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Preface 
Number Cruncher Statistical System (NCSS) is an advanced, easy-to-use statistical analysis 
software package. The system was designed and written by Dr. Jerry L. Hintze over the last 
several years. Dr. Hintze drew upon his experience both in teaching statistics at the university 
level and in various types of statistical consulting. 

The present version, written for 32-bit versions of Microsoft Windows (95, 98, ME, 2000, NT, 
etc.) computer systems, is the result of several iterations. Experience over the years with several 
different types of users has helped the program evolve into its present form. 

Statistics is a broad, rapidly developing field. Updates and additions are constantly being made to 
the program. If you would like to be kept informed about updates, additions, and corrections, 
please send your name, address, and phone number to: 

 
 User Registration 
 NCSS 
 329 North 1000 East 
 Kaysville, Utah 84037 
  
or Email you name, address, and phone number to: 
 
 Sales@NCSS.COM 
 
NCSS maintains a website at WWW.NCSS.COM where we make the latest edition of NCSS 
available for free downloading. The software is password protected, so only users with valid 
serial numbers may use this downloaded edition. We hope that you will download the latest 
edition routinely and thus avoid any bugs that have been corrected since you purchased your 
copy. 

NCSS maintains the following program and documentation copying policy. Copies are limited to 
a one person / one machine basis for “BACKUP” purposes only. You may make as many backup 
copies as you wish. Further distribution constitutes a violation of this copy agreement and will be 
prosecuted to the fullest extent of the law. 

NCSS is not “copy protected.”  You may freely load the program onto your hard disk. We have 
avoided copy protection in order to make the system more convenient for you. Please honor our 
good faith (and low price) by avoiding the temptation to distribute copies to friends and 
associates. 

We believe this to be an accurate, exciting, easy-to-use system. If you find any portion that you 
feel needs to be changed, please let us know. Also, we openly welcome suggestions for additions 
to the system. 
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Chapter 500 

Frequency Tables 
Introduction 
This procedure produces tables of frequency counts and percentages for discrete and continuous 
variables. This procedure serves as a summary reporting tool and is often used to analyze survey 
data. This procedure also calculates multinomial chi-square tests.  

Frequency Tables 
Frequency tables are generally produced on individual variables. For discrete data, the table 
records the number of observations (the frequency) for each unique value of the variable. For 
continuous data, you must specify a set of intervals (or bins). The frequency table now records the 
number of observations falling in each interval.  

Frequency tables are useful for analyzing discrete data and for screening data for data entry 
errors. 

Types of Categorical Variables 
Note that we will refer to two types of categorical variables: By and Break. Break variables are 
used to split a database into subgroups. A separate set of reports is generated for each unique set 
of values of the Break variables. The values of a By variable are used to define the rows of the 
frequency table. 

Data Structure 
The data below are a subset of the real estate sales (RESALE) database provided with the 
software. This data gives the selling price, the number of bedrooms, the total square footage 
(finished and unfinished), and the size of the lots for 150 residential properties sold during the last 
four months in two states. Only the first 8 of the 150 observations are displayed. 

 

RESALE dataset (subset) 

State Price Bedrooms TotalSqft LotSize 
Nev 260000 2 2042 10173 
Nev 66900 3 1392 13069 
Vir 127900 2 1792 7065 
Nev 181900 3 2645 8484 
Nev 262100 2 2613 8355 
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Missing Values 
Missing values may be ignored or included in the table’s counts and percentages. 

Procedure Options 
This section describes the options available in this procedure. To find out more about using a 
procedure, turn to the Procedures chapter. 

Variables Tabs 
This panel specifies the variables that will be used in the analysis. 

Specify one or more categorical variables whose categories (values) will appear along the rows of 
the frequency table. If more than one categorical variable is specified, a separate table will be 
generated for each variable.  

Four types of categorical variables may be specified: 

1. Variables containing text values. 

2. Variables containing numeric values that are to be treated individually. For example, you 
might have used a set of index numbers like “1 2 3 4” to represent four states. 

3. Variables containing numeric values that are to be grouped or combined into a set of 
predefined intervals. You specify the interval boundaries. For example, a variable 
containing age values might be grouped as “Under 21, 21 to 55, and Over 55.” The key is 
that you specify the intervals. 

4. Variables containing numeric values that are to be combined into a set of computer-
generated intervals. You specify only the number of intervals. The program determines a 
set of equal-length intervals based on the minimum and maximum found in the data. 

Variables for Use in Frequency 
Tables 

Discrete Variables 
This option specifies those variables that contain text and numeric values that are to be treated as 
discrete variables (Types 1 or 2). Variables containing text values are always listed here. 
Variables containing numeric values are listed here if you want each unique value to be treated 
separately. 

Numeric Variables (Width) 
Use this option to specify variables that contain numeric values that are to be combined into a set 
of computer-generated intervals (Type 4). The intervals are specified in the three boxes: Number, 
Minimum, and Width. Note that you can specify one, two, or all three of these options.  

Number 
The number of intervals to be created. If not enough intervals are specified to reach the maximum 
data value, more intervals are added. 
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Minimum 
The minimum value or the left boundary of the first interval. This value must be less than the 
minimum data value. 

Width 
This is the width of an interval. A data value X is in this interval if Lower Limit < X <= Upper 
Limit. If this is left blank, it is calculated from the Number, Minimum, and maximum data value. 

Numeric Variables (W) 
This specifies those variables that contain numeric values that are to be combined into a set of 
user-specified intervals (Type 3). The interval boundaries are specified as a list in the Interval 
Upper Limits box. 

Interval Upper Limits 
Specify the upper limits of the intervals, separated by blanks or commas. For example, you would 
enter “1 3 5” to specify the four intervals: Under 1, 1 to 3, 3 to 5, and Over 5.  

The logic structure of the interval is: 

Lower Bound < Value <= Upper Bound. 

Note that a “1” would be included in the “Under 1” interval, not the  “1 to 3” interval. Also, a “5” 
would be included in the “3 to 5” interval, not the “Over 5” interval. 

Frequency Variable 

Frequency Variable 
This optional variable specifies the number of observations that each row represents. When 
omitted, each row represents a single observation. If your data is the result of previous 
summarization, you may want certain rows to represent several observations. Note that negative 
values are treated as a zero weight and are omitted. Fractional values may be used. 

This option is used when you want to enter previously tabulated data for a multinomial test. 

Breaks Tab 
This panel lets you specify up to eight break variables. 

Select Break (Grouping) Variables 

Break Variables 
Specify one or more categorical variables whose distinct values will cause separate reports to be 
generated. Note that a separate set of reports (tables and plots) is generated for each unique set of 
values of these variables. Do not confuse these variables with the Discrete Variables, which 
specify the variables whose values will appear along the rows of a particular table. 
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Missing Tab 
This panel lets you specify up to five missing values (besides the default of blank). For example, 
‘0’, ‘9’, or ‘NA’ may be missing values in your database. 

Missing Value Options 

Missing Values 
Specify up to five missing values here. 

Missing Value Inclusion 
Specifies whether to include observations with missing values in the tables.  

• Delete All 
Indicates that you want the missing values totally ignored. 

• Include in Counts 
Indicates that you want the number of missing values displayed, but you do not want them to 
influence any of the percentages. 

• Include in All  
Indicates that you want the missing values treated just like any other category. They will be 
included in all percentages and counts. 

Format Tab 
The following options control the format of the reports. 

Format Options 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option lets you select whether to display only values, value labels, or both. Use this option if 
you want the table to automatically attach labels to the values (like 1=Yes, 2=No, etc.). See the 
section on specifying Value Labels elsewhere in this manual.  

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Label Justification 
This option specifies whether the labels should be right or left justified above each column. 
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Data Justification 
This option specifies whether the data should be right or left justified in each cell. 

Split Column Headings 
This option lets you select whether to split the column headings into two headings instead of one. 

Tabs 
These options let you specify the tab settings across the table. The output ruler is also modified by 
the settings of Label Justification  and Data Justification. 

First 
Specifies the position of the first cell in inches. Note that the left-hand label always begins at 0.5 
inches. Hence, the distance between this tab and 0.5 is the width provided for the row label 
information. 

Maximum 
Specifies the right border of the table. The number of tabs is determined based on First, the 
Increment, and this option. If you set this value too large, your table may not be printed correctly. 

Increment 
Specifies the width of a cell in inches. 

Offset 
The amount (inches) of offset to the right used with a decimal tab on a custom ruler so the data is 
aligned properly under the left-justified column labels. 

Decimal Places 
These options let you specify the number of decimal places used in the various items of the table. 

By Labels 
Specifies the number of decimal places displayed in the numeric categorical variable values. Note 
that All displays a single-precision (seven place accuracy). 

Counts ... Table %s 
Specifies the number of decimal places displayed in each statistic. Note that All displays the 
default amount. 

Reports Tab 
These options control which of the available reports and plots are displayed.  

Select Reports 

Frequency Table Report ... Table Percentages Report 
Check each report that you want displayed. 
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Select Plots 

Counts Plot ... Table Percentages Plot 
Check each plot that you want displayed. 

Combined Report 

Show Combined Report 
Specify whether to display this report. 

Combined Report – Items on Report 

Counts ... Table Percents 
Specify whether to display these items on the combined report. 

Combined Report – Options 

Double Space Report 
This option adds a blank row after each set of percentages in combined tables. 

Multinomial Tab 
These options let you specify a multinomial test on each frequency table. 

Multinomial Test Options 

Multinomial Test 
Indicate whether to calculate a multinomial test  

Expected Values for Multinomial Test 
The multinomial test is a test of the proportions associated with a frequency table. In order to run 
the test, you need a set of hypothesized proportions. This box lets you enter these proportions. 
There are two ways of specifying the hypothesized proportions.  

First, you can leave it blank to indicate that you want to test whether the proportions in the 
frequency table are all equal. This is the same as entering “1,1,1,1,1,1” (if the variable has six or 
fewer categories). 

Second, you can enter a set of values separated by commas. These values are then rescaled so that 
they sum to one. For example, the entry “1,1,1,1” would be rescaled to “0.25, 0.25, 0.25, 0.25.” If 
you enter more numbers than are needed for a particular table, the extras are ignored. If you do 
not enter enough numbers, the remaining proportions are set to zero. 
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Plot Options Tab 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Connect Line(s) 
Specifies whether connect the points with lines for easier interpretation of trends. 

Plot Settings – Legend 

Show Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies legend label. A {G} is replaced by the appropriate default value. 

Titles 

Plot Title 
This is the text of the title. The characters {Y}, {X}, and {G} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 
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Show Break as Title 
Specifies whether the current values of any Break variables should be displayed as a second title 
line in the plot. 

Symbols Tab 
Specify the symbols used for each of the groups on the plots. 

Plotting Symbols 

Group 1-15  
Specify the symbol used to designate a particular group. Double-click on a symbol or click on the 
button to the right of a symbol to specify the symbol’s size, type, and color. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Standard Frequency Tables 
The data for this example are found in the RESALE database. You may follow along here by 
making the appropriate entries or load the completed template Example1 from the Template tab 
of the Frequency Tables window. 

1 Open the RESALE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Resale.s0. 
• Click Open. 

2 Open the Frequency Tables window. 
• On the menus, select Analysis, then Descriptive Statistics, then Frequency Tables. The 

Frequency Tables procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Frequency Tables window, select the Variables tab. (This is the default.) 
• Double-click in the Discrete Variables text box. This will bring up the variable selection 

window.  
• Select State and City from the list of variables and then click Ok. “State-City” will 

appear in the Discrete Variables box.  

4 Specify the report format. 
• Click on the Format tab. 
• In Variable Names, select Labels. 
• In Value Labels, select Value Labels. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Frequency Table Output 
  
 Frequency Distribution of State  
   Cumulative  Cumulative Graph of 
 State Count Count Percent Percent Percent 
 Nevada 88 88 58.67 58.67 |||||||||||||||||||||||| 
 Virginia 62 150 41.33 100.00 ||||||||||||||||| 
   
 Frequency Distribution of City  
   Cumulative  Cumulative Graph of 
 Community Count Count Percent Percent Percent 
 Silverville 27 27 18.00 18.00 |||||||| 
 Los Wages 49 76 32.67 50.67 |||||||||||||| 
 Red Gulch 12 88 8.00 58.67 |||| 
 Politicville 27 115 18.00 76.67 |||||||| 
 Senate City 24 139 16.00 92.67 ||||||| 
 Congresstown 11 150 7.33 100.00 ||| 
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This report presents the counts (the frequencies), percentages, and a rough bar graph of the data. 
Note that the bar graph is constructed so that each “|” is worth 2.5 percentage points. 

Example 2 – Multinomial Test Example 
Suppose we want to test whether the proportion for Nevada is 50% higher than that for Virginia. 
The data for this example are found in the RESALE database. You may follow along here by 
making the appropriate entries or load the completed template Example2 from the Template tab 
of the Frequency Tables window. 

1 Open the RESALE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Resale.s0. 
• Click Open. 

2 Open the Frequency Tables window. 
• On the menus, select Analysis, then Descriptive Statistics, then Frequency Tables. The 

Frequency Tables procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Frequency Tables window, select the Variables tab. (This is the default.)  
• Double-click in the Discrete Variables text box. This will bring up the variable selection 

window.  
• Select State from the list of variables and then click Ok. “State” will appear in the 

Variables box.  

4 Specify the report format. 
• Click on the Format tab. 
• In Variable Names, select Labels. 
• In Value Labels, select Value Labels. 

5 Specify the Multinomial test. 
• Click on the Multinomial tab. 
• Check the Multinomial Test box. 
• In Expected Values for Multinomial Test box, enter 60, 40. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Multinomial Test Output 
 

 Frequency Distribution of State 
   Cumulative  Cumulative Graph of 
 State Count Count Percent Percent Percent 
 Nevada 88 88 58.67 58.67 |||||||||||||||||||||||| 
 Virginia 62 150 41.33 100.00 ||||||||||||||||| 
  
 Multinomial Test of State 
   Expected Actual Expected Chi-Square 
 State Count Count Percent Percent Amount 
 Nevada 88 90.00 58.67 60.00 0.0444 
 Virginia 62 60.00 41.33 40.00 0.0667 
  
 Chi-Square = 0.1111 with df = 1   Probability Level = 0.738883 
 

The first table is the standard frequency table. The second table presents the results of the 
multinomial test. Note that in this case, the test is not signification. 

Count 
The number of observations (rows) in which the variable has the value reported on this line. This 
is the value of Oi. 

Expected Count 
The number of observations (rows) that would be obtained if the hypothesized proportions were 
followed exactly. This is the value of Ei. 

Actual Percent 
The percent that this category is of the total. 

Expected Percent 
The percentage that this category would have if the hypothesized proportions were followed 
exactly. 

Chi-Square Amount 
The amount that this line contributes to the Chi-square statistic. This is equal to 

( )
CS

O E
Ei

i i

i
=

− 2

 

where Oi is the actual count and Ei is the expected count of the ith category. 

Chi-Square 
This is the value of the chi-square test statistic. 
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df 
The degrees of freedom of the above test statistic. This is equal to the number of categories minus 
one. 
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Probability Level 
This is the significance level of the multinomial test. If you are testing at an alpha of 0.05, you 
would reject the null hypothesis that the hypothesized proportions are true if this value is less than 
0.05. 

Example 3 – Tables of Counts and Percentages 
This example will show how to obtain some of the other table formats that are available from this 
procedure. The data for this example are found in the RESALE database. You may follow along 
here by making the appropriate entries or load the completed template Example3 from the 
Template tab of the Frequency Tables window.  

1 Open the RESALE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Resale.s0. 
• Click Open. 

2 Open the Frequency Tables window. 
• On the menus, select Analysis, then Descriptive Statistics, then Frequency Tables. The 

Frequency Tables procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Frequency Tables window, select the Variables tab. (This is the default.)  
• Double-click in the Discrete Variables text box. This will bring up the variable selection 

window.  
• Select Garage, Fireplace, and Brick from the list of variables and then click Ok. 

“Garage-Fireplace,Brick” will appear in the Discrete Variables box.  

4 Specify the report format. 
• Click on the Format tab. 
• In Variable Names, select Labels. 
• In Value Labels, select Value Labels. 
• In Label Justification, select Right. 
• In Data Justification, select Right. 
• In Tabs - First, enter 2.0. 
• In Tabs - Increment, enter 0.75. 

5 Specify the reports. 
• Click on the Reports tab. 
• Remove the check from the Frequency Tables Report. 
• Check Row Percentage Report. 
• Check Column Percentage Report. 
• Check Row Percentage Report. 
• Check Table Percentage Report. 
• Check Column Percentage Plot. 
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• Check Row Percentage Plot. 
• Check Table Percentage Plot. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Tables of Counts and Percentages Output 
 

 Row Percentages Section 
  Values 
 Variables 0 0.5 1 2 3 Total 
 Garage Size 4.7 0.0 65.3 28.7 1.3 100.0 
 Fireplaces 26.0 0.0 52.0 22.0 0.0 100.0 
 Brick Ratio 34.0 31.3 34.7 0.0 0.0 100.0 
 Total 21.6 10.4 50.7 16.9 0.4 100.0 
   
 Column Percentages Section  
  Values 
 Variables 0 0.5 1 2 3 Total 
 Garage Size 7.2 0.0 43.0 56.6 100.0 33.3 
 Fireplaces 40.2 0.0 34.2 43.4 0.0 33.3 
 Brick Ratio 52.6 100.0 22.8 0.0 0.0 33.3 
 Total 100.0 100.0 100.0 100.0 100.0 100.0 
   
 Table Percentages Section  
  Values 
 Variables 0 0.5 1 2 3 Total 
 Garage Size 1.6 0.0 21.8 9.6 0.4 33.3 
 Fireplaces 8.7 0.0 17.3 7.3 0.0 33.3 
 Brick Ratio 11.3 10.4 11.6 0.0 0.0 33.3 
 Total 21.6 10.4 50.7 16.9 0.4 100.0 
  
 Plot Section 
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This report presents tables containing various percentages for all variables selected. It also 
provides scatter plots of the percentage values. 
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Example 4 – Combined Tables 
This example will show how to obtain a combined table of various counts and percentages. The 
data for this example are found in the RESALE database. You may follow along here by making 
the appropriate entries or load the completed template Example4 from the Template tab of the 
Frequency Tables window. 

