the end of each iteration, a new set of means is available for imputation during 
the next iteration. The process continues until it converges. 

The advantages of this method are greater efficiency (since it takes advantage of the cases in 
which missing values occur) and speed (since it is much faster than the EM algorithm to be 
presented next). 

The disadvantages of this method are biases (since it consistently underestimates the variances 
and covariances), unreliability (since simulation studies have shown it unreliable in some cases), 
and domination (since it is dominated by the EM algorithm, which does much better although that 
method requires more computations). 

Multivariate-Normal Missing-Value Imputation 
Little (1987) has documented the use of the EM algorithm for estimating the covariance matrix, 
S, when the data follow the multivariate normal distribution. This might also be referred to as a 
regression approach or modified conditional means approach. The assumption of a multivariate 
normal distribution may seem limiting, but the procedure produces estimates that are consistent 
under weaker assumptions. We will now define the algorithm for you. 

1. Estimate the covariance matrix, S, with the complete-case method. 

2. The E step consists of calculating the sums and sums of squares using the following 
formulas: 

j
(t+1) i =1

n

ij
(t)

=
x

n
$μ

∑
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where xobs,i  refers to that part of observation i that is not missing and ( )E x |x , ,Sij obs,i
(t)$μ refers to 

the regression of the variables that are missing on the variables that are observed. This regression 
is calculated by sweeping S by the variables that are observed and using the observed values as 
the values of the independent variables in the resulting regression equation. Essentially, we are 
fitting a multiple regression of each missing value on the values that are observed, using the S(t) 
matrix as our matrix of sums of squares and cross products. When both xij and xik are missing, the 
value of cjki is the ijth element of the swept S matrix. 

Verbally, the algorithm may be stated as follows. Each missing data value is estimated by 
regressing it on the values that are observed. The regression coefficients are calculated from the 
current covariance matrix. Since this regression tends to underestimate the true covariance values, 
these are inflated by an appropriate amount. Once each missing value is estimated, a new 
covariance matrix is calculated and the process is repeated. The procedure is terminated when it 
converges. This convergence is measured by the trace of the covariance matrix. 

NCSS first sorts the data according to the various patterns of missing values, so that the 
regression calculations (the sweeping of S) are performed a minimum number of times: once for 
each particular missing-value pattern. 

This method has the disadvantage that it is computationally intensive and it may take twenty or 
more iterations to converge. However, it provides the maximum-likelihood estimate of the 
covariance matrix, it provides a positive semi-definite covariance matrix, and it seems to do well 
even when the occurrences of missing values are correlated with the values of the variables being 
studied. That is, it corrects for biases caused by the pattern of missing values. 

Robust Estimation 
Robust estimation refers to estimation techniques that decrease or completely remove the 
influence of observations that are outliers. These outliers can seriously distort the estimated 
means and covariances. The EM algorithm is employed as the robust technique used in NCSS. 
This algorithm uses weights that are inversely proportional to how “outlying” the observation is. 
The usual estimates of the means and covariances are modified to use these weights. The process 
is iterated until it converges. Note that since S is estimated robustly, the estimated correlation 
matrix is robust also. 

One advantage of the EM algorithm is that it can be modified to deal with missing values and 
robust estimation at the same time. Hence, NCSS provides robust estimates that use the 
information in rows with missing values as well. The robust estimation formulas are: 
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The weights, wi, are calculated using the formula: 

i
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i
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where ν is a parameter you supply, pi is the number of nonmissing values in the ith row, and 

( )( )i
2

j =1

p

k =1

p

d = ijk ijx - j ikx - k
jkb∑∑δ μ μ$ $  

where δijk is equal to one if both variables xj and xk are observed in row i and is zero otherwise. 
The bjk are the indicated elements of the inverse of S (B = S-1). Note that B is found by sweeping S 
on all variables. 

When using robust estimation, it is wise to run the analysis with the robust option turned on and 
then study the robust weights. When the weight is less than .4 or .3, the observation is being 
“removed.” You should study rows that have such a weight to determine if there was an error in 
data entry or measurement, or if the values are valid. If the values are all valid, you have to decide 
whether this row should be kept or discarded. Next, make a second run without the discarded 
rows and without using the robust option. In this way, your results do not depend quite so much 
on the particular formula that was used to create the weights. Note that the weights are listed in 
the Residual Report after the values of Qk and T². 

How Many Factors 
Several methods have been proposed for determining the number of factors that should be kept 
for further analysis. Several of these methods will now be discussed. However, remember that 
important information about possible outliers and linear dependencies may be determined from 
the factors associated with the relatively small eigenvalues, so these should be investigated as 
well. 

Kaiser (1960) proposed dropping factors whose eigenvalues are less than one, since these provide 
less information than is provided by a single variable. Jolliffe (1972) feels that Kaiser’s criterion 
is too large. He suggests using a cutoff on the eigenvalues of 0.7 when correlation matrices are 
analyzed. Other authors note that if the largest eigenvalue is close to one, then holding to a cutoff 
of one may cause useful factors to be dropped. However, if the largest factors are several times 
larger than one, then those near one may be reasonably dropped. 

Cattell (1966) documented the scree graph, which will be described later in this chapter. Studying 
this chart is probably the most popular method for determining the number of factors, but it is 
subjective, causing different people to analyze the same data with different results. 

Another criterion is to preset a certain percentage of the variation that must be accounted for and 
then keep enough factors so that this variation is achieved. Usually, however, this cutoff 
percentage is used as a lower limit. That is, if the designated number of factors do not account for 
at least 50% of the variance, then the whole analysis is aborted. 

We cannot give a definitive answer as to which criterion is best, since most of these techniques 
were developed for use in factor analysis, not PCA. Perhaps the best advise we can give is to use 
the number of factors that agrees with the goals of your analysis. If you want to look for outliers 
in multivariate data, then you will want to keep most, if not all, factors during the early stages of 
the analysis. If you want to reduce the dimensionality of your database, then you should keep 
enough factors so that you account for a reasonably large percentage of the variation. 
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Varimax and Quartimax Rotation 
PCA finds a set of dimensions (or coordinates) in a subspace of the space defined by the set of 
variables. These coordinates are represented as axes. They are orthogonal (perpendicular) to one 
another. For example, suppose you analyze three variables that are represented in three-
dimensional space. Each variable becomes one axis. Now suppose that the data lie near a two-
dimensional plane within the three dimensions. A PCA of this data should uncover two factors 
that would account for the two dimensions. You may rotate the axes of this two-dimensional 
plane while keeping the 90-degree angle between them, just as the blades of a helicopter propeller 
rotate yet maintain the same angles among themselves. The hope is that rotating the axes will 
improve your ability to interpret the meaning of each component. 

Many different types of rotation have been suggested. Most of them were developed for use in 
factor analysis. NCSS provides two orthogonal rotation options: varimax and quartimax.  

Varimax Rotation 
Varimax rotation is the most popular orthogonal rotation technique. In this technique, the axes are 
rotated to maximize the sum of the variances of the squared loadings within each column of the 
loadings matrix. Maximizing according to this criterion forces the loadings to be either large or 
small. The hope is that by rotating the factors, you will obtain new factors that are each highly 
correlated with only a few of the original variables. This simplifies the interpretation of the factor 
to a consideration of these two or three variables. Another way of stating the goal of varimax 
rotation is that it clusters the variables into groups, where each group is actually a new factor. 

Since varimax seeks to maximize a specific criterion, it produces a unique solution (except for 
differences in sign). This has added to its popularity. Let the matrix B = {bij} represent the rotated 
factors. The goal of varimax rotation is to maximize the quantity: 
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This equation gives the raw varimax rotation. This rotation has the disadvantage of not spreading 
the variance very evenly among the new factors. Instead, it tends to form one large factor 
followed by many small ones. To correct this, NCSS uses the normalized-varimax rotation. The 
quantity maximized in this case is: 
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where hi is the square root of the communality of variable i. 
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Quartimax Rotation 
Quartimax rotation is similar to varimax rotation, except that the rows of B are maximized rather 
than the columns of B. This rotation is more likely to produce a general factor than will varimax. 
Often, the results are quite similar. The quantity maximized for the quartimax is: 
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Miscellaneous Topics 

Using Correlation Matrices Directly 
Occasionally, you will be provided with only the correlation (or covariance) matrix from a 
previous analysis. This happens frequently when you want to analyze data that is presented in a 
book or a report. You can perform a partial PCA on a correlation matrix using NCSS. We say 
partial because you cannot analyze the individual scores, the row-by-row values of the factors. 
These are often very useful to investigate, but they require the raw data. 

NCSS can store the correlation (or covariance) matrix on the current database. If it takes a great 
deal of computer time to build the correlation matrix, you might want to save it so you can use it 
while you determine the number of factors. You could then return to the original data to analyze 
the factor scores. 

Using PCA to Select a Subset of the Original Variables 
There are at least two reasons why a researcher might want to select a subset of the original 
variables for further use. These will now be discussed. 

1. In some data sets the number of original variables is too large, making interpretation and 
analysis difficult. Also, the cost of obtaining and managing so many variables is 
prohibitive. 

2. When using PCA, it is often difficult to find a reasonable interpretation for all the factors 
that are kept. Instead of trying to interpret each factor, McCabe (1984) has suggested 
finding the principal variables. Suppose you start with p variables, run a PCA, and decide 
to retain k factors. McCabe suggests that it is often possible to find k+2 or k+3 of the 
original variables that will account for the same amount of variability as the k factors. 
The interpretation of the variables is much easier than the interpretation of the factors. 

Jolliffe (1986) discusses several methods to reduce the number of variables in a data set while 
retaining most of the variability. Using NCSS, one of the most effective methods for selecting a 
subset of the original variables can easily be implemented. This method is outlined next. 

1. Perform a PCA. Save the k most important factor scores onto your database for further 
analysis. 
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2. Use the Multivariate Variable Selection procedure to reduce the number of variables. 
This is done by using the saved factor scores as the dependent variables and the original 
variables as the independent variables. The variable selection process finds the best 
subset of the original variables that predicts the group of factor scores. Since the factor 
scores represent the original variables, you are actually finding the best subset of the 
original variables. 

 You will usually have to select two or three more variables than you did factors, but you 
will end up with most of the information in your data set being represented by a fraction 
of the variables. 

Principal Component versus Factor Analysis 
Both PCA and factor analysis (FA) seek to reduce the dimensionality of a data set. The most 
obvious difference is that while PCA is concerned with the total variation as expressed in the 
correlation matrix, R, FA is concerned with a correlation in a partition of the total variation called 
the common portion. That is, FA separates R into two matrices RRc (common factor portion) and 
RuR  (unique factor portion). FA models the RRc portion of the correlation matrix. Hence, FA 
requires the discovery of Rc R  

 
lity.  

as well as a model for it. The goals of FA are more concerned with
finding and interpreting the underlying, common factors. The goals of PCA are concerned with a
direct reduction in the dimensiona

Put another way, PCA is directed towards reducing the diagonal elements of R. Factor analysis is 
directed more towards reducing the off-diagonal elements of R. Since reducing the diagonal 
elements reduces the off-diagonal elements and vice versa, both methods achieve much the same 
thing. 

Further Reading 
There are several excellent books that provide detailed discussions of PCA. We suggest you first 
read the inexpensive monograph by Dunteman (1989). More complete (and mathematical) 
accounts are given by Jackson (1991) and Jolliffe (1986). Several books on multivariate methods 
provide excellent introductory chapters on PCA. 

Data Structure 
The data for a PCA consist of two or more variables. We have created an artificial data set in 
which each of the six variables (X1 - X6) were created using weighted averages of two original 
variables (V1 and V2) plus a small random error. For example, X1 = 0.33 V1 + 0.65 V2 + error. 
Each variable had a different set of weights (0.33 and 0.65 are the weights) in the weighted 
average.  

Rows two and three of the data set were modified to be outliers so that their influence on the 
analysis could be observed. Note that even though these two rows are outliers, their values on 
each of the individual variables are not outliers. This shows one of the challenges of multivariate 
analysis: multivariate outliers are not necessarily univariate outliers. In other words, a point may 
be an outlier in a multivariate space, and yet you cannot detect it by scanning the data one 
variable at a time. 

This data set is contained in the database PCA2. The data given in the table below are the first 
few rows of this data set. 
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PCA2 dataset (subset) 

X1 X2 X3 X4 X5 X6 
50 102 103 70 75 102 
4 2 5 11 11 5 
81 98 94 5 85 97 
31 81 86 46 50 74 
65 50 51 60 57 53 
22 30 39 17 15 17 
36 33 39 29 27 25 
31 91 96 50 56 85 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Input Variables 

Variables 
Designates the variables to be analyzed. If matrix input is selected, indicate the variables 
containing the matrix. Note that for matrix input, the number of rows used is equal to the number 
of variables specified. Other rows will be ignored. 

Data Input Format 
Indicates whether raw data is to be analyzed or if a previously summarized correlation or 
covariance matrix is to be used. 

• Regular Data 
The data is to be input in its raw format. 

• Lower-Triangular 
The data is in a correlation or covariance matrix in lower-triangular format. This matrix could 
have been created by a previous run, or from direct keyboard input. 

• Upper-Triangular 
The data is in a correlation or covariance matrix in upper-triangular format. The number of 
rows used is equal to the number of variables specified. This matrix could have been created 
by a previous run, or from direct keyboard input. 

Covariance Estimation Options 

Robust Covariance Matrix Estimation 
This option indicates whether robust estimation is to be used. A full discussion of robust 
estimation is provided at the beginning of this chapter. If checked, robust estimates of the means, 
variances, and covariances are formed. 
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Robust Weight 
This option specifies the value of ν1. This parameter controls the weighting function in robust 
estimation of the covariance matrix. Jackson (1991) recommends the value 4. 

Missing Value Estimation 
This option indicates the type of missing value imputation method that you want to use. (Note 
that if the number of iterations is zero, this option is ignored.) 

• None 
No missing value imputation. Rows with missing values in any of the selected variables are 
ignored. 

• Average 
The average-value imputation method is used. Each missing value is estimated by the average 
value of that variable. The process is iterated as many times as is indicated in the second box. 

• Multivariate Normal 
The multivariate-normal method. Each missing value is estimated using a multiple regression 
of the missing variable(s) on the variables that contain data in that row. This process is 
iterated as many times as indicated. See the discussion of missing value imputation methods 
elsewhere in this chapter. 

Maximum Iterations 
This option specifies the number of iterations used by either Missing Value Imputation or Robust 
Covariance Estimation. Robust estimation usually requires only four or five iterations to 
converge. Missing value imputation may require as many as twenty iterations if there are a lot of 
missing values. 

When using this option, it is better to specify too many iterations than too few. After considering 
the Percent Change values in the Iteration Report, you can decide upon an appropriate number of 
iterations and re-run the problem. 

Type of Matrix Used in Analysis 

Matrix Type 
This option indicates whether the analysis is to be run on a correlation or covariance matrix. 
Normally, the analysis is run on the scale-invariant correlation matrix since the scale of the 
variables changes the analysis when the covariance matrix is used. (For example, a variable that 
was measured in yards results in a different analysis than if it were measured in feet when a 
covariance matrix was used.) 

Factor (Component) Options 

Factor Rotation 
Specifies the type of rotation, if any, that should be used on the solution. If rotation is desired, 
either varimax or quartimax rotation is available. 

Factor Selection - Method 
This option specifies which of the following three methods is used to set the number of factors 
retained in the analysis. 
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• Percent of Eigenvalues 
Specify the total percent of variation that must be accounted for. Enough factors will be 
included to account for this percentage (or slightly greater) of the variation in the data. 

• Number of Factors 
Specify the number of factors. 

• Eigenvalue Cutoff 
Specify the minimum eigenvalue amount. All factors whose eigenvalues are greater than or 
equal to this value will be retained. Older statistical texts suggest that you should only keep 
factors whose eigenvalues are greater than one. 

Factor Selection - Value 
This option sets a quantity corresponding to the method selected by the last option. For example, 
if you specified a Percent of Eigenvalues in the last option, you would enter the percentage 
(perhaps 80) here. 

Reports Tab 
The following options control the format of the reports. 

Select Reports 

Descriptive Statistics - Residuals (Q and T2) 
These options let you specify which reports are displayed.  

Select Plots 

Scores Plot - Loadings Plot 
These options let you specify which reports and plots are displayed.  

Row Numbers 
Indicates whether to display row numbers on the individual points in the corresponding plot. 

Report Options 

Alpha 
The alpha value that is used in the residual reports to test if the observation is an outlier. 

Minimum Loading 
Specifies the minimum absolute value that a loading can have and still remain in the Variable List 
report. 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 



 Principal Components Analysis  425-13 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Plot Options 

Number Factors Plotted 
You can limit the number of plots generated using this parameter. Usually, you will only have 
interest in the first three or four factors. 

Scores Plot Tab and Loadings Plot Tab 
These sections specify the pair-wise plots of the scores and loadings. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 
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Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Storage Tab 
The factor scores and/or the correlation matrix may be stored on the current database for further 
analysis. This group of options let you designate which statistics (if any) should be stored and 
which variables should receive these statistics. The selected statistics are automatically stored to 
the current database. Note that existing data are replaced.  

Data Storage Variables 

Factor Scores 
You can automatically store the factor scores for each row into the variables specified here. These 
scores are generated for each row of data in which all independent variable values are 
nonmissing. 

Correlation or Covariance Matrix 
Specifies variables to receive the correlation or covariance matrix. The type of matrix saved (i.e., 
correlation matrix or covariance matrix) depends on the Matrix Type option specified on the 
Variables tab. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Principal Components Analysis 
This section presents an example of how to run a principal components analysis. The data used 
are found in the PCA2 database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Principal Components Analysis window. 

1 Open the PCA2 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file PCA2.s0. 
• Click Open. 

2 Open the Principal Components Analysis window. 
• On the menus, select Analysis, then Multivariate Analysis, then Principal Components 

Analysis. The Principal Components Analysis procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Principal Components Analysis window, select the Variables tab.  
• Double-click in the Variables box. This will bring up the variable selection window.  
• Select X1 through X6 from the list of variables and then click Ok. “X1-X6” will appear 

in the Variables box.  

4 Specify which reports. 
• Select the Reports tab. 
• Check all reports and plots. Normally you would only view a few of these reports, but we 

are selecting them all so that we can document them. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Descriptive Statistics Section 
 

 Descriptive Statistics Section 
    Standard 
 Variables Count Mean Deviation Communality 
 X1 30 44.2 24.66241 1.000000 
 X2 30 51.53333 30.57803 1.000000 
 X3 30 54.93333 29.05753 1.000000 
 X4 30 41.7 25.3175 1.000000 
 X5 30 43.66667 26.65143 1.000000 
 X6 30 47.63334 34.18962 1.000000 
 

This report lets us compare the relative sizes of the standard deviations. In this data set, they are 
all about the same size, so we could analyze either the correlation or the covariance matrix. We 
will analyze the correlation matrix. 
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Count, Mean, and Standard Deviation 
These are the familiar summary statistics of each variable. They are displayed to allow you to make 
sure that you have specified the correct variables. Note that using missing value imputation or 
robust estimation will change these values.  

Communality 
The communality shows how well this variable is predicted by the retained factors. It is the R2 
that would be obtained if this variable were regressed on the factors that were kept. In this 
example, all factors were kept, so the R2 is one. 

Correlation Section 
 

 Correlation Section 
  Variables 
 Variables X1 X2 X3 X4 X5 
 X1 1.000000 0.347229 0.224730 0.734112 0.819983 
 X2 0.347229 1.000000 0.990372 0.557526 0.799049 
 X3 0.224730 0.990372 1.000000 0.475404 0.710086 
 X4 0.734112 0.557526 0.475404 1.000000 0.830195 
 X5 0.819983 0.799049 0.710086 0.830195 1.000000 
 X6 0.514102 0.974167 0.935223 0.693869 0.907416 
 Phi=0.735970  Log(Det|R|)=-22.779188  Bartlett Test=596.06  DF=15  Prob=0.000000 
  
  Variables 
 Variables X6 
 X1 0.514102 
 X2 0.974167 
 X3 0.935223 
 X4 0.693869 
 X5 0.907416 
 X6 1.000000 
 Phi=0.735970  Log(Det|R|)=-22.779188  Bartlett Test=596.06  DF=15  Prob=0.000000 
  
 Bar Chart of Absolute Correlation Section 
  Variables 
 Variables X1 X2 X3 X4 X5   
 X1  ||||||| ||||| ||||||||||||||| |||||||||||||||||  
 X2 |||||||  |||||||||||||||||||| |||||||||||| ||||||||||||||||  
 X3 ||||| ||||||||||||||||||||  |||||||||| |||||||||||||||  
 X4 ||||||||||||||| |||||||||||| ||||||||||  |||||||||||||||||  
 X5 ||||||||||||||||| |||||||||||||||| ||||||||||||||| |||||||||||||||||   
 X6 ||||||||||| |||||||||||||||||||| ||||||||||||||||||| |||||||||||||| |||||||||||||||||||  
 Phi=0.735970  Log(Det|R|)=-22.779188  Bartlett Test=596.06  DF=15  Prob=0.000000 
 
 Bar Chart of Absolute Correlation Section 
  Variables 
 Variables X6 

X1 ||||||||||| 
X2 |||||||||||||||||||| 
X3 ||||||||||||||||||| 
X4 |||||||||||||| 
X5 ||||||||||||||||||| 
X6  
Phi=0.735970  Log(Det|R|)=-22.779188  Bartlett Test=596.06  DF=15  Prob=0.000000 

 

The report gives the correlations for a test of the overall correlation structure in the data. In this 
example, we notice several high correlation values. The Gleason-Staelin redundancy measure, 
phi, is 0.736, which is quite large. There is apparently some correlation structure in this data set 
that can be modeled. If all the correlations were small, there would be no need for a PCA. 
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Correlations 
The simple correlations between each pair of variables. Note that using the missing value 
imputation or robust estimation options will affect the correlations in this report. When the above 
options are not used, the correlations are constructed from those observations having no missing 
values in any of the specified variables. 

Phi 
This is the Gleason-Staelin redundancy measure of how interrelated the variables are. A zero 
value of ϕ  means that there is no correlation among the variables, while a value of one indicates 
perfect correlation among the variables. This coefficient may have a value less than 0.5 even 
when there is obvious structure in the data, so care should to be taken when using it. This statistic 
is especially useful for comparing two or more sets of data. The formula for computing ϕ  is: 

ϕ = i = 1

p

j = 1

p
ij
2r -p

p(p - 1)

∑ ∑

 

Log(Det|R|) 
This is the log (base e) of the determinant of the correlation matrix. If you used the covariance 
matrix, this is the log (base e) of the determinant of the covariance matrix. 

Bartlett Test, DF, Prob 
This is Bartlett’s sphericity test (Bartlett, 1950) for testing the null hypothesis that the correlation 
matrix is an identity matrix (all correlations are zero). If you get a probability (Prob) value greater 
than 0.05, you should not perform a PCA on the data. The test is valid for large samples (N>150). 
It uses a Chi-square distribution with p(p-1)/2 degrees of freedom. Note that this test is only 
available when you analyze a correlation matrix. The formula for computing this test is:  

( )2
e=

11+ 2p - 6N
6

Rχ Log  

Bar Chart of Absolute Correlation Section 
This chart graphically displays the absolute values of the correlations. It lets you quickly find 
high and low correlations. 

Eigenvalues Section 
 

 Eigenvalues 
   Individual Cumulative 
 No. Eigenvalue Percent Percent Scree Plot 
 1 4.562633 76.04 76.04 |||||||||||||||| 
 2 1.171509 19.53 95.57 |||| 
 3 0.242834 4.05 99.62 | 
 4 0.022878 0.38 100.00 | 
 5 0.000105 0.00 100.00 | 
 6 0.000041 0.00 100.00 | 
 

Eigenvalue 
The eigenvalues. Often, these are used to determine how many factors to retain. (In this example, 
we would retain the first two eigenvalues.) 



425-18  Principal Components Analysis  

When the PCA is run on the correlations, one rule-of-thumb is to retain those factors whose 
eigenvalues are greater than one. The sum of the eigenvalues is equal to the number of variables. 
Hence, in this example, the first factor retains the information contained in 4.563 of the original 
variables.  

When the PCA is run on the covariances, the sum of the eigenvalues is equal to the sum of the 
variances of the variables. 

Individual and Cumulative Percents  
The first column gives the percentage of the total variation in the variables accounted for by this 
factor. The second column is the cumulative total of the percentage. Some authors suggest that 
the user pick a cumulative percentage, such as 80% or 90%, and keep enough factors to attain this 
percentage. 

Scree Plot 
This is a rough bar plot of the eigenvalues. It enables you to quickly note the relative size of each 
eigenvalue. Many authors recommend it as a method of determining how many factors to retain.  

The word scree, first used by Cattell (1966), is usually defined as the rubble at the bottom of a 
cliff. When using the scree plot, you must determine which eigenvalues form the “cliff” and 
which form the “rubble.” You keep the factors that make up the cliff. Cattell and Jaspers (1967) 
suggest keeping those that make up the cliff plus the first factor of the rubble. 

Interpretation of the Example 
This table presents the eigenvalues of the correlation (covariance) matrix. The first question that 
we would ask is how many factors should be kept. The scree plot shows that the first two factors 
are indeed the largest. The cumulative percentages show that the first two factors account for over 
95% of the variation. Only the first two eigenvalues are greater than one. We begin to get the 
impression that the correct answer is that two factors will adequately approximate these data. 

We note in passing that the third and fourth eigenvalues are several orders of magnitude larger 
than the fifth and sixth. We will keep our eyes on these factors as well. Although they are not 
significant, they certainly represent some artifact in the data. 

Eigenvectors Section 
 

Eigenvectors 
 Factors 
Variables Factor1 Factor2 Factor3 Factor4 Factor5 
X1 -0.315300 -0.639819 0.507144 0.437189 0.012097 
X2 -0.427719 0.372949 0.077702 0.188932 0.786262 
X3 -0.399630 0.476348 0.016354 0.485911 -0.590471 
X4 -0.379732 -0.385432 -0.830977 0.126310 0.027636 
X5 -0.452963 -0.197773 0.209428 -0.567541 -0.140774 
X6 -0.456690 0.192251 0.046011 -0.446098 -0.111393 
 
 Factors 
Variables Factor6 
X1 0.206739 
X2 -0.134256 
X3 -0.168389 
X4 -0.002258 
X5 -0.608219 
X6 0.735489 
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Bar Chart of Absolute Eigenvectors 
 Factors 
Variables Factor1 Factor2 Factor3 Factor4 Factor5 
X1 ||||||| ||||||||||||| ||||||||||| ||||||||| | 
X2 ||||||||| |||||||| || |||| |||||||||||| || ||
X3 |||||||| |||||||||| | |||||||||| | ||||||||| ||
X4 |||||||| |||||||| ||||||||||||||||| ||| | 
X5 |||||||||| |||| ||||| |||||||||||| ||| 
X6 |||||||||| |||| | ||||||||| ||| 
 
Bar Chart of Absolute Eigenvectors 
 Factors 
Variables Factor6 
X1 |||  ||
X2 ||| 
X3 | | ||
X4 | 
X5 ||||||||||||| 
X6 ||||||||||||||| 
 

Eigenvector 
The eigenvectors are the weights that relate the scaled original variables, xi = (Xi- Meani)/Sigmai, 
to the factors. For example, the first factor, Factor1, is the weighted average of the scaled 
variables, the weight of each variable given by the corresponding element of the first eigenvector. 
Mathematically, the relationship is given by:   

Factor v x v x v xp p1 11 11 12 12 1 1= + + +...  

These coefficients may be used to determine the relative importance of each variable in forming 
the factor. Often, the eigenvectors are scaled so that the variances of the factor scores are equal to 
one. These scaled eigenvectors are given in the Score Coefficients section described later. 

Bar Chart of Absolute Eigenvectors 
This chart graphically displays the absolute values of the eigenvectors. It lets you quickly 
interpret the eigenvector structure. By looking at which variables correlate highly with a factor, 
you can determine what underlying structure it might represent. 

Factor Loadings Section 
 
Factor Loadings 
 Factors 
Variables Factor1 Factor2 Factor3 Factor4 Factor5 
X1 -0.673491 -0.692517 0.249911 0.066127 0.000124 
X2 -0.913622 0.403667 0.038290 0.028577 0.008051 
X3 -0.853623 0.515581 0.008059 0.073497 -0.006046 
X4 -0.811120 -0.417177 -0.409490 0.019105 0.000283 
X5 -0.967543 -0.214062 0.103202 -0.085844 -0.001441 
X6 -0.975505 0.208086 0.022673 -0.067475 -0.001141 
 
 Factors 
Variables Factor6 
X1 0.001326 
X2 -0.000861 
X3 -0.001080 
X4 -0.000014 
X5 -0.003900 
X6 0.004716 
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Bar Chart of Absolute Factor Loadings 
 Factors 
Variables Factor1 Factor2 Factor3 Factor4 Factor5 
X1 |||||||||||||| |||||||||||||| ||||| || | 
X2 ||||||||||||||||||| ||||||||| | | | 
X3 |||||||||||||||||| ||||||||||| | || | 
X4 ||||||||||||||||| ||||||||| ||||||||| | | 
X5 |||||||||||||||||||| ||||| ||| || | 
X6 |||||||||||||||||||| ||||| | || | 
 
Bar Chart of Absolute Factor Loadings 
 Factors 
Variables Factor6 
X1 | 
X2 | 
X3 | 
X4 | 
X5 | 
X6 | 

  

Factor Loadings 
These are the correlations between the variables and factors. 

Bar Chart of Absolute Factor Loadings 
This chart graphically displays the absolute values of the factor loadings. It lets you quickly 
interpret the correlation structure. By looking at which variables correlate highly with a factor, 
you can determine what underlying structure it might represent. 

Interpretation of the Example 
We now go through the interpretation of each factor. Factor one appears to be an average of all 
six variables. Although the weights of all variables are large, the weights on X5 and X6 are the 
largest. Factor two appears to be a contrast (difference) of X2+X3 and X1+X4. Factor three is 
most highly correlated to X4. Factor four appears to be associated with several variables, but 
most highly with X5. Factor five is a contrast of X2 and X3. Factor six is a contrast of X5 and 
X6. If these data were real, we could try to attach meaning to these patterns. 

Communality Section 
 

Communalities 
 Factors 
Variables Factor1 Factor2 Factor3 Factor4 Factor5 
X1 0.453590 0.479580 0.062456 0.004373 0.000000 
X2 0.834705 0.162947 0.001466 0.000817 0.000065 
X3 0.728671 0.265824 0.000065 0.005402 0.000037 
X4 0.657916 0.174037 0.167682 0.000365 0.000000 
X5 0.936140 0.045823 0.010651 0.007369 0.000002 
X6 0.951610 0.043300 0.000514 0.004553 0.000001 
 
 Factors 
Variables Factor6 Communality 
X1 0.000002 1.000000 
X2 0.000001 1.000000 
X3 0.000001 1.000000 
X4 0.000000 1.000000 
X5 0.000015 1.000000 
X6 0.000022 1.000000 
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Bar Chart of Communalities 
 Factors 
Variables Factor1 Factor2 Factor3 Factor4 Factor5 
X1 |||||||||| |||||||||| || | | 
X2 ||||||||||||||||| |||| | | | 
X3 ||||||||||||||| |||||| | | | 
X4 |||||||||||||| |||| |||| | | 
X5 ||||||||||||||||||| | | | | 
X6 |||||||||||||||||||| | | | | 
 
 Factors 
Variables Factor6 Communality 
X1 | |||||||||||||||||||| 
X2 | |||||||||||||||||||| 
X3 | |||||||||||||||||||| 
X4 | |||||||||||||||||||| 
X5 | |||||||||||||||||||| 
X6 | |||||||||||||||||||| 
 

  

Communality 
The communality is the proportion of the variation of a variable that is accounted for by the 
factors that are retained. It is the R² value that would be achieved if this variable were regressed 
on the retained factors. This table value gives the amount added to the communality by each 
factor. 

Bar Chart of Communalities 
This chart graphically displays the values of the communalities. 

Factor Structure Summary Section 
 

 Factor Structure Summary Section 
 
   
 Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 
 X6 X1 X4        
 X5 X3          
 X2 X4          
 X3 X2          
 X4            
 X1   
          

Interpretation 
This report is provided to summarize the factor structure. Variables with an absolute loading 
greater than the amount set in the Minimum Loading option are listed under each factor. Using 
this report, you can quickly see which variables are related to each factor. Notice that it is 
possible for a variable to have high loadings on several factors. 
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Score Coefficients Section 
 
Score Coefficients 
 Factors 
Variables Factor1 Factor2 Factor3 Factor4 Factor5 
X1 -0.1476102 -0.5911322 1.029146 2.890409 1.181451 
X2 -0.20024 0.3445697 0.1576812 1.249092 76.79078 
X3 -0.1870899 0.4401002 3.318755E-02 3.212524 -57.6688 
X4 -0.1777746 -0.356102 -1.686299 0.8350784 2.699127 
X5 -0.2120581 -0.1827235 0.4249913 -3.752211 -13.7488 
X6 -0.2138031 0.1776219 9.337004E-02 -2.949311 -10.87929 
 
Score Coefficients 
 Factors 
Variables Factor6 
X1 32.24512 
X2 -20.93996 
X3 -26.26369 
X4 -0.3522398 
X5 -94.86387 

 

Score Coefficients 
These are the coefficients that are used to form the factor scores. The factor scores are the values 
of the factors for a particular row of data. These score coefficients are similar to the eigenvectors. 
They have been scaled so that the scores produced have a variance of one rather than a variance 
equal to the eigenvalue. This causes each of the factors to have the same variance. 

You would use these scores if you wanted to calculate the factor scores for new rows not included 
in your original analysis. 

Residual Section 
 
Residual Section 
Row T2 T2 Prob Q0 Q1 Q2 Q3 Q5 
1 4.68 0.6932 10.68 0.91 0.11 0.00 0.00 
2 27.94* 0.0078 12.76 0.66 0.65 0.57* 0.00 
3 28.02* 0.0077 12.93 6.84* 6.23* 0.01 0.00 
4 2.25 0.9250 3.04 1.61 0.06 0.00 0.00 
5 8.20 0.3742 1.53 0.95 0.01 0.00 0.00* 
6 4.20 0.7427 4.52 0.23 0.01 0.01 0.00 
7 1.33 0.9785 1.86 0.01 0.00 0.00 0.00 
8 3.06 0.8573 5.47 2.29 0.07 0.00 0.00 
(report continues through all thirty rows) 
 

This report is useful for detecting outliers--observations that are very different from the bulk of 
the data. To do this, two quantities are displayed: T² and Qk. We will now define these two 
quantities. 

T² measures the combined variability of all the variables in a single observation. Mathematically, 
T² is defined as: 

2 -1T = [ x - x ] S [ x - x ]′  

where x represents a p-variable observation, x  represents the p-variable mean vector and  
represents the inverse of the covariance matrix. 

1−S

T is not affected by a change in scale. It is the same whether the analysis is performed on the 
covariance or the correlation matrix. T² gives a scaled distance measure of an individual 
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observation from the overall mean. The closer an observation is to its mean, the smaller will be 
the value of T². 

If the variables follow a multivariate normal distribution, then the probability distribution of T² 
may be related to the common F distribution using the formula: 

p,n,
2

p,n- p,T = p(n - 1)
n - p Fα α

 
Using this relationship, we can perform a statistical test at a given level of significance to 
determine if the observation is significantly different from the vector of means. You set the α 
value using the Alpha option. Since this test is being performed N times, you would anticipate 
about N(1-α) observations to be significant by chance variation. In our current example, rows two 
and three are starred (which means they were significant at the .05 significance level). You would 
probably want to check for data entry or transcription errors. (Of course, in this data set, these 
rows were made to be outliers.) 

T² is really not part of a normal PCA since it may be calculated independently. It is presented to 
help detect observations that may have an undue influence on the analysis. You can read more 
about its use and interpretation in Jackson (1991). 

The other quantity shown on this report is Qk. Qk represents the sum of squared residuals when an 
observation is predicted using the first k factors. Mathematically, the formula for Qk is: 

( )

( )

k

i =

p

i ik

i =k +

p

i

Q = ( x - x ) ( x - x )

= x - x

= ipc

$ $

$

′

∑

∑
1

2

1

2
λ

 

Here  refers to the value of variable i predicted from the first k factors, ik x iλ refers to the ith 
eigenvalue, and is the score of the iipc th factor for this particular observation. Further details are 
given in Jackson (1991) on pages 36 and 37.  

An upper limit for Qk is given by the formula: 

α
αQ = a z 2b h
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and 

zα is the upper normal deviate of area α if h is positive or the lower normal deviate of area α if h 
is negative. 

This limit is valid for any value of k, whether too many or too few factors are kept. Note that 
these formulas are for the case when the correlation matrix is being used. When the analysis is 
being run on the covariance matrix, the pci’s must be adjusted. Further details are given in 
Jackson (1991). 

Notice that significant (starred) values of Qk indicate observations that are not duplicated well by 
the first k factors. These should be checked to see if they are valid. Qk and T² provide an initial 
data screening tool. 

Interpretation of the Example 
We are interested in two columns in this report: Q2 and T2. Notice that rows two and three are 
significantly large (shown by the asterisk) for both measurements. If these were real data, we 
would investigate these two rows very carefully. We would first check for data entry errors and 
next for errors that might have occurred when the measurements were actually taken. In our case, 
we know that these two rows are outliers (since they were artificially made to be outliers). 

Factor Scores Section 
 

Factor Score 
 Factors 
Row Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 
1 -1.4627 0.8272 -0.6797 -0.1124 1.1732 0.0689 
2 1.6286 0.0834 -0.5825 -4.9911 -0.0743 0.1499 
3 -1.1560 0.7225 5.0582 -0.7581 -0.0226 0.0079 
4 -0.5595 1.1520 -0.4768 0.0670 0.5125 0.3465 
5 -0.3573 -0.8963 -0.1360 0.2037 -1.6830 2.0931 
6 0.9696 0.4329 0.0488 0.6208 -1.6155 -0.2796 
7 0.6364 -0.0783 0.0624 0.4003 -0.8677 -0.0678 
8 -0.8339 1.3759 -0.5545 -0.0806 -0.3899 -0.0447 
(report continues through all thirty rows) 

 

This report presents the individual factor scores scaled so each column has a mean of zero and a 
standard deviation of one. These are the values that are plotted in the plots to follow. Remember, 
there is one row of score values for each observation and one column for each factor that was 
kept. 

Factor Score Plots 
 

-2
.0

-1
.0

0.
0

1.
0

2.
0

-2.5 -1.4 -0.3 0.9 2.0

Factor Scores

Score2

S
co

re
1

1

2

3

4
5

6
7

8

9

10

11 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 2829

30

 

-2
.0

-1
.0

0.
0

1.
0

2.
0

-1.0 0.8 2.5 4.3 6.0

Factor Scores

Score3

S
co

re
1

1

2

3

4
5

6
7

8

9

10

1112

13

14

15

16

17

18

19

20

21

22

23

24

25

26

272829

30

 



 Principal Components Analysis  425-25 

 

-2
.5

-1
.4

-0
.3

0.
9

2.
0

-1.0 0.8 2.5 4.3 6.0

Factor Scores

Score3

S
co

re
2

1

2

3
4

5

6

7

8

9

10

11
12

13

14

15
16

17

18

19

20
21

22

23

24

25

26

27

2829

30

 
 
This set of plots shows each factor plotted against every other factor. The first k factors (where k 
is the number of large eigenvalues) usually show the major structure that will be found in the 
data. The rest of the factors show outliers and linear dependencies. Note that in our present 
example, outliers are displayed in both plots that include factor three. We would now investigate 
these rows much more closely. 

Interpretation of the Example 
We first notice the presence of an outlier in plots containing factor three. If we were not 
convinced before that this row was an outlier, we would be now. Factor three fits row three. If we 
had called for the plot of factor four, we would see that it fits row four. Hence, these plots of 
nonsignificant factors show outliers. 

Factor Loading Plots 
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Discussion of Factor Loading Plots 
This set of plots shows each of the factor loading columns plotted against each other. The data 
points represent variables. The plot allows you to find variables that are highly correlated with 
both factors. It is anticipated that this will aid in the interpretation of the factors. 
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Robust and Missing-Value Iteration Section 
The following report is not part of the preceding tutorial. We have re-run the problem calling for 
robust estimation so that we could show you this iteration report. We have set the number of 
robust iterations at six. 

 
Robust and Missing-Value Estimation Iteration Section 
  Trace of Percent 
No. Count Covar Matrix Chan e g
0 30 4907.795 0.00 
1 30 4907.795 0.00 
2 30 4423.718 -9.86 
3 30 4423.718 0.00 
4 30 4353.748 -1.58 
5 30 4353.748 0.00 
6 30 4335.77 -0.41 
 

 
This report presents the progress of the iterations. The trace of the covariance matrix gives a 
measure of what is happening at each iteration. When this value stabilizes, the program has 
converged. The percent change is reported to let you determine how much the trace has changed. 
In this particular example, we see very little change between iterations five and six. We would 
feel comfortable in stopping at this point. A look at the Descriptive Statistics section will let you 
see how much the means and standard deviations have changed. 

A look at the Residual Section will let you see the robust weights that are assigned to each row. 
Those weights that are near zero indicate observations whose influence has been removed by the 
robust procedure. 
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Chapter 430 

Correspondence 
Analysis 
Introduction 
Correspondence analysis (CA) is a technique for graphically displaying a two-way table by 
calculating coordinates representing its rows and columns. These coordinates are analogous to 
factors in a principal components analysis (used for continuous data), except that they partition 
the Chi-square value used in testing independence instead of the total variance. 

For those of you new to CA, we suggest that you obtain Greenacre (1993). This is an excellent 
introduction to the subject, is very readable, and is suitable for self study. If you want to 
understand the technique in detail, you should obtain this (paperback) book. 

Discussion 
We will explain CA using the following example. Suppose an aptitude survey consisting of eight 
yes or no questions is given to a group of tenth graders. The instructions on the survey allow the 
students to answer only those questions that they want to. The results of the survey are tabulated 
as follows. 

    
Aptitude Survey Results – Counts 
Question Yes No Total     
Q1 155 938 1093     
Q2 19 63 82     
Q3 395 542 937     
Q4 61 64 125     
Q5 1336 876 2212     
Q6 22 14 36     
Q7 864 354 1218     
Q8 920 185 1105     
Total 3772 3036 6808  

    
 
Take a few moments to study this table and see what you can discover. The most obvious pattern 
is that many of the students did not answer all the questions. This makes response patterns 
between rows difficult to analyze. 

To solve this problem of differential response rates, we create a table of row percents (or row 
profiles as they are called in CA). 
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Aptitude Survey Results – Row Profiles 
Question Yes No Total     
Q1 14.18 85.82 100.00     
Q2 23.17 76.83 100.00     
Q3 42.16 57.84 100.00     
Q4 48.80 51.20 100.00     
Q5 60.40 39.60 100.00     
Q6 61.11 38.89 100.00     
Q7 70.94 29.06 100.00     
Q8 83.26 16.74 100.00     
Total 55.41 44.59 100.00     

    
 

This table allows us to see the underlying patterns within the table. We note that only 14% 
answered yes to question one while 83% answered yes to question eight. 
 Although we can inspect this table directly, a picture of the data will allow us to find patterns 
much more quickly. This is done in the following scatter plot. The plot shows the row profiles 
with the questions on the horizontal axis and the row percents on the vertical axis. Notice that 
there are two possible responses (yes or no) and two corresponding plotting symbols. 

    
Aptitude Survey Results – Row Percents versus Questions 
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We notice a steady gain in the percent of students answering yes as we move from question one 
to question eight. Also, we can see the obvious relationship between the percent answering yes 
and the percent answering no. In fact, if you think about it for a moment you will realize that we 
really only need to plot the yes’s or the no’s, but not both since they both relate the same 
information. 
Another way of plotting this data is to plot the percentage of each possible answer on a different 
axis. Since, in this example, we have two possible answers, we plot the yes percentage on one 
axis and the no percentage on the other axis. 
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Aptitude Survey Results – Scatter Plots 
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Spend some time analyzing this plot. Can you see the connection between the last plot and this 
plot? In the previous plot, each possible answer was a horizontal set of points. In this plot, each 
answer is an axis. Hence, if our survey was made up of multiple-choice questions each with three 
possible answers, this plot would need to have been three dimensional. 
This plot is an example of a correspondence map, the primary output of CA. It is important to 
understand the features of this plot. Each axis of the plot represents a column and each point 
represents a row of the original table. If you were to draw a bar chart for this data, you would 
create bars representing the distances from each point to each axis. Since there are eight points 
and two axes, the bar chart would have sixteen bars. 

Notice also how you interpret the plot. Each point represents a specific yes or no combination. 
For example, question eight had about 83% answering yes and 17% answering no. This high 
proportion of yes respondents positions the point very close to the Pct_Yes (horizontal) axis. 
Conversely, question one had a large percentage of no answers and is very near the Pct_No axis. 
We see that points relatively close to the end of a particular axis have a high percentage value on 
that axis. 

Also notice that points that are close to each other have very similar patterns of yes or no 
answers. Look at the row profiles (percents) for questions five and six (two points that are almost 
in the same position). Notice that they differ by only one percentage point. 

The following figure shows the CA plot of this data generated by the program. Although the 
orientation of the plot is different, the distances between the points are the same. 
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Aptitude Survey Results – CA Plot  
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This plot and the last plot appear the same because, in this example, the CA plot reproduces the 
plot of the row percents. This occurs because there were only two possible answers to each 
question. If the questions in our survey had been multiple choice so that there were four or five 
answers, we would have needed to create a four or five dimensional plot to reproduce the Row 
Profile Plot.  
To summarize, then, a CA plot is a plot of the row profiles (percentages) constructed so that each 
column category becomes a different dimension. Since it is only possible to view two dimensions 
at a time, we must project this high dimensional space onto a two-dimensional subspace. This 
projection is constructed so as to maintain as much of the original information (or variation) as 
possible. 

Technical Details 
We will now present an outline of the computational methods used to perform the analysis. We 
will use standard matrix terminology to present the steps. 

1. Read in the n (rows) by m (columns) data matrix, K. Note that the elements of K must be 
non-negative and that none of the row or column totals is zero. 

2. Compute the proportion matrix, P, by dividing the elements of K by the total of all 
numbers in K. Mathematically, we write 

{ } { }P = =p k kij ij / ..  

3. Compute the totals of the rows of P and the columns of P, putting the results in the 
vectors r and c. Using standard matrix notation, we write 

r P1=  
c P 1= '  

where 1 is an appropriately dimensioned vector of ones. 
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4. Change the square roots of the vectors r and c into diagonal matrices and take the inverse 
of the resulting square matrices. 

 ( )[ ]D rr diag=
−1 2/

 

 ( )[ ]D cc diag=
−1 2/

 

5. Compute the scaled matrix, A. 
 A D PD= r c  

6. Compute the Singular Value Decomposition (SVD) of A. 

( )B, W,C A= SVD  

7. Compute the coordinate matrices, F and G, as follows: 
F D BW= r  

G D CW= ′c  

8. Compute the eigenvalues, V. 
V WW= ′  

9. Compute the row distances, di, and the column distances, dj. 

d
p

p
p
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jj
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10. Note that the weights, and , come from the vectors r and c that were formed in step 
3. 

wi w j

{ }w ri i=  

{ }w cj j=  

11. Compute the reported statistics as follows: 
Statistic Formula 
Mass  wi

Inertia w d
w d
i i

k k
k

2

2 2∑
 

Distance  di
2

Row Factor  f ij

Column Factor  gij

Row COR 
f
d

ij

i

2

2  

Column COR 
g
d

ij

j

2

2  
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Statistic Formula 

Row CTR 
w f

v
i ij

i

2

 

Column CTR 
w g

v
j ij

j

2

 

Angle ( )ArcCos CORij  

Data Structure 
We will use a set of data from Greenacre (1993) in the tutorial that follows. The table below 
shows the results of a survey relating the smoking habits of the employees of a fictitious company 
to their position within the company. These data are contained in the CORRES1 database . 

The entries in the table are the counts of the number of employees falling into each cell. 
 

CORRES1 dataset 

None Light Medium Heavy Staff 
4 2 3 2 (SM) Senior Managers 
4 3 7 4 (JM) Junior Managers 
25 10 12 4 (SE) Senior Employees 
18 24 33 13 (JE) Junior Employees 
10 6 7 2 (SE) Secretaries 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Two-Way Table Variables 

Table Variables 
Specify the variables containing the two-way table to be analyzed. Note that this is a previously 
tabulated table. The procedure cannot be used on a raw survey itself. The data must first be 
tabulated into a two-way table before this procedure can be applied. 
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Supplementary Variables (Not used 
in calculation of axes.) 

Supplementary Variables 
This is an optional list of one or more supplementary variables (columns) which may be 
specified. Supplementary columns are not used in the calculation of the axes, but are displayed on 
all plots and reports. 

The actual values that you use do not matter since the entries are all standardized before they are 
used. 

Row Description Variables 

Row Type Variable 
This is an optional variable that indicates the role each row of data will play in the analysis. Only 
the values 0, 1, and 2 are allowed in this variable. These values have the following interpretation 
by the program. 

0 The row is completely ignored. 

1 The row is used as a regular row of data. 

2 The row is a supplementary row. It is not used in the formation of the axes, but it is 
displayed on all plots and reports. 

Row Label Variable 
Specify an optional variable containing labels for each of the rows. 

Options 

Number of Axes 
This option specifies the number of axes (factors or coordinates) on which reports and plots 
should be generated. Usually you will keep only two or three axes. 

Zero Replacement 
This value replaces zeros in the data. Zeros can cause problems during the calculations. Changing 
zeros to a small positive number circumvents these problems without changing the results a great 
deal. 

RANGE: 0 to 1E-300. 

RECOMMENDED: 0.00000001 

Row/Column Name 
On the plots, this label is used to designate the rows and columns. 

This allows you to assign a more meaningful name than just 'Rows' or 'Columns'. 
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Reports Tab 
The following options control which reports are displayed.  

Select Reports 

Raw Data Report – Eigenvalue Report 
Specify whether to display the indicated reports. Some of these options let you specify whether to 
display a separate report for the rows and columns. 

Plot Report 
Indicate whether to display this report or plot for rows only, columns only, or both. 

Axis Report 
Indicate whether to display this report or plot for rows only, columns only, or both. 

Select Plots 

Correspondence Plots 
Specify whether to display the indicated plot.  

Report Options 

Scale Factor 
Most of the output consists of proportions--decimal numbers between zero and one. Tables 
displaying these numbers may be more readable if they are multiple by a scale factor (such as 100 
or 1000). This gets rid of the leading zero and often the decimal point as well. You select the 
scale factor here. Following are examples of how various numbers are displayed with the various 
scale factors. 

Original   Scale Factor 
Number 1 100 1000 
0.034321 0.034 3.4 34 
0.923514 0.924 92.4 924 
0.512345 0.512 51.2 512 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Plot Options 

Size of Plots 
This option controls the size of the plots that are displayed. You can select small, medium, or 
large. Medium and large are displayed one per line, while small are displayed two per line. 
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Correspondence Plot Tab 
These options control the attributes of the correspondence plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Plot Settings - Symbols 

Row 
Designate the plot symbol used for plotting rows. 

Column 
Designate the plot symbol used for plotting columns. 

Plot Settings - Legend 

Legend  
Specify whether you want to view a legend. 

Legend Text 
Specifies the legend title. 
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Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Correspondence Analysis 
This section presents an example of how to run an analysis of the data presented in the table 
above. These data are contained in the CORRES1 database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Correspondence Analysis window. 

1 Open the Corres1 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Corres1.s0. 
• Click Open. 

2 Open the Correspondence Analysis window. 
• On the menus, select Analysis, then Multivariate Analysis, then Correspondence 

Analysis. The Correspondence Analysis procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  
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3 Specify the variables. 
• On the Correspondence Analysis window, select the Variables tab.  
• Double-click in the Table Variables box. This will bring up the variable selection 

window.  
• Select None to Heavy from the list of variables and then click Ok. “None-Heavy” will 

appear in the Table Variables box.  
• Double-click in the Row Label Variable box. This will bring up the variable selection 

window.  
• Select Staff from the list of variables and then click Ok. “Staff” will appear in the Row 

Label Variable box.  

4 Specify the reports. 
• Select the Reports tab. 
• Enter Both in the Correspondence Plots box. 

5 Specify the plot. 
• Select the Correspondence Plot tab. 
• Enter 0.5 in the Horizontal - Maximum box. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Raw Data Section 
 

Raw Data Section 
Staff None Light Medium Heavy Total   
SM 4 2 3 2 11   
JM 4 3 7 4 18   
SE 25 10 12 4 51   
JE 18 24 33 13 88   
SC 10 6 7 2 25   
Total 61 45 62 25 193   

 

This report displays the raw data. It documents the data that were used by the procedure so that 
you can check for data-entry errors. 

Row Profiles Section 
 

Row Profiles Section 
 
Staff None Light Medium Heavy Total   
SM 36.36 18.18 27.27 18.18 100.00   
JM 22.22 16.67 38.89 22.22 100.00   
SE 49.02 19.61 23.53 7.84 100.00   
JE 20.45 27.27 37.50 14.77 100.00   
SC 40.00 24.00 28.00 8.00 100.00   
Total 31.61 23.32 32.12 12.95 100.00   
 

This report shows the row profiles (percentages). These are the values the will be plotted on the 
row oriented plot. Note that since there are five rows, these data would require five dimensions to 
be plotted in the standard fashion. CA investigates the differences between each individual row 
profile and the average row profile (the row labeled “Total”). 
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Column Profiles Section 
 

Column Profiles Section 
 
Staff None Light Medium Heavy Total   
SM 6.56 4.44 4.84 8.00 5.70   
JM 6.56 6.67 11.29 16.00 9.33   
SE 40.98 22.22 19.35 16.00 26.42   
JE 29.51 53.33 53.23 52.00 45.60   
SC 16.39 13.33 11.29 8.00 12.95   
Total 100.00 100.00 100.00 100.00 100.00   
 

This report shows the column profiles (percentages). These are the values the will be plotted in a 
column oriented CA plot. Note that since there are four columns, these data would require four 
dimensions to be plotted in the standard fashion. CA investigates the differences between each 
individual column profile and the average column profile (the column labeled “Total”). 

Eigenvalue Section 
 

Eigenvalue Section 
 
Factor  Individual Cumulative 
No. Eigenvalue Percent Percent Bar Chart 
1 0.074759 87.76 87.76 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
2 0.010017 11.76 99.51 |IIIIIIII 
3 0.000414 0.49 100.00 | 
Total 0.085190 
 

Since CA projects the row (or column) profiles onto a two-dimensional subspace, a critical issue 
is how well this projection works. The eigenvalues gives us important information regarding this. 
The Cumulative Percent column tells us how much of the total information is reproduced by each 
number of dimensions.  
In this example, the CA plot using the first two factors accounts for 99.5% of the variation. In 
other words, the dimension reduction is only costing us a 0.5% loss in information. We can be 
confident that the patterns we see in the CA plot represent the patterns that we would see if we 
could peer into n-dimensional space. 

Factor No.  
This is the number of the factor (coordinate or dimension) that is reported about on this row of the 
report. 

Eigenvalue  
This is the eigenvalue associated with this dimension. It gives a relative size (importance) of this 
dimension. 

Individual and Cumulative Percents  
The first column gives the percentage of the total of the eigenvalues accounted for by this 
dimension. The second column is the cumulative total of the percentage.  

In ideal situations, the first two dimensions will account for over 90% of the variation. If the 
cumulative percentage is less than 50%, CA is not appropriate. 

Bar Chart 
This is a rough bar plot of the eigenvalues. It enables you to quickly note the relative size of each 
eigenvalue.  
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Plot Detail Section 
 

 Plot Detail Section for Rows 
    -------- Axis1 -------- -------- Axis2 -------- 
Name Quality Mass Inertia Factor COR CTR Factor COR CTR 
1 SM 0.893 0.057 0.031 0.066 0.092 0.003 -0.194 0.800 0.214 
2 JM 0.991 0.093 0.139 -0.259 0.526 0.084 -0.243 0.465 0.551 
3 SE 1.000 0.264 0.450 0.381 0.999 0.512 -0.011 0.001 0.003 
4 JE 1.000 0.456 0.308 -0.233 0.942 0.331 0.058 0.058 0.152 
5 SC 0.999 0.130 0.071 0.201 0.865 0.070 0.079 0.133 0.081 

 

This report provides the information you need to interpret a correspondence plot correctly. A 
similar report is generated for each CA plot.  
This report is used as follows. First, for each axis, look down the CTR column to determine 
which profiles contribute highly to the axis. This is useful in finding possible interpretations of 
the axis. Next, look across the COR values to identify which of the axes represent the profile 
well. Finally, the Quality column shows how well the profile is reproduced in the subspace 
defined by the two axes. 

Axis1, Axis 2 
These are the two axes (coordinates or dimensions) that are reported on here. 

Name 
The name of the dimension (profile) being reported about on this line of the report. 

Quality 
This is the sum of the two COR values. It is the proportion of the variation in this profile that is 
reproduced by the two factors being reported on here. 

In this example, we see that all of the profiles are above 89%. In fact, all but the SM profile are 
over 99%. We can feel confident that the points shown in this plot are not distorted by the 
projection process.  

Mass 
The mass (or weight) is the proportion of the whole table that is in the category represented by 
this row. It is the ratio of the row count to the total table count. You will find the masses also 
reported as percentages in the last column of the Column Profile Section. 

Inertia 
The inertia of the whole table is a function of the Chi-square statistic, . If  χ 2

( )
χ 2

2

=
−

∑
O E

E
ij ij

ijall i j,

 

where  is the count of row i and column j of the table,  is the value expected under the 
assumption of row-by-column independence, and N is the total table count, then the total inertia 
of the table is given by 

Oij Eij

Total Inertia
N

=
χ 2

 

The inertia value reported is the proportion of the total inertia that is due to this profile. 
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Another way to interpret the inertia is that it is the weighted average of the Chi-square distances 
between the row profiles and their average profile. 

Factor 
The coordinate of the profile along this axis. This is the value of the row profile projected onto 
the line defined by this axis. It is the value that is plotted. 

COR 
This is the correlation between this profile and the axis. It allows you to determine which of the 
axes represent the profile well. This is the proportion of the variance in a profile explained by the 
axis.  

This is the contribution of this axis to the inertia of this profile. The formula used to compute this 
was given earlier. 

CTR 
The contribution of this profile to the inertia of this axis. This is the proportion of variance in the 
axis accounted for by this profile. The formula used to compute this was given earlier. 

Principal Coordinate Section 
 

Principal Coordinate Section for Rows - Axis 1 
Name Mass Inertial Distance Factor COR CTR Angle Eigenvalue 
1 SM 0.057 0.031 0.047 0.066 0.092 0.003 72.3 0.000247 
2 JM 0.093 0.139 0.127 -0.259 0.526 0.084 43.5 0.006254 
3 SE 0.264 0.450 0.145 0.381 0.999 0.512 1.8 0.038277 
4 JE 0.456 0.308 0.058 -0.233 0.942 0.331 13.9 0.024743 
5 SC 0.130 0.071 0.047 0.201 0.865 0.070 21.5 0.005238 
 
Principal Coordinate Section for Rows - Axis 2 
Name Mass Inertial Distance Factor COR CTR Angle Eigenvalue 
1 SM 0.057 0.031 0.047 -0.194 0.800 0.214 26.5 0.002139 
2 JM 0.093 0.139 0.127 -0.243 0.465 0.551 47.0 0.005521 
3 SE 0.264 0.450 0.145 -0.011 0.001 0.003 88.4 0.000030 
4 JE 0.456 0.308 0.058 0.058 0.058 0.152 76.1 0.001520 
5 SC 0.130 0.071 0.047 0.079 0.133 0.081 68.6 0.000807 

 

This report provides all information about each axis (dimension or factor). Much of the 
information is duplicated in the Plot Detail Section (see above) and will not be redefined here. 
We will present only those items that were not defined in the last report. 

Distance 
This is the weighted distance of the row profile from the average row profile. It is provided for 
completeness. 

Angle 
This is the angle between the axis and the profile. 

Eigenvalue 
If we partition the eigenvalue associated with this axis into separate parts for each profile, this is 
the absolution amount of the eigenvalue that is due to this profile. This value is provided more for 
completeness than interpretation. 
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Plots Section 
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This plot is the main objective of a CA. The plot on the left shows the column profiles and the 
plot on the right shows the row profiles. It is important to remember that each point represents a 
profile projected onto the plane defined by the two axes.  
Lets begin by discussing the left plot, the one presenting the four column profiles. These profiles 
represented the proportions belonging to each staff category. We can see from this plot that the 
first factor seems to separate those who smoke from those who do not. The second factor seems 
to separate the three types of smokers: light, medium, and heavy. 

The right plot presents the five row profiles. The first axis appears to separate junior people from 
senior people. The second axis seems to separate managers (near the bottom) from non-managers 
(near the top). 

Note that the distances between points on these plots are Chi-square distances between the 
profiles those of two points. Hence, the closer two points appear, the closer their profile patterns 
are to each other. 
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Finally, we come to the most popular CA plot in which we overlay the two plots shown above 
onto one plot. Extreme caution must be used when interpreting this plot. The critical point to 
remember is that this is a combination of two independent plots. Distances between the row 
profile points and column profile points are not defined. Hence, the distance between the 
categories SE and None (although this appear near each other on the plot) is not defined. Here’s 
why: The point SE is a projection of the SE profile from the four dimensional space to the two- 
dimensional subspace defined by our axes. The point None is a projection of the None profile 
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from the five dimensional space to the two-dimensional subspace defined by the two axes. The 
original spaces are different. They represent different things. In the case of the row profiles, each 
of the four axes represents a smoking pattern (none, light, medium, and heavy). In the case of 
column profiles, each of the five axes represents a staff category. The point is that the meaning of 
the original spaces was completely different. Their axes have completely different definitions. 
This is the classical apples and oranges situation. As we view a subspace from each overlaid onto 
one plot, what is the connection between these two subspaces? 
To understand why analysts like to plot the row and column profiles on one graph, we will create 
a new version of our row profile plot with the addition of supplementary rows. The following 
table presents the data being analyzed plus addition “supplementary” rows.  

 
CORRES1 dataset with supplementary rows 

None Light Medium Heavy Staff RowType 
4 2 3 2 (SM) Senior Managers 1 
4 3 7 4 (JM) Junior Managers 1 
25 10 12 4 (SE) Senior Employees 1 
18 24 33 13 (JE) Junior Employees 1 
10 6 7 2 (SE) Secretaries 1 
100 0 0 0 N 2 
0 100 0 0 L 2 
0 0 100 0 M 2 
0 0 0 100 H 2 

 
Note the addition of the RowType variable with its 1’s and 2’s. This is used to indicate which 
rows contain data and which rows are supplementary. 
Now, if you consider the four rows that have been added to the bottom, you will see that each has 
a value of 100 in one column and 0 in all the rest. Hence each row represents a particular type of 
smoker. N represents the None group, L represents the Light group, M represents the Medium 
group, and H represents the Heavy group. If we could peer into four dimensional space, we would 
see that each of the points fall on the corresponding axis. That is, the four supplementary rows 
represent the four axes. 
Incidentally, we could have entered “1” in each position instead of “100” since the program 
rescales these values. 

Now let’s take a look at the row profile CA plot with these supplementary rows. 
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Row Profile Plot with Supplemental Axis Points 
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Studying this plot, we note that supplemental points (the N, L, M, and H) seem to surround the 
regular points. This is because each of these points defines an edge point, or vertex, to the four-
dimensional space we are considering.  
Now, a point near one of these supplemental points is one whose profile is similar to that point. 
For example, it appears that both JE and JM are near M (Medium). If you look at the Row Profile 
Section, you will see that they had 37.5% and 38.9% in the medium category, respectively. These 
are much larger than the other groups. 

We see that points closer to one of our supplementary points tend to have higher than normal 
values for that category. However, since none of the row profiles had more than 50% in any one 
category, none of the profiles is right next to the vertex point (as defined by the supplementary 
row). 

We are now ready to see why we can legitimately overlay the row profile and column profile 
plots. We will redisplay the last two plots side by side. 

Row Profile Plot with Supplemental Axis Points and Overlaid CA Plot 
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The plot on the left is the regular row profile CA plot with supplementary points. Compare the 
relative positions of the L, M, H, and N with those of Light, Medium, Heavy, and None in the 
overlay plot on the right. You can see that these points maintain their relative position. They just 
shrink inward toward the center.  
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That this is the case can be shown mathematically. The message is clear. When the two plots are 
overlaid, the points from one space (row or column) represent the vertices of the other space, 
except they have been shrunken in towards the center. Hence, as we analyze the right plot from 
the row profile context, we must mentally move the column profile points out from the middle. 
That is, we must realize that each point represents the direction of the end point of that axis, but 
the point is not at the actual position of the end point. 
Personally, I believe that interpretation is easier if you always construct two plots: one for the row 
profiles and another for the column profiles. The axes of each space are shown as supplementary 
rows (or columns). This avoids the temptation to see points from two spaces as being “near” each 
other. 

This concludes our discussion of correspondence analysis. We again encourage you to obtain the 
workbook by Greenacre (1993) if you want to study this technique in more depth. 
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Chapter 435 

Multidimensional 
Scaling 
Introduction 
Multidimensional scaling (MDS) is a technique that creates a map displaying the relative 
positions of a number of objects, given only a table of the distances between them. The map may 
consist of one, two, three, or even more dimensions. The program calculates either the metric or the 
non-metric solution. The table of distances is known as the proximity matrix. It arises either directly 
from experiments or indirectly as a correlation matrix.  

To understand how the proximity matrix may be observed directly, consider the following marketing 
research example. Suppose ten subjects rate the similarities of six automobiles. That is, each subject 
rates the similarity of each of the fifteen possible pairs. The ratings are on a scale from 1 to 10, with 
“1” meaning that the cars are identical in every way and “10” meaning that the cars are as different as 
possible. The ratings are averaged across subjects, forming a similarity matrix. MDS provides the 
marketing researcher with a map (scatter plot) of the six cars that summarizes the results visually. 
This map shows the perceived differences between the cars. 

The program offers two general methods for solving the MDS problem. The first is called Metric, or 
Classical, Multidimensional Scaling (CMDS) because it tries to reproduce the original metric or 
distances. The second method, called Non-Metric Multidimensional Scaling (NMMDS), assumes that 
only the ranks of the distances are known. Hence, this method produces a map which tries to 
reproduce these ranks. The distances themselves are not reproduced. 

Discussion 
The following example will help explain what MDS does. Consider the following set of data. 

    
Original Data Matrix 

Label X Y 
A 1 5 
B 1 4 
C 1 1 
D 3 3 
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A scatter plot of these data appears as follows: 
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Notice that the scatter plot lets us visually assess the distance between each pair of points. We can 
see that A is near B, but far from C and D.  We can also see that C and D each seem to be by 
themselves. The actual distance between two points i and j may be computed numerically using the 
Euclidean distance formula:  

( )d x xij ik jk
k

p

= −
=
∑

2

1

 

where p is the number of dimensions (which is 2 in our example), dij is the distance, and xik is the 
data value of the ith row and kth column. This formula is an simple extension of the famous 
Pythagorean Theorem. Note that this formula allows for an unlimited number of dimensions. That is, 
although we are only plotting the points in two-dimensional space, the formula computes the d
in p-dimensional space, where p can be greater than t

istance 
wo. 

For example, the distance from A to D is calculated as follows: 

2.82843 = (1- 3 ) +(5 - 3 )2 2 1   

These distances are arranged in matrix format as follows:  
    
Computed Distance Matrix 

 A B C D 
A 0.00000 1.00000 4.00000 2.82843 
B 1.00000 0.00000 3.00000 2.23607 
C 4.00000 3.00000 0.00000 2.82843 
D 2.82843 2.23607 2.82843 0.00000 
    
Note that since the distance from A to D is the same as the distance from D to A, the distance matrix 
is symmetric. We only need to consider half of the matrix. In the program, we only require the upper 
half. The final distance matrix will be: 
    
Upper-Triangular Distance Matrix 

 A B C D 
A 0.00000 1.00000 4.00000 2.82843 
B  0.00000 3.00000 2.23607 
C   0.00000 2.82843 
D    0.00000 
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The task attempted by MDS is that given only a distance matrix, find the original data so that a map 
(scatter plot) of the data may be drawn. 

Some of the difficulties facing MDS may be seen even in this simple example. First, as the number 
of objects increases, the possible number of dimensions increases as well. If you have three objects, 
these will at most define a two-dimensional plane. With four objects, you will usually find a three-
dimensional space. And so on, with each new object adding one more possible dimension. 

Also, notice that if the data are shifted in such a way that their positions relative to each other are 
maintained (rotated, translated, or transposed), the computed distance matrix will be the same. 
Hence, the distance matrix could have come from numerous sets of data. 

A third challenge comes when the distances themselves are not actually known. You might only be 
given knowledge of their relative size. 

MDS techniques have proved useful because circumstances often occur where the actual coordinates 
of the objects are not known, but some type of distance matrix is available. This is especially the case 
in psychology where people cannot draw an overall picture of a group of objects, but they can 
express how different individual pairs of objects are. From these pair-wise differences MDS often 
can provide a useful picture. 

Goodness-of-Fit 
As in any data analysis problem, an expression is needed to express how well a particular set of data 
are represented by the model that the analysis imposes. In the case of MDS, you are trying to model 
the distances. Hence, the most obvious choice for a goodness-of-fit statistic is one based on the 
differences between the actual distances and their predicted values. Such a measure is called stress 
and is calculated as values: 

( )
stress

d d

d
ij ij

ij

=
−∑

∑
$ 2

2  

Here is predicted distance based on the MDS model. Note that this predicted value depends on the 
number of dimensions kept and the algorithm that you used (metric versus non-metric). 

$dij

As you can see from this equation, MDS fits with stress values near zero are the best. 

In his original paper on MDS, Kruskal (1964) gave following advise about stress values based on his 
experience: 
    
Stress Goodness-of-fit 
0.200 poor 
0.100 fair 
0.050 good 
0.025 excellent 
0.000 perfect 
    
More recent articles caution against using a table like this since acceptable values of stress depends 
on the quality of the distance matrix and the number of objects in that matrix. 
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Number of Dimensions 
One of the main tasks the analyst has is determining the number of dimensions in the MDS model. 
Each dimension represents a different underlying factor. One of the goals of the MDS analysis is to 
keep the number of dimensions as small as possible. Usually, the analyst will anticipate select two or, 
at most, three dimensions. If more are required, you may decide that MDS is not appropriate for your 
data. 

The usual technique is to solve the MDS problem for a number of dimension values and adopt the 
smallest number of dimensions that achieves a reasonably small value of stress. The program 
displays a simple bar chart of the stress values to aid in the selection of the number of dimensions. 

Some researchers also consider the relative size of the eigenvalues that are generated during the 
solution process. These eigenvalues are then used to determine the number of dimensions just as they 
are used in factor analysis to determine the number of factors.  

Proximity Measures 
Proximity measures quantify how “close” two objects are. The program accepts three forms of 
proximity values: dissimilarities, similarities, and correlations.  

Dissimilarities represent the distance between two objects. They may be measured directly, as in the 
distance between two towns, or approximated, as in “Bill is five points different from Joe on a ten-
point scale.” MDS algorithms use the dissimilarities directly. A dissimilarity matrix is symmetrical. 

Similarities represent how close (in some sense) two objects are. The program lets you enter a 
similarity measure for each pair of objects. Similarities must obey the rule: similarityij <= similarityii 
and similarityjj for all i and j. Similarity matrices are symmetrical. 

Similarities are converted to dissimilarities using the formula: 

d s s sij ii jj ij= + − 2  

where  represents a dissimilarity and  represents a similarity. dij sij

When your data consists of standard measures rather than dissimilarities or similarities, you can 
create a dissimilarity matrix by first creating the correlation matrix and then using the above formula 
to convert the correlations to dissimilarities. The program automatically calculates pair-wise 
correlations for the variable you specify. 

Comparison of Metric and Non-Metric MDS 
Although the computations are simpler for the metric method than for the non-metric method, both 
seem to yield similar results when applied to well-known examples. When you have true distance 
data, the classical method yields a solution that can be used directly. When you only have 
dissimilarities, the non-metric approach is somewhat more appealing. 
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Metric MDS 
Classical MDS procedures stem back to Torgerson (1952), who was one of the pioneers of the 
technique. His algorithm is explained next. 

Suppose a distance matrix D approximates the inter-point distances of a configuration of points X in 
a space of low dimensionality p (usually p = 1, 2, or 3). That is, the elements of D, denoted , may 
be calculated from X using the following formula: 

dij

( )d x xij ik jk
k

p

= −
=
∑

2

1

 

The steps in the classical MDS algorithm are as follows: 

1. From D calculate A = { }− 1
2

2dij . 

2. From A calculate B = { , where is the average of all  across j. }a a a aij i j− − +. . .. ai. aij

3. Find the p largest eigenvalues λ λ λ1 2> > >L p of B and corresponding eigenvectors 

 which are normalized so that ( ) ( ) ( )( )L L L L p= 1 2, ,L ( ) ( )′ =L Li i iλ . (We are assuming that p 

is selected so that the eigenvalues are all relatively large and positive.) 

4. The coordinates of the objects are the rows of L. 

The classical solution is optimal in the least-squares sense. That is, when a direct solution is possible 
(i.e., when D is truly a Euclidean distance matrix), the solution, L, minimizes the sum of squared 
differences between the actual ’s (elements of D) and the ’s based on L. Another way of saving 
this is that it minimizes the value of stress, where stress was defined above. 

dij
$dij

Non-Metric MDS 
Implicit in the above is the assumption that there is a true configuration in p dimensions, i.e., that D 
is a distance matrix. Often, however, it is more realistic to assume a less stringent relationship 
between the observed distances (or dissimilarities)  and the true distances, denoted dij δ ij . That is, 
suppose we assume that 

( )d f eij ij ij= +δ  

where  represents errors of measurements, distortions, etc. Also, we assume that f(x) is an 
unknown, monotonically-increasing function.  

eij

For this model, the only information we can use is the rank order of the . Usually, this approach is 
used when D is simply a dissimilarity matrix rather than a true distance matrix. This assumption is 
often more plausible in practical situations. 

dij

An algorithm to produce a solution based only on the rank order information was provided by 
Kruskal (1964). It is involved, so we will not reproduce it here. We note that Kruskal’s algorithm 
minimizes stress.  

Kruskal’s algorithm uses steepest descent to find a local minimum from a given starting 
configuration. The choice of the starting configuration is important to finding the global rather than a 
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local minimum. Many authors recommend using the solution of the metric MDS as the starting 
configuration. This is the default starting configuration in this program. You may also select several 
random starting configurations and compare the resulting stress values.  

Data Structure 
The data are may be entered in three formats. The first format is the standard row-column format 
from which the correlations have be calculated. The MDS conducted on the correlations in an 
attempt to determine which of the variables are similar. The second format is the upper-triangular 
portion of a distance matrix. The third format is the upper-triangular portion of a similarity 
matrix. 

An example of an upper-triangular distance matrix is contained in the MDS2 database. We 
suggest that you open this database now so that you can follow along with the example. 

 

MDS2 dataset 

Sport Hockey Football Basketball Tennis Golf Croquet 
Hockey 0 2 3 4 5 5 
Football  0 3 5 6 5 
Basketball   0 5 4 6 
Tennis    0 4 3 
Golf     0 2 
Croquet      0 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Input Variables 

Input Variables 
Specify the variables containing the upper-triangular distance, or similarity, matrix or the 
variables from which the correlation matrix is to be calculated. Note that filter may not be used 
with the upper-triangular matrices. 

Input Data Type 
You can specify which of the three possible types of input data you have: dissimilarities, 
similarities, or correlation. 
Dissimilarities and similarities signal the program that an upper-triangular matrix is to be read in. 
When the correlation option is selected, the program generates a correlation matrix from the 
standard variable by observation data format that is used throughout the rest of the program. 
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Options 

Solution Type 
This option specifies whether you want the Metric or the Non-Metric algorithm used. 

Options – Dimensions Reported 

Minimum and Maximum Dimensions 
These options specify a range of dimensions to be reported on. The MDS algorithm will be run on 
each of these dimensions and the stress value will be calculated.  

Dimensions Used 
This option specifies the number of dimensions on which all results are based. This is the number 
of dimensions that will be plotted. 

Options – Non-Metric MDS Options 

Initial Configuration 
This option specifies which starting configuration you want when using NMMDS. You can 
specify either Random or Metric. We suggest the Metric option since it has been more widely 
recommend. You should only use the Random option when the Metric option fails to produce 
good results. 

Max Iterations/Dimension 
This option specifies the maximum number of iterations run during the solution of a NMMDS 
problem for a particular number of dimensions. 

Max Iterations/Min Phase 
This option specifies the maximum number of iterations run during minimization phase. 

Min Stress Value 
This option specifies the value of stress that must achieved in order to stop iterations during a run 
of NMMDS. 

Min Stress Change 
This option specifies the change in stress from one iteration to the next that must achieved in 
order to stop iterations during a run of NMMDS. 

Min Gradient Sum 
This option specifies the value of the gradient sum that must achieved in order to stop iterations 
during a run of NMMDS. 
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Reports Tab 
The following options control which reports are displayed.  

Select Reports 

Eigenvalue Report - Dissimilarity Report 
Specify whether to display the indicated report. 

Select Plots 

MDS Map – Dissimilarity 
Specify whether to display the indicated plot. 

Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Plot Options 

Size of Plots 
This option controls the size of the plots that are displayed. You can select small, medium, or 
large. Medium and large are displayed one per line, while small are displayed two per line. 

MDS Map Plot Tab and Dissimilarities Plot Tab 
These options control the attributes of the two plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 
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Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Designate the plot symbol used for plotting rows. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Storage Tab 
Optionally specify variables to contain the coordinate values generated by the program. 

Data Storage Variables 

Coordinate Values 
A list of variables into which the coordinate values (the values that are plotted) are stored. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 



435-10  Multidimensional Scaling  

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Metric Multidimensional Scaling 
This section presents an example of how to run an analysis of the data contained in the MDS2 
database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Multidimensional Scaling window. 

1 Open the MDS2 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file MDS2.s0. 
• Click Open. 

2 Open the Multidimensional Scaling window. 
• On the menus, select Analysis, then Multivariate Analysis, then Multidimensional 

Scaling. The Multidimensional Scaling procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Multidimensional Scaling window, select the Variables tab.  
• Double-click in the Input Variables box. This will bring up the variable selection 

window.  
• Select Hockey to Croquet from the list of variables and then click Ok. “Hockey-

Croquet” will appear in the Input Variables box.  

4 Specify the plot. 
• Select the MDS Map Plot tab. 
• Enter -4 in the Horizontal - Minimum box. 
• Enter 4 in the Horizontal - Maximum box. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Eigenvalue Section 
 

Eigenvalue Section 
Dim  Individual Cumulative 
No. Eigenvalue Percent Percent Bar Chart 
1 30.73 54.28 54.28 |IIIIIIIIIIIIIIIIIIIIIIIIIII 
2 (Used) 12.85 22.69 76.97 |IIIIIIIIIII 
3 6.38 11.27 88.24 |IIIIII 
4 1.68 2.97 91.21 |I 
5 0.00 0.00 91.21 | 
6 -4.98 8.79 100.00 |IIII 
Total 56.62 
 

This report is produced by CMDS.  
In this particular example, the first two dimensions account for 77% of the variation while the 
first three dimensions account for 88%. We would probably use two or perhaps three dimensions. 

Eigenvalues 
These are the eigenvalues found during CMDS. The eigenvalues are helpful in determining the 
number of dimensions that are necessary to represent the dissimilarity matrix accurately. As in 
factor analysis, the task is to select enough dimensions to approximate the data, but few enough to 
keep the interpretation simple. The eigenvalue report allows you to quickly determine the impact 
of each new dimension. 