1 Open the RESALE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Resale.s0. 
• Click Open. 

2 Open the Frequency Tables window. 
• On the menus, select Analysis, then Descriptive Statistics, then Frequency Tables. The 

Frequency Tables procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Frequency Tables window, select the Variables tab. (This is the default.)  
• Double-click in the Discrete Variables text box. This will bring up the variable selection 

window.  
• Select Garage, Fireplace, and Brick from the list of variables and then click Ok. 

“Garage-Fireplace,Brick” will appear in the Discrete Variables box.  

4 Specify the report format. 
• Click on the Format tab. 
• In Variable Names, select Labels. 
• In Value Labels, select Value Labels. 
• In Label Justification, select Right. 
• In Data Justification, select Right. 
• In Tabs - First, enter 2.0. 
• In Tabs - Increment, enter 0.75. 

5 Specify the reports. 
• Click on the Reports tab. 
• Remove the check from the Frequency Tables Report. 
• Check Show Combined Report. 
• Check Counts. 
• Check Row Percents. 
• Check Column Percents. 
• Check Table Percents. 
• Check Double Space Report. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Combined Tables Output 
 
 Combined Table Section 
   
 Counts, Row Pct, Column Pct, Table Pct  
   
  Values 
 Variables 0 0.5 1 2 3 Total 
 Garage Size     7 0 98 43 2 150 
   4.7 0.0 65.3 28.7 1.3 100.0 
   7.2 0.0 43.0 56.6 100.0 33.3 
   1.6 0.0 21.8 9.6 0.4 33.3 
               
 Fireplaces 39 0 78 33 0 150 
   26.0 0.0 52.0 22.0 0.0 100.0 
   40.2 0.0 34.2 43.4 0.0 33.3 
   8.7 0.0 17.3 7.3 0.0 33.3 
               
 Brick Ratio 51 47 52 0 0 150 
   34.0 31.3 34.7 0.0 0.0 100.0 
   52.6 100.0 22.8 0.0 0.0 33.3 
   11.3 10.4 11.6 0.0 0.0 33.3 
               
 Total 97 47 228 76 2 450 
   21.6 10.4 50.7 16.9 0.4 100.0 
   100.0 100.0 100.0 100.0 100.0 100.0 
   21.6 10.4 50.7 16.9 0.4 100.0 
 

This report presents a single table that combines the counts and percentages of all variables 
selected. 
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Chapter 501 

Cross Tabulation 
Introduction 
This procedure produces tables of counts and percentages of the joint distribution of two variables 
that each have only a few distinct values. Such tables are known as contingency, cross-tabulation, 
or crosstab tables. When a breakdown of more than two variables is desired, you can specify up 
to eight break variables in addition to the two table variables. A separate table is generated for 
each unique set of values of these break variables.  

This procedure serves as a summary reporting tool and is often used to analyze survey data. It 
also yields most of the popular contingency-table statistics such as chi-square, Fisher’s exact, and 
McNemar’s tests. 

Types of Categorical Variables 
Note that we will refer to two types of categorical variables: By and Break. Break variables are 
used to split a database into subgroups. A separate table is generated for each unique set of values 
of the Break variables. The values of a By variable are used to define the rows and columns of the 
crosstab table. Two By variables are used per table, one defining the rows of the table and the 
other defining the columns. 

Note that if you only want to use one By variable per table, you should use the Frequency Table 
procedure. 

Data Structure 
The data below are a subset of the Real Estate Sales database provided with the software. This 
(computer-simulated) data gives information including the selling price, the number of bedrooms, 
the total square footage (finished and unfinished), and the size of the lots for 150 residential 
properties sold during the last four months in two states. Only the first 8 of the 150 observations 
are displayed here. 

 

RESALE dataset (subset) 

State Price Bedrooms TotalSqft LotSize 
Nev 260000 2 2042 10173 
Nev 66900 3 1392 13069 
Vir 127900 2 1792 7065 
Nev 181900 3 2645 8484 
Nev 262100 2 2613 8355 
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Missing Values 
Missing values may be ignored or included in the table’s counts, percentages, and statistical tests. 

Procedure Options 
This section describes the options available in this procedure. To find out more about using a 
procedure, turn to the Procedures chapter. 

Variables Tab 
These two panels specify the variables that will be used in the analysis. 

Specify at least one Table Column variable and at least one Table Row variable. The unique 
values of these two variables will form the columns and rows of the crosstab table. If more than 
one variable is specified in either section, a separate table will be generated for each combination 
of variables.  

Four types of categorical variables may be specified: 

1. Variables containing text values. These are called Discrete Variables. 

2. Variables containing numeric values that are to be treated individually. For example, you 
might have used a set of index numbers like “1,2,3,4” to represent four states. These are 
also called Discrete Variables. 

3. Variables containing numeric values that are to be grouped or combined into a set of 
predefined intervals. You specify the interval boundaries. For example, a variable 
containing age values might be grouped as “Under 21, 21 to 55, and Over 55.” The key is 
that you specify the intervals. These are called Numeric Variables (Limits). 

4. Variables containing numeric values that are to be combined into a set of computer-
generated intervals. You specify only the number of intervals. The program determines a 
set of equal-length intervals based on the minimum and maximum found in the data. This 
format may cause problems since you do not set the interval boundaries directly. These 
are called Numeric Variables (Width). 

Variables for Use in Table Columns 
and Rows 

Discrete Variables 
This option specifies those variables that contain text and numeric values that are to be treated as 
discrete variables (Types 1 or 2). Variables containing text values are always listed here. 
Variables containing numeric values are listed here if you want each unique value to be treated 
separately. 

Numeric Variables (Width) 
Use this option to specify variables that contain numeric values that are to be combined into a set 
of computer-generated intervals (Type 4). The intervals are specified in the three boxes: Number, 
Minimum, and Width. Note that you can specify one, two, or all three of these options.  
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Number 
The number of intervals to be created. If not enough intervals are specified to reach the maximum 
data value, more intervals are added. 

Minimum 
The minimum value or the left boundary of the first interval. This value must be less than the 
minimum data value. 

Width 
This is the width of an interval. A data value X is in this interval if Lower Limit < X <= Upper 
Limit. If this is left blank, it is calculated from the Number, Minimum, and maximum data value. 

Numeric Variables (Limits) 
This specifies those variables that contain numeric values that are to be combined into a set of 
user-specified intervals (Type 3). The interval boundaries are specified as a list in the Interval 
Upper Limits box. 

Interval Upper Limits 
Specify the upper limits of the intervals, separated by commas. For example, you would enter 
“1,3,5” to specify the four intervals: Under 1, 1 to 3, 3 to 5, and Over 5.  

The logic structure of the interval is: 

Lower Bound < Value <= Upper Bound. 

Note that a “1” would be included in the “Under 1” interval, not the  “1 to 3” interval. Also, a “5” 
would be included in the “3 to 5” interval, not the “Over 5” interval. 

Frequency Variable 

Frequency Variable 
This optional variable specifies the number of observations that each row represents. When 
omitted, each row represents a single observation. If your data is the result of previous 
summarization, you may want certain rows to represent several observations. Note that negative 
values are treated as a zero frequency and are omitted. Fractional values may be used. You may 
also think of this as a weighting variable. 

Breaks Tab 
This panel lets you specify up to eight break variables. 

Select Break (Grouping) Variables 

Break Variables 
Specify one or more categorical variables whose distinct values will cause separate reports to be 
generated. Note that a separate set of reports (tables and plots) is generated for each unique set of 
values of these variables. Do not confuse these variables with the Table Column and Table Row 
variables, which specify the variables whose values will appear along the rows or columns of a 
particular table. 
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Missing Tab 
This panel lets you specify up to five missing values (besides the default of blank). For example, 
‘0’, ‘9’, or ‘NA’ may be missing values in your database. 

Missing Value Options 

Missing Values 
Specify up to five missing values here. 

• Delete All 
Indicates that you want the missing values totally ignored. 

• Include in Counts 
Indicates that you want the number of missing values displayed, but you do not want them to 
influence any of the percentages. 

• Include in All  
Indicates that you want the missing values treated just like any other category. They will be 
included in all percentages and counts. 

Format Tab 
The following options control the format of the reports. 

Format Options 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option lets you select whether to display only values, value labels, or both. Use this option if 
you want the table to automatically attach labels to the values (like 1=Yes, 2=No, etc.). See the 
section on specifying Value Labels elsewhere in this manual.  

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Label Justification 
This option specifies whether the labels should be right or left justified above each column. 

Data Justification 
This option specifies whether the data should be right or left justified in each cell. 

Split Column Headings 
This option lets you select whether to split the column headings into two headings instead of one. 
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Tabs 
These options let you specify the tab settings across the table. The output ruler is also modified by 
the settings of Label Justification  and Data Justification. 

First 
Specifies the position of the first cell in inches. Note that the left-hand label always begins at 0.5 
inches. Hence, the distance between this tab and 0.5 is the width provided for the row label 
information. 

Maximum 
Specifies the right border of the table. The number of tabs is determined based on First, the 
Increment, and this option. If you set this value too large, your table may not be printed correctly. 

Increment 
Specifies the width of a cell in inches. 

Offset 
The amount (inches) of offset to the right used with a decimal tab on a custom ruler so the data is 
aligned properly under the left-justified column labels. 

Decimal Places 
These options let you specify the number of decimal places used in the various items of the table. 

Column-By 
Specifies the number of decimal places displayed in the numeric Table Columns variable values. 
Note that All displays a single-precision (seven place accuracy). 

Row-By 
Specifies the number of decimal places displayed in the numeric Table Rows variable values. 
Note that All displays a single-precision (seven place accuracy). 

Counts ... Std Resid 
Specifies the number of decimal places displayed in each statistic. Note that All displays the 
default amount. 

Reports Tab 
These options control which of the available statistics are displayed.  

Select Reports 

List Report 
Specify whether to display the List Report. 

Fisher’s Exact Test 
Specify whether to display Fisher’s exact test (2-by-2 tables only). 

Armitage Proportion Trend Test 
Specify whether to display Armitage proportion trend test (2-by-k tables only). 
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Select Statistics to be Displayed in 
Reports and Plots 

Counts ... Std. Residual 
For each of these statistics, you specify whether you want a numeric report, a plot, or both. 

Chi-Square Stats 
Specify whether to display the chi-square test of independence and related statistical tests. 

Combined Report 
These options specify the combined report of counts and percentages. 

Show Combined Report 
Specify whether to display this report. 

Combined Report – Items on Report 

Counts ... Std. Residuals 
Specify whether to display these items on the combined report. 

Combined Report – Options 

Double Space Report 
This option adds a blank row after each set of percentages in combined tables. 

Plot Options Tab 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 



 Cross Tabulation  501-7 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Connect Line(s) 
Specifies whether connect the points with lines for easier interpretation of trends. 

Plot Settings – Legend 

Show Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies legend label. A {G} is replaced by the appropriate default value. 

Titles 

Plot Title 
This is the text of the title. The characters {Y}, {X}, and {G} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Show Break as Title 
Specifies whether the current values of any Break variables should be displayed as a second title 
line in the plot. 

Symbols Tab 
Specify the symbols used for each of the groups on the plots. 

Plotting Symbols 

Group 1-15  
Specify the symbol used to designate a particular group. Double-click on a symbol or click on the 
button to the right of a symbol to specify the symbol’s size, type, and color. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Standard Cross Tabulation Table 
The data for this example are found in the RESALE database. You may follow along here by 
making the appropriate entries or load the completed template Example1 from the Template tab 
of the Cross Tabulation window. 

1 Open the RESALE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Resale.s0. 
• Click Open. 

2 Open the Cross Tabulation window. 
• On the menus, select Analysis, then Descriptive Statistics, then Cross Tabulation. The 

Cross Tabulation procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Cross Tabulation window, select the Variables tab. (This is the default.)  
• Double-click in the Table Columns - Discrete Variables text box. This will bring up the 

variable selection window.  
• Click Clear and click Ok. The Table Columns - Discrete Variables box will be empty.  
• Double-click in the Table Rows - Discrete Variables text box. This will bring up the 

variable selection window.  
• Select State from the list of variables and then click Ok. “State” will appear in the Table 

Rows - Discrete Variables box.  
• Double-click in the Table Columns - Numeric Variables (Limits) text box. This will 

bring up the variable selection window.  
• Select Price from the list of variables and then click Ok. “Price” will appear in the Table 

Columns - Numeric Variables (Limits) box.  
• In the Table Columns - Interval Upper Limits box, enter 100000, 200000, 300000. 

4 Specify the report format. 
• Click on the Format tab. 
• In Variable Names, select Labels. 
• In Value Labels, select Value Labels. 
• In Label Justification, select Right. 
• In Data Justification, select Right. 
• Check Split Column Headings. 
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• In the Tabs - First box, select 2.0. 
• In the Decimal Places - Row %s, select 1. 

5 Specify the reports. 
• Click on the Reports tab. 
• In Row Percents, select Both. 
• In Chi-Sqr Stats, select Omit. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

The following reports and charts will be displayed in the Output window. 

Basic Cross Tabulation Output 
 

 Counts Section  
 
  Sales Price 
   Up to 100000 200000 Over   
 State 100000 To 200000 To 300000 300000 Total 
 Nevada 28 31 16 13 88 
 Virginia 13 27 16 6 62 
 Total 41 58 32 19 150 
 The number of rows with at least one missing value is 0 
   
 Row Percentages Section  
   
  Sales Price 
   
   Up to 100000 200000 Over   
 State 100000 To 200000 To 300000 300000 Total 
 Nevada 31.8 35.2 18.2 14.8 100.0 
 Virginia 21.0 43.5 25.8 9.7 100.0 
 Total 27.3 38.7 21.3 12.7 100.0 
 The number of rows with at least one missing value is 0 
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This report presents tables of the various statistics. A plot of the row percentages is also displayed 
to make interpreting the row percentages easier. We will now define each of the possible statistics 
that may be displayed in these tables: 
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Count 
The number of observations (rows) in the cell defined by the By variables. This is labelled Oij in 
the formulas below. 

Row Percent 
The percent that this cell’s count is of the row’s total count. The total used depends on which 
missing value option was specified. 

Column Percent 
The percent that this cell’s count is of the column’s total count. The total used depends on which 
missing value option was specified. 

Table Percent 
The percent that this cell’s count is of the total count of the table. The total used depends on 
which missing value option was specified. 

Expected Value 
The count that would be obtained if the hypothesis of row-column independence holds exactly. 
This is the value of Eij.  

E
R C

Nij
i j=  
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Chi-Square 
The amount that this cell contributes to the chi-square statistic. This and the next two items let 
you determine which cells impact the chi-square statistic the most. 
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Cell-Deviation 
The observed count minus the expected count. 

CD O Eij ij ij= −  

Std. Residual 
The standardized residual is the cell-deviation scaled by the square root of the expected value: 
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Example 2 – Chi-Square Test and Related Statistics 
The following example will demonstrate how to obtain a chi-square test for independence and 
related contingency table statistics. Our example generates a 2-by-2 table so that Fisher’s exact 
test will also print. The data for this example are found in the RESALE database. You may follow 
along here by making the appropriate entries or load the completed template Example2 from the 
Template tab of the Cross Tabulation window. 

1 Open the RESALE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Resale.s0. 
• Click Open. 

2 Open the Cross Tabulation window. 
• On the menus, select Analysis, then Descriptive Statistics, then Cross Tabulation. The 

Cross Tabulation procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Cross Tabulation window, select the Variables tab. (This is the default.)  
• Double-click in the Table Columns - Discrete Variables text box. This will bring up the 

variable selection window.  
• Click Clear and click Ok. The Table Columns - Discrete Variables box will be empty.  
• Double-click in the Table Rows - Discrete Variables text box. This will bring up the 

variable selection window.  
• Click Clear and click Ok. The Table Rows - Discrete Variables box will be empty.  
• Double-click in the Table Columns - Numeric Variables (Limits) text box. This will 

bring up the variable selection window.  
• Select Price from the list of variables and then click Ok. “Price” will appear in the Table 

Columns - Numeric Variables (Limits) box.  
• In the Table Columns - Interval Upper Limits box, enter 150000. 
• Double-click in the Table Rows - Numeric Variables (Limits) text box. This will bring 

up the variable selection window.  
• Select TotalSqft from the list of variables and then click Ok. “TotalSqft” will appear in 

the Table Rows - Numeric Variables (Limits) box.  
• In the Table Rows - Interval Upper Limits box, enter 2000. 

4 Specify the report format. 
• Click on the Format tab. 
• In Label Justification, select Right. 
• In Data Justification, select Right. 
• Check Split Column Headings. 
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• In the Tabs - First box, select 2.0. 
• In the Decimal Places - Row %s, select 1. 

5 Specify the reports. 
• Click on the Reports tab. 
• In Counts, select Omit. 
• In Chi-Sqr Stats, select All. 
• Check Fisher’s Exact Test. 
• Check Armitage Proportion Trend Test. 
• Check Show Combined Report. 
• Check Expected Values. 
• Check Chi-Squares. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Combined Report and Contingency Statistics 
 

 Combined Report  
  
 Counts, Expected, Chi-Square 
  
  Price 
   Under Over 
 TotalSqft 150000 150000 Total 
 Under 2000 44 43 87 
   40.0 47.0 87.0 
   0.40 0.34 0.00 
 Over 2000 25 38 63 
   29.0 34.0 63.0 
   0.55 0.47 0.00 
 Total 69 81 150 
   69.0 81.0 150.0 
   0.95 0.81 1.76 
   
 The number of rows with at least one missing value is 0 
   
 Chi-Square Statistics Section 
   
 Chi-Square 1.745203 
 Degrees of Freedom 1.000000 
 Probability Level 0.186481 Accept Ho 
 Phi 0.107864 
 Cramer's V 0.107864 
 Pearson's Contingency Coefficient 0.107242 
 Tschuprow's T 0.107864 
 Lambda A .. Rows dependent 0.000000 
 Lambda B .. Columns dependent 0.014493 
 Symmetric Lambda 0.007576 
 Kendall's tau-B 0.053423 
 Kendall's tau-B (with correction for ties) 0.107864 
 Kendall's tau-C 0.106133 
 Gamma 0.217328 
 Kappa reliability test 0.104792 
 Kappa's standard error 0.079324 
 Kappa's t value 1.321061 
 McNemar's Test Statistic 4.764706 
 McNemar's Degrees of Freedom 1.000000 
 McNemar's Probability Level 0.029049 
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 Armitage Test for Trend in Proportions  
 Ho:  p1  = p2  = p3 = ...  = pk  
 Armitage S -597 
 Standard Error of S 453.4233 
 Z-Value (Standardized S) -1.316651 
 Prob (Ha: Increasing Trend) 0.906022 Accept Ho 
 Prob (Ha: Decreasing Trend) 0.093978 Accept Ho 
 Prob (Ha: Any Trend) 0.187956 Accept Ho 
     
 Fisher's Exact Test Section  
   
  P1 P2 
 Proportions 0.637681 0.530864 
 Difference (D0 = P1-P2)  0.106817 
 Correlation Coefficient  0.107864 
   
 Hypothesis Prob Level Test Type Calculation Method 
 Ho: P1=P2   D=P1-P2 for a table 
 Ha: P1<P2 0.931755 One-Tailed Sum of prob's of tables where D<=D0 
 Ha: P1>P2 0.123935 One-Tailed Sum of prob's of tables where D>=D0 
 Ha: P1<>P2 0.245266 Two-Tailed Sum of prob's of tables where |D|>=|D0| 
 

Combined Report 
The combined report simply includes all the information in one table rather than creating a 
separate table for each item selected. 

Chi-Square Statistics Section 
This section presents various contingency table statistics for studying the independence between 
rows and columns of the crosstab (contingency) table. 

Chi-Square 
The chi-square statistic is used to test independence between the row and column variables. 
Independence means that knowing the value of the row variable does not change the probabilities 
of the column variable (and vice versa). Another way of looking at independence is to say that the 
row percentages (or column percentages) remain constant from row to row (or column to 
column).  

Note that this test requires large sample sizes to be accurate. An often quoted rule of thumb 
regarding sample size is that none of the expected cell values can be less than five. Although 
some users ignore the sample size requirement, you should be very skeptical of the test if you 
have cells in your table with zero counts. In the 2-by-2 case, consider using Fisher’s Exact Test 
for small samples. 

The formula for the chi-square test statistic is: 

( )
χ df

ij ij

ijji

O E

E
2

2

=
−

∑∑  

Degrees of Freedom 
This is the degrees of freedom, df, of the above chi-square test statistic. The formula is: 

df r c= − −( )(1 1)  
where r is the number of rows and c is the number of columns in the table. 
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Probability Level 
The probability of obtaining the above chi-square statistic or larger when the variables are 
independent. If you are testing at the alpha = 0.05 level of significance, this number must be less 
than 0.05 in order for the chi-square value to be significant. Significance means that the variables 
forming the rows and columns of the table are not independent. 

Phi 
A measure of association independent of the sample size. Phi ranges between 0 (no relationship) 
and 1 (perfect relationship). Phi was designed for two-by-two tables only. For larger tables, it has 
no upper limit and Cramer’s V should be used instead. The formula is 

φ χ
=

2

N
 

Cramer’s V 
A measure of association independent of sample size. This statistic is a modification of the Phi 
statistic so that it is appropriate for larger than two-by-two tables. V ranges between 0 (no 
relationship) and 1 (perfect relationship).  

V
K

=
−
φ 2

1
 

where K is the lesser of the number of rows and the number of columns. 

Pearson’s Contingency Coefficient 
A measure of association independent of sample size. It ranges between 0 (no relationship) and 1 
(perfect relationship). For any particular table, the maximum possible depends on the size of the 
table (a 2-by-2 table has a maximum of 0.707), so it should only be used to compare tables with 
the same dimensions. The formula is 

C
N

=
+
χ

χ

2

2  

Tschuprow’s T 
A measure of association independent of sample size. This statistic is a modification of the Phi 
statistic so that it is appropriate for larger than two-by-two tables. T ranges between 0 (no 
relationship) and 1 (perfect relationship), but 1 is only attainable for square tables. The formula is 

T
r c

=
− −
φ 2

1 1( )( )
 

Lambda A - Rows dependent 
This is a measure of association for cross tabulations of nominal-level variables. It measures the 
percentage improvement in predictability of the dependent variable (row variable or column 
variable), given the value of the other variable (column variable or row variable). The formula is 

a
i

ij i

i
=

( O ) - (R )

N - (R )
λ

∑max max

max
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Lambda B - Columns dependent 
See Lambda A above. The formula is 

b
j

ij j

j
=

( O ) - (C )

N - (C )
λ

∑max max

max
 

Symmetric Lambda 
This is a weighted average of the Lambda A and Lambda B above. The formula is 

λ =
( O ) + ( O ) - (R ) - (C )

2N - (R ) - (C )
i

ij
j

ij i j

i j

∑ ∑max max max max

max max
 

Kendall’s tau-B 
This is a measure of correlation between two ordinal-level (rankable) variables. It is most 
appropriate for square tables. To compute this statistic, you first compute two values, P and Q, 
which represent the number of concordant and discordant pairs, respectively. The formula is 

τ b
P Q

N N
=

−
−( ) /1 2

 

Kendall’s tau-B (with correction for ties) 
This is the same as the above, except a correction is made for the case when ties are found in the 
data. 

Kendall’s tau-C 
This is used in the case where the number of rows does not match the number of columns. The 
formula is 

τ c
P Q

N k k
=

−
−2 1 2( ) / ( )

 

where k is the minimum of r and c. 

Gamma 
This is another measure based on concordant and discordant pairs. The formula is 

γ =
−
+

P Q
P Q

 

Kappa Reliability Test 
Kappa is a measure of association (correlation or reliability) between two measurements of the 
same individual when the measurements are categorical. It tests if the counts along the diagonal 
are significantly large. Because Kappa is used when the same variable is measured twice, it is 
only appropriate for a square tables. Kappa is often used to study the agreement of two raters such 
as judges or doctors. Each rater classifies each individual into one of k categories. 

Rules-of-thumb for kappa: values less than 0.40 indicate low association; values between 0.40 
and 0.75 indicate medium association; and values greater than 0.75 indicate high association 
between the two raters. The formulas for Kappa, its standard error, and associated t-value are 
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McNemar Test 
The McNemar test was first used to compare two proportions that are based on matched samples. 
Matched samples occur when individuals (or matched pairs) are given two different treatments, 
asked two different questions, or measured in the same way at two different points in time. Match 
pairs can be obtained by matching individuals on several other variables, by selecting two people 
from the same family (especially twins), or by dividing a piece of material in half. 

The McNemar test has been extended so that the measured variable can have more than two 
possible outcomes. It is then called the McNemar test of symmetry. It tests for symmetry around 
the diagonal of the table. The diagonal elements of the table are ignored. 

The test is computed for square tables only. The formula is 

( )
( )χMC

ij ji

ij jiji

O O

O O
2 1

2

2

=
−

+
∑∑  

The degrees of freedom of this chi-square statistic is given by r(r-1)/2. The probability level gives 
the significance level. That is, reject the hypothesis of symmetry about the diagonal if the 
reported probability level is less than some predetermined level, such as 0.05. 

Armitage Test for Trend in Proportions 
This is a test for linear trend in proportions proposed by Armitage (1955). The test may be used 
when you have exactly two rows or two columns in your table. This procedure tests the 
hypothesis that there is a linear trend in the proportion of successes. That is, the true proportion of 
successes increases (or decreases) as you move from row to row (or column to column). 
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The test statistic, S, is standardized to a normal z-value by dividing by the estimated standard 
error of S (which we label V below). This z-value can be tested using the standard-normal 
distribution.  

When there are two columns and we want to test for the presence of a trend in proportions down 
the rows, the calculations for this test are as follows:  

z S
V

=  

where 
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Fisher’s Exact Test 
This test was designed to test the hypothesis that the two column percentages in a 2-by-2 table are 
equal. It is especially useful when sample sizes are small (even zero in some cells) and the chi-
square test is not appropriate. 

Exact probability levels are given for one-sided and two-sided alternatives. You would reject the 
null hypothesis of equality of proportions when the reported probability level is less than a stated 
level, such as 0.05. 

The calculation of these probability levels is made by calculating how many of the possible tables 
that may be constructed from the marginal totals given in this table support the alternative 
hypothesis. 

Example 3 – List Report 
The list format was designed for situations in which you want to transfer a summarized table to 
another program. This format creates a vertical listing of the counts in a format that is easy to 
copy and paste into another NCSS database or into other programs. The data for this example are 
found in the RESALE database. You may follow along here by making the appropriate entries or 
load the completed template Example3 from the Template tab of the Cross Tabulation window.  

1 Open the RESALE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Resale.s0. 
• Click Open. 
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2 Open the Cross Tabulation window. 
• On the menus, select Analysis, then Descriptive Statistics, then Cross Tabulation. The 

Cross Tabulation procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Cross Tabulation window, select the Variables tab.  
• Double-click in the Table Columns - Discrete Variables text box. This will bring up the 

variable selection window.  
• Select City from the list of variables and then click Ok. “City” will appear in the Table 

Columns - Discrete Variables box.  
• Double-click in the Table Rows - Discrete Variables text box. This will bring up the 

variable selection window.  
• Select Brick from the list of variables and then click Ok. “Brick” will appear in the Table 

Columns - Discrete Variables box.  

4 Specify a break variable. 
• On the Cross Tabulation window, select the Breaks tab. 
• Double-click in the first Break Variables text box. This will bring up the variable 

selection window.  
• Select State from the list of variables and then click Ok. “State” will appear in the text 

box.  

5 Specify the reports. 
• Click on the Reports tab. 
• In Counts, select Omit. 
• In Chi-Sqr Stats, select Omit. 
• Check List Report. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

List Report 
 

 List Report 
 
 State City Brick Count 
 Nev 1 0 7 
 Nev 1 0.5 9 
 Nev 1 1 11 
 Nev 2 0 16 
 Nev 2 0.5 19 
 Nev 2 1 14 
 Nev 3 0 5 
 Nev 3 0.5 2 
 Nev 3 1 5 
 Vir 4 0 11 
 (report continues) 
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List Report 
This report gives the count (frequency) for each unique combination of the By and Break 
variables, taken together. 

Example 4 – Cross Tabs on Summarized Data 
This example will demonstrate how to enter and analyze a contingency table that has already 
been summarized. Suppose the following data from a study of the impact of three drugs on a 
certain disease are available. 

 

  Drug Type 
Disease Type 1 Type 2 Type 3 
Yes 15 28 44 
No 4 7 9 

 

These data were entered in an NCSS database called DrugStudy.s0 in three variables. The 
database appears as follows: 

 

DRUGSTUDY dataset 

DrugType Disease Count 
1 Yes 15 
2 Yes 28 
3 Yes 44 
1 No 4 
2 No 7 
3 No 9 

 

Notice that we have used three variables: one containing the column identification (DrugType), 
one containing the row identification (Disease), and one containing the counts or frequencies 
(Count). 

You may follow along here by making the appropriate entries or load the completed template 
Example4 from the Template tab of the Cross Tabulation window. 

1 Open the DRUGSTUDY dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file DrugStudy.s0. 
• Click Open. 

2 Open the Cross Tabulation window. 
• On the menus, select Analysis, then Descriptive Statistics, then Cross Tabulation. The 

Cross Tabulation procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  
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3 Specify the variables. 
• On the Cross Tabulation window, select the Variables tab. (This is the default.)  
• Double-click in the Table Columns - Discrete Variables text box. This will bring up the 

variable selection window.  
• Select DrugType and click Ok. The Table Columns - Discrete Variables box will contain 

“DrugType”.  
• Double-click in the Table Rows - Discrete Variables text box. This will bring up the 

variable selection window.  
• Select Disease and click Ok. The Table Rows - Discrete Variables box will contain 

“Disease”.  
• Double-click in the Frequency Variable text box. This will bring up the variable 

selection window.  
• Select Count and click Ok. The Frequency Variable box will contain “Count”.  

4 Specify the reports. 
• Click on the Reports tab. 
• In Counts, select Omit. 
• In Chi-Sqr Stats, select Chi-Square. 
• Check Show Combined Report. 
• Check Counts. 
• Check Row Percents. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Cross Tabulation Output 
 

Combined Report 
Counts, Row Pct 
 
 DrugType 
Disease 1 2 3 Total 
No 4 7 9 20 
 20.0 35.0 45.0 100.0 
Yes 15 28 44 87 
 17.2 32.2 50.6 100.0 
Total 19 35 53 107 
 17.8 32.7 49.5 100.0 
The number of rows with at least one missing value is 0 
 
 
 
Chi-Square Statistics Section 
Chi-Square 0.211145 
Degrees of Freedom  2.000000 
Probability Level 0.899809 Accept Ho 
WARNING: At less one cell had an expected value less than 5. 

 

Combined Report 
We arbitrarily selected the Combined Report and Chi-Square Statistics. Of course, you could 
select any of the reports you wanted to see. 
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Chapter 505 

Item Analysis 
Introduction 
This procedure performs item analysis. Item analysis studies the internal reliability of a particular 
instrument (test, survey, questionnaire, etc.). This instrument usually consists of several questions 
(items) which are answered by a group of respondents. Issues that arise include whether the 
instrument measures what was intended (does a particular IQ test reliably measure an individual’s 
intelligence?), whether it produces the same results when it is administered repeatedly, whether it 
contains cultural biases, and so on. 

Item analysis is not the same as item response analysis. Item response analysis is concerned with 
the analysis of questions on a test which can be scored as either right or wrong. The Item 
Response Analysis program, discussed elsewhere, conducts this type of analysis. 

Discussion 
Because of the central role of measurement in science, scientists of all disciplines are concerned 
with the accuracy of their measurements. Item analysis is a methodology for assessing the 
accuracy of measurements that are obtained in the social sciences where precise measurements 
are often difficult to secure. The accuracy of a measurement may be divided into two dimensions: 
validity and reliability. The validity of an instrument refers to whether it accurately measures the 
attribute of interest. The reliability of an instrument concerns whether it produces identical results 
in repeated applications. An instrument may be reliable but not valid. However, it cannot be valid 
without being reliable. 

The methods described here assess the reliability of an instrument. They do not assess its validity. 
This should be kept in mind when using the techniques of item analysis since they address 
reliability, not validity.  

An instrument may be valid for one attribute but not for another. For example, a driver’s license 
exam may accurately measure an individual’s ability to drive. However, it does not accurately 
measure that individual’s ability to do well in college. Hence the exam is reliable and valid for 
measuring driving ability. It is reliable and invalid for measuring success in college. 

Several methods have been proposed for assessing the reliability of an instrument. These include 
the retest method, alternative-form method, split-halves method, and the internal consistency 
method. We will focus on internal consistency here. 
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Cronbach’s alpha (or coefficient alpha) is the most popular of the internal consistency 
coefficients. It is calculated as follows: 
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where K is the number of items (questions) and σ ij  is the estimated covariance between items i 

and j. Note the σ ii is the variance (not standard deviation) of item i. 

If the data are standardized by subtracting the item means and dividing by the item standard 
deviations before the above formula is used, we get the standardized version of Cronbach’s alpha. 
A little algebra will show that this is equivalent to the following calculations based directly on the 
correlation matrix of the items: 

( )
α ρ

ρ
=

+ −
K

K1 1
 

where ρ  is the average of all the correlations among the K items. 

Cronbach’s alpha has at least three interpretations. 

1. Cronbach’s alpha is equal to the average value of alpha coefficients obtained for all 
possible combinations of dividing 2K items into two groups of K items each and 
calculating the two-half tests.  

2. Cronbach’s alpha estimates the expected correlation of one instrument with an alternative 
form containing the same number of items. 

3. Cronbach’s alpha estimates the expected correlation between an actual test and a 
hypothetical test which may never by written. 

Since Cronbach’s alpha is suppose to be a correlation, it should range between -1 and 1. 
However, it is possible for alpha to be less than -1 when several of the covariances are relatively 
large, negative numbers. In most cases, alpha is positive, although negative values arise 
occasionally. What value of alpha should be achieved? Carmines (1990) stipulates that as a rule, a 
value of at least 0.8 should be achieved for widely used instruments. An instrument’s alpha value 
may be improved by either adding more items or by increasing the average correlation among the 
items. 

Data Structure 
The data are entered in two or more variables. An example of data appropriate for this procedure 
is shown in the table below These data are contained in the ITEM database. These data represent 
the responses of sixteen individuals to a four-item questionnaire. 
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ITEM dataset 

Item1 Item2 Item3 Item4 
1 3 2 1 
2 2 2 3 
1 3 2 2 
3 3 3 3 
1 1 2 2 
3 3 3 1 
2 2 1 2 
1 1 2 1 
1 3 1 2 
1 1 2 2 
5 3 2 2 
1 1 2 1 
1 3 2 2 
1 3 3 1 
1 3 2 1 
1 3 1 1 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variables to be analyzed. 

Item Variables 

Item Variables 
Specify two or more variables to be analyzed. These are the variables containing each 
individual’s responses to the questionnaire. Each variable represents an item (question). Each row 
represents an individual. 

Frequency Variable 

Frequency Variable 
This optional variable contains the frequency (count) to be assigned to this row. Normally, each 
row receives a count of one. The values in this variable replace this default value. 

Options 

Zero 
Specify the value used as zero by the numerical routines. Because of round-off problems, values 
less than this amount (in absolute value) are changed to zero during the calculations.  
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Reports Tab 
The following options control the format of the reports that are displayed.  

Select Reports 

Reliability Report ... Covariance Report 
Indicate whether to display the indicated report. 

Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Item Analysis 
This section presents an example of how to run an analysis of the data contained in the ITEM 
database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Item Analysis window. 

1 Open the ITEM dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Item.s0. 
• Click Open. 

2 Open the Item Analysis window. 
• On the menus, select Analysis, then Multivariate Analysis, then Item Analysis. The 

Item Analysis procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Item Analysis window, select the Variables tab.  
• Double-click in the Item Variables box. This will bring up the variable selection 

window.  
• Select Item1 to Item4 from the list of variables and then click Ok. “Item1-Item4” will 

appear in the Item Variables box.  

4 Specify the reports. 
• On the Item Analysis window, select the Reports tab.  
• Check all reports options so that all of the reports will be displayed.  