In MDS, some of the eigenvalues can be negative. Do not keep these dimensions. The basic rule 
is to find the number of relatively large, positive eigenvalues. This report provides a bar graph 
and percentages to help you determine the number of dimensions. 

Individual and Cumulative Percents  
The first column gives the percentage of the total of the absolute value of the eigenvalues 
accounted for by this dimension. The second column is the cumulative total of the percentage. 

Bar Chart 
This is a rough bar plot of the eigenvalues. It enables you to quickly note the relative size of each 
eigenvalue. Many authors recommend it as a method of determining how many dimensions to 
retain.  

Fit Summary Section 
 

 Fit Summary Section (Metric Solution)  
   

No. Squared  Pseudo 
Dim's Differences Stress R-Squared 
1 37.105982 0.364035 0.00 
2 6.947666 0.157522 70.73 
3 2.413305 0.092838 89.83 
4 2.468686 0.093897 89.60 
 
Number of Dissimilarities 15 
Mean of Dissimilarities 4.133333 
Sum of Squared Dissimilarities 280.000000 
Mean Corrected Sum of Squared Dissimilarities 23.733333 

 

This report provides information useful in determining the number of dimensions that are 
necessary and assessing the goodness-of-fit of the CMDS model. 
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No. Dim’s 
The number of dimensions used in calculating this row of statistics. 

Squared Differences 
The sum of the squared differences between the actual dissimilarity values and those predicted by 
the solution. 

Stress 
This is the value of the stress goodness-of-fit statistic. It is equal to the square root of the Squared 
Differences divided by the square root of the Sum of the Squared Dissimilarities. It is one of the 
most popular measures of accuracy of the fit. A value below 0.05 is acceptable. A value below 
0.01 is considered good. 

Pseudo R-Squared 
This is an index, similar to the R-squared value in regression analysis, which indicates what 
percentage of the sum of squared dissimilarities (corrected for the mean) is accounted for by this 
number of dimensions. A value above 80% is hoped for. 

Number of Dissimilarities 
This is the number of dissimilarity values. 

Mean of Dissimilarities 
This is the mean of the dissimilarity values 

Sum of Squared Dissimilarities 
This is the sum of the squared dissimilarities. It is the denominator of the stress statistic. 

Mean Corrected Sum of Squared Dissimilarities 
This is the sum of the squared dissimilarities about their mean. It is the denominator of the 
Pseudo R-Squared statistic. 

Solution Section 
 

Solution Section 
 
Variables Dim1 Dim2 Dim3 Dim4    
Hockey 1.9301 -0.6756 0.3818 1.0441    
Football 2.6179 -1.1281 -1.1303 -0.4680    
Basketball 2.1119 2.0914 0.4168 -0.4032    
Tennis -1.4786 -1.3608 1.8070 -0.3940    
Golf -2.3836 2.0059 -0.2743 0.2351    
Croquet -2.7976 -0.9328 -1.2011 -0.0140    

 

This report presents the solution of the MDS procedure. These are the data that are plotted in the 
MDS map. They have been scaled so that the sum of squares for each column is equal to the 
eigenvalue for that dimension. 
Note that these data were constructed so that the distance between two rows is close to the 
original dissimilarity value. 

Although some interpretation of these numbers may be made directly, usually the data are 
displayed on scatter plots. 
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Dissimilarity Section 
 

Dissimilarity Section 
  Actual Predicted Actual Percent 
Row Column Dissimilarity Dissimilarity Difference Difference 
1 Hockey 2 Football 2.000000 0.823324 1.176676 58.83 
5 Golf 6 Croquet 2.000000 2.967759 -0.967759 -48.39 
2 Football 3 Basketball 3.000000 3.259039 -0.259039 -8.63 
4 Tennis 6 Croquet 3.000000 1.386718 1.613282 53.78 
1 Hockey 3 Basketball 3.000000 2.772988 0.227012 7.57 
1 Hockey 4 Tennis 4.000000 3.476854 0.523146 13.08 
3 Basketball 5 Golf 4.000000 4.496329 -0.496329 -12.41 
4 Tennis 5 Golf 4.000000 3.486229 0.513771 12.84 
2 Football 6 Croquet 5.000000 5.419049 -0.419049 -8.38 
3 Basketball 4 Tennis 5.000000 4.980893 0.019107 0.38 
2 Football 4 Tennis 5.000000 4.103106 0.896894 17.94 
1 Hockey 6 Croquet 5.000000 4.734691 0.265309 5.31 
1 Hockey 5 Golf 5.000000 5.079231 -0.079231 -1.58 
3 Basketball 6 Croquet 6.000000 5.766223 0.233777 3.90 
2 Football 5 Golf 6.000000 5.902321 0.097679 1.63 
 
Dimensions 2 
Sum of Squared Dissimilarities 280.000000 
Sum of Squared Differences 6.947666 
Stress 0.157522 
Pseudo R-Squared 70.726127 

 

You might think of this as a residual analysis report since it highlights the differences between the 
actual and the predicted dissimilarities. It will let you focus on those dissimilarities that are not fit 
well by the model.  

Row 
The variable associated with this row of the dissimilarity matrix. 

Column 
The variable associated with this column of the dissimilarity matrix. 

Actual Dissimilarity 
The value from the input (or calculated) dissimilarity matrix for this row and column. 

Predicted Dissimilarity 
The predicted dissimilarity value based on the number of dimensions that you have selected. 

Actual Difference 
The Actual Dissimilarity minus the Predicted Dissimilarity. This value shows the size of the error 
in predicting this element of the dissimilarity matrix. 

Percent Difference 
The percentage the Actual Difference is of the Actual Dissimilarity. This value highlights the 
outliers--those dissimilarities that are not fit well by the MDS model. 

Dimensions 
The number of dimensions used in calculating the statistics. 

Sum of Squared Dissimilarities 
This is the sum of the squared dissimilarities. It is the denominator of the stress statistic. 
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Sum of Squared Differences 
This is the sum of the squared differences. It is the numerator of the stress statistic. 

Stress 
This is the value of the stress goodness-of-fit statistic. It is equal to the Squared Differences 
divided by the Sum of the Squared Dissimilarities. It is one of the most popular measures of 
accuracy of the fit. A value below 0.05 is acceptable. A value below 0.01 is considered good. 

Pseudo R-Squared  
This is an index, similar to the R-squared value in regression analysis, which indicates what 
percentage of the sum of squared dissimilarities (corrected for the mean) is accounted for by this 
number of dimensions. A value above 80% is hoped for. 

MDS Map 
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This plot is the chief objective of an MDS analysis. It is often referred to as the MDS map. It 
allows you to interpret the dissimilarity matrix on a two-dimensional scatter plot. 
There is no real orientation to this map. You could legitimately rotate the values around the plot’s 
center. The main characteristics of interest are the relative positions of the points and any clusters 
that are apparent.  

In this example, we see that the respondents considered hockey and football to be similar. They 
also considered croquet and tennis to be quite similar. Football appears quite different from golf. 
And so on. Notice how easy it is to draw conclusions about the similarities among the sports. 

A second task of the MDS analyst is to find the underlying factors that respondents used when 
they created these dissimilarities. For example, a vertical line down the center of the plot would 
divide team sports on the right from individual sports on the left. We would hypothesize this as 
one interpretation of the Dim1 (horizontal) axis. 
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Example 2 – Non-Metric Multidimensional Scaling 
This section presents an example of how to run an analysis of the data contained in the MDS2 
database using NMMDS.  

You may follow along here by making the appropriate entries or load the completed template 
Example2 from the Template tab of the Multidimensional Scaling window. 

1 Open the MDS2 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file MDS2.s0. 
• Click Open. 

2 Open the Multidimensional Scaling window. 
• On the menus, select Analysis, then Multivariate Analysis, then Multidimensional 

Scaling. The Multidimensional Scaling procedure will be displayed.  

3 Specify the variables. 
• On the Multidimensional Scaling window, select the Variables tab.  
• Double-click in the Input Variables box. This will bring up the variable selection 

window.  
• Select Hockey to Croquet from the list of variables and then click Ok. “Hockey-

Croquet” will appear in the Input Variables box.  
• Enter Non-Metric in the Solution Type box. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Eigenvalue Section 
 

Eigenvalue Section 
Dim  Individual Cumulative 
No. Eigenvalue Percent Percent Bar Chart 
1 30.73 54.28 54.28 |IIIIIIIIIIIIIIIIIIIIIIIIIII 
2 (Used) 12.85 22.69 76.97 |IIIIIIIIIII 
3 6.38 11.27 88.24 |IIIIII 
4 1.68 2.97 91.21 |I 
5 0.00 0.00 91.21 | 
6 -4.98 8.79 100.00 |IIII 
Total 56.62 

 

This report is produced by CMDS which was used as the starting configuration. Its definitions 
were given above and will not be repeated here. 
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Non-Metric Iteration Summary Section 
 

Non-Metric Iteration Summary Section 
No. Percent Rank  Why Bar Chart 
Dim's Maintained Stress Terminated of Stress 
1 57.14 0.212628 Stress Change |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII<<I 
2 64.29 0.052276 Stress Change |IIIIIIIIIIIIIIIIIIIIIIIIII 
3 78.57 0.000344 Max Iterations | 
4 64.29 0.000003 Min Stress | 

 

This report provides information about the number of dimensions that are necessary and the 
goodness-of-fit of the solution. 

No. Dim’s 
The number of dimensions used in calculating this row of statistics. 

Percent Rank Maintained 
The non-metric solution tries to maintain the rank ordering of the dissimilarities. This is the 
percentage of the dissimilarities whose rank order was maintained. The higher this value is, the 
better the quality of the solution. 

Stress 
Defined earlier, this is one of the most popular measures of accuracy of the fit. A value below 
0.05 is acceptable. A value below 0.01 is considered good. 

Why Terminated 
This field explains which stopping rule caused the iterative procedure to stop. This is important to 
watch since the solution is not optimal if the maximum iterations were reached before the 
algorithm converged. When this happens, you should change some of the iteration control 
parameters, especially the number of iterations. 

Bar Chart of Stress 
This column graphically portrays the stress values. You want to choose the fewest number of 
dimensions that give you a small stress value. 

Solution Section 
 

Solution Section 
 
Variables Dim1 Dim2 
Hockey 0.3306 -0.1495 
Football 0.4234 -0.0227 
Basketball 0.2674 0.2837 
Tennis -0.2542 -0.3538 
Golf -0.3473 0.2227 
Croquet -0.4199 0.0196 

 

This report presents the final configuration of the NMMDS procedure. These are the data that are 
plotted in the MDS map. 
Note that these data were not constructed so that the distance between two rows is close to the 
original dissimilarity value. Instead, the non-metric solution attempts to maintain the same rank 
ordering of the calculated distances as occur in the original dissimilarity matrix. Although some 
interpretation of these numbers may be made directly, usually the data are displayed on scatter 
plots. 
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Dissimilarity Section 
 

Dissimilarity Section 
  Actual Predicted 
Row Column Dissimilarity Dissimilarity 
1 Hockey 2 Football 2.000000 0.157123 
5 Golf 6 Croquet 2.000000 0.215646 
2 Football 3 Basketball 3.000000 0.343893 
4 Tennis 6 Croquet 3.000000 0.408445 
1 Hockey 3 Basketball 3.000000 0.437798 
1 Hockey 4 Tennis 4.000000 0.619391 
3 Basketball 5 Golf 4.000000 0.617695 
4 Tennis 5 Golf 4.000000 0.583869 
2 Football 6 Croquet 5.000000 0.844336 
3 Basketball 4 Tennis 5.000000 0.823650 
2 Football 4 Tennis 5.000000 0.754122 
1 Hockey 6 Croquet 5.000000 0.769237 
1 Hockey 5 Golf 5.000000 0.773283 
3 Basketball 6 Croquet 6.000000 0.736258 
2 Football 5 Golf 6.000000 0.808819 

 

You might think of this as a residual analysis report since it highlights the differences between the 
actual and the predicted dissimilarities. It will let you focus on those dissimilarities that are not fit 
well by the model. 
This report presents the details of how well the rank ordering of the dissimilarity values is 
preserved in the final configuration. Note that the predicted values are quite different from the 
actual values since all the algorithm was attempting to do was maintain the ordering.  

Row 
The variable associated with this row of the dissimilarity matrix. 

Column 
The variable associated with this column of the dissimilarity matrix. 

Actual Dissimilarity 
The value from the input (or calculated) dissimilarity matrix for this row and column. 

Predicted Dissimilarity 
The predicted dissimilarity value based on the number of dimensions that you have selected. Note 
that this is not predicting the actual dissimilarity value, but some unknown function of the dissimilarity 
value. It is not usually necessary to determine the function. We are mainly interested in how well the 
ordering of the actual values is maintained by these predicted values. 
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MDS Map 
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This plot is the chief objective of an MDS analysis. It is often referred to as the MDS map. It 
allows you to interpret the dissimilarity matrix on a two-dimensional scatter plot. 
There is no real orientation to this map. You could legitimately rotate the values around the plot’s 
center. The main characteristics of interest are the relative positions of the points and any clusters 
that are apparent.  

In this example, we see that the respondents considered hockey and football to be similar. They 
also considered croquet and golf to be similar. Football appears quite different from croquet. And 
so on. Notice how easy it is to draw conclusions about the similarities among the sports. 

A second task of the MDS analyst is to find the underlying factors that respondents used when 
they created these dissimilarities. For example, a vertical line down the center of the plot would 
divide team sports on the right from individual sports on the left. We might hypothesize this as 
one interpretation of the Dim1 (horizontal) axis. 

It is interesting to compare this map with the map produced by the metric solution. The main 
difference appears to be that golf and croquet are now much closer together (as they were rated in 
the original data). Again, football and basketball appear to be closer together in this plot as we 
might expect from the original data. In this case, the NMMDS map appears to be more accurate 
than the CMDS map. This is as we might expect since, the NMMDS procedure refined the 
CMDS map.  



 Multidimensional Scaling  435-19 

Dissimilarity Fit Plot 
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This graph plots the dissimilarity values on the vertical axis against the predicted dissimilarity 
values on the horizontal axis. The caliber of the solution depends upon this plot showing an 
upward-sloping trend. If the solution was perfect, then as you move across the plot from left to 
right, you would never go down from one point to the next. 
We notice in this case that the solution confuses the large distances. This may be due to the large 
number of ties in this area (look at the Dissimilarity Section to see all the 5’s and 6’s). 
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Chapter 440 

Discriminant 
Analysis 
Introduction 
Discriminant Analysis finds a set of prediction equations based on independent variables that are 
used to classify individuals into groups. There are two possible objectives in a discriminant 
analysis: finding a predictive equation for classifying new individuals or interpreting the 
predictive equation to better understand the relationships that may exist among the variables.  

In many ways, discriminant analysis parallels multiple regression analysis. The main difference 
between these two techniques is that regression analysis deals with a continuous dependent 
variable, while discriminant analysis must have a discrete dependent variable. The methodology 
used to complete a discriminant analysis is similar to regression analysis. You plot each 
independent variable versus the group variable. You often go through a variable selection phase 
to determine which independent variables are beneficial. You conduct a residual analysis to 
determine the accuracy of the discriminant equations. 

The mathematics of discriminant analysis are related very closely to the one-way MANOVA. In 
fact, the roles of the variables are simply reversed. The classification (factor) variable in the 
MANOVA becomes the dependent variable in discriminant analysis. The dependent variables in 
the MANOVA become the independent variables in the discriminant analysis. 

Technical Details 
Suppose you have data for K groups, with Nk observations per group. Let N represent the total 
number of observations. Each observation consists of the measurements of p variables. The ith 
observation is represented by Xki. Let M represent the vector of means of these variables across 
all groups and Mk the vector of means of observations in the kth group.  

M

Mk

W

Define three sums of squares and cross products matrices, ST, SW, and SA, as follows 

( )( )S X M XT ki ki
i

N

k

K k

= − −
==
∑∑

11

'  

( )( )S X M XW ki k ki
i

N

k

K k

= − −
==
∑∑

11

'  

S S SA T= −  
Next, define two degrees of freedom values, df1 and df2: 
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df K1 1= −  
df N K2 = −  

A discriminant function is a weighted average of the values of the independent variables. The 
weights are selected so that the resulting weighted average separates the observations into the 
groups. High values of the average come from one group, low values of the average come from 
another group. The problem reduces to one of finding the weights which, when applied to the 
data, best discriminate among groups according to some criterion. The solution reduces to finding 
the eigenvectors, V, of S S . The canonical coefficients are the elements of these eigenvectors. W A

−1

A goodness-of-fit parameter, Wilks’ lambda, is defined as follows:   

Λ= | S | = 1W
m

∏| S | 1 +T j=1 jλ
 

where λ j  is the jth eigenvalue corresponding to the eigenvector described above and m is the 
minimum of K-1 and p.  

The canonical correlation between the jth discriminant function and the independent variables is 
related to these eigenvalues as follows: 

jc
j1+ λ

jr = λ  

Various other matrices are often considered during a discriminant analysis. 

The overall covariance matrix, T, is given by: 

T = 1
S T

⎛
⎜

⎞
⎟

N - 1⎝ ⎠
 

The within-group covariance matrix, W, is given by: 

W = 1
SW

⎛
⎜

⎞
⎟

N - K⎝ ⎠
 

The among-group (or between-group) covariance matrix, A, is given by: 

A = 1
S⎛

⎜
⎞
⎟

k
-1

kLDF =W M

K - 1 A⎝ ⎠
 

The linear discriminant functions are defined as:  

 
The standardized canonical coefficients are given by:  

ij ijv w  

where vij are the elements of V and wij are the elements of W. 

The correlations between the independent variables and the canonical variates are given by: 

jk
jj i=1

ik ji
w

p

Corr = 1
v w∑  
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Discriminant Analysis Checklist 
Tabachnick (1989) provides the following checklist for conducting a discriminant analysis. We 
suggest that you consider these issues and guidelines carefully. 

Unequal Group Size and Missing Data 
You should begin by screening your data. Pay particular attention to patterns of missing values. 
When using discriminant analysis, you should have more observations per group than you have 
independent variables. If you do not, there is a good chance that your results cannot be 
generalized, and future classifications based on your analysis will be inaccurate. 

Unequal group size does not influence the direct solution of the discriminant analysis problem. 
However, unequal group size can cause subtle changes during the classification phase. Normally, 
the sampling frequency of each group (the proportion of the total sample that belongs to a 
particular group) is used during the classification stage. If the relative group sample sizes are not 
representative of their sizes in the overall population, the classification procedure will be 
erroneous. (You can make appropriate adjustments to prevent these erroneous classifications by 
adjusting the prior probabilities.) 

NCSS ignores rows with missing values. If it appears that most missing values occur in one or 
two variables, you might want to leave these out of the analysis in order to obtain more data and 
hence more accuracy. 

Multivariate Normality and Outliers 
Discriminant analysis does not make the strong normality assumptions that MANOVA does 
because the emphasis is on classification. A sample size of at least twenty observations in the 
smallest group is usually adequate to ensure robustness of any inferential tests that may be made. 

Outliers can cause severe problems that even the robustness of discriminant analysis will not 
overcome. You should screen your data carefully for outliers using the various univariate and 
multivariate normality tests and plots to determine if the normality assumption is reasonable. You 
should perform these tests on one group at a time. 

Homogeneity of Covariance Matrices 
Discriminant analysis makes the assumption that the group covariance matrices are equal. This 
assumption may be tested with Box’s M test in the Equality of Covariances procedure or looking 
for equal slopes in the Probability Plots. If the covariance matrices appear to be grossly different, 
you should take some corrective action. Although the inferential part of the analysis is robust, the 
classification of new individuals is not. These will tend to be classified into the groups with larger 
covariances. Corrective action usually includes the close screening for outliers and the use of 
variance-stabilizing transformations such as the logarithm. 

Linearity 
Discriminant analysis assumes linear relations among the independent variables. You should 
study scatter plots of each pair of independent variables, using a different color for each group. 
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Look carefully for curvilinear patterns and for outliers. The occurrence of a curvilinear 
relationship will reduce the power and the discriminating ability of the discriminant equation. 

Multicollinearity and Singularity 
Multicollinearity occurs when one predictor variable is almost a weighted average of the others. 
This collinearity will only show up when the data are considered one group at a time. Forms of 
multicollinearity may show up when you have very small group sample sizes (when the number 
of observations is less than the number of variables). In this case, you must reduce the number of 
independent variables. 

Multicollinearity is easily controlled for during the variable selection phase. You should only 
include variables that show an R² with other X’s of less than 0.99. 

See the chapter on Multiple Regression for a more complete discussion of multicollinearity. 

Data Structure 
The data given in the table below are the first eight rows (out of the 150 in the database) of the 
famous “iris data” published by Fisher (1936). These data are measurements in millimeters of 
sepal length, sepal width, petal length, and petal width of fifty plants for each of three varieties of 
iris: (1) Iris setosa, (2) Iris versicolor, and (3) Iris virginica. Note that Iris versicolor is a polyplid 
hybrid of the two other species. Iris setosa is a diploid species with 38 chromosomes, Iris 
virginica is a tetraploid, and Iris versicolor  is a hexaploid with 108 chromosomes. 

Discriminant analysis finds a set of prediction equations, based on sepal and petal measurements, 
that classify additional irises into one of these three varieties. Here Iris is the dependent variable, 
while SepalLength, SepalWidth, PetalLength, and PetalWidth are the independent variables. 

 

FISHER dataset (subset) 

SepalLength SepalWidth PetalLength PetalWidth Iris 
50 33 14 2 1 
64 28 56 22 3 
65 28 46 15 2 
67 31 56 24 3 
63 28 51 15 3 
46 34 14 3 1 
69 31 51 23 3 
62 22 45 15 2 

Missing Values 
If missing values are found in any of the independent variables being used, the row is omitted. If 
they occur only in the dependent (categorical) variable, the row is not used during the calculation 
of the prediction equations, but a predicted group (and scores) is calculated. This allows you to 
classify new observations. 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Group Variable 

Y: Group Variable 
This is the dependent, Y, grouping, or classification variable. It must be discrete in nature. That 
means it can only have a few unique values. Each unique value represents a separate group of 
individuals. The values may be text or numeric. 

Independent Variables 

X’s: Independent Variable 
These are the set of independent variables. Although the probability statements used in 
discriminant analysis assume that these variables are continuous (and normal), the technique is 
robust enough that it can tolerate a few discrete variables (assuming that they are numeric). 

Estimation Options 

Estimation Method 
This option designates the classification method used. 

• Linear Discriminant Function 
Signifies that you want to classify using the linear-discriminant functions (assumes 
multivariate normality with equal covariance matrices). This is the most popular technique. 

• Regression Coefficients 
Indicates that you want to classify using multiple regression coefficients (no special 
assumptions). This method develops a multiple regression equation for each group, ignoring 
the discrete nature of the dependent variable. Each of the dependent variables is constructed 
by using a 1 if a row is in the group and a 0 if it is not. 

Estimation Options – Linear 
Discriminant Function Options 

Prior Probabilities 
Allows you to specify the prior probabilities for linear-discriminant classification. If this option is 
left blank, the prior probabilities are assumed equal. This option is not used by the regression 
classification method. The numbers should be separated by blanks or commas. They will be 
adjusted so that they sum to one. For example, you could use “4 4 2”  or “2 2 1” when you have 
three groups whose population proportions are 0.4, 0.4, and 0.2, respectively. 
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Variable Selection Options 

Variable Selection 
This option specifies whether a stepwise variable-selection phase is conducted.  

• None 
All independent variables are used in the analysis. No variable selection is conducted. 

• Stepwise 
A stepwise variable-selection is performed using the “in” and “out” probabilities specified 
next. 

Variable Selection Options – 
Stepwise Selection Options 

Maximum Iterations 
(Automatic Selection only). This options sets the maximum number of steps that are used in the 
stepwise procedure. It is possible to set the above probabilities so that one or two variables are 
alternately entered and removed, over and over. We call this an infinite loop. To avoid such an 
occurrence, you can set the maximum number of steps permitted. 

Probability Enter 
(Stepwise only.) This option sets the probability level for tests used to determine if a variable may 
be brought into the discriminant equation. At each step, the variable (not in the equation) with the 
smallest probability level below this cutoff value is entered. 

Probability Removed 
(Stepwise only.) This option sets the probability level for tests used to determine if a variable 
should be removed from the discriminant equation. At each step, the variable (in the equation) 
with the largest probability level above this cutoff value is removed. 

Reports Tab 
The following options control the format of the reports. 

Select Reports 

Group Means – Canonical Scores 
These options let you specify which reports you want displayed. This is especially useful if you 
have a lot of data, since some of the reports produce a separate report row for each data row. You 
may want to omit these reports. The row-wise reports are Predicted Classification, Linear 
Discriminant Function Scores, Regression Scores, and Canonical Scores. 

Select Plots 

LD-Score Plots - Canonical-Score Plots 
These options let you specify which plots you want displayed.  
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Report Options 

Report Format 
This option lets you specify whether to output a “brief” or “verbose” report during the variable-
selection phase. Normally, you would only select “verbose” if you have fewer than ten 
independent variables. 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision, regardless of which 
option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option applies to the Group Variable. It lets you select whether to display data values, value 
labels, or both. Use this option if you want the output to automatically attach labels to the values 
(like 1=Yes, 2=No, etc.). See the section on specifying Value Labels elsewhere in this manual.  

Plot Options 

Legend  
Specify whether you want to view a legend of the group values. 

Legend Text 
Specifies the legend title. Note that if you use the {G} symbol, this value will automatically be 
replaced with the Group Variable’s name or label. 

LD-Score Plot, Reg-Score Plot, and Canonical-Score Plot Tabs 
These panels specify the pair-wise plots of the scores generated for each set of functions. A 
separate function is generated for each group. A separate plot is constructed for each pair of 
functions.  

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 
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Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. {G} is 
replaced by the dependent variable name. Press the button on the right of the field to specify the 
font of the text. 

Symbols Tab 
This section specifies the plot symbols. 

Plotting Symbols 

Group 1-15 
Specifies the plotting symbols used for each of the first fifteen groups. 
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Storage Tab 
These options let you specify where to store various row-wise statistics. 
Warning: Any data already in a variable is replaced by the new data. Be careful not to specify 
variables that contain data. 

Data Storage Variables 

Predicted Group 
You can automatically store the predicted group for each row into the variable specified here. The 
predicted group is generated for each row of data in which all independent variable values are 
nonmissing. 

Linear Discriminant Scores 
You can automatically store the linear-discriminant scores for each row into the variables 
specified here. These scores are generated for each row of data in which all independent variable 
values are nonmissing. Note that a variable must be specified for each group. 

Linear Discriminant Probabilities 
You can automatically store the linear-discriminant probabilities for each row into the variables 
specified here. These probabilities are generated for each row of data in which all independent 
variable values are nonmissing. Note that a variable must be specified for each group. 

Regression Coefficient Scores 
You can automatically store the regression coefficient scores for each row into the variables 
specified here. These scores are generated for each row of data in which all independent variable 
values are nonmissing. Note that a variable must be specified for each group. 

Canonical Scores 
You can automatically store the canonical scores for each row into the variables specified here. 
These scores are generated for each row of data in which all independent variable values are 
nonmissing. Note that the number of variables specified should be one less that the number of 
groups. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 
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Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Discriminant Analysis 
This section presents an example of how to run a discriminant analysis. The data used are shown 
in the table above and found in the FISHER database.   

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Discriminant Analysis window. 

1 Open the Fisher dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Fisher.s0. 
• Click Open. 

2 Open the Discriminant Analysis window. 
• On the menus, select Analysis, then Multivariate Analysis, then Discriminant 

Analysis. The Discriminant Analysis procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Discriminant Analysis window, select the Variables tab.  
• Double-click in the Y: Group Variable box. This will bring up the variable selection 

window.  
• Select Iris from the list of variables and then click Ok. “Iris” will appear in the Y: Group 

Variable box.  
• Double-click in the X’s: Independent Variables text box. This will bring up the variable 

selection window.  
• Select SepalLength through PetalWidth from the list of variables and then click Ok. 

“SepalLength-PetalWidth” will appear in the X’s: Independent Variables box.  

4 Specify the reports. 
• Select the Reports tab. 
• Enter Labels in the Variable Names box. 
• Enter Value Labels in the Value Labels box. 
• Check all reports and plots. Normally you would only view a few of these reports, but we 

are selecting them all so that we can document them. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Group Means Report 
 

 Group Means  
  Iris 
 Variable Setosa Versicolor Virginica Overall 
 Sepal Length 50.06 59.36 65.88 58.43333 
 Sepal Width 34.28 27.7 29.74 30.57333 
 Petal Length 14.62 42.6 55.52 37.58 
 Petal Width 2.46 13.26 20.26 11.99333 
 Count 50 50 50 150 
 

This report shows the means of each of the independent variables across each of the groups. The 
last row shows the count (number of observations) in the group. Note that the column headings 
come from the use of value labels for the group variable. 

Group Standard Deviations Report 
 

 Group Standard Deviations 
 
  Iris 
 Variable Setosa Versicolor Virginica Overall 
 Sepal Length 3.524897 5.161712 6.358796 8.280662  
 Sepal Width 3.790644 3.137983 3.224966 4.358663  
 Petal Length 1.73664 4.69911 5.518947 17.65298  
 Petal Width 1.053856 1.977527 2.7465 7.622377  
 Count 50 50 50 150  
 

This report shows the standard deviations of each of the independent variables across each of the 
groups. The last row shows the count or number of observations in the group.  

Discriminant analysis makes the assumption that the covariance matrices are identical for each of 
the groups. This report lets you glance at the standard deviations to check if they are about equal. 

Total Correlation\Covariance Report 
 

 Total Correlation\Covariance 
   
  Variable 
 Variable Sepal Length Sepal Width Petal Length Petal Width  
 Sepal Length 68.56935 -4.243401 127.4315 51.62707  
 Sepal Width -0.117570 18.99794 -32.96564 -12.16394  
 Petal Length 0.871754 -0.428440 311.6278 129.5609  
 Petal Width 0.817941 -0.366126 0.962865 58.10063  
 

This report shows the correlation and covariance matrices that are formed when the grouping 
variable is ignored. Note that the correlations are on the lower left and the covariances are on the 
upper right. The variances are on the diagonal. 



440-12  Discriminant Analysis  

Between-Group Correlation\Covariance Report 
 

 Between-Group Correlation\Covariance 
   
  Variable 
 Variable Sepal Length Sepal Width Petal Length Petal Width  
 Sepal Length 3160.607 -997.6334 8262.42 3563.967  
 Sepal Width -0.745075 567.2466 -2861.98 -1146.633  
 Petal Length 0.994135 -0.812838 21855.14 9338.7  
 Petal Width 0.999768 -0.759258 0.996232 4020.667  
 

This report displays the correlations and covariances formed using the group means as the 
individual observations. The correlations are shown in the lower-left half of the matrix. The within-
group covariances are shown on the diagonal and in the upper-right half of the matrix. Note that if 
there are only two groups, all correlations will be equal to one since they are formed from only two 
rows (the two group means). 

Within-Group Correlation\Covariance Report 
 

 Within-Group Correlation\Covariance 
   
  Variable 
 Variable Sepal Length Sepal Width Petal Length Petal Width  
 Sepal Length 26.50082 9.272109 16.75143 3.840136  
 Sepal Width 0.530236 11.53878 5.524354 3.27102  
 Petal Length 0.756164 0.377916 18.51878 4.266531  
 Petal Width 0.364506 0.470535 0.484459 4.188163  
 

This report shows the correlations and covariances that would be obtained from data in which the 
group means had been subtracted. The correlations are shown in the lower-left half of the matrix. 
The within-group covariances are shown on the diagonal and in the upper-right half of the matrix. 

Variable Influence Report 
 

 Variable Influence Section 
   
  Removed Removed Removed Alone Alone Alone R-Square 
 Variable Lambda F-Value F-Prob Lambda F-Value F-Prob Other X's 
 Sepal Length 0.938463 4.72 0.010329 0.381294 119.26 0.000000 0.858612 
 Sepal Width 0.766480 21.94 0.000000 0.599217 49.16 0.000000 0.524007 
 Petal Length 0.669206 35.59 0.000000 0.058628 1180.16 0.000000 0.968012 
 Petal Width 0.743001 24.90 0.000000 0.071117 960.01 0.000000 0.937850 
 

This report analyzes the influence of each of the independent variables on the discriminant analysis. 

Variable 
The name of the independent variable. 

Removed Lambda 
This is the value of a Wilks’ lambda computed to test the impact of removing this variable. 

Removed F-Value 
This is the F-ratio that is used to test the significance of the above Wilks’ lambda. 
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Removed F-Prob 
This is the probability (significance level) of the above F-ratio. It is the probability to the right of the 
F-ratio. The test is significant (the variable is important) if this value is less than the value of alpha 
that you are using, such as 0.05. 

Alone Lambda 
This is the value of a Wilks’ lambda that would be obtained if this were the only independent 
variable used. 

Alone F-Value 
This is an F-ratio that is used to test the significance of the above Wilks’ lambda. 

Alone F-Prob 
This is the probability (significance level) of the above F-ratio. It is the probability to the right of the 
F-ratio. The test is significant (the variable is important) if this value is less than the value of alpha 
that you are using, such as 0.05. 

R-Squared OtherX’s 
This is the R-Squared value that would be obtained if this variable were regressed on all other 
independent variables. When this R-Squared value is larger than 0.99, severe multicollinearity 
problems exist. You should remove variables (one at a time) with large R-Squared and rerun your 
analysis. 

Linear Discriminant Functions Report 
 

 Linear Discriminant Functions Section 
   
  Iris 
 Variable Setosa Versicolor Virginica  
 Constant -85.20985 -71.754 -103.2697  
 Sepal Length 2.354417 1.569821 1.244585  
 Sepal Width 2.358787 0.707251 0.3685279  
 Petal Length -1.643064 0.5211451 1.276654  
 Petal Width -1.739841 0.6434229 2.107911  
 

This report presents the linear discriminant function coefficients. These are often called the 
discriminant coefficients. They are also known as the “plug-in” estimators, since the true 
variance-covariance matrices are required but their estimates are plugged-in. This technique 
assumes that the independent variables in each group follow a multivariate-normal distribution 
with equal variance-covariance matrices across groups. Studies have shown that this technique is 
fairly robust to departures from either assumption. 
The report represents three classification functions, one for each of the three groups. Each function 
is represented vertically. When a weighted average of the independent variables is formed using 
these coefficients as the weights (and adding the constant), the discriminant scores result. To 
determine which group an individual belongs to, select the group with the highest score. 
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Regression Coefficients Report 
 
 Regression Coefficients Section 
   
  Iris 
 Variable Setosa Versicolor Virginica  
 Constant 0.1182229 1.577059 -0.6952819  
 Sepal Length 6.602977E-03 -2.015369E-03 -4.587608E-03  
 Sepal Width 2.428479E-02 -4.456162E-02 2.027684E-02  
 Petal Length -2.246571E-02 2.206692E-02 3.987911E-04  
 Petal Width -5.747273E-03 -4.943066E-02 5.517793E-02  
 

This report presents the regression coefficients. These coefficients are determined as follows: 
1. Create three indicator variables, one for each of the three varieties of iris. Each indicator 

variable is set to one when the row belongs to that group and zero otherwise. 

2. Fit a multiple regression of the independent variables on each of the three indicator 
variables. 

3. The regression coefficients obtained are those shown in this table. 

Hence, predicted values generated by these coefficients will be between zero and one. To 
determine which group an individual belongs to, select the group with the highest score. 

Classification Count Table Report 
 

 Classification Count Table for Iris  
   
  Predicted 
 Actual Setosa Versicolor Virginica Total 
 Setosa 50 0 0 50  
 Versicolor 0 48 2 50  
 Virginica 0 1 49 50  
 Total 50 49 51 150  
 
 Reduction in classification error due to X’s = 97.0% 
 

This report presents a matrix that indicates how accurately the current discriminant functions 
classify the observations. If perfect classification has been achieved, there will be zeros on the off-
diagonals. The rows of the table represent the actual groups, while the columns represent the 
predicted group.  

Percent Reduction 
The percent reduction is the classification accuracy achieved by the current discriminant 
functions over what is expected if the observations were randomly classified. The formula for the 
Reduction in classification error is [Sum of diagonal minus N/k]/[ N - N/k]. 
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Misclassified Rows Report 
 

 Misclassified Rows Section  
    Percent Chance of Each Group 
   
 Row Actual Predicted Pcnt1 Pcnt2 Pcnt3 
 5 Virginica Versicolo 0.0 72.9 27.1 
 9 Versicolo Virginica 0.0 25.3 74.7 
 12 Versicolo Virginica 0.0 14.3 85.7 
 

This report shows the actual group and the predicted group of each observation that was 
misclassified. It also shows 100 times the estimated probability, P(i), that the row is in each group. 
For easier viewing, we have multiplied the probabilities by 100 to make this a percent probability 
(between 0 and 100) rather than a regular probability (between 0 and 1). A value near 100 gives a 
strong indication that the observation belongs in that group. 

P(i) 
If the linear discriminant classification technique was used, these are the estimated probabilities that 
this row belongs to the ith group. See James (1985), page 69, for details of the algorithm used to 
estimate these probabilities. This algorithm is briefly outlined here. 

Let fi  (i = 1, 2, ..., K) be the linear discriminant function value. Let max(fk) be the maximum score 
of all groups. Let P(Gi) be the overall probability of classifying an individual into group i. The 
values of P(i) are generated using the following equation: 

P(i) = [ f - ( f )]P( G )
[ f - ( f )]P( G )

i k i

j=1
K

j k j

exp max
exp max∑

  

If the regression classification technique was used, this is the predicted value of the regression 
equation. The implicit Y value in the regression equation is one or zero, depending on whether this 
observation is in the ith group or not. Hence, a predicted value near zero indicates that the 
observation is not in the ith group, while a value near one indicates a strong possibility that this 
observation is in the ith group. There is nothing to prevent these predicted values from being greater 
than one or less than zero. They are not estimated probabilities. 

You can store these values for further analysis by listing variables in the appropriate Storage Tab 
options. 

Predicted Classification Report 
 

 Predicted Classification Section  
    Percent Chance of Each Group 
 Row Actual Predicted Pcnt1 Pcnt2 Pcnt3 
 1 Setosa Setosa 100.0 0.0 0.0 
 2 Virginica Virginica 0.0 0.0 100.0 
 3 Versicolo Versicolo 0.0 99.6 0.4 
 4 Virginica Virginica 0.0 0.0 100.0 
 5 Virginica Versicolo 0.0 72.9 27.1 
 6 Setosa Setosa 100.0 0.0 0.0 
 7 Virginica Virginica 0.0 0.0 100.0 
 8 Versicolo Versicolo 0.0 96.0 4.0 
 
 (report continues for all 150 rows) 
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This report shows the actual group, the predicted group, and the percentage probabilities of each 
row. The definitions are given above in the Misclassified Rows Report. 

Canonical Variate Analysis Report 
 

 Canonical Variate Analysis Section  
   
  Inv(W)B Ind'l Total Canon Canon  Numer Denom Prob Wilks’ 
 Fn Eigenvalue Pcnt Pcnt Corr Corr2 F-Value DF DF Level Lambda 
 1 32.191929 99.1 99.1 0.984821 0.969872 199.1 8.0 288.0 0.0000 0.023439 
 2 0.285391 0.9 100.0 0.471197 0.222027 13.8 3.0 145.0 0.0000 0.777973 
 The F-value tests whether this function and those below it are significant.  
 

This report provides a canonical correlation analysis of the discriminant problem. Recall that 
canonical correlation analysis is used when you want to study the correlation between two sets of 
variables. In this case, the two sets of variables are defined in the following way. The independent 
variables comprise the first set. The group variable defines another set, which is generated by 
creating an indicator variable for each group except the last one. 

Inv(W)B Eigenvalue 
The eigenvalues of the matrix W-1B. These values indicate how much of the total variation 
explained is accounted for by the various discriminant functions. Hence, the first discriminant 
function corresponds to the first eigenvalue, and so on. Note that the number of eigenvalues is the 
minimum of the number of variables and K-1, where K is the number of groups. 

Ind’l Prcnt 
The percent that this eigenvalue is of the total. 

Total Prcnt 
The cumulative percent of this and all previous eigenvalues. 

Canon Corr 
The canonical correlation coefficient. 

Canon Corr2 
The square of the canonical correlation. This is similar to R-Squared in multiple regression. 

F-Value 
The value of the approximate F-ratio for testing the significance of the Wilks’ lambda 
corresponding to this row and those below it. Hence, in this example, the first F-value tests the 
significance of both the first and second canonical correlations, while the second F-value tests the 
significance of the second correlation only. 

Num DF 
The numerator degrees of freedom for this F-test. 

Denom DF 
The denominator degrees of freedom for this F-test. 
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Prob Level 
The significance level of the F-test. This is the area under the F-distribution to the right of the F-
value. Usually, a value less than 0.05 is considered significant. 

Wilks’ Lambda 
The value of Wilks’ lambda for this row. This Wilks’ lambda is used to test the significance of the 
discriminant function corresponding to this row and those below it. Recall that Wilks’ lambda is a 
multivariate generalization of R². The above F-value is an approximate test of this Wilks’ lambda. 

Canonical Coefficients Report 
 

 Canonical Coefficients Section  
 
  Canonical Variate 
 Variable Variate1 Variate2 
 Constant -2.105106 6.661473 
 Sepal Length -0.082938 -0.002410 
 Sepal Width -0.153447 -0.216452 
 Petal Length 0.220121 0.093192 
 Petal Width 0.281046 -0.283919 
 

This report gives the coefficients used to create the canonical scores. The canonical scores are 
weighted averages of the observations, and these coefficients are the weights (with the constant 
term added). 

Canonical Variates at Group Means Report 
 

 Canonical Variates at Group Means Section 
 
  Canonical Variate 
 Iris Variate1 Variate2 
 Setosa -7.6076 -0.215133  
 Versicolor 1.82505 0.7278996  
 Virginica 5.78255 -0.5127666  
 

This report gives the results of applying the canonical coefficients to the means of each of the 
groups. 

Std. Canonical Coefficients Report 
 

 Std. Canonical Coefficients Section 
 
  Canonical Variate 
 Variable Variate1 Variate2 
 Sepal Length -0.426955 -0.012408  
 Sepal Width -0.521242 -0.735261  
 Petal Length 0.947257 0.401038  
 Petal Width 0.575161 -0.581040  
 

This report gives the standardized canonical coefficients. 
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Variable-Variate Correlations Report 
 

 Variable-Variate Correlations Section 
 
  Canonical Variate 
 Variable Variate1 Variate2 
 Sepal Length 0.222596 -0.310812  
 Sepal Width -0.119012 -0.863681  
 Petal Length 0.706065 -0.167701  
 Petal Width 0.633178 -0.737242  
 

This report gives the loadings (correlations) of the variables on the canonical variates. That is, each 
entry is the correlation between the canonical variate and the independent variable. This report can 
help you interpret a particular canonical variate.  

Linear Discriminant Scores Report 
 

 Linear Discriminant Scores Section 
 
 Row Iris Score1 Score2 Score3 
 1 Setosa 83.86837 38.65921 -6.790054 
 2 Virginica 1.230765 91.857 104.5692 
 3 Versicolo 32.19471 83.71141 78.29187 
 4 Virginica 11.89069 99.97506 113.6244 
 5 Virginica 19.27056 83.17749 82.18597 
 6 Setosa 75.06965 33.7306 -9.291955 
 7 Virginica 26.55469 99.86555 107.6224 
 
 (report continues for all 150 rows) 
 

This report gives the individual values of the linear discriminant scores. Note that this information 
may be stored on the database using the Data Storage options. 

Regression Scores Report 
 

 Regression Scores Section 
   
 Row Iris Score1 Score2 Score3 
 1 Setosa 0.923755 0.215832 -0.139588 
 2 Virginica -0.163732 0.348623 0.815109 
 3 Versicolo 0.107759 0.471953 0.420288 
 4 Virginica -0.082564 0.110031 0.972533 
 5 Virginica -0.017776 0.586318 0.431458 
 6 Setosa 0.915881 0.129902 -0.045782 
 7 Virginica 0.048718 0.045096 0.906186 
 
 (report continues for all 150 rows) 
 

This report gives the individual values of the predicted scores based on the regression coefficients. 
Even though these values are predicting indicator variables, it is possible for a value to be less than 
zero or greater than one. Note that this information may be stored on the database using the Data 
Storage options. 
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Canonical Scores Report 
 

 Canonical Scores Section 
 
 Row Iris Score1 Score2 
 1 Setosa -7.671967 0.134894 
 2 Virginica 6.800150 -0.580895 
 3 Versicolo 2.548678 0.472205 
 4 Virginica 6.653087 -1.805320 
 5 Virginica 3.815160 0.942986 
 6 Setosa -7.212618 -0.355836 
 7 Virginica 5.105559 -1.992182 
 (report continues for all 150 rows) 
 
 

This report gives the scores of the canonical variates for each row. Note that this information may 
be stored on the database using the Data Storage options. 

Scores Plot(s) 
You may select plots of the linear discriminant scores, regression scores, or canonical scores to 
aid in your interpretation. These plots are usually used to give a visual impression of how well the 
discriminant functions are classifying the data. (Several charts are displayed. Only one of these is 
displayed here.) 
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This chart plots the values of the first and second canonical scores. By looking at this plot you can 
see what the classification rule would be. Also, it is obvious from this plot that only the first 
canonical function is necessary in discriminating among the varieties of iris since the groups can 
easily be separated along the vertical axis. 
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Example 2 – Automatic Variable Selection (Brief Report) 
The tutorial we have just concluded was based on all four of the independent variables. A 
common task in discriminant analysis is variable selection. Often you have a large pool of 
possible independent variables from which you want to select a smaller set (up to about eight 
variables) which will do almost as well at discriminating as the complete set. NCSS provides an 
automatic procedure for doing this, which will be described next. 

The automatic variable selection is run by changing the Variable Selection option to Stepwise. 
The program will conduct a stepwise variable selection. It will first find the best discriminator 
and then the second best. After it has found two, it checks whether the discrimination would be 
almost as good if one were removed. This stepping process of adding the best remaining variable 
and then checking if one of the active variables could be removed continues until no new variable 
can be found whose F-value has a probability smaller than the Probability Enter value. 

An alternative procedure is to use the Multivariate Variable Selection procedure described 
elsewhere in this manual. If you have more than two groups, you must create a set of dummy 
(indicator) variables, one for each group. You ignore the last dummy variable, so if there are K 
groups, you analyze K-1 dummy variables. The Multivariate Variable Selection program will 
always find a subset of your independent variables that is at least as good (and usually better) as 
the stepwise procedure described in this section. Once a subset of independent variables has been 
found, they can then be analyzed using the Discriminant Analysis program described here. 

Once the variable selection has been made, the program provides the reports that were described 
in the previous tutorial. Note that two report formats may be called for during the variable 
selection phase: brief and verbose. We will now provide an example of each type of report. 

You may follow along here by making the appropriate entries or load the completed template 
Example2 from the Template tab of the Discriminant Analysis window.   

1 Open the Fisher dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Fisher.s0. 
• Click Open. 

2 Open the Discriminant Analysis window. 
• On the menus, select Analysis, then Multivariate Analysis, then Discriminant 

Analysis. The Discriminant Analysis procedure will be displayed.  

3 Specify the variables. 
• On the Discriminant Analysis window, select the Variables tab.  
• Double-click in the Y: Group Variable box. This will bring up the variable selection 

window.  
• Select Iris from the list of variables and then click Ok. “Iris” will appear in the Y: Group 

Variable box.  
• Double-click in the X’s: Independent Variables text box. This will bring up the variable 

selection window.  
• Select Sepal Length through PetalWidth from the list of variables and then click Ok. 

“SepalLength-PetalWidth” will appear in the X’s: Independent Variables.  
• Enter Stepwise in the Variable Selection box. 
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4 Specify the reports. 
• Select the Reports tab. 
• Enter Labels in the Variable Names box. 
• Enter Value Labels in the Value Labels box. 
• Enter Brief in the Output box. 
• Uncheck all reports and plots. We will only view the Variable Selection Report. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Variable-Selection Summary Report 
 

 Variable-Selection Summary Section 
   

  Action Independent Pct Chg In  Prob Wilks' 
 Iteration This Step Variable Lambda F-Value Level Lambda 
 0 None         1.000000 
 1 Entered Petal Length 94.14 1180.16 0.000000 0.058628 
 2 Entered Sepal Width 37.09 43.04 0.000000 0.036884 
 3 Entered Petal Width 32.23 34.57 0.000000 0.024976 
 4 Entered Sepal Length 6.15 4.72 0.010329 0.023439 
 

This report shows what action was taken at each step. 

Iteration 
This gives the number of this step. 

Action This Step 
This tells what action (if any) was taken during this step. “Entered” means that the variable was 
entered into the set of active variables. “Removed” means that the variable was removed from the 
set of active variables. 

Pct Chg In Lambda 
This is the percentage decrease in lambda that resulted from this step. Note that Wilks’ lambda is 
analogous to 1 - R-Squared in multiple regression. Hence, we want to decrease Wilks’ lambda to 
improve our model. For example, going from iteration 2 to iteration 3 results in lambda 
decreasing from 0 .036884 to 0.024976. This is a 32.29% decrease in lambda. 

F-Value 
This is the F-ratio for testing the significance of this variable. If the variable was “Entered,” this 
tests the hypothesis that the variable should be added. If the variable was “Removed,” this tests 
whether the variable should be removed. 

Prob Level 
The significance level of the above F-Value. 

Wilks’ Lambda 
The multivariate extension of R-Squared. Wilks’ lambda reduces to 1-(R-Squared) in the two-group 
case. It is interpreted just backwards from R-Squared. It varies from one to zero. Values near one 
imply low predictability, while values close to zero imply high predictability. Note that this Wilks’ 
lambda value corresponds to the currently active variables. 
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Example 3 – Automatic Variable Selection (Verbose 
Report) 
We will now rerun this example with the “verbose” option. We assume that the FISHER database 
is available and you are in the Discriminant Analysis procedure.   

You may follow along here by making the appropriate entries or load the completed template 
Example3 from the Template tab of the Discriminant Analysis window. 

1 Open the Fisher dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Fisher.s0. 
• Click Open. 

2 Open the Discriminant Analysis window. 
• On the menus, select Analysis, then Multivariate Analysis, then Discriminant 

Analysis. The Discriminant Analysis procedure will be displayed.  

3 Specify the variables. 
• On the Discriminant Analysis window, select the Variables tab.  
• Double-click in the Y: Group Variable box. This will bring up the variable selection 

window.  
• Select Iris from the list of variables and then click Ok. “Iris” will appear in the Y: Group 

Variable box.  
• Double-click in the X’s: Independent Variables text box. This will bring up the variable 

selection window.  
• Select Sepal Length through PetalWidth from the list of variables and then click Ok. 

“SepalLength-PetalWidth” will appear in the X’s: Independent Variables.  
• Enter Stepwise in the Variable Selection box. 

4 Specify the reports. 
• Select the Reports tab. 
• Enter Labels in the Variable Names box. 
• Enter Value Labels in the Value Labels box. 
• Enter Verbose in the Output box. 
• Uncheck all reports and plots. We will only view the Variable Selection Report. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Variable-Selection Detail Report 
 

 Variable-Selection Detail Section 
   

 Step 0 
  Independent Pct Chg In  Prob R-Squared 
 Status Variable Lambda F-Value Level Other X’s 
 Out Sepal Length 61.8706 119.26 0.000000 0.000000 
 Out Sepal Width 40.0783 49.16 0.000000 0.000000 
 Out Petal Length 94.1372 1180.16 0.000000 0.000000 
 Out Petal Width 92.8883 960.01 0.000000 0.000000 
 Overall Wilks' Lambda 1.000000 
 Action this step: None 
   
 Step 1 
  Independent Pct Chg In  Prob R-Squared 
 Status Variable Lambda F-Value Level Other X’s 
 In Petal Length 94.1372 1180.16 0.000000 0.000000 
 Out Sepal Length 31.9811 34.32 0.000000 0.759955 
 Out Sepal Width 37.0882 43.04 0.000000 0.183561 
 Out Petal Width 25.3317 24.77 0.000000 0.927110 
 Overall Wilks' Lambda 0.058628 
 Action this step: Petal Length Entered 
 
 Step 2 
  Independent Pct Chg In  Prob R-Squared 
 Status Variable Lambda F-Value Level Other X’s 
 In Sepal Width 37.0882 43.04 0.000000 0.183561 
 In Petal Length 93.8446 1112.95 0.000000 0.183561 
 Out Sepal Length 14.4729 12.27 0.000012 0.840178 
 Out Petal Width 32.2865 34.57 0.000000 0.929747 
 Overall Wilks' Lambda 0.036884 
 Action this step: Sepal Width Entered 
   
 Step 3 
  Independent Pct Chg In  Prob R-Squared 
 Status Variable Lambda F-Value Level Other X’s 
 In Sepal Width 42.9479 54.58 0.000000 0.213103 
 In Petal Length 34.8165 38.72 0.000000 0.933764 
 In Petal Width 32.2865 34.57 0.000000 0.929747 
 Out Sepal Length 6.1537 4.72 0.010329 0.858612 
 Overall Wilks' Lambda 0.024976 
 Action this step: Petal Width Entered 
   
 Step 4 
  Independent Pct Chg In  Prob R-Squared 
 Status Variable Lambda F-Value Level Other X’s 
 In Sepal Length 6.1537 4.72 0.010329 0.858612 
 In Sepal Width 23.3520 21.94 0.000000 0.524007 
 In Petal Length 33.0794 35.59 0.000000 0.968012 
 In Petal Width 25.6999 24.90 0.000000 0.937850 
 Overall Wilks' Lambda 0.023439 
 Action this step: Sepal Length Entered 
 

This report shows the details of each step. 

Step 
This gives the number of this step (iteration). 

Status 
This tells whether the variable is “in” or “out” of the set of active variables. 
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Pct Chg In Lambda 
This is the percentage decrease in lambda that would result if the status of this variable were 
reversed. 

F-Value 
This is the F-ratio for testing the significance of changing the status of this variable. 

Prob Level 
The significance level of the above F-Value. 

R-Squared Other X’s 
This is the R-Squared that would result if this variable were regressed on the other independent 
variables that are active (status = “In”).  This provides a check for multicollinearity in the active 
independent variables. 

Overall Wilks’ Lambda 
This is the value of Wilks’ lambda for all active independent variables. A value near zero indicates 
an accurate model; a value near one indicates a poor model. 
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Chapter 445 

Hierarchical 
Clustering 
(Dendrograms) 
Introduction 
The agglomerative hierarchical clustering algorithms available in this program module build a 
cluster hierarchy that is commonly displayed as a tree diagram called a dendrogram. They begin 
with each object in a separate cluster. At each step, the two clusters that are most similar are 
joined into a single new cluster. Once fused, objects are never separated. The eight methods that 
are available represent eight methods of defining the similarity between clusters. 

Suppose we wish to cluster the bivariate data shown in the following scatter plot. In this case, the 
clustering may be done visually. The data have three clusters and two singletons, 6 and 13. 
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Following is a dendrogram of the results of running these data through the Group Average 
clustering algorithm.  
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The horizontal axis of the dendrogram represents the distance or dissimilarity between clusters. 
The vertical axis represents the objects and clusters. The dendrogram is fairly simple to interpret. 
Remember that our main interest is in similarity and clustering. Each joining (fusion) of two 
clusters is represented on the graph by the splitting of a horizontal line into two horizontal lines. 
The horizontal position of the split, shown by the short vertical bar, gives the distance 
(dissimilarity) between the two clusters.  

Looking at this dendrogram, you can see the three clusters as three branches that occur at about 
the same horizontal distance. The two outliers, 6 and 13, are fused in rather arbitrarily at much 
higher distances. This is the interpretation. 

In this example we can compare our interpretation with an actual plot of the data. Unfortunately, 
this usually will not be possible because our data will consist of more than two variables. 

Dissimilarities 
The first task is to form the distances (dissimilarities) between individual objects. This is 
described in the Medoid Clustering chapter and will not be repeated here. 

Hierarchical Algorithms 
The algorithm used by all eight of the clustering methods is outlined as follows. Let the distance 
between clusters i and j be represented as  and let cluster i contain objects. Let D represent 

the set of all remaining . Suppose there are N objects to cluster. 

dij ni

dij

1. Find the smallest element  remaining in D. dij
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2. Merge clusters i and j into a single new cluster, k. 
3. Calculate a new set of distances  using the following distance formula.  dkm

d d d d d dkm i im j jm ij im jm= + + + −α α β γ  

 Here m represents any cluster other than k. These new distances replace and  in D. 
Also let . 

dim d jm

n n nk i= + j

 Note that the eight algorithms available represent eight choices for α α βi j, , , and γ . 

4. Repeat steps 1 - 3 until D contains a single group made up off all objects. This will 
require N-1 iterations. 

We will now give brief comments about each of the eight techniques. 

Single Linkage 
Also known as nearest neighbor clustering, this is one of the oldest and most famous of the 
hierarchical techniques. The distance between two groups is defined as the distance between their 
two closest members. It often yields clusters in which individuals are added sequentially to a 
single group.  

The coefficients of the distance equation are α α β γi j= = = = −0 5 0 0 5. , , . .  

Complete Linkage 
Also known as furthest neighbor or maximum method, this method defines the distance between 
two groups as the distance between their two farthest-apart members. This method usually yields 
clusters that are well separated and compact. 

The coefficients of the distance equation are α α β γi j= = = =0 5 0 0 5. , , . .  

Simple Average 
Also called the weighted pair-group method, this algorithm defines the distance between groups 
as the average distance between each of the members, weighted so that the two groups have an 
equal influence on the final result. 

The coefficients of the distance equation are α α β γi j= = = =0 5 0 0. , , .  

Centroid 
Also referred to as the unweighted pair-group centroid method, this method defines the distance 
between two groups as the distance between their centroids (center of gravity or vector average). 
The method should only be used with Euclidean distances. 

The coefficients of the distance equation are α α β α α γi
i

k
j

j

k
i j

n
n

n
n

= = = −, , , 0  = .

Backward links may occur with this method. These are recognizable when the dendrogram no 
longer exhibits its simple tree-like structure in which each fusion results in a new cluster that is at 
a higher distance level (moves from right to left). With backward links, fusions can take place 
that result in clusters at a lower distance level (move from left to right). The dendrogram is 
difficult to interpret in this case. 
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Median 
Also called the weighted pair-group centroid method, this defines the distance between two 
groups as the weighted distance between their centroids, the weight being proportional to the 
number of individuals in each group. Backward links (see discussion under Centroid) may occur 
with this method. The method should only be used with Euclidean distances. 

The coefficients of the distance equation are α α β γi j= = = − =0 5 0 25 0. , . , .  

Group Average 
Also called the unweighted pair-group method, this is perhaps the most widely used of all the 
hierarchical cluster techniques. The distance between two groups is defined as the average 
distance between each of their members. 

The coefficients of the distance equation are α α β γi
i

k
j

j

k

n
n

n
n

= = =, , ,0 0= .  

Ward’s Minimum Variance 
With this method, groups are formed so that the pooled within-group sum of squares is 
minimized. That is, at each step, the two clusters are fused which result in the least increase in the 
pooled within-group sum of squares. 

The coefficients of the distance equation are α α βi
i m

k m
j

j m

k m

m

k m

n n
n n

n n
n n

n
n n

=
+
+

= γ
+

+
=

−
+

=, , , 0  .

Flexible Strategy 
Lance and Williams (1967) suggested that a continuum could be made between single and 
complete linkage. The program lets you try various settings of these parameters which do not 
conform to the constraints suggested by Lance and Williams. 

The coefficients of the distance equation should conform to the following constraints 
α β α α β α β γi j j i= − − = − − − ≤ ≤ =1 1 1 1, , 0, .  

One interesting exercise is to vary these values, trying to find the set that maximizes the 
cophenetic correlation coefficient. 

Goodness-of-Fit 
Given the large number of techniques, it is often difficult to decide which is best. One criterion 
that has become popular is to use the result that has largest cophenetic correlation coefficient. 
This is the correlation between the original distances and those that result from the cluster 
configuration. Values above 0.75 are felt to be good. The Group Average method appears to 
produce high values of this statistic. This may be one reason that it is so popular. 

A second measure of goodness of fit called delta is described in Mather (1976). These statistics 
measure degree of distortion rather than degree of resemblance (as with the cophenetic 
correlation). The two delta coefficients are given by 
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where A is either 0.5 or 1 and  is the distance obtained from the cluster configuration. Values 
close to zero are desirable. 

*
ijd

Mather (1976) suggests that the Group Average method is the safest to use as an exploratory 
method, although he goes on to suggest that several methods should be tried and the one with the 
largest cophenetic correlation be selected for further investigation. 

Number of Clusters 
These techniques do not let you explicitly set the number of clusters. Instead, you pick a distance 
value that will yield an appropriate number of clusters. This will be discussed further when we 
discuss the Dendrogram and the Linkage report. 

Limitations and Criticisms 
We have attempted problems with up to 1,000 objects. Running times will vary with computer 
speed, with larger problems running several hours. Problems with 100 objects or less should run 
in a few seconds. 

Hierarchical clustering methods are popular because they are relatively simple to understand and 
implement. However, this simplicity yields one of their strongest criticisms. Once two objects are 
joined, they can never be separated. As Kaufman (1990) complains, “once the damage is done, it 
can never be repaired.” 

Data Structure 
The data are entered in the standard columnar format in which each column represents a single 
variable. 

The data given in the following table contain information on twelve superstars in basketball. The 
stats are on a per game basis for games played through the 1989 season. 

 

BBALL dataset (subset) 

Player Height FgPct Points Rebounds 
Jabbar K.A. 86.0 55.9 24.6 11.2 
Barry R 79.0 44.9 23.2 6.7 
Baylor E 77.0 43.1 27.4 13.5 
Bird L 81.0 50.3 25 10.2 
Chamberlain W 85.0 54.0 30.1 22.9 
Cousy B 72.5 37.5 18.4 5.2 
Erving J 78.5 50.6 24.2 8.5 
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Missing Values 
When an observation has missing values, appropriate adjustments are made so that the average 
dissimilarity across all variables with non-missing data is computed. Hence, rows with missing 
values are not omitted unless all variables have missing values. Note that the distances require 
that at least one variable have non-missing values for each pair of rows. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Variables 

Interval Variables 
Designates interval-type variables (if any) or the columns of the matrix if distance or correlation 
matrix input was selected. Interval variables are continuous measurements that may be either 
positive or negative and follow a linear scale. Examples include height, weight, age, price, 
temperature, and time.  
In general, an interval should keep the same importance throughout the scale. For example, the 
length of time between 1905 and 1925 is the same as the length of time between 1995 and 2015.  
Note that a nonlinear transformation of an interval variable is probably not an interval variable. 
For example, the logarithm of height is not an interval variable since the value of an interval 
along the scale changes depending upon where you are on the scale. 

Ordinal Variables 
Specifies the ordinal-type variables (if any). Ordinal variables are measurements that may be 
ordered according to magnitude. For example, a survey question may require you to pick one of 
five possible choices: strongly disagree (5), disagree (4), neutral (3), agree (2), or strongly agree 
(1). Interval variables are ordinal, but ordinal variables are not necessarily interval. 
The original values of ordinal variables are replaced by their ranks. These ranks are then analyzed 
as if they were interval variables. 

Symmetric-Binary Variables 
Specifies the symmetric binary-type variables (if any). Symmetric binary variables have two 
possible outcomes, each of which carry the same information and weight. Examples include 
gender, marital status, or membership in a particular group. Usually, they are coded as 1 for yes 
or 0 for no, although this is not necessary.  
These variables are analyzed using the number of matches between two individuals. 

Ratio Variables 
Specifies the ratio variables (if any). Ratio-type variables are positive measurements in which the 
distinction between two numbers is constant if their ratio is constant. For example, the distinction 
between 3 and 30 would have the same meaning as the distinction between 30 and 300. Examples 
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are chemical concentration or radiation intensity. The logarithms of ratio variables are analyzed 
as if they were interval variables. 

Nominal Variables 
Specifies the nominal-type variables (if any). Nominal variables are those in which the number 
represents the state of the variable. Examples include gender, race, hair color, country of birth, or 
zipcode. If a nominal variable has only two categories, it is often called a binary variable. 
Nominal variables are analyzed using the number of matches between two individuals. 

Asymmetric-Binary Variables 
Specifies the asymmetric binary-type variables (if any). Asymmetric binary-scaled variables are 
concerned with the presence or absences of a relatively rare event, the absence of which is 
unimportant. 
These variables are analyzed using the number of matches in which both individuals have the trait 
of interest. Those cases in which both individuals do not have the trait are not of interest and are 
ignored. 

Linkage Options 

Linkage Type 
This option specifies which of the eight possible hierarchical techniques is used. These methods 
were described earlier. The choices are 

• Single Linkage (Nearest Neighbor)  

• Complete Linkage (Furthest Neighbor) 

• Simple Average (Weighted Pair-Group) 

• Group Average (Unweighted Pair-Group) 

• Median (Weighted Pair-Group Centroid) 
Requires the Distance Method to be Euclidean. 

• Centroid (Unweighted Pair-Group Centroid) 
Requires the Distance Method to be Euclidean. 

• Ward’s Minimum Variance 
Requires the Distance Method to be Euclidean. 

• Flexible Strategy 
Requires the Distance Method to be Euclidean. 

When in doubt, we suggest you try the Group Average method. It seems to be the most popular 
and most recommended in the cluster literature. 
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Linkage Options – Flexible Strategy 
Parameters 

Alpha  
Specifies the values of α i and α j when the Flexible Strategy method is selected. You may enter a 
number or the letters “NI/NK.” The “NI/NK” will cause this constant to be calculated and used as 
it is in the Centroid and Group Average methods. 

Beta  
Specifies the values of β when the Flexible Strategy method is selected. You may enter a number 
between -1 and 1 or the letters “NIJ/NK.” The “NIJ/NK” will cause this constant to be calculated 
and used as it is in the Centroid method. 

Gamma  
Specifies the values of γ when the Flexible Strategy method is selected. You may enter any 
number. 

Clustering Options 

Distance Method 
This option specifies with Euclidean or Manhattan distance is used. Euclidean distance may be 
thought of as straight-line (or as the crow flies) distance. Manhattan distance is often referred to 
as city-block distance since it is analogous to walking along an imaginary sidewalk to get from 
point A to B. Most users will use Euclidean distance. 

Scaling Method  
Specify the type of scaling to be used from Interval, Ordinal, and Ratio variables. Possible 
choices are Standard Deviation, Average Absolute Deviation, Range, and None. These were 
discussed in the introduction to this chapter. 

Cluster Cutoff 
This is the cutoff point at which clusters are formed and stored if a Cluster Id variable is 
specified. Subgroups that join at a distance below this value are put in the same cluster. 
Subgroups that join at a distance greater than this value are placed in different clusters. 
Note that usually you will have to run an analysis first to determine an appropriate value for this 
distance. This can be done by viewing the dendrogram and the Linkage Report. 

Format Options 

Label Variable 
This is an optional variable containing identification for each row (object). These labels are used 
to enhance the interpretability of the reports. When used, they replace the row numbers on the 
right of the dendrogram. 
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Input Format 
Specify the type of data format that you have. Your choices are 

• Raw Data 
The variables are in the standard format in which each row represents an object and each 
column represents a variable. 

• Distances 
The variables containing a distance matrix are specified in the Interval Variables option. Note 
that this matrix contains the distances between each pair of objects. Each object is represented 
by a row and the corresponding column. Also, the matrix must be complete. You cannot use 
only the lower triangular portion, for example. 

• Correlations 1 
The variables containing a correlation matrix are specified in the Interval Variables option. 
Correlations are converted to distances using the formula: 

d
r

ij
ij=

−1
2

 

• Correlations 2 
The variables containing a correlation matrix are specified in the Interval Variables option. 
Correlations are converted to distances using the formula: 

d rij ij= −1  

• Correlations 3 
The variables containing a correlation matrix are specified in the Interval Variables option. 
Correlations are converted to distances using the formula: 

d rij ij= −1 2  

Note that all three types of correlation matrices must be completely specified. You cannot 
specify only the lower or upper triangular portions. Also, the rows correspond to variables. 
That is, the values along the first row represent the correlations of the first variable with each 
of the other variables. Hence, you cannot rearrange the order of the matrix. 

Reports Tab 
The following options control the formatting of the reports.  

Select Reports 

Cluster Report - Dendrogram 
Specify whether to display the indicated reports and plots. 
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Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Max Distance Items 
This option specifies the maximum size of a distance matrix that will be displayed in the Distance 
Section report. Distance matrices with more items than this will not be displayed. 

This option is here because for large datasets, the distance matrix may be very large. 

Dendrogram Tab 
These options control the attributes of the dendrogram. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Dendrogram Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Label Space 
This is a positioning parameter that specifies how much room is set aside on the right of the 
dendrogram for the row labels (or numbers).  

Rows per Page 
The maximum number of rows displayed on a single dendrogram. If you have more rows than 
this on your database, the dendrogram will be divided up into several sections. Each section will 
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appear as a single dendrogram. This option allows you to divide up a dendrogram so that row 
labeling will not overlap. 

Line Color 
This is the color of the dendrogram’s lines.  

Line Width 
This is the width of the dendrogram’s lines.  

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Storage Tab 
These options let you specify where to store the cluster number of each row on the current 
database. 

Storage Variable 

Store Cluster Id in Variable 
You can automatically store the cluster identification number of each row into the variable 
specified here. The configuration stored is for the cutoff value specified in the Cluster Cutoff 
option. Points that are unnumbered are those that cannot be placed in any cluster. 
Warning: Any data already in this variable are replaced by the cluster number. Be careful not to 
specify variables that contain important data. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Hierarchical Clustering 
This section presents an example of how to run a cluster analysis of the basketball superstars data. 
The data are found in the BBALL database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Hierarchical Clustering / Dendrograms window. 

1 Open the BBall dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file BBall.s0. 
• Click Open. 

2 Open the Hierarchical Clustering / Dendrograms window. 
• On the menus, select Analysis, then Clustering, then Hierarchical or Dendrograms. 

The Hierarchical Clustering / Dendrograms procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Hierarchical Clustering / Dendrograms window, select the Variables tab.  
• Double-click in the Interval Variables box. This will bring up the variable selection 

window.  
• Select Height, FgPct, Points, Rebounds from the list of variables and then click Ok. 

“Height, FgPct, Points, Rebounds” will appear in the Interval Variables box.  
• Double-click in the Label Variable box. This will bring up the variable selection 

window.  
• Select Player from the list of variables and then click Ok. “Player” will appear in the 

Label Variable box.  

4 Specify the report. 
• On the Hierarchical Clustering / Dendrograms window, select the Reports tab.  
• Check the Distance Report. All reports should be selected. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Cluster Detail Section 
 
Cluster Detail Section 
 
Row Cluster Player 
1 1 Jabbar K.A. 
8 1 Johnson M 
2 2 Barry R 
3 2 Baylor E 
4 2 Bird L 
7 2 Erving J 
9 2 Jordan M 
10 2 Robertson O 
12 2 West J 
5  Chamberlain W 
6  Cousy B 
11  Russell B 
 

This report displays the cluster number associated with each row. The report is sorted by row 
number within cluster number. The cluster number of rows that cannot be classified are left 
blank. The cluster configuration depends on the Cluster Cutoff value that was used. 

Linkage Section 
 
Linkage Section 
 
 Number Distance Distance Rows 
Link Clusters Value Bar Linked 
11 1 1.822851 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIII 1,8,2,4,7,10,12,3,9,5,11,6 
10 2 1.780810 |IIIIIIIIIIIIIIIIIIIIIIIIIIIII 1,8,2,4,7,10,12,3,9,5,11 
9 3 1.642553 |IIIIIIIIIIIIIIIIIIIIIIIIIII 1,8,2,4,7,10,12,3,9,5 
8 4 1.199225 |IIIIIIIIIIIIIIIIIIII 1,8,2,4,7,10,12,3,9 
7 5 0.941566 |IIIIIIIIIIIIIII 2,4,7,10,12,3,9 
6 6 0.919016 |IIIIIIIIIIIIIII 1,8 
5 7 0.826883 |IIIIIIIIIIIIII 2,4,7,10,12,3 
4 8 0.693822 |IIIIIIIIIII 2,4,7,10,12 
3 9 0.579517 |IIIIIIIIII 2,4,7,10 
2 10 0.470534 |IIIIIIII 4,7,10 
1 11 0.325592 |IIIII 7,10 
 
Cophenetic Correlation 0.830472 
Delta(0.5) 0.171620 
Delta(1.0) 0.223057 
 

This report displays the subgroup that is formed at each fusion that took place during the cluster 
analysis. The links are displayed in reverse order so that you can quickly determine an 
appropriate number of clusters to use. It displays the distance level at which the fusion took place. 
It will let you precisely determine the best value of the Cluster Cutoff value. 
For example, looking down the Distance Value column of the report, you can see that the cutoff 
value that we used (the default value is 1.0) occurs between Links 7 and 8. Hence, the cutoff 
value of 1.0 results in five clusters. Looking at the Cluster Detail Section (above), you will see 
that we obtained two real clusters and three outliers. These outliers are called as clusters even 
though they consist of only one individual. 

The cophenetic correlation and the two delta goodness of fit statistics are reported at the bottom 
of this report. As discussed earlier, these values let you compare the fit of various cluster 
configurations. 
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Link 
This is the sequence number of the fusion. 

Number Clusters 
This is the number of clusters that would result if the Cluster Cutoff value were set to the 
corresponding Distance Value or higher. Note that this number includes outliers. 

Distance Value 
This is distance value between the two joining clusters that is used by the algorithm. Normally, 
this value is monotonically increasing. When backward linking occurs, this value will no longer 
exhibit a strictly increasing behavior. 

As discussed above, these values are used to determine an appropriate number of clusters.  

Distance Bar 
This is a bar graph of the Distance Values. Choose the number of clusters by finding a jump in 
the decreasing pattern shown in this bar chart.  

Rows Linked 
These are the rows that were joined at this step. Remember that the links are presented in reverse 
order, so, in our example, rows 7 and 10 were joined first, row 4 was added, and so on. 

Cophenetic Correlation 
This is the Pearson correlation between the actual distances and the predicted distances based on 
this particular hierarchical configuration. A value of 0.75 or above needs to be achieved in order 
for the clustering to be considered useful. 

Delta (0.5, 1) 
These are the values of the goodness of fit deltas. When comparing to clustering configurations, 
the configuration with the smallest delta value fits the data better. 

Distance Section 
 
Distance Section 
 
First Second Actual Dendrogram Actual Percent 
Row Row Distance Distance Difference Difference 
1 2 1.427013 1.199225 0.227788 15.96 
1 3 1.703276 1.199225 0.504050 29.59 
1 4 0.833498 1.199225 -0.365727 -43.88 
1 5 1.126296 1.642553 -0.516257 -45.84 
1 6 2.575167 1.822851 0.752316 29.21 
1 7 1.100763 1.199225 -0.098462 -8.94 
1 8 0.919016 0.919016 0.000000 0.00 
. . . . . . 
. . . . . . 
. . . . . . 
 

This report displays the actual and predicted distance for each pair of rows. It also includes their 
difference and percent difference. Since the report grows very long for even a modest number of 
rows, it is usually omitted. 
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Dendrogram Section 
 

2.00 1.50 1.00 0.50 0.00

Dendrogram

Dissimilarity
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Cousy B

Player

 
 

This report displays the dendrogram which visually displays a particular cluster configuration. 
Rows that are close together (have small dissimilarity) will be linked near the right side of the 
plot. For example, we notice the Oscar Robertson and Julius Erving are very similar. 
Rows that link up near the left side are very different. For example, Bob Cousy appears to be 
quite different from any of the other players. 

The number of clusters the will be formed at a particular Cluster Cutoff value may be quickly 
determined from this plot by drawing a vertical line at that value and counting the number of lines 
that the vertical line intersects. For example, you can see that if we draw a vertical line at the 
value 1.0, five clusters will result. One cluster will contain two objects, one will contain seven 
objects, and three clusters each will contain only one object. 

We strongly recommend that you compare the dendrograms from several different methods and 
on several different datasets with known cluster patterns so that you can get the feel of the 
technique. 
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Chapter 446 

K-Means 
Clustering 
Introduction 
The k-means algorithm was developed by J.A. Hartigan and M.A. Wong of Yale University as a 
partitioning technique. It is most useful for forming a small number of clusters from a large 
number of observations. It requires variables that are continuous with no outliers. Discrete data 
can be included but may cause problems.  

The objective of this technique is to divide N observations with P dimensions (variables) into K 
clusters so that the within-cluster sum of squares is minimized. Since the number of possible 
arrangements is enormous, it is not practical to expect the best solution. Rather, this algorithm 
finds a “local” optimum. This is a solution in which no movement of an observation from one 
cluster to another will reduce the within-cluster sum of squares. The algorithm may be repeated 
several times with different starting configurations. The optimum of these cluster solutions is then 
selected. 

Technical Details 
The k-means clustering algorithm is popular because it can be applied to relatively large sets of 
data. The user specifies the number of clusters to be found. The algorithm then separates the data 
into spherical clusters by finding a set of cluster centers, assigning each observation to a cluster, 
determining new cluster centers, and repeating this process. 

Assume that you have N rows (observations), which are separated into K groups. The kth cluster 
contains nk observations. Each row consists of P variables. A missing value in the ith variable of 
the jth row of the kth group is designated by δijk. 

The data are standardized by subtracting the variable mean and dividing by the standard 
deviation. The standardized data elements are referred to as zij. 

Cluster Initialization 

The method of initializing the clusters influences the final cluster solution. For each trial, NCSS 
randomly assigns each point to a cluster. This configuration is optimized using the k-means 
algorithm. Trying several random starting configurations will greatly increase the probability of 
finding the global optimum solution for a particular number of clusters. 
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Goodness-of-Fit Criterion 
The goodness-of-fit criterion used to compare various cluster configurations is based on the 
within-cluster sum of squares, WSSK, where 

K
k=

K

i=

P

j=

n

ijk ij ikWSS = NP
NP - m

( - )( z - c )
k⎛

⎝⎜
⎞
⎠⎟∑∑∑1 1 1

21 δ  

where cik is the average (center) value of the ith variable in the kth cluster. 

The percent of variation is defined as 

K
KPV = WSS

WSS
100

1
 

Data Structure 
The data given in the following table contain information on twelve of the most famous 
superstars in basketball. The stats are on a per game basis for games played through the 1989 
season. 

 

BBALL dataset (subset) 

Player Height FgPct Points Rebounds 
Jabbar K.A. 86.0 55.9 24.6 11.2 
Barry R 79.0 44.9 23.2 6.7 
Baylor E 77.0 43.1 27.4 13.5 
Bird L 81.0 50.3 25 10.2 
Chamberlain W 85.0 54.0 30.1 22.9 
Cousy B 72.5 37.5 18.4 5.2 
Erving J 78.5 50.6 24.2 8.5 
Johnson M 81.0 53.0 19.5 7.4 

Missing Values 
You control the fate of observations with missing values by setting a percent-missing parameter. 
Observations with more than the specified percentage of missing values are ignored. 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Variables 

Cluster Variables 
Designates the variables to be clustered. Note that the k-means algorithm assumes that all of your 
variables are continuous with no outliers. If your data do not meet these requirements, use caution 
when applying this technique. 

Label Variable 
An optional variable containing row labels that you may want to use to document your output. 
You can use dates (like Jan-23-95) as labels. Here is how. First, enter your dates using the 
standard date format (like 06/20/93). In the Variable Info screen, change the format of the date 
variable to something like mmm-dd-yyyy or mm-dd-yy. The labels will be displayed as labels. 
Without changing the variable format, the dates will be displayed as long integer values. 

Cluster Options 

Minimum and Maximum Clusters 
These options specify a minimum and maximum number of clusters to try. Although the k-means 
algorithm finds a cluster configuration for a fixed number of clusters, NCSS lets you specify a 
range of values to try for the number of clusters. Various goodness-of-fit tests help you determine 
the optimum number of clusters. 
Often, values between two and five are used here, although your data might require more. 