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Reliability Section 
 

Reliability Section 
 --------- Item Values ---------- ------------------- If This Item is Omitted ------------------- R2 
  Standard Total Total Coef Corr Other 
Variable Mean Deviation Mean Std.Dev. Alpha Total Items 
Item1 1.625 1.147461 6.0625 1.340087 0.0974 0.4932 0.2556 
Item2 2.375 0.8850612 5.3125 1.778342 0.4506 0.2171 0.0921 
Item3 2 0.6324555 5.6875 1.922455 0.4464 0.2193 0.0869 
Item4 1.6875 0.7041543 6 1.897367 0.4583 0.1996 0.1371 
Total   7.6875 2.15155 0.4704   
 
Cronbacks Alpha  0.470447       Std. Cronbachs Alpha  0.444639 

 

This report shows important features of the reliability of the items on the instrument. 
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Mean 
The item average. 

Standard Deviation 
The item standard deviation with divisor (n-1). 

Total Mean 
The average total of the other items when this item is ignored. 

Total Std.Dev. 
The standard deviation of the total of the other items when this item is ignored. 

Coef Alpha 
This is the value of Cronbach’s alpha when this item is omitted. 

Corr Total 
This is the correlation between this item and the total of all other items. If this correlation is high, 
say greater than 0.95, then this item is redundant and might be omitted. 

R2 Other Items 
This is the R-Squared that results if this item is regressed on the other items. If this value is high, 
say greater than 0.95, then this item is redundant and might be omitted. 

Cronbach’s Alpha 
Cronbach’s alpha (or coefficient alpha) is a measure of internal reliability. Since Cronbach’s 
alpha is a correlation, it can range between -1 and 1. In most cases it is positive, although 
negative values arise occasionally.  

What value of alpha should be achieved? Carmines (1990) stipulates that as a rule, a value of at 
least 0.8 should be achieved for widely used instruments. An instrument’s alpha value may be 
improved by either adding more items or by increasing the average correlation among the items. 

Std. Cronbach’s Alpha 
If the data are standardized by subtracting the item means and dividing by the item standard 
deviations before the above formula is used, we obtain the standardized version of Cronbach’s 
alpha.  

Count Distribution Section 
 
Count Distribution Section 
Variable 1 2 3 5   
Item1 11 2 2 1   
Item2 4 2 10 0   
Item3 3 10 3 0   
Item4 7 7 2 0   
Total 25 21 17 1   
 

This report shows the number of times each response was chosen for each item. 
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Percentage Distribution Section 
 
Percentage Distribution Section 
Variable 1 2 3 5   
Item1 68.75 12.50 12.50 6.25   
Item2 25.00 12.50 62.50 0.00   
Item3 18.75 62.50 18.75 0.00   
Item4 43.75 43.75 12.50 0.00   
Total 39.06 32.81 26.56 1.56   
 

This report shows the percentages of each of the possible responses for each item. 

Item Detail Section 
 

Item Detail Section for Item1 
  Individual Cumulative Percent 
Value Count Percent Percent Bar Chart 
1 11 68.75 68.75 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
2 2 12.50 81.25 |IIIIIIII 
3 2 12.50 93.75 |IIIIIIII 
5 1 6.25 100.00 |IIII 
Total 16 
 
Item Detail Section for Item2 
  Individual Cumulative Percent 
Value Count Percent Percent Bar Chart 
1 4 25.00 25.00 |IIIIIIIIIIIIIIIII 
2 2 12.50 37.50 |IIIIIIII 
3 10 62.50 100.00 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
5 0 0.00 100.00 | 
Total 16 
 
Item Detail Section for Item3 
  Individual Cumulative Percent 
Value Count Percent Percent Bar Chart 
1 3 18.75 18.75 |IIIIIIIIIIII 
2 10 62.50 81.25 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
3 3 18.75 100.00 |IIIIIIIIIIII 
5 0 0.00 100.00 | 
Total 16 
 
Item Detail Section for Item4 
  Individual Cumulative Percent 
Value Count Percent Percent Bar Chart 
1 7 43.75 43.75 |IIIIIIIIIIIIIIIIIIIIIIIIIIIII 
2 7 43.75 87.50 |IIIIIIIIIIIIIIIIIIIIIIIIIIIII 
3 2 12.50 100.00 |IIIIIIII 
5 0 0.00 100.00 | 
Total 16 

 

This report provides an individual break down of the responses to each item. 
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Correlation Section 
 
Correlation Section 
 Item1 Item2 Item3 Item4 
Item1 1.000000 0.278989 0.275589 0.340351 
Item2 0.278989 1.000000 0.119098 -0.013371 
Item3 0.275589 0.119098 1.000000 0.000000 
Item4 0.340351 -0.013371 0.000000 1.000000 
Cronbacks Alpha  0.470447       Std. Cronbachs Alpha  0.444639 
 

This report presents the correlations between each pair of items. 

Covariance Section 
 
Covariance Section 
 Item1 Item2 Item3 Item4 
Item1 1.316667 0.2833333 0.2 0.275 
Item2 0.2833333 0.7833334 6.666667E-02 -8.333334E-03 
Item3 0.2 6.666667E-02 0.4 0 
Item4 0.275 -8.333334E-03 0 0.4958333 
Cronbacks Alpha  0.470447       Std. Cronbachs Alpha  0.444639 
 

This report presents the covariances between each pair of items. 
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Chapter 506 

Item Response 
Analysis 
Introduction 
This procedure performs item response analysis. Item response analysis is concerned with the 
analysis of questions on a test which can be scored as either right or wrong. 

Item Response Analysis is not the same as item analysis. Item analysis studies the internal 
reliability of a particular instrument (test, survey, questionnaire, etc.). The Item Analysis 
program, discussed elsewhere, conducts this type of analysis. 

Discussion 
Let represent the jAj

th individual’s ability to perform a certain task. This ability may represent 
intelligence, math aptitude, geography knowledge, etc. Define the logistic item characteristic 
curve (ICC) as follows: 

i j -ZP ( A )= 1
1+ e ij

 

where 

ij i j iZ = d A + a  
Note that  is the probability that individual j with ability marks item i correctly. is 
called the logit. An items difficulty may be calculated using: 

i jP ( A ) Aj Zij

i
i

i
b = - d

a  
This model is similar to the usual logistic regression model. A new problem has arisen in that the 
ability values, the , are unknown and must be estimated. The program uses the Bock-Aikin 
(1981) MMLE/EM algorithm as provided in Baker (1992). 

Aj

Data Structure 
The data are entered in two or more variables. Only numeric values are allowed. Also, a variable 
containing the correct answers must be entered. An optional variable containing row labels may 
also be entered. 
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Note that the answers correspond to items by position number. Thus the answer to the item 
contained in variable one is in row one, the answer to the item contained in variable two is in row 
two, and so on. 

An example of data appropriate for this procedure is shown in the table below. These data are 
contained in the ITEM database. These data represent the responses of sixteen individuals to a 
four-item test. 

 

ITEM dataset 

Item1 Item2 Item3 Item4 Answer Name 
1 3 2 1 1 Eric 
2 2 2 3 3 Charlotte 
1 3 2 2 2 Janet 
3 3 3 3 1 Julie 
1 1 2 2  Katie 
3 3 3 1  Ryan 
2 2 1 2  Tyson 
1 1 2 1  Jordan 
1 3 1 2  Bob 
1 1 2 2  Linda 
5 3 2 2  Mike 
1 1 2 1  Michell 
1 3 2 2  Randy 
1 3 3 1  Jerry 
1 3 2 1  Chris 
1 3 1 1  Holly 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Data Variables 

Item Variables 
Specify the variables to be analyzed. These are the variables containing each individual’s answers 
to the questions on the test. Each variable represents a question. Each row represents an 
individual. 

Note that only numeric variables are allowed here. 

Answer Variable 
This variable contains a list of the correct answers. The answers in this column correspond to the 
questions by position. The value in row one is the correct response for variable one, the value in 
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row two is the correct response for variable two, and so on. If your questions start with variable 
five (variables one - four are identification variables), your correct answers must start in row five! 

If you have already scored the test and you want to enter simply right or wrong, use zero for 
wrong, one for right, and put all ones in this variable. 

Other Variables 

Frequency Variable 
This optional variable contains the frequency (count) to be assigned to this row. Normally, each 
row receives a count of one. The values in this variable replace this default value. 

Label Variable 
This optional variable contains row labels that are used to label various reports. 

Options 

Iterations 
This option specifies the maximum number of iterations. Experience has shown that a value of 50 
or more is necessary. 

Zero 
Specify the value used as zero by the numerical routines. Because of round-off error, values less 
than this amount (in absolute value) are changed to zero during the calculations.  

Reports Tab 
The following options control the reports and plots that are displayed.  

Select Reports 

Counts Report ... Abilities Report 
Indicate whether to display the indicated reports. 

Select Plots 

Item Response Plot 
Indicate whether to display the item response plot. 

Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 
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Plot Options 

Smoothing Interval 
This value is used in creating the points that appear on the IRC plots. If an individual’s ability 
level falls within plus or minus this amount of the ability value, their response is included in the 
calculation of the percent correct. 

Ability Data Points 
The number of data points displayed along the ability scale. The logistic curve is trying to fit 
these values. 

Plots Per Row 
This option controls the size of the plots by specifying the number of plots to display across the 
page. 

IRC Plot Tab 
This panel specifies the item response curve (IRC) plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Specifies the plotting symbols used. 
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Titles 

Plot Title 
This is the text of the title. The characters {Y} are replaced by appropriate names. Press the 
button on the right of the field to specify the font of the text. 

Storage Tab 
The estimated abilities may be stored on the current database for further analysis. The data are 
automatically stored while the program is executing. 

Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Select Variables for Data Storage 

Ability Variable 
This option lets you designate the variable that should receive the estimated ability of each 
individual.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Item Response Analysis 
This section presents an example of how to run an analysis of the data contained in the ITEM 
database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Item Response Analysis window. 

1 Open the Item dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Item.s0. 
• Click Open. 

2 Open the Item Response Analysis window. 
• On the menus, select Analysis, then Multivariate Analysis, then Item Response 

Analysis. The Item Response Analysis procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Item Response Analysis window, select the Variables tab.  
• Double-click in the Item Variables box. This will bring up the variable selection 

window.  
• Select Item1 to Item4 from the list of variables and then click Ok. “Item1-Item4” will 

appear in the Item Variables box.  
• Double-click in the Answer Variable box. This will bring up the variable selection 

window.  
• Select Answers from the list of variables and then click Ok. “Answers” will appear in the 

Answer Variable box.  
• Double-click in the Label Variable box. This will bring up the variable selection 

window.  
• Select Name from the list of variables and then click Ok. “Name” will appear in the 

Label Variable box.  

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Count Distribution Section 
 
Count Distribution Section 
Variable 1 2 3 5   
Item1 11 2 2 1   
Item2 4 2 10 0   
Item3 3 10 3 0   
Item4 7 7 2 0   
Total 25 21 17 1 
   

This report shows the number of times each response was chosen for each item. 
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Percentage Distribution Section 
 
Percentage Distribution Section 
Variable 1 2 3 5   
Item1 68.75 12.50 12.50 6.25   
Item2 25.00 12.50 62.50 0.00   
Item3 18.75 62.50 18.75 0.00   
Item4 43.75 43.75 12.50 0.00   
Total 39.06 32.81 26.56 1.56  
  

This report shows the percentages of each of the possible responses for each item. 

Item Detail Section 
 

Item Detail Section for Item1 
  Individual Cumulative Percent 
Value Count Percent Percent Bar Chart 
1 (Correct) 11 68.75 68.75 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
2 2 12.50 81.25 |IIIIIIII 
3 2 12.50 94.75 |IIIIIIII 
5 1 6.25 100.00 |IIII 
Total 16 
 
Item Detail Section for Item2 
  Individual Cumulative Percent 
Value Count Percent Percent Bar Chart 
1 4 25.00 25.00 |IIIIIIIIIIIIIIIII 
2 2 12.50 37.50 |IIIIIIII 
3 (Correct) 10 62.50 100.00 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
5 0 0.00 100.00 | 
Total 16 
 
Item Detail Section for Item3 
  Individual Cumulative Percent 
Value Count Percent Percent Bar Chart 
1 3 18.75 18.75 |IIIIIIIIIIII 
2 (Correct) 10 62.50 81.25 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
3 3 18.75 100.00 |IIIIIIIIIIII 
5 0 0.00 100.00 | 
Total 16 
 
Item Detail Section for Item4 
  Individual Cumulative Percent 
Value Count Percent Percent Bar Chart 
1 (Correct) 7 43.75 43.75 |IIIIIIIIIIIIIIIIIIIIIIIIIIIII 
2 7 43.75 87.50 |IIIIIIIIIIIIIIIIIIIIIIIIIIIII 
3 2 12.50 100.00 |IIIIIIII 
5 0 0.00 100.00 | 
Total 16 

 

This report provides an individual break down of the responses to each item. 
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Item Response Estimation Section 
 
Item Response Estimation Section 
   Ability 
  Discrimination at which 
  Parameter P(Correct)=0.5 
Variable Intercept (Slope) (Difficulty) 
Item1 5.977607 12.677396 -0.471517 
Item2 0.510955 -0.025970 19.675165 
Item3 0.577043 0.775644 -0.743954 
Item4 -0.296144 0.878906 0.336946 
 

This report gives the results of the IRT estimation for each item. The columns of the report are 
defined as follows. 

Variable 
The name of the item (question). 

Intercept 
The estimated intercept in the logistic ICC model. This is the value of . ai

Discrimination Parameter (Slope) 
The estimated slope in the logistic ICC model. This is the value of . This value is sometimes 
referred to as the Discrimination Parameter of the item.  

di

Ability at which P(Correct)=0.5 (Difficulty) 
The estimated value of b . It is the ability level at which 50% of those responding are able to get 
this question right. It is sometimes called the Difficulty of the item. 

i

Estimated Abilities Section 
 
Estimated Abilities Section 
  Number Percent  
Row Name Correct Correct Ability 
1 Eric 4 100.00 2.500000 
2 Charlotte 1 25.00 -0.800205 
3 Janet 3 75.00 -0.077078 
4 Julie 1 25.00 -1.552304 
5 Katie 2 50.00 -0.053399 
6 Ryan 2 50.00 -0.777427 
7 Tyson 0 0.00 -1.536428 
8 Jordan 3 75.00 2.500000 
9 Bob 2 50.00 -0.260121 
10 Linda 2 50.00 -0.053399 
11 Mike 2 50.00 -0.809005 
12 Michell 3 75.00 2.500000 
13 Randy 3 75.00 -0.077078 
14 Jerry 3 75.00 0.040460 
15 Chris 4 100.00 2.500000 
16 Holly 3 75.00 0.040460 
 

This report gives each individual’s score and estimated ability. Remember that the test score may 
not correlate exactly with ability since the ability rating depends not only on how many questions 
are answered correctly, but also on which questions are answered correctly.  
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IRC Plots Section 
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These plots show the logistic item characteristic curve for each question as a solid line. The 
plotted points show the proportion of individuals with ability in a small neighborhood of the 
plotted ability that got the question right. 
Note that the vertical axis gives the probability that an individual answers the question correctly 
and the horizontal axis gives their ability.  
In most cases, the plots will show the familiar S-curve shape that is exhibited here. In some cases, 
however, the plots may look different. 
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Chapter 510 

One Proportion 
Introduction 
This program computes confidence limits and hypothesis tests for a single proportion. For 
example, you might want confidence limits for the proportion of individuals with the common 
cold who took ascorbic acid (vitamin C) and recovered within twenty-four hours. You might want 
to test the hypothesis that more than 70% of a group of individuals with the common cold 
recovered immediately after taking ascorbic acid.  

Exact results, based on the binomial distribution, are calculated. Approximate results, based on 
the normal approximation to the binomial distribution are also given. Of course, the exact results 
are preferable to the approximate results and should always be used. The approximate results are 
given because they are commonly presented in elementary statistical texts. They were developed 
in the pre-computer age when the calculations were carried out by hand (or on a hand calculator). 
Now that the exact results are available, there is no advantage in using the approximations. (It 
may be interesting to compare the results to see how close the approximations are). 

The Binomial Model 
Binomial data must exhibit the following four conditions: 

1. The response can take on only one of two possible values. This is a binary response variable. 

2. The response is observed a known number of times. Each replication is called a Bernoulli 
trial. The number of replications is labeled n. The number of responses out of the n total that 
exhibit the outcome of interest is labeled X. Thus X takes on the possible values 0, 1, 2, ..., n. 

3. The probability that a particular outcome (a success) occurs is constant for each trial. 
This probability is labeled p. 

4. The trials are independent. The outcome of one trial does not influence the outcome of 
the any other trial. 

The binomial probability, b(x; n, p), is calculated using: 

b x n p
n
x

p px n( ; , ) ( )=
⎛
⎝
⎜
⎞
⎠
⎟ − −1 x

 
where 

n
x

n
x n x

⎛
⎝
⎜
⎞
⎠
⎟ =

−
!

!( )!  



510-2  One Proportion 

The estimate of p from a sample is labeled  and is estimated using: $p

$p X
n

=
 

In practice, p and  are used interchangeably. p̂

Confidence Limits 
Using a mathematical relationship (see Ostle(1988), page 110) between the F distribution and the 
cumulative binomial distribution, the lower and upper confidence limits of a 100 (1-α )% 
confidence interval are given by: 

LCL
XF

n X XF
X n X

X n X
=

− + +
− +

− +

[ / ],[ , ( )]

[ / ],[ , ( )]( )
α

α

2 2 2 1

2 2 2 11  
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UCL
X F

n X X F
X n X

X n X
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+
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− + −

− + −

( )
( ) ( )

[ / ],[ ( ), ( )]

[ / ],[ ( ), ( )]

1
1

1 2 2 1 2

1 2 2 1 2

α

α  
Note that although these limits are based on direct calculation of the binomial distribution, they 
are only ‘exact’ for a few values of alpha. Otherwise, these limits are conservative (wider than 
necessary).  
These limits may be approximated using the normal approximation to the binomial as 

$
$( $ )

/p z p p
n

±
−

α 2
1

 
If a correction for continuity is added, the above formula becomes 

$
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Although these two approximate confidence intervals are found in many elementary statistics 
books, they are not recommended. For example, Newcombe (1998) made a comparative study of 
seven confidence interval techniques and these methods came in last. 
Instead, Newcombe (1998) recommended the Wilson Score confidence interval method because 
of its performance. The Wilson Score confidence interval is calculated using 
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Hypothesis Tests 
Three sets of statistical hypotheses may be formulated: 

1.  versus H p p0: = 0 H p pA: ≠ 0 ; this is often called the two-tailed test. 
2.  versus ; this is often called the upper-tailed test. H p p0: ≤ 0

0

H p pA: > 0

3.  versus H p p0: ≥ H p pA: < 0 ; this is often called the lower-tailed test. 
 