Reported Clusters 
This is the number of clusters to use for reporting purposes. This is the so-called “optimum” 
number of clusters. Usually, you will have to make two passes through your data. On the first 
pass, you will determine the optimum number of clusters. On the second pass, you will obtain the 
information about the clusters. 

Other Options 

Random Starts 
The first box specifies the number of random initial configurations to try for each value between 
the minimum and maximum cluster range. Since the k-means algorithm finds a local optimum, it 
is thought that trying several random, initial configurations will lead to the global optimum (or 
near optimum). Of course, as this value is increased, the program’s running time also increases. 

Max Iterations 
This option specifies the maximum number of retries before the algorithm is aborted. 
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Percent Missing  
An observation with missing values may be clustered by using only the non-missing data. This 
option specifies the percentage of missing values to allow in an observation before it is skipped. 
For example, an observation with five variables, with two values missing, would be 60% 
complete. If the value of this option were 50, this observation would be kept, while an 
observation with three missing values would be skipped. 

Reports Tab 
The following options control the format of the reports. 

Select Reports 

Minimum Iteration Report - Bivariate Plots 
These options specify which reports and plots are displayed. 

Report Options 

Precision 
This allows you to specify the precision of numbers in the report. A single-precision number will 
show seven-place accuracy, while a double-precision number will show thirteen-place accuracy. 
Note that the reports are formatted for single precision. If you select double precision, some 
numbers may run into others. Also note that all calculations are performed in double precision 
regardless of which option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Bivariate Plots Tab 
These options control the attributes of the dendrogram. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 
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Bivariate Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Show Row Numbers and Labels 
Specify whether to display row numbers and labels on plots. 

Bivariate Plot Settings - Legend 

Show Legend  
Specify whether you want to view a legend. 

Legend Text 
Specifies the legend title. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Symbols Tab 
These options let you specify the plotting symbols for the groups. 

Plotting Symbols 

Cluster (1-15) 
Specifies the plotting symbols used for each of the first fifteen clusters. 

Storage Tab 
These options let you specify where to store various row-wise statistics. 

Storage Variable 

Store Cluster Id in Variable 
You can automatically store the cluster identification number of each row into the variable 
specified here. The configuration stored is for the number of clusters specified in the Reported 
Clusters option. 
Warning: Any data already in this variable is replaced by the cluster number. Be careful not to 
specify variables that contain important data. 
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Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – K-Means Clustering 
This section presents an example of how to run a K-Means cluster analysis. The data used are 
shown above and found in the BBALL database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the K-Means Clustering window.  

1 Open the BBall dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file BBall.s0. 
• Click Open. 

2 Open the K-Means Clustering window. 
• On the menus, select Analysis, then Clustering, then K-Means. The K-Means 

Clustering procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the K-Means Clustering window, select the Variables tab.  
• Double-click in the Cluster Variables box. This will bring up the variable selection 

window.  
• Select Height, FgPct, Points, Rebounds from the list of variables and then click Ok. 

“Height, FgPct, Points, Rebounds” will appear in the Cluster Variables box.  
• Double-click in the Label Variable box. This will bring up the variable selection 

window.  
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• Select Player from the list of variables and then click Ok. “Player” will appear in the 
Label Variable box.  

• Enter 4 for the Maximum Clusters. 

4 Specify the report. 
• On the K-Means Clustering window, select the Reports tab.  
• All reports and plots should be selected. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Minimum Iteration Section 
 

 Minimum Iteration Section  
   
 Iteration No. of Percent of Bar Chart 
 No. Clusters Variation of Percent 
 2 2 66.09 |||||||||||||||||||| 
 4 3 46.48 |||||||||||||| 
 8 4 29.17 ||||||||| 
 

This report is to help you determine the optimum number of clusters. 

Iteration No. 
The iteration number from the Iteration Report. 

No. of Clusters 
The number of clusters reported on. 

Percent of Variation 
This gives the within sum of squares for the number of clusters reported on in this line as a 
percentage of the within sum of squares with no clustering. As more and more clusters are added, 
this value should fall. Select as the optimum number of clusters the point where this percentage fails 
to decrease dramatically. 

Bar Chart of Percent 
This gives a visual display of the Percent of Variation values. 
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Iteration Section 
 

 Minimum Iteration Section  
   
 Iteration No. of Percent of Bar Chart 
 No. Clusters Variation of Percent 
 1 2 72.02716 |||||||||||||||||||||| 
 2 2 66.08894 |||||||||||||||||||| 
 3 2 70.51944 |||||||||||||||||||||| 
 4 3 46.47721 |||||||||||||| 
 5 3 47.91439 ||||||||||||||| 
 6 3 46.47721 |||||||||||||| 
 7 4 31.81219 |||||||||| 
 8 4 29.17248 ||||||||| 
 9 4 32.96159 |||||||||| 
 

This report is especially useful in helping you determine if you have selected enough random 
starting configurations. If you have specified enough starting configurations, two or three of them 
will be optimum (minimum percent variation) for each number of clusters. If this does not occur, 
you should increase the number of random starting configurations (Initial Configurations) and re-
run the problem. 

Iteration No. 
The iteration number reported on this line. 

No. of Clusters 
The number of clusters in this configuration. 

Percent of Variation 
This gives the within sum of squares for the number of clusters reported on in this line as a 
percentage of the within sum of squares with no clustering. As more and more clusters are added, 
this value should fall. Select as the optimum number of clusters the point where this percentage fails 
to decrease dramatically. 

Bar Chart of Percent 
This gives a visual display of the Percent of Variation values. 

Cluster Means 
 

 Cluster Means 
   
 Variables Cluster1 Cluster2 Cluster3  
 Height 78.25 85.5 77  
 FGPct 48.6375 54.95 40.75  
 Points 25.575 27.35 16.75  
 Rebounds 8.225 17.05 13.9  
 Count 8 2 2  
 

This report shows the  means of each of the variables across each of the clusters. The last row 
shows the count or number of observations in the cluster.  
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Cluster Standard Deviations 
 

 Cluster Standard Deviations 
   
 Variables Cluster1 Cluster2 Cluster3  
 Height 2.171241 0.7071068 6.363961  
 FGPct 3.357694 1.343503 4.596194  
 Points 3.770089 3.889087 2.333452  
 Rebounds 2.544321 8.273149 12.30366  
 Count 8 2 2  
 

This report shows the standard deviations of each of the variables across each of the clusters. The 
last row shows the count (number of observations) in the cluster.  

F-Ratio Section 
 

 F-Ratio Section 
    Between Within  Prob 
 Variables DF1 DF2 Mean Square Mean Square F-Ratio Level 
 Height 2 9 48.125 8.222222 5.85 0.023532 
 FGPct 2 9 101.6469 11.31653 8.98 0.007170 
 Points 2 9 72.7475 13.34056 5.45 0.028096 
 Rebounds 2 9 75.04459 29.46 2.55 0.132844 
 

This report summarizes the results of performing a one-way ANOVA on each variable, using the 
currently defined clusters as the factor. This report helps you investigate the importance of each 
variable in the clustering process.  

Caution should be used with this report since it ignores the correlation that exists among the 
variables. A better approach to reducing the number of variables would be to save the cluster 
configuration and run a Discriminant Analysis with variable selection, since this would account 
for the correlation among the variables. 

Distance Section 
 

 Distance Section 
   
 Row Cluster Dist1 Dist2 Dist3  
 1 Jabbar K.A. 2 2.4609 1.1263 4.0315  
 2 Barry R 1 0.9139 3.1499 1.9940  
 3 Baylor E 1 1.4427 3.1724 2.2139  
 4 Bird L 1 0.8398 1.8867 2.7392  
 5 Chamberlain W 2 3.2456 1.1263 4.4712  
 6 Cousy B 3 2.9971 5.3790 1.9512  
 7 Erving J 1 0.4724 2.4891 2.5912  
 8 Johnson M 1 1.6497 2.5426 2.8064  
 9 Jordan M 1 1.5532 2.8939 4.0067  
 10 Robertson O 1 0.3409 2.9490 2.5629  
 11 Russell B 3 3.3878 3.5197 1.9512  
 12 West J 1 1.0971 3.6374 2.8439  
 

This report displays the relative distance of each row to the cluster centers. It is provided to help 
determine how sharp the clustering has been. If the distance from each point to its designated 
center is much less than the distance from the point to the other centers, the cluster configuration 
does a good job of clustering. However, if the smallest distance is close in value to the distance to 
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one of the other clusters, there is ambiguity as to which cluster the point belongs. Such a solution 
is not as desirable. 

Individual Distance Section 
 

 Distance Section for Cluster 1 
   
 Row Cluster Dist1 Dist2 Dist3  
 2 Barry R 1 0.9139 3.1499 1.9940  
 3 Baylor E 1 1.4427 3.1724 2.2139  
 4 Bird L 1 0.8398 1.8867 2.7392  
 7 Erving J 1 0.4724 2.4891 2.5912  
 8 Johnson M 1 1.6497 2.5426 2.8064  
 9 Jordan M 1 1.5532 2.8939 4.0067  
 10 Robertson O 1 0.3409 2.9490 2.5629  
 12 West J 1 1.0971 3.6374 2.8439  
 Count = 8  
   
 Distance Section for Cluster 2  
   
 Row Cluster Dist1 Dist2 Dist3  
 1 Jabbar K.A. 2 2.4609 1.1263 4.0315  
 5 Chamberlain W 2 3.2456 1.1263 4.4712  
 Count = 2 
   
 Distance Section for Cluster 3  
   
 Row Cluster Dist1 Dist2 Dist3  
 6 Cousy B 3 2.9971 5.3790 1.9512  
 11 Russell B 3 3.3878 3.5197 1.9512  
   
 Count = 2  
 

These sections show the same distances as in the previous distance report, except that the rows 
from only one cluster at a time are displayed. This makes it easier to see which items fell into 
each cluster. 
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Bivariate Plots Section 
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This series of scatter plots shows the data for each pair of variables with different clusters shown 
with different plotting symbols. The row numbers may be displayed at the side of plot symbols to 
help identify problem observations. 
These plots will help you find outliers, anomalies, and various other problems. Note that because 
of the multivariate nature of the data, your cluster configuration may be good yet still show little 
pattern in these plots. 
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Chapter 447 

Medoid 
Partitioning 
Introduction 
The objective of cluster analysis is to partition a set of objects into two or more clusters such that 
objects within a cluster are similar and objects in different clusters are dissimilar. The medoid 
partitioning algorithms presented here attempt to accomplish this by finding a set of 
representative objects called medoids. The medoid of a cluster is defined as that object for which 
the average dissimilarity to all other objects in the cluster is minimal. If k clusters are desired, k 
medoids are found. Once the medoids are found, the data are classified into the cluster of the 
nearest medoid.  

Two algorithms are available in this procedure to perform the clustering. The first, from Spath 
(1985), uses random starting cluster configurations. The second, from Kaufman and Rousseeuw 
(1990), makes special use of silhouette statistics to help determine the appropriate number of 
clusters. Both of these algorithms will be explained in more later.  

Dissimilarities 
The fundamental value used in cluster analysis is the dissimilarity between two objects. This 
section discusses how the dissimilarity is computed for the various types of data.  

For multivariate data, a critical issue is how the distance between individual variables is 
combined to form the overall dissimilarity. This depends on the variable type, scaling type, and 
distance type that is selected. 

We begin with a brief discussion of the possible types of variables. 

Types of Cluster Variables 

Interval Variables 
Interval variables are continuous measurements that follow a linear scale. Examples include 
height, weight, age, price, temperature, and time. These values may be positive or negative.  
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Ordinal Variables 
Ordinal variables are measurements that may be ordered according to magnitude. For example, a 
survey question may require you to pick one of five possible choices: strongly disagree (5), 
disagree (4), neutral (3), agree (2), or strongly agree (1). 

Ratio Variables 
Ratio variables are positive measurements in which the distinction between two numbers is 
constant if their ratio is constant. For example, the distinction between 3 and 30 would have the 
same meaning as the distinction between 30 and 300. Examples are chemical concentration or 
radiation intensity. 

Nominal Variables 
Nominal variables are those in which the number represents the state of the variable, but does not 
represent magnitude. The number is used for identification purposes only. Examples include 
gender, race, hair color, city of birth, or zipcode. 

Symmetric-Binary Variables 
Symmetric-binary variables have two possible outcomes, each of which carry the same 
information and weight. Examples include gender, marital status, or membership in a particular 
group. Usually, they are coded as 1 for yes and 0 for no, although this is not necessary. 

Assymetric-Binary Variables 
Asymmetric-binary variables are concerned with the presence or absence of a relatively rare 
event, the absence of which is rather unimportant and uninformative. For example, if a person has 
a scar on his face, he might be more easily identified. But if you know the person does not have a 
scar, that will not help you identify him. 

Distance Calculation 
The dissimilarity (distance) between two objects is fundamental to cluster analysis since the 
techniques goal is to place similar objects in the same cluster and dissimilar objects in different 
clusters. Unfortunately, the measurement of dissimilarity depends on the type of variable. For 
interval variables, the distance between to objects is simply the difference in their values. 
However, how do you quantify the difference between males and females? Is it simply 1 - 0 = 1? 
How do you combine the difference between males and females with the difference in age to 
form an overall dissimilar? These are the questions that will be answered in this section. This 
discussion follows Kaufman and Rousseeuw (1990) very closely. 

Assume that you have N rows (observations) which are separated to be clustered into K groups. 
Each row consists of P variables. Two types of distance measures are available in the program: 
Euclidean and Manhattan.  

The Euclidean distance djk between rows j and k is computed using  

d
Pjk

ijk
i

P

= =
∑δ 2

1
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and Manhattan distance djk between rows j and k is computed using  

d
Pjk

ijk
i

P

= =
∑ δ

1

 
where for interval, ordinal, and ratio variables 

δ ijk ij ikz z= −  
and for asymmetric-binary, symmetric-binary, and nominal variables 

δ ijk
ij ik

ij ik
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if x x
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with the exception that for asymmetric-binary, the variable is completely ignored (P is decreased 
by one for this row) if both xij and xik are equal to zero (the non-rare event). 

The value of zij for interval, ordinal, and ratio variables is defined next. 

Interval Variables 
You most likely have variables with several different scales. For example, you might have 
percentages, ages, rates, income levels, and so on. In order to remove distortions due to these 
differences in scales, the data are transformed to a common scale.  

Four types of scaling are available: absolute value, standard deviation, range, and none. Each of 
these have the general form: 

ij
ij i

i
z = x - A

B  
where xij represents the original data value for variable i and row j and zij represents the 
corresponding scale value. The scaling choice determines the values used for Ai and Bi.  

The following table shows the scaling mechanism used for each type of scaling. 

 

Type of Scaling Value of Ai  Value of Bi 

Absolute Value 
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None 0 1 
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Ordinal and Ratio Variables 
The distance calculations for the ordinal and ratio variables are the same as for interval variables 
except that the values are transformed to an interval scale before distance calculations begin. The 
ranks of the ordinal variables and the natural logarithms of the ratio variables are substituted for 
the actual values. Once these transformations are made, the interval distance formulas are used. 

Algorithm Details 

Medoid Algorithm of Spath 
The first medoid algorithm is presented in Spath (1985). The method minimizes an objective 
function by swapping objects from one cluster to another. Beginning at a random starting 
configuration, the algorithm proceeds to a local minimum by intelligently moving objects from 
one cluster to another. When no object moving would result in a reduction of the objective 
function, the procedure terminates. Unfortunately, this local minimum is not necessarily the 
global minimum. To overcome this limitation, the program lets you rerun the algorithm using 
several random starting configurations and the best solution is kept.  

The objective function D is the total distance between the objects within a cluster. 
Mathematically, it is represented as follows: 

D dij
j Ci Ck

K

kk

=
∈∈=
∑∑∑

1  
where K is the number of clusters, dij is the distance between objects i and j, and Ck is the set of 
all objects in cluster k. 

Medoid Algorithm of Kaufman and Rousseeuw 
Kaufman and Rousseeuw (1990) present a medoid algorithm which they call PAM (Partition 
Around Medoids). This algorithm also attempts to minimize the total distance D (formula given 
above) between objects within each cluster. The algorithm proceeds through two phases. 

In the first phase, a representative set of k objects is found. The first object selected has the 
shortest distance to all other objects. That is, it is in the center. An addition k-1 objects are 
selected one at a time in such a manner that at each step, they decrease D as much as possible. 

In the second phase, possible alternatives to the k objects selected in phase one are considered in 
an iterative manner. At each step, the algorithm searches the unselected objects for the one that if 
exchanged with one of the k selected objects will lower the objective function the most. The 
exchange is made and the step is repeated. These iterations continue until no exchanges can be 
found that will lower the objective function. 

Note that all potential swaps are considered and that the algorithm does not depend on the order 
of the objects on the database. 
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Silhouettes 
Two of the most difficult tasks in cluster analysis are deciding on the appropriate number of 
clusters and deciding how to tell a bad cluster from a good one. Kaufman and Rousseeuw (1990) 
define a set of values called silhouettes that provide key information about both of these tasks. 
First, we will explain how these are calculated and then we will show how they are used. 

Calculating Silhouettes 
A silhouette value s is constructed for each object as follows. 

1. Consider a particular object i which is in cluster A. Compute the value 

 a = average dissimilarity of i to all other objects in A 

 If A contains only one object, set a to zero. 

2. For every other cluster not equal to A, find the cluster B that has the smallest average 
dissimilarity between its objects and i. Set 

 b = average dissimilarity between i and the object in B. 

 The cluster B is the nearest neighbor of object i. 

3. Compute the silhouette s of object i as follows: 

 If A contains only one object, set s = 0. 

 If a < b, s = 1 - a/b. 

 If a > b, s = b/a - 1. 

 If a = b, s = 0. 

Interpreting Silhouettes 
A silhouette value is constructed for each object. The value can range from minus one to one. It 
measures how well an object has been classified by comparing its dissimilarity within its cluster 
to its dissimilarity with its nearest neighbor.  

When s is close to one, the object is well classified. Its dissimilarity with other objects in its 
cluster is much less than its dissimilarity with objects in the nearest cluster. 

When s is near zero, the object was just between clusters A and B. It was arbitrarily assigned to A. 

When s is close to negative one, the object is poorly classified. Its dissimilarity with other objects 
in its cluster is much greater than its dissimilarity with objects in the nearest cluster. Why isn’t it 
in the neighboring cluster? 

Hence, the silhouette value summarizes how appropriate each object’s cluster is.  

Determining the Number of Clusters 
One useful summary statistic is the average value of s across all objects. This summarizes how 
well the current configuration fits the data. An easy way to select the appropriate number of 
clusters is to choose that number of clusters which maximizes the average silhouette. We denote 
the maximum average silhouette across all values of k as SC. 
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Kaufman and Rousseeuw (1990) present the following table to aid in the interpretation of SC. 

SC Proposed Interpretation 
0.71 to 1.00 A strong structure has been found. 
0.51 to 0.70 A reasonable structure has been found. 
0.26 to 0.50 The structure is weak and could be artificial. Try other methods on this database. 
-1 to 0.25 No substantial structure has been found. 

Finding Good Clusters 
A bar chart of the silhouette values, sorted by cluster number and silhouette value, will show how 
well each cluster is doing. These charts will be discussed more in the output section. 

Further Analysis 
Once a cluster analysis has been run and an appropriate solution found, the cluster numbers 
should be saved to an empty variable so that the cluster solution can be further analyzed. What 
are some additional procedures that should be run? The most common is a discriminant analysis 
since it will let you study the impact of each of the variables on the solution. Discriminant 
analysis will also quantify how well the rows have been clustered. This will show up in the 
Wilks’ lambda statistic. 

In addition to discriminant analysis, you will want to produce various scatter plots in which the 
cluster number is used as a grouping variable. This will greatly increase your understanding of 
what the clusters that have been found look like. 

Data Structure 
The data are entered in the standard columnar format in which each column represents a single 
variable. A discussion of the types of variables will be presented shortly.  

The data given in the following table contain information on twelve superstars in basketball. The 
stats are on a per game basis for games played through the 1989 season. 

 

BBALL dataset (subset) 

Player Height FgPct Points Rebounds 
Jabbar K.A. 86.0 55.9 24.6 11.2 
Barry R 79.0 44.9 23.2 6.7 
Baylor E 77.0 43.1 27.4 13.5 
Bird L 81.0 50.3 25 10.2 
Chamberlain W 85.0 54.0 30.1 22.9 
Cousy B 72.5 37.5 18.4 5.2 
Erving J 78.5 50.6 24.2 8.5 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Variables 

Interval Variables 
Designates interval-type variables (if any) or the columns of the matrix if distance or correlation 
matrix input was selected. Interval variables are continuous measurements that may be either 
positive or negative and follow a linear scale. Examples include height, weight, age, price, 
temperature, and time.  

In general, an interval should keep the same importance throughout the scale. For example, the 
length of time between 1905 and 1925 is the same as the length of time between 1995 and 2015.  

Note that a nonlinear transformation of an interval variable is probably not an interval variable. 
For example, the logarithm of height is not an interval variable since the value of an interval 
along the scale changes depending upon where you are on the scale. 

Ratio Variables 
Specifies the ratio variables (if any). Ratio-type variables are positive measurements in which the 
distinction between two numbers is constant if their ratio is constant. For example, the distinction 
between 3 and 30 would have the same meaning as the distinction between 30 and 300. Examples 
are chemical concentration or radiation intensity. 

The logarithms of ratio variables are analyzed as if they were interval variables. 

Ordinal Variables 
Specifies the ordinal-type variables (if any). Ordinal variables are measurements that may be 
ordered according to magnitude. For example, a survey question may require you to pick one of 
five possible choices: strongly disagree (5), disagree (4), neutral (3), agree (2), or strongly agree 
(1). Interval variables are ordinal, but ordinal variables are not necessarily interval. The original 
values of ordinal variables are replaced by their ranks. These ranks are then analyzed as if they 
were interval variables. 

Nominal Variables 
Specifies the nominal-type variables (if any). Nominal variables are those in which the number 
represents the state of the variable. Examples include gender, race, hair color, country of birth, or 
zipcode. If a nominal variable has only two categories, it is often called a binary variable. 

Nominal variables are analyzed using the number of matches between two individuals. 

Symmetric-Binary Variables 
Specifies the symmetric binary-type variables (if any). Symmetric binary variables have two 
possible outcomes, each of which carries the same information and weight. Examples include 
gender, marital status, or membership in a particular group. Usually, they are coded as 1 for yes 
or 0 for no, although this is not necessary. These variables are analyzed using the number of 
matches between two individuals. 
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Asymmetric-Binary Variables 
Specifies the asymmetric binary-type variables (if any). Asymmetric binary-scaled variables are 
concerned with the presence or absences of a relatively rare event, the absence of which is 
unimportant. 

These variables are analyzed using the number of matches in which both individuals have the trait 
of interest. Those cases in which both individuals do not have the trait are not of interest and are 
ignored. 

Clustering Options 

Cluster Method 
This option specifies which of the two medoid algorithms to be used. 

• Spath 
Perform the analysis using Spath’s medoid partitioning algorithm. This algorithm was 
discussed in the introduction. When this option is selected, you must also set the Best Starting 
Configuration, Weighting Method, and Number Random Starts options. 

• Kaufman - Rousseeuw 
Perform the analysis using Kaufman and Rousseeuw’s medoid partitioning algorithm. This 
algorithm was discussed in the introduction.  

Distance Method 
This option specifies with Euclidean or Manhattan distance is used. Euclidean distance may be 
thought of as straight-line (or as the crow flies) distance. Manhattan distance is often referred to 
as city-block distance since it is analogous to walking along an imaginary sidewalk to get from 
point A to B. Most users will use Euclidean distance. 

Scaling Method 
Specify the type of scaling to be used from Interval, Ordinal, and Ratio variables. Possible 
choices are Standard Deviation, Average Absolute Deviation, Range, and None. These were 
discussed in the introduction to this chapter. 

Max Iterations 
This option sets a maximum number of iterations that are attempted before the algorithm 
terminates. This avoids the possible of the algorithm going into an infinite loop. 

Clustering Options – Number of 
Clusters 

Minimum Clusters 
The minimum value of K to search. A separate cluster analysis is attempted for each value 
between the Minimum Clusters and the Maximum Clusters. The actual number of clusters used is 
set above by the Reported Clusters option. 

Maximum Clusters 
The maximum value of K to search. A separate cluster analysis is attempted for each value 
between the Minimum Clusters and the Maximum Clusters. The actual number of clusters used is 
set above by the Reported Clusters option. 
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Reported Clusters 
This is the number of clusters to be reported on. Although the program can find results for a range 
of cluster sizes, this option set the size that is actually used. It is used in the Row Detail section 
and by the Storage Tab section. 

Clustering Options – Spath Cluster 
Method Options 

Number Random Starts 
This is the number of random starting configurations that are attempted during Spath’s algorithm. 
Usually, ten starting configurations should be enough. 

Best Starting Configuration 
This option applies to Method = Spath only. In Spath’s algorithm, a number of random starting 
configurations are tried and the best in for each cluster size is retained. This option determines 
which statistic is used to indicate the best. 

• Mean Distance 
The configuration with the smallest average dissimilarity is selected. 

• Silhouette 
The configuration with the largest average silhouette is selected. 

Weighting Method 
This option designates which objective function is minimized during Spath’s algorithm. Two 
types are possible. 

• Regular 
Minimize the sum of the distances between all individuals within each cluster. 

• Weighted 
Minimize the weighted sum of the distances between all individuals within each cluster. The 
weights are one over the number of objects in the cluster. 

Format Options 

Label Variable 
This is an optional variable containing identification for each row (object). These labels are used 
to enhance the interpretability of the reports. 

Input Format 
Specify the type of data format that you have. Your choices are 

• Raw Data 
The variables are in the standard format in which each row represents an object and each 
column represents a variable. 
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• Distances 
The variables containing a distance matrix are specified in the Interval Variables option. Note 
that this matrix contains the distances between each pair of objects. Each object is represented 
by a row and the corresponding column. Also, the matrix must be complete. You cannot use 
only the lower triangular portion, for example. 

• Correlations 1 
The variables containing a correlation matrix are specified in the Interval Variables option. 
Correlations are converted to distances using the formula: 

d
r

ij
ij=

−1
2

 

• Correlations 2 
The variables containing a correlation matrix are specified in the Interval Variables option. 
Correlations are converted to distances using the formula: 

d rij ij= −1  

• Correlations 3 
The variables containing a correlation matrix are specified in the Interval Variables option. 
Correlations are converted to distances using the formula: 

d rij ij= −1 2  

Note that all three types of correlation matrices must be completely specified. You cannot 
specify only the lower or upper triangular portions. Also, the rows correspond to variables. 
That is, the values along the first row represent the correlations of the first variable with each 
of the other variables. Hence, you cannot rearrange the order of the matrix. 

Reports Tab 
The following options control the formatting of the reports.  

Select Reports 

Iteration Report - Row Detail Report 
Specify whether to display the indicated reports. 

Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 
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Storage Tab 

Storage Variable 
These options let you specify where to store various row-wise statistics. 

Store Cluster Id in Variable 
You can automatically store the cluster identification number of each row into the variable 
specified here. The configuration stored is for the number of clusters specified in the Reported 
Clusters option. 

Warning: Any data already in this variable are replaced by the cluster number. Be careful not to 
specify variables that contain important data. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Medoid Partitioning 
This section presents an example of how to run a medoid partitioning analysis. The data used 
were shown above and are found in the BBALL database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Medoid Partitioning window. 

1 Open the BBall dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file BBall.s0. 
• Click Open. 

2 Open the Medoid Partitioning window. 
• On the menus, select Analysis, then Clustering, then Medoid Partitioning. The Medoid 

Partitioning procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Medoid Partitioning window, select the Variables tab.  
• Double-click in the Interval Variables box. This will bring up the variable selection 

window.  
• Select Height, Weight, FgPct, FtPct, Points, Rebounds from the list of variables and 

then click Ok. “Height-Points,Rebounds” will appear in the Interval Variables box.  
• Double-click in the Label Variables box. This will bring up the variable selection 

window.  
• Select Player from the list of variables and then click Ok. “Player” will appear in the 

Label Variable box.  
• Enter 2 for Reported Clusters. 
• Enter 4 for Number Random Starts. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Iteration Detail Section 
 
Iteration Detail Section 
 
 (Minimize This) Adjusted (Maximize This) 
Number Average Average Average 
Clusters Distance Distance Silhouette 
2 35.977405 5.996234 0.135735 
2 34.352873 5.725479 0.185579 
2 34.862052 5.810342 0.170356 
2 36.031237 6.005206 0.101405 
3 19.525066 4.881267 0.094407 
3 21.106317 5.276579 0.033435 
3 19.005957 4.751489 0.045621 
3 22.202362 5.550590 -0.026350 
4 12.547872 4.182624 -0.013869 
4 12.318440 4.106147 0.044989 
4 12.210147 4.070049 0.018876 
4 14.209356 4.736452 -0.097672 
5 9.344940 3.893725 -0.099737 
5 10.556815 4.398673 -0.189487 
5 8.274123 3.447551 -0.045335 
5 8.049819 3.354091 -0.004580 
 

This report shows the values of the objective functions for each iteration and number of clusters. 
This report is only generated when the Method option is set to Spath.  
The report is especially useful in determining if you have set the number of random starts 
correctly. If you can see that two or three configurations at the desired number of clusters are 
identical then you have set the Number Random Starts large enough. Otherwise, you should 
increase this value and rerun the analysis. 
In this example, we will conclude that k is two (determined from a later report). However, we 
notice that we have not achieved the maximum silhouette value (0.185579) more than once. We 
should change the Number Replications options to ten and rerun the analysis. 

Average Distance 
This is the value of the average dissimilarity. It is computed using 

D dij
j Ci Ck

K

kk

=
∈∈=
∑∑∑

1

 

Note that this value has been rescaled as a percentage from the maximum distance in the 
dissimilarity matrix to improve readability. 

Adjusted Average Distance 
This is the value of the adjusted average dissimilarity. It is computed using 

D K
N

dadjusted ij
j Ci Ck

K
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=
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∑∑∑

1

 

Note that this value has been rescaled as a percentage from the maximum distance in the 
dissimilarity matrix to improve readability. 

Average Silhouette 
This is the average of the silhouette values of all rows. 
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Iteration Summary Section 
 
Iteration Summary Section 
 
 (Minimize This) Adjusted (Maximize This) 
Number Average Average Average 
Clusters Distance Distance Silhouette 
2 34.352873 5.725479 0.185579 
3 19.525066 4.881267 0.094407 
4 12.318440 4.106147 0.044989 
5 8.049819 3.354091 -0.004580 
 

This report shows the values of the objective functions for each number of clusters.  
This report is used to determine the appropriate number of clusters. The number selected 
corresponds to the maximum value of the last (Average Silhouette) column. Usually, the row 
selected will have a respectable value of the Adjusted Average Distance (this value should be 
near its minimum). 
The definitions of the columns were given above and will not be repeated here. 

Cluster Medoids Section 
 
Cluster Medoids Section 
 
Variable Cluster1 Cluster2     
Height 86 77     
Weight 230 210     
FgPct 55.9 48.5     
FtPct 72.1 83.8     
Points 24.6 25.7     
Rebounds 11.2 7.5     
Row 1 Jabbar K.A 10 Robertson  
     

This report gives the medoid (most centrally located) of each cluster. It is provided to help you 
interpret and recognize each cluster. The last row of the report gives the row number (and label if 
designated) of the each cluster’s medoid. 
Notice that the players in cluster one are typically nine inches taller and pull down about four 
more rebounds than the players in cluster two. Apparently, cluster one represents centers (or tall 
forwards) and cluster two represents other players. 



 Medoid Partitioning  447-15 

Row Detail Section 
 
Row Detail Section 
   Average Average 
  Nearest Distance Distance Silhouette Silhouette 
Row Cluster Neighbor Within Neighbor Value Bar 
5 Chamberlai 1 2 58.85 74.48 0.2098 |IIIIIIIIII 
11 Russell B 1 2 58.40 57.83 -0.0098 | 
1 Jabbar K.A 1 2 47.59 44.28 -0.0696 | 
3 Baylor E 1 2 47.74 31.69 -0.3363 | 
9 Jordan M 1 2 56.34 32.62 -0.4210 | 
Cluster Average 1 (5) 53.79 48.18 -0.1254 
 
2 Barry R 2 1 24.20 47.65 0.4921 |IIIIIIIIIIIIIIIIIIIIIIIII 
10 Robertson  2 1 21.94 42.43 0.4830 |IIIIIIIIIIIIIIIIIIIIIIII 
12 West J 2 1 29.13 51.74 0.4370 |IIIIIIIIIIIIIIIIIIIIII 
7 Erving J 2 1 23.03 40.90 0.4369 |IIIIIIIIIIIIIIIIIIIIII 
6 Cousy B 2 1 45.02 68.58 0.3435 |IIIIIIIIIIIIIIIII 
8 Johnson M 2 1 30.31 45.50 0.3339 |IIIIIIIIIIIIIIIII 
4 Bird L 2 1 27.19 40.44 0.3275 |IIIIIIIIIIIIIIII 
Cluster Average 2 (7) 28.69 48.18 0.4077 
 
Overall Average  (12) 39.15 48.18 0.1856  = SC 
 

This report displays information about each row that was clustered. The report is sorted by 
Silhouette Value within cluster. 

Row 
The row number and, if designated, label of this individual. Each row of the database is 
represented on this report. 

Cluster 
This is the number of the cluster into which this row was classified. 

Nearest Neighbor 
This is the identification number of the nearest cluster to this row (other than the one that it is in). 
This information is used in computing the silhouette value. 

Average Distance Within 
This is the average distance between this object and all other objects in the cluster. This is the 
value of a in the computation of the silhouette. 

Average Distance Neighbor 
This is the average distance between this object and the objects in the nearest neighbor. This is 
the value of b in the computation of the silhouette. 

Silhouette Value 
This is the value of the silhouette. Its interpretation was presented in the introduction and will not 
be repeated here. We note that the value should be positive and most rows should be greater than 
0.50. The fact that several of the rows in this analysis have negative silhouette values would cause 
us to toss out this cluster configuration and look for a better one. 
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Chapter 448 

Fuzzy Clustering 
Introduction 
Fuzzy clustering generalizes partition clustering methods (such as k-means and medoid) by 
allowing an individual to be partially classified into more than one cluster. In regular clustering, 
each individual is a member of only one cluster. Suppose we have K clusters and we define a set 
of variables that represent the probability that object i is classified into cluster k. 
In partition clustering algorithms, one of these values will be one and the rest will be zero. This 
represents the fact that these algorithms classify an individual into one and only one cluster. 

m m mi i iK1 2, , ,L

In fuzzy clustering, the membership is spread among all clusters. The can now be between 
zero and one, with the stipulation that the sum of their values is one. We call this a fuzzification of 
the cluster configuration. It has the advantage that it does not force every object into a specific 
cluster. It has the disadvantage that there is much more information to be interpreted. 

mik

To understand the reason that fuzzy clustering was developed, consider the following two-
variable database whose values are plotted below. 
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The data have three obvious clusters and two outlier points (6 and 13). A regular clustering 
algorithm searching for three clusters will force these two points into specific clusters. This may 
cause distortion in the final solution. Fuzzy clustering, however, will assign a probability of about 
0.33 for each cluster. This equal membership probability signals that these two points are outliers. 

When you only have two variables, you can plot your data and see what the clusters are. 
Unfortunately, most clustering projects come with more than two variables, so plotting is not 
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possible. Hence, we must use techniques like fuzzy clustering to deal with the anomalies that can 
occur. 

Dissimilarities 
The formation of the distances (dissimilarities) was described in the Medoid Clustering chapter 
and is not repeated here. 

Fuzzy Algorithm 
The fuzzy algorithm used by this program is described in Kaufman (1990). It seeks to minimize 
the following objective function, C, made up of cluster memberships and distances. 

C =
2 mk=1

K
i=1 j=1

j=1

N

jk
2

∑
∑
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ik
2

jk
2

ij∑∑
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where  represents the unknown membership of the object i in cluster k and is the 
dissimilarity between objects i and j. The memberships are subject to constraints that they all 
must be non-negative and that the memberships for a single individual must sum to one. That is, 
the memberships have the same constraints that they would if they were the probabilities that an 
individual belongs to each group (and they may be interpreted as such). 

Goodness-of-Fit 
One of the most difficult tasks in cluster analysis is choose the appropriate number of clusters. In 
fuzzy clustering, the following coefficients are used in conjunction with the silhouette values that 
are defined in the Medoid Clustering chapter. 

The amount of ‘fuzziness’ in a solution may be measured by Dunn’s partition coefficient which 
measures how close the fuzzy solution is to the corresponding hard solution. This hard solution is 
formed by classifying each object into the cluster which has the largest membership. The formula 
for Dunn’s partition coefficient is 

F(U)= 1
m

K N

ik
2∑∑N k=1 i=1

 

This coefficient ranges from 1/K to 1. Its value is 1/K when all memberships are equal to 1/K. The 
value of one results when, for each object, the value of one membership is unity and the rest are 
zero. 

Dunn’s partition coefficient may be normalized so that it varies from 0 (completely fuzzy) to 1 
(hard cluster). The normalized version is 

Fc(U)= F(U)- (1 / K)
1- (1 / K)
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Another partition coefficient, given in Kaufman (1990), is 

D(U)= 1
N

( h - m )
k=1

K

i=1

N

ik ik
2∑∑  

This coefficient ranges from 0 (hard clusters) to 1-1/K (completely fuzzy). The normalized 
version of this equation is: 

Dc(U)= D(U)
1 - (1 / K)

 

Fc(U) and Dc(U) together give a good indication of an optimum number of clusters. You should 
choose K so that Fc(U) is large and Dc(U) is small. 

Data Structure 
The data are entered in the standard columnar format in which each column represents a single 
variable. 

The data given in the following table were shown on the scatter plot displayed earlier and are 
found in the FUZZY database. They are from a concocted database found in Kaufman (1990) 
designed specifically to show the usefulness of fuzzy clustering. 

 

FUZZY dataset (subset) 

Red Blue ID 
1 9 1 
2 10 2 
2 9 3 
2 8 4 
3 9 5 
7 14 6 
12 9 7 
13 10 8 
13 8 9 

Missing Values 
When an observation has missing values, appropriate adjustments are made so that the average 
dissimilarity across all variables with data may be computed. That is, rows with missing values 
are not omitted unless all variables have missing values. Note that the distances require that at 
least one variable have non-missing values for each pair of rows. 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Variables 

Interval Variables 
Designates interval-type variables (if any) or the columns of the matrix if distance or correlation 
matrix input was selected. Interval variables are continuous measurements that may be either 
positive or negative and follow a linear scale. Examples include height, weight, age, price, 
temperature, and time.  

In general, an interval should keep the same importance throughout the scale. For example, the 
length of time between 1905 and 1925 is the same as the length of time between 1995 and 2015.  

Note that a nonlinear transformation of an interval variable is probably not an interval variable. 
For example, the logarithm of height is not an interval variable since the value of an interval 
along the scale changes depending upon where you are on the scale. 

Ratio Variables 
Specifies the ratio variables (if any). Ratio-type variables are positive measurements in which the 
distinction between two numbers is constant if their ratio is constant. For example, the distinction 
between 3 and 30 would have the same meaning as the distinction between 30 and 300. Examples 
are chemical concentration or radiation intensity. 

The logarithms of ratio variables are analyzed as if they were interval variables. 

Ordinal Variables 
Specifies the ordinal-type variables (if any). Ordinal variables are measurements that may be 
ordered according to magnitude. For example, a survey question may require you to pick one of 
five possible choices: strongly disagree (5), disagree (4), neutral (3), agree (2), or strongly agree 
(1). Interval variables are ordinal, but ordinal variables are not necessarily interval. 

The original values of ordinal variables are replaced by their ranks. These ranks are then analyzed 
as if they were interval variables. 

Nominal Variables 
Specifies the nominal-type variables (if any). Nominal variables are those in which the number 
represents the state of the variable. Examples include gender, race, hair color, country of birth, or 
zipcode. If a nominal variable has only two categories, it is often called a binary variable. 

Nominal variables are analyzed using the number of matches between two individuals. 

Symmetric-Binary Variables 
Specifies the symmetric binary-type variables (if any). Symmetric binary variables have two 
possible outcomes, each of which carry the same information and weight. Examples include 
gender, marital status, or membership in a particular group. Usually, they are coded as 1 for yes 
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or 0 for no, although this is not necessary. These variables are analyzed using the number of 
matches between two individuals. 

Asymmetric-Binary Variables 
Specifies the asymmetric binary-type variables (if any). Asymmetric binary-scaled variables are 
concerned with the presence or absences of a relatively rare event, the absence of which is 
unimportant. 

These variables are analyzed using the number of matches in which both individuals have the trait 
of interest. Those cases in which both individuals do not have the trait are not of interest and are 
ignored. 

Clustering Options 

Distance Method 
This option specifies whether Euclidean or Manhattan distance is used. Euclidean distance may 
be thought of as straight-line (or as the crow flies) distance. Manhattan distance is often referred 
to as city-block distance since it is analogous to walking along an imaginary sidewalk to get from 
point A to B. Most users will use Euclidean distance. 

Scaling Method  
Specify the type of scaling to be used on Interval, Ordinal, and Ratio variables. Possible choices 
are Standard Deviation, Average Absolute Deviation, Range, and None. These were discussed in 
the introduction to this chapter. 

Max Iterations 
This option sets a maximum number of iterations that are attempted before the algorithm 
terminates. This avoids the possible of the algorithm going into an infinite loop. 

Fuzzifier Constant 
Specifies the exponent of the memberships in the objective function that is being minimized. 
Normally, this value is set to two. In some situations, you may want to change this value. The 
value must be strictly greater than one. As this value is decreased from two towards one, the final 
solution will appear less and less fuzzy. That is, the membership values will be closer to either 
zero or one. Also, values of this option near one cause the algorithm to converge more slowly. 

Minimum Change 
When the change in the objective function from one iteration to the next is less than this amount, 
the algorithm terminates. 

Maximum row 
The maximum number of rows that will be analyzed by this procedure. 

Clustering Options – Numbers of 
Clusters 

Minimum Clusters 
The minimum value of K to search. A separate analysis is attempted for each value between the 
Minimum Clusters and the Maximum Clusters. 
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Maximum Clusters 
The maximum value of K to search. A separate cluster analysis is attempted for each value 
between the Minimum Clusters and the Maximum Clusters.  

Reported Clusters 
The is the cluster configuration that is stored on the database if the Cluster Id or Membership Out 
Variables options are specified..  

Format Options 

Label Variable 
This is an optional variable containing identification for each row (object). These labels are used 
to enhance the interpretability of the reports. 

Input Format 
Specify the type of data format that you have. Your choices are 

• Raw Data 
The variables are in the standard format in which each row represents an object and each 
column represents a variable. 

• Distances 
The variables containing a distance matrix are specified in the Interval Variables option. Note 
that this matrix contains the distances between each pair of objects. Each object is represented 
by a row and the corresponding column. Also, the matrix must be complete. You cannot use 
only the lower triangular portion, for example. 

• Correlations 1 
The variables containing a correlation matrix are specified in the Interval Variables option. 
Correlations are converted to distances using the formula: 

d
r

ij
ij=

−1
2

 

• Correlations 2 
The variables containing a correlation matrix are specified in the Interval Variables option. 
Correlations are converted to distances using the formula: 

d rij ij= −1  

• Correlations 3 
The variables containing a correlation matrix are specified in the Interval Variables option. 
Correlations are converted to distances using the formula: 

d rij ij= −1 2  

Note that all three types of correlation matrices must be completely specified. You cannot specify 
only the lower or upper triangular portions. Also, the rows correspond to variables. That is, the 
values along the first row represent the correlations of the first variable with each of the other 
variables. Hence, you cannot rearrange the order of the matrix. 
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Reports Tab 
The following options control the formatting of the reports.  

Select Reports 

Membership Report - Summary Report 
Specify whether to display the indicated reports. 

Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Storage Tab 
These options let you specify where to store various row-wise statistics. 

Storage Variable 

Store Cluster Id in Variable 
You can automatically store the cluster identification number of each row into the variable 
specified here. The configuration stored is for the number of clusters specified in the Reported 
Clusters option. 

Warning: Any data already in this variable are replaced by the cluster number. Be careful not to 
specify variables that contain important data. 

Store Membership Out in Variable 
You can automatically store the row memberships into the variables specified here. The 
configuration stored is for the number of clusters specified in the Reported Clusters option. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Fuzzy Clustering 
This section presents an example of how to run a cluster analysis. The data used found in the 
FUZZY database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Fuzzy Clustering window. 

1 Open the Fuzzy dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Fuzzy.s0. 
• Click Open. 

2 Open the Fuzzy Clustering window. 
• On the menus, select Analysis, then Clustering, then Fuzzy. The Fuzzy Clustering 

procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Fuzzy Clustering window, select the Variables tab.  
• Double-click in the Interval Variables box. This will bring up the variable selection 

window.  
• Select Red and Blue from the list of variables and then click Ok. “Red-Blue” will appear 

in the Interval Variables box.  

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Summary Section 
 
Summary Section 
 
Number Average Average 
Clusters Distance Silhouette F(U) Fc(U) D(U) Dc(U) 
2 24.294968 0.535378 0.6799 0.3598 0.1400 0.2800 
3 11.366128 0.704072 0.7102 0.5653 0.0861 0.1291 
4 8.594860 0.487322 0.5422 0.3896 0.2161 0.2881 
5 6.768054 0.340839 0.4783 0.3479 0.2837 0.3546 
 

This report actually appears last on the printout, but it is the first section that should be studied. 
This report lets you select the appropriate number of clusters. Select the number of clusters that 
maximizes the Average Silhouette and Fc(U) while minimizing Dc(U). In this case, three clusters 
are selected. 

Average Distance 
This is the value of the average dissimilarity. Note that this value has been rescaled as a 
percentage from the maximum distance in the dissimilarity matrix to improve readability. 

Average Silhouette 
This is the average of the silhouette values of all rows. The Silhouette statistic is discussed in the 
Medoid Partitioning chapter. It is used to aid in the search for the appropriate number of clusters 
by selecting the number of clusters that maximizes this value. 

F(U), Fc(U), D(U), Dc(U) 
The definitions of these statistics were presented earlier. Here we will note that we search for the 
number of clusters that maximizes Fc(U) and minimizes Dc(U). There will not always be an 
obvious choice as in this example. 

Once the appropriate number of clusters has been determined, the solution can be studied in 
detail. Since three clusters is appropriate for this database, only the results for three clusters will 
be shown here. 

Cluster Medoids Section 
 
Cluster Medoids Section 
 
Variable Cluster1 Cluster2 Cluster 3    
Red 2 14 7    
Blue 9 10 2    
Row 3 10 18    
 

This report gives the medoid (most centrally located) of the nearest hard cluster configuration. It 
is provided to help you recognize and interpret cluster. The last row of the report gives the row 
number (and label if designated) of the each cluster’s medoid. 
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Membership Summary Section 
 
Membership Summary Section 
   Sum of Bar of 
  Cluster Squared Squared Silhouette Silhouette 
Row Cluster Membership Memberships Memberships Amount Bar 
3 1 0.9362 0.8786 |IIIIIIIIIIIIIIIIIIIIIIIIII 0.7337 |IIIIIIIIIIIIIIIIIIIIII 
2 1 0.8785 0.7793 |IIIIIIIIIIIIIIIIIIIIIII 0.7313 |IIIIIIIIIIIIIIIIIIIIII 
5 1 0.8741 0.7722 |IIIIIIIIIIIIIIIIIIIIIII 0.6840 |IIIIIIIIIIIIIIIIIIIII 
1 1 0.8677 0.7618 |IIIIIIIIIIIIIIIIIIIIIII 0.6957 |IIIIIIIIIIIIIIIIIIIII 
4 1 0.8606 0.7507 |IIIIIIIIIIIIIIIIIIIIIII 0.6400 |IIIIIIIIIIIIIIIIIII 
6 1 0.4205 0.3531 |IIIIIIIIIII 0.1392 |IIII 
10 2 0.8745 0.7727 |IIIIIIIIIIIIIIIIIIIIIII 0.8284 |IIIIIIIIIIIIIIIIIIIIIIIII 
8 2 0.8718 0.7683 |IIIIIIIIIIIIIIIIIIIIIII 0.8168 |IIIIIIIIIIIIIIIIIIIIIIIII 
11 2 0.8613 0.7517 |IIIIIIIIIIIIIIIIIIIIIII 0.8033 |IIIIIIIIIIIIIIIIIIIIIIII 
9 2 0.8564 0.7439 |IIIIIIIIIIIIIIIIIIIIII 0.7854 |IIIIIIIIIIIIIIIIIIIIIIII 
12 2 0.8386 0.7164 |IIIIIIIIIIIIIIIIIIIII 0.8023 |IIIIIIIIIIIIIIIIIIIIIIII 
7 2 0.8188 0.6870 |IIIIIIIIIIIIIIIIIIIII 0.7523 |IIIIIIIIIIIIIIIIIIIIIII 
18 3 0.9196 0.8489 |IIIIIIIIIIIIIIIIIIIIIIIII 0.8228 |IIIIIIIIIIIIIIIIIIIIIIIII 
21 3 0.8668 0.7602 |IIIIIIIIIIIIIIIIIIIIIII 0.7976 |IIIIIIIIIIIIIIIIIIIIIIII 
19 3 0.8599 0.7492 |IIIIIIIIIIIIIIIIIIIIII 0.7840 |IIIIIIIIIIIIIIIIIIIIIIII 
17 3 0.8589 0.7478 |IIIIIIIIIIIIIIIIIIIIII 0.7790 |IIIIIIIIIIIIIIIIIIIIIII 
15 3 0.8524 0.7375 |IIIIIIIIIIIIIIIIIIIIII 0.7834 |IIIIIIIIIIIIIIIIIIIIIIII 
22 3 0.8226 0.6924 |IIIIIIIIIIIIIIIIIIIII 0.7630 |IIIIIIIIIIIIIIIIIIIIIII 
20 3 0.8222 0.6921 |IIIIIIIIIIIIIIIIIIIII 0.7604 |IIIIIIIIIIIIIIIIIIIIIII 
16 3 0.8012 0.6617 |IIIIIIIIIIIIIIIIIIII 0.7444 |IIIIIIIIIIIIIIIIIIIIII 
14 3 0.7992 0.6593 |IIIIIIIIIIIIIIIIIIII 0.7342 |IIIIIIIIIIIIIIIIIIIIII 
13 3 0.3734 0.3393 |IIIIIIIIII 0.1086 |III 
 

This report displays information about each row. The report is sorted by Silhouette Value within 
cluster. Notice how well the two outliers, rows six and thirteen, stand out on this report. 

Row 
The row number and, if designated, label of this individual. Each row of the database is 
represented on this report. 

Cluster 
This is the number of the cluster into which this row was classified. 

Cluster Membership 
This is the maximum of the memberships. It is the membership value for the cluster into which 
this row was assigned for the hard clustering. 

Sum of Squared Memberships 
All memberships for a given row are squared and summed. When a row is completely assigned to 
a single cluster, this value will be one. When the row is equally likely to be classified into each 
cluster, the value will be 1/K. Hence, rows with high values here are near the center of a cluster. 
Rows with low values here are outliers. 

Bar of Squared Memberships 
This is a bar graph of the sum of squared membership values. It will help you to detect rows that 
are not well clustered. 

Silhouette Amount 
This is the value of the silhouette. Its interpretation was presented in the introduction to the 
Medoid Clustering chapter and will not be repeated here. We note that the value should be 
positive and most rows should be greater than 0.50.  
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Silhouette Bar 
This is a bar graph of the silhouette values. It will help you to detect rows that are not well 
clustered. 

Membership Matrix Section 
 
Membership Matrix Section 
 
Row Cluster Prob in 1 Prob in 2 Prob in 3 
1 1 0.8677 0.0564 0.0759    
2 1 0.8785 0.0551 0.0664    
3 1 0.9362 0.0274 0.0364    
4 1 0.8606 0.0562 0.0832    
5 1 0.8741 0.0549 0.0709    
6 1 0.4205 0.3545 0.2250    
7 2 0.0849 0.8188 0.0963    
. . . . .  
. . . . .  
. . . . . 
 

This report displays the membership of each row in each cluster. 
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Chapter 449 

Regression 
Clustering 
Introduction 
This algorithm provides for clustering in the multiple regression setting in which you have a 
dependent variable Y and one or more independent variables, the X’s. The algorithm partitions the 
data into two or more clusters and performs an individual multiple regression on the data within 
each cluster. It is based on an exchange algorithm described in Spath (1985).  

The following chart shows data that were clustered using this algorithm. Notice how the two 
clusters actually intersect.  
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Regression Exchange Algorithm 
This algorithm is fairly simple to describe. The number of clusters, K, for a given run is fixed. 
The rows are randomly sorted into the groups to form K initial clusters. An exchange algorithm is 
applied to this initial configuration which searches for the rows of data that would produce a 
maximum decrease in a least-squares penalty function (that is, maximizing the increase in R-
squared at each step). The algorithm continues until no beneficial exchange of rows can be found. 
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Our experience with this algorithm indicates that its success depends heavily upon the initial-
random configuration. For this reason, we suggest that you try many different configurations. In 
one test, we found that the optimum resulted from only one in about fifteen starting 
configurations. Hence, we suggest that you repeat the process twenty-five or thirty times. The 
program lets you specify the number of repetitions. 

Number of Clusters 
A report is provided the gives the value of R-squared for each of the values of K. Select the value 
of K (number of clusters) that seems to maximize R-squared while minimizing K. Also, you 
should look at the plots of Y versus each X to help in determining the number of clusters. For 
example, the plot of the data on the previous page would suggest 2, 3, or 4 clusters. 

Data Structure 
The data are entered in the standard columnar format in which each column represents a single 
variable. One variable must be a dependent variable that will be regressed on the independent 
variables. 

The data used in our tutorial, a portion of which is given in the following table, were generated 
with a large X pattern. They are plotted in the scatter plot that was shown above. The data are 
contained in the REGCLUS database. 

 

REGCLUS dataset (subset) 

Y X 
80.58823 15.4088 
75.88235 20.12579 
73.52941 21.69811 
68.82353 23.27044 
17.05882 2.830189 
19.41177 4.402516 
19.41177 5.974843 
21.76471 9.119497 

Missing Values 
Rows with missing values are removed from the analysis. 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Dependent Variable 

Y: Dependent Variable 
Specify a single, dependent variable. Remember that the dependent variable is predicted by the 
independent variables. 

Independent Variables 

X’s: Independent Variables 
Specify one or more independent variables. These are used to predict the dependent variable. 

Include Intercept 
Specifies whether you want to include the Y-intercept term in the regression model. Under most 
circumstances, you would. 

Clustering Options 

Number of Random Starts 
This option specifies the number of different random configurations that should be run for each 
value of K. We suggest that about twenty-five repetitions be run since each initial configuration is 
completely random and the algorithm often converges to a non-optimal local optimum. 

Because of execution time, you might want to set this value to three or four until you have found 
an appropriate value for K and then reset this value to twenty-five for a second run. 

Maximum Iterations 
This option sets the number of internal iterations before the algorithm is aborted. It is possible for 
a set of data to put the algorithm into an infinite loop. This option prevents this. 

Minimum Rows Per Cluster 
The third box lets you specify the minimum number of rows per cluster. Remember that in 
regression analysis, each cluster must contain at least one more row than there are independent 
variables. 

Zero Exponent 
This is the exponent of the value used as zero by the regression algorithm. Because of rounding 
error, values lower than this value are reset to zero. If unexpected results are obtained, you might 
try using a smaller value, such as 1E-16. Note that 1E-5 is an abbreviation for the number 
0.00001.  

This box supplies the negative exponent. A value of 5 represents 1E-5 which is 0.00001. 
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Clustering Options – Number of 
Clusters 

Minimum Clusters 
The minimum value of K to search. A separate cluster analysis is attempted for each value 
between the Minimum Clusters and the Maximum Clusters. The actual number of clusters used is 
set above by the Number Clusters option. 

Maximum Clusters 
The maximum value of K to search. A separate cluster analysis is attempted for each value 
between the Minimum Clusters and the Maximum Clusters. The actual number of clusters used is 
set above by the Number Clusters option. 

Reported Clusters 
The is the number of clusters to be reported on. Although the program can find results for a range 
of cluster sizes, this option sets the size that is used in the detail and data storage sections. 

Format Options 

Label Variable 
This is an optional variable containing identification for each row. These labels are used to 
enhance the interpretability of the reports. 

Reports Tab 
The following options control the formatting of the reports.  

Select Reports 

Iteration Detail Report - Cluster Report 
Specify whether to display the indicated reports. 

Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 
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Storage Tab 
These options let you specify where to store the cluster number of each row on the current 
database. 

Storage Variable 

Store Cluster Id in Variable 
You can automatically store the cluster identification number of each row into the variable 
specified here. The configuration stored is for the value of K specified by the Reported Clusters 
option. 

Warning: Any data already in this variable are replaced by the cluster number. Be careful not to 
specify variables that contain important data. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Regression Clustering 
This section presents an example of how to run a cluster analysis of the data found in the 
REGCLUS database. This is a bivariate set of data generated to exhibit a large X pattern. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Regression Clustering window. 

1 Open the RegClus dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file RegClus.s0. 
• Click Open. 
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2 Open the Regression Clustering window. 
• On the menus, select Analysis, then Clustering, then Regression. The Regression 

Clustering procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Regression Clustering window, select the Variables tab.  
• Double-click in the Y: Dependent Variable box. This will bring up the variable 

selection window.  
• Select Y from the list of variables and then click Ok. “Y” will appear in the Interval 

Variables box.  
• Double-click in the X’s: Independent Variables box. This will bring up the variable 

selection window.  
• Select X from the list of variables and then click Ok. “X” will appear in the X’s: 

Independent Variables box.  
• Enter 5 for Number of Random Starts. 
• Enter 4 for Maximum Clusters. 
• Enter 2 for Reported Clusters. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Iteration Detail Section 
 
Iteration Detail Section 
Number of Replication R-Squared R-Squared 
Clusters Number Value Bar 
2 1 0.997218 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
2 2 0.997218 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
2 3 0.997218 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
2 4 0.997218 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
2 5 0.961698 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
 
3 1 0.998170 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
3 2 0.998170 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
3 3 0.997952 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
3 4 0.997952 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
3 5 0.998343 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
 
4 1 0.999457 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
4 2 0.999015 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
4 3 0.999489 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
4 4 0.998505 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
4 5 0.998975 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
 

This report displays the progress of the program through the various replications. 

Number of Clusters 
This column displays the number of clusters for the configurations presented on this row. 

Replication Number 
This column displays a sequence number for this replication. 
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R-Squared Value 
This is the R-Squared that would result from fitting a separate regression of Y on X within each 
cluster. As this value approaches one, the fit of the regression is better. 

R-Squared Bar 
This is a bar chart of the R-Squared Value. This helps you visually determine the optimum value 
for the number of clusters. 

Iteration Summary Section 
 
Iteration Summary Section 
Number of R-Squared R-Squared 
Clusters Value Bar 
2 0.997218 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
3 0.998343 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
4 0.999489 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
 

This section is the identical to the Iteration Detail Section except that only the row with the 
maximum value of R-Squared is displayed for each number of clusters. This report should help 
you determine the number of clusters by finding the first value of K where there is a large jump in 
the R-Squared value. 
In this example, there is no jump. The value of K selected would be two. 

Regression Coefficient Section 
 
Regression Coefficient Section 
 
Variable Cluster 1 Cluster 2     
Intercept 110.6421 18.26343     
X -1.866411 0.6797758     
 

This report displays the coefficients of each regression equation for each cluster. For example, 
since we selected two clusters, there are two regression equations. These are 

Y = 110.6421 - (1.866411) X  

and 

Y = 18.26343 + (0.6797758) X 
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Cluster Section 
 
Cluster Section 
 Cluster  
Row Number Y 
1 1 80.58823 
2 1 75.88235 
3 1 73.52941 
4 1 68.82353 
5 2 17.05882 
6 2 19.41177 
7 2 19.41177 
8 2 21.76471 
. . . 
. . . 
. . . 
 

This report displays a report of which cluster each row is assigned to. The value of the dependent 
variable is also displayed to help you quickly identify a particular row. The cluster number may 
be stored directly on the database for further analysis and plotting. 

Scatter Plot using Cluster Numbers 
Once the cluster numbers are stored, you may use them as a grouping variable in the Scatter Plot 
program. This will provide a plot such as this: 
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Chapter 450 

Double 
Dendrograms 
Introduction 
This chapter describes how to obtain a double dendrograms using the NCSS: Double 
Dendrograms procedure. Double dendrograms are dendrograms that cluster both the rows and the 
variables (columns) in a single graph. A set of eight hierarchical clustering algorithms are 
available including single linkage, complete linkage, and group average. The procedure outputs 
lists of the items in each cluster, linkage reports, and a double-dendrogram such as the following. 
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Hierarchical Cluster Algorithms  
Chapter 445 of the NCSS manuals gives an introduction to hierarchical clustering. We suggest 
that you browse that chapter to get a basic overview of this technique. We will present here only 
highlights from that chapter. 

We will first give brief comments about each of the eight hierarchical clustering techniques. 

Single Linkage 
Also known as nearest neighbor clustering, this is one of the oldest and most famous of the 
hierarchical techniques. The distance between two groups is defined as the distance between their 
two closest members. It often yields clusters in which individuals are added sequentially to a 
single group.  

Complete Linkage 
Also known as furthest neighbor or maximum method, this method defines the distance between 
two groups as the distance between their two farthest-apart members. This method usually yields 
clusters that are well separated and compact. 

Simple Average 
Also called the weighted pair-group method, this algorithm defines the distance between groups 
as the average distance between each of the members, weighted so that the two groups have an 
equal influence on the final result. 

Centroid 
Also referred to as the unweighted pair-group centroid method, this method defines the distance 
between two groups as the distance between their centroids (center of gravity or vector average). 
The method should only be used with Euclidean distances. 

Backward links may occur with this method. These are recognizable when the dendrogram no 
longer exhibits its simple tree-like structure in which each fusion results in a new cluster that is at 
a higher distance level (moves from right to left). With backward links, fusions can take place 
that result in clusters at a lower distance level (move from left to right). The dendrogram is 
difficult to interpret in this case. 

Median 
Also called the weighted pair-group centroid method, this defines the distance between two 
groups as the weighted distance between their centroids, the weight being proportional to the 
number of individuals in each group. Backward links (see discussion under Centroid) may occur 
with this method. The method should only be used with Euclidean distances. 

Group Average 
Also called the unweighted pair-group method, this is perhaps the most widely used of all the 
hierarchical cluster techniques. The distance between two groups is defined as the average 
distance between each of their members. 
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Ward’s Minimum Variance 
With this method, groups are formed so that the pooled within-group sum of squares is 
minimized. That is, at each step, the two clusters are fused which result in the least increase in the 
pooled within-group sum of squares. 

Flexible Strategy 
Lance and Williams (1967) suggested that a continuum could be made between single and 
complete linkage. The program lets you try various settings of these parameters which do not 
conform to the constraints suggested by Lance and Williams. 

One interesting exercise is to vary these values, trying to find the set that maximizes the 
cophenetic correlation coefficient. 

Dendrograms 
The agglomerative hierarchical clustering algorithms available in this program module build a 
cluster hierarchy that is commonly displayed as a tree diagram called a dendrogram. The 
algorithm begins by placing each object in a separate cluster. Then, at each step, the two clusters 
that are most similar (according to a specific definition of similarity) are joined into a single new 
cluster. Once fused, objects are never separated. The eight clustering methods that are available 
represent eight methods of defining the similarity between clusters. 

To help understand the dendrogram, consider the following example that has only two variables. 
Note that if we had only two variables, we perform the cluster analysis visually. The technique 
becomes useful once we have three or more variables to cluster. 

Suppose we wish to cluster the bivariate data shown in the following scatter plot. In this case, the 
clustering may be done visually. The data seem to exhibit three clusters and two singletons, 6 and 
13. 
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The following dendrogram was produced from the above data using popular the Group Average 
clustering algorithm.  
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The horizontal axis of the dendrogram represents the distance or dissimilarity between clusters. 
The vertical axis represents the objects and clusters. The dendrogram is fairly simple to interpret. 
Remember that our main interest is in similarity and clustering. Each joining (fusion) of two 
clusters is represented on the graph by the splitting of a horizontal line into two horizontal lines. 
The horizontal position of the split, shown by the short vertical bar, gives the dissimilarity 
between the two clusters.  

Looking at this dendrogram, you can see the three clusters as three branches that occur at about 
the same horizontal distance. The two outliers, 6 and 13, are added in rather arbitrarily at much 
higher distances. This is the interpretation. 

In this example we can compare our interpretation with an actual plot of the data. Unfortunately, 
this usually will not be possible because our data will consist of more than two variables. 
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Procedure Options 
This section of the manual describes the function of each of the options on the panel windows. 

Variables Tab 
This panel specifies the variables and the clustering options.  

Variables 
These options specify the variables that will be used in the analysis.  

Cluster Variables 
Specify the variables (columns) that will be clustered. These variables should be interval-type 
variables, meaning the variable contain continuous measurements that may be either positive or 
negative and follow a linear scale. Examples include height, weight, age, price, temperature, and 
time.  

A double dendrogram will be most useful when the cluster variables used are all on a similar 
scale. 

Grouping Variable 
This optional variable allows you to define a preliminary grouping pattern. By specifying a 
grouping variable here, you cause the clustering to take place within each group.  

Row Label Variable 
This optional variable contains labels that can be used for each row to aid in the interpretation. If 
this value is left blank, the row numbers will be used to identify the rows on the reports and 
dendrogram. 

Linkage Options 

Linkage Type (Clustering method) 
This option specifies which of the eight possible hierarchical techniques is used. These methods 
were described earlier. The choices are 

• Single Linkage (Nearest Neighbor)  

• Complete Linkage (Furthest Neighbor) 

• Simple Average (Weighted Pair-Group) 

• Group Average (Unweighted Pair-Group) 

• Median (Weighted Pair-Group Centroid) 
Requires the Distance Method to be Euclidean. 

• Centroid (Unweighted Pair-Group Centroid) 
Requires the Distance Method to be Euclidean. 
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• Ward’s Minimum Variance 
Requires the Distance Method to be Euclidean. 

• Flexible Strategy 
Requires the Distance Method to be Euclidean. 

Linkage Options – Flexible Strategy 
Parameters 

Alpha  
Specifies the values of α i and α j when the Flexible Strategy method is selected. You may enter a 
number or the letters “NI/NK.” The “NI/NK” will cause this constant to be calculated and used as 
it is in the Centroid and Group Average methods. 

Beta  
Specifies the values of β when the Flexible Strategy method is selected. You may enter a number 
between -1 and 1 or the letters “NIJ/NK.” The “NIJ/NK” will cause this constant to be calculated 
and used as it is in the Centroid method. 

Gamma  
Specifies the values of γ when the Flexible Strategy method is selected. You may enter any 
number. 

Clustering Options 
These options specify the cluster analysis technique.  

Distance Method 
This option specifies whether Euclidean or Manhattan distance is used. Euclidean distance may 
be thought of as straight-line (or as the crow flies) distance. Manhattan distance is often referred 
to as city-block distance since it is analogous to walking along an imaginary sidewalk to get from 
point A to B. Most users will use Euclidean distance. 

Scaling Method  
Specify the type of scaling to be used. Possible choices are Standard Deviation, Average Absolute 
Deviation, Range, and None. Since expression data is already scaled, we recommend selecting 
None here.  

Four types of scaling are available: absolute value, standard deviation, range, and none. Each of 
these have the general form: 

ij
ij i

i
z = x - A

B  
where xij represents the original data value for gene i and row j and zij represents the 
corresponding scale value. The scaling choice determines the values used for Ai and Bi.  

The following table shows the scaling mechanism used for each type of scaling. 
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Type of Scaling Value of Ai  Value of Bi 
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Reports Tab 
The options on this panel control which reports and plots are generated.  

Select Reports 
These options designate which reports and plots to display. 

Cluster Report - Dendrogram 
Specify whether to display the indicated reports and plots. 

Report Options 
These options limit the cluster reports. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Max Distance Items 
This option specifies the maximum size of a distance matrix that will be displayed in the Distance 
Section report. Distance matrices with more items than this will not be displayed. 

This option is here because for large datasets, the distance matrix may be very large. 

Max Linkage Clusters 
The Linkage Report can be long if the results for all links are printed. This parameter allows you 
to limit the number of links displayed so that only meaningful values are printed. 

Reported Clusters 
This option specifies the number of clusters used in the reports.  
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Dendrogram Tab 
These options specify the double-dendrogram plot. 

Heat Map 
These options set the attributes of the heat map (the color scale).  

Heat Map Colors 
Click this box to bring up the Heat Map Window. The Heat Map window allows you to set the 
colors, the number of intervals (color gradations) in the heat map, and the type of scaling (regular, 
logarithmic, or percentile) that is to be used. 

Heat Map - Legend 

Label 
This option defines the heading of the heat map legend. It sets the color, size, style, and value of 
the label text. 

Show Legend 
Check this box to display the heat map legend. 

Number of Values 
This option specifies the number of reference numbers that are to be displayed in the heat map 
legend. 

Values Format 
Click this button to bring up a window that sets the attributes of the legend reference values. 

Miscellaneous 
These are miscellaneous options for the double-dendrogram.  

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Lines 
This option sets the attributes of the dendrogram lines. 

Show Trunk (Beginning Line) 
Check this box to display the beginning line of the dendrograms. Since this line provides little 
information and sometimes adds to the clutter of the plot; it may be desirable to remove it. 

Variables Dendrogram 
These options set the attributes of the variables dendrogram—the dendrogram on the left.  

Axis Label 
This is the text of the label. Press the button on the right of the field to specify the font of the text. 
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Position 
This option controls the placement of the axis label. You can place it either on the left or right 
edge of the plot. 

Space 
This option specifies the percentage of the horizontal space that is devoted to the variables 
dendrogram. A value near 30 is a good choice. 

Label Settings… 
This option specifies the characteristics of the variable names that are displayed on the right side 
of the plot. It displays a window that edits their font size and color. When you have fifty to one 
hundred genes, a font size of 4 or even 3 should be used. 

Variables Dendrogram - Legend 

Label 
This option defines the heading of the dendrogram's legend. It sets the color, size, style, and value 
of the label text. 

Show Legend 
Check this box to display the variable dendrogram legend. 

Number of Values 
This option specifies the number of reference numbers that are to be displayed in the 
dendrogram's legend. 

Value Format… 
Click this button to bring up a window that sets the attributes of the legend reference values. 

Rows Dendrogram 
These options set the attributes of the rows dendrogram—the dendrogram at the top.  

Axis Label 
This is the text of the label. The character {X} is replaced by the Row Label Variable's name. 
Press the button on the right of the field to specify the font of the text. 

Position 
This option controls the placement of the axis label. You can place it either on the bottom or top 
of the plot. 

Space 
This option specifies the percentage of the vertical space that is devoted to the rows dendrogram. 
A value near 30 is a good choice. 

Label Settings… 
This option specifies the characteristics of the row numbers or labels that are displayed at the 
bottom of the plot. It displays a window that edits their font size and color. When you have fifty 
to one hundred rows, a font size of 4 or even 3 should be used. 
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Rows Dendrogram - Legend 

Label 
This option defines the heading of the dendrogram's legend. It sets the color, size, style, and value 
of the label text. 

Show Legend 
Check this box to display the variable dendrogram legend. 

Number of Values 
This option specifies the number of reference numbers that are to be displayed in the 
dendrogram's legend. 

Value Format… 
Click this button to bring up a window that sets the attributes of the legend reference values. 

Titles Tab 
These options set the attributes of the attributes of the titles shown at the top and bottom of the 
plot.  

Titles at the Top of the Plot 
These options set the attributes of the attributes of the titles shown at the top of the plot.   

Top Title 1 
This sets the text and attributes of the top title line. The characters {Y} and {X} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 

Top Title 2 
This sets the text and attributes of a second title line, usually have a smaller font size. The 
characters {Y} and {X} are replaced by appropriate names. Press the button on the right of the 
field to specify the font of the text. 

Titles at the Bottom of the Plot 
These options set the attributes of the attributes of the titles shown at the bottom of the plot.   

Bottom Title 1 
This sets the text and attributes of the first title line at the bottom of the plot. The characters {Y} 
and {X} are replaced by appropriate names. Press the button on the right of the field to specify the 
font of the text. 

Bottom Title 2 
This sets the text and attributes of a second title line at the bottom of the plot. The characters {Y} 
and {X} are replaced by appropriate names. Press the button on the right of the field to specify the 
font of the text. 
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Colors Tab 
These options set the background colors of the dendrogram.  

Group Background Colors (Used with 
Grouping Variable) 
These options set the background colors of the rows dendrogram when a Grouping Variable (see 
Variables Tab above) has been specified.  

Group 1 - Group 10 
These options set the background colors of the region of the rows dendrogram devoted to rows 
within the corresponding group. 

Background Colors of Various Plot 
Regions 

Rows Dendrogram 
This option sets the background color of the region of the plot that displays the rows dendrogram. 

Variables Dendrogram 
This option sets the background color of the region of the plot that displays the variables 
dendrogram. 

Overall Background Color 
This option sets the background color of the overall background of the dendrogram. 

Storage Tab 
The cluster id number for each row can be stored on the spreadsheet for further analysis. This 
option designates the column of the spreadsheet in which the cluster id's are stored. 

Store the Cluster Id Number of Each 
Row in this Variable 
The cluster id number for each row can be stored on the spreadsheet for further analysis. This 
option designates the column of the spreadsheet in which the cluster id's are stored. 

WARNING: Existing data in this column will be replaced with the new values automatically when 
the procedure is run.  

Cluster Id Variable 
The cluster id number for each row is stored in this column. To omit the automatic storage of the 
cluster id's, leave this option blank. 
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Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Creating a Double Dendrogram 
This section presents an example of how to create a double dendrogram of the exam score data. 
The data are found in the EXAMS database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Double Dendrograms window. 

1 Open the EXAMS dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Exams.s0. 
• Click Open. 

2 Open the Double Dendrograms window. 
• On the menus, select Analysis, then Clustering, then Double Dendrograms. The 

Double Dendrograms procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Double Dendrograms window, select the Variables tab.  
• Double-click in the Cluster Variables box. This will bring up the variable selection 

window.  
• Select Exam_1 through Exam_5 from the list of variables and then click Ok. “Exam_1 - 

Exam_5” will appear in the Interval Variables box.  
• Double-click in the Label Variable box. This will bring up the variable selection 

window.  
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• Select Student from the list of variables and then click Ok. “Student” will appear in the 
Label Variable box.  

• Set Scaling Method to None. 

4 Specify the report. 
• On the Double Dendrograms window, select the Reports tab.  
• Check Dendrogram.  
• Uncheck all other reports. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Double Dendrogram Section 
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For examples of the other available reports, see Chapter 445, Hierarchical Clustering. 
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Chapter 455 

Meta-Analysis of 
Means 
Introduction 
This module performs a meta-analysis on a set of two-group, continuous-scale, studies. These 
studies have a treatment group and a control group. Each study’s result may be summarized by 
the sample size, mean, and standard deviation of each of the two groups. The program provides a 
complete set of numeric reports and plots to allow the investigation and presentation of the 
studies. The plots include the forest plot, radial plot, and L’Abbe plot. Both fixed-, and random-, 
effects models are available for analysis.  

Meta-Analysis refers to methods for the systematic review of a set of individual studies with the 
aim to combine their results. Meta-analysis has become popular for a number of reasons: 

1. The adoption of evidence-based medicine which requires that all reliable information is 
considered. 

2. The desire to avoid narrative reviews which are often misleading. 

3. The desire to interpret the large number of studies that may have been conducted about a 
specific treatment.  

4. The desire to increase the statistical power of the results be combining many small-size 
studies. 

The goals of meta-analysis may be summarized as follows. A meta-analysis seeks to 
systematically review all pertinent evidence, provide quantitative summaries, integrate results 
across studies, and provide an overall interpretation of these studies. 

We have found many books and articles on meta-analysis. In this chapter, we briefly summarize 
the information in Sutton et al (2000) and Thompson (1998). Refer to those sources for more 
details about how to conduct a meta-analysis. 

Treatment Effects  
Suppose you have obtained the results for k studies, labeled i = 1,…,k. Each study consists of a 
treatment group (T) and a control group (C). The results of each study are summarized by six 
statistics: 

nTi   the number of subjects in the treatment group. 

nCi   the number of subjects in the control group. 
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xTi   the sample mean of the treatment group which estimates the treatment mean μTi . 

xCi   the sample mean of the control group which estimates the control mean μCi . 

sTi   the sample standard deviation of the treatment group. 

sCi   the sample standard deviation of the control group. 

Mean Difference 
The scales (e.g. blood pressure, pulse rate, volume, etc.) of all studies must be the same. If the 
logarithm has been taken in one study, it must be taken in all studies. You cannot combined 
studies with different scales using this program! 

The measure of treatment effect for study i is 

CiTii μμθ −=  

which is estimated by 

CiTii xx −=θ̂  

The standard deviation of the difference is 
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Defining the Study Parameters 
Confidence intervals based on the t distribution may be defined for iθ  in the usual manner. 

( )inni Vt
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ˆˆˆ

2/1,2 −−+±  

It will be useful in the sequel to make the following definition of the weights. 

( )ii Vv θ̂ˆ=  

ii vw /1=  
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Hypothesis Tests 
Several hypothesis tests have be developed to test the various hypotheses that may be of interest. 
These will be defined next. 

Overall Null Hypothesis 
Two statistical tests have been devised to test the overall null hypothesis that all treatment effects 
are zero. The null hypothesis is written 

kiH i ,,1    0:0 L==θ  

Nondirectional Test 
The nondirectional alternative hypothesis that at least one θi ≠ 0  may be tested by comparing the 
quantity 
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with a  distribution. 2
kχ

Directional Test 
A test of the more interesting directional alternative hypothesis that θ θi = ≠ 0  for all i may be 
tested by comparing the quantity 
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with a  distribution. Note that this tests the hypothesis that all effects are equal to the same 
nonzero quantity. 

2
1χ

Effect-Equality (Heterogeneity) Test 
When the overall null hypothesis is rejected, the next step is to test whether all effects are equal, 
that is, whether the effects are homogeneous. Specifically, the hypothesis is 

kiH i ,,1    :0 L==θθ  

versus the alternative that at least one effect is different, that is, that the effects are heterogeneous. 
This may also be interpreted as a test of the study-by-treatment interaction. 

This hypothesis is tested using Cochran’s Q test which is given by 
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The test is conducted by comparing Q to a  distribution. 2
1−kχ

Fixed versus Random Effects Combined Confidence 
Interval 
If the effects are be assumed to be equal (homogeneous), either through testing or from other 
considerations, a fixed effects model may be used to construct a combined confidence interval. 
However, if the effects are heterogeneous, a random effects model should be used to construct the 
combined confidence interval. 

Fixed Effects Model 
The fixed effects model assumes homogeneity of study results. That is, it assumes that θθ =i  for 
all i. This assumption may not be realistic when combining studies with different patient pools, 
protocols, follow-up strategies, doses, durations, etc.  

If the fixed effects model is adopted, the inverse variance-weighted method as described by 
Sutton (2000) page 58 is used to calculate the confidence interval for θ . The formulas used are 

( )θθ α
ˆˆˆ
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where  is the appropriate percentage point from the standardized normal distribution and z1−α / 2
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Random Effects Model 
The random effects model assumes that the individual iθ  come from a random distribution with 

fixed mean θ  and variance .  Sutton (2000) page 74 presents the formulas necessary to 
conduct a random effects analysis using the weighted method. The formulas used are 
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where  is the appropriate percentage point from the standardized normal distribution and z1−α / 2
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Graphical Displays 
A number of plots have been devised to display the information in a meta-analysis. These include 
the forest plot, the radial plot, and the L’Abbe plot. More will be said about each of these plots in 
the Output section. 

Data Structure 
The data are entered into a dataset using one row per study. Six variables are required to hold the 
sample size, mean, and standard deviation of each study. In addition to these, an additional 
variable is usually used to hold a short (3 or 4 character) label. Another variable may be used to 
hold a grouping variable. 

As an example, we will use data referred to in Sutton (2000) page 30 as the dental dataset. This 
dataset reviews nine randomized clinical trials that were conducted to study the effects of sodium 
fluoride (NaF) with sodium monofluorophosphate (SMFP). These nine studies were all on the 
same continuous scale, so their results could be analyzed using the meta-analysis techniques 
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presented in this chapter. These data are contained in the SUTTON30 database. You should load 
this database to see how the data are arranged.  

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
The options on this screen control the variables that are used in the analysis. 

Variables 

Treatment N Variable 
Specify the variable containing the sample size for the treatment group. Each row of data 
represents a separate study. 

Treatment Mean Variable 
Specify the variable containing the mean of the treatment group. Each row of data represents a 
separate study. 

Treatment S.D. Variable 
Specify the variable containing the standard deviation (not the standard error) of the treatment 
group. Each row of data represents a separate study. 

Control N Variable 
Specify the variable containing the sample size for the control group. Each row of data represents 
a separate study. 

Control Mean Variable 
Specify the variable containing the mean of the control group. Each row of data represents a 
separate study. 

Control S.D. Variable 
Specify the variable containing the standard deviation (not the standard error) of the control 
group. Each row of data represents a separate study. 

Variables – Optional Variables 

Label Variable 
Specify an optional variable containing a label for each study (row) in the database. This label 
should be short (< 8 letters) so that it can fit on the plots. 

Group Variable 
Specify an optional variable containing a group identification value. Each unique value of this 
variable will receive its own plotting symbol on the forest plots. Some reports are sorted by these 
group values. 
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Combine Studies Method 

Combine Studies Using 
Specify the method used to combine treatment effects. 

Use the Fixed Effects method when you do not want to account for the variation between studies. 

Use the Random Effects method when you want to account for the variation between studies as 
well as the variation within the studies. 

Reports Tab 
The options on this screen control the appearance of the reports. 

Select Reports 

Summary Report - Outcome Detail Reports 
Indicate whether to display the corresponding report.  

Select Plots 

Forest Plot – L’Abbe Plot 
Indicate whether to display the corresponding plot.  

Report Options 

Alpha Level 
This setting controls the confidence coefficient used in the confidence limits. Note that 100 x (1 - 
alpha)% confidence limits will be calculated. This must be a value between 0 and 0.5. The most 
common choice is 0.05, which results in 95% confidence intervals. 

Show Notes 
Indicate whether to show the notes at the end of reports. Although these notes are helpful at first, 
they may tend to clutter the output. This option lets you omit them. 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. Single precision is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Report Options – Decimal Places 

Probability Values -  T Values 
This setting controls the number of digits to the right of the decimal place that are displayed when 
showing this item.  
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Plot Options 

Plot Options – Legend Options 

Show Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies the title of the legend. Click the button on the right to specify the font size, color, and 
style of the legend text. The characters {G} are replaced with the name of the Group Variable. 

Plot Options – Plot Symbol Options 

Symbols Proportional to Sample Size 
Check this box to cause the size of the plotting symbols on forest plots and L’Abbe plots to be 
proportional to relative study size. The larger the sample size, the larger the symbol. The range of 
the size of the symbol is controlled by the Size Min Pcnt and Size Max Pcnt options below.  

Size Min Pcnt 
When the Symbols Proportional to Sample Size option is checked, this is percentage adjustment 
that occurs to the smallest sample size. The recommended value is 50. Typical values range from 
20 to 99.  

The formula for a symbol’s size is 
Actual Symbol Size = (Normal Symbol Size)*Radius 

where 
Radius = [(Min Pct) + (Max Pct - Min Pct)*(Sample Size)/(Max Sample Size)]/100 

Size Max Pcnt 
When the Symbols Proportional to Sample Size option is checked, this is percentage adjustment 
that occurs to the largest sample size. The recommended value is 150. Typical values range from 
101 to 200.  

Forest Plot Tab 
The options on this panel control the appearance of the forest plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 
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Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Forest Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the Forest style file is used. These style files are created 
in the Scatter Plot procedure. 

Ref. Line 
This option lets you indicate whether to display the reference line and the characteristics of that 
line.  

Difference Ref. Value 
This is the position of the reference line on the forest plot.  

Titles 

Plot Title 
This is the text of the title. The characters {X} are replaced by the output measure. Press the 
button on the right of the field to specify the font of the text. 

Radial Plot Tab 
The options on this panel control the appearance of the radial plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 
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Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Radial Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. These style files are created in the Scatter Plot procedure. 

Symbol 
Specify a symbol. Usually, no symbol is used.  

Symbol Font Size 
This option lets you specify the size of font used to display the row numbers or row labels.  

Titles 

Plot Title 
This is the text of the title. The characters {G} are replaced by the output measure. Press the 
button on the right of the field to specify the font of the text. 

L’Abbe Plot Tab 
The options on this panel control the appearance of the L’Abbe plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 
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Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

L’Abbe Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. These style files are created in the Scatter Plot procedure. 

Titles 

Plot Title 
This is the text of the title. Press the button on the right of the field to specify the font of the text. 

Symbols Tab 
These options set the type, color, size, and style of the plotting symbols. Symbols for up to 
fourteen groups may be used. When no Group Variable is specified, the options made for Symbol 
1 are used to define the plot symbol. Following is an example of possible symbol settings for two 
groups. 

Plotting Symbols 
Click on the symbol or on the button to its right to display a window that allows you to change 
the characteristics of the plotting symbol. 

Storage Tab 
These options let you specify if, and where on the database, various statistics are stored. 

Warning: Any data already in these variables are replaced by the new data. Be careful not to 
specify variables that contain important data. 

Data Storage Options 

Storage Option 
This option controls whether the values indicated below are stored on the database when the 
procedure is run. 

• Do not store data 
No data are stored even if they are checked. 
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• Store in empty columns only 
The values are stored in empty columns only. Columns containing data are not used for data 
storage, so no data can be lost. 

• Store in designated columns 
Beginning at the First Storage Variable, the values are stored in this column and those to the 
right. If a column contains data, the data are replaced by the storage values. Care must be 
used with this option because it cannot be undone. 

Store First Variable In 
The first item is stored in this variable. Each additional item that is checked is stored in the 
variables immediately to the right of this variable.  

Leave this value blank if you want the data storage to begin in the first blank column on the right-
hand side of the data. 

Warning: existing data in these variables is automatically replaced, so be careful. 

Data Storage Options – Select Items 
to Store on the Spreadsheet 

Mean Difference - Weights 
Indicate whether to store these row-by-row values, beginning at the variable indicated by the 
Store First Variable In option.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Meta-Analysis of Means 
This section presents an example of how to analyze the data contained in the SUTTON30 
database. This dataset contains data for nine randomized clinical trials that were conducted to 
study the effect of fluoridation. The NaF data represent the control group and the SMFP represent 
the treated group.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Meta-Analysis of Means window. 

1 Open the SUTTON30 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Sutton30.s0. 
• Click Open. 

2 Open the Meta-Analysis of Means window. 
• On the menus, select Analysis, then Meta-Analysis, then Meta-Analysis of Means. The 

Meta-Analysis of Means procedure window will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Select the variables. 
• Select the Variables tab.  
• Set the Treatment N Variables to SMFPN. 
• Set the Treatment Mean Variables to SMFPMean. 
• Set the Treatment S.D. Variables to SMFPSD. 
• Set the Control N Variables to NaFN. 
• Set the Control Mean Variables to NaFMean. 
• Set the Control S.D. Variables to NaFSD. 
• Set the Label Variable to Study. 

4 Specify the reports. 
• Select the Reports tab.  
• Check the Summary Report option box. 
• Check the Heterogeneity Tests option box. 
• Check the Outcome Detail Reports option box. 
• Check the Forest Plot (By Measure) option box. 
• Check Radial Plot option box. 
• Check the L’Abbe Plot option box. 

5 Specify the radial plot. 
• Select the Radial Plot tab.  
• Set the Vertical Axis Minimum to -4. 
• Set the Vertical Axis Maximum to 4. 
• Set the Horizontal Axis Minimum to 0. 
• Set the Horizontal Axis Maximum to 6. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Run Summary Section 
 

Parameter Value Parameter Value 
N Treatment Variable SMFPN N Control Variable NaFN 
Mean Treatment Variable SMFPMean Mean Control Variable NaFMean 
SD Treatment Variable SMFPSD SD Control Variable NaFSD 
Group Variable None Number Groups 1 
Row Label Variable Study Rows Processed 9 
  

This report records the variables that were used and the number of rows that were processed. 

Numeric Summary Section 
 

Study NT/NC Mean T Mean C Difference SD T SD C 
S1 113/134 6.8200 5.9600 0.8600 4.7200 4.2400 
S2 151/175 5.0700 4.7400 0.3300 5.3800 4.6400 
S3 140/137 2.5100 2.0400 0.4700 3.2200 2.5900 
S4 179/184 3.2000 2.7000 0.5000 2.4600 2.3200 
S5 169/174 5.8100 6.0900 -0.2800 5.1400 4.8600 
S6 736/754 4.7600 4.7200 0.0400 5.2900 5.3300 
S7 209/209 10.9000 10.1000 0.8000 7.9000 8.1000 
S8 1122/1151 3.0100 2.8200 0.1900 3.3200 3.0500 
S9 673/679 4.3700 3.8800 0.4900 5.3700 4.8500 
 
[Combined] 
Average     0.2835  
 
Note: This report shows the input data for each study in the analysis. The 'Average' values are 
actually weighted averages with weights based on the effects model that was selected. 
 

This report summarizes the input data. You should scan it for any mistakes. Note that the 
‘Average’ line provides the estimated group average.  

NT/NC 
These are the count values that were read from the database. 

Mean T 
These are the input treatment means. 

Mean C 
These are the input control means. 

Difference 
These are the computed values of Mean T minus Mean C. These difference values are the effects 
of interest in the analysis. 

SD T 
These are the input treatment standard deviations. 

SD C 
These are the input control standard deviations. 
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Nondirectional Zero-Effect Test 
 

 Outcome   Prob 
Rows Measure Chi-Square DF Level 
Combined Mean Difference 14.8417 9 0.0954 
 

This reports the results of the nondirectional zero-effect chi-square test designed to test the null 
hypothesis that all treatment effects are zero. The null hypothesis is written 

H ii0 0 1: , k,θ = = L  

The alternative hypothesis is that at least one θi ≠ 0 , that is, at least one study had a statistically 
significant result. 

Chi-Square 
This is the computed chi-square value for this test. The formula was presented earlier. 

DF 
This is the degrees of freedom. For this test, the degrees of freedom is equal to the number of 
studies. 

Prob Level 
This is the significance level of the test. If this value is less than the nominal value of alpha 
(usually 0.05), the test is statistically significant and the alternative is concluded. If the value is 
larger than the specified value of alpha, no conclusion can be drawn other than that you do not 
have enough evidence to reject the null hypothesis. 

Directional Zero-Effect Test 
 

 Outcome   Prob 
Rows Measure Chi-Square DF Level 
Combined Mean Difference 9.4395 1 0.0021 
 

This reports the results of the directional zero-effect chi-square test designed to test the overall 
null hypothesis that all treatment effects are zero. The null hypothesis is written 

H ii0 0 1: , k,θ = = L  

The alternative hypothesis is that θ θi = ≠ 0  for all i, that is, that all effects are equal to the same, 
non-zero value. 

Chi-Square 
This is the computed chi-square value for this test. The formula was presented earlier. 

DF 
This is the degrees of freedom. For this test, the degrees of freedom is equal one. 

Prob Level 
This is the significance level of the test. If this value is less than the specified value of alpha 
(usually 0.05), the test is statistically significant and the alternative is concluded. If the value is 
larger than the specified value of alpha, no conclusion can be drawn other than that you do not 
have enough evidence to reject the null hypothesis. 
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Effect-Equality (Heterogeneity) Test 
 

 Outcome Cochran’s  Prob 
Treatment Measure Q DF Level 
Combined Mean Difference 5.4022 8 0.7139 
 

This reports the results of the effect-equality (homogeneity) test. This chi-square test was 
designed to test the null hypothesis that all treatment effects are equal. The null hypothesis is 
written 

H ii0 1: , k,θ θ= = L  

The alternative is that at least one effect is different, that is, that the effects are heterogeneous. 
This may also be interpreted as a test of the study-by-treatment interaction. This test may help 
you determine whether to use a Fixed Effects model (used for homogeneous effects) or a Random 
Effects model (heterogeneous effects). 

Cochran’s Q 
This is the computed chi-square value for Cochran’s Q statistic. The formula was presented 
earlier. 

DF 
This is the degrees of freedom. For this test, the degrees of freedom is equal to the number of 
studies minus one.. 

Prob Level 
This is the significance level of the test. If this value is less than the specified value of alpha 
(usually 0.05), the test is statistically significant and the alternative is concluded. If the value is 
larger than the specified value of alpha, no conclusion can be drawn other than that you do not 
have enough evidence to reject the null hypothesis. 

Mean Difference Detail Section 
 
    95.0%  95.0% Percent 
   Lower Upper Random 
 Mean Standard Confidence Confidence Effects 
Study Difference Error Limit Limit Weight 
S1 0.8600 0.5704 -0.2579 1.9779 2.6172 
S2 0.3300 0.5549 -0.7577 1.4177 2.7648 
S3 0.4700 0.3516 -0.2191 1.1591 6.8887 
S4 0.5000 0.2509 0.0082 0.9918 13.5238 
S5 -0.2800 0.5400 -1.3384 0.7784 2.9199 
S6 0.0400 0.2752 -0.4993 0.5793 11.2455 
S7 0.8000 0.7826 -0.7340 2.3340 1.3900 
S8 0.1900 0.1337 -0.0720 0.4520 47.6529 
S9 0.4900 0.2782 -0.0554 1.0354 10.9974 
 
[Combined] 
Average 0.2835 0.0923 0.1026 0.4643  
 

This report displays results for the mean difference outcome measure.  

Confidence Limits 
These are the lower and upper confidence limits (the formulas were given earlier in this chapter). 
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Weights 
The last column gives the relative (percent) weight used in creating the weighted average. Using 
these values, you can decide how much influence each study has on the weighted average. 

Forest Plot 
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This plot presents the results for each study on one plot. The size of the plot symbol is 
proportional to the sample size of the study. The points on the plot are sorted by the mean 
difference. The lines represent the confidence intervals about the mean differences. Note that the 
narrower the confidence limits, the better.  
By studying this plot, you can determine the main conclusions that can be drawn from the set of 
studies. For example, you can determine how many studies were significant (the confidence 
limits do not intersect the vertical line at 0.0).  
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Radial Plot 
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The radial (or Galbraith) plot shows the z-statistic (outcome divided by standard error) on the 
vertical axis and a measure of weight on the horizontal axis. Studies that have the largest weight 
are closest to the Y axis. Studies within the limits are interpreted as homogeneous. Studies 
outside the limits may be outliers.   

L’Abbe Plot 
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The L’Abbe plot displays the treatment mean on vertical axis versus the control mean on the 
horizontal axis. Homogenous studies will be arranged along the diagonal line. This plot is 
especially useful in determining if the relationship between the treatment group and the control 
group is the same for all values of the control group risk.  
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Chapter 456 

Meta-Analysis of 
Proportions 
Introduction 
This module performs a meta-analysis of a set of two-group, binary-event studies. These studies 
have a treatment group (arm) and a control group. The results of each study may be summarized 
as counts in a 2-by-2 table. The program provides a complete set of numeric reports and plots to 
allow the investigation and presentation of the studies. The plots include the forest plot, radial 
plot, and L’Abbe plot. Both fixed-, and random-, effects models are available for analysis.  

Meta-Analysis refers to methods for the systematic review of a set of individual studies with the 
aim to combine their results. Meta-analysis has become popular for a number of reasons: 

1. The adoption of evidence-based medicine which requires that all reliable information is 
considered. 

2. The desire to avoid narrative reviews which are often misleading. 

3. The desire to interpret the large number of studies that may have been conducted about a 
specific treatment.  

4. The desire to increase the statistical power of the results be combining many small-size 
studies. 

The goals of meta-analysis may be summarized as follows. A meta-analysis seeks to 
systematically review all pertinent evidence, provide quantitative summaries, integrate results 
across studies, and provide an overall interpretation of these studies. 

We have found many books and articles on meta-analysis. In this chapter, we briefly summarize 
the information in Sutton et al (2000) and Thompson (1998). Refer to those sources for more 
details about how to conduct a meta-analysis. 

Treatment Effects  
Suppose you have obtained the results for k studies, labeled i = 1,…,k. Each study consists of a 
treatment group (T) and a control group (C). The results of each study are summarized by four 
counts: 

ia  the number of subjects in the treatment group having the event of interest. 

ib  the number of subjects in the control group having the event of interest. 
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ic   the number of subjects in the treatment group not having the event of interest. 

id   the number of subjects in the control group not having the event of interest. 

Occasionally, one of these counts will be zero which causes calculation problems. To avoid this, 
the common procedure is to add a small value of 0.5 or 0.25 to all counts so that zero counts do 
not occur. 

Risks 
These counts may be used to calculate estimates of the event-risk in the treatment group as 
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i
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and in the control group as 
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Based on these risks, three measures of treatment effect may be defined and used in the meta-
analysis. These are the odds ratio, the risk ratio, and the risk difference.  

Odds Ratio 
The odds ratio is the most commonly used measure of treatment effect. It is defined as follows.  
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For statistical analysis, the logarithm of the odds ratio is usually used because its distribution is 
more accurately approximated by the normal distribution for smaller sample sizes. The variance 
of the sample log odds ratio is estimated by 
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Risk Ratio or Relative Risk 
The risk ratio is calculated as follows.  
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Like the odds ratio, the logarithm of the risk ratio is usually used because its distribution is more 
accurately approximated by the normal distribution for smaller sample sizes. The variance of the 
sample log risk ratio is estimated by 

( )( )
iiiiii

i dbbcaa
RRV

+
−+

+
−=

1111lnˆ  



 Meta-Analysis of Proportions  456-3 

Risk Difference 
The risk difference is calculated as follows. 

CiTii ppRD −=  

The estimated variance of the sample risk difference is given by 
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Defining the Study Parameters 
Let iθ  represent the outcome measure created from the 2-by-2 table. That is, iθ  may be the odds 
ratio, risk ratio, or risk difference. Let  represent the estimate of iθ̂ iθ  from the study. Confidence 
intervals based on the normal distribution may be defined for iθ  in the usual manner. 

( )ii Vz θθ α
ˆˆˆ

2/1−±  

In the case of the odds ratio and the risk ratio, the interval is created on the logarithmic scale and 
then transformed back to the original scale. 

It will be useful in the sequel to make the following definition of the weights. 

( )ii Vv θ̂ˆ=  

ii vw /1=  

Hypothesis Tests 
Several hypothesis tests have be developed to test the various hypotheses that may be of interest. 
These will be defined next. 

Overall Null Hypothesis 
Two statistical tests have been devised to test the overall null hypothesis that all treatment effects 
are zero. The null hypothesis is written 

kiH i ,,1     :0 L==θθ  

Nondirectional Test 
The nondirectional alternative hypothesis that at least one θi ≠ 0  may be tested by comparing the 
quantity 
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Directional Test 
A test of the more interesting directional alternative hypothesis that 0≠= θθi  for all i may be 
tested by comparing the quantity 
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with a  distribution. Note that this tests the hypothesis that all effects are equal to the same 
nonzero quantity. 

2
1χ

Effect-Equality (Heterogeneity) Test 
When the overall null hypothesis is rejected, the next step is to test whether all effects are equal, 
that is, whether the effects are homogeneous. Specifically, the hypothesis is 

kiH i ,,1     :0 L==θθ  

versus the alternative that at least one effect is different, that is, that the effects are heterogeneous. 
This may also be interpreted as a test of the study-by-treatment interaction. 

This hypothesis is tested using Cochran’s Q test which is given by 
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The test is conducted by comparing Q to a  distribution. 2
1−kχ
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Fixed versus Random Effects Combined Confidence 
Interval 
If the effects are assumed to be equal (homogeneous), either through testing or from other 
considerations, a fixed effects model may be used to construct a combined confidence interval. 
However, if the effects are heterogeneous, a random effects model should be used to construct the 
combined confidence interval. 

Fixed Effects Model 
The fixed effects model assumes homogeneity of study results. That is, it assumes that θθ =i  for 
all i. This assumption may not be realistic when combining studies with different patient pools, 
protocols, follow-up strategies, doses, durations, etc.  

If the fixed effects model is adopted, the inverse variance-weighted method as described by 
Sutton (2000) page 58 is used to calculate the confidence interval for θ . The formulas used are 

( )θθ α
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where  is the appropriate percentage point from the standardized normal distribution and 2/1 α−z
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Random Effects Model 
The random effects model assumes that the individual iθ  come from a random distribution with 

fixed mean θ  and variance .  Sutton (2000) page 74 presents the formulas necessary to 
conduct a random effects analysis using the weighted method. The formulas used are 
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Graphical Displays 
A number of plots have been devised to display the information in a meta-analysis. These include 
the forest plot, the radial plot, and the L’Abbe plot. More will be said about each of these plots in 
the Output section. 

Data Structure 
The data are entered into a dataset using one row per study. The four counts of the study’s 2-by-2 
table are entered into four columns. In addition to these, an additional variable is usually used to 
hold a short (3 or 4 character) label. Another variable may be needed to hold a grouping variable. 

As an example, we will use data referred to in Sutton (2000) as the cholesterol-lowering 
intervention dataset. This data set reviews 34 randomized clinical trials that were conducted to 
study the effects of three cholesterol-lowering treatments: diet, drug, and surgery. The mortality 
of patients in a treatment arm and a control arm were recorded. These data are contained in the 
SUTTON 22 database. You should load this database to see how the data are arranged.  
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
The options on this screen control the variables that are used in the analysis. 

Variables 

Treatment Event (A) Variable 
Specify the variable containing the count of the number of subjects in the treatment group in 
which the event of interest occurred. Each study may be represented by a 2-by-2 table of counts. 
This variable contains the treatment-event counts. 

Control Event (B) Variable 
Specify the variable containing the count of the number of subjects in the control group in which 
the event of interest occurred. Each study may be represented by a 2-by-2 table of counts. This 
variable contains the control-event counts. 

Treatment Nonevent (C) Variable 
Specify the variable containing the count of the number of subjects in the treatment group in 
which the event of interest did not occur. Each study may be represented by a 2-by-2 table of 
counts. This variable contains the treatment-nonevent counts. 

Control Nonevent (D) Variable 
Specify the variable containing the count of the number of subjects in the control group in which 
the event of interest did not occur. Each study may be represented by a 2-by-2 table of counts. 
This variable contains the control-nonevent counts. 

Variables – Optional Variables 

Label Variable 
Specify an optional variable containing a label for each study (row) in the database. This label 
should be short (< 8 letters) so that it can fit on the plots. 

Group Variable 
Specify an optional variable containing a group identification value. Each unique value of this 
variable will receive its own plotting symbol on the forest plots. Some reports are sorted by these 
group values. 

Combine Studies Method 

Combine Studies Using 
Specify the method used to combine treatment effects. 

Use the Fixed Effects method when you do not want to account for the variation between studies. 

Use the Random Effects method when you want to account for the variation between studies as 
well as the variation within the studies. 
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Zero Counts 

Change Zero Counts To (Delta) 
This is the value added to each cell to avoid having zero cell counts. Outcome measures like the 
odds ratio and risk ratio are not defined when certain counts are zero. By adding a small amount 
to each cell count, this option lets you analyze data with zero counts. You might consider running 
your analysis a couple of times with two or three difference delta values to determine if the delta 
value is making a big difference in the outcome (it should not). 

If all cells in all rows are non-zero, enter 0. Otherwise, use 0.5 or 0.25. (Recent simulation studies 
have shown that 0.25 produces better results in some situations than the more traditional 0.5.)  

Reports Tab 
The options on this screen control the appearance of the reports. 

Select Reports 

Show Odds Ratio, Risk Ratio, or Risk Difference Reports/Plots 
Indicate whether to display reports and plots about this outcome measure. You must check at least 
one of the three outcome measures.  

Summary Report - Outcome Detail Reports 
Indicate whether to display the corresponding report.  

Select Plots 

Forest Plot – L’Abbe Plot 
Indicate whether to display the corresponding plot.  

Report Options 

Alpha Level 
This setting controls the confidence coefficient used in the confidence limits. Note that 100 x (1 - 
alpha)% confidence limits will be calculated. This must be a value between 0 and 0.5. The most 
common choice is 0.05, which results in 95% confidence intervals. 

Show Notes 
Indicate whether to show the notes at the end of reports. Although these notes are helpful at first, 
they may tend to clutter the output. This option lets you omit them. 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. Single precision is for reporting purposes only. 
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Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Report Options – Decimal Places 

Probability Values – Ratio Values 
This setting controls the number of digits to the right of the decimal place that are displayed when 
showing this item.  

Plot Options 

Plot Options – Legend Options 

Show Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies the title of the legend. Click the button on the right to specify the font size, color, and 
style of the legend text. The characters {G} are replaced with the name of the Group Variable. 

Plot Options – Plot Symbol Options 

Symbols Proportional to Sample Size 
Check this box to cause the size of the plotting symbols on forest plots and L’Abbe plots to be 
proportional to relative study size. The larger the sample size, the larger the symbol. The range of 
the size of the symbol is controlled by the Size Min Pcnt and Size Max Pcnt options below.  

Size Min Pcnt 
When the Symbols Proportional to Sample Size option is checked, this is percentage adjustment 
that occurs to the smallest sample size. The recommended value is 50. Typical values range from 
20 to 99.  

The formula for a symbol’s size is 
Actual Symbol Size = (Normal Symbol Size)*Radius 

where 
Radius = [(Min Pct) + (Max Pct - Min Pct)*(Sample Size)/(Max Sample Size)]/100 

Size Max Pcnt 
When the Symbols Proportional to Sample Size option is checked, this is percentage adjustment 
that occurs to the largest sample size. The recommended value is 150. Typical values range from 
101 to 200.  



456-10  Meta-Analysis of Proportions 

Forest Plot Tab 
The options on this panel control the appearance of the forest plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Log Scale 
This option controls the scaling of horizontal axis. We suggest that you use a logarithmic scale 
for the odds ratio and risk ratio. The risk difference forest plot will automatically revert to a 
regular scale since the logarithm of negative numbers is not defined. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Forest Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the Forest style file is used. These style files are created 
in the Scatter Plot procedure. 

Line 
This option lets you indicate whether to display the reference line and the characteristics of that 
line.  

Ratio Value 
This is the position of the reference line on the odds ratio and risk ratio forest plots.  

Difference Value 
This is the position of the reference line on the risk difference forest plots.  
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Titles 

Plot Title 
This is the text of the title. The characters {X} are replaced by the output measure. Press the 
button on the right of the field to specify the font of the text. 

Radial Plot Tab 
The options on this panel control the appearance of the radial plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Radial Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. These style files are created in the Scatter Plot procedure. 

Symbol 
Specify a symbol. Usually, no symbol is used.  

Symbol Font Size 
This option lets you specify the size of font used to display the row numbers or row labels.  
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Titles 

Plot Title 
This is the text of the title. The characters {G} are replaced by the output measure. Press the 
button on the right of the field to specify the font of the text. 

L’Abbe Plot Tab 
The options on this panel control the appearance of the L’Abbe plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

L’Abbe Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. These style files are created in the Scatter Plot procedure. 

Titles 

Plot Title 
This is the text of the title. Press the button on the right of the field to specify the font of the text. 
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Symbols Tab 
These options set the type, color, size, and style of the plotting symbols. Symbols for up to 
fourteen groups may be used. When no Group Variable is specified, the options made for Symbol 
1 are used to define the plot symbol. Following is an example of possible symbol settings for two 
groups: 

Plotting Symbols 
Click on the symbol or on the button to its right to display a window that allows you to change 
the characteristics of the plotting symbol. 

Storage Tab 
These options let you specify if, and where on the database, various statistics are stored. 

Warning: Any data already in these variables are replaced by the new data. Be careful not to 
specify variables that contain important data. 

Data Storage Options 

Storage Option 
This option controls whether the values indicated below are stored on the database when the 
procedure is run. 

• Do not store data 
No data are stored even if they are checked. 

• Store in empty columns only 
The values are stored in empty columns only. Columns containing data are not used for data 
storage, so no data can be lost. 

• Store in designated columns 
Beginning at the First Storage Variable, the values are stored in this column and those to the 
right. If a column contains data, the data are replaced by the storage values. Care must be 
used with this option because it cannot be undone. 

Store First Variable In 
The first item is stored in this variable. Each additional item that is checked is stored in the 
variables immediately to the right of this variable.  

Leave this value blank if you want the data storage to begin in the first blank column on the right-
hand side of the data. 

Warning: any existing data in these variables is automatically replaced, so be careful. 
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Data Storage Options – Select Items 
to Store on the Spreadsheet 

P1 – Risk Diff. Weights 
Indicate whether to store these row-by-row values, beginning at the variable indicated by the 
Store First Variable In option.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Meta-Analysis of Proportions 
This section presents an example of how to analyze the data contained in the SUTTON 22 
database. This dataset contains data for 34 randomized clinical trials that were conducted to study 
the effects of three cholesterol-lowering treatments: diet, drug, and surgery. The mortality of 
patients in a treatment arm and a control arm were recorded.  

You may follow along here by making the appropriate entries or load the completed template 
Example 1 from the Template tab of the Meta-Analysis of Proportions window. 

1 Open the SUTTON 22 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file SUTTON 22.s0. 
• Click Open. 

2 Open the Meta-Analysis of Proportions window. 
• On the menus, select Analysis, then Meta-Analysis, then Meta-Analysis of 

Proportions. The Meta-Analysis of Proportions procedure window will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  
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3 Select the variables. 
• Select the Variables tab.  
• Set the Treatment Event (A) Variable to TDeath. 
• Set the Treatment Nonevent (C) Variable to TSurvive. 
• Set the Control Event (B) Variable to CDeath. 
• Set the Control Nonevent (D) Variable to CSurvive. 
• Set the Label Variable to StudyId. 
• Set the Group Variable to Treatment. 

4 Specify the reports. 
• Select the Reports tab.  
• Check the Show Odds Ratio Reports/Plots option box. 
• Check the Summary Report option box. 
• Check the Heterogeneity Tests option box. 
• Check the Outcome Detail Reports option box. 
• Check the Forest Plot (By Group & Measure) option box. 
• Check Radial Plot option box. 
• Check the L’Abbe Plot option box. 

5 Specify the plotting symbols. 
• Select the Symbols tab.  
• Set the Group 2 Symbol Type to Solid Circle. 
• Set the Group 3 Symbol Type to Solid Hexagon. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Run Summary Section 
 

Parameter Value Parameter Value 
Treatment Event-Count Variable TDeath Rows Processed 34 
Treatment Nonevent-Count Variable TSurvive Number Groups 3 
Control Event-Count Variable CDeath Delta Value 0.5 
Control Nonevent-Count Variable CSurvive   
Row Label Variable StudyId   
Group Variable Treatment 
  

This report records the variables that were used and the number of rows that were processed. 
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Numeric Summary Section 
 

[Treatment]    Odds Risk Risk 
StudyId Data P1 P2 Ratio Ratio Difference 
[Diet] 
S1 28/204  51/202 0.1373 0.2525 0.4750 0.5480 -0.1147 
S7 41/206  55/206 0.1990 0.2670 0.6845 0.7477 -0.0676 
S8 20/123  24/129 0.1626 0.1860 0.8529 0.8772 -0.0231 
S9 111/1018  113/1015 0.1090 0.1113 0.9770 0.9795 -0.0023 
S16 174/424  178/422 0.4104 0.4218 0.9542 0.9730 -0.0114 
S17 28/199  31/194 0.1407 0.1598 0.8626 0.8821 -0.0190 
S21 39/221  28/237 0.1765 0.1181 1.5910 1.4859 0.0582 
S22 8/54  1/26 0.1481 0.0385 3.1075 2.7818 0.0990 
S24 269/4541  248/4516 0.0592 0.0549 1.0835 1.0785 0.0043 
Average (random effects model)   0.9292 0.9440 -0.0082 
 
[Drug] 
S2 70/285  38/147 0.2456 0.2585 0.9305 0.9476 -0.0136 
S3 37/156  40/119 0.2372 0.3361 0.6160 0.7077 -0.0986 
S4 2/88  3/30 0.0227 0.1000 0.2271 0.2488 -0.0848 
S5 0/30  3/33 0.0000 0.0909 0.1429 0.1567 -0.0868 
S6 61/279  82/276 0.2186 0.2971 0.6636 0.7375 -0.0782 
S10 81/427  27/143 0.1897 0.1888 0.9964 0.9971 -0.0006 
S11 31/244  51/253 0.1270 0.2016 0.5801 0.6341 -0.0742 
S12 17/50  12/50 0.3400 0.2400 1.6090 1.4000 0.0980 
S13 23/47  20/48 0.4894 0.4167 1.3335 1.1702 0.0712 
S15 1025/5552  723/2789 0.1846 0.2592 0.6470 0.7122 -0.0746 
S18 42/350  48/367 0.1200 0.1308 0.9075 0.9187 -0.0107 
S19 4/79  5/78 0.0506 0.0641 0.7965 0.8080 -0.0134 
S20 37/1149  48/1129 0.0322 0.0425 0.7517 0.7597 -0.0103 
S23 5/71  7/72 0.0704 0.0972 0.7223 0.7435 -0.0264 
S26 0/94  1/94 0.0000 0.0106 0.3298 0.3333 -0.0105 
S27 19/311  12/317 0.0611 0.0379 1.6293 1.5900 0.0232 
S28 68/1906  71/1900 0.0357 0.0374 0.9534 0.9550 -0.0017 
S29 44/2051  43/2030 0.0215 0.0212 1.0128 1.0125 0.0003 
S30 33/6582  3/1663 0.0050 0.0018 2.4267 2.4194 0.0030 
S31 236/5331  181/5296 0.0443 0.0342 1.3081 1.2945 0.0101 
S32 0/48  1/49 0.0000 0.0204 0.3333 0.3401 -0.0198 
S33 1/94  0/52 0.0106 0.0000 1.6845 1.6737 0.0064 
S34 1/23  2/29 0.0435 0.0690 0.7333 0.7500 -0.0208 
Average    0.8863 0.9108 -0.0115 
 
[Surgery] 
S14 0/30  4/60 0.0000 0.0667 0.2058 0.2186 -0.0576 
S25 46/421  62/417 0.1093 0.1487 0.7044 0.7369 -0.0393 
Average    0.6885 0.7238 -0.0439 
 
[Combined]  
Average    0.8868 0.9100 -0.0112 
 

This report summarizes the input data. You should scan it for any mistakes. Note that the 
‘Average’ lines provide the estimated group averages. The values depend on your selection of 
whether the Random Effects model or Fixed Effects model was used. The ‘Combined’ line 
provides the combined results of all studies.  

Data 
These are the count values that were read from the database. 

P1 
This is the estimated event proportion in the treatment group. This is also known as the treatment-
group risk. 
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P2 
This is the estimated event proportion in the control group. This is also known as the treatment-
group risk. 

Odds Ratio 
This is the estimated value of the odds ratio. Note that it depends not only on the data, but also on 
the delta value used. 

Risk Ratio 
This is the estimated value of the risk ratio. Note that it depends not only on the data, but also on 
the delta value used. 

Risk Difference 
This is the estimated value of the risk difference. Note that it depends not only on the data, but 
also on the delta value used. 

Nondirectional Zero-Effect Test 
 

 Outcome   Prob 
Treatment Measure Chi-Square DF Level 
Diet Odds Ratio 16.9314 9 0.0498 
Drug Odds Ratio 95.6162 23 0.0000 
Surgery Odds Ratio 3.9568 2 0.1383 
Combined Odds Ratio 116.5043 34 0.0000 
 

This reports the results of the nondirectional zero-effect chi-square test designed to test the null 
hypothesis that all treatment effects are zero. The null hypothesis is written 

kiH i ,,1    0:0 L==θ  

The alternative hypothesis is that at least one 0≠iθ , that is, at least one study had a statistically 
significant result. 

Chi-Square 
This is the computed chi-square value for this test. The formula was presented earlier. 

DF 
This is the degrees of freedom. For this test, the degrees of freedom is equal to the number of 
studies. 

Prob Level 
This is the significance level of the test. If this value is less than the nominal value of alpha 
(usually 0.05), the test is statistically significant and the alternative is concluded. If the value is 
larger than the specified value of alpha, no conclusion can be drawn other than that you do not 
have enough evidence to reject the null hypothesis. 
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Directional Zero-Effect Test 
 

 Outcome   Prob 
Treatment Measure Chi-Square DF Level 
Diet Odds Ratio 0.1815 1 0.6701 
Drug Odds Ratio 33.7356 1 0.0000 
Surgery Odds Ratio 3.3032 1 0.0691 
Combined Odds Ratio 27.8056 1 0.0000 
 

This reports the results of the directional zero-effect chi-square test designed to test the overall 
null hypothesis that all treatment effects are zero. The null hypothesis is written 

kiH i ,,1    0:0 L==θ  

The alternative hypothesis is that 0≠= θθi  for all i, that is, that all effects are equal to the same, 
non-zero value. 

Chi-Square 
This is the computed chi-square value for this test. The formula was presented earlier. 

DF 
This is the degrees of freedom. For this test, the degrees of freedom is equal one. 

Prob Level 
This is the significance level of the test. If this value is less than the specified value of alpha 
(usually 0.05), the test is statistically significant and the alternative is concluded. If the value is 
larger than the specified value of alpha, no conclusion can be drawn other than that you do not 
have enough evidence to reject the null hypothesis. 

Effect-Equality (Heterogeneity) Test 
 

 Outcome Cochran’s  Prob 
Treatment Measure Q DF Level 
Diet Odds Ratio 16.7499 8 0.0328 
Drug Odds Ratio 61.8806 22 0.0000 
Surgery Odds Ratio 0.6536 1 0.4188 
Combined Odds Ratio 88.6987 33 0.0000 
 

This reports the results of the effect-equality (homogeneity) test. This chi-square test was 
designed to test the null hypothesis that all treatment effects are equal. The null hypothesis is 
written 

kiH i ,,1    0:0 L==θ  

The alternative is that at least one effect is different, that is, that the effects are heterogeneous. 
This may also be interpreted as a test of the study-by-treatment interaction. This test may help 
you determine whether to use a Fixed Effects model (used for homogeneous effects) or a Random 
Effects model (heterogeneous effects). 

Cochran’s Q 
This is the computed chi-square value for Cochran’s Q statistic. The formula was presented 
earlier. 
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DF 
This is the degrees of freedom. For this test, the degrees of freedom is equal to the number of 
studies minus one.. 

Prob Level 
This is the significance level of the test. If this value is less than the specified value of alpha 
(usually 0.05), the test is statistically significant and the alternative is concluded. If the value is 
larger than the specified value of alpha, no conclusion can be drawn other than that you do not 
have enough evidence to reject the null hypothesis. 

Odds Ratio Detail Section 
 
     95.0%  95.0% Percent 
    Lower Upper Random 
[Treatment]   Odds Confidence Confidence Effects 
StudyId P1 P2 Ratio Limit Limit Weight 
[Diet] 
S1 0.1373 0.2525 0.4750 0.2863 0.7882 3.5636 
S7 0.1990 0.2670 0.6845 0.4327 1.0828 3.9108 
S8 0.1626 0.1860 0.8529 0.4469 1.6277 2.7201 
S9 0.1090 0.1113 0.9770 0.7405 1.2889 5.4463 
S16 0.4104 0.4218 0.9542 0.7261 1.2538 5.4819 
S17 0.1407 0.1598 0.8626 0.4976 1.4952 3.2731 
S21 0.1765 0.1181 1.5910 0.9450 2.6788 3.4641 
S22 0.1481 0.0385 3.1075 0.5128 18.8317 0.5279 
S24 0.0592 0.0549 1.0835 0.9073 1.2940 6.2826 
Average   0.9292 0.7641 1.1300  
 
[Drug] 
S2 0.2456 0.2585 0.9305 0.5902 1.4668 3.9372 
S3 0.2372 0.3361 0.6160 0.3637 1.0434 3.4236 
. . . . . . . 
. . . . . . . 
. . . . . . . 
S32 0.0000 0.0204 0.3333 0.0132 8.3867 0.1737 
S33 0.0106 0.0000 1.6845 0.0674 42.0926 0.1744 
S34 0.0435 0.0690 0.7333 0.0898 5.9856 0.3966 
Average   0.8863 0.7345 1.0696  
 
[Surgery] 
S14 0.0000 0.0667 0.2058 0.0107 3.9513 0.2060 
S25 0.1093 0.1487 0.7044 0.4692 1.0575 4.3237 
Average   0.6885 0.4603 1.0297  
 
[Combined] 
Average   0.8868 0.7739 1.0161  
 

This report displays results for the odds ratio outcome measure. You can obtain a similar report 
for the risk ratio and the risk difference. The report gives you the  

Confidence Limits 
These are the lower and upper confidence limits (the formulas were given earlier in this chapter). 

Weights 
The last column gives the relative (percent) weight used in creating the weighted average. Using 
these values, you can decide how much influence each study has on the weighted average. 
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Forest Plot 
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This plot presents the results for each study on one plot. The size of the plot symbol is 
proportional to the sample size of the study. The points on the plot are sorted by group and by the 
odds ratio. The lines represent the confidence intervals about the odds ratios. Note that the 
narrower the confidence limits, the better.  
By studying this plot, you can determine the main conclusions that can be drawn from the set of 
studies. For example, you can determine how many studies were significant (the confidence 
limits do not intersect the vertical line at 1.0). You can see if there were different conclusions for 
the different groups. 

The results of the combining the studies are displayed at the end of each group.  
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Radial Plot 
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The radial (or Galbraith) plot shows the z-statistic (outcome divided by standard error) on the 
vertical axis and a measure of weight on the horizontal axis. Studies that have the largest weight 
are closest to the Y axis. Studies within the limits are interpreted as homogeneous. Studies 
outside the limits may be outliers.  
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L’Abbe Plot 
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The L’Abbe plot displays the treatment risk on vertical axis versus the control risk on the 
horizontal axis. Homogenous studies will be arranged along the diagonal line. This plot is 
especially useful in determining if the relationship between the treatment group and the control 
group is the same for all values of the control group risk.  
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Chapter 457 

Meta-Analysis of 
Correlated 
Proportions 
Introduction 
This module performs a meta-analysis of a set of correlated, binary-event studies. These studies 
usually come from a design in which two dichotomous responses are made on each subject (or 
subject pair). The results of each study can be summarized as counts in a 2-by-2 table. For 
example, the binary response is recorded after treatment A and again after treatment B. The 
response is ‘1’ if the event of interest occurs or ‘0’ otherwise. This analysis also applies to 
matched pairs data in which each case subject is matched with a similar subject from a control 
group.  

The program provides a complete set of numeric reports and plots to allow the investigation and 
presentation of the studies. The plots include the forest plot, radial plot, and L’Abbe plot. Both 
fixed-, and random-, effects models are available for analysis. 

Meta-Analysis refers to methods for the systematic review of a set of individual studies with the 
aim to combine their results. Meta-analysis has become popular for a number of reasons: 

1. The adoption of evidence-based medicine which requires that all reliable information is 
considered. 

2. The desire to avoid narrative reviews which are often misleading. 

3. The desire to interpret the large number of studies that may have been conducted about a 
specific treatment.  

4. The desire to increase the statistical power of the results be combining many small-size 
studies. 

The goals of meta-analysis may be summarized as follows. A meta-analysis seeks to 
systematically review all pertinent evidence, provide quantitative summaries, integrate results 
across studies, and provide an overall interpretation of these studies. 

We have found many books and articles on meta-analysis. In this chapter, we briefly summarize 
the information in Sutton et al (2000) and Thompson (1998). Refer to those sources for more 
details about how to conduct a meta-analysis. 
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Treatment Effects  
Suppose you have obtained the results for k studies, labeled i = 1,…,k. Each study consists of two 
dichotomous measurements Y  and  on each of n subjects (the ‘subject’ may be a pair of 
matched individuals). Measurement  represents the treatment response and  represents the 
control response. The results of each study are summarized by four counts: 

1 Y2

Y1 Y2

ia   the number of  and 11 =Y 12 =Y . 

ib   the number of  and 11 =Y 02 =Y . 

ic   the number of  and 01 =Y 12 =Y . 

id   the number of  and 01 =Y 02 =Y . 

Occasionally, one of these counts will be zero which causes calculation problems. To avoid this, 
the common procedure is to add a small value of 0.5 or 0.25 to all counts so that zero counts do 
not occur. 

Odds Ratio 
When a paired design is used, Sahai and Khurshid (1995) indicate that the odds ratio is estimated 
using the following simple formula of McNemar which is based on the Mantel-Haenszel 
estimator.  

OR b
ci

i

i

=  

For statistical analysis, the logarithm of the odds ratio is usually used because its distribution is 
more accurately approximated by the normal distribution for smaller sample sizes. Sahai and 
Khurshid (1995) page 119 give the variance of the sample log odds ratio is estimated by 

( )( )$ lnV OR
b ci

i

i

i

i

= +
1 1

 

Risk Ratio or Relative Risk 
Following Sahai and Khurshid (1995) page 139, the risk ratio is estimated as follows.  

RR a b
a ci

i i

i i

=
+
+

 

Like the odds ratio, the logarithm of the risk ratio is used because its distribution is more 
accurately approximated by the normal distribution for smaller sample sizes. The variance of the 
sample log risk ratio is estimated by 

( )( ) ( )
( )( )

$ lnV RR
b c

a c a bi
i i

i i i i

=
+

+ +
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Risk Difference 
Following Sahai and Khurshid (1995) page 139, the risk difference is calculated as follows. 

RD b c
ni

i i

i

=
−

 

The estimated variance of the sample risk difference is given by 

( ) ( ) ( )$V RD
n b c b c

ni
i i i i i

i

=
+ − − 2

3  

Defining the Study Parameters 
Let θi  represent the outcome measure created from the 2-by-2 table. That is, θi  may be the odds 

ratio, risk ratio, or risk difference. Let  represent the estimate of $θi θi  from the study. Confidence 
intervals based on the normal distribution may be defined for θi  in the usual manner. 

( )$ $ $
/θ θαi iz V± −1 2  

In the case of the odds ratio and the risk ratio, the interval is created on the logarithmic scale and 
then transformed back to the original scale. 

It will be useful in the sequel to make the following definition of the weights. 

( )v Vi i= $ $θ  

w vi i= 1/  

Hypothesis Tests 
Several hypothesis tests have be developed to test the various hypotheses that may be of interest. 
These will be defined next. 

Overall Null Hypothesis 
Two statistical tests have been devised to test the overall null hypothesis that all treatment effects 
are zero. The null hypothesis is written 

H ii0 0 1: , k,θ = = L  

Nondirectional Test 
The nondirectional alternative hypothesis that at least one θi ≠ 0  may be tested by comparing the 
quantity 



457-4  Meta-Analysis of Correlated Proportions 

X wND i i
i

k

=
=
∑ $θ 2

1

 

with a  distribution. χk
2

Directional Test 
A test of the more interesting directional alternative hypothesis that θ θi = ≠ 0  for all i may be 
tested by comparing the quantity 

X
w

w
D

i i
i

k

i
i

k=

⎛
⎝
⎜

⎞
⎠
⎟

=

=

∑

∑

$θ
1

2

1

 

with a  distribution. Note that this tests the hypothesis that all effects are equal to the same 
nonzero quantity. 

χ1
2

Effect-Equality (Heterogeneity) Test 
When the overall null hypothesis is rejected, the next step is to test whether all effects are equal, 
that is, whether the effects are homogeneous. Specifically, the hypothesis is 

H ii0 1: , k,θ θ= = L  

versus the alternative that at least one effect is different, that is, that the effects are heterogeneous. 
This may also be interpreted as a test of the study-by-treatment interaction. 

This hypothesis is tested using Cochran’s Q test which is given by 

( )Q wi i
i

k

= −
=
∑ $ $θ θ

2

1

 

where 

$

$

θ
θ

= =

=

∑

∑

w

w
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i

k

i
i

k
1

1

 

The test is conducted by comparing Q to a  distribution. χk−1
2
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Fixed, Versus Random, Effects Combined Confidence 
Interval 
If the effects are be assumed to be equal (homogeneous), either through testing or from other 
considerations, a fixed effects model may be used to construct a combined confidence interval. 
However, if the effects are heterogeneous, a random effects model should be used to construct the 
combined confidence interval. 

Fixed Effects Model 
The fixed effects model assumes homogeneity of study results. That is, it assumes that θ θi =  for 
all i. This assumption may not be realistic when combining studies with different patient pools, 
protocols, follow-up strategies, doses, durations, etc.  

If the fixed effects model is adopted, the inverse variance-weighted method as described by 
Sutton (2000) page 58 is used to calculate the confidence interval for θ . The formulas used are 

( )$ $ $
/θ θα± −z V1 2  

where  is the appropriate percentage point from the standardized normal distribution and z1−α / 2

$
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Random Effects Model 
The random effects model assumes that the individual θi  come from a random distribution with 

fixed mean θ  and variance .  Sutton (2000) page 74 presents the formulas necessary to 
conduct a random effects analysis using the weighted method. The formulas used are 

σ 2

( )$ $ $
/θ θα± −z V1 2  

where  is the appropriate percentage point from the standardized normal distribution and z1−α / 2

$
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Graphical Displays 
A number of plots have been devised to display the information in a meta-analysis. These include 
the forest plot, the radial plot, and the L’Abbe plot. More will be said about each of these plots in 
the Output section. 

Data Structure 
The data are entered into a dataset using one row per study. The four counts of the study’s 2-by-2 
table are entered into four columns. In addition to these, an additional variable is usually used to 
hold a short (3 or 4 character) label. Another variable may be needed to hold a grouping variable. 

As an example, we will use the METACPROP dataset which presents the results of 24 matched 
case-control studies that were conducted to study the effectiveness of a certain treatment. The 
goal of each study was to compare the proportion of cases that responding with a ‘Yes’ to the 
corresponding proportion of control responses with a ‘Yes’. The studies were grouped into two 
diets, but these were not their main focus. These data are contained in the METACPROP 
database. You should load this database to see how the data are arranged.  
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
The options on this screen control the variables that are used in the analysis. 

Data and Variables 

N11 Count (A) Variable 
Specify the variable containing the count of the number of subjects that responded with a ‘1’ 
(Yes) to both variables. In a matched case control study, this variable contains the number of 
case-control pairs that both showed the event of interest. 

N10 Count (B) Variable 
Specify the variable containing the count of the number of subjects that responded with a ‘1’ 
(Yes) to first variable and a ‘0’ (No) to the second. In a matched case control study, this variable 
contains the number of case-control pairs that had a positive case and a negative control. 

N01 Count (C) Variable 
Specify the variable containing the count of the number of subjects that responded with a ‘0’ (No) 
to first variable and a ‘1’ (Yes) to the second. In a matched case control study, this variable 
contains the number of case-control pairs that had a negative case and a positive control. 

N00 Count (D) Variable 
Specify the variable containing the count of the number of subjects that responded with a ‘0’ (No) 
to both variables. In a matched case control study, this variable contains the number of case-
control pairs that were negative for both the case and the control. 

Data and Variables – Optional 
Variables 

Label Variable 
Specify an optional variable containing a label for each study (row) in the database. This label 
should be short (< 8 letters) so that it can fit on the plots. 

Group Variable 
Specify an optional variable containing a group identification value. Each unique value of this 
variable will receive its own plotting symbol on the forest plots. Some reports are sorted by these 
group values. 

Combine Studies Method 

Combine Studies Using 
Specify the method used to combine treatment effects. 

Use the Fixed Effects method when you do not want to account for the variation between studies. 
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Use the Random Effects method when you want to account for the variation between studies as 
well as the variation within the studies. 

Zero Counts 

Change Zero Counts To (Delta) 
This is the value added to each cell to avoid having zero cell counts. Outcome measures like the 
odds ratio and risk ratio are not defined when certain counts are zero. By adding a small amount 
to each cell count, this option lets you analyze data with zero counts. You might consider running 
your analysis a couple of times with two or three difference delta values to determine if the delta 
value is making a big difference in the outcome (it should not). 

If all cells in all rows are non-zero, enter 0. Otherwise, use 0.5 or 0.25. (Recent simulation studies 
have shown that 0.25 produces better results in some situations than the more traditional 0.5.)  

Reports Tab 
The options on this screen control the appearance of the reports. 

Select Reports 

Odds Ratio Reports/Plots - Risk Difference Reports/Plots 
Indicate whether to display reports and plots about this outcome measure. You must check at least 
one of the three outcome measures.  

Summary Report - Outcome Detail Reports 
Indicate whether to display the corresponding report.  

Select Plots 

Forest Plot – L’Abbe Plot 
Indicate whether to display the corresponding plot.  

Report Options 

Alpha Level 
This setting controls the confidence coefficient used in the confidence limits. Note that 100 x (1 - 
alpha)% confidence limits will be calculated. This must be a value between 0 and 0.5. The most 
common choice is 0.05, which results in 95% confidence intervals. 

Show Notes 
Indicate whether to show the notes at the end of reports. Although these notes are helpful at first, 
they may tend to clutter the output. This option lets you omit them. 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
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into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. Single precision is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Report Options – Decimal Places 

Probability Values – Ratio Values 
This setting controls the number of digits to the right of the decimal place that are displayed when 
showing this item.  

Plot Options 

Plot Options – Legend Options 

Show Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies the title of the legend. Click the button on the right to specify the font size, color, and 
style of the legend text. The characters {G} are replaced with the name of the Group Variable. 

Plot Options – Plot Symbol Options 

Symbols Proportional to Sample Size 
Check this box to cause the size of the plotting symbols on forest plots and L’Abbe plots to be 
proportional to relative study size. The larger the sample size, the larger the symbol. The range of 
the size of the symbol is controlled by the Size Min Pcnt and Size Max Pcnt options below.  

Size Min Pcnt 
When the Symbols Proportional to Sample Size option is checked, this is percentage adjustment 
that occurs to the smallest sample size. The recommended value is 50. Typical values range from 
20 to 99.  

The formula for a symbol’s size is 
Actual Symbol Size = (Normal Symbol Size)*Radius 

where 
Radius = [(Min Pct) + (Max Pct - Min Pct)*(Sample Size)/(Max Sample Size)]/100 

Size Max Pcnt 
When the Symbols Proportional to Sample Size option is checked, this is percentage adjustment 
that occurs to the largest sample size. The recommended value is 150. Typical values range from 
101 to 200.  
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Forest Plot Tab 
The options on this panel control the appearance of the forest plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Log Scale 
This option controls the scaling of horizontal axis. We suggest that you use a logarithmic scale 
for the odds ratio and risk ratio. The risk difference forest plot will automatically revert to a 
regular scale since the logarithm of negative numbers is not defined. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Forest Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the Forest style file is used. These style files are created 
in the Scatter Plot procedure. 

Line 
This option lets you indicate whether to display the reference line and the characteristics of that 
line.  

Ratio Value 
This is the position of the reference line on the odds ratio and risk ratio forest plots.  

Difference Value 
This is the position of the reference line on the risk difference forest plots.  
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Titles 

Plot Title 
This is the text of the title. The characters {X} are replaced by the output measure. Press the 
button on the right of the field to specify the font of the text. 

Radial Plot Tab 
The options on this panel control the appearance of the radial plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Radial Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. These style files are created in the Scatter Plot procedure. 

Symbol 
Specify a symbol. Usually, no symbol is used.  

Symbol Font Size 
This option lets you specify the size of font used to display the row numbers or row labels.  
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Titles 

Plot Title 
This is the text of the title. The characters {G} are replaced by the output measure. Press the 
button on the right of the field to specify the font of the text. 

L’Abbe Plot Tab 
The options on this panel control the appearance of the L’Abbe plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

L’Abbe Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. These style files are created in the Scatter Plot procedure. 

Titles 

Plot Title 
This is the text of the title. Press the button on the right of the field to specify the font of the text. 
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Symbols Tab 
These options set the type, color, size, and style of the plotting symbols. Symbols for up to 
fourteen groups may be used. When no Group Variable is specified, the options made for Symbol 
1 are used to define the plot symbol.  

Plotting Symbols 
Click on the symbol or on the button to its right to display a window that allows you to change 
the characteristics of the plotting symbol. 

Storage Tab 
These options let you specify if, and where on the database, various statistics are stored. 

Warning: Any data already in these variables are replaced by the new data. Be careful not to 
specify variables that contain important data. 

Data Storage Options 

Storage Option 
This option controls whether the values indicated below are stored on the database when the 
procedure is run. 

• Do not store data 
No data are stored even if they are checked. 

• Store in empty columns only 
The values are stored in empty columns only. Columns containing data are not used for data 
storage, so no data can be lost. 

• Store in designated columns 
Beginning at the First Storage Variable, the values are stored in this column and those to the 
right. If a column contains data, the data are replaced by the storage values. Care must be 
used with this option because it cannot be undone. 

Store First Variable In 
The first item is stored in this variable. Each additional item that is checked is stored in the 
variables immediately to the right of this variable.  

Leave this value blank if you want the data storage to begin in the first blank column on the right-
hand side of the data. 

Warning: any existing data in these variables is automatically replaced, so be careful. 
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Data Storage Options – Select Items 
to Store on the Spreadsheet 

P1 – Risk Diff. Weights 
Indicate whether to store these row-by-row values, beginning at the variable indicated by the 
Store First Variable In option.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Meta-Analysis of Correlated Proportions 
This section presents an example of how to analyze the data contained in the METACPROP 
database. This dataset contains data for 24 matched case-control studies. The response of each 
case subject was compared to the response of a matched control subject.  

You may follow along here by making the appropriate entries or load the completed template 
Example 1 from the Template tab of the Meta-Analysis of Correlated Proportions window. 

1 Open the METACPROP dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file MetaCProp.s0. 
• Click Open. 

2 Open the Meta-Analysis of Correlated Proportions window. 
• On the menus, select Analysis, then Meta-Analysis, then Meta-Analysis of Correlated 

Proportions. The procedure window will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  
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3 Select the variables. 
• Select the Variables tab.  
• Set the N11 Count (A) Variable to CaseYes. 
• Set the N10 Count (B) Variable to CaseNo. 
• Set the N01 Count (C) Variable to ControlYes. 
• Set the N00 Count (D) Variable to ControlNo. 
• Set the Label Variable to Study. 
• Set the Group Variable to Diet. 
• Set Combine Studies Using to Random Effects Method. 
• Set the Change Zero Counts To (Delta) to 0.0. 

4 Specify the reports. 
• Select the Reports tab.  
• Check the Odds Ratio Reports/Plots option box. 
• Check the Summary Report option box. 
• Check the Heterogeneity Tests option box. 
• Check the Outcome Detail Reports option box. 
• Check the Forest Plot (By Group & Measure) option box. 
• Check Radial Plot option box. 
• Check the L’Abbe Plot option box. 

5 Specify the L’Abbe plot. 
• Select the L’Abbe Plot tab.  
• Set the Vertical Axis Minimum to 0.2. 
• Set the Vertical Axis Maximum to 0.8. 
• Set the Horizontal Axis Minimum to 0.2. 
• Set the Horizontal Axis Maximum to 0.8. 
• Press the Vertical Axis – Tick Label Setting button and set the decimal places to 2. 
• Press the Horizontal Axis – Tick Label Settings button and set the decimal places to 2. 

6 Specify the plotting symbols. 
• Select the Symbols tab.  
• Set the Group 2 Symbol Type to Solid Circle. 

7 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Run Summary Section 
 

Parameter Value Parameter Value 
N11 Count (A) Variable CaseYes Rows Processed 24 
N10 Count (B) Variable CaseNo Number Groups 2 
N01 Count (C) Variable ControlYes Delta Value 0 
N00 Count (D) Variable ControlNo   
Row Label Variable Study   
Group Variable Diet 
  

This report records the variables that were used and the number of rows that were processed. 
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Numeric Summary Section 
 

[Treatment]    Odds Risk Risk 
StudyId Data P1 P2 Ratio Ratio Difference 
[A] 
S1 25/43  6/23 0.6515 0.4697 3.0000 1.3871 0.1818 
S2 44/79  15/49 0.6172 0.4609 2.3333 1.3390 0.1563 
S4 26/51  10/29 0.6375 0.4500 2.5000 1.4167 0.1875 
S7 26/73  10/26 0.7374 0.3636 4.7000 2.0278 0.3737 
S10 23/48  8/21 0.6957 0.4493 3.1250 1.5484 0.2464 
S13 28/66  6/23 0.7416 0.3820 6.3333 1.9412 0.3596 
S16 25/42  10/29 0.5915 0.4930 1.7000 1.2000 0.0986 
S19 29/46  10/26 0.6389 0.5417 1.7000 1.1795 0.0972 
S20 44/76  18/47 0.6179 0.5041 1.7778 1.2258 0.1138 
S22 25/43  8/21 0.6719 0.5156 2.2500 1.3030 0.1563 
S24 75/123  15/97 0.5591 0.4091 3.2000 1.3667 0.1500 
Average    2.6640 1.4040 0.1906 
 
[B] 
S3 53/72  21/43 0.6261 0.6435 0.9048 0.9730 -0.0174 
S5 73/108  49/97 0.5268 0.5951 0.7143 0.8852 -0.0683 
S6 58/97  37/103 0.4850 0.4750 1.0541 1.0211 0.0100 
S8 42/74  18/47 0.6116 0.4959 1.7778 1.2333 0.1157 
S9 56/98  14/39 0.7153 0.5109 3.0000 1.4000 0.2044 
S11 71/112  21/63 0.6400 0.5257 1.9524 1.2174 0.1143 
S12 60/108  28/89 0.5482 0.4467 1.7143 1.2273 0.1015 
S14 46/81  15/49 0.6231 0.4692 2.3333 1.3279 0.1538 
S15 58/77  21/43 0.6417 0.6583 0.9048 0.9747 -0.0167 
S17 74/126  13/61 0.6738 0.4652 4.0000 1.4483 0.2086 
S18 62/101  31/97 0.5101 0.4697 1.2581 1.0860 0.0404 
S21 58/77  14/39 0.6638 0.6207 1.3571 1.0694 0.0431 
S23 117/158  11/53 0.7488 0.6066 3.7273 1.2344 0.1422 
Average    1.6166 1.1481 0.0804 
 
[Combined] 
Average     1.9972 1.2448 0.1259 
 
Note: This report shows the input data and the three outcomes for each study in the analysis. The 'Average'  
values are actually weighted averages with weights based on the effects model that was selected. 
 

This report summarizes the input data. You should scan it for any mistakes. Note that the 
‘Average’ lines provide the estimated group averages. The values depend on your selection of 
whether the Random Effects model or Fixed Effects model was used. The ‘Combined’ line 
provides the combined results of all studies.  

Data 
These are the count values that were read from the database. 

P1 
This is the estimated event proportion for variable 1 (the cases).  

P2 
This is the estimated event proportion for variable 2 (the controls). 

Odds Ratio 
This is the estimated value of the odds ratio. Note that it depends not only on the data, but also on 
the delta value used. 
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Risk Ratio 
This is the estimated value of the risk ratio. Note that it depends not only on the data, but also on 
the delta value used. 

Risk Difference 
This is the estimated value of the risk difference. Note that it depends not only on the data, but 
also on the delta value used. 

Nondirectional Zero-Effect Test 
 

 Outcome   Prob 
Diet Measure Chi-Square DF Level 
A Odds Ratio 90.7010 11 0.0000 
B Odds Ratio 74.6044 13 0.0000 
Combined Odds Ratio 165.3054 24 0.0000 
 

This reports the results of the nondirectional zero-effect chi-square test designed to test the null 
hypothesis that all treatment effects are zero. The null hypothesis is written 

H ii0 0 1: , k,θ = = L  

The alternative hypothesis is that at least one θi ≠ 0 , that is, at least one study had a statistically 
significant result. 

Chi-Square 
This is the computed chi-square value for this test. The formula was presented earlier. 

DF 
This is the degrees of freedom. For this test, the degrees of freedom is equal to the number of 
studies. 

Prob Level 
This is the significance level of the test. If this value is less than the nominal value of alpha 
(usually 0.05), the test is statistically significant and the alternative is concluded. If the value is 
larger than the specified value of alpha, no conclusion can be drawn other than that you do not 
have enough evidence to reject the null hypothesis. 

Directional Zero-Effect Test 
 

 Outcome   Prob 
Diet Measure Chi-Square DF Level 
A Odds Ratio 78.7597 1 0.0000 
B Odds Ratio 29.4196 1 0.0000 
Combined Odds Ratio 90.9788 1 0.0000 
 

This reports the results of the directional zero-effect chi-square test designed to test the overall 
null hypothesis that all treatment effects are zero. The null hypothesis is written 

H ii0 0 1: , k,θ = = L  

The alternative hypothesis is that θ θi = ≠ 0  for all i, that is, that all effects are equal to the same, 
non-zero value. 
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Chi-Square 
This is the computed chi-square value for this test. The formula was presented earlier. 

DF 
This is the degrees of freedom. For this test, the degrees of freedom is equal one. 

Prob Level 
This is the significance level of the test. If this value is less than the specified value of alpha 
(usually 0.05), the test is statistically significant and the alternative is concluded. If the value is 
larger than the specified value of alpha, no conclusion can be drawn other than that you do not 
have enough evidence to reject the null hypothesis. 

Effect-Equality (Heterogeneity) Test 
 

 Outcome Cochran’s  Prob 
Diet Measure Q DF Level 
A Odds Ratio 11.9413 10 0.2890 
B Odds Ratio 45.1848 12 0.0000 
Combined Odds Ratio 74.3266 23 0.0000 
 

This reports the results of the effect-equality (homogeneity) test. This chi-square test was 
designed to test the null hypothesis that all treatment effects are equal. The null hypothesis is 
written 

H ii0 1: , k,θ θ= = L  

The alternative is that at least one effect is different, that is, that the effects are heterogeneous. 
This may also be interpreted as a test of the study-by-treatment interaction. This test may help 
you determine whether to use a Fixed Effects model (used for homogeneous effects) or a Random 
Effects model (heterogeneous effects). 

Cochran’s Q 
This is the computed chi-square value for Cochran’s Q statistic. The formula was presented 
earlier. 

DF 
This is the degrees of freedom. For this test, the degrees of freedom is equal to the number of 
studies minus one.. 

Prob Level 
This is the significance level of the test. If this value is less than the specified value of alpha 
(usually 0.05), the test is statistically significant and the alternative is concluded. If the value is 
larger than the specified value of alpha, no conclusion can be drawn other than that you do not 
have enough evidence to reject the null hypothesis. 
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Odds Ratio Detail Section 
 
     95.0%  95.0% Percent 
    Lower Upper Random 
[Diet]   Odds Confidence Confidence Effects 
Study P1 P2 Ratio Limit Limit Weight 
[A] 
S1 0.6515 0.4697 3.0000 1.1909 7.5576 3.0697 
S2 0.6172 0.4609 2.3333 1.2744 4.2723 4.3247 
S4 0.6375 0.4500 2.5000 1.2007 5.2051 3.7800 
S7 0.7374 0.3636 4.7000 2.3750 9.3009 3.9902 
S10 0.6957 0.4493 3.1250 1.4096 6.9280 3.5315 
S13 0.7416 0.3820 6.3333 2.6773 14.9818 3.2895 
S16 0.5915 0.4930 1.7000 0.7784 3.7126 3.5898 
S19 0.6389 0.5417 1.7000 0.7784 3.7126 3.5898 
S20 0.6179 0.5041 1.7778 0.9979 3.1671 4.4454 
S22 0.6719 0.5156 2.2500 0.9783 5.1746 3.3928 
S24 0.5591 0.4091 3.2000 1.7921 5.7140 4.4352 
Average   2.6640 2.1011 3.3776  
 
[B] 
S3 0.6261 0.6435 0.9048 0.4864 1.6828 4.2560 
S5 0.5268 0.5951 0.7143 0.4629 1.1022 5.0815 
S6 0.4850 0.4750 1.0541 0.6722 1.6528 5.0115 
S8 0.6116 0.4959 1.7778 0.9979 3.1671 4.4454 
S9 0.7153 0.5109 3.0000 1.6385 5.4930 4.3247 
S11 0.6400 0.5257 1.9524 1.1538 3.3035 4.6743 
S12 0.5482 0.4467 1.7143 1.0756 2.7321 4.9400 
S14 0.6231 0.4692 2.3333 1.2744 4.2723 4.3247 
S15 0.6417 0.6583 0.9048 0.4864 1.6828 4.2560 
S17 0.6738 0.4652 4.0000 2.1783 7.3452 4.3120 
S18 0.5101 0.4697 1.2581 0.7850 2.0161 4.9156 
S21 0.6638 0.6207 1.3571 0.6805 2.7067 3.9575 
S23 0.7488 0.6066 3.7273 1.9158 7.2514 4.0623 
Average    1.6166 1.2010 2.1759  
 
[Combined] 
Average   1.9972 1.5913 2.5065  
 

This report displays results for the odds ratio outcome measure. You can obtain a similar report 
for the risk ratio and the risk difference. The report gives you the  

Confidence Limits 
These are the lower and upper confidence limits (the formulas were given earlier in this chapter). 

Weights 
The last column gives the relative (percent) weight used in creating the weighted average. Using 
these values, you can decide how much influence each study has on the weighted average. 
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Forest Plot 
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This plot presents the results for each study on one plot. The size of the plot symbol is 
proportional to the sample size of the study. The points on the plot are sorted by group and by the 
odds ratio. The lines represent the confidence intervals about the odds ratios. Note that the 
narrower the confidence limits, the better.  
By studying this plot, you can determine the main conclusions that can be drawn from the set of 
studies. For example, you can determine how many studies were significant (the confidence 
limits do not intersect the vertical line at 1.0). You can see if there were different conclusions for 
the different groups. 

The results of the combining the studies are displayed at the end of each group.  
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Radial Plot 
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The radial (or Galbraith) plot shows the z-statistic (outcome divided by standard error) on the 
vertical axis and a measure of weight on the horizontal axis. Studies that have the largest weight 
are closest to the Y axis. Studies within the limits are interpreted as homogeneous. Studies 
outside the limits may be outliers.  
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L’Abbe Plot 
 

 

0.20

0.35

0.50

0.65

0.80

0.20 0.35 0.50 0.65 0.80

L'Abbe Plot

Variable 2 Proportion

V
ar

ia
bl

e 
1 

P
ro

po
rti

on

Diet
A
B

 
 

The L’Abbe plot displays the variable 1 (case) proportion on vertical axis versus the variable 2 
(control) proportion on the horizontal axis. Homogenous studies will be arranged along the 
diagonal line. This plot is especially useful in determining if the relationship between the two 
variables is the same for all values of variable 2.  
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Chapter 458 

Meta-Analysis of 
Hazard Ratios 
Introduction 
This module performs a meta-analysis on a set of two-group, time to event (survival), studies in 
which some data may be censored. These studies have a treatment group and a control group. 
Each study’s result may be summarized by the log hazard ratio and its standard error. The 
program provides a complete set of numeric reports and plots to allow the investigation and 
presentation of the studies. The plots include the forest plot and radial plot. Both fixed-, and 
random-, effects models are available for analysis.  

Meta-Analysis refers to methods for the systematic review of a set of individual studies with the 
aim to combine their results. Meta-analysis has become popular for a number of reasons: 

1. The adoption of evidence-based medicine which requires that all reliable information is 
considered. 

2. The desire to avoid narrative reviews which are often misleading. 

3. The desire to interpret the large number of studies that may have been conducted about a 
specific treatment.  

4. The desire to increase the statistical power of the results be combining many small-size 
studies. 

The goals of meta-analysis may be summarized as follows. A meta-analysis seeks to 
systematically review all pertinent evidence, provide quantitative summaries, integrate results 
across studies, and provide an overall interpretation of these studies. 

We have found many books and articles on meta-analysis. In this chapter, we briefly summarize 
the information in Sutton et al. (2000) and Thompson (1998). Refer to those sources for more 
details about how to conduct a meta-analysis.  

As for the particular topic of combining hazard ratio studies in a meta-analysis, the book by 
Parmar and Machin (1995) and the paper by Parmar et al.(1998) are essential reading. The paper 
provides instructions on how to obtain estimates of the hazard ratio and its standard error from 
trials that do not report these items explicitly (a situation that is common). 
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Treatment Effect – Hazard Ratio  
The most recommended single summary statistic for quantifying the treatment effect in studies 
using survival data is the (log) hazard rate. This statistic is chosen because it can be calculated 
from time-to-event data with censoring and because it measures the size of the difference between 
two Kaplan-Meier curves. 

The Cox-Mantel estimate of the hazard ratio is formed by dividing the hazard rate under 
treatment by the hazard rate under control. Thus, it measures the change in risk of treatment 
versus control over the follow-up period. Since the distribution of the log hazard ratio is nearly 
normal, the log transformation is applied. The formula for the hazard rate is 

CC

TT
C

T
CM

EO
EO

H
HHR

/
/

=

=
 

where  is the observed number of events (deaths) in group i ,  is the expected number of events 
(deaths) in group i, and  is the overall hazard rate for the ith group. The calculation of the  is 
explained in Parmar and Machin (1995). 

iO iE

iH iE

A confidence interval for HR is found by first transforming to the log scale which is better 
approximated by the normal distribution, calculating the limits, and then transforming back to the 
original scale. The calculation is made using 

( ) ( )
CMHRCM SEzHR ln2/1ln α−±  

where 
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An alternative estimate of HR that is sometimes used is the Mantel-Haenszel estimator which is 
calculated using 

⎟
⎠
⎞

⎜
⎝
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=
V

EOHR TT
MH exp  

where V is the hypergeometric variance. For further details, see Parmar and Machin (1995). A 
confidence interval for HR is found by first transforming to the log scale which is better 
approximated by the normal distribution, calculating the limits, and then transforming back to the 
original scale. The calculation is made using 

( ) ( )
MHHRMH SEzHR ln2/1ln α−±  

where 

V
SE

MHHR
1

ln =  

If the log hazard ratio and its standard error are not reported in a particular study it will have to be 
estimated from the logrank test statistic, p-value, or from the Kaplan-Meier curves. Details of 
how to do this are presented in Parmar et al. (1998).  
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Suppose you have obtained the results for k studies, labeled i = 1,…,k. Each study consists of a 
treatment group (T) and a control group (C). The results of each study are summarized by two 
statistics: 

( )iHRln   the log hazard ratio. 

( )iHRSEln   the standard error of the log hazard ratio. 

It will be useful in the sequel to make the following definition of the weights. 

( )2ln HRi SEv =  

ii vw /1=  

Hypothesis Tests 
In the discussion below, we let iθ  represent ln . Several hypothesis tests have be developed 
to test the various hypotheses that may be of interest. These will be defined next. 

HRi

Overall Null Hypothesis 
Two statistical tests have been devised to test the overall null hypothesis that all treatment effects 
are zero. The null hypothesis is written 

kiH i ,,1     :0 L==θθ  

Nondirectional Test 
The nondirectional alternative hypothesis that at least one θi ≠ 0  may be tested by comparing the 
quantity 
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with a  distribution. 2
kχ

Directional Test 
A test of the more interesting directional alternative hypothesis that 0≠= θθi  for all i may be 
tested by comparing the quantity 
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with a  distribution. Note that this tests the hypothesis that all effects are equal to the same 
nonzero quantity. 

2
1χ



458-4  Meta-Analysis of Hazard Ratios 

Effect-Equality (Heterogeneity) Test 
When the overall null hypothesis is rejected, the next step is to test whether all effects are equal, 
that is, whether the effects are homogeneous. Specifically, the hypothesis is 

kiH i ,,1     :0 L==θθ  

versus the alternative that at least one effect is different, that is, that the effects are heterogeneous. 
This may also be interpreted as a test of the study-by-treatment interaction. 

This hypothesis is tested using Cochran’s Q test which is given by 
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The test is conducted by comparing Q to a  distribution. 2
1−kχ

Fixed versus Random Effects Combined Confidence 
Interval 
If the effects are assumed to be equal (homogeneous), either through testing or from other 
considerations, a fixed effects model may be used to construct a combined confidence interval. 
However, if the effects are heterogeneous, a random effects model should be used to construct the 
combined confidence interval. 

Fixed Effects Model 
The fixed effects model assumes homogeneity of study results. That is, it assumes that θθ =i  for 
all i. This assumption may not be realistic when combining studies with different patient pools, 
protocols, follow-up strategies, doses, durations, etc.  

If the fixed effects model is adopted, the inverse variance-weighted method as described by 
Sutton (2000) page 58 is used to calculate the confidence interval for θ . The formulas used are 

( )θθ α
ˆˆˆ

2/1 Vz −±  

where  is the appropriate percentage point from the standardized normal distribution and 2/1 α−z
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Random Effects Model 
The random effects model assumes that the individual iθ  come from a random distribution with 

fixed mean θ  and variance .  Sutton (2000) page 74 presents the formulas necessary to 
conduct a random effects analysis using the weighted method. The formulas used are 
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Graphical Displays 
A number of plots have been devised to display the information in a meta-analysis. These include 
the forest plot, the radial plot, and the L’Abbe plot. More will be said about each of these plots in 
the Output section. 

Data Structure 
The data are entered into a dataset using one row per study. Two variables are required to hold 
the log hazard ratio and its standard error. In addition to these, an additional variable is usually 
used to hold a short (3 or 4 character) label. Another variable may be used to hold a grouping 
variable.  

As an example, we will use a dataset giving the results for survival studies. The results of these 
studies are recorded in the METAHR database. You should load this database to see how the data 
are arranged. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
The options on this screen control the variables that are used in the analysis. 

Variables 

Log(Hazard Ratio) Variable 
Specify the variable containing the log hazard ratio of each study. Each row of data represents a 
separate study. Note that the base of the logarithm (e or 10) is arbitrary. However, it must be 
consistent throughout the dataset. 

S.E. Log(Hazard Ratio) Variable 
Specify the variable containing the standard error of the log hazard ratio of each study. Each row 
of data represents a separate study. Note that the base of the logarithm (e or 10) is arbitrary. 
However, it must be consistent throughout the dataset. 

Variables – Optional Variables 

Label Variable 
Specify an optional variable containing a label for each study (row) in the database. This label 
should be short (< 8 letters) so that it can fit on the plots. 

Group Variable 
Specify an optional variable containing a group identification value. Each unique value of this 
variable will receive its own plotting symbol on the forest plots. Some reports are sorted by these 
group values. 
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Combine Studies Method 

Combine Studies Using 
Specify the method used to combine treatment effects. 

Use the Fixed Effects method when you do not want to account for the variation between studies. 

Use the Random Effects method when you want to account for the variation between studies as 
well as the variation within the studies. 

Reports Tab 
The options on this screen control the appearance of the reports. 

Select Reports 

Summary Report - Outcome Detail Reports 
Indicate whether to display the corresponding report.  

Select Plots 

Forest Plot – Radial Plot 
Indicate whether to display the corresponding plot.  

Report Options 

Alpha Level 
This setting controls the confidence coefficient used in the confidence limits. Note that 100 x (1 - 
alpha)% confidence limits will be calculated. This must be a value between 0 and 0.5. The most 
common choice is 0.05, which results in 95% confidence intervals. 

Show Notes 
Indicate whether to show the notes at the end of reports. Although these notes are helpful at first, 
they may tend to clutter the output. This option lets you omit them. 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. Single precision is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 
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Report Options – Decimal Places 

Probability Values – Z Values 
This setting controls the number of digits to the right of the decimal place that are displayed when 
showing this item.  

Plot Options 

Plot Options – Legend Options 

Show Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies the title of the legend. Click the button on the right to specify the font size, color, and 
style of the legend text. The characters {G} are replaced with the name of the Group Variable. 