The exact p-values for each of these situations may be computed as follows: 

1. ( )P p p p p| ~ | | $ |− ≥ −0 0 where ~p represents all possible values of This probability is 
calculated using the binomial distribution. 

$.p

2.  b r n p
r

X

( ; , )
=
∑

0

3. 
 

b r n p
r X

n

( ; , )
=
∑

 
Two approximations to these exact p-values are also given. The difference between the two is that 
one uses and the other uses in the calculation of the standard error. The first approximation 
uses in the calculation of the standard error: 

p0 $p
p0

z X n
np pc =

p+ −
−

0 5
1

0

0 0

.
( )  

if X np< 0

 
or 

z X n
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X np> 0

The second approximation uses in the calculation of the standard error: $p

z X n
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X np< 0

 
or 

z X n
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p− −
−

0 5
1

0.
$( $ )  

if 
 

X np> 0

These z-values are used to calculate probabilities using the standard normal probability 
distribution. 

Data Structure 
This procedure does not use data from the database. Instead, you enter the values of n and X 
directly into the procedure panel. 
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Procedure Options 
This section describes the options available in this procedure. 

Data Tab 
This panel specifies the data used in the analysis. 

Data Values 

Sample Size (n) 
This is the total number of samples. 

Number of Successes (X) 
This is the number of successes. That is, this is the number of outcomes that exhibited the 
characteristic of interest. 

Hypothesis Test Details 

Hypothesized Proportion (P0) 
This is the hypothesized proportion of successes ( ) used in the hypothesis tests.  p0

Alpha - Hypothesis Test 
The probability in a hypothesis test of rejecting the null hypothesis (Ho) when it is true. This must 
be a value between 0 and 1. 

Options 

Alpha - Confidence Limits 
The confidence coefficient to use for the confidence limits of the proportion. 100 x (1 - alpha)% 
confidence limits will be calculated. This must be a value between 0 and 1. 

Decimal Places 
The number of digits to the right of the decimal place to display.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Analysis of One Proportion 
This section presents an example of how to run an analysis of data in which n is 100, X is 55, and 

is set to 0.50. p0

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Proportion – One window. 

1 Open the Proportion – One window. 
• On the menus, select Analysis, then Proportions, then Proportion – One. The Proportion 

– One procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

2 Specify the data. 
• On the Proportion – One window, select the Data tab.  
• In the Sample Size (n) box, enter 100. 
• In the Number of Successes (X) box, enter 55. 
• In the Hypothesized Proportion (P0) box, enter 0.50. 

3 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Data Section 
 

 Data Section 
 
 Sample Number of Sample Hypothesized Confidence Hypothesis 
 Size (n) Successes (X) Proportion (P) Proportion (P0) Alpha Alpha 
 100 55.000000 0.550000 0.500000 0.050000 0.050000 
 

This report documents the values that you gave for input. 
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Confidence Limits Section 
 

 Confidence Limits Section 
 
  Lower 95%  Upper 95% 
 Calculation Confidence Sample Confidence 
 Method Limit Proportion (P) Limit 
 Exact (Binomial) 0.447280 0.550000 0.649680 
 Approximation (Uncorrected) 0.452493 0.550000 0.647507 
 Approximation (Corrected) 0.447493 0.550000 0.652507 
 Wilson Score 0.452446 0.550000 0.643855 
 

This report gives the confidence intervals. We recommend the Wilson score interval based on the 
article by Newcombe (1998). As a point of reference, the sample proportion, , is also given. The 
limits are based on the formulas that were presented earlier.  

$p

Hypothesis Test Section 
 

 Hypothesis Test Section 
 
  Exact (Binomial) Normal Approximation using (P0) Normal Approximation using (P) 
 Alternative Prob Decision  Prob Decision  Prob Decision 
 Hypothesis Level (5%) Z-Value Level (5%) Z-Value Level (5%) 
 P<>P0 0.368202 Accept Ho 0.9000 0.368120 Accept Ho 0.9045 0.365712 Accept Ho 
 P<P0 0.864373 Accept Ho 0.9000 0.815940 Accept Ho 0.9045 0.817144 Accept Ho 
 P>P0 0.184101 Accept Ho 0.9000 0.184060 Accept Ho 0.9045 0.182856 Accept Ho 
 

This report gives the results of all three hypothesis combinations. Only the alternative hypothesis 
is presented. The probability level and decision of each test are given. The formulas for these tests 
were shown earlier. 
Although we present all three types of tests (two-tailed, lower-tail, and upper-tail), you would 
normally only select one of these tests based on your testing situation. If a choice is not obvious 
to you, use the two-tailed, or not equal (<>), result.  

We cannot think of a reason why you would want to use the normal approximation results when 
then exact results are available. They were included so you could compare your answers to text 
books that only give approximate answers. 
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Chapter 515 

Two Independent 
Proportions 
Introduction 
This program computes both asymptotic and exact confidence intervals and hypothesis tests for 
parameters used to compare two proportions. These parameters are the difference, the ratio, and 
the odds ratio.  

Data may come from either of the following designs: 

1.  Random samples are drawn from two separate populations.  

2.  Individuals from a single sample are randomly assigned to either of two possible groups.  

Comparing Two Proportions  
Suppose you have two populations from which dichotomous (binary) responses will be recorded. 
The probability (or risk) of obtaining the event of interest in population 1 (the treatment group) is 

 and in population 2 (the control group) is . The corresponding failure proportions are given 
by  and .  

1p 2p

11 1 pq −= 22 1 pq −=

The assumption is made that the responses from each group follow a binomial distribution. This 
means that the event probability  is the same for all subjects within a population and that the 
responses from one subject to the next are independent of one another. 

pi

Random samples of m and n individuals are obtained from these two populations. The data from 
these samples can be displayed in a 2-by-2 contingency table as follows 

 

 Success Failure Total 
Population 1 a c m 

Population 2 b d n 

Totals s f N 
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The following alternative notation is sometimes used: 

 

 Success Failure Total 
Population 1    x11 x12 n1

Population 2    x21 x22 n2

Totals   N m1 m2

 

The binomial proportions  and  are estimated from these data using the formulae 1p p2

$p a
m

x
n1
11

1

= =  and $p b
n

x
n2

21

2

= =  

When analyzing studies such as these, you usually want to compare the two binomial 
probabilities  and . The most direct methods of comparing these quantities are to calculate 
their difference or their ratio. If the binomial probability is expressed in terms of odds rather than 
probability, another measure is the odds ratio. Mathematically, these comparison parameters are 

1p 2p

 

Parameter Computation 

Difference  δ = −p p1 2  

Risk Ratio φ = p p1 2/  

Odds Ratio ψ = =
p q
p q

p q
p q

1 1

2 2

1 2

2 1

/
/

 

 

The choice of which of these measures is used might at seem arbitrary, but it is important. Not 
only is their interpretation different, but, for small sample sizes, the decision to accept or reject 
the null hypothesis of no treatment effect may be different. That is, tests and confidence intervals 
based on these different parameters have different powers (probabilities of rejecting) and 
coverage probabilities. It will be useful to discuss each of these measures in detail to discover the 
strengths and weaknesses of each. 

Difference 
The (risk) difference 21 pp −=δ  is perhaps the most direct method of comparison between the 
two event probabilities. This parameter is easy to interpret and communicate. It gives the absolute 
impact of the treatment. However, there are subtle difficulties that can arise with its 
interpretation.  

One interpretation difficulty occurs when the event of interest is rare. If a difference of 0.001 
were reported for an event with a baseline probability of 0.40, we would probability dismiss this 
as being of little importance. That is, there usually little interest in a treatment that decreases the 
probability from 0.400 to 0.399. However, if the baseline probably of a disease was 0.002 and 
0.001 was the decrease in the disease probability, this would represent a reduction of 50%. Thus 
we see that interpretation depends on the baseline probability of the event. 
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A similar situation occurs when the amount of possible difference is considered. Consider two 
events, one with a baseline event rate of 0.40 and the other with a rate of 0.02. What is the 
maximum decrease that can occur? Obviously, the first event rate can be decreased by an absolute 
amount of 0.40 which the second can only be decreased by a maximum of 0.02. 

So, although creating the simple difference is a useful method of comparison, care must be taken 
that it fits the situation.  

Ratio 
The (risk) ratio 21 / pp=φ  gives the relative change in the disease risk due to the application of 
the treatment. This parameter is also direct and easy to interpret. To compare this with the 
difference, consider a treatment that reduces the risk of disease for 0.1437 to 0.0793. Which 
single number is most enlightening, the fact that the absolute risk of disease has been decreased 
by 0.0644, or the fact that risk of disease in the treatment group is only 55.18% of that in the 
control group? In many cases, the percentage (risk ratio) communicates the impact of the 
treatment better than the absolute change. 

Perhaps the biggest drawback to this parameter is that it cannot be calculated in one of the most 
common experimental designs: the case-control study. Another drawback is that the odds ratio 
occurs directly in the likelihood equations and as a parameter in logistic regression.   

Odds Ratio 
Chances are usually communicated as long-term proportions or probabilities. In betting, chances 
are often given as odds. For example, the odds of a horse winning a race might be set at 10-to-1 
or 3-to-2. How do you translate from odds to probability? An odds of 3-to-2 means that the event 
will occur three out of five times. That is, an odds of 3-to-2 (1.5) translates to a probability of 
winning of 0.60. 

The odds of an event are calculated by dividing the event risk by the non-event risk. Thus, in our 
case of two populations, the odds are 

o p
p1

1

11
=

−
 and o p

p2
2

21
=

−
 

For example, if  is 0.60, the odds are 0.60/0.4 = 1.5. Rather than represent the odds as a 
decimal amount, it is re-scaled into whole numbers. Thus, instead of saying the odds are 1.5-to-1, 
we say they are 3-to-2. 

1p

Another way to compare proportions is to compute the ratio of their odds. The odds ratio of two 
events is 

ψ =

= −

−

o
o

p
p

p
p

1

2

1

1

2

2

1

1
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Although the odds ratio is more complicated to interpret than the risk ratio, it is often the 
parameter of choice. Reasons for this include the fact that the odds ratio can be accurately 
estimated from case-control studies, while the risk ratio cannot. Also, the odds ratio is the basis of 
logistic regression (used to study the influence of risk factors). Furthermore, the odds ratio is the 
natural parameter in the conditional likelihood of the two-group, binomial-response design. 
Finally, when the baseline event-rates are rare, the odds ratio provides a close approximation to 
the risk ratio since, in this case, 21 11 pp −≈− , so that 

ψ φ= −

−

≈ =

p
p

p
p

p
p

1

1

2

2

1

2

1

1

 

Hypothesis Tests 
A wide variety of statistical tests are available for testing hypotheses about two proportions. 
Some tests are based on the difference in proportions, others are based on the ratio of proportions, 
and still others are based on the odds ratio. Some tests are conditional, while others are 
unconditional. Some tests are said to be large sample, while others are said to be exact. In this 
section, these terms will be explained. 

Types of Hypothesis Tests 
Hypothesis tests concerning two proportions can be separated into three categories: large sample, 
conditional exact, and unconditional exact.  

Large Sample Tests 
Large sample (or asymptotic) tests are based on the central limit theorem (CLT) which states that 
for large samples, the distribution of many of these test statistics approach the normal 
distribution. Hence, significance levels can be computed using the normal distribution which has 
been extensively tabulated and can now be easily computed.  

As a consequence of the asymptotic nature of the CLT, the first question that comes up is to 
decide when the sample size is large enough so that the CLT applies. Also, what should be done 
for small to medium size samples? Can these large sample tests still be used for small samples? 

Exact Tests 
Because of the inaccuracy of applying a large sample procedure to a small sample study, another 
class of tests has been devised called exact tests. The significance levels of these tests are 
calculated from their exact distribution, usually by considering either the binomial or the 
hypergeometric distribution. No appeal is made to the CLT. Because these tests involve 
enormous amounts of tedious calculations, they have become available with the advent of 
computers. In fact, specialized software programs such as StatXact have been developed to 
provide these calculations.  

With the availability of modern computers, why aren’t approximate large sample techniques 
abandoned and exact tests completely embraced? To find the answer, one must delve deeper into 
the theory of exact tests. We will briefly summarize this here. 
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The distribution of the proportions in a 2-by-2 table involves two parameters:  and 1p δ+1p  in 
the case of the difference and  and 1p φ/1p in the case of the ratio. The hypothesis only involves 
one parameter, the difference or the ratio. The other parameter, , is called a nuisance parameter 
because it is not part of the hypothesis of interest. That is, the hypothesis that 

1p
0=δ  or 1=φ  does 

not involve . In order to test hypotheses about the parameter of interest, the nuisance parameter 
must be eliminated. This may be accomplished either by conditional methods or unconditional 
methods. 

1p

Conditional Exact Test 
The nuisance parameter can be eliminated by conditioning on a sufficient statistic. Fisher’s exact 
test is an example of this. The conditioning occurs by considering only those tables in which the 
row and column totals remain the same as for the data. This removes the nuisance parameter  
from the distribution formula. This has drawn criticism because most experimental designs do not 
fix both the row and column totals. Others have argued that since the significance level is 
preserved unconditionally, the test is valid.  

1p

Unconditional Exact Test 
The unconditional exact test approach is to remove the nuisance parameter by computing the 
significance level at all possible values of the nuisance parameter and choosing the largest (worst 
case). That is, find the value of  which gives the maximum significance level (least significant) 
for the hypothesis test. That is, these tests find an upper bound for the significance level.  

1p

The problem with the unconditional approach is that the upper bound may occur at a value of  
that is far from the true value. For example, suppose the true value of  is 0.711 where the 
significance level is 0.032. However, suppose the maximum significance level of 0.213 occurs at 

 = 0.148. Hence, near the actual value of the nuisance value, the results are statistically 
significant, but the results of the exact test are not! Of course, in a particular study, we do not 
know the true value of the nuisance parameter. The message is that although these tests are called 
exact tests, they are not! They are approximate tests computed using exact distributions. Hence, 
you cannot say that the exact test is necessarily better than the large-sample test.  

1p

1p

1p

Hypotheses About the Difference in Proportions  
The (risk) difference 21 pp −=δ  is perhaps the most direct method of comparison between the 
two proportions. Three sets of statistical hypotheses can be formulated: 

1. 0210 : δ=− ppH  versus 0211 : δ≠− ppH ; this is often called the two-tailed test. 

2. 0210 : δ≤− ppH  versus 0211 : δ>− ppH ; this is often called the upper-tailed test. 

3. 0210 : δ≥− ppH  versus 0211 : δ<− ppH ; this is often called the lower-tailed test. 

The traditional approach has been to use the Pearson chi-square test for large samples, the Yates 
chi-square for intermediate sample sizes, and the Fisher Exact test for small samples. Recently, 
some author’s have begun questioning this solution. For example, based on exact enumeration, 
Upton (1982) and D’Agostino (1988) caution that the Fisher Exact test and Yates test should 
never be used.  
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Hypotheses About the Ratio of Proportions  
The (risk) ratio 21 / pp=φ  is often preferred as a comparison parameter because it expresses the 
difference as a percentage rather than an amount. Three sets of statistical hypotheses can be 
formulated:  

1. 0210 /: φ=ppH  versus 0211 /: φ≠ppH ; this is often called the two-tailed test. 

2. 0210 /: φ≤ppH  versus 0211 /: φ>ppH ; this is often called the upper-tailed test. 

3. 0210 /: φ≥ppH  versus 0211 /: φ<ppH ; this is often called the lower-tailed test. 

Hypotheses About the Odds Ratio  
The odds ratio [ ] [ )1/(/)1/( 2211 pppp ]−−=ψ  is sometimes used as the comparison because of its 
statistical properties and because some convenient experimental designs only allow it to be 
estimated. Three sets of statistical hypotheses can be formulated: 

1. 00 : ψψ =H  versus 01 : ψψ ≠H ; this is often called the two-tailed test. 

2. 00 : ψψ ≤H  versus 01 : ψψ >H ; this is often called the upper-tailed test. 

3. 00 : ψψ ≥H  versus 01 : ψψ <H ; this is often called the lower-tailed test. 

Large-Sample Tests 

Chi-Square Test of Difference 
This hypothesis test takes its place in history as one of the first statistical hypothesis tests to be 
proposed. It was first proposed by Karl Pearson in 1900. The two-sided test is computed as 

( )χ1
2

2

=
−N ad bc

mnrs
 

This test may also be derived as a z-test as follows 

( )
z D

D

=
− δ

σ δ
0

0$
 

where  

D p p= −$ $1 2  

( ) ( ) ( )
$

~ ~ ~ ~
σ δD

p p
n

p p
n0

1 1

1

2 2

2

1 1
=

−
+

−
 

The quantities  and ~p1
~p2  are the maximum likelihood estimates constrained by ~ ~p p1 2− = 0δ . 