Plot Options – Plot Symbol Options 

Symbols Proportional to Sample Size 
Check this box to cause the size of the plotting symbols on forest plots and L’Abbe plots to be 
proportional to relative study size. The larger the sample size, the larger the symbol. The range of 
the size of the symbol is controlled by the Size Min Pcnt and Size Max Pcnt options below.  

Size Min Pcnt 
When the Symbols Proportional to Sample Size option is checked, this is percentage adjustment 
that occurs to the smallest sample size. The recommended value is 50. Typical values range from 
20 to 99.  

The formula for a symbol’s size is 
Actual Symbol Size = (Normal Symbol Size)*Radius 

where 
Radius = [(Min Pct) + (Max Pct - Min Pct)*(Sample Size)/(Max Sample Size)]/100 

Size Max Pcnt 
When the Symbols Proportional to Sample Size option is checked, this is percentage adjustment 
that occurs to the largest sample size. The recommended value is 150. Typical values range from 
101 to 200.  
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Forest Plot Tab 
The options on this panel control the appearance of the forest plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Forest Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the Forest style file is used. These style files are created 
in the Scatter Plot procedure. 

Ref. Line 
This option lets you indicate whether to display the reference line and the characteristics of that 
line.  

Difference Reference Value 
This is the position of the reference line on the forest plot.  

Titles 

Plot Title 
This is the text of the title. The characters {X} are replaced by the output measure. Press the 
button on the right of the field to specify the font of the text. 
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Radial Plot Tab 
The options on this panel control the appearance of the radial plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Radial Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. These style files are created in the Scatter Plot procedure. 

Symbol 
Specify a symbol. Usually, no symbol is used.  

Symbol Font Size 
This option lets you specify the size of font used to display the row numbers or row labels.  

Titles 

Plot Title 
This is the text of the title. The characters {G} are replaced by the output measure. Press the 
button on the right of the field to specify the font of the text. 



 Meta-Analysis of Hazard Ratios  458-11 

Symbols Tab 
These options set the type, color, size, and style of the plotting symbols. Symbols for up to 
fourteen groups may be used. When no Group Variable is specifed, the options made for Symbol 
1 are used to define the plot symbol.  

Plotting Symbols 
Click on the symbol or on the button to its right to display a window that allows you to change 
the characteristics of the plotting symbol. 

Storage Tab 
These options let you specify if, and where on the database, various statistics are stored. 

Warning: Any data already in these variables are replaced by the new data. Be careful not to 
specify variables that contain important data. 

Data Storage Options 

Storage Option 
This option controls whether the values indicated below are stored on the database when the 
procedure is run. 

• Do not store data 
No data are stored even if they are checked. 

• Store in empty columns only 
The values are stored in empty columns only. Columns containing data are not used for data 
storage, so no data can be lost. 

• Store in designated columns 
Beginning at the First Storage Variable, the values are stored in this column and those to the 
right. If a column contains data, the data are replaced by the storage values. Care must be 
used with this option because it cannot be undone. 

Store First Variable In 
The first item is stored in this variable. Each additional item that is checked is stored in the 
variables immediately to the right of this variable.  

Leave this value blank if you want the data storage to begin in the first blank column on the right-
hand side of the data. 

Warning: any existing data in these variables are automatically replaced, so be careful. 



458-12  Meta-Analysis of Hazard Ratios 

Data Storage Options – Select Items 
to Store on the Spreadsheet 

Log(HR) - Weights 
Indicate whether to store these row-by-row values, beginning at the variable indicated by the 
Store First Variable In option.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Meta-Analysis of Hazard Ratios 
This section presents an example of how to analyze the data contained in the METAHR database. 
This dataset contains data for sixteen randomized clinical trials with survival endpoints.  

You may follow along here by making the appropriate entries or load the completed template 
Example 1 from the Template tab of the Meta-Analysis of Hazard Ratios window.  

1 Open the METAHR dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file MetaCProp.s0. 
• Click Open. 

2 Open the Meta-Analysis of Hazard Ratios window. 
• On the menus, select Analysis, then Meta-Analysis, then Meta-Analysis of Hazard 

Ratios. The Meta-Analysis of Hazard Ratios procedure window will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  
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3 Select the variables. 
• Select the Variables tab.  
• Set the Log(Hazard Ratio) Variable to LogHR. 
• Set the S.E. Log(Hazard Ratio) Variable to SELogHR. 
• Set the Label Variable to Study. 

4 Specify the reports. 
• Select the Reports tab.  
• Check the Summary Report option box. 
• Check the Heterogeneity Tests option box. 
• Check the Outcome Detail Reports option box. 
• Check the Forest Plot (By Measure) option box. 
• Check Radial Plot option box. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Run Summary Section 
 

Parameter Value Parameter Value 
Log HR Variable LogHR SE(Log HR) Variable SELogHR 
Group Variable None Number Groups 1 
Row Label Variable Study Rows Processed 16 
 

This report records the variables that were used and the number of rows that were processed. 

Numeric Summary Section 
 

Study Log HR SE(Log HR) 
S1 -0.1350 0.0799     
S2 -0.2570 0.0734     
S3 -0.4610 0.0492     
S4 0.2030 0.0401     
S5 -0.7980 0.1203     
S6 -0.3240 0.0933     
S7 -0.5510 0.0577     
S8 -0.6820 0.1084     
S9 -0.3340 0.1385     
S10 -0.3840 0.0472     
S11 0.0564 0.0671     
S12 -0.9910 0.0528     
S13 -0.7230 0.0319     
S14 -0.4240 0.0289     
S15 0.0178 0.0817     
S16 -0.1870 0.0203     
 
[Combined] 
Average  -0.3712     
 

This report shows the input data. You should scan it for any mistakes. Note that the ‘Average’ 
line provides the estimated group average.  



458-14  Meta-Analysis of Hazard Ratios 

Nondirectional Zero-Effect Test 
 

 Outcome   Prob 
Rows Measure Chi-Square DF Level 
Combined Log(Hazard Ratio) 1554.1876 16 0.0000 
 

This reports the results of the nondirectional zero-effect chi-square test designed to test the null 
hypothesis that all treatment effects are zero. The null hypothesis is written 

kiH i ,,1     :0 L==θθ  

The alternative hypothesis is that at least one 0≠iθ , that is, at least one study had a statistically 
significant result. 

Chi-Square 
This is the computed chi-square value for this test. The formula was presented earlier. 

DF 
This is the degrees of freedom. For this test, the degrees of freedom is equal to the number of 
studies. 

Prob Level 
This is the significance level of the test. If this value is less than the nominal value of alpha 
(usually 0.05), the test is statistically significant and the alternative is concluded. If the value is 
larger than the specified value of alpha, no conclusion can be drawn other than that you do not 
have enough evidence to reject the null hypothesis. 

Directional Zero-Effect Test 
 

 Outcome   Prob 
Rows Measure Chi-Square DF Level 
Combined Log(Hazard Ratio) 902.7014 1 0.0000 
 

This reports the results of the directional zero-effect chi-square test designed to test the overall 
null hypothesis that all treatment effects are zero. The null hypothesis is written 

kiH i ,,1     :0 L==θθ  

The alternative hypothesis is that 0≠= θθi  for all i, that is, that all effects are equal to the same, 
non-zero value. 

Chi-Square 
This is the computed chi-square value for this test. The formula was presented earlier. 

DF 
This is the degrees of freedom. For this test, the degrees of freedom is equal one. 

Prob Level 
This is the significance level of the test. If this value is less than the specified value of alpha 
(usually 0.05), the test is statistically significant and the alternative is concluded. If the value is 
larger than the specified value of alpha, no conclusion can be drawn other than that you do not 
have enough evidence to reject the null hypothesis. 
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Effect-Equality (Heterogeneity) Test 
 

 Outcome Cochran’s  Prob 
Treatment Measure Q DF Level 
Combined Log(Hazard Ratio) 651.4861 15 0.0000 
 

This reports the results of the effect-equality (homogeneity) test. This chi-square test was 
designed to test the null hypothesis that all treatment effects are equal. The null hypothesis is 
written 

kiH i ,,1     :0 L==θθ  

The alternative is that at least one effect is different, that is, that the effects are heterogeneous. 
This may also be interpreted as a test of the study-by-treatment interaction. This test may help 
you determine whether to use a Fixed Effects model (used for homogeneous effects) or a Random 
Effects model (heterogeneous effects). 

Cochran’s Q 
This is the computed chi-square value for Cochran’s Q statistic. The formula was presented 
earlier. 

DF 
This is the degrees of freedom. For this test, the degrees of freedom is equal to the number of 
studies minus one.. 

Prob Level 
This is the significance level of the test. If this value is less than the specified value of alpha 
(usually 0.05), the test is statistically significant and the alternative is concluded. If the value is 
larger than the specified value of alpha, no conclusion can be drawn other than that you do not 
have enough evidence to reject the null hypothesis. 
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Log(Hazard Ratio) Detail Section 
 
    95.0%  95.0% Percent 
   Lower Upper Random 
 Log Hazard Standard Confidence Confidence Effects 
Study Difference Error Limit Limit Weight 
S1 -0.1350 0.0799 -0.2917 0.0217 6.1950 
S2 -0.2570 0.0734 -0.4009 -0.1131 6.2557 
S3 -0.4610 0.0492 -0.5574 -0.3646 6.4428 
S4 0.2030 0.0401 0.1244 0.2816 6.4960 
S5 -0.7980 0.1203 -1.0338 -0.5622 5.7451 
S6 -0.3240 0.0933 -0.5069 -0.1411 6.0591 
S7 -0.5510 0.0577 -0.6641 -0.4379 6.3843 
S8 -0.6820 0.1084 -0.8945 -0.4695 5.8891 
S9 -0.3340 0.1385 -0.6055 -0.0625 5.5118 
S10 -0.3840 0.0472 -0.4765 -0.2915 6.4553 
S11 0.0564 0.0671 -0.0751 0.1879 6.3104 
S12 -0.9910 0.0528 -1.0945 -0.8875 6.4190 
S13 -0.7230 0.0319 -0.7855 -0.6605 6.5352 
S14 -0.4240 0.0289 -0.4806 -0.3674 6.5474 
S15 0.0178 0.0817 -0.1423 0.1779 6.1779 
S16 -0.1870 0.0203 -0.2268 -0.1472 6.5759 
 
[Combined] 
Average -0.3712 0.0800 -0.5280 -0.2145  
 

This report displays results for the log hazard ratio.  

Confidence Limits 
These are the lower and upper confidence limits (the formulas were given earlier in this chapter). 

Weights 
The last column gives the relative (percent) weight used in creating the weighted average. Using 
these values, you can decide how much influence each study has on the weighted average. 
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Forest Plot 
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This plot presents the results for each study on one plot. The size of the plot symbol is 
proportional to the sample size of the study. The points on the plot are sorted by the mean 
difference. The lines represent the confidence intervals about the log hazard ratios. Note that the 
narrower the confidence limits, the better.   
By studying this plot, you can determine the main conclusions that can be drawn from the set of 
studies. For example, you can determine how many studies were significant (the confidence 
limits do not intersect the vertical line at 0.0).  



458-18  Meta-Analysis of Hazard Ratios 

Radial Plot 
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The radial (or Galbraith) plot shows the z-statistic (outcome divided by standard error) on the 
vertical axis and a measure of weight on the horizontal axis. Studies that have the largest weight 
are closest to the Y axis. Studies within the limits are interpreted as homogeneous. Studies 
outside the limits may be outliers. 
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Chapter 465 

Exponential 
Smoothing – 
Horizontal 
Introduction 
Simple exponential smoothing forecasts horizontal series: those without trends or seasonal 
patterns. It is appropriate for short-term forecasts of series using a weighted average of the most 
recent observations.  

 The forecasting algorithm makes use of the following formulas: 

( )F X Ft t t= + − −α α1 1  

Here α  is the smoothing constant which is between zero and one. 

The forecast at time T for the value at time T+k is . FT

Another form of the above equation which shows how this procedure received its name is 

( ) ( ) ( )F X X X Xt t t t t= + − + − + − +− −α α α α α α α1 1 11
2

2
3

3 L−  

From this equation we see that the method constructs a weighted average of the observations. The 
weight of each observation decreases exponentially as we move back in time. Hence, since the 
weights decrease exponentially and averaging is a form of smoothing, the technique was name 
exponential smoothing. 

Smoothing Constants 
Notice that the smoothing constant, α , determines how fast the weights of the series decays. The 
value may be chosen either subjectively or objectively. Values near one put almost all weight on 
the most recent observations. Values of the smoothing constant near zero allow the distant past 
observations to have a large influence. 

When selecting the smoothing constant subjectively, you use your own experience with this, and 
similar, series. Also, specifying the smoothing constant yourself lets you tune the forecast to your 
own beliefs about the future of the series. If you believe that the mechanism generating the series 
has recently gone through some fundamental changes, use a smoothing constant value of 0.9 
which will cause distant observations to be ignored. If, however, you think the series is fairly 
stable and only going through random fluctuations, use a value of 0.1. 
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To select the value of the smoothing constant objectively, you search for a value that is best in 
some sense. Our program searches for that value that minimizes the size of the combined forecast 
errors of the currently available series. Three methods of summarizing the amount of error in the 
forecasts are available: the mean square error (MSE), the mean absolute error (MAE), and the 
mean absolute percent error (MAPE). The forecast error is the difference between the forecast of 
the current period made at the last period and the value of the series at the current period. This is 
written as 

e X Ft t t= − −1  

Using this formulation, we can define the three error-size criterion as follows: 

MSE
n

et= ∑1 2  

MAE
n

et= ∑1  

MAPE
n

e
X

t

t
= ∑100  

To find the value of the smoothing constants objectively, we select one of these criterion and 
search for that value of α  that minimize this function. The program conducts a search for the 
appropriate values using an efficient grid-searching algorithm. 

Initial Values 
Exponential smoothing requires special initialization since the forecast for period one requires the 
forecast at period zero, which we do not, by definition, have. Several methods have been 
proposed for generating starting values. We have adopted the backcasting method which is 
currently considered to be one of the best. Backcasting is simply reversing the series so that we 
forecast into the past instead of into the future. This produces the required starting value. Once we 
have done this, we can then switch the series back and apply the algorithm in the regular manor. 

Relationship to ARIMA Method 
It can be shown that both exponential smoothing is equivalent to the ARIMA(0,1,1) model (see Kendall 
and Ord (1990) page 130). This is why backcasting is recommended for initial values. 

Assumptions and Limitations 
This algorithm is useful for short-term forecasting of nonseasonal time series with no apparent 
upward or downward. The series is assumed to have a changing (or evolving) mean that is not 
fixed over all time. We assume that future values of this average are unpredictable, so that the 
current level (current average or mean) of the series is the best forecast of future values.  

Data Structure 
The data are entered in a single variable.  
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Missing Values 
Missing values are not tolerated by this implementation of exponential smoothing. When missing values 
are found in the series, they are replaced by the average of the nearest observation in the future and in the 
past. If you do not feel that this is a valid estimate of the missing value, you should manually enter a 
more reasonable estimate before using the algorithm. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variable(s) on which to run the analysis. 

Time Series Variables 

Time Series Variable(s) 
Specify the variable(s) on which to run the analysis. A separate analysis will be conducted for 
each variable listed. 

Use Logarithms 
Specifies that the log (base 10) transformation should be applied to the values of the variable. The 
forecasts are converted back to there original metric before display. 

Forecasting Options 

Number of Forecasts 
This option specifies the number of forecasts to be generated. 

Smoothing Constant Search Options 

Search Method 
This option specifies whether a search is conducted for the best value of the smoothing constant 
and what the criterion for the search will be. 

• Specified Value 
No search is conducted. Use the value of the smoothing constant that is set in Alpha box. 

• Search on MSE 
A search is conducted to find the value of the smoothing constant that minimizes MSE. 

• Search on MAE 
A search is conducted to find the value of the smoothing constant that minimizes MAE. 

• Search on MAPE 
A search is conducted to find the value of the smoothing constant that minimizes MAPE. 
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Alpha Smoothing Constant 
When the Search Method is set to Specified Value, this option specifies the value of the 
smoothing constant to be used. The limits of this value are zero and one. Usually, a value between 
0.1 and 0.3 are used. As the value gets closer to one, more and more weight is given to recent 
observations. 

Reports Tab 
The following options control which reports are displayed.  

Select Reports 

Summary Report  
This option specifies whether the indicated report is displayed. 

Forecast Report 
This option specifies which parts of the series are listed on the numeric reports: the original data 
and forecasts, just the forecasts, or neither. 

Select Plots 

Forecast Plot - Residual Plot 
Each of these options specifies whether the indicated plot is displayed. 

Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 

Page Title 
Specify a title to be shown at the top of the reports. 

Forecast Plot Tab 
A plot of the data and forecast over time may be displayed. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 
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Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Forecast Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Residual Plot Tab 
This section controls the residual plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 
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Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Residual Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Storage Tab 
The forecasts and residuals may be stored on the current database for further analysis. These 
options let you designate which statistics (if any) should be stored by designating which variables 
should receive the statistics. 
Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 
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Data Storage Variables 

Forecasts 
The forecasts are stored in this variable. 

Residuals 
The residuals are stored in this variable. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Horizontal Exponential Smoothing 
This section presents an example of how to generate a forecast of a horizontal series. The data in 
the INTEL database gives price and volume data for Intel stock during August, 1995. We will 
forecast values for daily volumes. These values are contained in the variable Intel_Volume.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Exponential Smoothing – Horizontal window. 

1 Open the Intel dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Intel.S0. 
• Click Open. 

2 Open the Exponential Smoothing – Horizontal window. 
• On the menus, select Analysis, then Forecasting / Time Series, then Exponential 

Smoothing – Horizontal. The Exponential Smoothing – Horizontal procedure will be 
displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  
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3 Specify the variables. 
• On the Exponential Smoothing – Horizontal window, select the Variables tab.  
• Double-click in the Time Series Variable box. This will bring up the variable selection 

window.  
• Select Intel_Volume from the list of variables and then click Ok. 

4 Specify the reports. 
• On the Exponential Smoothing – Horizontal window, select the Reports tab.  
• Select Data and Forecasts in the Forecast Report list box. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Forecast Summary Section 
 
 Forecast Summary Section 
 

Variable Intel_Volume 
Number of Rows 20 
Mean 10974.54 
Pseudo R-Squared 0.000000 
Mean Square Error 1.632774E+07 
Mean |Error| 2876.168 
Mean |Percent Error| 25.98573 
 
Alpha Search Mean Square Error 
Alpha 0.3769885 
Forecast 13100.84 

 

This report summarizes the forecast equation.  

Variable 
The name of the variable for which the forecasts are generated. 

Mean 
The mean of the variable across all time periods. 

Pseudo R-Squared 
This value generates a statistic that acts like the R-Squared value in multiple regression. A value 
near zero indicates a poorly fitting model, while a value near one indicates a well fitting model. 
The statistic is calculated as follows: 

R SSE
SST

2 100 1= −⎛
⎝⎜

⎞
⎠⎟

 

where SSE is the sum of square residuals and SST is the total sum of squares after correcting for 
the mean. 

Mean Square Error 
The average squared residual (MSE) is a measure of how closely the forecasts track the actual 
data. The statistic is popular because it shows up in analysis of variance tables. However, because 
of the squaring, it tends to exaggerate the influence of outliers (points that do not follow the 
regular pattern). 
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Mean |Error| 
The average absolute residual (MAE) is a measure of how closely the forecasts track the actual 
data without the squaring.  

Mean |Percent Error| 
The average percent absolute residual (MAPE) is a measure of how closely the forecasts track the 
actual data put on a percentage basis. 

Alpha Search 
If a search was made to find the best value of the smoothing constant, this row gives the criterion 
used during the search. 

Alpha 
The value of the smoothing constant that was used to generate the forecasts. 

Forecast 
The value of the forecast. This is the value that used to forecast future values from this point on. 
Remember that this method does not adjust for trend or seasonality, so only the current average is 
used for forecasting.  

Forecast and Residuals Plots 
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Forecast Plot 
The forecast plot lets you analyze how closely the forecasts track the data. The plot also shows 
the forecasts at the end of the data series. 

Residual Plot 
This plot lets you analyze the residuals themselves. You are looking for patterns, outliers, or any 
other information that may help you improve the forecasting model. The first thing to compare is 
the scale of the Residual Plot versus the scale of the Forecast Plot. If your forecasting is working 
well, the vertical scale of the Residual Plot will be much less than the scale of the Forecast Plot. 

Forecasts Section 
 

Forecasts Section 
 
Row Forecast Actual  
No. Intel_Volume Intel_Volume Residuals 
1 12153.88 11242.2 -911.6825 
2 11810.19 16689.9 4879.711 
3 13649.78 14613.3 963.5162 
4 14013.02 8009 -6004.018 
5 11749.57 6441.8 -5307.772 
6 9748.604 7664.5 -2084.103 
7 8962.92 8330.3 -632.6202 
8 8724.43 7983 -741.4297 
9 8444.919 8767.1 322.1808 
10 8566.378 6266.4 -2299.978 
11 7699.313 8915.3 1215.987 
12 8157.726 8833 675.2742 
13 8412.297 8709.7 297.4036 
14 8524.414 9603 1078.586 
15 8931.028 21185.2 12254.17 
16 13550.71 16006.5 2455.79 
17 14476.51 11832.4 -2644.115 
18 13479.71 9168.1 -4311.614 
19 11854.29 17729.3 5875.015 
20 14069.1 11500.7 -2568.398 
21 13100.84   
22 13100.84   
23 13100.84   
24 13100.84   
25 13100.84   
26 13100.84   
27 13100.84   
28 13100.84   
29 13100.84   
30 13100.84   
31 13100.84   
32 13100.84   

  

This section shows the values of the forecasts, the actual values, and the residuals. 
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Chapter 466 

Exponential 
Smoothing – 
Trend 
Introduction 
This module forecasts series with upward or downward trends. Three techniques are available: 
least squares trend, double smoothing, and Holt’s linear trend algorithm. 

Least Squares Trend 
Least squares trend computes a straight-line trend equation through the data using standard least 
squares techniques in which the dependent variable is the time series and the independent variable 
is the row (sequence) number. The forecasting equation is 

F a btt = +  

where  is the forecast at time period t, a is the y-intercept, and b is the slope of the trend. The 
slope indicates how much is added (or subtracted if b is negative) from each time period to the 
next. 

Ft

This method is useful for series that show a stable, long-term trend. It places the largest weights 
in estimation on the two ends of the series, while the rows near the middle with an insignificant 
impact on the estimates.  

Double Exponential Smoothing 
Double exponential smoothing computes a trend equation through the data using a special 
weighting function that places the greatest emphasis on the most recent time periods. The 
forecasting equation changes from period to period. 

 The forecasting algorithm makes use of the following formulas: 

F a bt t t= +  

( )a X et t= + −1 2α t  
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b b et t= +−1
2α t

t

 

e F Xt t= −  

The smoothing constant, α , dictates the amount of smoothing that takes place. It ranges from 
zero to one. 

The forecast at time period T for the value at time period T+k is a bT T k+ . Double smoothing is 
discussed in detail in Thomopoulos (1980). 

This method is included more for its historical significance, since Holt’s algorithm is usually 
preferred to it.  

Holt’s Linear Trend 
Holt’s Linear Trend computes an evolving trend equation through the data using a special 
weighting function that places the greatest emphasis on the most recent time periods. Instead of 
the global trend equation of the least squares trend algorithm, this technique uses a local trend 
equation. The trend equation is modified from period to period. The forecasting equation changes 
from period to period. 

 The forecasting algorithm makes use of the following formulas: 

( )( )a X a bt t t t= + − +− −α α1 1 1  

( ) ( )b a a bt t t= − + −− −β β1 11 t  

Here α  and β  are smoothing constants which are each between zero and one. Again, a  gives 
the y-intercept (or level) at time t, while  is the slope at time t. 

t

bt

The forecast at time T for the value at time T+k is a b kT T+ . 

Smoothing Constants 
Notice that in both double smoothing and Holt’s linear trend, the smoothing constant(s) 
determines how fast the weights of the series decays. The values may be chosen either 
subjectively or objectively. Values of a smoothing constant near one put almost all weight on the 
most recent observations. Values of a smoothing constant near zero allow the distant past 
observations to have a large influence. 

When selecting the smoothing constant subjectively, you use your own experience with this, and 
similar, series. Also, specifying the smoothing constant yourself lets you tune the forecast to your 
own beliefs about the future of the series. If you believe that the mechanism generating the series 
has recently gone through some fundamental changes, use a smoothing constant value of 0.9 
which will cause distant observations to be ignored. If, however, you think the series is fairly 
stable and only going through random fluctuations, use a value of 0.1. 

To select the value of the smoothing constant(s) objectively, you search for values that are best in 
some sense. Our program searches for that values that minimizes the size of the combined 
forecast errors of the currently available series. Three methods of summarizing the amount of 
error in the forecasts are available: the mean square error (MSE), the mean absolute error (MAE), 
and the mean absolute percent error (MAPE). The forecast error is the difference between the 
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forecast of the current period made at the last period and the value of the series at the current 
period. This is written as 

e X Ft t t= − −1  

Using this formulation, we can define the three error-size criterion as follows: 

MSE
n

et= ∑1 2  

MAE
n

et= ∑1  

MAPE
n

e
X

t

t
= ∑100  

To find the value of the smoothing constants objectively, we select one of these criterion and 
search for those values of α  and β  that minimize this function. The program conducts a search 
for the appropriate values using an efficient grid-searching algorithm. 

Initial Values 
Both double smoothing and Holt’s linear trend require initialization since the forecast for period one 
requires the forecast at period zero, which we do not, by definition, have. Several methods have 
been proposed for generating starting values. We have adopted the backcasting method which is 
currently considered to be one of the best methods. Backcasting is simply reversing the series so 
that we forecast into the past instead of into the future. This produces the required starting values 
for the slope and intercept. Once we have done this, we can then switch the series back and apply 
the algorithm in the regular manor. 

Relationship to ARIMA Method 
It can be shown that both double exponential smoothing and Holt’s linear trend technique are equivalent 
to the ARIMA(0,2,2) model (see Kendall and Ord (1990) page 133). This is why backcasting is 
recommended for initial values. 

Assumptions and Limitations 
These algorithms are useful for forecasting non-seasonal time series with (local or global) trend.  

Data Structure 
The data are entered in a single variable.  

Missing Values 
Missing values are not tolerated by these algorithms. When missing values are found in the series, they 
are replaced by the average of the nearest observation in the future and in the past. If you do not feel that 
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this is a valid estimate of the missing value, you should manually enter a more reasonable estimate 
before using the algorithm. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variable(s) on which to run the analysis. 

Time Series Variables 

Time Series Variable(s) 
Specify the variable(s) on which to run the analysis. A separate analysis will be conducted for 
each variable listed. 

Use Logarithms 
Specifies that the log (base 10) transformation should be applied to the values of the variable. The 
forecasts are converted back to there original metric before display. 

Forecasting Options 

Forecast Method 
Select LS (least squares) linear trend, double exponential smoothing, or Holt’s linear trend. 

Number of Forecasts 
This option specifies the number of forecasts to be generated. 

Smoothing Constant Search Options 

Search Method 
This option specifies whether a search is conducted for the best values of the smoothing constants 
and what the criterion for the search will be. 

• Specified Value 
No search is conducted. The values of the smoothing constants that are given in the next 
options are used. 

• Search on MSE 
A search is conducted to find the values of the smoothing constants that minimize MSE. 

• Search on MAE 
A search is conducted to find the values of the smoothing constants that minimize MAE. 

• Search on MAPE 
A search is conducted to find the values of the smoothing constants that minimize MAPE. 
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Smoothing Constant Search Options 
– Pre-Specified Smoothing Constants 

Alpha Smoothing Constant 
When the Search Method is set to Specified Value, this option specifies the value of alpha used in 
double exponential smoothing and Holt’s linear trend. The limits of this value are zero and one. 
Usually, a value between 0.1 and 0.3 are used. As the value gets closer to one, more and more 
weight is given to recent observations. 

Beta Smoothing Constant 
When the Search Method is set to Specified Value, this option specifies the value of beta used in 
Holt’s linear trend. The limits of this value are zero and one. Usually, a value between 0.1 and 0.3 
are used. As the value gets closer to one, more and more weight is given to recent observations. 

Reports Tab 
The following options control which reports are displayed.  

Select Reports 

Summary Report  
This option specifies whether the indicated report is displayed. 

Forecast Report 
This option specifies which parts of the series are listed on the numeric reports: the original data 
and forecasts, just the forecasts, or neither. 

Select Plots 

Forecast Plot - Residual Plot 
Each of these options specifies whether the indicated plot is displayed. 

Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 

Page Title 
Specify a title to be shown at the top of the reports. 
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Forecast Plot Tab 
A plot of the data and forecast over time may be displayed. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Forecast Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 
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Residual Plot Tab 
This section controls the residual plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Residual Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 
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Storage Tab 
The forecasts and residuals may be stored on the current database for further analysis. These 
options let you designate which statistics (if any) should be stored by designating which variables 
should receive the statistics. 
Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Data Storage Variables 

Forecasts 
The forecasts are stored in this variable. 

Residuals 
The residuals are stored in this variable. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Trend Exponential Smoothing 
This section presents an example of how to generate a forecast of a series using Holt’s linear 
trend. The data in the INTEL database gives price and volume data for Intel stock during August, 
1995. We will forecast values for daily volumes. These values are contained in the variable 
Intel_Volume.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Exponential Smoothing – Trend window. 

1 Open the Intel dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Intel.S0. 
• Click Open. 

2 Open the Exponential Smoothing – Trend window. 
• On the menus, select Analysis, then Forecasting / Time Series, then Exponential 

Smoothing – Trend. The Exponential Smoothing – Trend procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Exponential Smoothing – Trend window, select the Variables tab.  
• Double-click in the Time Series Variable box. This will bring up the variable selection 

window.  
• Select Intel_Volume from the list of variables and then click Ok. 
• Select Holt’s Linear Trend in the Forecast Method list box. 

4 Specify the reports. 
• On the Exponential Smoothing – Trend window, select the Reports tab.  
• Select Data and Forecasts in the Forecast Report list box. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Forecast Summary Section 
 
 Forecast Summary Section 
 

Variable Intel_Volume 
Number of Rows 20 
Mean 10974.54 
Pseudo R-Squared 0.000000 
Mean Square Error 1.80109E+07 
Mean |Error| 3229.513 
Mean |Percent Error| 28.64767 
 
Forecast Method Holt's Linear Trend 
Search Iterations 59 
Search Criterion Mean Square Error 
Alpha 0.4157034 
Beta 0.1182474 
Intercept (A) 9277.523 
Slope (B) 210.8949 

 

This report summarizes the forecast equation. 

Variable 
The name of the variable for which the forecasts are generated. 

Mean 
The mean of the variable across all time periods. 

Pseudo R-Squared 
This value generates a statistic that acts like the R-Squared value in multiple regression. A value 
near zero indicates a poorly fitting model, while a value near one indicates a well fitting model. 
The statistic is calculated as follows: 

R SSE
SST

2 100 1= −⎛
⎝⎜

⎞
⎠⎟

 

where SSE is the sum of square residuals and SST is the total sum of squares after correcting for 
the mean. 

Mean Square Error 
The average squared residual (MSE) is a measure of how closely the forecasts track the actual 
data. The statistic is popular because it shows up in analysis of variance tables. However, because 
of the squaring, it tends to exaggerate the influence of outliers (points that do not follow the 
regular pattern). 

Mean |Error| 
The average absolute residual (MAE) is a measure of how closely the forecasts track the actual 
data without the squaring.  

Mean |Percent Error| 
The average percent absolute residual (MAPE) is a measure of how closely the forecasts track the 
actual data put on a percentage basis. 

Forecast Method 
This line shows which of the three possible trend forecasting algorithms was selected. 
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Search Iterations 
This line shows how many iterations were needed to find the best value(s) for the smoothing 
constant(s). 

Search Criterion 
If a search was made to find the best values of the smoothing constants, this row gives the 
criterion used during the search. 

Alpha 
The value of the smoothing constant alpha that was used to generate the forecasts. 

Beta 
The value of the smoothing constant beta that was used to generate the forecasts. 

Intercept (A) 
The value of the y-intercept for time period one! Hence, to forecast for time period 21 (the next 
period after the current period) we would use 9277.523 + 21(210.8949) = 13706.32. 

Slope (B) 
The value of the slope.  

Forecast and Residuals Plots 
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Forecast Plot 
The forecast plot lets you analyze how closely the forecasts track the data. The plot also shows 
the forecasts at the end of the data series.  

Residual Plot 
This plot lets you analyze the residuals themselves. You are looking for patterns, outliers, or any 
other information that may help you improve the forecasting model. The first thing to compare is 
the scale of the Residual Plot versus the scale of the Forecast Plot. If your forecasting is working 
well, the vertical scale of the Residual Plot will be much less than the scale of the Forecast Plot. 

Forecasts Section 
 

Row Forecast Actual  
No. Intel_Volume Intel_Volume Residuals 
1 13003.77 11242.2 -1761.574 
2 11334.51 16689.9 5355.391 
3 13210.71 14613.3 1402.594 
4 13512.66 8009 -5503.658 
5 10673.12 6441.8 -4231.32 
6 8154.504 7664.5 -490.0037 
7 7167.079 8330.3 1163.221 
8 6924.084 7983 1058.916 
9 6689.781 8767.1 2077.319 
10 6980.944 6266.4 -714.5444 
11 6076.396 8915.3 2838.904 
12 6788.578 8833 2044.422 
13 7270.985 8709.7 1438.714 
14 7572.32 9603 2030.68 
15 8219.556 21185.2 12965.64 
16 14049.83 16006.5 1956.668 
17 15399.82 11832.4 -3567.42 
18 14278.07 9168.1 -5109.966 
19 12263.89 17729.3 5465.414 
20 14914.58 11500.7 -3413.885 
21 13706.32   
22 13917.21   
23 14128.11   
24 14339   
25 14549.9   
26 14760.79   
27 14971.68   

  

This section shows the values of the forecasts, the actual values, and the residuals. 
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Chapter 467 

Exponential 
Smoothing – 
Trend & Seasonal 
Introduction 
This module forecasts seasonal series with upward or downward trends using the Holt-Winters 
exponential smoothing algorithm. Two seasonal adjustment techniques are available: additive and 
multiplicative.  

Additive Seasonality 
Given observations  of a time series, the Holt-Winters additive seasonality 
algorithm computes an evolving trend equation with a seasonal adjustment that is additive. 
Additive means that the amount of the adjustment is constant for all levels (average value) of the 
series. 

X X Xt1 2, , ,L

The forecasting algorithm makes use of the following formulas: 

( ) ( )( )a X F a bt t t s t t= − + − +− −α α1 1 1−  

( ) ( )b a a bt t t= − + −− −β β1 11 t  

( ) ( )F X a Ft t t= − + − −γ γ1 t s  

Here α , β , and γ  are smoothing constants which are between zero and one. Again,  gives the 
y-intercept (or level) at time t, while  is the slope at time t.  The letter s represents the number 
of periods per year, so the quarterly data is represented by s = 4 and monthly data is represented 
by s = 12. 

at

bt

The forecast at time T for the value at time T+k is a b k FT T T k s+ + + − +[( )/ ]1 1 . Here [(T+k-1)/s] is 
means the remainder after dividing T+k-1 by s. That is, this function gives the season (month or 
quarter) that the observation came from. 
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Multiplicative Seasonality 
Given observations  of a time series, the Holt-Winters multiplicative seasonality 
algorithm computes an evolving trend equation with a seasonal adjustment that is multiplicative. 
Multiplicative means that the amount of the adjustment is varies with the level (average value) of 
the series. Note that the nature of most economic time series make the multiplicative model more 
popular than the additive model. 

X X Xt1 2, , ,L

 The forecasting algorithm makes use of the following formulas: 

( ) ( )( )a X F a bt t t s t t= + − +− −α α/ 1 1 1−  

( ) ( )b a a bt t t= − + −− −β β1 11 t  

( ) ( )F X a Ft t t= + − −γ γ/ 1 t s  

Here α , β , and γ  are smoothing constants which are between zero and one. Again,  gives the 
y-intercept (or level) at time t, while  is the slope at time t.  The letter s represents the number 
of periods per year, so the quarterly data is represented by s = 4 and monthly data is represented 
by s = 12. 

at

bt

The forecast at time T for the value at time T+k is ( ) 1]/)1[( +−++ skTTT Fkba . Here [(T+k-1)/s] is 
means the remainder after dividing T+k-1 by s. That is, this function gives the season (month or 
quarter) that the observation came from. 

Smoothing Constants 
Notice that the smoothing constants determines how fast the weights of the series decays. The 
values may be chosen either subjectively or objectively. Values of a smoothing constant near one 
put almost all weight on the most recent observations. Values of a smoothing constant near zero 
allow the distant past observations to have a large influence. 

Note thatα  is associated with the level of the series, β  is associated with the trend, and γ  is 
associated with the seasonality factors. 

When selecting the smoothing constant subjectively, you use your own experience with this, and 
similar, series. Also, specifying the smoothing constant yourself lets you tune the forecast to your 
own beliefs about the future of the series. If you believe that the mechanism generating the series 
has recently gone through some fundamental changes, use a smoothing constant value of 0.9 
which will cause distant observations to be ignored. If, however, you think the series is fairly 
stable and only going through random fluctuations, use a value of 0.1. 

To select the value of the smoothing constants objectively, you search for values that are best in 
some sense. Our program searches for that values that minimize the size of the combined forecast 
errors of the currently available series. Three methods of summarizing the amount of error in the 
forecasts are available: the mean square error (MSE), the mean absolute error (MAE), and the 
mean absolute percent error (MAPE). The forecast error is the difference between the forecast of 
the current period made at the last period and the value of the series at the current period. This is 
written as 

e X Ft t t= − −1  
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Using this formulation, we can define the three error-size criterion as follows: 

MSE
n

et= ∑1 2  

MAE
n

et= ∑1  

MAPE
n

e
X

t

t
= ∑100  

To find the value of the smoothing constants objectively, we select one of these criterion and 
search for those values of α  and β  that minimize this function. The program conducts a search 
for the appropriate values using an efficient grid-searching algorithm. 

Initial Values 
Winters method requires initialization since the forecast for period one requires the forecast at period 
zero, which we do not, by definition, have. It also requires the seasonal adjustment factors. 
Several methods have been proposed for generating starting values. We have adopted the 
backcasting method which is currently considered to be one of the best methods. Backcasting is 
simply reversing the series so that we forecast into the past instead of into the future. This 
produces the required starting values for the slope, intercept, and seasonal factors. Once we have 
done this, we can switch the series back and apply the algorithm in the regular manner. 

Relationship to ARIMA Method 
The multiplicative seasonal adjustment model does not have an ARIMA counterpart, while the additive 
model does. 

Assumptions and Limitations 
These algorithms are useful for forecasting seasonal time series with (local or global) trend.  

Data Structure 
The data are entered in a single variable.  

Missing Values 
Missing values are not tolerated by these algorithms. When missing values are found in the series, 
they are replaced by the average of the nearest observation in the future and in the past. If you do 
not feel that this is a valid estimate of the missing value, you should manually enter a more 
reasonable estimate before using the algorithm. This missing value replacement algorithm is 
particularly poor for seasonal data. We recommend that you replace missing values manually before 
using the algorithm. 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variable(s) on which to run the analysis. 

Time Series Variables 

Time Series Variable(s) 
Specify the variable(s) on which to run the analysis. A separate analysis will be conducted for 
each variable listed. 

Use Logarithms 
Specifies that the log (base 10) transformation should be applied to the values of the variable. The 
forecasts are converted back to there original metric before display. 

Forecasting Options 

Number of Forecasts 
This option specifies the number of forecasts to be generated. 

Seasonal Model Options 

Seasonal Adjustment 
Select either the Additive or Multiplicative adjustment scheme. 

Seasonality Options 

Seasons 
Specify the number of seasons per year in the series. Use ‘4’ for quarterly data or ‘12’ for 
monthly data. 

First Season 
Specify the first season of the series. This value is used to format the reports and plots. For 
example, if you have monthly data beginning with March, you would enter a ‘3’ here. 

First Year 
Specify the first year of the series. This value is used to format the reports and plots. 
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Smoothing Constant Search Options 

Search Method 
This option specifies whether a search is conducted for the best values of the smoothing constants 
and what the criterion for the search will be. 

• Specified Value 
No search is conducted. The values of the smoothing constants given in the next options are 
used. 

• Search on MSE 
A search is conducted to find the values of the smoothing constants that minimize MSE. 

• Search on MAE 
A search is conducted to find the values of the smoothing constants that minimize MAE. 

• Search on MAPE 
A search is conducted to find the values of the smoothing constants that minimize MAPE. 

Smoothing Constant Search Options 
– Pre-Specified Smoothing Constants 

Alpha Smoothing Constant 
When the Search Method is set to Specified Value, this option specifies the value of alpha. Alpha 
is the smoothing constant for the level of the series. The limits of this value are zero and one. 
Usually, a value between 0.1 and 0.3 are used. As the value gets closer to one, more and more 
weight is given to recent observations. 

Beta Smoothing Constant 
When the Search Method is set to Specified Value, this option specifies the value of beta. Beta is 
the smoothing constant for the trend. The limits of this value are zero and one. Usually, a value 
between 0.1 and 0.3 are used. As the value gets closer to one, more and more weight is given to 
recent observations. 

Gamma Smoothing Constant 
When the Search Method is set to Specified Value, this option specifies the value of gamma. 
Gamma is the smoothing constant for the seasonal factors. The limits of this value are zero and 
one. Usually, a value between 0.1 and 0.3 are used. As the value gets closer to one, more and 
more weight is given to recent observations. 

Reports Tab 
The following options control which reports are displayed.  

Select Reports 

Summary Report  
This option specifies whether the indicated report is displayed. 
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Forecast Report 
This option specifies which parts of the series are listed on the numeric reports: the original data 
and forecasts, just the forecasts, or neither. 

Select Plots 

Forecast Plot - Residual Plot 
Each of these options specifies whether the indicated plot is displayed. 

Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 

Page Title 
Specify a title to be shown at the top of the reports. 

Forecast Plot Tab 
This section controls the forecast plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 
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Forecast Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Residual Plot Tab 
This section controls the residual plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 
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Residual Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Storage Tab 
The forecasts and residuals may be stored on the current database for further analysis. These 
options let you designate which statistics (if any) should be stored by designating which variables 
should receive the statistics. 

Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Data Storage Variables 

Forecasts 
The forecasts are stored in this variable. 

Residuals 
The residuals are stored in this variable. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Trend & Seasonal Exponential Smoothing 
This section presents an example of how to generate forecasts of a series using Winters 
multiplicative seasonal model. The data in the SALES database will be used. We will forecast the 
values of the Sales variable for the next twelve months.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Exponential Smoothing – Trend / Seasonal window. 

1 Open the Sales dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Sales.S0. 
• Click Open. 

2 Open the Exponential Smoothing – Trend / Seasonal window. 
• On the menus, select Analysis, then Forecasting / Time Series, then Exponential 

Smoothing - Trend/Seasonal. The Exponential Smoothing – Trend / Seasonal procedure 
will be displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Exponential Smoothing – Trend / Seasonal window, select the Variables tab.  
• Double-click in the Time Series Variable box. This will bring up the variable selection 

window.  
• Select Sales from the list of variables and then click Ok. 
• Enter 1970 in the First Year box. 

4 Specify the reports. 
• On the Exponential Smoothing – Trend / Seasonal window, select the Reports tab.  
• Select Data and Forecasts in the Forecast Report list box. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Forecast Summary Section 
 
 Forecast Summary Section 
 

Variable Sales 
Number of Rows 144 
Mean 174.2847 
Pseudo R-Squared 0.974893 
Mean Square Error 20.36166 
Mean |Error| 3.582509 
Mean |Percent Error| 2.043473 
 
Forecast Method Winter's with multiplicative seasonal adjustment. 
Search Iterations 146 
Search Criterion Mean Square Error 
Alpha 0.3120825 
Beta 2.528956E-02 
Gamma 0.4916648 
Intercept (A) 117.1492 
Slope (B) 0.7311453 
Season 1 Factor 0.9097279 
Season 2 Factor 0.8559249 
Season 3 Factor 0.964533 
Season 4 Factor 0.9912127 
Season 5 Factor 1.03415 
Season 6 Factor 1.022021 
Season 7 Factor 0.9964323 
Season 8 Factor 1.001555 
Season 9 Factor 0.9602281 
Season 10 Factor 1.029593 
Season 11 Factor 1.011403 
Season 12 Factor 1.223219 

 

This report summarizes the forecast equation.  

Variable 
The name of the variable for which the forecasts are generated. 

Number of Rows 
The number of rows that were in the series. This is provided to allow you to double-check that the 
correct series was used. 

Mean 
The mean of the variable across all time periods. 

Pseudo R-Squared 
This value generates a statistic that acts like the R-Squared value in multiple regression. A value 
near zero indicates a poorly fitting model, while a value near one indicates a well fitting model. 
The statistic is calculated as follows: 

R SSE
SST

2 100 1= −⎛
⎝⎜

⎞
⎠⎟

 

where SSE is the sum of square residuals and SST is the total sum of squares after correcting for 
the mean. 
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Mean Square Error 
The average squared residual (MSE) is a measure of how closely the forecasts track the actual 
data. The statistic is popular because it shows up in analysis of variance tables. However, because 
of the squaring, it tends to exaggerate the influence of outliers (points that do not follow the 
regular pattern). 

Mean |Error| 
The average absolute residual (MAE) is a measure of how closely the forecasts track the actual 
data without the squaring.  

Mean |Percent Error| 
The average percent absolute residual (MAPE) is a measure of how closely the forecasts track the 
actual data put on a percentage basis. 

Forecast Method 
This line shows which of the two possible seasonal adjustment algorithms was selected. 

Search Iterations 
This line shows how many iterations were needed to find the best values for the smoothing 
constants. 

Search Criterion 
If a search was made to find the best values of the smoothing constants, this row gives the 
criterion used during the search. 

Alpha 
The value of the smoothing constant alpha that was used to generate the forecasts. 

Beta 
The value of the smoothing constant beta that was used to generate the forecasts. 

Gamma 
The value of the smoothing constant gamma that was used to generate the forecasts. 

Intercept (A) 
The value of the y-intercept for time period one! 

Slope (B) 
The value of the slope.  

Season (1-12) Factor 
The values of the multiplicative seasonal factors.  
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Forecast and Residuals Plots 
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Forecast Plot 
The forecast plot lets you analyze how closely the forecasts track the data. The plot also shows 
the forecasts at the end of the data series. 

Residual Plot 
This plot lets you analyze the residuals themselves. You are looking for patterns, outliers, or any 
other information that may help you improve the forecasting model. The first thing to compare is 
the scale of the Residual Plot versus the scale of the Forecast Plot. If your forecasting algorithm is 
working well, the vertical scale of the Residual Plot will be much less than the scale of the 
Forecast Plot. 
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Forecasts Section 
 

Forecasts Section 
 
Row  Forecast Actual  
No. Date Sales Sales Residuals 
1 1970 1 127.3592 129 1.640789 
2 1970 2 122.7182 122 -0.7182454 
3 1970 3 139.2607 137 -2.260717 
4 1970 4 143.0193 141 -2.019351 
5 1970 5 145.8727 145 -0.8727194 
6 1970 6 146.8304 144 -2.830379 
7 1970 7 143.6819 143 -0.6819006 
8 1970 8 142.2842 140 -2.284242 
9 1970 9 140.9541 140 -0.9540558 
10 1970 10 146.7194 148 1.280589 
11 1970 11 143.0544 138 -5.054361 
12 1970 12 168.5834 163 -5.583423 
. . . . . 
. . . . . 
. . . . . 
140 1981 8 222.2978 218 -4.297828 
141 1981 9 210.1906 213 2.809448 
142 1981 10 229.1777 226 -3.177652 
143 1981 11 227.3908 217 -10.39081 
144 1981 12 262.9469 277 14.05311 
145 1982 1 203.0197   
146 1982 2 191.6385   
147 1982 3 216.6607   
148 1982 4 223.3784   
149 1982 5 233.8107   
150 1982 6 231.8159   
151 1982 7 226.7403   
152 1982 8 228.6382   
153 1982 9 219.9061   
154 1982 10 236.5445   
155 1982 11 233.1048   
156 1982 12 282.8179 

 

This section shows the values of the forecasts, the dates, the actual values, and the residuals. 
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Chapter 468 

Spectral Analysis 
Introduction 
This program calculates and displays the periodogram and spectrum of a time series. This is 
sometimes known as harmonic analysis or the frequency approach to time series analysis.  

Suppose we believe that a time series, , contains a periodic (cyclic) component. A natural 
model of the periodic component would be 

X t

X R ft d et t= + +cos( )  

where 

R is the amplitude of variation. Normally, the cosine varies between -1 and 1. Hence, if R 
is 6, then the term would vary between -6 and 6. The impact of the amplitude is in the 
size (height or magnitude) of the wave. The length of the wave is not influenced by the 
amplitude. 

f is the frequency of periodic variation, measured in number of radians per unit time. 
This is the ‘frequency’ scale of the plots. If we divide 2π by f, we get the 
corresponding wavelength. This is the ‘wavelength’ scale of the plots. The impact of 
the frequency is to change the length of a cycle. As f increases, the length of the cycle 
decreases. A model with f = 2 would have a cycle length equal to one-half the cycle 
length of a model with f = 1. 

d is the phase. Changing the phase causes a shift in the beginning of the cycle. 

et  is the random error (noise) of the series about the period component. 

t is the time period number. Usually, t=1, 2, 3, ..., N. 

Since cos(ft+d) = cos(ft) cos(d) - sin(ft) sin(d), this model may be written in the alternative form 

X a ft b ft et t= + +cos( ) sin( )  

where a = R cos(d) and b = -R sin(d). 

This model is a multiple regression model with two independent variables. In this case, the 
independent variables are X1 = cos(ft) and X2 = sin(ft). The regression coefficients are B1 = a 
and B2 = b. In practice, the variation in a time series may be modeled as the sum of several 
different individual waves occurring at different frequencies.  

The generalization of this model to the sum of k frequencies may be written symbolically as 

( )X R f t dt j j j
j

k

t= +
=
∑ cos

1

e+  

or, using the alternative form, as 
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( ) ( ) e
k k

+

f j

X a f t b f tt j j
j

j j
j

t= +
= =
∑ ∑cos sin

1 1

 

(Note that if the  were known constants, and we let )ttr r= cos ( )Z f tts s= sin

e
k k

+

W f and , then this 
could be rewritten in the usual multiple regression form: 

X a W b Zt j tj
j

j tj
j

t= +
= =
∑ ∑

1 1

 

where the a’s and the b’s are the regression coefficients to be estimated. This is an example of a 
harmonic regression. 

Fourier analysis is the study of approximating functions using the sum of sine and cosine terms. 
This sum is called the Fourier series representation of the function. Spectral analysis is identical 
to Fourier analysis except that instead of approximating a function, the sum of sine and cosine 
terms approximates a time series that includes a random component. Note that the coefficients 
(the a’s and b’s) may be estimated using multiple regression.  

One question that arises is how to select the frequencies. The highest frequency that can be fit to 
the data is π . The lowest is one cycle for the whole length of series, which amounts to a 
frequency of 2π / N

f k N k Nk =

(N is the length of the series). Hence, one popular choice of frequencies is to 
select the N/2 frequencies given by 

=2 1 2 2/ , ( , , , / )Lπ  

The kth frequency is often referred to as the kth harmonic.  

This set of frequencies is particularly popular when working by hand because it results in certain 
simplifications due to well-known trigonometric identities. However, there is nothing in nature 
that says that a series will follow these rather than some other set. That is why the program lets 
you specify a range of frequencies. 

In the analysis of variance, we study the partitioning of the total variation (sum of squares) given 
by 

( )SST X Xt
t

= −
=
∑

1

N 2
 

into the sum of squares for factor A, factor B, etc. Similarly, in spectral analysis we are interested 
in partitioning the total sum of squares into amounts associated with each frequency. It turns out 
that the sum of squares for a particular frequency, SSk, is given by 

( )SS N a bk= +2 2
k k2

 

If we regard SSk as the portion of the total sum of squares accounted for by frequencies in the 
range  

f ±
Nk
π , 

we can draw a histogram so that the area of each bar is proportional SSk. The height of the 
histogram would be 
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( ) ( )I f N a bk k= +
4

2 2

π k  

The plot of I(f) versus f is called the periodogram.  

This definition of the periodogram equates the total sum of squares to the area under the 
periodogram. I(f) may be calculated directly from the data as 

( )
( )[ ] ( )[ ]

I f
X kt N X kt N

Nk
t t

=
+∑ ∑cos / sin /2 2

2 2
π π

π
 

The periodogram is sometimes calculated using the fast Fourier transform (FFT). This method is 
not used in this program for three reasons. First, the increase in speed of the FFT is not significant 
until N is greater than one thousand. For series of the length we normally anticipate for our users, 
the FFT would provide little speed improvement.  

Second, when using the FFT, the length of the series (N) must be a power of 2 (2, 4, 8, 16, 32, 64, 
128, 256, 512, 1024, etc.). If N is not a power of 2, then enough zeros must be added to bring the 
length of the series to the next power of 2. Suppose the length of a particular series was 260. You 
would need to add 252 zeros to bring the length to 512. This could dramatically distort your 
results. (FFT users use various “windows” or “filters” to remove the effect of these zeros. Since 
we do not pad with zeros, we do not need these filters.) 

Third, we can calculate the periodogram for any set of frequencies, not just the set given above. 
This is very useful when you want to investigate a particular range of frequencies. 

The sample periodogram has been shown to have some poor statistical properties. Recently, 
techniques for spectral analysis have improved on the periodogram by smoothing it. The 
smoothed periodogram is an estimate of the power spectral density or simply the spectral density 
of the series. The smoothing used in this program is simply an m-term moving average of the 
periodogram. The value of m is specified as the Smoothing Length option. Practitioners suggest 
that a value of m near N/40 is reasonable. A large value of m may make the graph too smooth 
while a value too small may include spurious peaks. 

Spectral analysis offers an interesting addition to other methods of time series analysis. For those 
who wish to find more out about it, we strongly recommend the book by C. Chatfield (1984). It 
offers a thorough, readable treatment of a difficult, but useful, subject. 

Data Structure 
The data are entered in a single variable.  

Missing Values 
Missing values are not tolerated by this algorithm. When missing values are found in the series, 
they are replaced by the average of the nearest observation in the future and in the past. If you do 
not feel that this is a valid estimate of the missing value, you should manually enter a more 
reasonable estimate before using the algorithm. This missing value replacement algorithm is 
particularly poor for seasonal data. We recommend that you replace missing values manually before 
using the algorithm. 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variable on which to run the analysis. 

Time Series Variable 

Time Series Variable 
Specify the variable on which to run the analysis. 

Use Logarithms 
Specifies that the log (base 10) transformation should be applied to the values of the variable. 

Data Adjustment Options 

Remove Mean 
Checking this option indicates that the series average should be subtracted from the data. This is 
almost always done. 

Remove Trend 
Checking this option indicates that the least squares trend line should be subtracted from the data. 
This is sometimes done, although differencing is usually used to remove trends instead. 

Regular Differencing 
This option lets you designate whether the original series, the first differences, or the second 
differences are analyzed. The first difference series, W, is calculated using the formula: 

W X Xt t t= − −1  
which may be written using the backshift operator, B, as: 

( )W Bt t= −1 X  
The second difference series, Z, is the first difference of the W series. The formula is: 

Z W Wt t t= − −1  
which may be written using the backshift operator, B, as: 

( )Z Bt t= −1 2 X

s

 

Seasonal Differencing 
This option lets you designate whether the original series, the first seasonal differences, or the 
second seasonal differences are analyzed. Assuming the number of seasons is s, the first seasonal 
difference series, W, is calculated using the formula: 

W X Xt t t= − −  
which may be written using the backshift operator, B, as: 
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( )W Bt
s

t= −1 X

s

 
The second seasonal difference series, Z, is the first seasonal difference of the W series. The 
formula is: 

Z W Wt t t= − −  
which may be written using the backshift operator, B, as: 

( )Z Bt
s

t= −1
2

X
 

Seasonality Options 

Seasons 
Specify the number of seasons, s, in the series. Use ‘4’ for quarterly data or ‘12’ for monthly data. 
Note that this option is used only when seasonal differencing is used. 

Reports Tab 
The following options control which reports are displayed.  

Select Reports 

Fourier Report  
This option specifies whether the indicated report is displayed. 

Select Plots 

Data Plot - Spectrum 
Each of these options specifies whether the indicated plot is displayed. 

Periodogram / Spectrum Calculation 
Options 

Number of Frequencies 
Specify the number of frequencies that are calculated and displayed. This controls the resolution 
of the periodogram and spectrum. The frequencies are equi-spaced between the minimum and 
maximum wavelengths. 

Smoothing Length 
The spectral density function is a moving average of the periodogram. This option specifies the 
value of m, the number of periodogram terms averaged. 

Minimum Wavelength 
The minimum wavelength value to be used in calculating and displaying the periodogram and 
spectral density. 
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Maximum Wavelength 
The maximum wavelength value to be used in calculating and displaying the periodogram and 
spectral density. The maximum value possible is N, the sample size. 

Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 

Data Plot Tab 
A plot of the data over time may be displayed. This panel controls the appearance of this plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Data Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 
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Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Periodogram / Spectrum Plot Tab 
This section controls the appearance of the periodogram and spectrum plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 
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Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Spectral Analysis 
This section presents an example of how to do a spectral analysis of a time series. The Spots 
variable in the SUNSPOT database will be used.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Spectral Analysis window. 

1 Open the Sunspot dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Sunspot.S0. 
• Click Open. 

2 Open the Spectral Analysis window. 
• On the menus, select Analysis, then Forecasting / Time Series, then Spectral Analysis. 

The Spectral Analysis procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Spectral Analysis window, select the Variables tab.  
• Double-click in the Time Series Variable box. This will bring up the variable selection 

window.  
• Select SPOTS from the list of variables and then click Ok. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Fourier Plot Section 
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This section displays the periodogram and the spectrum the top two plots are in the frequency 
scale. The bottom two plots are in the wavelength scale. Remember that the wavelength is in 
terms of the number of observations.  
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Data Plot Section 
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This section displays a plot of the data values. 

Fourier Analysis Section 
 

Fourier Analysis of SPOTS (0,0,12,1,0) 
Frequency Wavelength Period Cosine(a's) Sine(b's) Sprectrum 
0.2010619 31.25 3200767 -75.89938 -425.8151 3590384 
0.2764601 22.72727 324968.6 -13.48533 137.1568 2618775 
0.3518584 17.85714 4330590 92.67065 -494.4972 2837492 
0.4272566 14.70588 3856917 33.71187 -473.5963 4333876 
0.5026549 12.5 4814120 298.3864 -438.5685 2.997943E+07 
. .  . . . . 
. . . . . . 
. . . . . . 

 

This section shows the values of the various components of the spectral analysis. The numbers in 
parentheses, (d,D,s,M,T), are defined as follows:  

d is the regular differencing order. 

D  is the seasonal differencing order. 

s is the number of seasons (ignored if D is 0). 

M is 1 if the mean is subtracted, 0 otherwise. 

T  is 1 if the trend is subtracted, 0 otherwise. 
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Fourier Plot Section 
To complete this example, we rerun the analysis with the minimum wavelength set to 8 and the 
maximum wavelength set to 15. This appears to be portion of the periodogram and spectrum that 
show the most promise. Doing this produces the following wavelength plots. 
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Now we can see the famous sunspot cycle of just over eleven years. 
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Chapter 469 

Decomposition 
Forecasting 
Introduction 
Classical time series decomposition separates a time series into five components: mean, long-
range trend, seasonality, cycle, and randomness. The decomposition model is 

Value = (Mean) x (Trend) x (Seasonality) x (Cycle) x (Random). 

Note that this model is multiplicative rather than additive. Although additive models are more 
popular in other areas of statistics, forecasters have found that the multiplicative model fits a 
wider range of forecasting situations. 

Decomposition is popular among forecasters because it is easy to understand (and explain to 
others). While complex ARIMA models are often popular among statisticians, they are not as 
well accepted among forecasting practitioners. For seasonal (monthly, weekly, or quarterly) data, 
decomposition methods are often as accurate as the ARIMA methods and they provide additional 
information about the trend and cycle which may not be available in ARIMA methods. 

Decomposition has one disadvantage: the cycle component must be input by the forecaster since 
it is not estimated by the algorithm. You can get around this by ignoring the cycle, or by 
assuming a constant value. Some forecasters consider this a strength because it allows the 
forecaster to enter information about the current business cycle into the forecast. 

Decomposition Method 
The basic decomposition method consists of estimating the five components of the model 

X UT C S Rt t t t t=  
where 

X t  denotes the series or, optionally, log of series. 
U  denotes the mean of the series. 
Tt  denotes the linear trend. 

Ct  denotes cycle. 
St  denotes season. 
Rt  denotes random error. 
t denotes the time period. 
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We will now take you through the steps used by the program to perform a decomposition of a 
time series. Most of this information is from Makridakis (1978), chapter 15. 

Step 1 – Remove the Mean 
The first step is to remove the mean by dividing each individual value by the series mean. This 
creates a new series that has values near one. This step is represented symbolically as 

Y X Ut t= /  

If the absolute value of the mean of the series is less than 0.0000001, no division takes place. 

Step 2 – Calculate a Moving Average 
The next step calculates an L-step moving average centered at the time period, t, where L is the 
length of the seasonality (e.g., L would be 12 for a monthly series or 4 for quarterly series). Since 
the moving average gives the mean of a year’s data, the seasonality factor is removed. Usually, 
the averaging removes the randomness component as well. Symbolically, this step is represented 
as 

M Yt t= ∑  

where for odd L, the summation runs from t-[L/2] to t+[L/2]. The symbols [x] mean take the 
integer part of x. Hence [6.43]=6 and [11/2]=5. Notice that this summation range centers the 
moving average at t. 

For even L, the values usually found in practice (2, 4 and 12), it is a little more difficult to center 
the moving average on the time period t. For example, the average of the first 12 terms of a series 
would be centered at 6.5 rather than 6. To center the average right on 7, we must compute the 
moving average centered at 6.5 and at 7.5 and then average these. The resulting double moving 
average is centered at the desired value of 7. 

Another complexity that must be dealt with is what to do at the ends of the series. Because the 
average is centered, the first and last L/2 averages cannot be computed (because of the lack of 
data). Many different end-effect techniques have been proposed. 

Our end-effect strategy can best be explained by considering an example. Suppose we have a 
monthly series that runs from January of 1980 to December of 1988. To compute the moving 
average centered at January, 1980, we will need estimated data back through July, 1979. The 
estimate of July 1979 is obtained by subtracting the difference of July, 1980 and July, 1981 from 
July, 1980.  

At the other end of the series we will need estimated values through June, 1989. To compute the 
estimated value for June, 1989, we add the difference of June, 1987 and June, 1988 to June, 1988. 

This method of estimating end-effects preserves local trends in the series. However, it is 
especially sensitive to outliers. You should remember that strange patterns in the last L/2 time 
periods may be from the end-effect calculation and not from a pattern in the series itself. 

Step 3 – Calculate the Trend 
The next step is to calculate and remove the trend component of the series. This calculation is 
made on the moving averages, , rather than on the Y  series. A least squares fit is made of the 
of the model 

Mt t
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M a bt et t= + +  

where 

a is the intercept. 

b is the slope. 

et  is the residual or lack-of-linear-fit. 

The linear portion of the above model is used to define the trend. That is, we use 

T a bt t= +  

Note that because of the problems of end-effects, the first and last L/2 terms are omitted in the 
trend calculation. 

Step 4 – Calculate the Cycle 
The cycle term is found by dividing the moving average by the computed trend. Symbolically, 
this is 

C M
Tt

t

t
=  

Step 5 – Calculate the Seasonality 
The seasonality is computed by dividing the Y series by the moving averages. Symbolically, this 
is 

K Y
Mt

t

t
=  

Note that the K series is composed of both the seasonality and the randomness. To calculate the 
seasonal component for each season, we simple average all like seasons. That is, the average of 
all Januarys is computed, the average of all Februarys gives the seasonal value for February, and 
so on. Mathematically, this is stated as 

S Kg t= ∑  

where the summation is over all t in which the season is g. 

Step 6 – Calculate the Randomness 
The final step is to calculate the randomness component. This is accomplished by dividing the K 
series by where the values of are repeated as needed. This is represented 
mathematically as follows 

Si S S Sg1 2, , ,L

R K
St

t

t
=  
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Creating Forecasts 
Once the series decomposition is complete, forecasts may be generated fairly easily. The trend 
component is calculated using  

T a bt t= + ,  

the seasonal factor is read from  

S Kg t= ∑ , 

the cycle factor is input by hand, and the random factor is assumed to be one. If the series was 
transformed using the log transformation, the forecasts are transformed back using the 
appropriate inverse function. 

Assumptions and Limitations 
These algorithms are useful for forecasting seasonal time series with (local or global) trend.  

Data Structure 
The data are entered in a single variable.  

This section describes the options available in this procedure. 

Missing Values 
Missing values are not tolerated by this algorithm. When missing values are found in the series, 
they are replaced by the average of the nearest observation in the future and in the past. If you do 
not feel that this is a valid estimate of the missing value, you should manually enter a more 
reasonable estimate before using the algorithm. This missing value replacement algorithm is 
particularly poor for seasonal data. We recommend that you replace missing values manually before 
using the algorithm. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variable(s) on which to run the analysis. 

Time Series Variable 

Time Series Variable 
Specify the variable(s) on which to run the analysis. A separate analysis will be conducted for 
each variable listed. 
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Use Logarithms 
Specifies that the log (base 10) transformation should be applied to the values of the variable. The 
forecasts are converted back to there original metric before display. 

Cycle-Input Variable 

Cycle-Input Variable 
Specifies the name of a variable containing estimated values of the cycle component. If this 
option is left blank, a value of one is used for all future cycle components. This ignores the cycle 
in the forecasts. 
The program ignores the first n rows (where n is the number of rows in the original series) and 
begins reading the cycle ratios in the rows that match the forecast rows. For example, suppose 
you have a series with 48 rows over data and you want to forecast the next 12 rows. The first 48 
rows of this variable are ignored. The 49th through 60th rows are used to provide the cyclical 
component. 
Note that since the forecasting model is multiplicative, if you enter a ‘1’ for the cycle, the forecast 
will not be changed. If you feel the cycle influence will be a 5% increase, you would enter ‘1.05’ 
for this time period. 

Use Cycle 
This option specifies whether a cycle component is found or ignored. 

Forecasting Options 

Number of Forecasts 
This option specifies the number of forecasts to be generated. 

Seasonality Options 

Seasons 
Specify the number of seasons in the series. Use ‘4’ for quarterly data or ‘12’ for monthly data. 

First Season 
Specify the first season of the series. This value is used to format the reports and plots. For 
example, if you have monthly data beginning with March, you would enter a ‘3’ here. 

First Year 
Specify the first year of the series. This value is used to format the reports and plots. 

Reports Tab 
The following options control which reports are displayed.  

Select Reports 

Summary Report  
This option specifies whether the indicated report is displayed. 
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Forecast Report 
This option specifies which parts of the series are listed on the numeric reports: the original data 
and forecasts, just the forecasts, or neither. 

Select Plots 

Forecast Plot- Decomposition Ratio Plots 
Each of these options specifies whether the indicated plot is displayed. 

Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 

Page Title 
Specify a title to be shown at the top of the reports. 

Forecast Plot Tab 
This section controls the forecast plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 
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Forecast Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Decomp Ratio Plots Tab 
This section controls the decomposition ratio plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 
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Ratio Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Storage Tab 
Several statistics, including the forecasts and residuals, may be stored on the current database for 
further analysis. This group of options lets you designate which statistics (if any) should be stored 
and which variables should receive these statistics. 
Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Data Storage Variables 

Forecasts 
The forecasts are stored in this variable. 

Residuals 
The residuals are stored in this variable. 

Trend Ratios 
The trend ratios, the series, are stored in this variable. Tt

Cycle Ratios 
The cycle ratios, theC series, are stored in this variable. t

Season Ratios 
The season ratios, the series, are stored in this variable. St

Error Ratios 
The error, or random, ratios, the series, are stored in this variable. Rt
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Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Decompositions Forecasting 
This section presents an example of how to generate forecasts of a series using the time series 
decomposition forecasting method. The data in the SALES database will be used. We will 
forecast the values of the Sales variable for the next twelve months.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Decomposition Forecasting window. 

1 Open the Sales dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Sales.S0. 
• Click Open. 

2 Open the Decomposition Forecasting window. 
• On the menus, select Analysis, then Forecasting / Time Series, then Decomposition 

Forecasting. The Decomposition Forecasting procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Decomposition Forecasting window, select the Variables tab.  
• Double-click in the Time Series Variable box. This will bring up the variable selection 

window.  
• Select Sales from the list of variables and then click Ok. 
• Enter 1970 in the First Year box. 
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4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Forecast Summary Section 
 
 Forecast Summary Section 
 

Forecast (Mean) x (Trend) x (Cycle) x (Season) 
Variable Sales 
Number of Rows 144 
Mean 174.2847 
Pseudo R-Squared 0.9872795 
Forecast Std. Error 3.211923 
Trend Equation Trend = (0.762387) + (0.003224) * (Time Period Number) 
Number of Seasons 12 
First Year 1970 
First Season 1 
 
Seasonal Component Ratios 
No. Ratio No. Ratio No. Ratio No. Ratio 
1 0.901933 2 0.855207 3 0.971591 4 0.998289 
5 1.030011 6 1.028496 7 0.997262 8 1.005337 
9 0.975528 10 1.024248 11 1.007887 12 1.205982 

 

This report summarizes the forecast equation.  

Variable 
The name of the variable for which the forecasts are generated. 

Number of Rows 
The number of rows that were in the series. This is provided to allow you to double-check that the 
correct series was used. 

Mean 
The mean of the variable across all time periods. 

Pseudo R-Squared 
This value generates a statistic that acts like the R-Squared value in multiple regression. A value 
near zero indicates a poorly fitting model, while a value near one indicates a well fitting model. 
The statistic is calculated as follows: 

R SSE
SST

2 100 1= −⎛
⎝⎜

⎞
⎠⎟

 

where SSE is the sum of square residuals and SST is the total sum of squares after correcting for 
the mean. 

Forecast Std. Error 
The estimated standard deviation of the forecast errors (the difference between the actual and 
predicted). This value is calculated by squaring and summing all of the forecast errors, dividing 
by the number of observations, and taking the square root. 
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Trend Equation 
The equation used to predict the trend. The equation is 

Trend = a + bt 

where 

a  is the intercept. 

b  is the slope. 

t  is the time period. 

Note that the trend value obtained from this equation will be a ratio type value that will be 
multiplied by the mean to obtain the actual forecast. 

Number of Seasons 
The number of rows per year. For example, monthly data would have a value of 12. 

First Year 
The value of the first year of the series. 

First Season 
The value of the season of the first observation. 

Season Component Ratios 
The ratios used to adjust for each season (month or quarter). For example, the last ratio in this 
example is 1.205982. This indicates that the December correction factor is a 20.5982% increase 
in the forecast. 

Data and Forecast Plot 
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The data plot lets you analyze how closely the forecasts track the data. The plot also shows the 
forecasts at the end of the data series. 
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Ratio Plots 
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Ratio Plots 
These plots let you see the various components of the forecast. Each of these plots is centered at 
one since this is the value that will leave the forecast unchanged. By studying these plots, you can 
see which factors influence the forecasts the most. 

Forecasts Section 
 

Forecasts Section 
 
Row Year Forecast Actual  Trend Cycle Season Error 
No. Season Sales Sales Residual Factor Factor Factor Factor 
1 1970  1 125.8949 129 3.105124 0.7656 1.0461 0.9019 1.0247 
2 1970  2 119.3013 122 2.698687 0.7688 1.0411 0.8552 1.0226 
3 1970  3 135.456 137 1.544002 0.7721 1.0361 0.9716 1.0114 
. . . . . . . . . 
. . . . . . . . . 
144 1981  12 269.8886 277 7.111356 1.2266 1.0468 1.2060 1.0263 
145 1982  1 193.3271   1.2299 1.0000 0.9019 1.0000 
146 1982  2 183.7919   1.2331 1.0000 0.8552 1.0000 
147 1982  3 209.3499   1.2363 1.0000 0.9716 1.0000 
. . . . . . . . . 
. . . . . . . . . 

 

This section shows the values of the forecasts, the dates, the actual values, the residuals, and the 
forecast ratios. 
Note that the forecasted cycle ratios are all equal to one. This is because we did not supply cycle 
values to be used. If we had, they would have shown up here. 
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Chapter 470 

The Box-Jenkins 
Method 
Introduction 
Box - Jenkins Analysis refers to a systematic method of identifying, fitting, checking, and using 
integrated autoregressive, moving average (ARIMA) time series models. The method is 
appropriate for time series of medium to long length (at least 50 observations). 

In this chapter we will present an overview of the Box-Jenkins method, concentrating on the how-
to parts rather than on the theory. Most of what is presented here is summarized from the 
landmark book on time series analysis written by George Box and Gwilym Jenkins (1976). 

A time series is a set of values observed sequentially through time. The series may be denoted by 
, where t refers to the time period and X refers to the value. If the X’s are exactly 

determined by a mathematical formula, the series is said to be deterministic. If future values can 
be described only by their probability distribution, the series is said to be a statistical or 
stochastic process. 

X X Xt1 2, , ,L

A special class of stochastic processes is a stationary stochastic process. A statistical process is 
stationary if the probability distribution is the same for all starting values of t. This implies that 
the mean and variance are constant for all values of t. A series that exhibits a simple trend is not 
stationary because the values of the series depend on t. A stationary stochastic process is 
completely defined by its mean, variance, and autocorrelation function. One of the steps in the 
Box - Jenkins method is to transform a non-stationary series into a stationary one. 

Autocorrelation Function 
The stationary assumption allows us to make simple statements about the correlation between two 
successive values,  and . This correlation is called the autocorrelation of lag k of the 
series. The autocorrelation function displays the autocorrelation on the vertical axis for successive 
values of k on the horizontal axis. The following figure shows the autocorrelation function of the 
sunspot data. 

X t Xt k+
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Since a stationary series is completely specified by its mean, variance, and autocorrelation 
function, one of the major (and most subjective) tasks in Box-Jenkins analysis is to identify an 
appropriate model from the sample autocorrelation function. Although the sample 
autocorrelations contains random fluctuations, for moderate sample sizes they are fairly accurate 
in signaling the order of the ARIMA model. 

The ARMA Model 
The ARMA (autoregressive, moving average) model is defined as follows: 

X X X a a at t p t p t t q= + t q+ + − − −− − − −φ φ θ θ1 1 1 1L L  

where the φ' s (phis) are the autoregressive parameters to be estimated, the θ 's  (thetas) are the 
moving average parameters to be estimated, the X’s are the original series, and the a’s are a series 
of unknown random errors (or residuals) which are assumed to follow the normal probability 
distribution. 

Box-Jenkins use the backshift operator to make writing these models easier. The backshift 
operator, B, has the effect of changing time period t to time period t-1. Thus and 

. Using this backshift notation, the above model may be rewritten as: 

BX Xt t= −1

B X Xt t
2

2= −

( ) ( )1 11 1− − − = − − −φ φ θ θB B X B Bp
p

t q
q

tL L a  

This may be abbreviated even further by writing: 

( ) ( )φ θp t qB X B a= t  

where 

( ) ( )φ φ φp p
pB B= − − −1 1 L B  

and 

( ) ( )θ θ θq q
qB B= − − −1 1 L B  
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These formulas show that the operators ( )φ p B and ( )θ q B are polynomials in B of orders p and q 
respectively. One of the benefits of writing models in this fashion is that we can see why several 
models may be equivalent. 

For example, consider the model 

X X X at t t t t= − + −− −0 8 0 15 0 3a1 2. . . −1  

This could be rewritten in the form of (8.3) as: 

( ) ( )1 0 8 0 15 1 0 32− + = −. . .B B X Bt ta  

Notice that the polynomial on the left may be factored, so that we can rewrite the model as 

( )( ) ( )1 0 5 1 0 3 1 0 3− − = −. . .B B X Bt ta  

Finally, canceling the (1 - 0.3B) from both sides leaves the simpler, but equivalent, model 

( )1 0 5− =. B X at t  

or 

X Xt t at= +−0 5 1.  

Note that this is a much simpler model! 

This type of model rearrangement is used by experienced Box-Jenkins forecasters to obtain the 
simplest models possible. The Theoretical ARIMA program displays the roots of the two 
polynomials, and , so you can see possible model simplifications. ( )φ p B ( )θ q B

Nonstationary Models 
Many time series encountered in practice exhibit nonstationary behavior. Usually, the 
nonstationarity is due to a trend, a change in the local mean, or seasonal variation. Since the Box-
Jenkins methodology is for stationary models only, we have to make some adjustments before we 
can model these nonstationary series. 

We use one of two methods for reducing a nonstationary series with trend to a stationary series 
(without trend): 

1. Use the first differences of the series, W X Xt t t= − −1 . Note that this can be rewritten as 
. A more general form of this equation is: ( )W Bt = −1 Xt

( )( ) ( )φ θp
d

t qB B X B1− = ta  

 where d is the order of differencing. This is known as the ARIMA(p,d,q) model. 

2. Fit a least squares trend and fit the Box-Jenkins model to the residuals. 

If the model exhibits an occasional change of mean, first differences will result in a stationary 
model. 

For seasonal series, Box-Jenkins provided a modification to this equation that will be the subject 
of the next section. 
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Seasonal Time Series 
To deal with series containing seasonal fluctuations, Box-Jenkins recommend the following 
general model: 

( ) ( )( ) ( ) ( ) ( )φ θp P
d s D

t q Q
s

tB B B B X B BΦ Θ1 1− − = a  

where d is the order of differencing, s is the number of seasons per year, and D is the order of 
seasonal differencing. The operator polynomials are 

( ) ( )φ φ φp p
pB B B= − − −1 1 L  

( ) ( )θ θ θq q
qB B B= − − −1 1 L  

( ) ( )Φ Φ ΦP
s s

p
spB B= − − −1 1 L B  

( ) ( )Θ Θ ΘQ
s s

Q
sQB B B= − − −1 1 L  

Note that ( . )1− = − −B X X Xs
t t t s

Box-Jenkins explain that the maximum value of d, D, p, q, P, and Q is two. Hence, these operator 
polynomials are usually simple expressions. 

Partial Autocorrelation Function 
We previously discussed the autocorrelation function, which gives the correlations between 
different lags of a series. The Partial Autocorrelation Function is a second function that expresses 
information useful in determining the order of an ARIMA model.  

This function is constructed by calculating the partial correlation between and , 
and , and so on, statistically adjusting out the influence of intermediate lags. For 

example, the partial autocorrelation of lag four is the partial correlation between and after 
statistically removing the influence of , , and from both and . 

X t Xt−1

X t Xt−2

X t Xt−4

Xt−1 Xt−2 Xt−3 Xt Xt−4

The autoregressive order, p, is estimated as the lag of the last large partial autocorrelation. For 
example, suppose the partial autocorrelations were 

 
Lag Partial Autocorrelation 
1 0.55 
2 0.21 
3 0.11 
4 0.72 
5 0.06 
6 0.09 
7 0.13 

 
We would conclude that a reasonable value for p is four, since the partial autocorrelations are 
relatively small after the fourth lag. 
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Box-Jenkins Methodology – An Overview 
The Box-Jenkins method refers to the iterative application of the following three steps: 

1. Identification. Using plots of the data, autocorrelations, partial autocorrelations, and 
other information, a class of simple ARIMA models is selected. This amounts to 
estimating appropriate values for p, d, and q. 

2. Estimation. The phis and thetas of the selected model are estimated using maximum 
likelihood techniques, backcasting, etc., as outlined in Box-Jenkins (1976). 

3. Diagnostic Checking. The fitted model is checked for inadequacies by considering the 
autocorrelations of the residual series (the series of residual, or error, values). 

These steps are applied iteratively until step three does not produce any improvement in the 
model.  We will now go over these steps in detail. 

Model Identification 
Assuming for the moment that there is no seasonal variation, the objective of the model 
identification step is to select values of d and then p and q in the ARIMA(p,d,q) model. When the 
series exhibits a trend, we may either fit and remove a deterministic trend or difference the series. 
Box-Jenkins seem to prefer differencing, while several other authors prefer the deterministic 
trend removal. 

The first step, in either case, is to look at the plots of the autocorrelations and partial 
autocorrelations. A series with a trend will have an autocorrelation patterns similar to the 
following: 
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We notice that the large autocorrelations persist even after several lags. This indicates that either 
a trend should be removed or that the series should be differenced. The next step would be to 
difference the series.  
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When the series is differenced, the autocorrelation plots might appear as follows: 
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Differencing usually reduces the number of large autocorrelations considerably. If the differenced 
series still does not appear stationary, we would have to difference it again. 

It is often useful to determine the magnitude of a large autocorrelation and partial autocorrelation 
coefficient. An autocorrelation must be at least 2 / N , in absolute value to be statistically 
significant. The following list gives some common values of significant autocorrelations for 
various sample sizes. Note that even though an autocorrelation is statistically significant, it may 
not be large enough to worry about.  

 
N Large Autocorrelation 
25 0.40 
50 0.28 
75 0.23 
100 0.23 
200 0.14 
500 0.09 
1000 0.06 

 
By considering the patterns of the autocorrelations and the partial autocorrelations, we can guess 
a reasonable model for the data. The following chart shows the autocorrelation patterns that are 
produced by various types of ARMA models. 

 

Model Autocorrelations Partial Autocorrelations 

ARIMA(p,d,0) Infinite. Tails off. Finite. Cuts off after p lags. 

ARIMA(0,d,q) Finite. Cuts off  Infinite. Tails off. 
 after q lags. 

ARIMA(p,d,q) Infinite. Tails off. Infinite. Tails off. 

 

The identification phase determines the values of d (differencing), p (autoregressive order), and q 
(moving average order). By studying the two autocorrelation plots, you estimate these values.  



 The Box-Jenkins Method  470-7 

Differencing 
The level of differencing is estimated by considering the autocorrelation plots. When the 
autocorrelations die out quickly, the appropriate value of d has been found. 

Value of p 
The value of p is determined from the partial autocorrelations of the appropriately differenced 
series. If the partial autocorrelations cut off after a few lags, the last lag with a large value would 
be the estimated value of p. If the partial autocorrelations do not cut off, you either have a moving 
average model (p=0) or an ARIMA model with positive p and q. 

Value of q 
The value of q is found from the autocorrelations of the appropriately differenced series.  If the 
autocorrelations cut off after a few lags, the last lag with a large value would be the estimated 
value of q. If the autocorrelations do not cut off, you either have an autoregressive model (q=0) 
or an ARIMA model with a positive p and q. 

Mixed Model 
When neither the autocorrelations or the partial autocorrelations cut off, a mixed model is 
suggested. In an ARIMA(p,d,q) model, the autocorrelation function will be a mixture of 
exponential decay and damped sine waves after the first q-p lags. The partial autocorrelation 
function have the same pattern after p-q lags. By studying the first few correlations of each plot, 
you may be able to obtain reasonable guesses for p and q. 

Our experience has been that directly identifying the values of p and q in mixed models is very 
difficult. Instead, we use a trial and error approach in which successively more complex models 
are fit until the residuals show no further structure (large autocorrelations). Usually, we try fitting 
an ARIMA(1,d,0), an ARIMA(2,d,1), and an ARMA(4,3). We would select the simplest model that 
had a reasonably good fit. (We have found that the ARIMA(2,d,1) often works well and we 
usually begin with it.) 

Identification of a seasonal series is much more difficult. Box-Jenkins describe methods for 
model identification, but the user must be very skilled and experienced to successfully identify 
the model order. We have found that trial and error must usually be used. Usually, you want to 
keep the number of parameters to a minimum, so the values of p, P, q, Q, d, and D that you select 
should be less than or equal to two. 

As you can see, the identification step is subjective. One of the frequent objections about the Box-
Jenkins method is that two trained forecasters will arrive at different forecasting models, even 
though they are using the same software. However, as we showed earlier, often models that 
appear to be very different on the surface are actually quite similar. 

Model Estimation and Diagnostic Checking 

Maximum Likelihood Estimation 
Once you have guestimated values of p, d, and q, you are ready to estimate the phis and thetas. 
This program follows the maximum likelihood estimation process outlined in Box-Jenkins 
(1976).  The maximum likelihood equation is solved by nonlinear function maximization. 



470-8  The Box-Jenkins Method 

Backcasting is used to obtain estimates of the initial residuals. The estimation process is 
calculation intensive and iterative, so it often takes a few seconds to obtain a solution. 

Diagnostic Checking 
Once a model has been fit, the final step is the diagnostic checking of the model.  The checking is 
carried out by studying the autocorrelation plots of the residuals to see if further structure (large 
correlation values) can be found.  If all the autocorrelations and partial autocorrelations are small, 
the model is considered adequate and forecasts are generated. If some of the autocorrelations are 
large, the values of p and/or q are adjusted and the model is re-estimated. 

This process of checking the residuals and adjusting the values of p and q continues until the 
resulting residuals contain no additional structure. Once a suitable model is selected, the program 
may be used to generate forecasts and associated probability limits. 

Example 1 – Chemical Process Concentrations 
To complete this chapter, we will construct forecasts for two example problems. The first 
example we consider is called Series A by Box-Jenkins, and is from their book. This is a set of 
197 concentration values from a chemical process taken at two-hour intervals. The data are stored 
in the SERIESA database. If you want to follow along, you should open this data base now. The 
following figure shows a plot of the data.  

Time Series Data Plot 
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Notice that although the series moves around, it does not seem to follow a definite trend. The 
autocorrelation charts are shown next. 
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Series Autocorrelation Plots 
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The autocorrelations seem to die down fairly regularly after lag 1. The partial autocorrelations 
seem to be small after the first one, so we decide to fit an ARIMA(1,0,1) to these data.  

Model Estimation Reports 
The following output shows the results of fitting the model. 

 
Model Description Section 
Series SERIESA-MEAN 
Model Regular(1,0,1)    Seasonal(No seasonal parameters) 
Mean 1.706244 
 
Observations 197 
Iterations 11 
Pseudo R-Squared 38.477242 
Residual Sum of Squares 0.1922096 
Mean Square Error 9.856902E-04 
Root Mean Square 0.0313957 

  
 Model Estimation Section 

 
Parameter Parameter Standard  Prob 
Name Estimate Error T-Value Level 
AR(1) 0.9208993 4.111259E-02 22.3994 0.000000 
MA(1) 0.5958619 8.240521E-02 7.2309 0.000000 
 

The final step is to make the diagnostic checks of our model. The autocorrelation plot of the 
residuals are shown next. 
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Autocorrelation of Residuals Plot 
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No action here. Finally, we take a look at the Portmanteau test results. 

Portmanteau Test Report 
  

  Portmanteau Prob  
Lag DF Test Value Level Decision (0.05) 
13 11 15.55 0.158664 Adequate Model 
14 12 17.75 0.123437 Adequate Model 
15 13 20.40 0.085570 Adequate Model 
16 14 20.43 0.117064 Adequate Model 
17 15 21.19 0.130966 Adequate Model 
18 16 22.93 0.115544 Adequate Model 
19 17 23.24 0.141718 Adequate Model 
20 18 25.13 0.121460 Adequate Model 
21 19 26.60 0.114351 Adequate Model 
22 20 26.62 0.146230 Adequate Model 
23 21 27.07 0.168631 Adequate Model 
24 22 27.56 0.190707 Adequate Model 
 

The diagnostic checking reveals no new patterns, so we can assume that our model is adequate. 
We generate the forecasts for the next few periods. These are shown next.  

Time Series Plot Including Forecasts 
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Example 2 – Carbon Dioxide Above Mauna Loa, Hawaii 
This example will an approach to data with a linear trend and seasonal variation. We will 
consider 216 monthly carbon dioxide measurements above Mauna Loa, Hawaii. The data was 
obtained from Newton (1988). It is stored in the data base named MLCO2.  

Time Series Data Plot 
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Note that the data are nonstationary on two counts: they show a trend and an annual cycle. The 
next step is to study the autocorrelations. The autocorrelation charts are shown next. 

Series Autocorrelation Plots 
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Notice that the autocorrelations do not die out and they show a cyclical pattern. This points to 
nonstationarity in the data. The partial autocorrelations point to a value of 2 for p. However, 
because of the obvious nonstationarity, we first want to look at the autocorrelation functions of 
the first differences. Because these are monthly data, we use seasonal differences of length 
twelve. We also remove the trend in the data. 
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The autocorrelations die out fairly quickly. The partial autocorrelations are large around lags one 
and twelve. This suggests the multiplicative seasonal model: ARIMA(1,0,0) x (1,1,0)12. 

Model Estimation Reports 
Following are the results of fitting this model.  
  

Model Description Section 
Series MLCO2-TREND 
Model Regular(1,0,1)    Seasonal(1,1,0) Seasons = 12 
Trend Equation (14.07418)+(7.830546E-02)x(date) 
 
Observations 216 
Iterations 13 
Pseudo R-Squared 99.500042 
Residual Sum of Squares 30.3262 
Mean Square Error 0.1508766 
Root Mean Square 0.3884284 
 

 
 Model Estimation Section 

 
Parameter Parameter Standard  Prob 
Name Estimate Error T-Value Level 
AR(1) 0.9836381 1.274416E-02 77.1834 0.000000 
SAR(1) -0.4927093 5.991305E-02 -8.2237 0.000000 
MA(1) 0.3183001 6.915411E-02 4.6028 0.000004 
 

Everything appears fine here. The final step is to make the diagnostic checks of our model. The 
autocorrelation plot of the residuals is shown next. 
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Autocorrelation of Residuals Plot 
  

 

-1
.0

00
-0

.5
00

0.
00

0
0.

50
0

1.
00

0

0 12 25 37 4

Autocorrelations of Residuals

Lag

A
ut

oc
or

re
la

tio
ns

9

 
 

There appear to be some persistent autocorrelations at lag 25. We take a look at the Portmanteau 
test results. 

Portmanteau Test Report 
  

  Portmanteau Prob  
Lag DF Test Value Level Decision (0.05) 
13 10 32.78 0.000296 Inadequate Model 
14 11 32.79 0.000570 Inadequate Model 
15 12 32.79 0.001045 Inadequate Model 
16 13 33.21 0.001585 Inadequate Model 
17 14 37.13 0.000704 Inadequate Model 
18 15 37.57 0.001044 Inadequate Model 
19 16 40.51 0.000656 Inadequate Model 
20 17 43.17 0.000453 Inadequate Model 
21 18 45.72 0.000326 Inadequate Model 
22 19 46.73 0.000391 Inadequate Model 
23 20 52.17 0.000108 Inadequate Model 
24 21 77.62 0.000000 Inadequate Model 
 

The test points to additional information in the residual autocorrelations. We should refine our 
model further. We tried several other models, but could not find one that worked a lot better. 
Finally, we generate the forecasts from this model.   
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Time Series Plot Including Forecasts 
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As an exercise, you might try fitting this data with the Winters exponential smoothing algorithm. 
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Chapter 471 

ARIMA  
(Box-Jenkins) 
Introduction 
Although the theory behind ARIMA time series models was developed much earlier, the 
systematic procedure for applying the technique was documented in the landmark book by Box 
and Jenkins (1976). Since then, ARIMA forecasting and Box-Jenkins forecasting usually refer to 
the same set of techniques.  In this chapter, we will document the running of the ARIMA 
program. The methodology put forth by Box and Jenkins will be outlined in another chapter, 
since it uses several time series procedures. 

ARIMA time series modeling is complex. You will want to become familiar with the details of 
the methodology before you place a lot of confidence in your forecasts. Our intent is to provide 
you with the tools you need to become proficient in the Box-Jenkins method. 

Data Structure 
The data are entered in a single variable.  

Missing Values 
Missing values are not tolerated by this algorithm. When missing values are found in the series, 
they are replaced by the average of the nearest observation in the future and in the past. If you do 
not feel that this is a valid estimate of the missing value, you should manually enter a more 
reasonable estimate before using the algorithm. This missing value replacement algorithm is 
particularly poor for seasonal data. We recommend that you replace missing values manually before 
using the algorithm. 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variable on which to run the analysis. 

Time Series Variable 

Time Series Variable 
Specify the variable on which to run the analysis. 

Use Logarithms 
Specifies that the log (base 10) transformation should be applied to the values of the variable. 

Forecasting Options 

Number of Forecasts 
This option specifies the number of forecasts to be generated. 

Data Adjustment Options 

Remove Mean 
Checking this option indicates that the series average should be subtracted from the data. This is 
almost always done. 

Remove Trend 
Checking this option indicates that the least squares trend line should be subtracted from the data. 
This is sometimes done, although differencing is often used to remove trends instead. 

Regular Differencing 
Specify the number of times to difference the series. You can enter 0, 1, or 2. 

Seasonal Differencing 
Specify the number of times to seasonally difference the series. The number of seasons per year is 
specified later. 

Seasonality Options 

Seasons 
Specify the number of seasons per year in the series. Use ‘4’ for quarterly data or ‘12’ for 
monthly data. 

First Season 
Specify the first season of the series. This value is used to format the reports and plots. For 
example, if you have monthly data beginning with March, you would enter a ‘3’ here. 
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First Year 
Specify the first year of the series. This value is used to format the reports and plots. 

ARIMA Model Options 

Regular AR 
Specify the highest order of the autoregressive parameters. For example, if you specify ‘2’ here, 
both the lag one and lag two autoregressive parameters will be included in the model. 

Regular MA 
Specify the highest order of the moving average parameters.  For example, if you specify ‘2’ 
here, both the lag one and lag two moving average parameters will be included in the model. 

Seasonal AR 
Specify the highest order of the seasonal autoregressive parameters. The number of seasons per 
year is specified later. 

Seasonal MA 
Specify the highest order of the seasonal moving average parameters. The number of seasons per 
year is specified later. 

ARIMA Model Options 

Max Iterations 
The nonlinear estimation procedure will not converge for every model and data combination. This 
parameter lets you set the maximum number of iterations before the estimation algorithm is 
terminated. 

Convergence 
As the nonlinear estimation proceeds through each step, the residual sum of squares is calculated. 
When the ratio of the residual sum of squares from the current step to the residual sum of squares 
from the last step is less than this amount, the estimation procedure concludes.  Hence, decreasing 
this amount will cause the procedure to go through more iterations, while increasing this amount 
will cause it to run fewer iterations. 

Lambda 
Lambda is a parameter from Marquart’s nonlinear estimation procedure. This value of lambda 
was suggested by Marquart and we suggest that you leave it at the default value. 

Reports Tab 
The following options control which reports are displayed.  

Select Additional Reports 

Minimization Report - Portmanteau Test Report 
Each of these options specifies whether the indicated report is displayed. 
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Forecast Report 
This option specifies which parts of the series are listed on the numeric reports: the original data 
and forecasts, just the forecasts, or neither. 

Select Plots 

Forecast Plot - Autocorrelation Plot 
Each of these options specifies whether the indicated plot is displayed. 

Report Options 

Alpha Level 
The value of alpha for the asymptotic prediction limits of the forecasts. Usually, this number will 
range from 0.001 to 0.1. A common choice for alpha is 0.05, but this value is a legacy from the 
age before computers when only printed tables were available. You should determine a value 
appropriate for your needs. 

Decimals 
Specifies the number of decimal places to use when displaying the forecasts. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 

Plot Options 

Large Plots 
When checked, the plots displayed are larger (about five inches across) than normal (about two 
inches across). 

Forecast Plot Tab 
This section controls the forecast plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 
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Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Forecast Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Autocorrelation Plot Tab 
This section controls the autocorrelation plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Uniform Scaling 
Check this option to scale the autocorrelation plots the same. 
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Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Autocorrelation Plot 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Storage Tab 
The forecasts, prediction limits, and residuals may be stored on the current database for further 
analysis. This group of options lets you designate which statistics (if any) should be stored and 
which variables should receive these statistics. The selected statistics are automatically stored to 
the current database. 

Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 
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Data Storage Variables 

Forecasts, Residuals, Lower Prediction Limits, and Upper Prediction Limits 
The forecasts, residuals (Y-forecast), lower 100(1-alpha) prediction limits, and upper 100(1-
alpha) prediction limits may be stored in the variables specified here.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Fitting an ARIMA Model 
This section presents an example of how to fit an ARIMA model to a time series. The Intel_Close 
variable in the INTEL database will be fit with an ARMA(2,0,0) model.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the ARIMA (Box-Jenkins) window 

1 Open the Intel dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Intel.S0. 
• Click Open. 

2 Open the ARIMA (Box-Jenkins) window. 
• On the menus, select Analysis, then Forecasting / Time Series, then ARIMA (Box-

Jenkins). The ARIMA (Box-Jenkins) procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the ARIMA (Box-Jenkins) window, select the Variables tab.  
• Double-click in the Time Series Variable box. This will bring up the variable selection 

window.  
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• Select Intel_Close from the list of variables and then click Ok. 
• Enter 2 in the Regular AR box. 
• Enter 0 in the Regular MA box. 

4 Specify the reports. 
• On the ARIMA (Box-Jenkins) window, select the Reports tab.  
• Select Data and Forecasts in the Forecast Report. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Minimization Phase Section 
 
 Minimization Phase Section 

 
Itn Error Sum  
No. of Squares Lambda AR(1) AR(2)   
0 85.89011 0.1 0.1 0.1   
1 22.34787 0.1 0.9479776 -0.1168852   
2 17.8811 0.04 1.292394 -0.4623865   
3 17.57868 0.016 1.390741 -0.5737677   
4 17.57362 0.0064 1.403895 -0.589241   
5 17.57359 0.00256 1.40471 -0.5902494   
Normal convergence. 

 

This report displays the algorithms progress toward a solution. 

Error Sum of Squares 
The sum of the squared residuals. This is the value that is being minimized by the algorithm. 

Lambda 
The value of Marquart’s lambda parameter. 

AR(...), MA(...) 
The values of the autoregressive and moving average parameters. Note that if there are more 
parameters in the model than will fit on a single report line, only the first few parameters are 
displayed. 

Model Description Section 
 
 Model Description Section 

 
Series Intel_Close-MEAN 
Model Regular(2,0,0)    Seasonal(No seasonal parameters) 
Mean 64.45625 
 
Observations 20 
Iterations 5 
Pseudo R-Squared 84.653036 
Residual Sum of Squares 17.57359 
Mean Square Error 0.9763107 
Root Mean Square 0.9880844 

 

This report displays summary information about the solution. 
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Series 
The name of the variable being analyzed. 

Model 
The phrase Regular (p,d,q) gives the highest order of the regular ARIMA parameters. The 
Seasonal(P,D,Q) gives the highest order of the seasonal ARIMA parameters, if they were used. 

p Highest order autoregression parameter in the model. 
d Number of times the series was differenced. 
q Highest order moving average parameter in the model. 
P Highest order seasonal autoregression parameter in the model. 
D Number of times the series was seasonally differenced. 
Q Highest order seasonal moving average parameter in the model. 

Mean 
The average of the series. 

Observations 
The number of observations (rows) in the series. 

Iterations 
The number of iterations before the algorithm converged or was aborted. 

Pseudo R-Squared 
This value generates a statistic that acts like the R-Squared value in multiple regression. A value 
near zero indicates a poorly fitting model, while a value near one indicates a well fitting model. 
The statistic is calculated as follows: 

R SSE
SST

2 100 1= −⎛
⎝⎜

⎞
⎠⎟

 

where SSE is the sum of square residuals and SST is the total sum of squares after correcting for 
the mean. 

Residual Sum of Squares 
The sum of the squared residuals. This is the value that is being minimized by the algorithm. 

Mean Square Error 
The average squared residual (MSE) is a measure of how closely the forecasts track the actual 
data. The statistic is popular because it shows up in analysis of variance tables. However, because 
of the squaring, it tends to exaggerate the influence of outliers (points that do not follow the 
regular pattern). 

Root Mean Square 
The square root of MSE. This statistic is popular because it is in the same units as the time series. 
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Model Estimation Section 
 
 Model Estimation Section 

 
Parameter Parameter Standard  Prob 
Name Estimate Error T-Value Level 
AR(1) 1.40471 0.2065638 6.8004 0.000000 
AR(2) -0.5902494 0.2330099 -2.5332 0.011304 

 

Parameter Name 
The is the name of the parameter that is reported on this line. 

AR(i)  The ith-order autoregressive parameter. 

MA(i) The ith-order moving average parameter. 

SAR(i) The ith-order seasonal autoregressive parameter. 

SMA(i) The ith-order seasonal moving average parameter. 

Parameter Estimate 
This is the estimated parameter value. 

Standard Error 
A large sample (N>50) estimate of the standard error of the parameter value. 

T-Value 
The t-test value testing whether the parameter is statistically significant (different from zero). The 
degrees of freedom is equal to the N minus the number of model parameters and differences. 

Prob Level 
The probability level for the above test. If you were testing at the alpha = 0.05 level of 
significance, this value would have to be less than 0.05 in order for the parameter to be 
considered statistically different from zero. When the highest order parameter is not significance, 
you should decrease the order by one and rerun. When a nonsignificant parameter is not the 
highest order, you should not delete it. 

Asymptotic Correlation Matrix of Parameters  
 
 Asymptotic Correlation Matrix of Parameters  

 
 AR(1) AR(2) 
AR(1) 1.000000 -0.881734 
AR(2) -0.881734 1.000000 

 

This report gives the asymptotic estimates of the correlation between the parameter estimates. If 
some of the correlations are greater than 0.9999, you should consider removing appropriate 
parameters. 

Parameter Name 
The is the name of the parameter that is reported on this line. 

AR(i)  The ith-order autoregressive parameter. 
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Forecast Section 
 

Forecasts of SPOTS 
Row Date Actual Residual Forecast Lower 95% Limit Upper 95% Limit 
1 1 65.0 0.1 64.9 61.6 68.2 
2 2 65.0 0.0 65.0 61.6 68.3 
. . . . . . . 
. . . . . . . 
. . . . . . . 
20 20 60.9 0.9 60.0 56.6 63.3 
21 21   62.2 58.9 65.5 
22 22   63.4 59.1 67.7 
23 23   64.3 59.5 69.1 
24 24   64.9 59.9 69.9 
25 25   65.1 60.1 70.2 

 

This section presents the forecasts, the residuals, and the 100(1-alpha)% prediction limits. 

Forecast and Data Plot Section 
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This section displays a plot of the data values, the forecasts, and the prediction limits. It lets you 
determine if the forecasts are reasonable. 

Autocorrelations of Residuals Section 
 
 Autocorrelations of Residuals Section 

Lag Correlation Lag Correlation Lag Correlation Lag Correlation 
1 -0.124727 6 -0.152506 11 0.098453 16 0.264817 
2 0.053877 7 -0.115625 12 -0.215545 17 -0.119435 
3 0.133499 8 0.014388 13 0.177615   
4 -0.182724 9 -0.143282 14 -0.011190   
5 0.137313 10 -0.222115 15 -0.091297   
Significant if |Correlation|> 0.447214 
 

If the residuals are white noise, these autocorrelations should all be nonsignificant. If significance 
is found in these autocorrelations, the model should be changed. 
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Autocorrelation Plot Section 
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This plot is the key diagnostic to determine if the model is adequate. If no pattern can be found 
here, you can assume that your model is as good as possible and proceed to use the forecasts. If 
large autocorrelations or a pattern of autocorrelations is found in the residuals, you will have to 
modify the model. 

Portmanteau Test Section 
 

Portmanteau Test Section Intel_Close-MEAN 
  Portmanteau Prob  
Lag DF Test Value Level Decision (0.05) 
13 11 9.46 0.579765 Adequate Model 
14 12 9.46 0.662805 Adequate Model 
15 13 10.06 0.688621 Adequate Model 
16 14 16.38 0.290932 Adequate Model 
17 15 18.09 0.258059 Adequate Model 

 

The Portmanteau Test (sometimes called the Box-Pierce-Ljung statistic) is used to determine if 
there is any pattern left in the residuals that may be modeled. This is accomplished by testing the 
significance of the autocorrelations up to a certain lag. In a private communication with Dr. Greta 
Ljung, we have learned that this test should only be used for lags between 13 and 24. The test is 
computed as follows: 

( ) ( )Q k N N
r

N j
j

j

k

= +
−=

∑2
2

1

 

Q(k) is distributed as a Chi-square with (K-p-q-P-Q) degrees of freedom. 
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Chapter 472 

Autocorrelations 
Introduction 
The correlation between and  is called the kX t Xt k+

th order autocorrelation of X. The sample 
estimate of this autocorrelation, called r , is calculated using the formula: k
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Autocorrelations are used extensively in time series analysis. When plotted, they become the 
correlogram which is used during the identification phase of the Box-Jenkins method. The large 
sample standard error of the sample autocorrelations is simply 1 / n so that large sample 
confidence limits are ±2 / n . 
The kth order partial autocorrelation of X is the partial correlation between and , where 
the influence of  have been removed. We use the following recursive 
formulae to calculate the partial autocorrelations. 

X t Xt k+
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The partial autocorrelations have the same large sample standard errors and confidence limits as 
do the autocorrelations. They are also used during the model identification phase of the Box-
Jenkins method. 
For this same reason, the filter is not used by this procedure. 

Data Structure 
The data are entered in a single variable.  
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Missing Values 
Missing values are not tolerated by this algorithm. When missing values are found in the series, 
they are replaced by the average of the nearest observation in the future and in the past. If you do 
not feel that this is a valid estimate of the missing value, you should manually enter a more 
reasonable estimate before using the algorithm. This missing value replacement algorithm is 
particularly poor for seasonal data. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Time Series Variable 

Time Series Variable 
Specify the variable on which to run the analysis. 

Use Logarithms 
Specifies that the log (base 10) transformation should be applied to the values of the variable. 

Data Adjustment Options 

Remove Mean 
Checking this option causes the series average to be subtracted from the data. This is almost 
always done. 

Remove Trend 
Checking this option causes the least squares trend line to be subtracted from the data. This is 
sometimes done, although differencing is usually used to remove trends. 

Regular Differencing 
This option lets you designate whether the original series, the first differences, or the second 
differences are analyzed. The first difference series, W, is calculated using the formula: 

W X Xt t t= − −1  

which may be written using the backshift operator, B, as: 

( )W Bt t= −1 X  

The second difference series, Z, is the first difference of the W series. The formula is: 

Z W Wt t t= − −1  

which may be written using the backshift operator, B, as: 
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( )Z Bt t= −1 2 X

s

 

Seasonal Differencing 
This option lets you designate whether the original series, the first seasonal differences, or the 
second seasonal differences are analyzed. Assuming the number of seasons is s, the first seasonal 
difference series, W, is calculated using the formula: 

W X Xt t t= − −  

which may be written using the backshift operator, B, as: 

( )W Bt
s

t= −1 X

s

 

The second seasonal difference series, Z, is the first seasonal difference of the W series. The 
formula is: 

Z W Wt t t= − −  

which may be written using the backshift operator, B, as: 

( )Z Bt
s

t= −1
2

X  

Seasonality Options 

Seasons 
Specify the number of seasons, s, in the series. Use ‘4’ for quarterly data or ‘12’ for monthly data. 
Note that this option is only used if seasonal differencing is used. 

Reports Tab 
The following options control which reports are displayed.  

Select Reports 

Autocorrelation Report - Partial Autocorrelation Report 
Each of these options specifies whether the indicated report is displayed. 

Select Plots 

Autocorrelation Plot - Data Plot 
Each of these options specifies whether the indicated plot is displayed. 

Report / Plot Options 

Number of Autocorrelations 
Specify the number of autocorrelations that are calculated and displayed. Note that the number of 
autocorrelations must be less than the number of rows of data. 
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Number of Partial Autocorrelations 
Specify the number of partial autocorrelations (PAC’s) that are calculated and displayed. Note 
that the number of partial autocorrelations must be less than the number of rows of data. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 

Autocorrelation Plot Tab 
This section controls the autocorrelation plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Autocorrelation Plot 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 
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Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Data Plot Tab 
A plot of the data may be displayed to help you assess the historical accuracy of the forecast 
method. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 
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Data Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Storage Tab 
Both the autocorrelations and the partial autocorrelations may be stored on the current database 
for further analysis. This group of options lets you designate which statistics (if any) should be 
stored and which variables should receive these statistics. 

Note that the variables you specify must already have been named on the current database. 

Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Data Storage Variables 

Autocorrelations 
The autocorrelations are stored in this variable. 

Partial Autocorrelations 
The partial autocorrelations are stored in this variable. 
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Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Generating Autocorrelations of a Series 
This section presents an example of how to generate autocorrelations of a series. The Spots 
variable in the SUNSPOT database will be used.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Autocorrelations window. 

1 Open the SUNSPOT dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file SUNSPOT.S0. 
• Click Open. 

2 Open the Autocorrelations window. 
• On the menus, select Analysis, then Forecasting/Time Series, then Autocorrelations. 

The Autocorrelations procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Autocorrelations window, select the Variables tab.  
• Double-click in the Time Series Variable box. This will bring up the variable selection 

window.  
• Select SPOTS from the list of variables and then click Ok. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 



472-8  Autocorrelations 

Autocorrelation Plots Section 
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This section displays the autocorrelations and partial autocorrelations in a plot format. 

Autocorrelations Section 
 

Autocorrelation Section 
 
Autocorrelations of SPOTS (0,0,12,1,0) 
Lag Correlation Lag Correlation Lag Correlation Lag Correlation 
1 0.816234 11 0.525615 21 0.230319 31 0.008908 
2 0.439589 12 0.344871 22 0.216010 32 0.066994 
3 0.031927 13 0.097503 23 0.126930 33 0.077056 
4 -0.266327 14 -0.123974 24 -0.006907 34 0.037571 
5 -0.395920 15 -0.256157 25 -0.143509 35 -0.048184 
6 -0.335935 16 -0.283001 26 -0.243137 36 -0.141013 
7 -0.124787 17 -0.211754 27 -0.268284 37 -0.204330 
8 0.166522 18 -0.087193 28 -0.221329 38 -0.227475 
9 0.426074 19 0.056621 29 -0.149028 39 -0.204460 
10 0.558426 20 0.173492 30 -0.067392 40 -0.152599 
Significant if |Correlation|> 0.136399 

 

This section shows the values of the autocorrelations for the specified number of lags. The 
numbers in parentheses, (d,D,s,M,T), are defined as follows:  

d  is the regular differencing order. 

D  is the seasonal differencing order. 

s  is the number of seasons (ignored if D is 0). 

M  is 1 if the mean is subtracted, 0 otherwise. 

T  is 1 if the trend is subtracted, 0 otherwise. 
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Partial Autocorrelation Section 
 

Partial Autocorrelation Section 
 
Partial Autocorrelations of SPOTS (0,0,12,1,0) 
Lag Correlation Lag Correlation Lag Correlation Lag Correlation 
1 0.816234 11 0.038335 21 0.007443 31 -0.006587 
2 -0.679072 12 -0.045487 22 0.032548 32 0.022903 
3 -0.090380 13 0.047515 23 -0.100418 33 -0.042974 
4 0.054429 14 0.027539 24 -0.029899 34 0.025960 
5 -0.014413 15 -0.040822 25 -0.049139 35 -0.064242 
6 0.163731 16 -0.095774 26 -0.043122 36 -0.021117 
7 0.165977 17 -0.053699 27 0.074602 37 0.031502 
8 0.205197 18 -0.114117 28 -0.040450 38 -0.056303 
9 0.079963 19 0.016408 29 -0.164996 39 0.025227 
10 0.026876 20 -0.003383 30 0.012685 40 -0.020340 
Significant if |Correlation|> 0.136399 

 

This section shows the values of the partial autocorrelations for the specified number of lags. The 
numbers in parentheses are defined above. 

Data Plot Section 
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This section displays a plot of the data values. 
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Chapter 473 

Cross-
Correlations 
Introduction 
The cross correlation between and Y  is called the kX t t k+

th order cross correlation of X and Y. The 
sample estimate of this cross correlation, called , is calculated using the formula: rk
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The time index, k, is allowed to be either positive or negative. The large sample standard error of 
the sample cross correlations is simply 1 / n so that large sample confidence limits are ±2 / n . 

Data Structure 
The data are entered in two variables.  

Missing Values 
Missing values are not tolerated by this algorithm. When missing values are found in the series, 
they are replaced by the average of the nearest observation in the future and in the past. If you do 
not feel that this is a valid estimate of the missing value, you should manually enter a more 
reasonable estimate before using the algorithm. This missing value replacement algorithm is 
particularly poor for seasonal data. We recommend that you replace missing values manually 
before using the algorithm. For this same reason, the filter is not used by this procedure. 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variables on which to run the analysis. 

Time Series Variables 

Y Variable 
Specify the first variable to be cross correlated. 

X Variable 
Specify the second variable to be cross correlated. 

Reports Tab 
The following options control which reports are displayed.  

Select Reports 

Cross-Correlation Report 
This option specifies whether the indicated report is displayed. 

Select Plots 

Cross-Correlation Plot - Data Plots 
Each of these options specifies whether the indicated plot is displayed. 

Report Options 

Number of Cross-Correlations 
Specify the number of cross correlations that are calculated and displayed. Note that the number 
of cross correlations must be less than the number of rows of data. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 
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Cross-Correlation Plot Tab 
This section controls the cross-correlation plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Cross-Corr Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 



473-4  Cross-Correlations 

Data Plot Tab 
Characteristics of the plots of the two series across time are controlled here. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Data Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 
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Storage Tab 
Both the autocorrelations and the partial autocorrelations may be stored on the current database 
for further analysis. This group of options lets you designate which statistics (if any) should be 
stored and which variables should receive these statistics. 

Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Data Storage Variables 

Cross Correlations 
The cross correlations are stored in this variable. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Generating Cross-Correlations of Two 
Series 
This section presents an example of how to generate cross correlations of two series. The 
Intel_Volume and Intel_Close variables in the INTEL database will be used. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Cross-Correlations window. 

1 Open the INTEL dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file INTEL.S0. 
• Click Open. 
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2 Open the Cross-Correlations window. 
• On the menus, select Analysis, then Forecasting/Time Series, then Cross-Correlations. 

The Cross-Correlations procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Cross-Correlations window, select the Variables tab.  
• Double-click in the Y Variable box. This will bring up the variable selection window.  
• Select Intel_Volume from the list of variables and then click Ok. 
• Double-click in the X Variable box. This will bring up the variable selection window.  
• Select Intel_Close from the list of variables and then click Ok. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Cross Correlation Plot Section 
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This section displays the cross correlations from both positive and negative lags. The value at lag 
0 is the simple correlation between these two variables. 

Cross Correlations Section 
 
Cross-Correlations of Intel_Volume 
Lag Correlation Lag Correlation Lag Correlation Lag Correlation 
-17 -0.212089 -8 0.236876 1 -0.135799 10 0.080439 
-16 -0.144536 -7 0.164298 2 -0.025696 11 -0.042123 
-15 -0.012648 -6 0.080595 3 0.012290 12 -0.063397 
-14 0.103407 -5 -0.202975 4 0.150682 13 0.013433 
-13 0.244696 -4 -0.468207 5 0.229830 14 0.030845 
-12 0.359095 -3 -0.596296 6 0.257356 15 -0.020010 
-11 0.377600 -2 -0.615427 7 0.257654 16 -0.066433 
-10 0.371336 -1 -0.657680 8 0.274812 17 0.009300 
-9 0.318597 0 -0.422771 9 0.208603   

 

This section shows the values of the cross correlations for the specified number of lags.  
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Data Plot Section 
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This section displays plots of the data values. 
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Chapter 474 

Automatic ARMA 
Introduction 
The ARIMA (or Box-Jenkins) method is often used to forecast time series of medium (N over 50) 
to long lengths.  It requires the forecaster to be highly trained in selecting the appropriate model. 
The procedure discussed here automates the ARIMA forecasting process by having the program 
select the appropriate model.   

The Method 
The Automatic ARMA program uses methodology from several authors to find and estimate an 
appropriate forecasting model. The method may be outlined as follows: 

1. Using the model selection theory of Pandit and Wu (1983), any deterministic trend is 
removed from the series.  

2. A set of models of increasing complexity is fit. These are ARIMA(1,0,0), ARIMA(2,0,1), 
ARIMA(4,0,3), ARIMA(6,0,5), and so on, increasing both p and q by two at each step. The 
most complex model tried is specified in the Maximum Order box. The residual sum of 
squares is calculated for each model and the minimum is noted.  

3. Using the minimum residual sum of squares as the criterion, the models are again 
arranged from simpliest to most complex. The first model to be within the user-defined 
percentage of the minimum sum of squares is selected and used.  

4. Once this model has been determined, one final attempt is made to find a model of 
smaller order that is within the specified percentage of the minimum. Suppose the 
previous steps lead to an ARIMA(4,3) model. This step would fit an ARIMA(3,0,2) model 
and check to see if the residual sum of squares was within the specified percentage. If it 
was, the ARIMA(3,0,2) model would be used. If not, the ARIMA(4,3) model would be 
used. 

Because the procedure has to fit so many models, several of which are of large order, we use a 
sub-optimal (but much faster) model estimation algorithm. We chose the least squares modified 
Yule-Walker technique described in Marple (1987), section 10.4. This method is fast and seems 
to provide reasonable estimates of the residual sum of squares. 

Data Structure 
The data are entered in a single variable.  



474-2  Automatic ARMA 

Missing Values 
Missing values are not tolerated by this algorithm. When missing values are found in the series, 
they are replaced by the average of the nearest observation in the future and in the past. If you do 
not feel that this is a valid estimate of the missing value, you should manually enter a more 
reasonable estimate before using the algorithm. This missing value replacement algorithm is 
particularly poor for seasonal data. We recommend that you replace missing values manually 
before using the algorithm. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variable on which to run the analysis. 

Time Series Variable 

Time Series Variable 
Specify the variable on which to run the analysis. 

Use Logarithms 
Specifies that the log (base 10) transformation should be applied to the values of the variable. 

Forecasting Options 

Number of Forecasts 
This option specifies the number of forecasts to be generated. 

Data Adjustment Options 

Remove Mean 
Checking this option indicates that the series average should be subtracted from the data. This is 
almost always done. 

Remove Trend 
Checking this option indicates that the least squares trend line should be subtracted from the data. 
This option should be used if a trend is apparent in the data. 

ARIMA Model Options 

Maximum Order 
The largest number of AR parameters that will be tried. If you are using seasonal data, this should 
be two more than the length of any seasonal pattern.  Hence, for monthly data you would try 
fourteen, for quarterly data you would use six, and for annual data you would use four or six. 
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Even-order models are tried up to this size. For example, if you enter a six here, the program will 
fit the ARIMA models ARIMA(2,0,1), ARIMA(4,0,3), and ARIMA(6,0,5). The residual sum of 
squares is noted, and the simplest model is used for forecasting. 

Percent of Best 
Once the program has found the residual sum of squares for each of the models designated by the 
Maximum Order, it finds the smallest of these values. It then searches through models, 
calculating the percent increase in the residual sum of squares of the current model over that of 
the best model. It selects the simplest (smallest in number of parameters) model that is less than 
this criterion.  

Hence, the larger the percentage you enter here, the simpler will be the model. Normally, the 
value of five is sufficient. 

Autoregressive Terms 
When this value is greater than zero, no search is conducted. Instead, a model with this specific 
autoregressive order is calculated.  

Moving Average Terms 
When this value is greater than zero, no search is conducted. Instead, a model with this specific 
moving average order is calculated.  

Seasonality Options 

Seasons 
Specify the number of seasons per year in the series. Use ‘4’ for quarterly data or ‘12’ for 
monthly data. 

First Season 
Specify the first season of the series. This value is used to format the reports and plots. For 
example, if you have monthly data beginning with March, you would enter a ‘3’ here. 

First Year 
Specify the first year of the series. This value is used to format the reports and plots. 

Reports Tab 
The following options control which reports are displayed.  

Select Additional Reports 

Search Report - Portmanteau Test Report 
Each of these options specifies whether the indicated report is displayed. 

Forecast Report 
This option specifies which parts of the series are listed on the numeric reports: the original data 
and forecasts, just the forecasts, or neither. 
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Select Plots 

Forecast Plot - Autocorrelation Plot 
Each of these options specifies whether the indicated plot is displayed. 

Report Options 

Alpha Level 
The value of alpha for the asymptotic prediction limits of the forecasts. Usually, this number will 
range from 0.001 to 0.1. A common choice for alpha is 0.05, but this value is a legacy from the 
age before computers when only printed tables were available. You should determine a value 
appropriate for your needs. 

Decimals 
Specifies the number of decimal places to use when displaying the forecasts. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 

Plot Options 

Large Plots 
When checked, the plots displayed are larger (about five inches across) than normal (about two 
inches across). 

Forecast Plot Tab 
This section controls the forecast plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 
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Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Forecast Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Autocorrelation Plot Tab 
This section controls the autocorrelation plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Uniform Scaling 
Check this option to scale the autocorrelation plots the same. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 
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Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Autocorrelation Plot 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Storage Tab 
The forecasts, prediction limits, and residuals may be stored on the current database for further 
analysis. This group of options lets you designate which statistics (if any) should be stored and 
which variables should receive these statistics. The selected statistics are automatically stored to 
the current database. 
Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 
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Data Storage Variables 

Forecasts, Residuals, Lower Prediction Limits, and Upper Prediction Limits 
The forecasts, residuals (Y-forecast), lower 100(1-alpha) prediction limits, and upper 100(1-
alpha) prediction limits may be stored in the variables specified here.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Fitting an Automatic ARMA Model 
This section presents an example of how to fit an Automatic ARMA model. The SeriesA variable 
in the SERIESA database will be fit.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Automatic ARMA window. 

1 Open the SERIESA dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file SeriesA.S0. 
• Click Open. 

2 Open the Automatic ARMA window. 
• On the menus, select Analysis, then Forecasting / Time Series, then Automatic 

ARMA. The Automatic ARMA procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  
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3 Specify the variables. 
• On the Automatic ARMA window, select the Variables tab.  
• Double-click in the Time Series Variable box. This will bring up the variable selection 

window.  
• Select SeriesA from the list of variables and then click Ok. 

4 Specify the reports. 
• On the Automatic ARMA window, select the Reports tab.  
• Enter 3 in the Decimals box. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Model Search Results Section 
 
 Model Search Results Section 

 
 AR Order MA Order Sum of Pseudo Percent Change 
No. (P) (Q) Squares R-Squared From Last 
0 0 0 0.3119473 0.00 0.00 
1 1 0 0.2103325 32.57 -32.57 
2 2 1 0.196571 36.99 -6.54 
3 4 3 0.1952559 37.41 -0.67 
4 6 5 0.1899079 39.21 -2.80 
5 8 7 0.1826133 41.46 -3.76 

 

This report displays information about the various models that were fit during the search. In this 
case, we note that the selected model is ARIMA(6,0,5). The individual definitions are as follows: 

AR Order (P) 
The number of autoregressive parameters in the model. 

MA Order (Q) 
The number of moving average parameters in the model. 

Sum Squares 
The sum of the squared residuals. The smaller this amount, the better the precision of the model. 

Psuedo R-Squared 
This value generates a statistic that acts like the R-Squared value in multiple regression. A value 
near zero indicates a poorly fitting model, while a value near one indicates a well fitting model. 
The statistic is calculated as follows: 

R SSE
SST

2 100 1= −⎛
⎝⎜

⎞
⎠⎟

 

where SSE is the sum of square residuals and SST is the total sum of squares after correcting for 
the mean. 

Percent Change From Last 
The percent change in the sum of squares from model immediately above. 
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Model Description Section 
 
 Model Description Section 

 
 Series SERIESA-MEAN R-Squared  39.213981 
 Observations 197 Sum Squares Error 0.1899079 
 Mean 1.706244 Mean Square Error 1.02101E-03 
 Selected Model ARMA(6,5) Root Mean Square 3.195325E-02 
 

This report displays summary information about the solution. 

Series 
The name of the variable being analyzed. 

Observations 
The number of observations (rows) in the series. 

Trend Equation 
The trend equation that was fit and removed from the series before the ARMA models were fit. 

Selected Model 
The phrase ARMA (p,q) gives the highest order of the regular ARMA parameters.  

p Number of autoregression parameters in the model. 

q Number of moving average parameters in the model. 

R-Squared 
This value generates a statistic that acts like the R-Squared value in multiple regression. A value 
near zero indicates a poorly fitting model, while a value near one indicates a well fitting model. 
The statistic is calculated as follows: 

R SSE
SST

2 100 1= −⎛
⎝⎜

⎞
⎠⎟

 

where SSE is the sum of square residuals and SST is the total sum of squares after correcting for 
the mean. 

Sum of Squares Error 
The sum of the squared residuals. This is the value that is being minimized by the algorithm. 

Mean Square Error 
The average squared residual (MSE) is a measure of how closely the forecasts track the actual 
data. The statistic is popular because it shows up in analysis of variance tables. However, because 
of the squaring, it tends to exaggerate the influence of outliers (points that do not follow the 
regular pattern). 

Root Mean Square 
The square root of MSE. This statistic is popular because it is in the same units as the time series. 
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Model Estimation Section 
 
 Model Estimation Section 

 
Parameter Parameter 
Name Estimate 

 AR(1) 0.3655652 
 AR(2) 0.1581511 
 AR(3) 0.0183087 
 AR(4) 3.503909E-02 
 AR(5) 1.653267E-02 
 AR(6) 0.1440598 
 MA(1) 1.811239E-02 
 MA(2) -5.549401E-02 
 MA(3) 4.643534E-03 
 MA(4) 2.481859E-03 
 MA(5) -2.905689E-02 
 

Parameter Name 
The is the name of the parameter that is reported on this line. 

AR(i)  The ith-order autoregressive parameter. 

MA(i) The ith-order moving average parameter. 

Parameter Estimate 
This is the estimated parameter value. 

Forecast Section 
 

Fourier Analysis of SPOTS (0,0,12,1,0) 
Row Date Forecast Lower 95% Limit Upper 95% Limit 

 198 17 6 1.740 1.673 1.806 
 199 17 7 1.736 1.666 1.805 
 200 17 8 1.736 1.665 1.807 
 201 17 9 1.732 1.661 1.804 
 202 17 10 1.725 1.652 1.797 
 203 17 11 1.724 1.650 1.798 
 204 17 12 1.722 1.648 1.797 
 205 18 1 1.721 1.646 1.796 
 206 18 2 1.720 1.644 1.796 
 207 18 3 1.718 1.642 1.795 
 

This section presents the forecasts, the residuals, and the 100(1-alpha)% prediction limits. 
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Forecast and Data Plot Section 
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This section displays a plot of the data values, the forecasts, and the prediction limits. It lets you 
determine if the forecasts are reasonable. 

Autocorrelations of Residuals Section 
 
 Autocorrelations of Residuals Section 
 

Lag Correlation Lag Correlation Lag Correlation Lag Correlation 
 1 0.012330 13 0.013916 25 0.035760 37 -0.071720 
 2 -0.029505 14 0.115632 26 0.022786 38 -0.047004 
 3 0.017103 15 -0.114148 27 0.115409 39 0.023569 
 4 0.008808 16 0.003723 28 -0.070129 40 -0.002934 
 5 -0.051858 17 0.091939 29 0.086803 41 0.013134 
 6 -0.052182 18 0.088479 30 -0.101699 42 -0.047757 
 7 0.162349 19 -0.043432 31 0.029961 43 -0.011785 
 8 0.010603 20 0.088817 32 0.112346 44 -0.003118 
 9 0.076537 21 -0.060232 33 0.097306 45 -0.045457 
 10 0.052340 22 0.009222 34 0.062783 46 -0.010849 
 11 -0.048122 23 -0.035292 35 -0.142371 47 -0.007085 
 12 -0.095803 24 0.056370 36 0.027464 48 -0.028750 
 Significant if |Correlation|> 0.142494 
 

If the residuals are white noise, these autocorrelations should all be nonsignificant. If significance 
is found in these autocorrelations, the model should be changed. 
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Autocorrelation Plot Section 
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This plot is the key diagnostic to determine if the model is adequate. If no pattern can be found 
here, you can assume that your model is as good as possible and proceed to use the forecasts. If 
large autocorrelations or a pattern of autocorrelations is found in the residuals, you will have to 
modify the model. 

Portmanteau Test Section 
 

Portmanteau Test Section Intel_Close-MEAN 
  Portmanteau Prob  
Lag DF Test Value Level Decision (0.05) 
13 2 11.12 0.003849 Inadequate Model 
14 3 13.98 0.002927 Inadequate Model 
15 4 16.79 0.002122 Inadequate Model 
16 5 16.79 0.004908 Inadequate Model 
17 6 18.63 0.004827 Inadequate Model 
18 7 20.35 0.004862 Inadequate Model 
19 8 20.76 0.007799 Inadequate Model 
20 9 22.51 0.007390 Inadequate Model 
21 10 23.32 0.009624 Inadequate Model 
22 11 23.34 0.015825 Inadequate Model 
23 12 23.62 0.022901 Inadequate Model 
24 13 24.34 0.028143 Inadequate Model 
 

The Portmanteau Test (sometimes called the Box-Pierce-Ljung statistic) is used to determine if 
there is any pattern left in the residuals that may be modeled. This is accomplished by testing the 
significance of the autocorrelations up to a certain lag. In a private communication with Dr. Greta 
Ljung, we have learned that this test should only be used for lags between 13 and 24. The test is 
computed as follows: 

( ) ( )Q k N N
r

N j
j

j

k

= +
−=

∑2
2

1

 

Q(k) is distributed as a Chi-square with (K-p-q) degrees of freedom. 
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Chapter 475 

Theoretical ARMA 
Introduction 
This procedure shows the theoretical characteristics of the autocorrelations, partial 
autocorrelations, and spectrum of user-specified ARMA models. Unlike the other time series 
programs, this one does not use data. Instead, it provides a theoretical analysis of various models. 
It also creates simulated series from these models.  

We have found this program especially useful in training and model evaluation. While you are 
becoming familiar with the Box-Jenkins method, this program lets you study the characteristics of 
a large number of models. You will be able to see the sensitivity of the autocorrelation function to 
changes in the number of, and values of, parameters. You will be able to generate series from 
known models and see how difficult it is to identify the model that they came from. 

For use in theoretical model evaluation, this program factors a model written as a polynomial in 
the backshift operator. This will let you compare several models that each seem adequate, but 
appear quite different. It will let you study the characteristics of various models in detail. 

It is useful in model identification, because it will let you generate a catalog of possible 
autocorrelation patterns from known theoretical models that you can compare sample 
autocorrelation functions with.  

All of the models treated by this program come from the general class defined by the model: 

( ) ( ) ( ) ( )φ θp P t q Q
s

tB B X B BΦ Θ= a  

(Refer to chapter on the Box-Jenkins method for more information on the interpretation of this equation.) 

Procedure Options 
This section describes the options available in this procedure. 

Data Tab 
The following options specify the model to be analyzed. 

ARMA Model Specification 

Regular AR (Phis) 
The values of the autoregressive parameters, the phis.  
This should be a list of values like 0.9 -0.2 0.3. Note that the first value corresponds to lag one, 
the second corresponds to lag two, and so on. 
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Seasonal AR (Cap Phis) 
The values of the seasonal autoregressive parameters, the capital phis. This should be a list of 
values like 0.9 -0.2 0.3. Note that the first value corresponds to lag s, the second corresponds to 
lag 2s, and so on. 

Regular MA (Thetas) 
The values of the moving average parameters, the thetas.  
This should be a list of values like 0.9 -0.2 0.3. Note that the first value corresponds to lag one, 
the second corresponds to lag two, and so on. 

Seasonal MA (Cap Thetas) 
The values of the seasonal moving average parameters, the capital thetas. This should be a list of 
values like 0.9 -0.2 0.3. Note that the first value corresponds to lag s, the second corresponds to 
lag 2s, and so on. 

Seasonality Options 

Seasons 
Specify the number of seasons per year in the series. Use ‘4’ for quarterly data or ‘12’ for 
monthly data. 

Simulation Options 

Series Variance 
This is the variance of the simulated series. It is the variance of the normal random numbers that 
are used in the simulation process. 

Number of Rows 
Specifies the number of rows of data that are generated in the simulated series from this model. 
This is also the number of rows that will be stored on the current database. 

Reports Tab 
The following options control which reports are displayed.  

Select Reports 

Autocorrelation Report - Coefficient Report 
Each of these options specifies whether the indicated report is displayed. 

Select Plots 

Autocorrelation Plots - Data Plot 
Each of these options specifies whether the indicated plot is displayed. 
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Report / Plot Options 

Number of Autocorrelations 
Specifies the number of autocorrelations that are reported. 

Number of Frequencies 
Specifies the number of frequencies displayed in the spectral density. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Autocorrelation Plot Tab 
This section controls the autocorrelation plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Autocorr Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 
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Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Spectrum Plot Tab 
This section controls the spectrum plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Spectrum Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 
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Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Data Plot Tab 
A plot of the data over time may be displayed. This tab controls that plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Autocorrelation Plot 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 
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Symbol 
This option controls the attributes of the plotting symbol. Click this box to bring up the symbol 
specification dialog box. This window will let you set the symbol type, size, and color. 

Line 
This option controls the attributes of the line representing the fitted function. Click this box to 
bring up the line specification dialog box. This window will let you set the line pattern, size, and 
color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Storage Tab 
The generated series may be stored on the current database for further analysis. These options lets 
you designate which variable should receive this simulated series. The selected statistics are 
automatically stored to the current database when a variable name is entered. 
Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Data Storage Variables 

Data Series 
The simulated series is stored in this variable. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Using the Theoretical ARMA Procedure 
This section presents an example of how to use the theoretical ARMA program. You may follow 
along here by making the appropriate entries or load the completed template Example1 from the 
Template tab of the Theoretical ARMA window. 

1 Open the Theoretical ARMA window. 
• On the menus, select Analysis, then Forecasting / Time Series, then Theoretical 

ARMA. The Theoretical ARMA procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

2 Specify the model. 
• On the Theoretical ARMA window, select the Data tab.  
• Enter 0.5 0.14 in the Regular AR (Phis) box. 
• Enter -0.2 in the Regular MA (Thetas) box. 

3 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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This section shows four plots of statistics generated from the model. The top two plots give the 
theoretical autocorrelations and partial autocorrelations. The bottom-left plot shows the power 
spectrum (see the chapter on spectral analysis) and the bottom-right plot is a plot of a simulated 
data series from the model. 

Autocorrelation / Power Spectrum Section 
 

Autocorrelations / Power Spectrum Section 
  Partial  Power 
No. Autocorrelations Autocorrelations Frequency Spectrum 
1 0.700000 0.700000 0.000000 22.22222 
2 0.490000 0.000000 0.012821 21.15512 
3 0.343000 0.000000 0.025641 18.49632 
4 0.240100 0.000000 0.038462 15.30439 
5 0.168070 0.000000 0.051282 12.34195 
6 0.117649 0.000000 0.064103 9.89958 
7 0.082354 0.000000 0.076923 7.988447 
8 0.057648 0.000000 0.089744 6.52031 
9 0.040354 0.000000 0.102564 5.394032 
10 0.028248 0.000000 0.115385 4.524017 
11 0.019773 0.000000 0.128205 3.844779 
12 0.013841 0.000000 0.141026 3.308101 

 

This section presents the numerical values associated with the plots of the last section. 

Coefficient Analysis Section 
 

Coefficient Analysis Section 
 
Coefficient  Coefficient Real Imaginary 
Name Lag Value Root Root 
Phi(AR) 0 1.000000 -5.000000 0.000000 
Phi(AR) 1 0.500000 1.428571 0.000000 
Phi(AR) 2 0.140000   
Theta(MA) 0 1.000000 -5.000000 0.000000 
Theta(MA) 1 -0.20000   
Model is stationary and model is invertible. 

 

This report displays an analysis of the coefficients of the model. When the model is written in 
terms of the backshift operator, B, it may be thought of as polynomials in B. Hence in our current 
example, we have two equations to study, one for the autoregressive operator and one for the 
moving average operator. These are: 

( )1 0 5 014 02− − =. .B B  

and 

( )1 0 2 0+ =. B  

As we will show, it can be useful to find and compare the roots of these two equations, since 
knowledge of the roots lets us factor the equations. We see from the report that the roots of the first 
polynomial are 1.4286 (which is 10/7) and -5. We would like to arrange these roots so that the factors 
may be displayed in a standard form. To do this, we perform the following algebra on each root: 

B = -5   B = 1.4286 



 Theoretical ARMA  475-9 

Move the constant to the right side. 

5 + B = 0  -1.4286 + B = 0 

Divide by the constant. 

1 + .2B = 0  1 - .7B = 0 

These are now in the special form that we can easily use them as factors. We note that the 
polynomial may be factored as 

(1 -.5B -.14B2) = (1 + .2B)(1 - .7B) 

Hence, the model (9.3) may be rewritten as 

( )( ) ( )1 0 2 1 07 1 0 2+ − = +. . .B B X Bt ta  

Notice that the left and right sides of this equation have (1+0.2B) as a common factor. We can cancel 
this factor out, leaving the simpler model: 

( )1 07− =. B X at t  

These models are equivalent. Now we can see why the partial autocorrelation plot indicated a single 
autoregressive parameter even though we had specified two.  

A second purpose for studying these coefficients is to look for signals to difference a series. Note that 
if a root is approximately unity, the factor will be approximately (1 - B), the difference operator. 
Hence, when we find roots on the autoregressive side close to one, we can simplify the model by 
differencing the series. 

One criticism of the Box-Jenkins method is that two well-trained forecasters will most likely arrive at 
different models. We find that this criticism is not well-founded since often, by factoring the operator 
polynomials of the two models and studying their roots, we will find that the models are actually 
quite similar. 
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Chapter 480 

Linear 
Programming 
Introduction 
Linear programming maximizes a linear objective function subject to one or more constraints. 
The technique finds broad use in operations research and is included here because it is 
occasionally of use in statistical work. 

The mathematical representation of the linear programming (LP) problem is 

Maximize 

Z = C C C1 2 nX X n1 2 X+ + +L  

Subject to 

X X Xn1 10 0≥ ≥ ≥, , ,L 0  

{ }a a ai i in n iX X X b i1 1 2 2 0 1+ m+ + ≤ = ≥ ≥ =L L, , , ,  

The X’s are called decision variables (the unknowns), the first equation is called the objective 
function and the m inequalities (and equalities) are called constraints. The bi’s are often called 
right-hand sides (RHS). 

The simplex algorithm, which solves this problem, was discovered by George Dantzig in 1947. 
We use a modified version of the revised simplex algorithm given by Press, Teukolsky, 
Vetterling, and Flannery (1992). 

Example 
We will solve the following problem using NCSS: 

Maximize Z=X1+X2+2X3-2X4 

subject to 

 X1 + 2X3  700 ≤

 2X2 - 8X4  0 ≤

 X2 - 2X3 + X4  1 ≥

 X1 + X2 + X3 + X4 = 10 

The solution is X1 = 9, X2 = 0.8, X3 = 0, and X4 = 0.2 which results in Z = 9.4. 
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Data Structure 
This technique requires a special data format. The coefficients of the object function are stored in 
one (usually the first) row. The constraints are stored one to a row. The type of constraint (less 
than, greater than, or equal to) is stored in a column. Following is an example of how to store the 
above example in an NCSS database. This particular database is called LP.S0. 

 

LP dataset 

X1 X2 X3 X4 Logic RHS 
1 1 2 -2 O  
1  2  LT 700 
 2  -8 LT 0 
 1 -2 1 GT 1 
1 1 1 1 EQ 10 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variables on which to run the analysis. 

Variables 

Constraint (A) Variables 
Specify the variables containing the A matrix (the matrix of coefficients). Each variable will be 
solved for during the running of the program. The coefficients can be either positive or negative. 
If a particular coefficient is zero, you may enter a zero or leave the value blank. Usually the 
objective function coefficients are entered as the first row. 

Logic Variable 
Specify the variable containing the logic values for the constraints. Use ‘LE’ for less than or 
equal, ‘EQ’ for equal, ‘GE’ for greater than or equal, and ‘O’ to designate the row containing the 
coefficients of the objective function. 

Bounds (R.H.S.) Variable 
Specify the variable that contains the right-hand sides (the b’s) for each constraint. 

Zero 

Zero 
Because of the possibility of rounding error, a small value must be specified below which, all 
values will be treated as zero by the algorithm. 
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Reports Tab 

Select Reports 

Initial Tableau Report - Final Tableau Report 
Indicate which reports you want to view. 

Report Options 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 

Report Options – Decimal Places 

Initial Tableau - Final Tableau 
This option lets you designate the number of decimal places to be displayed on each report. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Linear Programming 
This section presents an example of how to run the data presented in the example given above. 
The data are contained in the LP database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Linear Programming window. 

1 Open the LP dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file LP.S0. 
• Click Open. 

2 Open the Linear Programming window. 
• On the menus, select Analysis, then Operations Research, then Linear Programming. 

The Linear Programming procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Linear Programming window, select the Variables tab.  
• Double-click in the Constraint (A) Variables text box. This will bring up the variable 

selection window.  
• Select variables X1, X2, X3, and X4 from the list of variables and then click Ok. “X1-

X4” will appear in this box.  
• Double-click in the Logic Variable text box. This will bring up the variable selection 

window.  
• Select Logic as the Logic Variable since this variable contains the logical sign of each 

constraint. 
• Double-click in the Bounds (R.H.S.) Variable text box. This will bring up the variable 

selection window.  
• Select RHS as the Bounds (R.H.S.) Variable since this variable contains the logical sign 

of each constraint. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Initial Tableau Section  
 
 Initial Tableau Section 
   
 Row X1 X2 X3 X4 RHS 
 1 Obj Fn 1.0000 1.0000 2.0000 -2.0000 0.0000 
 2 <= 1.0000 0.0000 2.0000 0.0000 700.0000 
 3 <= 0.0000 2.0000 0.0000 -8.0000 0.0000 
 4 >= 0.0000 1.0000 -2.0000 1.0000 1.0000 
 5 = 1.0000 1.0000 1.0000 1.0000 10.0000 
 

This report lists the initial values so you can double check the input. 



 Linear Programming  480-5 

Optimal Solution Section 
 
 Optimal Solution Section 
   
  Optimal Original Reduced 
 Variable Value Cost Cost Status 
 X1 9.0000 1.0000 0.0000 Basis 
 X2 0.8000 1.0000 0.0000 Basis 
 X3 0.0000 2.0000 -0.2000 Non Basis 
 X4 0.2000 -2.0000 0.0000 Basis 
 Obj. Fn. 9.4000  
 

This report presents the solution. It shows the optimal value of each variable.  

Variable 
The variables that are being solved for.  

Optimal Value 
The values of the independent variables that results in a maximum value of the objective function. 
The maximum value of the objective function is given as the last line of the report. 

Original Cost 
These are the values of the coefficients of the objective functions. These are the C’s. 

Reduced Cost 
The reduced costs are an additional output of the simplex method. 

Status 
This column gives the status of each independent variable in final solution. The solution is found 
by ignoring some variables (setting their values to zeros). When a variable is ignored, it is said to 
be a “non basis” variable. When a variable is not ignored, it is said to be a “basis” variable. 

Constraint Section 
 
 Constraint Section 
   
 Row   Optimal  
 No. Type RHS RHS Constraint 
 2 <= 700.0000 9.0000 X1+2X3 
 3 <= 0.0000 0.0000 2X2-8X4 
 4 >= 1.0000 1.0000 X2-2X3+X4 
 5 = 10.0000 10.0000 X1+X2+X3+X4 
 

This report presents an analysis of each constraint when the variables are set to their optimal 
values. 

Row No. 
The row of the database from which this constraint comes. 

Type 
The type of constraint that this row represents. 

RHS 
The original value of the right-hand side of the constraint. 
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Optimal RHS 
The value of this constraint at the optimal solution.  

Constraint 
The first forty characters of the constraint. 

Final Tableau Section 
 
 Final Tableau Section 
   
 Variables X3 Slack2 Art1 Slack3 RHS 
 Z -0.2000 -0.3000 1.0000 -0.6000 9.4000 
 Slack1 -1.0000 0.0000 1.0000 -1.0000 691.0000 
 X2 -1.6000 0.1000 0.0000 -0.8000 0.8000 
 X4 -0.4000 -0.1000 0.0000 -0.2000 0.2000 
 X1 3.0000 0.0000 -1.0000 1.0000 9.0000 
 

This report presents the final values of the simplex tableau. The variables listed down the left side 
are the basis variables. These are the variables that are active in the solution. The variables listed 
across the top are the non-basis variables. These variables were not in the solution. 
A slack variable is generated for each inequality constraint. An artificial variable is generated for 
each equality constraint. The values in the RHS column are the solution values. 
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Chapter 485 

Appraisal Ratios 
Introduction 
An appraisal (or sales) ratio study measures the accuracy and equitability of mass appraisals by 
local government agencies. It compares the appraised value to the market value—measured by 
sales price—by creating the ratio of the two. These ratios, computed for each parcel that is sold, 
are compared across geographic areas (such as neighborhoods) to assess their level (central 
tendency) and uniformity (variation). 

This topic is discussed in detail in Eckert (1990) and we refer you to that text for more details. 

Data Structure 
At the minimum, two variables are necessary to construct a ratio—the numerator and the 
denominator. In this case, the numerator is the appraised price of the property and the 
denominator is the sales price of the property. Other information is usually necessary such as the 
sales date, a geographic location such as neighborhood, and a property class. Note that the 
appraised price may be the total of two or more variables such as the price of the land and the 
price of the structure (home or building).  

The dataset SALESRATIO.S0 contains an example of such a database. This database contains 
360 rows, of which only five are displayed here. The sales price of the property is given in 
dollars. The sales date is in the format MMDDYY. Note that NCSS automatically handles the 
Year 2000 problem caused by the use of a two-digit year. The appraised value of the land is given 
in Land and that of the structure is given in Building. Three property classes are found on this 
database: 510, 511, and 512. Several neighborhoods are represented by an identification number. 

 

SALESRATIO dataset (subset) 

SaleDate SalePrice PClass Land Building Neighborhood YearSold 
51195 0 512 3110 39200 1720 95 
62096 250 512 5910 27370 1720 96 
21696 628 511 12630 43710 0 96 
41696 1500 512 11000 54740 0 96 
52595 1900 512 10890 17830 0 95 
32295 2000 511 11000 73710 0 95 
90496 2000 512 0 5800 708 96 
52595 2100 512 10890 21110 0 95 
53195 2500 511 4890 72800 1455 95 
12496 3000 511 11540 70250 0 96 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variables on which to run the analysis. 

Variables 

Appraisal Variables 
The one or more variables listed here are summed to form the market valuation of the property. 
You might include land and building values. This value becomes the numerator of the sales ratio. 
It is assumed that all appraised values are current—that is, they represent the appraised value of 
the property today. 

Sales Price Variables 
These variables are summed to form the sales price. Usually, only one variable is specified. This 
value becomes the denominator of the sales ratio.  

Since property sales may have occurred over several years, some adjustment of the sales price 
may be necessary. An automatic percentage increase adjustment is available in the Adjustment 
field below. 

Break Variable 
A separate line on the output report is created for each unique value of this variable. For example, 
you might want to compare the sales ratios by neighborhood. 

Include Variable 
This optional variable lets you restrict the analysis to certain rows of your database by listing the 
values to be included in the report. It works like a Filter variable. 

For example, you might have several property types on your database and a variable that 
identifies the property type of each sale (row). Suppose you want to restrict the analysis to a few 
property classes. Specify the property class variable here and the values to be included in the 
Included Values option. 

Included Values 
These are the values of the Included Variable that are used in the analysis. Rows with values 
other than these are skipped. You may enter a single value or a comma-delimited list. 

Min and Max Ratio 

Min - Max Ratio Kept 
The typical sales ratio database includes many records that are for specialized sales in which the 
listed sales price is not an accurate representation of the true market value of the parcel. An 
example would be sales among family members. Every effort should be taken to remove 
specialized sales from your database. However, this may not always be possible. This option lets 
you automatically omit records with sales ratios that are way out of bounds. The hope is that most 
of these are non-representative, specialized sales. 
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Specify a minimum and maximum ratio value here, using the metric defined by the Ratio 
Multiplier value. Only those properties with ratios in this range will be used. If the Ratio 
Multiplier is set to 100, typical values are Min Ratio equal to 50 and Max Ratio equal to 150. If 
the Ratio Multiplier is set to 1.0, typical values are Min Ratio equal to 0.5 and Max Ratio equal to 
1.5. 

Reports Tab 

Select Reports 

Count – Display COV x 100 
These options let you indicate which items are displayed on the report. If more than five items are 
checked, you will need to put your printer into Landscape mode by selecting Printer Setup from 
the File Menu. 

Star Items Based On Normality 
This option causes certain items to be starred with an asterisk based on the results of the 
normality test. When checked and the normality test is rejected, the median, median confidence 
interval, and COD starred. When checked and the normality test is not rejected, the mean, mean 
confidence interval, and COV are starred. 

Report Options 

Normality Test Alpha 
This option specifies the rejection probability for the normality test. If the normality test 
probability is less than this amount, reject the null hypothesis of normality. If the normality test 
probability is greater than this amount, there is not enough evidence in the data to reject the 
hypothesis of normality.  

The possible range of this probability is 0.01 to 0.30. Most statisticians recommend testing 
normality at an alpha level higher than 0.05 such as 0.10, 0.15, or 0.20. 

Confidence Coefficient 
This option specifies the value of confidence coefficient for the confidence intervals of the mean 
and median. The possible range is from 0.800 to 0.999. The standard value is 0.95. 

Ratio Multiplier 
Sales Ratios are usually multiplied by 100 to scale them as a percentage. At other times, you may 
not wish to scale them. This option lets you specify the multiplier. Use 100 for percentages and 1 
for regular ratios. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option lets you select whether to display only values, value labels, or both. Use this option if 
you want the table to automatically attach labels to the values (like 1=Yes, 2=No, etc.). See the 
section on specifying Value Labels elsewhere in this manual.  

Justification 
This option specifies whether the data and labels in each column should be right or left justified. 
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Page Title 
This option specifies a title that will be printed at the top of each page of the report. 

Report Options – Decimal Places 

Count - COD  
These options let you specify the number of decimal places shown in the various items of the 
output report. 

Report Options – Setup the ruler for 
Outputting a Line of the Report 
These options let you specify the tab settings across the table. The output ruler is also modified by 
the settings of Justification. 

First Tab 
Specifies the position of the first cell in inches. Note that the left-hand label always begins at 0.5 
inches. Hence, the distance between this tab and 0.5 is the width provided for the row label 
information. 

Right Border 
Specifies the right border of the table. The number of tabs is determined based on First Tab, the 
Tab Increment, and this option. If you set this value too large, your table may not be printed 
correctly. 

Column Width 
Specifies the width of a column in inches. We recommend a value of 0.6 when a lot of items are 
to be displayed. 

Sale Date Tab 

Sale Date Specification 

Sale Date Variable 
This optional variable contains the dates on which the sale took place. These date values may be 
used to select a range of dates for the report. For example, you may want to include only sales 
that occurred after 1994. These dates may also be used to adjust the sales price using the 
Adjustment value. 

The date values may be in any one of several date formats. The date format is specified in the 
Date Format option. 

Date Format 
Specify the format of the date variable. Note that Y is for year, M is for month, and D is for day. 
The date format used must match the format used in the Min Date and Max Date. All date values 
are converted to Julian dates (number of days since January 1, 0000), so there is no year 2000 
conversion problem.  

Speaking of year 2000 conversion, two-digit year dates are converted to Julian dates using the 
conversion rule that is set as a system option. If the conversion factor is 30, then year values of 30 
or more are converted to 1930 (or more) and year values 29 and less are set to 2029 (or less). For 
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example, the year part of the date 010101 is assumed to be 2001; the year part of the date 010129 
is assumed to be 2029; and the year part of the date 010130 is assumed to be 2030. 

Minimum - Maximum Date Kept 
Specify either the minimum date, the maximum date, or both. The format must match that 
specified in the Date Format box above. Only properties in the date range specified here will be 
used. Leave this option blank if you do not want to make a selection based on date. 

Optional Price Adjustment 

Adjust Prices To This Date 
This is the date to which all sales price values are adjusted. Often this is January of the current 
year. The format is YYYY-MM. For example, you might enter 1999-01 to adjust all sales values 
to January 1, 1999. 

Monthly Price Adjustment Factor 
This is the monthly sales price adjustment factor. Each sales price is adjusted using the formula 
Adjusted Sales Price = (Actual Sales Price) (1+a m) where m is the number of months between 
the actual sale date and the adjusted date and a is the factor entered here.  

For example, suppose that a sales took place in August of 1997 and that you have set the Current 
Date to 1998-07 and the Adjustment value to 0.001. Since there are twelve months between from 
August to July, the sales value would be adjusted up using the factor (1+0.001*12) which is 
1.012. That is, the sales price would be increased by 1.2 percent. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure.  

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Sales Ratio Study 
This section presents a tutorial of a sales ratio study conducted on the SALESRATIO database. 
The analyst wants to limit the analysis to sales that occurred on or after January 1, 1994 and to 
property classes 510, 511, and 512.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Appraisal Ratios window. 

1 Open the SALESRATIO dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file SALESRATIO.S0. 
• Click Open. 

2 Open the Appraisal Ratios window. 
• On the menus, select Analysis, then Mass Appraisal, then Appraisal Ratios. The 

Appraisal Ratios procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Appraisal Ratios window, select the Variables tab.  
• Set the Appraisal Variables box to LAND-BUILDING. 
• Set the Sales Price Variables box to SalePrice. 
• Double-click in the Break Variable text box. This will bring up the variable selection 

window.  
• Set the Break Variable box to Neighborhood. 
• Set the Include Variable box to PClass. 
• Set the Include Values box to 510 511 512. 

4 Specify the dates. 
• On the Appraisal Ratios window, select the Sale Date tab.  
• Set the Sale Date Variable to SaleDate. 
• Set the Date Format box to MMDDYY. 
• Set the Minimum Date Kept to 010194. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Ratio Section  
 

Ratio Section 
         
Neighborhood Count Median Mean W Mean PRD COD   
0 190 83.62 88.96 85.56 1.04 18.00  
110 2 59.94 59.94 59.50 1.01 6.84  
125 4 63.21 62.50 62.16 1.01 8.60  
. . . . . . . 
. . . . . . . 
. . . . . . . 
Total 275 83.76 88.71 85.39 1.04 18.37 
 

This report gives various statistical values for each value of the break variable (which was 
Neighborhood in this example). Note the total line at the bottom of the report. This gives each 
statistical measure treating the whole database as a single group. 

Neighborhood 
This gives the value of the break variable. Note the total line at the bottom of the report.  

Count 
This is the number of rows included in the statistics reported on this line. The main use of this 
statistic is to be certain that a large enough sample was available to make the other statistics 
reliable. At a minimum, you would want at least thirty sales ratios included before you could have 
any faith in the accuracy and repeatability of the statistics. 

Median 
This is the median (middle) sales ratio. The individual sales ratios (R) are found using the 
formula  

R A
S

=  

where A is the appraised value of the property and S is the sales price of the property. These 
values are ranked and the middle value is selected as the median. 

The median is usually used as the measure of central tendency of sales ratios because of its 
resistance to distortion by outliers. Since outliers occur frequently in property sales databases, and 
since outliers often distort statistics that include them, their impact on the statistics must be 
realized and removed. Using the median is a good way to accomplish this. 

The medians are scanned to determine if there are any groups (neighborhoods) that are way 
undervalued or way overvalued.  

LCL and UCL Median 
These are the confidence limits of the median sales ratio. These limits make no assumption of 
normality. 

Mean 
This is the averaged sales ratio. The individual sales ratios computed and averaged to calculate 
this value. 

Unlike the median, the mean is easily distorted by outliers. For this reason, care should be 
exercised when using it. One possible use is to compare the mean with the median to determine if 
there were a lot of outliers present. The difference between the two is partially due to the presence 
of outliers. 
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LCL and UCL Mean 
These are the confidence limits of the mean sales ratio.  

W Mean 
The weighted mean is the ratio of the total appraised values for the entire sample and the total 
sales prices of the entire sample. Hence, the formula is 
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The weighted mean weights each ratio by the sales price. Hence, high priced properties carry a 
larger weight than low priced properties. It is most appropriate for measuring the central tendency 
when you are most interested in total dollar value of the sample. 

PRD 
This is the price related differential. It measures the regressivity or progressivity of the 
assessments. Regressive appraisals occur when high-value properties are underappraised relative 
to low-value properties. Progressive appraisals occur when the opposite pattern occurs. 

This statistic is the ratio of the mean and the weight mean. It is calculated using the formula   
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A PRD greater than 1.0 indicates that high-value properties are underappraised, while a value less 
than 1.0 indicates that low-value properties are underappraised. As a general rule, except for 
computations involving small sample sizes, each PRD should be between 0.98 and 1.03. 

COD 
This is the coefficient of dispersion is usually used as the measure of uniformity in ratio studies. It 
is calculated using the formula 
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COD values of 15.0 or less tend to be associated with good appraisal uniformity. 

COV 
This is the coefficient of variation. See the Descriptive Statistics chapter for details. 

Std. Dev. 
This is the standard deviation of the sales-ratio values. See the Descriptive Statistics chapter for 
details. 

Normality Prob 
This is the probability level of the Shapiro-Wilk test of normality. If this value is less than some 
cutoff value, often 0.05 or 0.10, the hypothesis that the sales ratios are normally distributed is 
rejected. 
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Chapter 486 

Comparables – 
Sales Price 
Introduction 
Appraisers often estimate the market value (current sales price) of a subject property from a 
group of comparable properties that have recently sold. Since sales data are considered the best 
evidence of market value, this is the preferred approach to market value estimation when sales 
data are available. This topic is discussed in detail in Eckert (1990) and we refer you to that text 
for more details. 

This module allows you to select an appropriate subset of your sales database, such as properties 
in the same area of similar age and size, and specify a set of adjustment variables and their 
corresponding weights and adjustment values. The selected data are scanned to determine those 
properties (rows of the database) that are most comparable to the subject property. These 
comparable properties are then used to create an estimate of the market value (sales price) of the 
subject property. 

Technical Details 
The market value of subject property is estimated by adjusting the sales prices of comparable 
properties so that their attributes match those of the subject property. This adjustment may be a 
dollar amount, such as $50 per square foot, or a percentage, such as 1.5% decrease for each year 
since the property was constructed. 

This sales comparison method has three general phases: 

1.  Select a pool of possible properties from a database of recent sales.  

2.  Rank these properties according to how close they are to the subject property. 

3.  Adjust the comparable properties so that their attributes match the subject property. 

Phase I – Data Selection 
The first step is to select a group of properties to work with from the database of sales data. 
Usually, this step involves selecting properties of similar age, size, and location. The program 
limits the search for comparables to properties that meet these selection criterion. 
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We cannot stress to much the importance of finding comparables that are as similar as possible to 
the subject. This greatly reduces the need for making many (sometimes controversial) 
adjustments to the sales prices. 

Phase 2 – Rank the Properties 
A distance measure is used quantify how close each comparable property is to the subject 
property. Suppose there are K attributes on which the distance is to be measured. 

The value of the  attribute on the  comparable property is represented by . The distance 

between the  comparable property and the subject property is calculated using the Euclidean 
Distance formula: 
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where is the standard deviation of the for a particular attribute and is an attribute 
importance weight scaled so that they sum to one. 

Si Xij wi

This formula reduces all variables to unit-less index values by dividing each by its standard 
deviation. This allows us to combine the number of bedrooms (a small number) with the number 
of square feet (a relatively large number) in one formula. The differences are squared to put 
negative and positive values on an equal basis. 

Note that if all attributes match, the distance will be zero. Typical values will be between zero 
and five. 