Usually, we wish to test the hypothesis thatδ0 0= , so the standard deviation reduces to 
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( ) ( )$ $ $σD p p
n n

0 1 1 1
1 2

= − +
⎛
⎝
⎜

⎞
⎠
⎟   

where 

$
$ $

p n p n p
n n

=
+
+

1 1 2 2

1 2

 

Chi-Square Test of Difference with Continuity Corrected  
Frank Yates is credited with proposing a correction to the Pearson Chi-Square test for the lack of 
continuity in the binomial distribution. However, the test was in common use when he proposed it 
in 1922. This test is computed as 

( )χ1
2

2
2

=
− −N ad bc N

mnrs
/

 

The continuity correction may be carried out on the z-test directly by subtracting one-half from 
the numerator of the test. Thus, the continuity corrected chi-square test is 

( ) ( )z
D

sign D
D

=
− −

−
δ

σ δ
δ0

0
0

1 2/
$

 

Conditional Mantel Haenszel Test and Cochran Test of Difference 
The conditional Mantel Haenszel test, see Lachin (2000) page 40, is based on the index 
frequency, , from the 2x2 table. The formula for the z-statistic is x11

( )
( )

z
x E x

V xc

=
−11 11

11

 

where  

( )E x n m
N11
1 1=  

( ) ( )
V x n n m m

N Nc 11
1 2 1 2
2 1

=
−

 

Cochran’s test uses the same numerator, but a variance that has been adjusted to be unconditional. 
The formulas for Cochran’s test are 

( )
( )

z
x E x

V xu

=
−11 11

11

 

where  

( )E x n m
N11
1 1=  
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( ) ( )V x N
N

V xu c11 11
1

=
−

 

Likelihood Ratio Test of Difference 
In 1935, Wilks showed that the following quantity has a chi-square distribution with one degree 
of freedom. This test is presented, among other places, in Upton (1982). This test is computed as 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

LR
a a b b c c d d

N N s s f f m m n n
=

+ + + +

− − − −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2
ln ln ln ln

ln ln ln ln ln
 

T-Test of Difference 
Because of a detailed, comparative study of the behavior of several tests, D’Agostino (1988) and 
Upton (1982) proposed using the usual two-sample t-test for testing whether the two proportions 
are equal. One substitutes a ‘1’ for a success and a ‘0’ for a failure in the usual, two-sample t-test 
formula. The test is computed as  

( ) ( )
t ad bc N

N nac mbdN − = −
−
+

⎛

⎝
⎜

⎞

⎠
⎟2

2
1
2

 

Miettinen and Nurminen’s Test of the Difference 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the difference is equal 
to a specified valueδ0 . The regular MLE’s  and are used in the numerator of the score 
statistic while MLE’s  and 

$p1 $p2
~p1

~p2  constrained so that ~ ~p p1 2 0− = δ are used in the denominator. A 
correction factor of N/(N-1) is applied to make the variance estimate less biased. The significance 
level of the test statistic is based on the asymptotic normality of the score statistic.  

The formula for computing this test statistic is 

 z p p

p q
n

p q
n

N
N

MND =
− −

+
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

$ $

~ ~ ~ ~
1 2 0

1 1

1

2 2

2 1

δ
  

where 
~ ~p p1 2 0= +δ  

( )~ cosp B A L
L2
2

3

2
3

= −  

A C
B

= + ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣⎢
⎤

⎦⎥
−1

3
1

3π cos  
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( )B C L
L

L
L

= −sign 2
2

3
2

1

39 3
 

C L
L

L L
L

L
L

= − +2
3

3
3

1 2

3
2

0

327 6 2
 

 

( )L x0 21 0 01= −δ δ  

 

[ ]L N N x M1 2 0 21 02 1= − − +δ δ  

 

( )L N N N M2 2 0 1= + − −δ  

 

L N3 =  

Miettinen and Nurminen’s Test of the Ratio 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the ratio is equal to a 
specified valueφ0 . The regular MLE’s  and are used in the numerator of the score statistic 
while MLE’s  and 

$p1 $p2
~p1

~p2  constrained so that ~ / ~p p1 2 0= φ are used in the denominator. A 
correction factor of N/(N-1) is applied to make the variance estimate less biased. The significance 
level of the test statistic is based on the asymptotic normality of the score statistic.  

Here is the formula for computing the test 

 z p p

p q
n

p q
n

N
N

MNR =
−

+
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

$ / $
~ ~ ~ ~

1 2 0

1 1

1
0
2 2 2

2 1

φ

φ

  

where 
~ ~p p1 2 0= φ  

 

~p B B AC
A2

2 4
2

=
− − −

 

 

A N= φ0  

 

[ ]B N x N x= − + + +1 0 11 2 21 0φ φ  
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C M= 1  

Miettinen and Nurminen’s Test of the Odds Ratio 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the odds ratio is equal 
to a specified valueψ 0 . Because the approach they used with the difference and ratio does not 
easily extend to the odds ratio, they used a score statistic approach for the odds ratio. The regular 
MLE’s  are  and . The constrained MLE’s are  and $p1 $p2

~p1
~p2 , These estimates are constrained 

so that ~ψ ψ= 0 . A correction factor of N/(N-1) is applied to make the variance estimate less 
biased. The significance level of the test statistic is based on the asymptotic normality of the score 
statistic.  

The formula for computing the test statistic is 

 

( ) ( )
z

p p
p q

p p
p q

N p q N p q
N

N

MNO =

−
−

−

+
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

$ ~
~ ~

$ ~
~ ~

~ ~ ~ ~

1 1

1 1

2 2

2 2

2 1 1 2 2 2

1 1
1

  

where 

( )
~ ~

~p p
p1

2 0

2 01 1
=

+ −
ψ
ψ

 

 

~p B B AC
A2

2 4
2

=
− + −

 

 

( )A N= −2 0 1ψ  

 

( )B N N M= + − −1 0 2 1 0 1ψ ψ  

 

C M= − 1  

Farrington and Manning’s Test of the Difference 
Farrington and Manning (1990) proposed a test statistic for testing whether the difference is equal 
to a specified valueδ0 . The regular MLE’s  and are used in the numerator of the score 
statistic while MLE’s  and 

$p1 $p2
~p1

~p2  constrained so that ~ ~p p1 2 0− = δ are used in the denominator. 
The significance level of the test statistic is based on the asymptotic normality of the score 
statistic.  
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Here is the formula for computing the test 

 z p p

p q
n

p q
n

FMD =
− −

+
⎛
⎝
⎜

⎞
⎠
⎟

$ $

~ ~ ~ ~
1 2 0

1 1

1

2 2

2

δ
  

where the estimates  and ~p1
~p2  are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 

Farrington and Manning’s Test of the Ratio 
Farrington and Manning (1990) proposed a test statistic for testing whether the ratio is equal to a 
specified valueφ0 . The regular MLE’s  and are used in the numerator of the score statistic 
while MLE’s  and 

$p1 $p2
~p1

~p2  constrained so that ~ / ~p p1 2 0= φ are used in the denominator. A 
correction factor of N/(N-1) is applied to increase the variance estimate. The significance level of 
the test statistic is based on the asymptotic normality of the score statistic.  

Here is the formula for computing the test 

 z p p

p q
n

p q
n

FMR =
−

+
⎛
⎝
⎜

⎞
⎠
⎟

$ / $
~ ~ ~ ~

1 2 0

1 1

1
0
2 2 2

2

φ

φ

  

where the estimates  and ~p1
~p2  are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 

Farrington and Manning’s Test of the Odds Ratio 
Farrington and Manning (1990) indicate that the Miettinen and Nurminen statistic may be 
modified by removing the factor N/(N-1). 

The formula for computing this test statistic is 

 

( ) ( )
z

p p
p q

p p
p q

N p q N p q

FMO =

−
−

−

+
⎛
⎝
⎜

⎞
⎠
⎟

$ ~
~ ~

$ ~
~ ~

~ ~ ~ ~

1 1

1 1

2 2

2 2

2 1 1 2 2 2

1 1
  

where the estimates  and ~p1
~p2  are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 

Gart and Nam’s Test of the Difference 
Gart and Nam (1990) page 638 proposed a modification to the Farrington and Manning (1988) 
difference test that corrected for skewness. Let ( )zFM δ  stand for the Farrington and Manning 
difference test statistic described above. The skewness corrected test statistic is the 
appropriate solution to the quadratic equation 

zGN

 ( ) ( ) ( )( )− + − + +~ ~γ δz z zGND GND FMD
2 1 0=γ   
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where 

( ) ( ) ( )~
~ ~ ~ ~ ~ ~ ~ ~ ~/

γ
δ

=
−

−
−⎛

⎝
⎜

⎞
⎠
⎟

V p q q p
n

p q q p
n

3 2
1 1 1 1

1
2

2 2 2 2

2
26

 

Gart and Nam’s Test of the Ratio 
Gart and Nam (1988) page 329 proposed a modification to the Farrington and Manning (1988) 
ratio test that corrected for skewness. Let ( )zFM φ  stand for the Farrington and Manning ratio test 
statistic described above. The skewness corrected test statistic is the appropriate solution to 
the quadratic equation 

zGN

 ( ) ( ) ( )( )− + − + +~ ~ϕ φz z zGNR GNR FMR
2 1 0=ϕ   

where 

( ) ( )~
~

~ ~ ~
~

~ ~ ~
~/ϕ =

−
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⎝
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Small-Sample (Exact) Tests 
All of the exact tests follow the same pattern. We will present the general procedure here, and 
then give the specifics for each test. 

General Procedure 

Specify the Null and Alternative Hypotheses 
The first step is to select a method to compare the proportions and determine if the test is to be 
one-, or two-, sided. These may be written in general as 

( )H h p pj0 1 2: , 0= θ  

( )H h p pj1 1 2: , 0≠ θ  

where ‘ ’ (for two-sided tests) could be replaced with ‘<’ or ‘>’ for a one-sided test and the 
index j is defined as 

≠

( )h p p p p1 1 2 1 2, = − . 

( )h p p p p2 1 2 1 2, /=  

( ) ( )
( )

h p p
p p
p p3 1 2

1 1

2 2

1
1

,
/
/

=
−
−
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Specify the Reference Set 
The next step is to specify the reference set of possible tables to compare the observed table 
against. Two reference sets are usually considered. Define Ω as the complete set of tables that a
possible by selecting n1  observations from one group and n2  observations from another grou
Define Γ as the subset from 

re 
p. 

Ω  for which x x11 21 m1+ = . Tests using Ω  are u condi
while tests using Γ  are conditional tests. 

n tional tests 

Specify the Test Statistic 
The next step is to select the test statistic. In most cases, the score statistic is used which has the 
general form  

( ) ( )
( )

D y
h p p

V
j

h j

=
−$ , $

~
1 2 0

0

θ

θ
 

where y represents a table with elements  and y y y y11 12 21 22, , , ( )~Vh j
θ0  is the estimated variance 

of the score numerator with the constraint that the null hypothesis is true. 

Select the Probability Distribution 
The probability distribution an unconditional test based on the score statistic is 

( )f y
n
y

n
y

p q p qp p
y y y y

1 2

11 12 21 221

11

2

21
1 1 2 2, =

⎛
⎝
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⎠
⎟
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⎝
⎜

⎞
⎠
⎟  

The probability distribution of a conditional test based on the score statistic is 
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n
y
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Calculate the Significance Level 
The significance level (rejection probability) is found by summing the probabilities of all tables 
that for which the computed test statistic is at least as favorable to the alternative hypothesis as is 
the observed table. This may be written as 

( ) ( )
( ) ( )( )

p y f yp p
I D x D y

= ∑ 1 2,
,

 

where  is an indicator function. ( ) ( )(I D x D y, )
Maximize the Significance Level 
The final step is to find the maximum value (supremum) of the significance level over all possible 
values of the nuisance parameter. This may be written as 

( ) ( )
( ) ( )( )

p y f yp
p

p p
I D x D y

sup ,
,

sup
2

2
1 2

1
=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟< <

∑
0

 

Note that the choice of either  or  as the nuisance parameter is arbitrary. p1 p2
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Exact Tests 

Barnard’s Unconditional Exact Test of the Difference = 0 
Barnard (1947) proposed an unconditional exact test for the difference between two proportions. 
It is interesting that two years later he retracted his article. However, the test has been adopted in 
spite of his retraction. Here are the details of this test:  

Null Hypothesis:  p p1 2 0− =  

Hypothesis Types:  Both one-sided and two-sided 

Reference Set: Ω . 

Test Statistic:  ( )D y p p

pq
n n

=
−

+
⎛
⎝
⎜

⎞
⎠
⎟

$ $

$ $

1 2

1 2

1 1
 where $p y y

n n
=

+
+

11 21

1 2

 

Two-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≥  

Lower One-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≤  

Upper One-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≥  

 

Barnard’s Exact Test of the Ratio = 1 
Barnard’s exact test for the ratio is identical to that for the difference. 

 

Fisher’s Conditional Exact Test of the Difference = 0 
Statxact gives three conditional exact tests for testing whether the difference is zero. The most 
famous of these uses Fisher’s statistic, but similar tests are also available using Pearson’s statistic 
and the likelihood ratio statistic. 

Null Hypothesis:  p p1 2 0− =  

Hypothesis Types:  Both one-sided and two-sided 

Reference Set:   Γ

Fisher’s Test Statistic:  ( ) ( )( ) ( )D y f y N m m n n= − − −2 2 511
3 2

1 2 1 2ln ln . /   

L.R. Test Statistic:  ( )D y y
y

m n Nij
ij

i jji

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑∑2

22

ln
/

  

Pearson’s Test Statistic:  ( ) ( )
D y

y m n N
m n N

ij i j

i jji

=
−

∑∑
/

/

2
22

  

Two-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≥  
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Lower One-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≤  

Upper One-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≥  

 

Miettinen and Nurminen’s Unconditional Exact Test of the Difference 
Miettinen and Nurminen (1985) proposed an unconditional exact test for testing whether the 
difference between two proportions is a specified valueδ0 . When δ0 0= , this test reduces to 
Barnard’s test. Here are the details of this test: 

Null Hypothesis:  p p1 2 0− = δ  

Hypothesis Types:  Both one-sided and two-sided 

Reference Set:  Ω . 

Test Statistic:  ( )D y p p

p q
n

p q
n

N
N

=
− −

+
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

$ $

~ ~ ~ ~
1 2 0

1 1

1

2 2

2 1

δ
  

 where ~  and p1
~p2  are constrained MLE’s discussed below. 

Two-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≥  

Lower One-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≤  

Upper One-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≥  

 

Farrington and Manning’s Unconditional Exact Test of the Difference 
Farrington and Manning (1990) proposed an unconditional exact test for testing whether the 
difference is a specified valueδ0 . This test was also discussed by Gart and Nam (1990). This test 
is only slightly different from the test of Miettinen and Nurminen (1985). Here are the details of 
this test: 

Null Hypothesis:  p p1 2 0− = δ  

Hypothesis Types:  Both one-sided and two-sided 

Reference Set:  Ω . 

Test Statistic:  ( )D y p p

p q
n

p q
n

=
− −

+
⎛
⎝
⎜

⎞
⎠
⎟

$ $

~ ~ ~ ~
1 2 0

1 1

1

2 2

2

δ
  

 where ~  and p1
~p2  are constrained MLE’s discussed below. 

Two-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≥  
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Lower One-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≤  

Upper One-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≥  

 

Miettinen and Nurminen’s Unconditional Exact Test of the Ratio 
Miettinen and Nurminen (1985) proposed an unconditional exact test for testing whether the ratio 
between two proportions is a specified valueφ0 . When φ0 1= , this test reduces to Barnard’s test. 
Here are the details of this test: 

Null Hypothesis:  p p1 2/ 0= φ  

Hypothesis Types:  Both one-sided and two-sided 

Reference Set:  Ω . 

Test Statistic:  ( )D y p p

p q
n

p q
n

N
N

=
− −

+
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

$ $

~ ~ ~ ~
1 2 0

1 1

1
0
2 2 2

2 1

φ

φ

  

Two-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≥  

Lower One-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≤  

Upper One-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≥  

 

Farrington and Manning’s Unconditional Exact Test of the Ratio 
Farrington and Manning (1990) proposed an unconditional exact test for testing whether the ratio 
is a specified valueφ0 . This test was also discussed by Gart and Nam (1988). This test is only 
slightly different from the test of Miettinen and Nurminen (1985). Here are the details of this test: 

Null Hypothesis:  p p1 2/ 0= φ  

Hypothesis Types:  Both one-sided and two-sided 

Reference Set:  Ω . 

Test Statistic:  ( )D y p p

p q
n

p q
n

=
− −

+
⎛
⎝
⎜

⎞
⎠
⎟

$ $

~ ~ ~ ~
1 2 0

1 1

1
0
2 2 2

2

φ

φ

  

Two-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≥  

Lower One-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≤  

Upper One-Sided Test:  ( ) ( )( ) ( ) ( )I D x D y D y D x, = ≥  
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Constrained MLE’s 
The Miettinen and Nurminen (1985) and Farrington and Manning (1990) tests given above 
require maximum likelihood estimates that are constrained to follow the null hypothesis that 
p p1 2− = 0δ . The constrained maximum likelihood estimate for ~p2  when considering the 

difference is the appropriate solution of the cubic equation 

( ) ( )[ ] ( )[ ] ( )Np N n N m p m N y n p y~ ~ ~
2
3

2 0 2 2
2

2 0 21 2 0
2

2 21 0 02 1+ + − + + − + + + − =δ δ δ δ 0δ  

The value for  is found using the constraint ~p1

~ ~p p1 2 0= +δ  

The constrained maximum likelihood estimate of ~p2  when considering the ratio with the 
constraint that p p1 2/ = 0φ  is the appropriate solution of the quadratic equation 

( )[ ]Np n y y n p m~ ~
2
2

0 1 11 21 1 2 2 0− + + + + =φ  

The value for  is found using the constraint ~p1

~ ~p p1 2 0= φ  

Equivalence Tests for the Difference and Ratio 
An equivalence test is designed to show that one (new) treatment is similar to, but not necessarily 
better than, another (standard) treatment. To accomplish this, the roles of the null and alternative 
hypotheses are reversed. The hypotheses for testing equivalence of the difference in proportions 
are (assuming that δL < 0  and δU > 0 ) 

H p p p p H p pL U L0 1 2 1 2 1 1 2: :− ≤ u− ≥ < − <δ δ δ δor versus  

The hypotheses for testing equivalence of the ratio of proportions are (assuming that φL <1 and 
φU >1) 

H p p p p H p pL U L0 1 2 1 2 1 1 2: / / : /≤ ≥ u< <φ φ φ φor versus  
The alternative hypothesis states that the true value is between some small, clinically acceptable 
range. For example, we might be willing to conclude that the benefits of two drugs are equivalent 
if the difference in their response rates is between -0.05 and 0.05 or if the ratio of their response 
rates is between 0.90 and 1.10. 

The conventional method of testing equivalence hypotheses is to perform two, one-sided tests 
(TOST) of hypotheses. The null hypothesis of non-equivalence is rejected in favor of the 
alternative hypothesis of equivalence if both one-sided tests are rejected. Unlike the common 
two-sided tests, however, the type I error rate is set directly at the nominal level (usually 0.05)—it 
is not split in half. So, to perform the test, two, one-sided tests are conducted at the α  
significance level. If both are rejected, the alternative hypothesis is concluded at the α  
significance level. Note that the p-value of the test is the maximum of the p-values of the two 
tests. 
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The two, one-sided tests of hypotheses for the difference are 

H p p H p pL L01 1 2 11 1 2: :− ≤ − >δ δversus  

H p p H p pU U02 1 2 12 1 2: :− ≥ − <δ δversus  

The two, one-sided tests of hypotheses for the ratio are 

H p p H p pL L01 1 2 11 1 2: / : /≤ >φ φversus  

H p p H p pU U02 1 2 12 1 2: / : /≥ <φ φversus  

These one-sided tests can use any of the large-sample or exact one-sided tests that were discussed 
earlier. 