Once these distances are calculated, they are sorted from lowest to highest. The properties with 
the smallest distances are closest to the subject property. 

Phase 3 – Adjusting the Sales Price 
Finally, an adjusted sales price is computed for each comparable. The magnitude of the 
adjustment depends on how well the property matches the subject property. There are three steps 
in this adjustment process: 

Step 1 – Sales date adjustment 
The sales price of each comparable property is first adjusted to a specified point in time using a 
monthly percentage adjustment.  

For example, suppose the percentage adjustment is set at 0.2% per month, a comparable property 
sold for $100,000 in August of 1998, and the property as to be adjusted to August of 2000. The 
time adjusted sales price would be calculated as: 

( )( ) 800,104$24002.01000,100$ =+  
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Step 2 – Dollar and percentage adjustments 
The sales price of each comparable property next adjusted for differences in other attributes. The 
adjustments are either dollar (lump sum) or percentage adjustments. The adjustments are made in 
the same order that they are specified. Hence, if you want to make the percentage adjustments 
first, you should specify them first. 

As an example of a dollar adjustment, suppose that a comparable property has 2,500 square feet 
while the subject property has 3,000 square feet. Obviously, the value of the comparable property 
must be adjusted up. The appraiser must set a dollar amount of adjustment for each unit 
difference. In this example, suppose the appraiser decides to add $50 per square foot. Since the 
difference in size is 500 square feet, $25,000 ($50 x 500) is added to the sales price of the 
comparable property. 

As an example of a percentage adjustment, suppose that a comparable property has a quality 
rating of one while the subject property has a quality rating of three. Obviously, the value of the 
comparable property must be adjusted up so that it is on par with the subject property. The 
appraiser must set a percentage adjustment for each unit difference. In this example, suppose the 
appraiser decides to increase the property value by 2% per one unit difference in quality. Since 
the difference in quality is two units, the current adjusted sales price is multiplied by 1.04. 

Step 3 – Estimate the sales price 
Once the adjusted sales prices of the comparables have been calculated, the sales price of the 
subject property can be calculated. NCSS can calculate four different estimates: 

1.  Closest. The adjusted sales price of the closest comparable (using the Euclidean distance) 
is used as the estimate of the subject sales price. 

2.  Least Absolute Dollar Change. The adjusted sales price of the property that had the 
least amount of adjustments in absolute dollar amounts is used as the estimate of the 
subject sales price.  

3.  Simple Average. The average adjusted sales price of the closest four or five properties is 
used as the estimate of the subject sales price. It is hoped that averaging will help remove 
the influence of any anomalies that might occur with a single sale. 

4.  Weighted Average. A weighted average of the adjusted sales price of the closest four or 
five properties is used to estimate the subject sales price. The weights are based on the 
distances between the subject property and comparable property. Specifically, the 
weights are calculated using the formula: 
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with negative weights being reset to zero.  

Data Structure 
Each column of the spreadsheet (database) represents a variable and each row represents a 
property. The selection variables can be text or numeric, but the sales adjustment variables must 
be numeric. You must include a sales price variable and at least one adjustment variable. 
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The dataset Comparables.S0 contains an example of such a database. This database contains fifty-
one rows, of which only a few are displayed here. There are also other variables that are not 
displayed here. 

Note that the sales date is in the format YYYYMM. Also, the indicator variable, Subject, at the 
right-side of the database indicates which rows are to be treated as subjects (no-blank) or as 
comparables (blank). 

 

COMPARABLES dataset (subset) 

PropID Neighborhood SalePrice SaleDate SqFt LotSize Subjects 
A-1 AAA 71589 199801 1165 4670  
A-2 AAA 50535 199907 735 3805  
A-3 AAA 134644 199902 2488 5249  
A-4 AAA 156865 199903 3149 4394  
. . . . . . . 
. . . . . . . 
. . . . . . . 
Subject1   199906 965 5502 1 

Procedure Options 
This section describes the options available in this procedure. 

Selection Tab 
Specify the variables used to select the rows of the database that are to be used as possible 
comparables. 

Indicator Variable 

Indicator Variable 
This variable indicates which rows from the database are subject properties. A separate 
comparables report will be generated for each row with a non-blank value. These rows will not be 
candidates as comparables. 

Normally, you would enter the information for each subject property at the bottom of the 
database, set the value of this variable to ‘1’ in that row, and run the analysis. 

Note that this variable MUST be specified. 

Report Specification 

Report Variables 
Specify additional variables to be displayed at the beginning of the Comparables Report. 

Label Variable 
Specify a variable used to label the rows of the reports. If this variable is omitted, the database 
row numbers are used. 
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Selection Variables and Ranges 

Selection Variables 
Specify variables whose values will be used to select specific records (rows or properties) from 
the database. Only those rows that meet the selection criterion given in the corresponding 
Selection Range box will be kept. 

Only specify one variable per box.  

Note that you do not have to specify any variables, in which case, the whole database will be 
used. 

Selection Range 
Specify a set of values used to specify which rows from the database are kept in the analysis. 
Note that all text values are changed to upper case before processing. 

You can mixe the following types of entries together: 

• Value 
You can enter a single value, either text or numeric. You do not have to enclose text in quote 
marks. For example, you might enter: 

AAA 

or 

1 

• List 
You can enter one or more values in a comma-separated list. For example, you might enter: 

102,104,106 

or 

ABC,DEF,KJS 

• Minimum to Maximum 
You can enter a minimum value and a maximum value, separated by the word ‘TO’. Only 
those rows whose values fall within the range are kept. The syntax for this command is: 

Minimum to Maximum 

For example, you might enter: 

100 to 500  

A TO C 

-900 To 1000, 1200, 1500, 1700 to 1900 
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Adjustment Tab 
These options let you specify the attribute variables used to adjust the sales price of the 
comparable properties. These are the variables used to calculate the distance from a subject to a 
comparable. 

Adjustment Specification 

Adjustment Variables 
Specify the adjustment variables in these boxes. Two types of adjustment variables may be 
specified: lump sum and percentage. 

These variables are used in two phases of the analysis: 

1.  Similarity Phase. Calculate an index of how similar each candidate property is to the 
subject property.  

2.  Appraisal Phase. Calculate an adjusted sales price based on the difference between the 
candidate property and the subject property.  

During the appraisal phase, the variables are applied in the order in which you have specified 
them. You should note that the order of these variables does change the estimated sales price 
because of the percentage variables. Since the percentage adjustment is applied to the current 
estimated sales price, the position of the variable in the list becomes import. Some schools of 
thought recommend that all percentage variables should be applied first. Others recommend that 
they should be applied after the lump sum adjustments are made. NCSS lets you decide. You 
could even put some at the beginning and some at the end. 

Distance Weight 
This value specifies the relative importance of this variable in calculating the Euclidean distance 
between the subject property and the candidate properties. You should specify a positive number 
for each adjustment variable. 

Note that the weights are not used in adjusting the sales prices of the candidate properties. 

One way to specify these weights is to set the least important variables weight to one. Then, other 
weights are specified relative to that. For example, suppose you decide to use three adjustment 
variables: Size, Age, and Number of Bedrooms. You decide that the least important variable is 
the Number of Bedrooms and assign that variable a weight of ‘1.’ You decide that Age is three 
times as important as bedrooms, so you assign Age a weight of ‘3.’ You decide that Size is four 
and one-half times as important, so you assign Size a weight of ‘4.5.’ NCSS totals these three 
weights, (which is 8.5) and divides each of your entries by that total. Thus, the actual weight for 
Number of Bedrooms is 1/8.5 = 0.1176, for Age is 3/8.5 = 0.3529, and for Size is 0.5882. 

Although the actual weights for all variables must sum to one, you do not need to worry about 
that. In fact, your numbers can all be greater than one. The program will readjust your weights so 
that they sum to one. 

Amount ($ or %) 
This value specifies the amount that the sales price is changed for each unit change in the 
Adjustment Variable. You may use a percent sign to indicate a percentage or a dollar sign to 
indicate a dollar amount. If no sign is included, a dollar amount is assumed. 

If you include a percent sign in your value, the adjustment will be applied as a percentage rather 
than an amount. For example, if you enter 2% here and the difference between the candidate 
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property is 2 units less than the subject property on this variable, the overall sales price is 
increased by 4%.  

As an example of a dollar adjustment, suppose that the Adjustment Variable is Size in square feet. 
Suppose that this Adjustment Amount is set at 30. That means that each additional square foot in 
size of the candidate property over that of the subject property will cause the estimated sales price 
of the candidate property to be decreased by $30. 

Date 

Sale Date Variable 
This variable contains the date on which the sale took place. These date values are used to adjust 
the sales prices to the same point in time using a multiplicative adjustment (Date Adjustment).   

The date values may be in any one of several date formats. The date format is specified in the 
Date Format option. 

Date Format 
Specify the format of the Sale Date Variable. This is the format of the dates that appear on your 
database. 

Note that Y is for year, M is for month, and D is for day. All date values are converted to Julian 
dates (number of days since January 1, 0000), so there is no year 2000 conversion problem.  

Speaking of year 2000 conversion, two-digit year dates are converted to Julian dates using the 
conversion rule that is set as a system option. If the conversion factor is 30, then year values of 30 
or more are converted to 1930 (or more) and year values 29 and less are set to 2029 (or less). For 
example, the year part of the date 010101 is assumed to be 2001; the year part of the date 010129 
is assumed to be 2029; and the year part of the date 010130 is assumed to be 2030. 

Date Adjustment 
This is the monthly sales price adjustment factor. Each sales price is adjusted using the formula 
Adjusted Sales Price = (Actual Sales Price) (1 + (a)(m)) where m is the number of months 
between the actual sale date and the adjusted date and a is the number entered here.  

Note that this number is NOT a percentage! 

For example, suppose that a sales took place in August of 1997 and that you have set the Current 
Date to 1998-07 and the Adjustment value to 0.001. Since there are twelve months between from 
August to July, the sales value would be adjusted up using the factor (1+0.001*12) which is 
1.012. That is, the sales price would be increased by 1.2 percent. 

Current Date 
Specify the date to which all sales price values are adjusted. Often this is the current date.  

The format is YYYY-MM. For example, you might enter ‘2001-01’ to adjust all sales values to 
January 1, 2001. 

Sales Price 

Sales Price Variable 
Specify the variable that contains the sales prices (in dollars) of the comparable properties. Only 
those properties that have a positive sales price are used. 
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Reports Tab 

Select Reports 

Distance Report - Settings Report 
Specify whether to display the report. 

Show Dollar Signs 
Specify whether to show dollar signs on the reports. The dollar sign may clutter the report, so it is 
optional. 

Show Commas in Dollars 
Specify whether to formal dollar amounts with a comma. The comma may need to be left out for 
formatting reasons. 

Show Column Separator = | 
The report may be formatted with or without the vertical bar. This option lets you decide whether 
you want to use it or not. 

Report Options 

Estimation Method 
Specify the method to be used to calculate the estimated sales price of the subject property. We 
recommend that you use the Weighted Average method unless you have a good reason to use one 
of the other methods. The following methods are available: 

• Closest 
Use the sales price of the comparable property that is closest (has the minimum distance) to 
the subject property. 

• Min |$| Change 
Use the sales price of the comparable property that had the smallest absolute dollar value 
change. That is, this property was adjusted by the smallest dollar amount. 

• Simple Average 
Use the average of the adjusted sales prices of the M comparables that have the smallest 
distance. The value of M is set on the Reports tab by the Properties in Averages option. 

• Weighted Average 
Use the weighted average of the adjusted sales prices of the M comparables that have the 
smallest distance to the subject property. The weights are proportional to the distance from 
the comparable property to the subject property. 
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Report Options – Specify Number of 
Properties 

Per Distance Report 
Specify the number of properties (rows) displayed on the Distance report. Note that the database 
is sorted so that only the candidates closest to the subject are displayed. We recommend that you 
look at the best ten or twenty candidates. 

Per Comparables Report 
Specify the number of properties displayed on this report. Usually, three two five are used, but 
ten are displayed. 

Note that the database is sorted so that only the candidates closest to the subject are displayed. 

Per Page 
Specify the number of comparables shown on each page of the comparables report. Each property 
requires two columns of the report. The maximum is four. 

Used in Averages 
Specify the number of properties in the averages used to estimate the subject's sales price. The 
simple average of the most similar properties (determined by the comparability index) is one sales 
price estimate. A weighted average of these same properties is another sales price estimate. 

Report Options – Decimal Places 

Dollars - Means 
Specify the number of decimal places shown on the report for these items. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure.  

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Comparables Study 
This section presents a tutorial of a comparables study conducted on the COMPARABLES 
database. The appraiser limits the analysis to those properties in neighborhood ‘AAA’ that were 
constructed from 1970 to 1980.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Comparables – Sales Price window. 

1 Open the COMPARABLES dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file COMPARABLES.S0. 
• Click Open. 

2 Open the Comparables – Sales Price window. 
• On the menus, select Analysis, then Mass Appraisal, then Comparables – Sales Price. 

The Comparables – Sales Price procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the selection variables. 
• On the Comparables – Sales Price window, select the Selection tab.  
• Double-click in the Indicator Variable text box. This will bring up the variable selection 

window.  
• Select Subjects from the list of variables and then click Ok. “SUBJECTS” will appear in 

this box.  
• Double-click in the Report Variables text box. This will bring up the variable selection 

window.  
• Select YearSold and then click Ok. “YEARSOLD” will appear in this box. 
• Double-click in the Label Variable text box. This will bring up the variable selection 

window.  
• Select PropId and then click Ok. “PROPID” will appear in this box. 
• Double-click in the first Selection Variable text box. This will bring up the variable 

selection window.  
• Select Neighborhood and then click Ok. “NEIGHBORHOOD” will appear in this box. 
• Double-click in the second Selection Variable text box. This will bring up the variable 

selection window.  
• Select YearBuild and then click Ok. “YEARBUILD” will appear in this box. 
• Enter AAA in the first Selection Range box. 
• Enter 1970 to 1980 in the second Selection Range box. 

4 Specify the adjustment variables. 
• On the Comparables – Sales Price window, select the Adjustment tab.  
• Double-click in the first Adjustment Variable text box. This will bring up the variable 

selection window.  
• Select Quality and click Ok. “QUALITY” will appear in this box. 
• Double-click in the second Adjustment Variable text box. This will bring up the 

variable selection window.  
• Select SQFT and click Ok. “SQFT” will appear in this box. 
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• Double-click in the third Adjustment Variable text box. This will bring up the variable 
selection window.  

• Select LotSize and click Ok. “LOTSIZE” will appear in this box. 
• Double-click in the fourth Adjustment Variable text box. This will bring up the variable 

selection window.  
• Select Bedrooms and click Ok. “BEDROOMS” will appear in this box. 
• Set the first Distance Weight to 1. 
• Set the second Distance Weight to 4. 
• Set the third Distance Weight to 2. 
• Set the fourth Distance Weight to 1. 
• Set the first Amount to 3%. 
• Set the second Amount to $50. 
• Set the third Amount to $5. 
• Set the first Amount to $400. 
• Double-click in the Sale Date Variable text box. This will bring up the variable selection 

window.  
• Select SaleDate and click Ok. “SALEDATE” will appear in this box.  
• Double-click in the Sales Price Variable text box. This will bring up the variable 

selection window.  
• Select SalePrice and click Ok. “SALEPRICE” will appear in this box. 
• Set the Date Format to YYYYMM. 
• Set the Date Adjustment to 0.01. 
• Set the Current Date to 1999-10. 

5 Specify the reports. 
• On the Comparables – Sales Price window, select the Reports tab.  
• Check Distance Report. 
• Check Comparables Report. 
• Check Settings Report. 
• Uncheck Show Dollar Signs. 
• Uncheck Show Commas in Dollars. 
• Check Show Column Separator = |. 
• Set Estimation Method to Weighted Average.  
• Set Per Distance Report to 10.  
• Set Per Comparables Report to 8.  
• Set Per Page to 4.  
• Set Used in Averages to 5.  
• Set Dollars Decimals to 0.  
• Set Distances Decimals to 3.  
• Set Percents Decimals to 0.  
• Set Means Decimals to 1.  

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Settings Report  
 

Settings Report for Subject = Subject1 
        
Selection Selection 
Variables Criterion 
Neighborhood AAA 
YearBuilt 1970 to 1980 
 
Adjustment Adjustment   Standard  
Variables Value Weight Mean Deviation COV 
SaleDate 1%     
Quality 3% 1 2.2 0.7 33 
SqFt $50 4 1869.2 1001.3 54 
LotSize $5 2 5018.2 1153.3 23 
Bedrooms $400 1 2.5 1.2 47 
Of the 50 properties on the database, 1 was a subject property and 37 were excluded  
by the selection variable(s), leaving 12 comparables for consideration. 
 

This report gives the settings you used to create the report. It is provided to let you document how 
the options where set. It also supplies summary statistics about the adjustment variables used in 
the analysis. The Mean, Standard Deviation, and Coefficient of Variation are computed on the 
rows selected for analysis. 

Distance Report  
 

Distance Report for Subject = Subject1 
        
PropID Distance SalePrice Quality SqFt LotSize Bedrooms  
Subject1   2 965 5502 2  
A-14 0.240 88474 2 1309 6484 2 
A-8 0.394 78728 2 1181 5350 4 
A-1 0.484 71589 1 1165 4670 1 
A-2 0.568 50535 2 735 3805 2 
A-9 0.579 95660 1 1653 5715 1 
A-10 0.597 50902 2 779 3745 2 
A-15 1.083 60007 3 963 3506 3 
A-3 1.503 134644 3 2488 5249 3 
A-7 1.765 127109 3 2419 4086 3 
A-13 2.866 168715 2 3202 6720 1 
 

This report displays the values of the adjustment variables for the comparable properties that met 
the selection criterion. Note that the subject property is displayed first. 

Distance 
This value is the Euclidean distance, D, between the subject property and the comparable 
property. Values near zero are close. Values near five are very different. 
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Comparative Sales Price Report  
     
Comparative Sales Price Adjustment Report for Subject = Subject1 
 
PropID | Subject1 | A-14  | A-8  | A-1  | A-2   
 | Value | Value $Adj | Value $Adj | Value $Adj | Value $Adj  
YearSold |  | 1997  | 1996  | 1995  | 1996   
Comparability |  | 92%  | 87%  | 84%  | 81%   
SalePrice |  | 88474 6193 | 78728 3149 | 71589 15034 | 50535 1516  
Quality | 2 | 2 0 | 2 0 | 1 2599 | 2 0  
SqFt | 965 | 1309 -17200 | 1181 -10800 | 1165 -10000 | 735 11500  
LotSize | 5502 | 6484 -4910 | 5350 760 | 4670 4160 | 3805 8485  
Bedrooms | 2 | 2 0 | 4 -800 | 1 400 | 2 0  
Net $Adj. |  |  -15917 |  -7691 |  12192 |  21501  
Sum |$Adj.| |  |  22110 |  12360 |  17159 |  19985  
Adj Sales Price | 73197 |  72557 |  71037 |  83781 |  72036  
 
Comparative Sales Price Adjustment Report for Subject = Subject1 (Continued) 
 
PropID | Subject1 | A-9  | A-10  | A-15  | A-3   
 | Value | Value $Adj | Value $Adj | Value $Adj | Value $Adj  
YearSold |  | 1995  | 1996  | 1997  | 1994   
Comparability |  | 81%  | 80%  | 64%  | 50%   
SalePrice |  | 95660 2870 | 50902 2036 | 60007 3000 | 134644 10772  
Quality | 2 | 1 2956 | 2 0 | 3 -1890 | 3 -4362  
SqFt | 965 | 1653 -34400 | 779 9300 | 963 100 | 2488 -76150  
LotSize | 5502 | 5715 -1065 | 3745 8785 | 3506 9980 | 5249 1265  
Bedrooms | 2 | 1 400 | 2 0 | 3 -400 | 3 -400  
Net $Adj. |  |  -29239 |  20121 |  10790 |  -68876  
Sum |$Adj.| |  |  38821 |  18085 |  12370 |  82177  
Adj Sales Price | 73197 |  66421 |  71023 |  70797 |  65768  
 

This report displays the values of the adjustment variables for the comparable properties that met 
the selection criterion. Note that the subject property is displayed first. 

Comparability 
This is an index have how close the comparable is to the subject. It is computed using the 
formula: 
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When the value is negative, it is reset to zero. 

This value is used to compute the weighted average estimate of the sales price. 

Net $Adj 
This row gives the net change in the price between the original sales price and the final adjusted 
sales price. 

Sum |$Adj.| 
This rows totals the absolute values of the dollar adjustments that are made. It is sometimes used 
as an indicator of how close the comparable is to the subject property. Unfortunately, its value 
depends on the order in which the variables are specified. 

Adj Sales Price 
The adjusted sales price is given in this row. The first column provides the estimated sales price 
of the subject property. 
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Chapter 487 

Hybrid Appraisal 
Models 
Introduction 
This procedure analyzes a special prediction model often used in mass appraisal and assessment. 
The model is referred to as the hybrid model. Although NCSS has a nonlinear regression module 
for solving this model, this module was added for several reasons:   

1. It provides several methods of optimization for calibrating the model parameters. Some 
of these methods have the same goal as the ‘feedback algorithm’. 

2. It streamlines model setup, including the automatic generation of binary variables. 

3. It provides many new reports and statistics that aid in the calibration of the parameter 
values.  

The use of multiple and nonlinear regression in property appraisal and assessment administration 
has been encouraged by such organizations as the International Association of Assessing Officers 
(IAAO). They publish a book by Eckert (1990) and teach courses which use these regression 
procedures. This program was developed to automate the hybrid model that they propose.  

The Hybrid Appraisal Model 
The hybrid model is a combination of both additive and multiplicative models. It relates the sales 
price of a property to various characteristics such as size (in square feet), lot size, construction 
quality, location, number of bathrooms, etc. This model computes a market value for each 
‘structure’ of the parcel, where a structure refers to an object like the land or a build. For 
example, the sales price may by the sum of the market values of the building, the lot, and a 
garage. Because of variance that may occur because of location, time, etc., this sum may be 
adjusted by one or more overall variables. This overall variables act as percentage adjustments. 

The general form of the model is: 

Sales Price = Overall (Building + Land  + Garage  + …) 

Each of these factors are modeled by one or more variables from the database. These factor 
models are made up of three types of variables: rate, binary, and amount. The amount variable 
usually represents the ‘size’ of the structure. Examples are acreage and square footage. The rate 
and binary variables are variables that adjust the size variables up or down, such as a quality 
index or an age adjustment. 
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Using this construction, the individual factors are modeled as follows. 

Overall = R R B B1
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In this model, Ri represent rates or multipliers (usually centered near one) which modify the 
whole factor. Examples of rate variables include sales date multiplier and depreciation. These are 
analogous to percentage adjustment variables. 

The Ii’s represent indicator (binary) variables. These are variables that have only two values: zero 
and one. Examples of these are neighborhood indicators and special feature indicators (such 
presence of a swimming pool). Usually, qualitative variables are broken down into individual 
binary variables. For example, suppose that the properties in your study come from three 
neighborhoods. You would designate one as the standard neighborhood, then create two binary 
variables, one for each of the other neighborhoods. The model will then adjust for differences 
among the three neighborhoods. 

The Ai’s represent amount variables like lot size or square footage of living area. These variables 
are entered in the normal linear fashion. 

The Bi’s represent the coefficients that are estimated from the data. Often, these coefficients are 
constrained to lie within specified limits. 

Note that the number of variables in each group varies. Quite often you may have ten or fifteen 
binary variables and only one rate variable.  

Differential Evolution 

Introduction 
One of the steps in using the hybrid model in mass appraisal is to calibrate (estimate) the 
unknown coefficient values, the B’s. Often, the method of least squares (MRA) is used to 
estimate the coefficients. Least squares finds the set of estimates that minimize the sum of the 
squared errors. That is, the objective of the method of least squares is to minimum the sum of 
squared errors. The sum of squared errors is called the objective function, and the problem is to 
minimize it. Least squares is one method of minimizing it. Another possibility is simple trial-and-
error (of course, trial-and-error may be very time consuming).  

Because of the distortion that a few anomalies in the data can cause when least squares is used, 
other methods have been proposed. One alternative is the feedback algorithm. This algorithm 
seeks to minimize a different objective function: the average absolute percent error. This 
objective function quantifies the percentage accuracy of the model. Both expensive and 
inexpensive parcels are modeled to the same percentage accuracy. Least squares, on the other 
hand, concentrates on fitting the most expensive properties. The feedback algorithm is used to 
minimize an specific objective function: the average absolute percent error. Recently, 
mathematicians have found other algorithms with the same goal of minimizing an objective 
function. One such algorithm is differential evolution. 
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Differential evolution is one of a group of genetic algorithms (see for example, the recent book 
by Haupt (1998)). By studying how generations respond over time to their environment, 
mathematicians have discovered new, more robust, algorithms for minimizing an objective 
function. Differential evolution is one of these algorithms. It can be outlined as follows. A 
population of about 20 individuals has certain traits (values of the unknown coefficients being 
estimated). The well-being of an individual is measured by his/her value of the objective function. 
Each individual gives birth to a new individual and then dies, thus forming a new generation. 
Each new individual inherits traits from their parents. The well-being of each child is computed, 
and if it is better than their parent, they take the parents place. Otherwise, the parent’s traits pass 
directly to the child. Finally, occasionally, a mutation of a trait will occur.  

The main point to remember is that the big goal is to minimize the objective function. Whether 
we use the feedback algorithm or the differential evolution algorithm makes little difference, as 
long as you find the minimum!  

The Algorithm 
A population consists of a small group (about 20) of individuals whose characteristics are the 
values of the unknown coefficients. Using these coefficients, the value of the objective function is 
computed for each individual. This value is an inverse measure of the wellbeing of an individual. 
The lower the value, the higher the well being. 

To begin the algorithm, a small group of individuals must be formed. This is done by assigning 
the nonlinear regression coefficients to one individual and then randomly assigning the other 
individuals to a grid of values around this first individual. This is the initial population. 

The next step is the evolution of the population. The population progresses through a series of 
generations. At each change in generation, depending on a member’s wellbeing, each population 
member may move on to the next generation or be replaced by a better member. For each 
member, a trial replacement is constructed as follows. The best member of the population is 
found. The attributes of each replacement member are computed as a weighted average of those 
of the member and the best member. The amount of weight of the best member is controlled by 
the inheritance factor. This is a value between 0 and 1. The closer this value is to 1, the more the 
replacement member resembles the best member. The closer this value is to 0, the more the 
replacement member resembles their parent. The value of 0.85 seems to work in many cases. 

As in real populations, mutations occur at a given rate. When a mutation occurs, a particular trait 
is changed randomly. This tends to maintain diversity in the population. A mutation rate of about 
30% (0.30) seems to work well. 

The algorithm proceeds from generation to generation until the population seems to converge to a 
single individual. The number of generations is arbitrary. Usually, about 100 generations are 
needed for the algorithm to converge. 

Assumptions 
The main assumption needed is that the data are well represented by the model.  
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Data Structure 
The data are entered as one dependent variable and one or more independent variables. Each row 
of data represents a single parcel. 

Missing Values 
Rows with missing values in the variables being analyzed are ignored in the calculations. When 
only the value of the dependent variable is missing, predicted values are generated. 

Procedure Options 
This section describes the options available in this procedure. 

Variables (1 to 6) Tabs 
These panels specify the variables used in the analysis. 

Estimation Specification 

Estimation Method 
This option specifies the method used to estimate the model coefficients. Several methods are 
available. 

• Minimize Squared Errors (Nonlinear Regression) 
This is the classical approach often used by statisticians because it gives reasonable estimates 
relatively quickly. This method tends to emphasize relatively expensive properties as 
compared to less expensive properties. 

• Minimize the Average |Percent Error| 
Using the genetic search algorithm called differential evolution, this method finds estimates 
that minimize the average of the absolute percent errors. These percent errors are the 
difference between the actual and predicted sales prices divided by the actual price. This 
method treats all properties equally, irregardless of price.  

The function minimized is 

( )

MAPE =

actual predicted
actual

N
properties

100 −
∑

 

where |X| represents the absolute (positive) value of X and X
properties
∑  is interpreted as the sum 

of the values of all properties. Note that this is the quantity minimized by the feedback 
algorithm. 

If you want to use a solution that minimizes the percent errors, this is the solution that we 
recommend. 
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• Minimize the Maximum |Percent Error| 
Using the genetic search algorithm called differential evolution, this method finds estimates 
that minimize the maximum of the absolute percent errors. These percent errors are the 
difference  between the actual and predicted sales prices divided by the actual price. 

• Minimize the Median |Percent Error| 
Using the genetic search algorithm called differential evolution, this method finds estimates 
that minimize the median of the absolute percent errors. These percent errors are the 
difference between the actual and predicted sales prices divided by the actual price. 

• Minimize the Percentile |Percent Error| 
Using the genetic search algorithm called differential evolution, this method finds estimates 
that minimize a designated percentile of the absolute percent errors. These percent errors are 
the difference between the actual and predicted sales prices divided by the actual price. The 
percentile is specified in the Min Percentile box. 

• Minimize the Average |Error| 
Using the genetic search algorithm called differential evolution, this method finds estimates 
that minimize the average of the absolute errors. These absolute errors are the difference 
between the actual and predicted sales prices. These percent errors are the difference between 
the actual and predicted sales prices divided by the actual price. The percentile is specified in 
the Min Percentile box. 

• Minimize the Median |Error| 
Using the genetic search algorithm called differential evolution, this method finds estimates 
that minimize the median of the absolute errors. These errors are the difference between the 
actual and predicted sales prices. 

• Minimize the Percentile |Error| 
Using the genetic search algorithm called differential evolution, this method finds estimates 
that minimize a designated percentile of the absolute errors. These errors are the difference 
between the actual and predicted sales prices. The percentile is specified in the Min Percentile 
box. 

Min Percentile 
This option specifies the percentile minimized when the Estimation Method is set to minimize a 
percentile. Although a value between 1 and 99 is legal, the routine should use a value between 50 
and 95. 

Dependent (Sales Price) Variable 

Y - Dependent Variable (Sales Price) 
This option specifies the sales price variable. This is the value that will be estimated by the hybrid 
model.  

If you want to estimate the sales price of other properties, just add their values to the end of the 
database, but leave the sales price blank.  
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Note that the prices may be in any scale you want—dollars, hundreds of dollars, or thousands of 
dollars. When the resulting predicted sales prices are displayed, they will be in the same scale as 
these values. 

Variable Specification 

Factor 
Specify the factor (object) that this parameter belongs to. Possible choices of factor are overall, 
building (up to 10), land, shed, garage, or pool.  

Variable 
Specify one or more variables with the same factor, type, minimum, maximum, and starting 
values. Usually, you will specify only one variable per line, but more are allowed if you desire. 

• Binaries 
If this is a type D (discrete) variable, you can specify a reference value in parentheses after 
the variable name. If you do not specify a reference value, the program sorts the values and 
picks the last value as the reference value. The reference value is that value for which no 
binary variable is generated. The number of binary (0-1) variables generated is always one 
less than the number of unique values. 

For example, suppose you will use a variable called ExtType that has three possible values: B 
for brick, U for stucco, or S for siding. Further suppose that in your area, siding is the most 
common exterior type. Hence, siding would be the most obvious choice for the reference 
value. You would enter ExtType(S) for this variable. The program would generate two binary 
variables: one for brick and the other for stucco. 

• Single Binary 
It is possible to specify that only a single binary be generated for a type D (discrete) variable. 
This is done by adding a comma and an ‘I’ after the reference value. When you do this, only a 
single binary variable is generated for the value indicated. 

For example, using the exterior type example given above, the statement ExtType(S,I) would 
cause the program to generate a single indicator variable that is ‘1’ when the value of ExtType 
is S and ‘0’ otherwise. 

Type 
This option specifies the variable type. Possible choices are: (A)mount, (D)iscrete, and (R)ate.  

• (A)mount 
Amount variables represent the factor size. Examples are square footage and lot size. These 
enter into the prediction model as linear variables such as , where the B’s 
are the estimated coefficients and the X’s are the variables. 

21 21 22 22B X + B X

• (D)iscrete 
A discrete variable is one taking on only a view unique values, such as exterior type or 
neighborhood. In fact, discrete variables are not necessarily numeric. A set of indicator 
(binary) variables is generated for a discrete variable. This set of binary variables enters into 
the prediction model as , where the B’s are the estimated coefficients and the X’s are 7

X
8
X7B B 8
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0 1Bthe binary variables. Note that since =  for any B, these variables make an adjustment 
when the binary variable is true (1), but have no effect when the binary variable is false (0) 

• (R)ate 
A rate variable is a multiplier (usually centered near one) which modifies the whole factor. 
Examples of rate variables include sales date multiplier and depreciation. These are 
analogous to percentage adjustment variables. They enter into the prediction model as 
multipliers using the construction , where the B’s are the estimated coefficients and 
the X’s are the rates.  

1 2
2B BX X 2

Min Start Max 
Enter the word ‘Defaults’ or an ascending set of three numbers separated by blanks or commas. If 
you enter the word ‘Defaults’, the corresponding default values as entered under the Defaults tab 
will be used.  

If you enter a set of numbers, the first number is the minimum, the second is the starting value, 
and the third is the maximum value that the coefficient associated with the variable can take on. 
For example, the triplet ‘0.1, 1.0, 2.0’ sets the minimum at 0.1, the maximum at 2.0, and the 
starting value at 1.0. The minimum and maximum allow you to define a range of possible values 
(hopefully, a realistic range) in which the search for the final estimate is to take place. 

Minimum 

This is the smallest value that the parameter can take on. The algorithm searches for a value 
between this and the Maximum. If you want to search in an unlimited range, enter a large 
negative number such as -1E9, which is -1,000,000,000. You can enter a -B (for negative one 
billion) if you want to leave the value free to vary. 

Starting Value 

This is the beginning value of the parameter. The algorithm searches for a value between the 
Minimum and the Maximum, beginning with this number. The closer this value is to the final 
value, the quicker the algorithm will converge. 

Following are suggestions for selecting starting values. 

1. Make sure that the starting values you supply are legitimate. 

2. Before you go to a lot of effort, make a few trial runs using starting values of 0.0, 0.5, and 
1.0. Often, one of these values will converge. 

Maximum 

This is the largest value that the parameter can take on. The algorithm searches for a value 
between the Minimum and this value, beginning at the Starting Value. If you want to search in an 
unlimited range, enter a large positive number such as 1E9, which is 1,000,000,000. You can 
enter a B (for positive one billion) if you want to leave the value free to vary. 
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Options Tab 

Nonlinear Regression Options 
This set of options controls the nonlinear regression algorithm. Note that when you are estimating 
using differential evolution, nonlinear regression is used to find appropriate starting values. 
Hence, these nonlinear regression options are always used. 

Lambda 
This is the starting value of the lambda parameter as defined in Marquardt’s procedure. We 
recommend that you do not change this value unless you are very familiar with both your model 
and the Marquardt nonlinear regression procedure. Changing this value will influence the speed at 
which the algorithm converges. 

Lambda Inc 
This is a factor used for increasing lambda when necessary. It influences the rate at which the 
algorithm converges. 

Max Iterations 
This sets the maximum number of iterations before the nonlinear regression algorithm is aborted. 
If the starting values you have supplied are not appropriate or the model does not fit the data, the 
algorithm may diverge. Setting this value to an appropriate number (say 50) causes the algorithm 
to abort after this many iterations. 

Nash Phi 
Nash supplies a factor he calls phi for modifying lambda. When the residual sum of squares is 
large, increasing this value may speed convergence. 

Lambda Dec 
This is a factor used for decreasing lambda when necessary. It also influences the rate at which 
the algorithm converges. 

Min Iterations 
This sets the minimum number of iterations that the nonlinear regression algorithm must run 
before it can be terminated. Sometimes, poor starting values make the algorithm think it is 
finished when it is not. By setting this value to a reasonable number such as 6 or 8, the algorithm 
is forced to continue even when it thinks it should finish. This reduces the chance of early 
termination. 

Differential Evolution Options 
This set of options controls the differential evolution search algorithm.  

Max Generations 
Specify the maximum number of iterations used by the differential evolution algorithm. Usually, 
a value between 100 and 200 is adequate.  

Individuals 
This is the population size (number of trial points) used by the differential evolution algorithm at 
each iteration. A value between 15 and 25 is recommended. More points may dramatically 
increase the running time. Fewer points may not allow the algorithm to converge. 
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Inheritance 
This value controls the amount of movement of each individual toward the current best. Usually, 
a value between 0.5 and 1.0 is used. We suggest 0.85. A larger value accelerates movement 
toward the current best, but reduces the chance of locating the global maximum. A smaller value 
improves the chances of finding the global, rather than a local, solution, but increases the number 
of iterations until convergence. 

Mutation Rate 
This value controls the mutation rate of the differential evolution algorithm. This is the 
probability that a random adjustment is made of a coefficient—which is a mutation in the 
algorithm. Values between 0 and 1 are allowed. A value of 0.3 is recommended. 

Grid Range 
This is the initial range about each of the initial coefficients that is sampled during the differential 
evolution algorithm. The algorithm is not limited to this range, but specifying a value large 
enough to include the solution will increase the probability of convergence. 

Min Percent 
This option stops the differential evolution iterations when the objective function, defined in 
terms of absolute percent error, is lower than this amount. 

Min Amount 
This option stops the differential evolution iterations when the objective function, defined in 
terms of absolute error, is lower than this amount. 

Seed 
This option specifies a random seed for the random number generator used by the differential 
evolution algorithm. Possible values are all integers between 1 and 32000. If you want to obtain 
the same results, use the same seed value. If you want to let the program select a random seed 
based on the time-of-day, enter ‘RANDOM SEED’. 

‘Min Start Max’ Default Options 

Default ‘Min Start Max’ for Type = (Amounts, Discrete, and Rate) 
Enter the default values to be used for the 'Min Start Max' settings when the word 'Defaults' is 
entered for that option. A separate set of defaults is required for each variable type. Suggested 
values are: 

(A)mount:  '0.001 1 B' 

(D)iscrete:  '0 1 5' 

(R)ate:  '-5  0  5'. 
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Reports Tab 
The following options control which reports are displayed.  

Specify Reports 

Run Summary Report - Exception Report 
Each of these options specifies whether the indicated report is displayed. 

Report Options 

Exception Percentage 
Only rows whose percent prediction error is greater than this will be displayed in the Exception 
Report. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision. 

Ratio and Sales Decimals 
These options control how many decimal places are displayed on the Ratio and Sales values that 
are shown on the reports. 

Labels 
These options control the labels that are displayed for each factor. You might want to change 
them for specific studies. Note that the names are completely arbitrary—they are only used to 
make the output more readable. 

Storage Tab 
The predicted values, residuals, and prediction ratios may be stored on the current database for 
further analysis. This group of options lets you designate which statistics (if any) should be stored 
and which variables should receive these statistics. The selected statistics are automatically stored 
to the current database while the program is executing. 

Note that the variables you specify must already have been named on the current database. 

Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Storage Variables 

Store Predicted Values in Variable 
The predicted values (Yhat) are stored in this variable, if a variable is selected. 

Store Residuals in Variable 
The residuals (Y-Yhat) are stored in this variable, if a variable is selected.  
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Store Ratios in Variable 
The sales ratios Y/Yhat are stored in this variable.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure.  

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Hybrid Appraisal Model 
This section presents an example of how to estimate a prediction equation from the sales price 
data stored in the ASSESS database. In this example, a hybrid model of the form 

Overall(Land+Building+Garage) 

will be estimated. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Hybrid Appraisal Models window. 

1 Open the ASSESS dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Assess.s0. 
• Click Open. 

2 Open the Hybrid Appraisal Models window. 
• On the menus, select Analysis, then Mass Appraisal, then Hybrid Appraisal Models. 

The Hybrid Appraisal Models procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  
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3 Specify the model. 
• On the Hybrid Appraisal Models window, select the Variables 1 tab.  
• Set the Estimation Method to Minimize the AVERAGE |PERCENT error|. 
• Set the Y - Dependent Variable (Sales Price) box to Sale.  

4 Specify the overall factor. 
• On the first line, set Factor to Ov, Variable to Date, and Type to R.  
• On the next line, set Factor to Ov, Variable to Neighborhood(5), and Type to D. The 

“5” in parentheses will cause indicator variables to be generated for all neighborhoods 
except neighborhood 5. 

5 Specify the building factor. 
• On the next line, set Factor to B1, Variable to GradeLinear, and Type to R.  
• On the next line, set Factor to B1, Variable to SqFt1stFlr-Baths, and Type to A.  

6 Specify the land factor. 
• On the next line, set Factor to Ln, Variable to LotAdjusted, and Type to R.  
• On the next line, set Factor to Ln, Variable to LotSize, and Type to A.  

7 Specify the garage factor. 
• On the next line, set Factor to B2, Variable to GarageSqFt, and Type to A.  

8 Specify the options. 
• Select the Options tab. 
• Set the Max Generations to 50. 
• Set the Min Percent to 10. 
• Set the Seed to 12346. Note that normally, you would set this to RANDOM SEED. 

9 Specify the reports. 
• Select the Reports tab. 
• Check all reports. 
• Set the Exception Percentage to 25. 

10 Specify the labels. 
• Select the Reports tab. 
• Set the Ov label to Overall. 
• Set the Ln  label to Land. 
• Set the B1 label to Building. 
• Set the B2 label to Garage. 

11 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Run Summary Report 
 

Item Value 
Model Sale=Overall(Land+Building+Garage) 
Estimation Method Average |Percent Error| (AAPE) 
Final Value of AAPE 11.77 
R-Squared (from NonLinReg) 0.8394111 
Random Number Seed -12346 
 
Number of Variables Used 10 
Number of Parameters in Model 10 
Number of Rows Used 76 
Number of N.R. Iterations 10 
Number of D.E. Iterations 50 

 

This report displays summary information about the analysis such as the model that was fit, the 
number of rows and variables, the number of iterations, and the random number seed. 

Model 
This shows the model that was estimated. It gives you a quick overview. 

Estimation Method 
This is the estimation method that was used. 

Final Value of AAPE 
This shows the final (minimum) value of the objective function. 

R-Squared (from NonLinReg) 
This is the R-Squared that was achieved by the nonlinear regression routine. There is no direct R-
Squared defined for nonlinear regression. This is a pseudo R-Squared constructed to approximate 
the usual R-Squared value used in multiple regression. We use the following generalization of the 
usual R-Squared formula:  

R-Squared = (ModelSS - MeanSS)/(TotalSS-MeanSS) 

where 

MeanSS is the sum of squares due to the mean, ModelSS is the sum of squares due to the model, 
and TotalSS is the total (uncorrected) sum of squares of Y (the dependent variable). 

This version of R-Squared tells you how well the model performs after removing the influence of 
the mean of Y. Since many nonlinear models do not explicitly include a parameter for the mean 
of Y, this R-Squared may be negative (in which case we set it to zero) or difficult to interpret. 
However, if you think of it as a direct extension of the R-Squared that you use in multiple 
regression, it will serve well for comparative purposes.  

Random Number Seed 
The random number seed is shown so that if you want to duplicate these results, you can be 
entering this random number seed. 

Number of Variables Used 
This is the number of variables from the database that were used in the analysis. 

Number of Parameters in Model 
This is the number of parameters that were estimated by the model. 
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Number of Rows Used 
This is the number of rows from the database that were used in the analysis. 

Number of N.R. Iterations 
This is the number of iterations used by the nonlinear regression procedure. 

Number of D.E. Iterations 
This is the number of iterations used by the differential evolution algorithm. 

Nonlinear Regression Iteration Section 
 

Itn Sum of 
No. Squared Errors Message 
0 87346.32  
1 20104.99  
2 5566.038  
3 5076.756  
4 5044.927  
5 5044.661  
6 5044.651  
7 5044.647  
8 5044.647  
Convergence criterion met. 
 

This report displays the sum of squared errors which is the objective function of the nonlinear 
regression routine. It allows you to observe the algorithm’s progress toward the solution. If you 
do not see the message ‘Convergence criterion met’ at the bottom, it means that the algorithm did 
not terminate normally and you should take corrective action—which usually means that you 
should increase the maximum number of iterations or provide different starting values. 

Differential Evolution Iteration Section 
 

Itn Objective Function 
No. (AAPE) 
0 12.08115 
1 12.08115 
2 12.08115 
3 12.08115 
4 12.08115 
5 12.08115 
10 12.08115 
15 12.08115 
20 11.93821 
25 11.92409 
30 11.80285 
35 11.78862 
40 11.77882 
45 11.77437 
50 11.76717 
 
 

This report displays the value of the objective function that is being minimum by the differential 
evolution algorithm. In this example, it is the average absolute percent error between the actual 
and predicted sales price. This allows you to see the progress of the algorithm towards a solution. 
If it looks like the objective function is still shrinking, you may want to rerun the procedure with 
a larger value for the Max Generations parameter. 
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Model Specification and Estimation Section 
 

Parm Variable Variable Parameter Starting Parameter 
Name Type Name Estimate Value Bounds 
B1 Overall Rate Date 4.662152E-02 0 -5 to 5 
B2 Overall Binary Neighborhood=4 0.9451685 1 0 to 5 
B3 Overall Binary Neighborhood=6 1.006669 1 0 to 5 
B4 Building Rate GradeLinear 1.776111 0 -5 to 5 
B5 Building Amount SqFt1stFlr 2.225528 1 0.001 to B 
B6 Building Amount SqFtOthFlr 1.634559 1 0.001 to B 
B7 Building Amount Baths 5.391271 1 0.001 to B 
B8 Land Rate LotAdjusted 3.064366 0 -5 to 5 
B9 Land Amount LotSize 0.4990667 1 0.001 to B 
B10 Garage Amount GarageSqFt 2.325238 1 0.001 to B 

 

This report displays the details of the model that was fit. 

Parm Name 
The name of the parameter shown on this line. 

Variable Type 
This shows the type of the variable as well is the factor that it belongs to. 

Variable Name 
The name of the variable on the database. Note that for discrete variables that were expanded into 
a set of binary indicator variables, a separate line is given for each generated variable. The value 
indicated by this binary variable is shown after an equals sign. For example, a binary variable was 
generated that is one when the Neighborhood value is ‘4’ and zero otherwise. This variable is 
called ‘Neighborhood=4’. 

Parameter Estimate 
This is the estimated value of the parameter in the hybrid model. Note that these values should 
not be analyzed separately, but together as a group. If you change the model in any way (such as 
including other variables), these values will change—perhaps substantially! 

If you are going to use these values to predict sales prices, you should use the double-precision 
version of these numbers. These are obtained by setting the Precision value to ‘Double’ in the 
Report tab. 

Starting Value 
These are the values used by the nonlinear regression algorithm in the first iteration. Since the 
differential evolution algorithm uses the results of a nonlinear regression as its starting values, 
these values have little influence on the results of the differential evolution algorithm. 

Parameter Bounds 
These are the limits that were provided for the parameter estimates. If you notice an estimate that 
is equal to one of its bounds, you should analyze the situation carefully to determine if bound 
should be relaxed to allow the parameter a wider range. 
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Model 
 

Factor Detail 
Overall Date^(B1) *(B2)^(Neighborhood=4) *(B3)^(Neighborhood=6) 
Land LotAdjusted^(B8) *((B9) *LotSize) 
Building GradeLinear^(B4) *((B5) *SqFt1stFlr +(B6) *SqFtOthFlr +(B7) *Baths) 
Garage (B10) *GarageSqFt 

   

This report displays the variables that make up each factor. The parameters that will be estimated 
are B1, B2, … 

Factor 
The name of the factor in the hybrid equation. 

Detail 
The details of the construction of the factor. 

Estimated Model 
 

 Estimated Model 
Date^(4.66215216533015E-02) *(0.945168518786127)^(Neighborhood=4)  
*(1.00666919375535)^(Neighborhood=6)*((LotAdjusted^(3.0643663225902) *((0.499066748801895) 
*LotSize))+(GradeLinear^(1.77611087858318) *((2.22552851585402) *SqFt1stFlr +(1.63455938516463) *SqFtOthFlr  
+(5.39127079611148) *Baths))+((2.32523766293606) *GarageSqFt)) 
 

   

This is the model with the parameter names replaced with the parameter estimates. This 
expression may be copied onto the Clipboard and pasted into the transformation section of the 
database to allow you to predict other observations. Note that this expression is always provided 
in double precision. 

Assessment Ratio Section 
  

Statistic Actual Predicted  Percent 
Name Sale Sale Ratio Error 
Number of Cases 76 76 76 76 
Mean 55.9 55.1 1.01 11.77 
 
Minimum 22.5 29.3 0.77 0.00 
Lower Quartile 41.7 42.0 0.90 2.87 
Median 51.9 49.4 0.99 9.43 
Upper Quartile 64.3 62.6 1.05 16.77 
Maximum 117.5 130.4 1.58 57.73 
 
Range 95.0 101.1 0.80 57.72 
I. Q. Range 22.6 20.6 0.15 13.90 
Variance 418.8 379.8 0.03 150.84 
Std. Deviation 20.5 19.5 0.17 12.28 
Ave |Dev. from Median| 14.7 13.5 0.12 8.39 
 
Coef. of Variation x 100 36.62 35.37 16.92 104.37 
Coef. of Dispersion x 100 28.38 27.31 11.87 88.96 
Weighted Mean   0.99 
Price Related Differential   1.02 
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This report provides information that assessors have found useful in analyzing the performance of 
the estimated model. The four columns of the report represent the actual sales price, the predicted 
sales, and the ratio of the two (predicted over actual), and the percent error in the predicted. Most 
of the statistics are defined in the Descriptive Statistics procedure. Uncommon terms are defined 
next. 

Ave |Dev - Median| 
The average of the absolute values of the deviations of the variable from its median. 

Coef. of Dispersion (COD) 
This is 100 times the average absolute deviation about the median divided by the median.  

IAOO standards recommend that for single-family residences, COD’s of the ratios should be 15.0 
or less. 

Coef. of Variation (COV) 
This is 100 times the standard deviation divided by the mean.  

Weighted Mean 
The weight ratio mean is the mean of the predicted values divided by the mean of the actual 
values. 

Price Related Differential (PRD) 
The price related differential is the mean ratio divided by the weighted mean ratio. It provides an 
a measure of assessment regressivity or progressivity. A PRD greater than 1.0 indicates that the 
more expensive properties are underappraised. A PRD less than one indicates that the more 
expensive properties are overappraised. Experience indicates that this value is normal when it is 
in the range 0.98 to 1.03.  

Predicted Values of New Rows Section 
 

Row Predicted 
No. Sale 
77 86.3 
78 44.6 
79 82.4 

  

The section shows the predicted sales price for rows in which values for all variables except the sales 
price are given. 

Using the Model to Predict for New Parcels 
You can use your model to predict sales for new values of the model variables. Here is how. Add 
new rows to the bottom of your database containing the values of the independent variables that 
you want to create predictions from. Leave the sales price variable blank. When the program 
analyzes your data, it will skip these rows during the estimation phase, but it will generate 
predicted values for all rows with a complete set of independent variables, regardless of whether 
the sales price variable is available. 
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Exception Report Section 
 

Row Actual Predicted Actual-Predicted Predicted/Actual Percent 
No. Sale Sale (Residual) (Ratio) |Error| 
3 22.5 29.6 -7.1 1.32 31.62 
23 26.0 38.7 -12.7 1.49 48.89 
26 78.5 106.2 -27.7 1.35 35.29 
47 33.0 52.1 -19.1 1.58 57.73 
53 48.0 67.8 -19.8 1.41 41.35 
64 36.0 50.7 -14.7 1.41 40.81 
75 30.0 44.6 -14.6 1.49 48.60 

 

This report shows those rows that had a large percentage prediction error. These are the parcels that 
were poorly predicted by the model. You should analyze them to determine is there is some 
explanation as to why they were not fit well. You may find that the explanation is as simple as an 
error in data entry. It may be worth while to rerun the analysis without these rows, especially if there 
is a reasonable explanation as to why they did not fit the pattern shown by most of the data. 
Note that the actual cutoff value for inclusion on this report is set in the Exception Percentage box 
under the Reports tab. 

Predicted Values and Residuals Section 
 

Row Actual Predicted Actual-Predicted Predicted/Actual Percent 
No. Sale Sale (Residual) (Ratio) |Error| 
1 26.0 30.5 -4.5 1.17 17.38 
2 53.0 43.8 9.2 0.83 17.31 
3 22.5 29.6 -7.1 1.32 31.62 
4 85.0 74.3 10.7 0.87 12.57 
5 48.0 44.2 3.8 0.92 7.87 
. . . . . . 
. . . . . . 
. . . . . . 
 

This reports shows the actual and predicted sales as well as various measures of there disagreement. 
Assessors commonly study the Ratio and the Percent Error for individual predictions to determine 
the goodness of a mass appraisal. 
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Categorical variables 
multiple regression, 305-3, 305-

87 
Cauchy distribution 

simulation, 122-5 
Cbar 

logistic regression, 320-15 
C-chart, 251-2 
Cell edit box, 103-10 
Cell reference, 103-10 
Censor variable 

parametric survival regression, 
566-4 

Censored 
Cox regression, 565-17 
Kaplan-Meier, 555-15 
Weibull fitting, 550-11 

Censored regression, 566-1 
Centering 

Cox regression, 565-19 
Central moments 

descriptive statistics, 200-11 
Central-composite designs, 264-1 
Centroid 

double dendrograms, 450-2 
hierarchical clustering, 445-3 

Charts 
pareto, 253-1 
variables, 250-1 

Checklist 
one sample tests, 205-21 
one-way ANOVA, 210-26 
two-sample tests, 206-25 

Chen’s method 
two proportions, 515-20 

Chi 
loglinear models, 530-20 

Chi-square 
cross tabulation, 501-10 
frequency tables, 500-11 
Poisson regression, 325-26 

Chi-square distribution 
probablility calculator, 135-2 

Chi-square test 
cross tabulation, 501-1 
two proportions, 515-6 

Chi-square test example, 16-1 
CHOWLIU73 dataset, 235-9, 235-15 
Circular correlation, 230-12 
Circular data analysis, 230-1 
Circular histogram, 230-17 
Circular histograms, 230-1 
Circular statistics, 230-1 
Circular uniform distribution, 230-3 
CIRCULAR1 dataset, 230-22 
Circularity 

repeated measures, 214-3, 214-23 
Clear, 103-5 
Cluster analysis 

double dendrograms, 450-1 
K-means, 446-1 

Cluster centers 
K-means clustering, 446-1 

Cluster cutoff 
hierarchical clustering, 445-8 

Cluster means 
K-means clustering, 446-8 

Cluster medoids section 
fuzzy clustering, 448-9 
medoid partitioning, 447-14 

Cluster randomization 
clustered binary diagnostic, 538-1 

Cluster variables 
K-means clustering, 446-3 

Clustering 
centroid, 445-7 
complete linkage, 445-7 
flexible strategy, 445-7 
fuzzy, 448-1 
group average, 445-7 
hierarchical, 445-1 
median, 445-7 
medoid, 447-1 
regression, 449-1 
simple average, 445-7 
single linkage, 445-7 
Ward’s minimum variance, 445-7 

Cochran’s Q test 
meta analysis of hazard ratios, 

458-4 
meta-analysis of correlated 

proportions, 457-4 
meta-analysis of means, 455-3 
meta-analysis of proportions, 

456-4 
Cochran’s test 

two proportions, 515-7 
Cochrane-Orcutt procedure, 306-1 
COD 

appraisal ratios, 485-8 
descriptive statistics, 200-20 
hybrid appraisal models, 487-17 
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Code cross-reference, 310-7 
Coefficient alpha 

item analysis, 505-2 
Coefficient of dispersion 

appraisal ratios, 485-8 
descriptive statistics, 200-18 
hybrid appraisal models, 487-17 

Coefficient of variation 
descriptive statistics, 200-18 
linear regression, 300-38 
multiple regression, 305-45 

Coefficients 
regression, 305-47 
stepwise regression, 311-8 

Collate transformation, 119-12 
COLLETT157 dataset, 565-55 
COLLETT266 dataset, 320-73 
COLLETT5 dataset, 555-42 
Collinearity 

MANOVA, 415-5 
Color 

mixer, 180-2 
model, 180-2 
wheel, 180-3 

Color selection window, 180-1 
Column widths, 103-15 
Communality 

factor analysis, 420-3, 420-12, 
420-16 

principal components analysis, 
425-16 

Communality iterations 
factor analysis, 420-8 

Comparables 
sales price, 486-1 

COMPARABLES dataset, 486-10 
Competing risks 

cumulative incidence, 560-1 
Complete linkage 

double dendrograms, 450-2 
hierarchical clustering, 445-3 

Compound symmetry 
repeated measures, 214-3 

CONCENTRATION dataset, 240-21 
Concordance 

Kendall’s coefficient, 211-15 
Condition number 

multiple regression, 305-58 
PC regression, 340-13 
ridge regression, 335-17 

Conditional tests 
two proportions, 515-5 

Confidence band 
linear regression, 300-6, 300-33, 

300-60 
Confidence coefficient 

multiple regression, 305-32 
T2, 410-5 

Confidence interval 
descriptive statistics, 200-13 
multiple regression, 305-14 

Poisson regression, 325-26 
Confidence intervals 

Cox regression, 565-11 
curve fitting, 350-4 
linear regression, 300-6 
T2, 405-9, 410-9 
two proportions, 515-18 

Confidence intervals of odds ratio 
two proportions, 515-23 

Confidence intervals of ratio 
two proportions, 515-21 

Confidence limits, 200-2 
linear regression, 300-33 
Nelson-Aalen hazard, 550-4 

Confounding 
two level designs, 260-2 

Confounding size, 213-3 
Constant distribution 

simulation, 122-6 
Constraint section 

linear programming, 480-5 
Constraints 

linear programming, 480-1 
Contains transformation, 119-17 
Contaminated normal simulation, 

122-21 
Continuity correction 

two proportions, 515-7 
Contour plots, 140-11, 172-1 

response surface regression, 330-
19 

Contrast type 
multiple regression, 305-29 
Poisson regression, 325-9 

Contrast variables 
multiple regression, 305-4 

Control charts 
attribute, 251-1 
formulas, 250-5 
Xbar R, 250-1 

Control limits 
Xbar R, 250-2 

Cook’s D 
linear regression, 300-20, 300-62, 

300-63, 300-65, 300-66 
multiple regression, 305-20, 305-

64 
Cook’s distance 

logistic regression, 320-15 
Cophenetic correlation 

hierarchical clustering, 445-14 
Cophenetic correlation coefficient, 

445-4 
Copy, 103-4 
Copy output, 106-3 
Copying data, 7-2 
COR 

correspondence analysis, 430-14 
Correlation, 300-1 

canonical, 400-1 
confidence limits, 300-12 

cross, 473-1 
linear regression, 300-2, 300-11, 

300-45 
Pearson, 300-45 
Spearman, 300-45 
Spearman rank, 401-1 
Spearman’s rank, 300-12 

Correlation coefficient 
linear regression, 300-9 

Correlation coefficient distribution 
probablility calculator, 135-3 

Correlation matrices 
factor analysis, 420-5 
principal components analysis, 

425-8 
Correlation matrix, 401-1 
Correlation matrix report 

multiple regression, 305-46 
Correlations 

medoid partitioning, 447-10 
partial, 401-3 
principal components analysis, 

425-17 
Correlogram 

autocorrelation, 472-1 
CORRES1 dataset, 430-6, 430-10, 

430-16 
Correspondence analysis, 430-1 

eigenvalues, 430-12 
CorrProb transformation, 119-8 
CorrValue transformation, 119-8 
Cos transformation, 119-17 
Cosh transformation, 119-17 
Cosine transformation, 119-17 
Cost benefit analysis 

ROC curves, 545-22 
Count tables, 500-1 
Count transformation, 119-15 
Covariance 

analysis of, 212-25 
multiple regression, 305-86 

Covariance matrices, 402-1 
Covariance matrix 

repeated measures, 214-3 
Covariance pattern models 

mixed models, 220-5 
Covariates 

GLM, 212-3 
mixed models, 220-9 
response surface regression, 330-

5 
CovRatio 

linear regression, 300-21, 300-63 
multiple regression, 305-20, 305-

64 
Cox model 

Cox regression, 565-1 
Cox proportional hazards regression 

model, 565-1 
Cox regression, 565-1 
Cox test 
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circular data, 230-9 
Cox-Mantel logrank test 

Kaplan-Meier, 555-41 
COXREG dataset, 565-51 
COXSNELL dataset, 123-23 
Cox-Snell residual 

parametric survival regression, 
566-19 

Cox-Snell residuals 
Cox regression, 565-13, 565-39 
nondetects regression, 345-13 

Cp 
all possible regressions, 312-8 
multiple regression, 305-55 
Xbar R, 250-12 

Cp variable plot 
all possible regressions, 312-10 

Cpk 
Xbar R, 250-12, 250-31 

Cramer’s V 
cross tabulation, 501-14 

Creating a database, 2-1 
Creating a new database 

tutorial, 101-2 
Creating data 

simulation, 122-1 
Cronbach’s alpha 

item analysis, 505-2, 505-6 
Cronbachs alpha 

correlation matrix, 401-6 
CROSS dataset, 220-101 
Cross tabulation, 501-1 

summarized data, 16-1 
Cross-correlations, 473-1 
Crossed factors 

design generator, 268-1 
Crossover analysis, 220-1 
Cross-over analysis using t-tests, 

235-1 
Crossover data example 

mixed models, 220-101 
Crosstabs, 501-1 
CsProb transformation, 119-9 
CsValue transformation, 119-9 
CTR 

correspondence analysis, 430-14 
Cubic fit 

curve fitting, 351-2 
Cubic terms 

response surface regression, 330-
7 

Cum transformation, 119-7 
Cumulative hazard 

Cox regression, 565-2 
Cumulative hazard function 

Kaplan-Meier, 555-2 
Weibull fitting, 550-2 

Cumulative incidence analysis, 560-
1 

Cumulative survival 
Cox regression, 565-2 

Curve equivalence 
curve fitting, 351-16 

Curve fitting, 351-1 
introduction, 350-1 

Curve inequality test 
curve fitting, 351-32 

Custom model 
Cox regression, 565-26 
multiple regression, 305-34 

CUSUM chart, 250-4, 250-8 
CUSUM Charts, 250-37 
Cut, 103-4 
Cut output, 106-3 
Cycle-input variable 

decomposition forecasting, 469-5 

D 
D’Agostino kurtosis 

descriptive statistics, 200-24 
D’Agostino kurtosis test 

linear regression, 300-49 
D’Agostino omnibus 

descriptive statistics, 200-25 
D’Agostino omnibus test 

linear regression, 300-49 
D’Agostino skewness 

descriptive statistics, 200-23 
D’Agostino skewness test 

linear regression, 300-49 
DAT exporting, 116-1 
Data 

entering, 2-1 
estimating missing, 118-1 
importing, 12-1 
numeric, 102-1 
printing, 2-7, 103-3, 117-1 
saving, 2-6 
simulation, 15-1 
simulation of, 122-1 
text, 102-1 

Data features, 200-1 
Data imputation, 118-1 
Data matching 

caliper, 123-4 
caliper radius, 123-5 
distance calculation method, 123-

3 
forced match variable, 123-4 
full (variable), 123-3 
greedy, 123-1, 123-2 
optimal, 123-1, 123-2 
propensity score, 123-2 
standardized difference, 123-15 

Data orientation 
bar charts, 141-2 

Data report, 103-6, 117-1 
Data screening 

T2 alpha, 118-3 

Data screening, 118-1 
Data screening, 200-3 
Data simulator, 122-1 
Data stratification, 124-1 
Data transformation, 3-1 
Data type, 102-10 
Data window, 1-4, 7-1 
Database, 102-1 

clearing, 2-9 
creating, 2-1, 101-2 
Excel compatible, 102-1 
exporting, 115-1, 116-1 
introduction, 101-1 
limits, 102-1 
loading, 2-1, 2-10, 7-1 
opening, 101-3 
printing, 2-7 
S0, 102-1 
s0 and s1 files, 2-6 
S0-type, 2-9 
S0Z (zipped), 102-1 
S0Z-type, 2-9 
saving, 101-2 
size, 102-1 
sorting, 103-6 
subsets, 14-1 

Database/spreadsheet comparison, 
102-4 

Databases 
merging two, 104-1 

Dataset 
2BY2, 320-62 
ANCOVA, 212-25, 305-86 
ARSENIC, 240-16 
ASCII, 12-1 
ASSESS, 487-11 
AUC, 390-2, 390-6 
AUC1, 390-2 
BBALL, 445-5, 445-12, 446-2, 

446-6, 447-6, 447-12 
BEAN, 220-79, 220-82 
BETA, 551-2, 551-11 
BINCLUST, 538-3, 538-7 
BMT, 555-43 
BOX320, 213-6 
BOX402, 213-12 
BRAIN WEIGHT, 2-2 
CHOWLIU73, 235-9, 235-15 
CIRCULAR1, 230-22 
COLLETT157, 565-55 
COLLETT266, 320-73 
COLLETT5, 555-42 
COMPARABLES, 486-10 
CONCENTRATION, 240-21 
CORRES1, 430-6, 430-10, 430-

16 
COXREG, 565-51 
COXSNELL, 123-23 
CROSS, 220-101 
DCP, 345-2, 345-9 
DIOXIN, 240-2, 240-11 
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DOPT_MIXED, 267-22 
DOPT3, 267-20 
DRUGSTUDY, 501-19 
DS476, 315-2, 315-9, 385-2, 385-

9 
EXAMS, 450-12 
EXERCISE, 214-6, 214-16 
FANFAILURE, 550-49 
FISH, 220-90 
FISHER, 143-14, 144-15, 150-8, 

151-13, 152-12, 153-8, 154-8, 
170-2, 170-9, 173-7, 402-2, 
402-5, 440-4, 440-10, 440-20, 
440-22 

FNREG1, 360-15, 380-7 
FNREG2, 365-11 
FNREG3, 163-4, 370-6, 375-8 
FNREG4, 371-6, 376-8 
FNREG5, 351-30 
FRUIT, 141-1, 141-17 
FUZZY, 448-3, 448-8 
HAIR, 220-103 
HEART, 212-23 
HOUSING, 306-4, 306-10 
INTEL, 465-7, 466-9, 471-7, 

473-5 
IQ, 305-27, 305-43, 305-72, 305-

76, 305-79 
ITEM, 505-2, 505-5, 506-2, 506-

6 
KLEIN6, 555-45 
KOCH36, 325-7, 325-21 
LACHIN91, 320-71 
LATINSQR, 212-22 
LEAD, 240-19 
LEE91, 570-4, 570-15 
LEUKEMIA, 320-18, 320-34, 

320-57 
LINREG1, 300-24, 300-37 
LOGLIN1, 530-7, 530-11 
LP, 480-2, 480-4 
LUNGCANCER, 565-15, 565-

31, 565-48 
MAMMALS, 3-1, 4-1, 10-1 
MAMMALS1, 5-1, 6-1 
MANOVA1, 410-3, 410-6, 415-

5, 415-10 
MARUBINI, 560-3, 560-9 
MDS2, 435-6, 435-10 
MDS2, 435-15 
METACPROP, 457-6, 457-14 
METAHR, 458-6, 458-12 
MLCO2, 470-11 
MOTORS, 566-3, 566-11 
NC CRIMINAL, 320-64, 320-68 
NONDETECTS, 240-4 
ODOR, 330-3, 330-11 
PAIN, 220-51 
PCA2, 420-5, 420-11, 425-9, 

425-15 
PCA2, 118-4 

PET, 538-11 
PIE, 142-6 
PLANT, 212-27 
POISREG, 325-37 
POLITIC, 13-1, 14-1 
PREPOST, 305-87 
PROPENSITY, 123-5, 123-12, 

124-4 
QATEST, 250-14, 250-27, 250-

33, 250-35, 250-37, 251-3, 
251-11, 253-2, 253-7, 253-9 

RCBD, 220-94 
REACTION, 214-29 
REACTION, 214-6 
READOUT105, 550-47 
REGCLUS, 449-2, 449-5 
RESALE, 117-4, 151-14, 155-1, 

155-7, 201-1, 201-11, 201-12, 
201-14, 201-15, 201-17, 201-
19, 201-21, 305-81, 500-1, 
500-9, 500-10, 500-12, 500-
14, 501-1, 501-8, 501-11, 
501-17 

RIDGEREG, 335-7, 335-15, 340-
3, 340-11 

RMSF, 545-3 
RNDBLOCK, 211-4, 211-11, 

212-3, 212-12 
ROC, 545-19 
RRSTUDY, 254-1, 254-10 
RRSTUDY1, 254-24 
SALES, 467-9, 469-9 
SALESRATIO, 485-1, 485-6, 

486-4 
SAMPLE, 101-3, 161-20, 162-5, 

171-9, 172-7, 200-4, 200-10, 
205-12, 206-12, 210-16, 310-
3, 310-6, 311-3, 311-6, 312-2, 
312-6, 400-8, 401-2, 401-5, 
585-8 

SERIESA, 470-8, 474-7 
SMOKING, 525-2, 525-5 
SUNSPOT, 468-9, 472-7 
SURVIVAL, 555-14, 555-37, 

575-1, 575-5 
SUTTON 22, 456-6, 456-14 
SUTTON30, 455-6, 455-13 
T2, 405-3, 405-5, 405-10 
TIMECALC, 580-3 
TUTOR, 220-98 
TWOSAMPLE, 220-69, 220-72 
TWOSAMPLE2, 220-70, 220-73 
TWOSAMPLECOV, 220-76 
WEIBULL, 550-12, 550-27, 550-

44, 552-3, 552-12, 555-27 
WEIBULL2, 144-17 
WEIGHTLOSS, 220-85 
WESTGARD, 252-9 
ZHOU 175, 545-33 
ZINC, 345-15 

Datasheet, 101-1 

Datasheets, 102-1 
Date formats, 102-8 
Date function transformations, 119-6 
Day format, 102-8 
Day transformation, 119-6 
DB, 115-1 
Dbase importing, 115-1 
DBF exporting, 116-1 
DBF importing, 115-1 
DCP dataset, 345-2, 345-9 
Death density 

life-table analysis, 570-3 
Decision variables 

linear programming, 480-1 
Decomposition forecasting, 469-1 
Default template, 105-1 
Defects/defectives variable, 251-4 
D-efficiency 

D-optimal designs, 267-12 
Degrees of freedom 

factor analysis, 420-14 
two-sample t-test, 206-13 

Delta 
cluster goodness-of-fit, 445-4 
loglinear models, 530-8 
Mantel-Haenszel test, 525-4 

Dendrogram 
hierarchical clustering, 445-15 

Dendrograms, 445-1 
double, 450-1, 450-3 

Density trace 
histograms, 143-1 
histograms – comparative, 151-2 
violin plot, 154-1 

Dependent variable 
linear regression, 300-25 
multiple regression, 305-1 
Poisson regression, 325-8 

Depth 
3D scatter plot, 170-8 
3D surface plot, 171-7 
bar charts, 141-13 

Derivatives 
Weibull fitting, 550-16 

Descriptive statistics, 4-1, 200-1 
additive constant, 200-5 
Anderson-Darling test, 200-22 
central moments, 200-11 
COD, 200-20 
coefficient of dispersion, 200-18 
coefficient of variation, 200-18 
confidence interval, 200-13 
D’Agostino kurtosis, 200-24 
D’Agostino omnibus, 200-25 
D’Agostino skewness, 200-23 
dispersion, 200-16 
EDF, 200-7 
Fisher's g1, 200-18 
Fisher's g2, 200-18 
geometric mean, 200-14 
harmonic mean, 200-14 
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Histogram, 200-25 
interquartile range, 200-17 
IQR, 200-17 
Kolmogorov-Smirnov, 200-23 
kurtosis, 200-18 
Lilliefors' critical values, 200-23 
MAD, 200-20 
Martinez-Iglewicz, 200-22 
mean, 200-13 
mean absolute deviation, 200-20 
mean deviation, 200-20 
mean-deviation, 200-20 
median, 200-14 
mode, 200-15 
moment, 200-11 
Normal probability plot, 200-26 
normality, 200-21 
normality tests, 200-21 
percentile type, 200-6 
Probability plot, 200-26 
quartiles, 200-21 
range, 200-17 
Shapiro-Wilk test, 200-22 
skewness, 200-17 
Skewness test, 200-24 
standard deviation, 200-16 
standard error, 200-13 
Stem-leaf plot, 200-27 
trim-mean, 200-19 
trimmed, 200-19 
trim-std dev, 200-19 
unbiased Std Dev, 200-17 
variance, 200-15 

Descriptive statistics report 
multiple regression, 305-45 

Descriptive tables, 201-1 
Design generator, 268-1 
Designs 

analysis of, 213-1 
Box-Behnken, 264-1 
central-composite, 264-1 
design generator, 268-1 
factorial, 260-3 
fractional factorial, 261-1 
Plackett-Burman, 265-1 
response surface, 264-1 
screening, 265-1 
Taguchi, 266-1 
two-level factorial, 260-1, 268-1 

Determinant 
D-optimal designs, 267-13 

Determinant analysis 
D-optimal designs, 267-11 

Deviance 
Cox regression, 565-10 
logistic regression, 320-8 
Poisson regression, 325-4, 325-5 

Deviance residuals 
Cox regression, 565-14, 565-40 
logistic regression, 320-13 
Poisson regression, 325-31 

Deviance test 
Poisson regression, 325-3 

DFBETA 
logistic regression, 320-14 

DFBETAS 
linear regression, 300-21, 300-63 
multiple regression, 305-20, 305-

65 
DFCHI2 

logistic regression, 320-15 
DFDEV 

logistic regression, 320-15 
Dffits 

linear regression, 300-63 
DFFITS 

linear regression, 300-20 
multiple regression, 305-19, 305-

64 
Diagnostic test 

1-sample binary diagnostic test, 
535-1 

2-sample binary diagnostic, 537-
1 

paired binary diagnostic, 536-1 
DIF exporting, 116-1 
Differencing 

ARIMA, 471-2 
autocorrelation, 472-2 
Box Jenkins, 470-7 
spectral analysis, 468-4 

Differential evolution 
hybrid appraisal models, 487-2 
Weibull fitting, 550-11 

Digamma 
beta distribution fitting, 551-12 

Dimensions 
multidimensional scaling, 435-4 

DIOXIN dataset, 240-2, 240-11 
Directional test 

meta analysis of hazard ratios, 
458-3 

meta-analysis of correlated 
proportions, 457-4 

meta-analysis of proportions, 
456-4 

Disabling the filter, 121-4 
Discriminant analysis, 440-1 

logistic regression, 320-1 
Discrimination parameter 

item response analysis, 506-8 
Dispersion 

descriptive statistics, 200-16 
Dissimilarities 

medoid partitioning, 447-1 
multidimensional scaling, 435-4 

Distance 
multidimensional scaling, 435-2 

Distance calculation 
medoid partitioning, 447-2 

Distance calculation method 
data matching, 123-3 

Distance method 
fuzzy clustering, 448-5 
hierarchical clustering, 445-8 

Distances 
medoid partitioning, 447-10 

Distinct categories 
R & R, 254-3, 254-19 

Distribution 
circular uniform, 230-3 
Von Mises, 230-5 

Distribution fitting 
Weibull fitting, 550-1 

Distribution statistics, 200-1 
Distributions 

combining, 122-13 
exponential, 550-1 
extreme value, 550-1 
logistic, 550-1 
log-logistic, 550-1 
lognormal, 550-1 
mixing, 122-13 
simulation, 122-1 
Weibull, 550-1 

Dmn-criterion value, 206-23 
DOPT_MIXED dataset, 267-22 
DOPT3 dataset, 267-20 
D-optimal designs, 267-1 
Dose 

probit analysis, 575-1 
Dose-response plot 

probit analysis, 575-9 
Dot plots, 140-4, 150-1 

jittering, 150-1 
Double dendrograms, 450-1 
Double exponential smoothing, 466-

1 
Double-precision accuracy, 101-2, 

102-4 
DRUGSTUDY dataset, 501-19 
DS476 dataset, 315-2, 315-9, 385-2, 

385-9 
Dummy variables 

multiple regression, 305-3 
Duncan’s test 

one-way ANOVA, 210-5 
Dunn’s partition coefficient 

fuzzy clustering, 448-2 
Dunn’s test 

one-way ANOVA, 210-7 
Dunnett’s test 

one-way ANOVA, 210-6 
Duplicates 

D-optimal designs, 267-5 
Durbin-Watson 

linear regression, 300-17 
multiple regression, 305-17 

Durbin-Watson test 
multiple regression, 305-53 
multiple regression with serial 

correlation, 306-3 
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E 
e - using 

Cox regression, 565-4 
E notation, 102-4 
EDF 

descriptive statistics, 200-7 
EDF plot, 240-15 
Edit 

clear, 103-5 
copy, 103-4 
cut, 103-4 
delete, 103-5 
fill, 103-6 
find, 103-6 
insert, 103-5 
paste, 103-4 
undo, 103-4 

Efron ties 
Cox regression, 565-7 

Eigenvalue 
MANOVA, 415-14 
PC regression, 340-13 

Eigenvalues, 425-17 
correspondence analysis, 430-12 
factor analysis, 420-14 
multidimensional scaling, 435-11 
multiple regression, 305-58, 305-

59 
principal components analysis, 

425-12 
ridge regression, 335-17 

Eigenvector 
multiple regression, 305-58, 305-

60 
Eigenvectors 

factor analysis, 420-15 
Elapsed time 

time calculator, 580-1 
Elevation 

3D scatter plot, 170-7 
3D surface plot, 171-6 
bar charts, 141-13 

Ellipse (probability) 
linear regression, 300-8 

Else 
if-then transformation, 120-4 

EM algorithm 
principal components analysis, 

425-5 
Empirical 

ROC curves, 545-2 
Empty cells, 102-5 
Entry date 

time calculator, 580-2 
Entry time 

Cox regression, 565-17 
Kaplan-Meier, 555-15 

Epanechnikov 
Weibull fitting, 550-17 

Epanechnikov kernel 
Kaplan-Meier, 555-8 
Weibull fitting, 550-34 

Epsilon 
Geisser-Greenhouse, 214-4 
repeated measures, 214-20 

Equal slopes 
multiple regression, 305-86 

Equality of covariance matrices, 
402-1 

Equivalence 
2-sample binary diagnostic, 537-

9 
clustered binary diagnostic, 538-8 
cross-over analysis using t-tests, 

235-1 
paired binary diagnostic, 536-7 
ROC curves, 545-30 

Equivalence test 
correlated proportions, 520-8 
two proportions, 515-17 
two-sample, 207-1 

Equivalence tests 
two proportions, 515-38 

Error-bar charts, 140-6, 155-1 
Euclidean distance 

medoid partitioning, 447-2 
Event date 

time calculator, 580-2 
EWMA chart, 250-4, 250-35 
EWMA chart limits, 250-8 
EWMA parameter, 250-19 
Exact test 

two proportions, 515-12 
Exact tests 

two proportions, 515-4, 515-36 
EXAMS dataset, 450-12 
Excel exporting, 116-1 
EXERCISE dataset, 214-6, 214-16 
Exiting NCSS, 101-4 
Exp transformation, 119-7 
Experiment (Run) 

two level designs, 260-2 
Experimental design, 260-1 

two level designs, 260-2 
Experimental error 

two level designs, 260-2 
Experimentwise error rate, 210-3 
Exponential 

curve fitting, 351-10 
using, 565-4 

Exponential distribution 
simulation, 122-6 
Weibull fitting, 550-8 

Exponential model 
curve fitting, 351-6 
growth curves, 360-4 

Exponential regression, 566-1 
Exponential smoothing 

double, 466-1 
horizontal, 465-1 

simple, 465-1 
trend, 466-1 
trend and seasonal, 467-1 

ExpoProb transformation, 119-9 
Export, 103-3 
Export limitations, 116-1 
Exporting data, 116-1 
Exposure 

Poisson regression, 325-1 
Exposure variable 

Poisson regression, 325-12 
ExpoValue transformation, 119-9 
Extract transformation, 119-18 
Extreme value distribution 