Confidence Intervals 
Both large sample and exact confidence intervals may be computed for the difference, the ratio, 
and the odds ratio.  

Confidence Intervals for the Difference 
Several methods are available for computing a confidence interval of the difference between two 
proportions δ = −p p1 2 . Newcombe (1998) conducted a comparative evaluation of eleven 
confidence interval methods. He recommended that the modified Wilson score method be used 
instead of the Pearson Chi-Square or the Yate’s Corrected Chi-Square. Beal (1987) found that the 
Score methods performed very well. The lower L and upper U limits of these intervals are 
computed as follows. Note that, unless otherwise stated, z z= α / 2  is the appropriate percentile 
from the standard normal distribution.  

Cells with Zero Counts 
Extreme cases in which some cells are zero require special approaches with some of the tests 
given below. We have found that a simple solution that works well is to change the zeros to a 
small positive number such as 0.01. This produces the same results as other techniques that we 
are aware. 

C.I. for Difference: Pearson’s Chi-Square 
For details, see Newcombe (1998), page 875. 

L p p z p p
m

p p
n

= − −
−

+
−⎛

⎝⎜
⎞
⎠⎟

$ $
$ ( $ ) $ ( $ )

1 2
1 1 2 21 1

 

U p p z p p
m

p p
n

= − +
−

+
−⎛

⎝⎜
⎞
⎠⎟

$ $
$ ( $ ) $ ( $ )

1 2
1 1 2 21 1
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C.I. for Difference: Yate’s Chi-Square with Continuity Correction 
For details, see Newcombe (1998), page 875. 

L p p z p p
m

p p
n m

= − −
−

+
−⎛

⎝⎜
⎞
⎠⎟
+ +⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

$ $
$ ( $ ) $ ( $ )

1 2
1 1 2 21 1 1

2
1 1

n
 

U p p z p p
m

p p
n m

= − +
−

+
−⎛

⎝⎜
⎞
⎠⎟
+ +⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

$ $
$ ( $ ) $ ( $ )

1 2
1 1 2 21 1 1

2
1 1

n
 

C.I. for Difference: Wilson’s Score as modified by Newcombe 
For details, see Newcombe (1998), page 876.  

L p p B= − −$ $1 2  

U p p C= − +$ $1 2  

where 

( ) ( )B z
l l

m
u u

n
=

−
+

−1 1 2 21 1
 

( ) ( )C z
u u

m
l l

n
=

−
+

−1 1 2 21 1
 

and  and u  are the roots of l1 1

( )p p z
p p

m1 1
1 11

0− −
−

=$  

and  and u  are the roots of l2 2

( )p p z
p p

n2 2
2 21

0− −
−

=$  

C.I. for Difference: Farrington and Manning’s Score 
Farrington and Manning (1990) proposed inverting their score test to find the confidence interval. 
The details of calculating their score statistic z are presented above in the Hypothesis Test section. 
The lower limit is found by solving 

z zFMD = α / 2  

and the upper limit is the solution of 

z zFMD = − α / 2  
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C.I. for Difference: Miettinen and Nurminen’s Score 
Miettinen and Nurminen (1985) proposed inverting their score test to find the confidence interval. 
The details of calculating their score statistic z are presented above in the Hypothesis Test section. 
The lower limit is found by solving 

z zMND = α / 2  

and the upper limit is the solution of 

z zMND = − α / 2  

C.I. for Difference: Gart and Nam’s Score 
Gart and Nam (1988) proposed inverting their score test to find the confidence interval. The 
details of calculating their score statistic z are presented above in the Hypothesis Test section. The 
lower limit is found by solving 

z zGND = α / 2  

and the upper limit is the solution of 

z zGND = − α / 2  

C.I. for Difference: Chen’s Quasi-Exact Method 
Chen (2002) proposed a quasi-exact method for generating confidence intervals. This method 
produces intervals that are close to unconditional exact intervals that are available in specialized 
software like StatXact, but do not require as much time to compute. Chen’s method inverts a 
hypothesis test based on Farrington and Manning’s method. That is, the confidence interval is 
found by finding those values at which the hypothesis test that the difference is a given, non-zero 
value become significant. However, instead of searching for the maximum significance level of 
all possible values of the nuisance parameter as the exact tests do, Chen proposed using the 
significance level at the constrained maximum likelihood estimate of  as given by Farrington 
and Manning. This simplification results in a huge reduction in computation with only a minor 
reduction in accuracy. Also, it allows much larger sample sizes to be analyzed.  

p2

Note on Exact Tests 
A word of caution should be raised about the phrase exact tests. Many users assume that methods 
that are based on exact methods are always better than other, non-exact methods. After all, ‘exact’ 
sounds better than ‘approximate’. However, tests and confidence intervals based on exact 
methods are not necessarily better. In fact, some prominent statisticians are of the opinion that 
they are actually worse! (See Agresti and Coull (1998) for one example). Exact simply means that 
they are based on exact distributional calculations. They are, however, conservative in terms of 
their coverage probabilities (the probability that the confidence interval includes the true value). 
That is, they are wider than they need to be because they are based on worst case scenarios. So 
the bottom line is this—do not always assume that exact methods are the better methods. 
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Confidence Intervals for the Ratio 

C.I. for Ratio: Farrington and Manning’s Score 
Farrington and Manning (1990) proposed inverting their score test to find the confidence interval. 
The details of calculating their score statistic z are presented above in the Hypothesis Test section. 
The lower limit is found by solving 

z zFMR = α / 2  

and the upper limit is the solution of 

z zFMR = − α / 2  

C.I. for Ratio: Miettinen and Nurminen’s Score 
Miettinen and Nurminen (1985) proposed inverting their score test to find the confidence interval. 
The details of calculating their score statistic z are presented above in the Hypothesis Test section. 
The lower limit is found by solving 

z zMNR = α / 2  

and the upper limit is the solution of 

z zMNR = − α / 2  

C.I. for Ratio: Gart and Nam’s Score 
Gart and Nam (1988) proposed inverting their score test to find the confidence interval. The 
details of calculating their score statistic z are presented above in the Hypothesis Test section. The 
lower limit is found by solving 

z zGNR = α / 2  

and the upper limit is the solution of 

z zGNR = − α / 2  

C.I. for Ratio: Logarithm (Katz) 
This was one of the first methods proposed for computing confidence intervals for risk ratios.  

For details, see Gart and Nam (1988), page 324. 
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where 

$ $

$
φ =

p
p

1

2

 

C.I. for Ratio: Logarithm (Walters) 
For details, see Gart and Nam (1988), page 324.  

( )L z= −  $exp $φ u  

( )U z= $exp $φ u  
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C.I. for Ratio: Chen’s Quasi-Exact Method 
Chen (2002) proposed a quasi-exact method for generating confidence intervals. This method 
produces intervals that are close to unconditional exact intervals that are available in specialized 
software like StatXact, but do not require as much time to compute. Chen’s method inverts a 
hypothesis test based on Farrington and Manning’s method. That is, the confidence interval is 
found by finding those values at which the hypothesis test that the difference is a given, non-zero 
value become significant. However, instead of searching for the maximum significance level of 
all possible values of the nuisance parameter as the exact tests do, Chen proposed using the 
significance level at the constrained maximum likelihood estimate of  as given by Farrington 
and Manning. This simplification results in a huge reduction in computation with only a minor 
reduction in accuracy. Also, it allows much larger sample sizes to be analyzed. 

p2

Confidence Intervals for the Odds Ratio 
The odds ratio is a commonly used measure of treatment effect when comparing two binomial 
proportions. It is the ratio of the odds of the event in group one divided by the odds of the event in 
group two. The results given below are found in Fleiss (1981).  

Symbolically, the odds ratio is defined as 

ψ = −

−

p
p

p
p

1

1

2

2

1

1

 

C.I. for Odds Ratio: Simple Technique 
The simple estimate of the odds ratio uses the formula 

$
$ $

$ $
ψ =

=

p q
p q
ad
bc

1 2

2 1  

The standard error of this estimator is estimated by 

( )se
a b c d

$ $ψ ψ= + + +
1 1 1 1

 

Problems occur if any one of the quantities a, b, c, or d are zero. To correct this problem, many 
authors recommend adding one-half to each cell count so that a zero cannot occur. Now, the 
formulas become 

( )( )
( )( )

$
. .
. .

′ =
+ +
+ +

ψ
a d
b c

0 5 0 5
0 5 0 5

 

and 
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ψ ψ 1
0 5

1
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1
0 5

1
0 5.
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The distribution of these direct estimates of the odds ratio do not converge to normality as fast as 
does their logarithm, so the logarithm of the odds ratio is used to form confidence intervals. The 
formula for the standard error of the log odds ratio is 

( )′ = ′L ln $ψ  

and 

( )se L
a b c d

′ =
+

+
+

+
+

+
+

1
05

1
05

1
0 5

1
0 5. . . .

 

A ( )%1100 α−  confidence interval for the log odds ratio is formed using the standard normal 
distribution as follows 

( )( )$ exp /ψ αlower L z se L= ′ − ′−1 2  

( )( )$ exp /ψ αupper L z se L= ′ + ′−1 2  

C.I. for Odds Ratio: Iterated Method of Fleiss 
Fleiss (1981) presents an improve confidence interval for the odds ratio. This method forms the 
confidence interval as all those value of the odds ratio which would not be rejected by a chi-
square hypothesis test. Fleiss gives the following details about how to construct this confidence 
interval. To compute the lower limit, do the following.  

1. For a trial value of ψ , compute the quantities X, Y, W, F, U, and V using the formulas 

( ) ( )X m s n s= + + −ψ  

( )Y X ms= − −2 4 1ψ ψ  

( )
A X Y
=

−
−2 1ψ
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D f m A= − +  

W
A B C D

= + + +
1 1 1 1

 

( )F a A W z= − − −1
2

2
2

2
α /  
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( ) ( )[ ]V T a A U W a A= − − − − −1
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 Finally, use the updating equation below to calculate a new value for the odds ratio using 
the updating equation 

( ) ( )ψ ψk k F
V

+ = −1  

2.  Continue iterating until the value of F is arbitrarily close to zero. 

The upper limit is found by substituting + 1
2   for − 1

2  in the formulas for F and V. 

Confidence limits for the relative risk can be calculated using the expected counts A, B, C, and D 
from the last iteration of the above procedure. The lower limit of the relative risk  

φlower
lower

lower

A n
B m

=  

 

φupper
upper

upper

A n
B m

=  

C.I. for Odds Ratio: Mantel-Haenszel 
The common estimate of the logarithm of the odds ratio is used to create this estimator. That is 

( )ln $ lnψ = ⎛
⎝⎜

⎞
⎠⎟

ad
bc

 

The standard error of this estimator is estimated using the Robins, Breslow, Greenland (1986) 
estimator which performs well in most situations. The standard error is given by 

( )( )se ln $ψ = +
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+
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AD BC
CD
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D2 2 2

 

where 

A a d
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B b c
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C ad
N

=  

D bc
N

=  

The confidence limits are calculated as 

( ) ( )( )( )$ exp ln $ ln $/ψ ψ αlower z se= − −1 2 ψ  

( ) ( )( )( )$ exp ln $ ln $/ψ ψ αupper z se= + −1 2 ψ  
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C.I. for Odds Ratio: Conditional Exact 
The conditional exact confidence interval of the odds ratio is calculated using the noncentral 
hypergeometric distribution as given in Sahai and Khurshid (1995). That is, a ( )100 1−α %  
confidence interval is found by searching for ψ L  and ψU  such that 
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Data Structure 
This procedure does not use data from the database. Instead, you enter the values directly into the 
panel. The data are entered in the familiar 2-by-2 table format. 

Procedure Options 
This section describes the options available in this procedure. 

Data Tab 
Enter the data values directly on this panel. 

Data Values 

A Count (Group = 1, Response = Positive) 
This is the count for cell A of the 2-by-2 table. This is the number in group 1 that had a positive 
response. 

B Count (Group = 2, Response = Positive) 
This is the count for cell B of the 2-by-2 table. This is the number in group 2 that had a positive 
response. 

C Count (Group = 1, Response = Negative) 
This is the count for cell C of the 2-by-2 table. This is the number in group 1 that had a negative 
response. 
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D Count (Group = 2, Response = Negative) 
This is the count for cell D of the 2-by-2 table. This is the number in group 2 that had a negative 
response. 

Statistic(s) 
These three boxes indicate which of the possible test statistics (difference, ratio, or odds ratio) are 
to be displayed in the reports. At least one statistic must be checked. 

Confidence Intervals 
These three boxes indicate which of the possible types of confidence intervals (large sample, 
exact, or bootstrap) are to be displayed in the reports. Note that exact confidence intervals often 
take a long time to calculated, especially with large (N > 100) counts. 

Hypothesis Tests – Tests  
These two boxes indicate whether you want the large-sample and/or the exact tests displayed. If 
neither box is checked, no hypothesis tests will be computed. 

Hypothesis Tests – Null Hypothesis 
These two boxes indicate the type of hypothesis tests that are to be run. If neither box is checked, 
no hypothesis tests will be computed. 

H0 = 0 for Diff’s and 1 for Ratios 
Check this option to run the standard tests in which the null hypothesis is that the proportion 
difference is zero, the ratio is one, or the odds ratio is one. 

H0 = User-Specified Value 
Check this option to run the hypothesis tests in which the null hypothesis is that the test statistic is 
equal to the corresponding value given under H0 Values tab. Note that this option is checked 
when you want to run a noninferiority test. 

Hypothesis Tests – Alternative 
Hypothesis 
Check these boxes to indicate which of the possible hypothesis tests are to be run. 
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Confidence Intervals Tab 
This panel contains options that control the confidence intervals. 

Confidence Interval Options 

Confidence Interval Alpha 
This option sets the alpha value for any confidence limits that are generated. The confidence 
coefficient of a confidence interval is equal to 1 - alpha. Thus, an alpha of 0.05 results in a 
confidence coefficient of 95%. Typical values are 0.01, 0.05, and 0.10. 

Confidence Interval Options - 
Bootstrap Confidence Interval 
Options 

Bootstrap Samples 
This is the number of bootstrap samples used. A general rule of thumb is that you use at least 100 
when standard errors are your focus or at least 1000 when confidence intervals are your focus. If 
computing time is available, it does not hurt to do 4000 or 5000.  

We recommend setting this value to at least 3000. 

Percentile Type 
The method used to create the percentiles when forming bootstrap confidence limits. You can 
read more about the various types of percentiles in the Descriptive Statistics chapter. We suggest 
you use the Ave X(p[n+1]) option.  

C.I. Method 
This option specifies the method used to calculate the bootstrap confidence intervals. The 
reflection method is recommended.  

• Percentile 
The confidence limits are the corresponding percentiles of the bootstrap values.  

• Reflection 
The confidence limits are formed by reflecting the percentile limits. If X0 is the original value 
of the parameter estimate and XL and XU are the percentile confidence limits, the Reflection 
interval is (2 X0 - XU, 2 X0 - XL).  

Retries 
If the results from a bootstrap sample cannot be calculated, the sample is discarded and a new 
sample is drawn in its place. This parameter is the number of times that a new sample is drawn 
before the algorithm is terminated. We recommend setting the parameter to at least 50.  

Random Number Seed 

Use this option to specify the seed value of the random number generator. Specify a number 
between 1 and 32000 to seed (start) the random number generator. This seed will be used to start 
the random number generator, so you will obtain the same results whenever it is used.  

If you want to have a random start, enter the phrase 'RANDOM SEED'. 
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Hypothesis Tests Tab 
This panel contains options that control the hypothesis tests. 

H0 User-Specified Value when ‘H0 = 
User-Specified Value is checked 

Difference 
Enter the hypothesized value of the difference between proportions δ0  under the null hypothesis. 
The standard hypothesis tests test whether this value is zero. This option lets you specify a value 
other than zero, which is commonly used for noninferiority tests (see the noninferiority example 
for more details).  

The possible range of values for the difference is between -1 and 1. 

This option is only used when the ‘H0 = User Specified Value’ option is checked. 

Ratio 
Enter the hypothesized value of the ratio of the proportions φ0  under the null hypothesis. The 
standard hypothesis tests test whether the ratio is one. This option lets you specify a value other 
than one. 

This option is only used when the ‘H0 = User Specified Value’ option is checked. 

The possible range of values for the ratio is any positive number. Usually, a number between 0.25 
and 4.0 is used. 

Odds Ratio 
Enter the hypothesized value of the odds ratio ψ 0  under the null hypothesis. The standard 
hypothesis tests test whether the odds ratio is one. This option lets you specify a value other than 
one. 

This option is only used when the ‘H0 = User Specified Value’ option is checked. 

The possible range of values for the ratio is any positive number. Usually, a number between 0.25 
and 4.0 is used. 

Exact Tests 
The options on this panel control which test statistics are used in the exact hypothesis tests and 
confidence intervals. 

D R O 
These check boxes control which test statistics are used. The three choices below ‘D’ are for 
differences, the three choices below ‘R’ are for ratios, and the two choices below ‘O’ are for odds 
ratios. Usually, only one box in each column needs to be checked. 

The possible choices are uncorrected tests of Farrington and Manning, the corrected tests of 
Miettenen and Numinen, and the skewness corrected tests of Gart and Nam. Note that the defaults 
match the tests available in StatXact. 

There is little reason to run all tests since the results are usually identical. 
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Equivalence Bounds 

Lower and Upper Equivalence Bounds for Difference 
These options specify the upper and lower equivalence bounds for the equivalence tests of the 
difference in proportions. That is, these options specify δU  and δL . Usually, δ δL U= − , but this 
is not required.  

This value is sometimes called the margin of equivalence. They represent the largest difference 
that would still result in the conclusion of equivalence. For example, suppose that if response 
rates of two drugs are 0.71 and 0.79, they are considered equivalent. However, if the two rates are 
0.71 and 0.80, they are not considered equivalent. Then, in this case, the margin of equivalence is 
0.09. 