Weibull fitting, 550-8 

F 
F distribution 

probablility calculator, 135-3 
simulation, 122-7 

Factor analysis, 420-1 
Factor loadings 

factor analysis, 420-16 
principal components analysis, 

425-2 
Factor rotation 

factor analysis, 420-7 
Factor scaling 

D-optimal designs, 267-2 
Factorial designs 

two level designs, 260-3 
two-level designs, 260-1 

Factors 
how many, 420-3, 425-6 

Failed 
parametric survival regression, 

566-2 
Weibull fitting, 550-11 

Failure 
Cox regression, 565-16 
Kaplan-Meier, 555-15 

Failure distribution 
Weibull fitting, 550-37 

Familywise error rate, 210-3 
FANFAILURE dataset, 550-49 
Farazdaghi and Harris model 

curve fitting, 351-5 
growth curves, 360-3 

Farrington-Manning test 
two proportions, 515-10 

Fast Fourier transform 
spectral analysis, 468-3 

Fast initial restart, 250-9 
Feedback model, 487-1 
Fences 

box plot, 152-6 
File function transformation, 119-15 
Files 
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Access, 115-1 
ASCII, 115-3 
BMDP, 115-1 
creating text, 115-1 
Dbase, 115-1 
Excel, 115-1 
NCSS 5.0, 115-1 
Paradox, 115-1 
SAS, 115-1 
SPSS, 115-1 
text, 115-1 

Fill, 103-6 
Fill functions transformations, 119-6 
Filter, 121-1 

disabling, 10-4 
specifying, 103-7 

Filter statements, 103-7 
Filters, 10-1 
Final Tableau section 

linear programming, 480-6 
Find, 103-6 
Find a procedure, 107-1 
Find in output, 106-4 
Find next in output, 106-4 
FIR, 250-9 
FISH dataset, 220-90 
FISHER dataset, 143-14, 144-15, 

150-8, 151-13, 152-12, 153-8, 
154-8, 170-2, 170-9, 173-7, 402-
2, 402-5, 440-4, 440-10, 440-20, 
440-22 

Fisher information matrix 
beta distribution fitting, 551-14 
gamma distribution fitting, 552-

15 
Weibull fitting, 550-32 

Fisher’s exact test, 501-1, 501-13 
cross tabulation, 501-17 

Fisher’s Z transformation 
linear regression, 300-11 

Fisher's exact test 
cross tabulation, 501-11 

Fisher's g1 
descriptive statistics, 200-18 

Fisher's g2 
descriptive statistics, 200-18 

Fisher's LSD 
one-way ANOVA, 210-6 

Fixed effects 
mixed models, 220-9 

Fixed effects model 
meta-analysis of correlated 

proportions, 457-5 
meta-analysis of hazard ratios, 

458-4 
meta-analysis of means, 455-4 
meta-analysis of proportions, 

456-5 
Fixed effects models 

mixed models, 220-4 
Fixed factor 

ANOVA balanced, 211-5 
GLM, 212-4 
repeated measures, 214-8 

Fixed sigma 
Xbar R, 250-19 

Fixed Xbar 
Xbar R, 250-18 

Fleiss Confidence intervals 
two proportions, 515-24 

Fleming-Harrington tests 
Kaplan-Meier, 555-12 

Flexible strategy 
double dendrograms, 450-3 
hierarchical clustering, 445-4 

Flipping constant, 240-2 
FNREG1 dataset, 360-15, 380-7 
FNREG2 dataset, 365-11 
FNREG3 dataset, 163-4, 370-6, 375-

8 
FNREG4 dataset, 371-6, 376-8 
FNREG5 dataset, 351-30 
Follow-up 

life-table analysis, 570-2 
Forced match variable, 123-4 
Forced points 

D-optimal designs, 267-5 
Forced X’s 

variable selection, 310-4 
Forecast 

ARIMA, 471-11 
automatic ARMA, 474-10 
decomposition forecasting, 469-

10 
exponential smoothing, 465-8, 

466-12, 467-10 
Forecasts 

multiple regression with serial 
correlation, 306-3 

Forest plot 
meta analysis of hazard ratios, 

458-17 
meta-analysis of correlated 

proportions, 457-20 
meta-analysis of means, 455-17 
meta-analysis of proportions, 

456-20 
Format, 102-6 
Forward selection 

Cox regression, 565-23 
logistic regression, 320-17 
Poisson regression, 325-6 

Forward selection with switching 
logistic regression, 320-18 
multiple regression, 305-24 
Poisson regression, 325-7 

Forward variable selection 
multiple regression, 305-23 

Fourier plot 
spectral analysis, 468-10 

Fourier series 
spectral analysis, 468-2 

Fprob transformation, 119-9 
Fraction transformation, 119-7 
Fractional-factorial designs, 261-1 
F-ratio 

linear regression, 300-47 
Freeman-Tukey standardized 

residual 
loglinear models, 530-20 

Frequency 
spectral analysis, 468-1 

Frequency polygon 
histograms, 143-13 

Frequency tables, 500-1 
Frequency variable 

linear regression, 300-25 
Poisson regression, 325-8 

Friedman’s Q statistic, 211-15 
Friedman’s rank test, 211-3 
FRUIT dataset, 141-1, 141-17 
F-test 

multiple regression, 305-50 
FT-SR 

loglinear models, 530-20 
Full matching, 123-3 
Function plots, 160-1 
Functions 

nonlinear regression, 315-4 
Fuzz factor 

filter, 121-2 
in filter comparisons, 103-8 

Fuzzifier 
fuzzy clustering, 448-5 

Fuzzy clustering, 448-1 
FUZZY dataset, 448-3, 448-8 
Fvalue transformation, 119-9 

G 
G statistic test 

Poisson regression, 325-3 
Gamma 

hierarchical clustering, 445-8 
Gamma distribution 

probablility calculator, 135-4 
simulation, 122-7 

Gamma distribution fitting, 552-1 
GammaProb transformation, 119-9 
GammaValue transformation, 119-9 
Gap between bars 

bar charts, 141-14 
Gap between sets of bars 

bar charts, 141-15 
Gart-Nam test 

two proportions, 515-11 
Gehan test 

Kaplan-Meier, 555-12 
nondetects analysis, 240-3 

Geisser-Greenhouse adjustment, 
214-1, 214-5 
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Geisser-Greenhouse epsilon, 214-4, 
214-20 

General linear models, 212-1 
Generating data, 122-1 
Generations 

hybrid appraisal models, 487-8 
Geometric mean 

descriptive statistics, 200-14 
Gleason-Staelin redundancy measure 

principal components analysis, 
425-17 

GLM 
checklist, 212-18 

Gompertz model 
curve fitting, 351-7 
growth curves, 360-5 

Goodness of fit 
loglinear models, 530-4 
Poisson regression, 325-3 

Goodness-of-fit 
hierarchical clustering, 445-4 
K-means clustering, 446-2 
multidimensional scaling, 435-3 
ratio of polynomials, 370-2 

Goto in output, 106-4 
Graeco-Latin square designs, 263-1 
Greedy matching, 123-1, 123-2 
Greenwood’s formula 

Kaplan-Meier, 555-3, 555-29, 
555-33 

Weibull fitting, 550-3 
Grid / tick settings window, 185-1 
Grid lines, 185-1 
Grid plot style file, 173-8 
Grid plots, 140-11, 173-1 

response surface regression, 330-
19 

Grid range 
hybrid appraisal models, 487-9 

Group average 
double dendrograms, 450-2 
hierarchical clustering, 445-4 

Group variables 
logistic regression, 320-19 

Growth curves, 360-1 

H 
HAIR dataset, 220-103 
Harmonic mean 

descriptive statistics, 200-14 
Hat diagonal 

linear regression, 300-19, 300-62 
multiple regression, 305-18, 305-

64 
Hat matrix 

linear regression, 300-18 
logistic regression, 320-14 
multiple regression, 305-18 

Poisson regression, 325-34 
Hat values 

Poisson regression, 325-5 
Hazard 

baseline, 565-8 
cumulative, 565-3 
Nelson-Aalen, 555-4 

Hazard function 
beta distribution fitting, 551-2 
Cox regression, 565-2 
gamma distribution fitting, 552-2 

Hazard function plot 
Kaplan-Meier, 555-36 

Hazard rate 
Kaplan-Meier, 555-2 
life-table analysis, 570-3 
Weibull fitting, 550-2, 550-36 

Hazard rate plot 
Kaplan-Meier, 555-36 

Hazard ratio 
confidence interval, 555-40 
Kaplan-Meier, 555-40 

Hazard ratio test 
Kaplan-Meier, 555-41 

Hazard ratios 
meta analysis, 458-1 

Hazard-baseline 
Cox regression, 565-38 

HEART dataset, 212-23 
Heat map colors, 187-5 
Heat map settings window, 187-1 
Help system, 1-10, 100-1 
Heterogeneity test 

meta-analysis of proportions, 
456-4 

Heteroscedasticity 
linear regression, 300-3 

Hierarchical cluster analysis, 450-1 
dendrograms, 450-3 

Hierarchical clustering, 445-1 
Hierarchical models 

Cox regression, 565-23 
loglinear models, 530-3 
multiple regression, 305-32 
response surface regression, 330-

1 
Hierarchical-classification designs, 

212-27 
Histogram 

bootstrap, 300-31, 305-42 
definition, 140-2 
density trace, 143-1 
descriptive statistics, 200-25 
linear regression, 300-34 
multiple regression, 305-67 
t-test, 205-20 
Xbar R, 250-32 

Histogram style file, 143-16 
Histograms, 140-2, 143-1 
Histograms - comparative, 140-4, 

151-1 

Histograms – comparative 
density trace, 151-2 

Holliday model 
curve fitting, 351-5 
growth curves, 360-4 

Holt’s linear trend, 466-1 
Holt-Winters forecasting 

exponential smoothing, 467-1 
Hotelling’s one sample T2, 405-1 
Hotelling’s T2, 410-1 

1-Sample, 405-1 
Hotelling’s T2 distribution 

probablility calculator, 135-4 
Hotelling’s T2 value, 410-7 
Hotelling’s two-sample T2, 410-1 
Hour format, 102-8 
HOUSING dataset, 306-4, 306-10 
Hsu’s test 

one-way ANOVA, 210-6 
Huber’s method 

multiple regression, 305-26 
Huynh Feldt epsilon, 214-20 
Huynh-Feldt adjustment, 214-1 
Hybrid appraisal models, 487-1 
Hybrid model, 487-1 
HYP(z) 

piecewise polynomial models, 
365-6 

Hypergeometric distribution 
probablility calculator, 135-4 

HypergeoProb transformation, 119-9 
Hypothesis tests 

linear regression, 300-6 
multiple regression, 305-13 

I 
Identicalness 

curve fitting, 350-6 
IEEE format, 102-4 
If-then transformations, 120-1 
Import limitations, 115-1 
Importing, 103-2 
Importing data, 12-1, 115-1 
Imputation, 118-1 

principal components analysis, 
425-4 

Imputing data values, 118-1 
Incidence 

Poisson regression, 325-1 
Incidence rate 

Poisson regression, 325-34 
Inclusion points 

D-optimal designs, 267-6 
Incomplete beta function ratio 

beta distribution fitting, 551-2 
Independence tests 

cross tabulation, 501-1 
Independent variable 

 



  Index-11 

linear regression, 300-25 
Independent variables 

logistic regression, 320-20 
multiple regression, 305-1 
multiple regression, 305-28 
Poisson regression, 325-8 

Indicator variables 
creating, 119-19 
multiple regression, 305-3 

Individuals 
hybrid appraisal models, 487-8 

Individuals chart, 250-4 
Xbar R, 250-33 

Inertia 
correspondence analysis, 430-13 

Influence 
multiple regression, 305-17 

Influence  report 
linear regression, 300-66 

Influence detection 
linear regression, 300-65 

Information matrix 
Cox regression, 565-7 

Inheritance 
hybrid appraisal models, 487-9 
Weibull fitting, 550-15 

Initial communality 
factor analysis, 420-3 

Initial Tableau section 
linear programming, 480-4 

Initial values 
backcasting, 465-2, 466-3, 467-3 

Insert, 103-5 
Installation, 1-1, 100-1 

folders, 1-1 
Int transformation, 119-7 
INTEL dataset, 465-7, 466-9, 471-7, 

473-5 
Interaction 

two level designs, 260-3 
Interactions 

multiple regression, 305-4 
Intercept 

linear regression, 300-25, 300-39 
multiple regression, 305-34 
Poisson regression, 325-15 

Interquartile range 
box plot, 152-1 
descriptive statistics, 200-17 

Interval censored 
parametric survival regression, 

566-3 
Weibull fitting, 550-11 

Interval data 
Cox regression, 565-17 

Interval failure 
Kaplan-Meier, 555-15 

Interval variables 
fuzzy clustering, 448-4 
hierarchical clustering, 445-6 
medoid partitioning, 447-1 

Intervals 
tolerance, 585-1 

Inverse prediction 
linear regression, 300-6, 300-41, 

300-67, 300-68 
IQ dataset, 305-27, 305-43, 305-72, 

305-76, 305-79 
IQR 

descriptive statistics, 200-17 
Isolines, 140-11 

contour plot, 172-1 
Item analysis, 505-1 
ITEM dataset, 505-2, 505-5, 506-2, 

506-6 
Item response analysis, 506-1 

J 
Jittering 

dot plots, 150-1 
Join transformation, 119-18 
Julian date transformation, 119-6 

K 
K analysis 

ridge regression, 335-22 
K values 

ridge regression, 335-8 
Kaplan-Meier 

Weibull fitting, 550-1 
Kaplan-Meier estimates, 555-1 
Kaplan-Meier product limit 

estimator 
Weibull fitting, 550-3 

Kaplan-Meier product-limit, 555-32 
beta distribution fitting, 551-14 
gamma distribution fitting, 552-

16 
nondetects analysis, 240-14 
Weibull fitting, 550-33 

Kaplan-Meier product-limit 
estimator 
beta distribution fitting, 551-2 

Kappa reliability test 
cross tabulation, 501-15 

Kaufman and Rousseeuw 
medoid partitioning, 447-4 

Kendall’s coefficient 
concordance, 211-15 

Kendall's tau-B 
cross tabulation, 501-15 

Kendall's tau-C 
cross tabulation, 501-15 

Kenward and Roger method 
mixed models, 220-28 

Kernel-smoothed estimators 

Kaplan-Meier, 555-9 
Weibull fitting, 550-35 

Keyboard 
commands, 103-11 

KLEIN6 dataset, 555-45 
K-means cluster analysis, 446-1 
KOCH36 dataset, 325-7, 325-21 
Kolmogorov-Smirnov 

descriptive statistics, 200-23 
Kolmogorov-Smirnov test 

two-sample, 206-1, 206-23 
Kruskall-Wallis test statistic, 210-21 
Kruskal-Wallis test, 210-1 
Kruskal-Wallis Z test 

one-way ANOVA, 210-7 
Kurtosis, 200-2 

descriptive statistics, 200-18 
t-test, 205-15 

L 
L’Abbe plot 

meta-analysis of correlated 
proportions, 457-22 

meta-analysis of means, 455-18 
meta-analysis of proportions, 

456-22 
Labeling values, 102-10 
Labeling variables, 2-4 
Labels 

values, 13-1 
LACHIN91 dataset, 320-71 
Lack of fit 

linear regression, 300-16 
Lack-of-fit test 

response surface regression, 330-
1 

Lagk transformation, 119-16 
Lambda 

canonical correlation, 400-10 
discriminant analysis, 440-12 
loglinear models, 530-18 

Lambda A 
cross tabulation, 501-14 

Lambda B 
cross tabulation, 501-15 

Latin square designs, 263-1 
LATINSQR dataset, 212-22 
Latin-square 

GLM, 212-21 
Lawley-Hotelling trace 

MANOVA, 415-3 
Lcase transformation, 119-18 
LEAD dataset, 240-19 
Least squares 

linear regression, 300-5 
multiple regression, 305-13 

Least squares trend, 466-1 
Ledk transformation, 119-16 
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LEE91 database, 570-15 
LEE91 dataset, 570-4 
Left censored 

parametric survival regression, 
566-3 

Weibull fitting, 550-11 
Left transformation, 119-18 
Length transformation, 119-18 
LEUKEMIA dataset, 320-18, 320-

34, 320-57 
Levenberg-Marquardt algorithm, 

385-1 
Levene test 

linear regression, 300-27 
modified, 206-20 
modified (multiple-groups), 210-

18 
Levene test (modified) 

linear regression, 300-50 
Levey-Jennings control charts, 252-1 
Life-table analysis, 570-1 
Like. ratio chi-square 

loglinear models, 530-13 
Likelihood 

Cox regression, 565-5 
Likelihood ratio 

1-sample binary diagnostic test, 
535-3 

logistic regression, 320-8 
ROC curves, 545-24 

Likelihood ratio test 
Cox regresion, 565-10 

Likelihood ratio test of difference 
two proportions, 515-8 

Likelihood-ratio statistic 
loglinear models, 530-4 

Likert-scale 
simulation, 122-8, 122-22 

Lilliefors' critical values 
descriptive statistics, 200-23 

Limitations 
exporting, 116-1 

Line charts, 140-1, 141-1 
Line granularity 

linear regression, 300-33 
Line settings window, 183-1 
Linear discriminant functions 

discriminant analysis, 440-2 
Linear model, 212-1 
Linear programming, 480-1 
Linear regression, 300-1 

assumptions, 300-3 
Linearity 

MANOVA, 415-5 
multiple regression, 305-6 

Linear-linear fit 
curve fitting, 351-11 

Linear-logistic model, 320-1 
Linkage type 

hierarchical clustering, 445-7 
LINREG1 dataset, 300-24, 300-37 

Ljung statistic 
automatic ARMA, 474-12 

LLM, 530-1 
Ln(X) transformation, 119-7 
Loading a database, 2-1, 2-10, 7-1 
Loess 

robust, 300-14 
LOESS 

linear regression, 300-13 
LOESS %N 

linear regression, 300-33 
LOESS curve 

linear regression, 300-33 
LOESS order 

linear regression, 300-33 
LOESS robust 

linear regression, 300-34 
Loess smooth 

scatter plot, 161-14 
Log document, 106-1 
Log file 

tutorial, 101-4 
Log likelihood 

Poisson regression, 325-23 
Weibull fitting, 550-30 

Log odds ratio transformation 
logistic regression, 320-2 

Log of output, 9-6 
Log transformation, 119-7 
Logarithmic fit 

curve fitting, 351-8 
LogGamma transformation, 119-9 
Logistic distribution 

Weibull fitting, 550-10 
Logistic item characteristic curve 

item response analysis, 506-1 
Logistic model 

curve fitting, 351-6 
growth curves, 360-5 

Logistic regression, 320-1 
parametric survival regression, 

566-1 
Logit transformation, 119-7 

logistic regression, 320-1 
LOGLIN1 dataset, 530-7, 530-11 
Loglinear models, 530-1 
Log-logistic distribution 

Weibull fitting, 550-10 
Log-logistic regression, 566-1 
Lognormal 

curve fitting, 351-10, 351-11 
growth curves, 360-9 

Lognormal distribution 
nondetects regression, 345-2 
Weibull fitting, 550-5 

Lognormal regression, 566-1 
Logrank test 

Kaplan-Meier, 555-41 
Log-rank test 

Kaplan-Meier, 555-12 
nondetects analysis, 240-3 

randomization, 555-1 
Log-rank tests 

Kaplan-Meier, 555-38 
Longitudinal data example 

mixed models, 220-51 
Longitudinal data models 

mixed models, 220-4 
Longitudinal models, 220-1 
Lookup transformation, 119-14 
Lotus 123 exporting, 116-1 
Lotus 123 importing, 115-1 
Lowess smooth 

scatter plot, 161-14 
LP dataset, 480-2, 480-4 
LUNGCANCER dataset, 565-15, 

565-31, 565-48 

M 
MA order (Q) 

automatic ARMA, 474-8 
Macros, 130-1 

command list, 130-25 
commands, 130-6 
examples, 130-26 
syntax, 130-2 

MAD 
descriptive statistics, 200-20 

MAD constant 
multiple regression, 305-40 

MAE 
exponential smoothing, 466-4, 

467-2 
Mallow's Cp 

variable selection and, 312-8 
Mallow's Cp statistic 

multiple regression, 305-55 
MAMMALS dataset, 3-1, 4-1, 10-1 
MAMMALS1 dataset, 5-1, 6-1 
Manhattan distance 

medoid partitioning, 447-3 
Mann-Whitney U test, 206-1, 206-20 
MANOVA, 415-1 

multivariate normality and 
Outliers, 415-4 

MANOVA1 dataset, 410-3, 410-6, 
415-5, 415-10 

Mantel Haenszel test 
two proportions, 515-7 

Mantel-Haenszel logrank test 
Kaplan-Meier, 555-41 

Mantel-Haenszel test, 525-1 
MAPE 

exponential smoothing, 466-4, 
467-2 

Maps 
contour plots, 172-1 
contour plots, 140-11 

Mardia-Watson-Wheeler test 
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circular data, 230-10 
Marginal association 

loglinear models, 530-6 
Martinez-Iglewicz 

descriptive statistics, 200-22 
Martingale residuals 

Cox regression, 565-13, 565-39 
Cox regression, 565-40 

MARUBINI dataset, 560-3, 560-9 
Mass 

correspondence analysis, 430-13 
Matched pairs 

correlated proportions, 520-1 
Matching 

caliper, 123-4 
caliper radius, 123-5 
distance calculation method, 123-

3 
forced match variable, 123-4 
full (variable), 123-3 
greedy, 123-1, 123-2 
optimal, 123-1, 123-2 
propensity score, 123-2 
standardized difference, 123-15 

Mathematical functions 
transformations, 119-7 

Matrix determinant 
equality of covariance, 402-8 

Matrix type 
principal components analysis, 

425-11 
Mauchley’s test of compound 

symmetry, 214-5 
Mavk transformation, 119-16 
Max % change in any beta 

multiple regression, 305-78 
Max terms 

multiple regression, 305-33 
Max transformation, 119-16 
Maximum likelihood 

Cox regression, 565-5 
mixed models, 220-17 
Weibull fitting, 550-10 

Maximum likelihood estimates 
beta distribution fitting, 551-12 

McHenry's select algorithm, 310-1 
McNemar test 

correlated proportions, 520-1, 
520-6 

cross tabulation, 501-16 
McNemar's tests, 501-1 
MDB exporting, 116-1 
MDB importing, 115-1 
MDS, 435-1 
MDS2 dataset, 435-6, 435-10, 435-

15 
Mean 

confidence interval for, 200-13 
descriptive statistics, 200-13 
deviation, 200-20 
geometric, 200-14 

harmonic, 200-14 
standard error of, 200-13 

Mean absolute deviation 
descriptive statistics, 200-20 

Mean deviation 
descriptive statistics, 200-20 
estimate of standard error of, 

200-20 
Mean square 

linear regression, 300-47 
Mean squared error 

linear regression, 300-19 
multiple regression, 305-19 

Mean squares 
multiple regression, 305-50 

Mean-deviation 
descriptive statistics, 200-20 

Means 
meta-analysis of means, 455-1 

Measurement error 
R & R, 254-19 

Measurement error ratio 
R & R, 254-3 

Median 
cluster method, 445-4 
confidence interval, 200-14 
descriptive statistics, 200-14 

Median cluster method 
double dendrograms, 450-2 

Median remaining lifetime 
life-table analysis, 570-4, 570-22 

Median smooth 
scatter plot, 161-15 

Median survival time 
Kaplan-Meier, 555-30 

Medoid clustering, 447-1 
Medoid partitioning, 447-1 
Membership 

fuzzy clustering, 448-1 
Merging two databases, 104-1 
M-estimators 

multiple regression, 305-25 
Meta-analysis 

correlated proportions, 457-1 
Meta-analysis of hazard ratios, 458-1 
Meta-analysis of means, 455-1 
Meta-analysis of proportions, 456-1 
METACPROP dataset, 457-6, 457-

14 
METAHR dataset, 458-6, 458-12 
Method of moments estimates 

beta distribution fitting, 551-12 
Metric multidimensional scaling, 

435-5 
Michaelis-Menten 

curve fitting, 351-1, 351-4 
Miettinen - Nurminen test 

two proportions, 515-8 
Mill’s ratio 

Kaplan-Meier, 555-2 
Weibull fitting, 550-2 

Min transformation, 119-16 
Minimum Percent Beta Change, 305-

40 
Minute format, 102-8 
Missing 

if-then transformation, 120-4 
Missing value estimation 

factor analysis, 420-7 
Missing values, 102-5, 320-8, 320-18, 

425-4 
cross tabs, 501-4 
descriptive tables, 201-7 
estimating, 118-1 
GLM, 212-19 
principal components analysis, 

425-3 
Missing-value imputation 

principal components analysis, 
425-4 

Mixed model 
defined, 220-2 

Mixed models, 220-1 
AIC, 220-7 
Bonferroni adjustment, 220-14 
covariates, 220-9 
differential evolution, 220-29 
F test, 220-28 
Fisher scoring, 220-29 
fixed effects, 220-9 
G matrix, 220-18 
Kenward and Roger method, 220-

28 
L matrix, 220-26 
likelihood formulas, 220-17 
maximum likelihood, 220-17 
MIVQUE, 220-29 
model building, 220-13 
multiple comparisons, 220-14 
Newton-Raphson, 220-29 
R matrix, 220-19 
random vs repeated error, 220-7 
restricted maximum likelihood, 

220-18 
technical details, 220-16 
time, 220-11 
types, 220-4 
zero variance estimate, 220-8 

Mixture design 
D-optimal designs, 267-22 

MLCO2 dataset, 470-11 
Mod transformation, 119-7 
Mode 

descriptive statistics, 200-15 
Model 

Bleasdale-Nelder, 351-5, 360-3 
exponential, 351-6, 360-4 
Farazdaghi and Harris, 351-5, 

360-3 
four-parameter logistic, 351-7, 

360-5 
Gompertz, 351-7, 360-5 
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Holliday, 351-5, 360-4 
Kira, 351-4, 360-2 
monomolecular, 351-6, 360-4 
Morgan-Mercer-Floding, 351-8, 

360-6 
multiple regression, 305-33 
reciprocal, 351-4, 360-2 
Richards, 351-8, 360-7 
Shinozaki, 351-4, 360-2 
three-parameter logistic, 351-6, 

360-5 
Weibull, 351-7, 360-6 

Model size 
all possible regressions, 312-8 

Models 
growth curves, 360-1 
hierarchical, 530-3 
multiphase, 365-1 
multiple regression, 305-35 
piecewise polynomial, 365-1 
ratio of polynomials, 370-1, 375-

1 
sum of functions, 380-1 
user written, 385-1 

Modified Kuiper’s test 
circular data, 230-4 

Moment 
descriptive statistics, 200-11 

Monomolecular model 
curve fitting, 351-6 
growth curves, 360-4 

Monte Carlo samples 
1-Sample T2, 405-4 
linear regression, 300-31 

Monte Carlo simulation, 122-1 
Month format, 102-8 
Month transformation, 119-6 
Morgan-Mercer-Floding model 

curve fitting, 351-8 
growth curves, 360-6 

MOTORS dataset, 566-3, 566-11 
Moving average chart, 250-4 
Moving average chart limits, 250-8 
Moving average parameters 

ARIMA, 471-3 
theoretical ARMA, 475-2 

Moving data, 103-14 
Moving range 

Xbar R, 250-33 
Moving range chart, 250-4 
MSEi 

multiple regression, 305-19 
Multicollinearity 

canonical correlation, 400-2 
discriminant analysis, 440-4 
MANOVA, 415-5 
multiple regression, 305-7 
ridge regression, 335-1 
stepwise regression, 311-2 

Multicollinearity report 
multiple regression, 305-57 

Multidimensional scaling, 435-1 
metric, 435-1 

Multinomial chi-square tests 
frequency tables, 500-1 

Multinomial distribution 
simulation, 122-8 

Multinomial test 
frequency tables, 500-10 

Multiple comparisons 
Bonferroni, 210-4 
box plots, 152-2 
Duncan’s test, 210-5 
Dunn’s test, 210-7 
Dunnett’s test, 210-6 
Fisher's LSD, 210-6 
Hsu’s test, 210-6 
Kruskal-Wallis Z test, 210-7 
mixed models, 220-14 
Newman-Keuls test, 210-8 
one-way ANOVA, 210-3 
recommendations, 210-8 
Scheffe’s test, 210-8 
Tukey-Kramer test, 210-8 

Multiple regression 
robust, 305-24 

Multiple regression, 305-1 
assumptions, 305-6 

Multiple regression 
all possible, 312-1 

Multiple regression 
binary response, 320-8 

Multiple regression with serial 
correlation, 306-1 

Multiplicative seasonality 
exponential smoothing, 467-2 

Multiplicity factor 
t-test, 205-19 

Multivariate analysis of variance, 
415-1 

Multivariate normal 
factor analysis, 420-7 
principal components analysis, 

425-11 
Multivariate polynomial ratio fit, 

376-1 
Multivariate variable selection, 310-

1 
Multiway frequency analysis 

loglinear models, 530-1 
Mutation rate 

hybrid appraisal models, 487-9 
Weibull fitting, 550-15 

N 
Nam and Blackwelder test 

correlated proportions, 520-5 
Nam test 

correlated proportions, 520-7 

Nam’s score 
correlated proportions, 520-2 

Navigator, 107-1 
NC CRIMINAL dataset, 320-64, 

320-68 
NcBetaProb transformation, 119-9 
NcBetaValue transformation, 119-10 
NcCsProb transformation, 119-10 
NcCsValue transformation, 119-10 
NcFprob transformation, 119-10 
NcFvalue transformation, 119-10 
NCSS 

quitting, 101-4 
NcTprob transformation, 119-10 
NcTvalue transformation, 119-10 
Nearest neighbor 

double dendrograms, 450-2 
hierarchical clustering, 445-3 

Negative binomial distribution 
probablility calculator, 135-5 

Negative binomial transformation, 
119-10 

NegBinomProb transformation, 119-
10 

Neighborhood 
appraisal ratios, 485-7 

Nelson-Aalen estimates 
Weibull fitting, 550-1 

Nelson-Aalen estimator, 555-7 
Weibull fitting, 550-33 

Nelson-Aalen hazard 
Kaplan-Meier, 555-1 
Weibull fitting, 550-4 

Nested factor 
GLM, 212-4 

Nested factors 
design generator, 268-1 

New database, 103-1 
New spreadsheet, 103-1 
New template, 105-1 
Newman-Keuls test 

one-way ANOVA, 210-8 
Newton-Raphson 

Weibull fitting, 550-11 
Nominal variables 

fuzzy clustering, 448-4 
hierarchical clustering, 445-7 
medoid partitioning, 447-2 

Non-central Beta transformation, 
119-10 

Non-central Chi-square 
transformation, 119-10 

noncentral-F distribution 
transformation, 119-10 

Noncentral-t distribution 
transformation, 119-10 

Nondetects analysis, 240-1 
confidence limits, 240-7 
flipping constant, 240-2 
Gehan test, 240-3 

 



  Index-15 

Kaplan-Meier product-limit, 240-
14 

log-rank test, 240-3 
Peto-Peto test, 240-3 
Tarone-Ware test, 240-3 

NONDETECTS dataset, 240-4 
Nondetects regression, 345-1 

confidence limits, 345-11 
Cox-Snell residual, 345-13 
R-squared, 345-11 
standardized residual, 345-13 

Noninferiority 
2-sample binary diagnostic, 537-

10 
clustered binary diagnostic, 538-9 
paired binary diagnostic, 536-8 
ROC curves, 545-31 

Noninferiority test 
correlated proportions, 520-8 
two proportions, 515-17 

Noninferiority tests 
two proportions, 515-37 

Nonlinear regression, 315-1 
appraisal, 487-1 
functions, 315-4 
starting values, 315-1 
user written models, 385-1 

Nonparametric tests 
t-test, 205-17 

Nonstationary models 
Box Jenkins, 470-3 

Normal 
curve fitting, 351-10 
growth curves, 360-9 

Normal distribution 
probablility calculator, 135-5 
simulation, 122-9, 122-20 
Weibull fitting, 550-4 

Normal line 
histograms, 143-12 

Normal probability plot 
descriptive statistics, 200-26 

Normality, 200-4 
descriptive statistics, 200-21 
ROC curves, 545-12 
t-test, 205-15 

Normality test alpha, 118-3 
Normality tests 

Anderson-Darling test, 200-22 
D’Agostino kurtosis, 200-24 
D’Agostino omnibus, 200-25 
D’Agostino skewness, 200-23 
descriptive statistics, 200-21 
Kolmogorov-Smirnov, 200-23 
Lilliefors' critical values, 200-23 
linear regression, 300-48 
Martinez-Iglewicz, 200-22 
multiple regression, 305-52 
Shapiro-Wilk test, 200-22 
skewness test, 200-24 
tolerance intervals, 585-11 

NormalProb transformation, 119-10 
NormalValue transformation, 119-10 
NormScore transformation, 119-16 
Notes 

omitting them in linear 
regression, 300-26 

NP-chart, 251-1 
Number exposed 

life-table analysis, 570-2 
Number of correlations 

canonical correlation, 400-5 
Number of points 

linear regression, 300-33 
Numeric data, 102-1 
Numeric functions, 119-6 

O 
Objective function 

linear programming, 480-1 
Observational study matching, 123-1 
Observational study stratification, 

124-1 
Odds ratio 

1-sample binary diagnostic test, 
535-4 

2-sample binary diagnostic, 537-
9 

confidence interval of, 515-23 
correlated proportions, 520-5 
meta-analysis of correlated 

proportions, 457-2 
meta-analysis of proportions, 

456-2 
two proportions, 515-1, 515-3 

Odds ratios 
Mantel-Haenszel test, 525-1 

ODOR dataset, 330-3, 330-11 
Omission report 

multiple regression, 305-54 
One proportion, 510-1 
One-sample tests, 205-1 
One-sample t-test, 205-1 
One-way analysis of variance, 210-1 
One-way ANOVA 

Bonferroni, 210-4 
Duncan’s test, 210-5 
Dunn’s test, 210-7 
Dunnett’s test, 210-6 
Fisher's LSD, 210-6 
Hsu’s test, 210-6 
Kruskal-Wallis Z test, 210-7 
multiple comparisons, 210-3 
Newman-Keuls test, 210-8 
orthogonal contrasts, 210-11 
orthogonal polynomials, 210-11 
planned comparisons, 210-10 
Scheffe’s test, 210-8 
Tukey-Kramer test, 210-8 

Open database, 103-1 
Open log file, 106-2 
Open output file, 106-2 
Open spreadsheet, 103-1 
Open template, 105-1 
Opening a database 

tutorial, 101-3 
Optimal matching, 123-1, 123-2 
Optimal solution section 

linear programming, 480-5 
Optimal value 

linear programming, 480-5 
Or 

if-then transformation, 120-2 
Ordinal variables 

fuzzy clustering, 448-4 
hierarchical clustering, 445-6 
medoid partitioning, 447-2 

Original cost 
linear programming, 480-5 

Orthogonal arrays, 266-1 
Orthogonal contrasts 

one-way ANOVA, 210-11 
Orthogonal polynomial 

ANOVA balanced, 211-6 
GLM, 212-5 
repeated measures, 214-11 

Orthogonal polynomials 
one-way ANOVA, 210-11 

Orthogonal regression 
linear regression, 300-9, 300-41 

Orthogonal sets of Latin squares, 
263-2 

Outlier detection 
linear regression, 300-64 
multiple regression, 305-83 

Outlier report 
linear regression, 300-66 

Outliers 
Cox regression, 565-14 
linear regression, 300-15 
multiple regression, 305-1, 305-

24, 305-78 
stepwise regression, 311-3 
t-test, 205-22 

Outliers, 200-3 
Output, 106-1 

log of, 9-6 
printing, 9-4 
ruler, 106-4 
saving, 9-5 

Output document, 106-1 
Output window, 1-6, 9-1 
Overdispersion 

Poisson regression, 325-3, 325-12 
Overlay 

scatter plot, 161-3 

 



Index-16 

P 
Page setup, 103-2 
PAIN dataset, 220-51 
Paired data 

clustered binary diagnostic, 538-
11 

Paired t-test 
1-Sample T2, 405-1 

Paired t-tests, 205-1 
Pair-wise removal 

correlation matrix, 401-3 
Paradox exporting, 116-1 
Paradox importing, 115-1 
Parallel slopes 

multiple regression, 305-86 
Parameterization 

curve fitting, 350-5 
Pareto chart, 253-1 
Pareto charts, 250-41 
Parsimony 

ratio of polynomials, 370-2 
Partial association 

loglinear models, 530-5 
Partial autocorrelation, 472-1 
Partial autocorrelation function 

Box Jenkins, 470-4 
Partial correlation 

multiple regression, 305-56 
Partial residual plots, 305-71 
Partial variables 

canonical correlation, 400-4 
correlation matrix, 401-3 

Partial-regression coefficients, 305-
47 

Partition coefficient 
fuzzy clustering, 448-3 

Paste, 103-4 
Paste output, 106-3 
Pasting data, 7-2 
PCA, 425-1 
PCA2 dataset, 118-4, 420-5, 420-11, 

425-9, 425-15 
P-chart, 251-1 
Pearson chi-square 

loglinear models, 530-4, 530-13 
Pearson correlation 

linear regression, 300-45 
Pearson correlations 

matrix of, 401-1 
Pearson residuals 

logistic regression, 320-13 
Poisson regression, 325-5, 325-31 

Pearson test 
Poisson regression, 325-3 

Pearson’s contingency coefficient 
cross tabulation, 501-14 

Percentile plots, 140-5 
Percentile Plots, 153-1 
Percentile type 

descriptive statistics, 200-6 
Percentiles, 200-2 
Percentiles of absolute residuals 

multiple regression, 305-78 
Period effect 

cross-over analysis using t-tests, 
235-4 

Period plot 
cross-over analysis using t-tests, 

235-24 
Periodogram 

spectral analysis, 468-1 
Perspective 

3D scatter plot, 170-6 
3D surface plot, 171-6 
bar charts, 141-12 

PET dataset, 538-11 
Peto-Peto test 

Kaplan-Meier, 555-12 
nondetects analysis, 240-3 

Phase 
spectral analysis, 468-1 

Phi 
cross tabulation, 501-14 
factor analysis, 420-13 
Poisson regression, 325-3, 325-

12, 325-27 
principal components analysis, 

425-17 
Phis 

theoretical ARMA, 475-2 
Pie charts, 140-2, 142-1 
PIE dataset, 142-6 
Piecewise polynomial models, 365-1 
Pillai's trace 

MANOVA, 415-3 
Plackett-Burman design, 265-1 
Planned comparisons 

one-way ANOVA, 210-10 
PLANT dataset, 212-27 
Plot size 

linear regression, 300-29 
Plots 

3D scatter plots, 140-10, 170-1 
3D surface plots, 140-10, 171-1 
area charts, 140-1, 141-1 
bar charts, 140-1, 141-1 
box plots, 140-5, 152-1 
contour plots, 140-11, 172-1 
density trace, 143-1 
dot plots, 140-4, 150-1 
error-bar charts, 140-6, 155-1 
function plots, 160-1 
grid plots, 140-11, 173-1 
histograms, 140-2, 143-1 
histograms - comparative, 140-4, 

151-1 
line charts, 140-1, 141-1 
percentile plots, 140-5, 153-1 
pie charts, 140-2 
probability plots, 140-3, 144-1 

scatter plot matrix, 140-8, 162-1 
scatter plot matrix (curve fitting), 

163-1 
scatter plot matrix for curve 

fitting, 140-9 
scatter plots, 140-7, 161-1 
single-variable charts, 140-1 
surface charts, 140-1, 141-1 
surface plots, 140-10, 171-1 
three-variable charts, 140-10 
two-variable charts, 140-4, 140-7 
violin plots, 140-6, 154-1 

POISREG dataset, 325-37 
Poisson distribution 

probablility calculator, 135-5 
simulation, 122-9 

Poisson regression, 325-1 
PoissonProb transformation, 119-11 
POLITIC dataset, 13-1, 14-1 
Polynomial 

logistic regression, 320-23 
multiple regression, 305-31 
multivariate ratio fit, 376-1 
Poisson regression, 325-11 

Polynomial fit 
scatter plot, 161-13 

Polynomial model 
response surface regression, 330-

1 
Polynomial models, 365-1 
Polynomial ratio fit, 375-1 
Polynomial ratios 

model search (many X variables), 
371-1 

Polynomial regression model, 330-1 
Polynomials 

ratio of, 370-1, 375-1 
Pooled terms, 213-2 
POR exporting, 116-1 
Portmanteau test 

ARIMA, 471-12 
automatic ARMA, 474-12 
Box Jenkins, 470-10 

Power 
multiple regression, 305-47 

Power spectral density 
spectral analysis, 468-3 

Power spectrum 
theoretical ARMA, 475-8 

PRD 
appraisal ratios, 485-8 

Precision-to-tolerance 
R & R, 254-20 

Precision-to-tolerance ratio 
R & R, 254-3 

Predicted value 
Poisson regression, 325-32 

Predicted values 
linear regression, 300-27, 300-52 
multiple regression, 305-61 

Prediction interval 
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multiple regression, 305-61 
Prediction limits 

linear regression, 300-33, 300-53, 
300-59 

multiple regression, 305-61 
Pre-post 

multiple regression, 305-87 
PREPOST dataset, 305-87 
PRESS 

linear regression, 300-21, 300-51 
multiple regression, 305-21, 305-

51 
PRESS R2 

multiple regression, 305-52 
Press R-squared 

multiple regression, 305-21 
PRESS R-squared 

linear regression, 300-22 
Prevalence 

ROC curves, 545-5 
Price related differential 

appraisal ratios, 485-8 
hybrid appraisal models, 487-17 

Principal axis method 
factor analysis, 420-1 

Principal components 
linear regression, 300-9 

Principal components analysis, 425-
1 

Principal components regression, 
340-1 

Print 
output, 106-3 

Printer setup, 103-2 
Printing 

data, 2-7, 103-3 
output, 9-4 
output reports, 4-5 

Printing data, 117-1 
Prior probabilities 

discriminant analysis, 440-5 
Prob level, 415-13 

linear regression, 300-47 
Prob to enter 

stepwise regression, 311-4 
Prob to remove 

stepwise regression, 311-4 
Probability Calculator, 135-1 

Beta distribution, 135-1 
Binomial distribution, 135-2 
Bivariate normal distribution, 

135-2 
Chi-square distribution, 135-2 
Correlation coefficient 

distribution, 135-3 
F distribution, 135-3 
Gamma distribution, 135-4 
Hotelling’s T2 distribution, 135-4 
Hypergeometric distribution, 

135-4 

Negative binomial distribution, 
135-5 

Normal distribution, 135-5 
Poisson distribution, 135-5 
Student’s t distribution, 135-6 
Studentized range distribution, 

135-6 
Weibull distribution, 135-6 

Probability ellipse 
linear regression, 300-8, 300-33 

Probability functions 
transformations, 119-8 

Probability plot 
descriptive statistics, 200-26 
linear regression, 300-57 
multiple regression, 305-67 
t-test, 205-20 
Weibull, 144-17 

Probability plot style file, 144-19 
Probability plots, 140-3 

asymmetry, 144-3 
quantile scaling, 144-7 

Probability Plots, 144-1 
Probit analysis, 575-1 
Probit plot 

probit analysis, 575-10 
Procedure, 105-1 

running, 101-3 
Procedure window, 1-5, 8-1 
Product-limit survival distribution 

beta distribution fitting, 551-14 
gamma distribution fitting, 552-

16 
Kaplan-Meier, 555-32 
Weibull fitting, 550-33 

Product-moment correlation 
correlation matrix, 401-3 

Profiles 
correspondence analysis, 430-1 

Projection method 
3D scatter plot, 170-8 
3D surface plot, 171-7 
bar charts, 141-14 

PROPENSITY dataset, 123-5, 123-
12, 124-4 

Propensity score, 123-2 
stratification, 124-1 

Proportion trend test 
Armitage, 501-5 

Proportions 
2-sample binary diagnostic, 537-

1 
clustered binary diagnostic, 538-1 
confidence interval of ratio, 515-

21 
correlated, 520-1 
Meta-analysis of correlated 

proportions, 457-1 
meta-analysis of proportions, 

456-1 
one, 510-1 

paired binary diagnostic, 536-1 
two, 515-1 

Proportions test 
1-sample binary diagnostic test, 

535-1 
Proximity matrix 

multidimensional scaling, 435-1 
Proximity measures 

multidimensional scaling, 435-4 
Pseudo R-squared 

multidimensional scaling, 435-12 
Poisson regression, 325-4 

Pure error 
linear regression, 300-16 

Q 
QATEST dataset, 250-14, 250-27, 

250-33, 250-35, 250-37, 251-3, 
251-11, 253-2, 253-7, 253-9 

Quadratic fit 
curve fitting, 351-2 

Qualitative factors 
D-optimal designs, 267-6, 267-25 

Quality 
correspondence analysis, 430-13 

Quantile scaling 
probability plots, 144-7 

Quantile test, 205-17 
Quantiles 

Kaplan-Meier, 555-30 
Quartiles 

descriptive statistics, 200-21 
Quartimax rotation 

factor analysis, 420-4 
principal components analysis, 

425-8 
Quatro exporting, 116-1 
Quick launch window, 107-1, 107-2 
Quick start, 100-1 
Quitting NCSS, 101-4 

R 
R & R study, 254-1 
Radial plot 

meta analysis of hazard ratios, 
458-18 

meta-analysis of correlated 
proportions, 457-21 

meta-analysis of means, 455-18 
meta-analysis of proportions, 

456-21 
Random coefficients example 

mixed models, 220-103 
Random coefficients models 

mixed models, 220-5 
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Random effects model 
meta-analysis of correlated 

proportions, 457-5 
meta-analysis of hazard ratios, 

458-5 
meta-analysis of means, 455-4 
meta-analysis of proportions, 

456-5 
Random effects models, 220-1 

mixed models, 220-4 
Random factor 

ANOVA balanced, 211-5 
GLM, 212-4 
repeated measures, 214-8 

Random numbers, 122-1 
uniform, 15-1 

Randomization 
Latin square designs, 263-2 

Randomization test 
curve fitting, 351-16 
linear regression, 300-24 
log-rank, 555-1 
T2, 410-7 

Randomization tests 
1-Sample T2, 405-1, 405-8 
T2, 410-1 

Randomized block design 
repeated measures, 214-6 

RandomNormal transformation, 119-
11 

Random-number functions 
transformations, 119-11 

Range 
descriptive statistics, 200-17 
interquartile, 200-17 

Range chart, 250-1 
Rank transformation, 119-16 
Rate ratio 

Poisson regression, 325-30 
Ratio of polynomials 

model search (many X variables), 
371-1 

model search (one X variable), 
370-1 

Ratio of polynomials fit, 375-1 
many variables, 376-1 

Ratio of two proportions 
two proportions, 515-6 

Ratio plot 
decomposition forecasting, 469-

12 
Ratio section 

appraisal ratios, 485-7 
Ratio study 

appraisal ratios, 485-1 
Ratio variables 

fuzzy clustering, 448-4 
hierarchical clustering, 445-6 
medoid partitioning, 447-2 

Rayleigh test 
circular data, 230-4 

Rbar-squared 
linear regression, 300-8 
multiple regression, 305-15 

RCBD data example 
mixed models, 220-94 

RCBD dataset, 220-94 
REACTION dataset, 214-6, 214-29 
Readout 

parametric survival regression, 
566-3 

Weibull fitting, 550-11 
READOUT105 dataset, 550-47 
Rearrangement functions 

transformations, 119-12 
Recalc all, 103-9, 119-4 
Recalc current, 103-8, 119-4 
Reciprocal model 

curve fitting, 351-4 
growth curves, 360-2 

Recode functions transformations, 
119-14 

Recode transformation, 3-4, 119-15 
Recoding, 11-1 
Reduced cost 

linear programming, 480-5 
Redundancy indices 

canonical correlation, 400-4 
Reference group 

logistic regression, 320-19 
Reference value 

logistic regression, 320-21 
multiple regression, 305-3, 305-

29 
Poisson regression, 325-9 
Xbar R, 250-23 

Reflection C.I. method 
multiple regression, 305-41 

Reflection method 
linear regression, 300-30 
two proportions, 515-28 

REGCLUS dataset, 449-2, 449-5 
Regression 

all possible, 312-1 
appraisal model, 487-1 
backward selection, 311-2 
binary response, 320-1, 320-8 
clustering, 449-1 
Cox, 565-1 
diagnostics, 305-63 
exponential, 566-1 
extreme value, 566-1 
forward selection, 311-1 
growth curves, 360-1 
hybrid appraisal model, 487-1 
linear, 300-1 
logistic, 320-1, 566-1 
log-logistic, 566-1 
lognormal, 566-1 
model search (many X variables), 

371-1 
multiple, 312-8 

nondetects, 345-1 
nonlinear, 315-1 
normal, 566-1 
orthogonal regression, 300-9 
Poisson, 325-1 
polynomial ratio, 375-1 
polynomial ratio (search), 370-1 
principal components, 340-1 
proportional hazards, 565-1 
response surface regression, 330-

1 
ridge, 335-1 
stepwise, 311-1 
sum of functions models, 380-1 
user written, 385-1 
variable selection, 311-1 
Weibull, 566-1 

Regression analysis, 6-1 
multiple regression, 305-1 

Regression clustering, 449-1 
Regression coefficients 

Cox regression, 565-32 
Regression coefficients report 

multiple regression, 305-48 
Regression equation report 

multiple regression, 305-46 
Relative risk 

meta-analysis of correlated 
proportions, 457-2 

meta-analysis of proportions, 
456-2 

two proportions, 515-1 
Reliability 

beta distribution fitting, 551-1, 
551-15 

gamma distribution fitting, 552-1 
item analysis, 505-1 
Kaplan-Meier, 555-1 
kappa, 501-15 
Weibull fitting, 550-1 

Reliability analysis 
Weibull fitting, 550-1 

Reliability function 
beta distribution fitting, 551-2 
gamma distribution fitting, 552-2 
Weibull fitting, 550-2 

Remove last sheet, 103-2 
Remove transformation, 119-18 
Removed lambda 

discriminant analysis, 440-12 
Repeat transformation, 119-18 
Repeatability 

R & R, 254-1, 254-14 
Repeated measures, 214-1 

1-Sample T2, 405-6 
mixed models, 220-1 

Repeated measures data example 
mixed models, 220-51 

Repeated measures design 
generating, 268-7 

Repeated-measures design 
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GLM, 212-23 
Replace, 103-6 
Replace in output, 106-4 
Replace transformation, 119-18 
Replication 

two level designs, 260-4 
Reporting data, 117-1 
Reports 

selecting in linear regression, 
300-26 

Reproducibility 
R & R, 254-1, 254-14 

RESALE dataset, 117-4, 151-14, 
155-1, 155-7, 201-1, 201-11, 
201-12, 201-14, 201-15, 201-17, 
201-19, 201-21, 305-81, 500-1, 
500-9, 500-10, 500-12, 500-14, 
501-1, 501-8, 501-11, 501-17 

Resampling tab 
linear regression, 300-29 

Residual 
diagnostics, 305-63 
linear regression, 300-2, 300-18 
multiple regression, 305-17 

Residual diagnostics 
linear regression, 300-15 
multiple regression, 305-15 
Poisson regression, 325-33 

Residual life 
life-table analysis, 570-22 
Weibull fitting, 550-40 

Residual plots 
linear regression, 300-53 
multiple regression, 305-67, 305-

70 
partial residuals, 305-71 

Residual report 
linear regression, 300-61 
multiple regression, 305-62 

Residuals 
Cox regression, 565-13 
Cox regression, 565-39 
logistic regression, 320-11 
multiple regression, 305-1 
Poisson regression, 325-4, 325-31 

Residuals-deviance 
Cox regression, 565-14 

Residuals-Martingale 
Cox regression, 565-13 

Residuals-scaled Schoenfeld 
Cox regression, 565-15 

Residuals-Schoenfeld 
Cox regression, 565-14 

Response surface regression, 330-1 
Response-surface designs, 264-1 
Restart method 

Xbar R, 250-23 
Restricted maximum likelihood 

mixed models, 220-18 
Richards model 

curve fitting, 351-8 

growth curves, 360-7 
Ridge regression, 335-1 
Ridge trace 

ridge regression, 335-4, 335-18 
RIDGEREG dataset, 335-7, 335-15, 

340-3, 340-11 
Right censored 

parametric survival regression, 
566-2 

Weibull fitting, 550-11 
Right transformation, 119-19 
Right-hand sides 

linear programming, 480-1 
Risk ratio 

correlated proportions, 520-4 
Cox regression, 565-33, 565-35 
meta-analysis of correlated 

proportions, 457-2 
meta-analysis of proportions, 

456-2 
Risk set 

Cox regression, 565-16 
Kaplan-Meier, 555-3 

RMSF dataset, 545-3 
RNDBLOCK dataset, 211-4, 211-11, 

212-3, 212-12 
Robins odds ratio C. L. 

Mantel-Haenszel test, 525-11 
Robust estimation 

principal components analysis, 
425-5 

Robust iterations 
Xbar R, 250-18 

Robust loess 
linear regression, 300-14 

Robust method 
multiple regression, 305-39 

Robust regression 
multiple regression, 305-24, 305-

31 
Robust regression reports 

multiple regression, 305-77 
Robust regression tutorial 

multiple regression, 305-76 
Robust sigma multiplier 

Xbar R, 250-18 
Robust tab 

multiple regression, 305-39 
Robust weight 

factor analysis, 420-7 
principal components analysis, 

425-11 
Robust weights 

multiple regression, 305-78 
ROC curves, 545-1 

comparing, 545-9 
ROC dataset, 545-19 
Root MSE 

all possible regressions, 312-8 
Rose plot 

circular data, 230-16 

Rose plots, 230-1 
Rotation 

3D scatter plot, 170-7 
3D surface plot, 171-7 
bar charts, 141-13 
factor analysis, 420-7 
principal components analysis, 

425-11 
Round transformation, 119-7 
Row heights, 103-15 
Row profiles 

correspondence analysis, 430-1 
Rows, 251-4, 251-5 
Row-wise removal 

correlation matrix, 401-3 
Roy’s largest root 

MANOVA, 415-4 
RRSTUDY dataset, 254-1, 254-10 
RRSTUDY1 dataset, 254-24 
R-squared 

adjusted, 300-46 
adjusted, 305-45 
all possible regressions, 312-8 
Cox regression, 565-11 
definition, 305-44 
linear regression, 300-7, 300-46 
logistic regression, 320-10 
multiple regression, 305-14 
Poisson regression, 325-4, 325-24 

R-squared increment 
stepwise regression, 311-8 

R-squared report 
multiple regression, 305-53 

R-squared vs variable count plot, 
310-8 

RStudent 
linear regression, 300-20, 300-62 
multiple regression, 305-19, 305-

63 
RStudent plot 

multiple regression, 305-69 
Rstudent residuals 

scatter plot of, 300-55 
RTF, 106-3 

tutorial, 101-4 
RTF output format, 106-1 
Ruler 

output, 106-4 
Run summary report 

multiple regression, 305-44 
Running a procedure 

tutorial, 101-3 
Running a regression analysis, 6-1 
Running a two-sample t-test, 5-1 
Running descriptive statistics, 4-1 
Runs tests 

attribute charts, 251-3 
Xbar R, 250-9 
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S 
S0 database, 102-1 
S0/S0Z comparison, 102-4 
S0Z/S0 comparison, 102-4 
Sale date variable 

appraisal ratios, 485-4 
comparables, 486-7 

Sale price variables 
appraisal ratios, 485-2 

SALES dataset, 467-9, 469-9 
Sales price 

multiple regression, 305-81 
SALESRATIO dataset, 485-1, 485-

6, 486-4 
SAMPLE dataset, 101-3, 161-20, 

162-5, 171-9, 172-7, 200-4, 200-
10, 205-12, 206-12, 210-16, 310-
3, 310-6, 311-3, 311-6, 312-2, 
312-6, 400-8, 401-2, 401-5, 585-
8 

SAS exporting, 116-1 
SAS importing, 115-1 
Saturated model 

loglinear models, 530-3 
Save, 103-3 
Save as, 103-3 
Save output, 106-3 
Saved colors, 180-3 
Saving 

data, 2-6 
tutorial, 101-2 

output, 9-5 
template, 8-5 

Saving a template, 105-2 
Saving results 

multiple regression, 305-42 
SC 

medoid partitioning, 447-5 
Scaled Schoenfeld residuals 

Cox regression, 565-15, 565-42 
Scaling 

multidimensional, 435-1 
Scaling factors 

D-optimal designs, 267-2 
Scaling method 

fuzzy clustering, 448-5 
hierarchical clustering, 445-8 

Scatter plot 
loess smooth, 161-14 
lowess smooth, 161-14 
median smooth, 161-15 
overlay, 161-3 
polynomial fit, 161-13 
spline, 161-15 
sunflower plot, 161-18 

Scatter plot matrix, 140-8, 162-1 
Scatter plot matrix (curve fitting), 

163-1 

Scatter plot matrix for curve fitting, 
140-9 

Scatter plot style file, 161-22 
Scatter plots, 140-7, 161-1 

3D, 140-10, 170-1 
Scheffe’s test 

one-way ANOVA, 210-8 
Schoenfeld residuals 

Cox regression, 565-14, 565-41 
Schuirmann’s test 

cross-over analysis using t-tests, 
235-7 

Scientific notation, 102-4 
Score, 320-45 
Score coefficients 

factor analysis, 420-17 
principal components analysis, 

425-2 
Scores plots 

canonical correlation, 400-12 
Scree graph 

factor analysis, 420-3 
Scree plot 

factor analysis, 420-15 
principal components analysis, 

425-18 
Screening data, 118-1, 200-3 
Screening designs, 265-1 
Searches 

ratio of polynomials, 370-1, 371-
1 

Seasonal adjustment 
exponential smoothing, 467-1 

Seasonal autoregressive parameters 
ARIMA, 471-3 

Seasonal decomposition forecasting, 
469-1 

Seasonal differencing 
ARIMA, 471-2 

Seasonal moving average parameters 
ARIMA, 471-3 

Seasonal time series 
Box Jenkins, 470-4 

Second format, 102-8 
Select all output, 106-4 
Selecting procedures, 1-7 
Selection method 

stepwise regression, 311-4 
Selection procedure 

forward, 311-1 
Sensitivity 

1-sample binary diagnostic test, 
535-2 

2-sample binary diagnostic, 537-
2 

clustered binary diagnostic, 538-8 
paired binary diagnostic, 536-2 
ROC curves, 545-1, 545-24 

Sequence plot 
multiple regression, 305-69 

Sequence transformation, 119-6 

Sequential models report 
multiple regression, 305-56 

Ser transformation, 119-6 
Serial correlation 

linear regression, 300-4 
residuals, 305-53 

Serial correlation plot 
multiple regression, 305-68 

Serial numbers, 1-3, 100-1 
Serial-correlation 

linear regression, 300-50 
SERIESA dataset, 470-8, 474-7 
Shapiro-Wilk 

linear regression, 300-18 
multiple regression, 305-17 

Shapiro-Wilk test 
descriptive statistics, 200-22 
linear regression, 300-49 

Shinozaki and Kari model 
curve fitting, 351-4 
growth curves, 360-2 

Short transformation, 119-7 
Sigma 

Xbar R, 250-19 
Sigma multiplier 

Xbar R, 250-17 
Sign test, 205-17 
Sign transformation, 119-8 
SIGN(z) 

piecewise polynomial models, 
365-6 

Signal-to-noise ratio 
R & R, 254-3 

Silhouette 
fuzzy clustering, 448-9 
medoid partitioning, 447-13 

Silhouettes 
medoid partitioning, 447-5 

Similarities 
multidimensional scaling, 435-4 

Simple average 
double dendrograms, 450-2 
hierarchical clustering, 445-3 

Simplex algorithm 
linear programming, 480-1 

Simulation, 122-1 
Beta distribution, 122-3 
Binomial distribution, 122-5 
Cauchy distribution, 122-5 
Constant distribution, 122-6 
contaminated normal, 122-21 
data, 15-1 
Exponential distribution, 122-6 
F distribution, 122-7 
Gamma distribution, 122-7 
Likert-scale, 122-8, 122-22 
Multinomial distribution, 122-8 
Normal distribution, 122-9, 122-

20 
Poisson distribution, 122-9 
skewed distribution, 122-10 
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Student's T distribution, 122-10 
syntax, 122-13 
T distribution, 122-10 
Tukey's lambda distribution, 122-

10 
Uniform distribution, 122-11 
Weibull distribution, 122-12 

Simultaneous C.I.’s 
T2, 405-9, 410-10 

Sin transformation, 119-17 
Single linkage 

double dendrograms, 450-2 
hierarchical clustering, 445-3 

Single-to-noise ratio 
R & R, 254-19 

Single-variable charts, 140-1 
Sinh transformation, 119-17 
Skewed distribution 

simulation, 122-10 
Skewness, 200-2 

descriptive statistics, 200-17 
t-test, 205-15 

Skewness test 
descriptive statistics, 200-24 

Slices 
pie charts, 142-1 

Slope 
linear regression, 300-39 

Slopes 
testing for equal 

multiple regression, 305-86 
SMOKING dataset, 525-2, 525-5 
Smooth transformation, 119-16 
Smoothing constant 

exponential smoothing, 465-1, 
466-2 

Smoothing constants 
exponential smoothing, 467-2 

Smoothing interval 
item response analysis, 506-4 

Solo exporting, 116-1 
Solo exporting, 116-1 
Solo importing, 115-1 
Sort, 103-6 
Sort transformation, 119-12 
Spath 

medoid partitioning, 447-4 
SPC fundamentals 

Xbar R, 250-38 
Spearman correlation 

linear regression, 300-45 
Spearman rank 

correlation matrix, 401-3 
Spearman rank correlation 

linear regression, 300-12 
Specificity 

1-sample binary diagnostic test, 
535-2 

2-sample binary diagnostic, 537-
2 

clustered binary diagnostic, 538-8 

paired binary diagnostic, 536-2 
ROC curves, 545-1, 545-24 

Spectral analysis, 468-1 
Spectral density 

spectral analysis, 468-3 
Spectrum 

spectral analysis, 468-1 
Sphericity test 

factor analysis, 420-14 
Splice transformation, 119-12 
Spline 

scatter plot, 161-15 
Split plot analysis 

mixed models, 220-1 
Split plot data example 

mixed models, 220-98 
Spread, 140-5 
Spreadsheet 

limits, 102-1 
overview, 102-1 

Spreadsheet/database comparison, 
102-4 

SPSS importing, 115-1 
Sqrt transformation, 119-8 
Standard deviation, 200-16 

confidence limits, 207-2 
descriptive statistics, 200-16 
ratio, 207-2 
unbiased, 200-17 

Standard error, 200-13 
linear regression, 300-40 
Poisson regression, 325-26 

Standardization 
PC regression, 340-1 
ridge regression, 335-3 

Standardize transformation, 119-16 
Standardized coefficients 

linear regression, 300-40 
multiple regression, 305-49 

Standardized difference, 123-15 
Standardized residual 

linear regression, 300-19, 300-61, 
300-64 

multiple regression, 305-18, 305-
63 

nondetects regression, 345-13 
Start time variable 

Weibull fitting, 550-12 
Starting NCSS, 1-2, 2-1, 100-1, 101-

2 
Starting values 

curve fitting, 350-3 
nonlinear regression, 315-1 

Stata file exporting, 116-1 
Statistical functions transformations, 

119-15 
Std error 

of kurtosis, 200-18 
of skewness, 200-18 
of standard deviation, 200-16 
of variance, 200-15 

of X-mean, 200-20 
Std Error 

of Coefficient of Variation, 200-
18 

Stddev transformation, 119-16 
StdRangeProb transformation, 119-

11 
StdRangeValue transformation, 119-

11 
Stem-leaf 

depth, 200-27 
leaf, 200-28 
stem, 200-27 
unit, 200-28 

Stem-leaf plot 
descriptive statistics, 200-27 

Stephens test 
circular data, 230-7 

Stepwise regression, 311-1 
Cox regression, 565-11 
logistic regression, 320-17 
multiple regression, 305-23 
Poisson regression, 325-6 

Storing results 
linear regression, 300-35 
multiple regression, 305-42 

Stratification based on propensity 
scores, 124-1 

Stratification of a database, 124-1 
Stress 

multidimensional scaling, 435-3 
Stress A 

parametric survival regression, 
566-6 

Stress B 
parametric survival regression, 

566-6 
Stress plot 

parametric survival regression, 
566-19 

Stress variable 
parametric survival regression, 

566-6 
Student’s t distribution 

probablility calculator, 135-6 
Studentized deviance residuals 

Poisson regression, 325-5 
Studentized Pearson residuals 

Poisson regression, 325-5 
Studentized range 

one-way ANOVA, 210-5 
Studentized range distribution 

probablility calculator, 135-6 
Studentized residuals 

Poisson regression, 325-34 
Studentized-range distribution 

transformation, 119-11 
Student's T distribution 

simulation, 122-10 
Style file 

grid plot, 173-8 
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Style file 
box plot, 152-13 
histogram, 143-16 
probability plot, 144-19 
scatter plot, 161-22 

Style files 
multiple regression, 305-38 

Subset of a database, 14-1 
Subset selection 

Cox regression, 565-11, 565-48 
logistic regression, 320-17 
multiple regression, 305-23, 305-

32 
Poisson regression, 325-6, 325-37 

Subset selection report 
multiple regression, 305-80 

Subset selection tutorial 
multiple regression, 305-79 

Sum of exponentials 
curve fitting, 351-9 
growth curves, 360-8 

Sum of functions models, 380-1 
Sum of squares 

multiple regression, 305-49, 305-
55 

Sum transformation, 119-16 
Sunflower plot 

scatter plot, 161-18 
SUNSPOT dataset, 468-9, 472-7 
Support services, 100-2 
Surface charts, 140-1, 141-1 
Surface plot 

depth, 171-7 
elevation, 171-6 
perspective, 171-6 
projection method, 171-7 
rotation, 171-7 

Surface plots, 140-10, 171-1 
Survival 

cumulative, 565-4 
Survival analysis 

Kaplan-Meier, 555-1 
life-table analysis, 570-1 
time calculator, 580-1 
Weibull fitting, 550-1 

Survival curves 
Kaplan-Meier, 555-1 

SURVIVAL dataset, 555-14, 555-
37, 575-1, 575-5 

Survival distribution 
Cox regression, 565-2 

Survival function 
Kaplan-Meier, 555-2 
Weibull fitting, 550-2 

Survival plot 
Kaplan-Meier, 555-35 

Survival quantiles 
Kaplan-Meier, 555-6, 555-30 

SUTTON 22 dataset, 456-6, 456-14 
SUTTON30 dataset, 455-6, 455-13 
Symbol settings window, 181-1 

Symmetric-binary variables 
fuzzy clustering, 448-4 
hierarchical clustering, 445-6 
medoid partitioning, 447-2 

Symmetry, 200-2, 206-25 
Symphony exporting, 116-1 
Syntax 

macros, 130-2 
SYS exporting, 116-1 
Systat exporting, 116-1 
Systat importing, 115-1 
System requirements, 1-1 

T 
T distribution 

simulation, 122-10 
T2 alpha 

data screening, 118-3 
T2 Dataset, 405-3, 405-5, 405-10 
T2 value, 410-7 
Tables 

descriptive, 201-1 
Taguchi designs, 266-1 
Tan transformation, 119-17 
Tanh transformation, 119-17 
Target specification, 250-20 
Tarone-Ware test 

Kaplan-Meier, 555-12 
nondetects analysis, 240-3 

Template, 105-1 
default, 105-1 
new, 105-1 
open, 105-1 
save, 105-2 
saving, 8-5 

Terms 
multiple regression, 305-35 

Text data, 102-1 
Text functions transformations, 119-

17 
Text settings window, 182-1 
Theoretical ARMA, 475-1 
Thetas 

theoretical ARMA, 475-2 
Three-variable charts, 140-10 
Threshold limit 

Xbar R, 250-23 
Tick label settings window, 186-1 
Tick settings window, 185-1 
Tickmarks, 185-1 
Ties method 

Cox regression, 565-17 
Tile horizontally, 106-5 
Tile vertically, 106-5 
Time calculator, 580-1 
Time format, 102-8 
Time remaining 

life-table analysis, 570-4 

Time variable 
Cox regression, 565-16 
life-table analysis, 570-6 
parametric survival regression, 

566-4 
TIMECALC dataset, 580-3 
TNH(Z) 

piecewise polynomial models, 
365-6 

Tolerance 
multiple regression, 305-57 
PC regression, 340-13 
ridge regression, 335-17 

Tolerance intervals, 585-1 
Toolbar 

customizing, 107-3 
Topic search 

goto window, 106-4 
TOST 

two-sample, 207-1 
Tprob transformation, 119-11 
TPT exporting, 116-1 
Transformation 

recoding, 3-4 
Transformation operators, 119-4 
Transformations, 3-1, 102-6, 119-1 

Abs, 119-7 
Arc sine, 119-17 
Arc tangent, 119-17 
ArCosh, 119-17 
Arsine, 119-17 
ArSinh, 119-17 
ArTan, 119-17 
ArTanh, 119-17 
Average, 119-15 
BetaProb, 119-8 
BetaValue, 119-8 
BinomProb, 119-8 
BinomValue, 119-8 
BinormProb transformation, 119-

8 
Collate, 119-12 
conditional, 120-1 
Contains, 119-17 
CorrProb, 119-8 
CorrValue, 119-8 
Cos, 119-17 
Cosh, 119-17 
Cosine, 119-17 
Count, 119-15 
CsProb, 119-9 
CsValue, 119-9 
Cum, 119-7 
date functions, 119-6 
Day, 119-6 
Exp, 119-7 
ExpoProb, 119-9 
ExpoValue, 119-9 
Extract, 119-18 
file function, 119-15 
fill functions, 119-6 
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Fprob, 119-9 
Fraction, 119-7 
Fvalue, 119-9 
GammaProb, 119-9 
GammaValue, 119-9 
HypergeoProb, 119-9 
if-then, 120-1 
indicator variables, 119-19 
Int, 119-7 
Join, 119-18 
Julian date, 119-6 
Lagk, 119-16 
Lcase, 119-18 
Ledk, 119-16 
Left, 119-18 
Length, 119-18 
Ln(X), 119-7 
Log, 119-7 
LogGamma, 119-9 
logic operators, 119-5 
Logit, 119-7 
Lookup, 119-14 
mathematical functions, 119-7 
Mavk, 119-16 
Max, 119-16 
Min, 119-16 
Mod, 119-7 
Month, 119-6 
NcBetaProb, 119-9 
NcBetaValue, 119-10 
NcCsProb, 119-10 
NcCsValue, 119-10 
NcFprob, 119-10 
NcFvalue, 119-10 
NcTprob, 119-10 
NcTvalue, 119-10 
Negative binomial, 119-10 
NegBinomProb, 119-10 
Non-central Beta, 119-10 
Non-central Chi-square, 119-10 
noncentral-F distribution, 119-10 
noncentral-t distribution 

transformation, 119-10 
NormalProb, 119-10 
NormalValue, 119-10 
NormScore, 119-16 
numeric functions, 119-6 
PoissonProb, 119-11 
probability functions, 119-8 
RandomNormal, 119-11 
random-number functions, 119-

11 
Rank, 119-16 
rearrangement functions, 119-12 
Recode, 119-15 
recode functions, 119-14 
recoding, 11-1 
Remove, 119-18 
Repeat, 119-18 
Replace, 119-18 
Right, 119-19 

Round, 119-7 
Sequence, 119-6 
Ser, 119-6 
Short, 119-7 
Sign, 119-8 
simulation, 15-1 
Sin, 119-17 
Sinh, 119-17 
Smooth, 119-16 
Sort, 119-12 
Splice, 119-12 
Sqrt, 119-8 
Standardize, 119-16 
statistical functions, 119-15 
Stddev, 119-16 
StdRangeProb, 119-11 
StdRangeValue, 119-11 
Studentized-range distribution, 

119-11 
Sum, 119-16 
Tan, 119-17 
Tanh, 119-17 
text functions, 119-17 
Tprob, 119-11 
trigonometric functions, 119-17 
Tvalue, 119-11 
Ucase, 119-19 
UnCollate, 119-13 
Uniform, 119-11 
Uniques, 119-13 
UnSplice, 119-14 
WeibullProb, 119-11 
WeibullValue, 119-11 
Year, 119-6 

Transition type 
piecewise polynomial models, 

365-6 
Tricube weights 

linear regression, 300-13 
Trigamma 

beta distribution fitting, 551-14 
Trigonometric functions 

transformations, 119-17 
Trim-mean 

descriptive statistics, 200-19 
Trimmed 

descriptive statistics, 200-19 
Trim-std dev 

descriptive statistics, 200-19 
Tschuprow’s T 

cross tabulation, 501-14 
T-test 

1-Sample T2, 405-1 
assumptions, 205-22 
average difference plot, 205-20 
bootstrapping, 205-3 
histogram, 205-20 
kurtosis, 205-15 
multiplicity factor, 205-19 
nonparametric tests, 205-17 
normality, 205-15 

outliers, 205-22 
probability plot, 205-20 
skewness, 205-15 

T-test of difference 
two proportions, 515-8 

T-tests 
meta-analysis of means, 455-1 
one sample, 205-1 
paired, 205-1 
two-sample, 206-1 
two-sample (means/SDs), 207-1 

Tukey’s biweight 
multiple regression, 305-27 

Tukey-Kramer test 
one-way ANOVA, 210-8 

Tukey's lambda distribution 
simulation, 122-10 

TUTOR dataset, 220-98 
Tutorial 

general, 101-1 
linear regression, 300-37 

Tvalue transformation, 119-11 
Two correlated proportions, 520-1 
Two independent proportions, 515-1 
Two proportions, 515-1 
Two sample t-test (from 

means/SDs), 207-1 
Two-level designs, 260-1 
Two-level factorial designs, 260-1 
TWOSAMPLE dataset, 220-69, 220-

72 
Two-sample t-test, 5-1, 206-1 

assumptions, 206-18, 206-27 
bootstrapping, 206-3 
degrees of freedom, 206-13 

TWOSAMPLE2 dataset, 220-70, 
220-73 

TWOSAMPLECOV dataset, 220-76 
Two-variable charts, 140-4, 140-7 
Two-way tables 

cross tabulation, 501-1 
TXT exporting, 116-1 
TXT importing, 115-1 

U 
Ucase transformation, 119-19 
U-chart, 251-2 
Unbiased std dev 

descriptive statistics, 200-17 
UnCollate transformation, 119-13 
Unconditional tests 

two proportions, 515-5 
Undo, 103-4 
Unequal variance t-test, 206-2 
Uniform distribution 

simulation, 122-11 
Uniform kernel 

Kaplan-Meier, 555-8 
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Weibull fitting, 550-34 
Uniform transformation, 119-11 
Uniformity test 

circular data, 230-3 
Uniques transformation, 119-13 
Unknown censor 

Cox regression, 565-18 
Kaplan-Meier, 555-17 
life-table analysis, 570-6 

UnSplice transformation, 119-14 
Unweighted means F-tests, 211-1 
User written models, 385-1 
UWM F-tests, 211-1 

properties of, 211-1 

V 
Validation 

Cox regression, 565-55 
life-table analysis, 570-24 

Validity 
item analysis, 505-1 

Value labels, 13-1, 102-10 
Variable 

data type, 102-10 
format, 102-6 
labels, 102-6 
names, 101-1, 102-5 
numbers, 102-5 
transformations, 102-6 

Variable format, 102-6 
Variable info, 102-5 

tutorial, 101-2 
Variable info file, 102-1 
Variable info sheet, 102-1 
Variable info tab, 2-4 
Variable labeling, 2-4 
Variable labels, 102-6 
Variable matching, 123-3 
Variable name, 2-4 
Variable names, 102-5 

rules for, 2-5 
Variable numbers, 102-5 
Variable selection, 310-1 

Cox regression, 565-11 
logistic regression, 320-17 
multiple regression, 305-23 
Poisson regression, 325-6 
principal components analysis, 

425-8 
Variables 

naming, 101-2 
Variables charts, 250-1 
Variance 

descriptive statistics, 200-15 
linear regression, 300-5 
multiple regression, 305-13 

Variance components 
R & R, 254-3, 254-11 

Variance inflation factor 
multiple regression, 305-8, 305-

57 
PC regression, 340-12 
ridge regression, 335-16 

Variance inflation factor plot 
ridge regression, 335-19 

Variance inflation factors 
ridge regression, 335-2 

Variance ratio test, 206-19 
Variance test 

equal, 206-19 
linear regression, 300-50 

Variances 
equality of, 206-20 
testing equality of multiple, 210-

18 
Variates 

canonical correlation, 400-1 
Varimax rotation 

factor analysis, 420-4 
principal components analysis, 

425-7 
VIF 

multiple regression, 305-8 
ridge regression, 335-2 

Violin plot 
density trace, 154-1 

Violin plots, 140-6, 154-1 
Von Mises distribution 

circular data, 230-5 

W 
W mean 

appraisal ratios, 485-8 
Wald method 

correlated proportions, 520-4 
Wald statistic 

Poisson regression, 325-26 
Wald test 

Cox regression, 565-11, 565-33 
logistic regression, 320-9 

Walter’s confidence intervals 
two proportions, 515-22 

Ward’s minimum variance 
double dendrograms, 450-3 
hierarchical clustering, 445-4 

Watson & Williams test 
circular data, 230-7 

Watson test 
circular data, 230-4 

Watson-Williams F test 
circular data, 230-10 

WEIBULL dataset, 550-12, 550-27, 
550-44, 552-3, 552-12, 555-27 

Weibull distribution 
probablility calculator, 135-6 
simulation, 122-12 

Weibull fitting, 550-6 
Weibull fitting, 550-1 
Weibull model 

curve fitting, 351-7 
growth curves, 360-6 

Weibull probability plot, 144-17 
Weibull regression, 566-1 
WEIBULL2 dataset, 144-17 
WeibullProb transformation, 119-11 
WeibullValue transformation, 119-

11 
Weight variable 

linear regression, 300-25 
multiple regression, 305-28 

WEIGHTLOSS dataset, 220-85 
WESTGARD dataset, 252-9 
Westgard rules, 252-1 
Westlake’s confidence interval, 235-

6 
Whiskers 

box plot, 152-5 
Wilcoxon rank-sum test, 206-1, 206-

20 
Wilcoxon signed-rank test, 205-18 
Wilcoxon-Mann-Whitney test 

cross-over analysis using t-tests, 
235-8 

Wilks’ lambda 
canonical correlation, 400-10 
discriminant analysis, 440-2 
MANOVA, 415-2 

Wilson score limits 
one proportion, 510-2 

Wilson’s score 
correlated proportions, 520-3 
two proportions, 515-19 

Window 
data, 7-1 
output, 9-1 

Windows 
navigating, 1-4 

Winters forecasting 
exponential smoothing, 467-1 

Within factor 
repeated measures, 214-9 

Within subject 
repeated measures, 214-2 

WK exporting, 116-1 
WKQ exporting, 116-1 
Woolf’s odds ratio analysis 

Mantel-Haenszel test, 525-11 
Word processor, 9-1 
Working-Hotelling C.I. band 

linear regression, 300-6 
Working-Hotelling limits 

linear regression, 300-60 
WR1 exporting, 116-1 
WRK exporting, 116-1 

 



  Index-25 

 

X 
Xbar chart, 250-1 
Xbar R chart, 250-1 
XLS exporting, 116-1 

Y 
Year format, 102-8 

Year transformation, 119-6 
Yule-Walker 

automatic ARMA, 474-1 

Z 
Zero time replacement 

beta distribution fitting, 551-3 
cumulative incidence, 560-4 
gamma distribution fitting, 552-4 

parametric survival regression, 
566-4 

Weibull fitting, 550-13 
ZHOU 175 dataset, 545-33 
ZINC dataset, 345-15 
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