The possible range of values is between 0 and 1. Typical values are between 0.05 and 0.25. 

This option is only used when the ‘Equivalence’ hypothesis tests option is checked. 

Lower and Upper Equivalence Bounds for Ratio 
These options specify the upper and lower equivalence bounds for the equivalence tests of the 
difference in proportions. That is, these options specify φU andφL . Usually,φ φL U=1/ , but this 
is not required.  

This value is sometimes called the margin of equivalence. They represent the largest difference 
that would still result in the conclusion of equivalence. The possible range of values is between 
zero and one forφL and greater than one forφU . Typical values are between 0.50 and 2.0. 

This option is only used when the ‘Equivalence’ hypothesis tests option is checked. 

Lower and Upper Equivalence Bounds for Odds Ratio 
These options specify the upper and lower equivalence bounds for the equivalence tests of the 
difference in proportions. That is, these options specify ψU andψ L . Usually,ψ ψL U=1 / , but 
this is not required.  

This value is sometimes called the margin of equivalence. They represent the largest difference 
that would still result in the conclusion of equivalence. The possible range of values is between 
zero and one forψ L and greater than one forψU . Typical values are between 0.50 and 2.0. 

This option is only used when the ‘Equivalence’ hypothesis tests option is checked. 

Alpha 

Hypothesis Test Alpha 
The probability in a hypothesis test of rejecting the null hypothesis (H0) when it is true.  
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Reports Tab 
This panel contains options that control the contents and format of the output. 

Data Summary Reports 

Original Data Summary Report 
Check this option to display a report of the original data values and resulting proportions.  

Report Decimal Places 

Decimal Places – Proportions to Test Values 
The number of digits to the right of the decimal place to display for each type of value.  

Options Tab 
This panel contains miscellaneous options about the computations. 

Limits for Exact Results 

Maximum N for Exact 
Specify the maximum allowable value of N = N1+N2 for exact confidence intervals and 
hypothesis tests. When N is greater than this amount, the 'exact' procedures are not calculated. 

Because of the long running time needed for N>50, this option lets you set a limit. Since the score 
test results are very close to the exact test results for larger (N>100) sample sizes, there is little 
point in spending the time to calculate exact procedures for ‘large’ samples.  

Maximum N for Quasi-Exact 
Specify the maximum allowable value of N=N1+N2 for quasi-exact confidence intervals. When N 
is greater than this amount, the quasi-exact confidence intervals are not calculated. 

Because of the long running time needed for N>100, this option lets you set a limit. Since the 
intervals based on the score test are very close to the exact test results for larger (N>100) sample 
sizes, there is little point in spending the time to calculate quasi-exact confidence intervals for 
‘large’ samples.  

Number of Intervals in Searches 
Specify the number of intervals to be used in the grid searches used in the exact tests and exact 
confidence intervals. Usually, ‘40’ will obtain answers correct to three places. For tables with an 
N > 100, you may want to reduce this to 20 because of the lengthy compute time. 

Zero Count Adjustment 

Zero Count Adjustment Method 
Zero cell counts cause many calculation problems with ratios and odds ratios. To compensate for 
this, a small value (called the Zero Adjustment Value) may be added either to all cells or to all 
cells with zero counts. This option specifies whether you want to use the adjustment and which 
type of adjustment you want to use. 



515-32  Two Independent Proportions 

Adding a small value is controversial, but may be necessary. Some statisticians recommend 
adding 0.5 while others recommend 0.25. We have found that adding values as small as 0.001 
seems to work well. However, you may have to defend your choice, so when possible, do not add 
anything. 

Zero Count Adjustment Value 
Zero cell counts cause many calculation problems. To compensate for this, a small value may be 
added either to all cells or to all zero cells. This is the amount that is added. 

Some statisticians recommend that the value of 0.5 be added to all cells (both zero and non-zero). 
Others recommend 0.25. We have found that even a value as small as 0.01 works well. 

The value of the ratio and the odds ratio will depend on the amount chosen here. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Large-Sample Analysis 
This section presents an example of a standard, large-sample analysis of the difference between 
two proportions. In this example, 14 of 26 receiving the standard treatment responded positively 
and 19 of 23 receiving the experimental treatment responded positively.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Proportions – Two Independent window. 

1 Open the Proportions – Two Independent procedure. 
• On the menus, select Analysis, then Proportions, then Proportions – Two 

Independent. The Proportions – Two Independent procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

2 Specify the data. 
• On the Proportions – Two Independent window, select the Data tab.  
• In the A Count box, enter 19. 
• In the C Count box, enter 4. 
• In the B Count box, enter 14. 
• In the D Count box, enter 12. 
• Under the Statistics heading, check Difference (P1 – P2), Ratio (P1/P2), and Odds 

Ratio [P1/(1-P1)] / [P2/(1-P2)]. Note that usually, you would only need to check one of 
these. 

3 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, click the Run button (the left-

most button on the button bar at the top). 

Table and Data Sections 
 

 Table Section 
     N1 N2 M1 M2 N 
 A B C D (A+C) (B+D) A+B (C+D) (N1+N2) 
 19 14 4 12 23 26 33 16 49 

 
 Data Section 
  Sample Positive Negative Proportion Proportion  
 Sample Size Responses Responses Positive Negative  
 One 23 19 4 0.8261 0.1739  
 Two 26 14 12 0.5385 0.4615 
 Total 49 33 16 0.6735 0.3265 
 

This report documents the values that were input. 
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Confidence Intervals 
 

Confidence Intervals of Difference (P1-P2) 
 
Confidence  Lower 95% Upper 95% 
Interval Estimated Confidence Confidence 
Method Value Limit Limit 
Score (Farrington & Manning) 0.2876 0.0255 0.5124 
Score (Miettinen & Nurminen) 0.2876 0.0227 0.5145 
Score w/Skewness (Gart-Nam) 0.2876 0.0268 0.5196 
Score (Wilson) 0.2876 0.0245 0.4989 
Score (Wilson C.C.) 0.2876 -0.0044 0.5200 
Chi-Square C.C. (Yates) 0.2876 0.0003 0.5750 
Chi-Square (Pearson) 0.2876 0.0412 0.5340 
 
 
Confidence Intervals of Ratio (P1/P2) 
 
Confidence  Lower 95% Upper 95% 
Interval Estimated Confidence Confidence 
Method Value Limit Limit 
Score (Farrington-Manning) 1.53 1.04 2.40 
Score (Miettinen-Nurminen) 1.53 1.03 2.41 
Score w/Skewness (Gart-Nam) 1.53 1.04 2.43 
Logarithm (Katz) 1.53 1.03 2.29 
Logarithm + 1/2 (Walter) 1.52 1.02 2.24 
Fleiss 1.53 0.98 2.13 
 
 
Confidence Intervals of Odds Ratio (Odds1/Odds2) 
 
Confidence  Lower 95% Upper 95% 
Interval Estimated Confidence Confidence 
Method Value Limit Limit 
Exact (Conditional) 3.74 0.94 20.52 
Score (Farrington & Manning) 4.07 1.12 14.56 
Score (Miettinen & Nurminen) 4.07 1.11 14.74 
Fleiss's Iterated 3.74 0.93 19.16 
Logarithmic 3.74 1.04 13.35 
Mantel-Haenszel 4.07 1.08 15.33 
Simple 4.07 0.00 9.47 
Simple + 1/2 3.74 0.00 8.49 
 

These reports provide large sample confidence intervals based on formulas shown earlier in this 
chapter. The first interval in each list is recommended. Unless you have a good reason for 
selecting another interval, you should use this one.  
The interpretation of these confidence intervals is that when populations are repeatedly sampled 
and confidence intervals are calculated, 95% of those confidence intervals will include (cover) the 
true value of the parameter (actual difference, ratio, or odds ratio). 
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Hypothesis Tests 
 

Two-Sided Tests of Zero Difference (H0: P1 = P2 versus H1: P1 <> P2 ) 
Estimated Difference (P1 - P2) = 0.2876 
 
 Test Test  Conclude H1 
Test Statistic's Statistic Prob at 5% 
Name Distribution Value Level Significance? 
Fisher's Exact Hypergeometric  0.0388 Yes 
Chi-Square Test Chi-Square(1) 4.591 0.0321 Yes 
Chi-Square Test (C.C.) Chi-Square(1) 3.376 0.0661 No 
Z-Test Normal 2.143 0.0321 Yes 
Z-Test (C.C.) Normal 1.837 0.0661 No 
Mantel-Haenszel Test Normal 2.121 0.0339 Yes 
Likelihood Ratio Chi-Square(1) 4.763 0.0291 Yes 
T-Test using 0's and 1's Student's T(47) 1.963 0.0556 No 
 
Two-Sided Tests of Ratio Unity (H0: P1/P2 = 1 versus H1: P1/P2 <> 1) 
Estimated Ratio (P1 / P2) = 1.534 
 
 Test Test  Conclude H1 
Test Statistic's Statistic Prob at 5% 
Name Distribution Value Level Significance? 
Z-Test Normal 2.143 0.0321 Yes 
 
Two-Sided Tests of Odds Ratio Unity (H0: Odds1 / Odds2 = 1 versus H1: Odds1 / Odds2 <> 1) 
Estimated Odds Ratio (Odds1 / Odds2) = 4.071 
 
 Test Test  Conclude H1 
Test Statistic's Statistic Prob at 5% 
Name Distribution Value Level Significance? 
Exact Hypergeometric 19.000 0.0637 No 
Ln(Odds Ratio) Normal 2.076 0.0379 Yes 
Mantel-Haenszel Normal 2.076 0.0379 Yes 
 

These reports give the result of several large-sample tests of the hypothesis. The formulas for 
these tests were shown earlier. 
Although many tests are provided for the difference and for the odds ratio, you should use only 
one. In fact, you should have picked the test statistic you are going to use before running the 
study. It is inappropriate to scan through the results and select a test that matches your desired 
conclusion.  

Test Name 
This column gives the name of the test. 

Test Statistic’s Distribution 
This column gives the name of the distribution that the test statistic follows under the null 
hypothesis. 

Test Statistic Value 
This is the value of the test statistic under the null hypothesis.  

Prob Level 
This is the significance level of the test. When this value is less than the critical value (often 
0.05), the test is ‘significant’. Otherwise, it is not. 

Conclude H1 at 5% Significance? 
The column indicates whether the test is significant or not at the indicated significance level. 
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Example 2 – Exact Tests and Intervals 
This section presents an example of an exact test of the difference between the two proportions. 
In this example, 14 of 26 receiving the standard treatment responded positively and 19 of 23 
receiving the experimental treatment responded positively.  

You may follow along here by making the appropriate entries or load the completed template 
Example2 from the Template tab of the Proportions – Two Independent window.  

1 Open the Proportions – Two Independent procedure. 
• On the menus, select Analysis, then Proportions, then Proportions – Two 

Independent. The Proportions – Two Independent procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

2 Specify the data. 
• On the Proportions – Two Independent window, select the Data tab.  
• In the A Count box, enter 19. 
• In the C Count box, enter 4. 
• In the B Count box, enter 14. 
• In the D Count box, enter 12. 
• Under Statistic(s), check only the Difference (P1-P2) box. 
• Under Confidence Intervals, check Exact (in addition to Large-Sample). 
• Under Hypothesis Tests, check Exact (in addition to Large-Sample). 

3 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, click the Run button (the left-

most button on the button bar at the top). 

Confidence Limits Output 
 
Confidence Intervals of Difference (P1-P2) 
 
Confidence  Lower 95% Upper 95% 
Interval Estimated Confidence Confidence 
Method Value Limit Limit 
Exact 0.2876 0.0177 0.5258 
Quasi-Exact (Chen) 0.2876 0.0208 0.5230 
Score (Farrington & Manning) 0.2876 0.0255 0.5124 
Score (Miettinen & Nurminen) 0.2876 0.0227 0.5145 
Score w/Skewness (Gart-Nam) 0.2876 0.0268 0.5196 
Score (Wilson) 0.2876 0.0245 0.4989 
Score (Wilson C.C.) 0.2876 -0.0044 0.5200 
Chi-Square C.C. (Yates) 0.2876 0.0003 0.5750 
Chi-Square (Pearson) 0.2876 0.0412 0.5340 
 

This report now includes two additional tests that are exact tests. These tests will not be 
calculated if the total sample size is greater than the limit set under the Reports tab. 
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Hypothesis Tests 
 

Two-Sided Tests of Zero Difference (H0: P1 = P2 versus H1: P1 <> P2 ) 
Estimated Difference (P1 - P2) = 0.2876 
 
 Test Test  Conclude H1 
Test Statistic's Statistic Prob at 5% 
Name Distribution Value Level Significance? 
Fisher's Exact Hypergeometric  0.0388 Yes 
Cond. Exact (Fisher) Hypergeometric 5.921 0.0388 Yes 
Cond. Exact (Pearson) Hypergeometric 4.591 0.0388 Yes 
Cond. Exact (Lik. Ratio) Hypergeometric 4.763 0.0388 Yes 
Exact (Barnard) Double Binomial 2.143 0.0350 Yes 
Chi-Square Test Chi-Square(1) 4.591 0.0321 Yes 
Chi-Square Test (C.C.) Chi-Square(1) 3.376 0.0661 No 
Z-Test Normal 2.143 0.0321 Yes 
Z-Test (C.C.) Normal 1.837 0.0661 No 
Mantel-Haenszel Test Normal 2.121 0.0339 Yes 
Likelihood Ratio Chi-Square(1) 4.763 0.0291 Yes 
T-Test using 0's and 1's Student's T(47) 1.963 0.0556 No 

 

This report now includes both the large-sample and the exact tests.  

Example 3 – Noninferiority Test 
This section presents an example of a noninferiority test of the ratio. To run a noninferiority test, 
a lower bound must be set. In this example, the bound will be set at 0.80. That is, if the positive 
response rate of the experimental group is at least 80% of the control group, the experiment group 
is concluded to be non-inferior to the control group.  

In this example, 14 of 26 receiving the standard treatment responded positively and 19 of 23 
receiving the experimental treatment responded positively.  

You may follow along here by making the appropriate entries or load the completed template 
Example3 from the Template tab of the Proportions – Two Independent window. 

1 Open the Proportions – Two Independent procedure. 
• On the menus, select Analysis, then Proportions, then Proportions – Two 

Independent. The Proportions – Two Independent procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

2 Specify the data. 
• On the Proportions – Two Independent window, select the Data tab.  
• In the A Count box, enter 19. 
• In the B Count box, enter 4. 
• In the C Count box, enter 14. 
• In the D Count box, enter 12. 
• Under Statistic(s), check only the Ratio box. 
• Under Confidence Intervals, uncheck all boxes. 
• Under Hypothesis Tests, check Large-Sample and Exact. 
• Under Hypothesis Tests, uncheck H0=0. 
• Under Hypothesis Tests, check H0=User-Specified Value. 
• Under Hypothesis Tests, uncheck Two-Sided. 
• Under Hypothesis Tests, check Upper One-Sided. 
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3 Set the H0 values. 
• Select the Hypothesis Tests tab. 
• Set the Ratio to 0.8. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Noninferiority Test Output 
 

Upper-Tail, One-Sided Tests of Ratio  (H0: P1 / P2 = 0.800 versus H1: P1 / P2 > 0.800) 
Estimated Ratio (P1 / P2) = 1.534 
 Test Test  Conclude H1 
Test Statistic's Statistic Prob at 5% 
Name Distribution Value Level Significance? 
Exact (Miettinen & Nurminen) Double Binomial 3.104 0.0010 Yes 
Score (Farrington & Manning) Normal 3.136 0.0009 Yes 
Score (Miettinen & Nurminen) Normal 3.104 0.0010 Yes 
Score (Gart & Nam) Normal 3.130 0.0009 Yes 

 

This report gives both an exact and a large-sample noninferiority test. Note that in this case, all 
tests reject the null hypothesis and conclude the alternative hypothesis that P1 (the response rate 
in the treatment group) is at least 80% of P2 (the response rate in control group).  

Example 4 – Equivalence Test 
This section presents an example of an equivalence test of the ratio. To run an equivalence test, 
both upper and lower bounds of equivalence must be set. In this example, the lower bound will be 
set at 0.80 and the upper bound is set to 1.20. That is, if the positive response rate of the 
experimental group is at least 80% of the control group, the experiment group is concluded to be 
non-inferior to the control group.  

In this example, 14 of 26 receiving the standard treatment responded positively and 19 of 23 
receiving the experimental treatment responded positively.  

You may follow along here by making the appropriate entries or load the completed template 
Example4 from the Template tab of the Proportions – Two Independent window. 

1 Open the Proportions – Two Independent window. 
• On the menus, select Analysis, then Proportions, then Proportions – Two 

Independent. The Proportions – Two Independent procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

2 Specify the data. 
• On the Proportions – Two Independent window, select the Data tab.  
• In the A Count box, enter 19. 
• In the B Count box, enter 4. 
• In the C Count box, enter 14. 
• In the D Count box, enter 12. 
• Under Statistic(s), check only the Ratio box. 
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• Under Confidence Intervals, uncheck all boxes. 
• Under Hypothesis Tests, check Large-Sample Tests and Exact Tests. 
• Under Hypothesis Tests, uncheck H0=0. 
• Under Hypothesis Tests, check H0=User-Specified Value. 
• Under Hypothesis Tests, uncheck Two-Sided. 
• Under Hypothesis Tests, check Equivalence. 

3 Set the H0 Value. 
• Select the Hypothesis Tests tab. 
• Under Equivalence Bounds, set the Lower Bound for Equivalence of a Ratio to 0.8. 
• Under Equivalence Bounds, set the Upper Bound for Equivalence of a Ratio to 1.2. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Equivalence Test Output 
 

Equivalence Tests of Ratio  (H0: P1 / P2 < 0.80 or P1 / P2 > 1.20 versus H1: Equivalence) 
Estimated Ratio (P1 / P2) = 1.534 
 
 Lower Test Lower Test Upper Test Upper Test  Conclude H1 
Test Statistic's Statistic's Statistic's Statistic's Prob at 5% 
Name Value Prob Value Prob Level Significance? 
Exact (M. N.) 3.104 0.0010 0.000 1.0000 1.0000 No 
Score (F. M.) 3.136 0.0009 1.245 0.8934 0.8934 No 
Score (M. N.) 3.104 0.0010 1.232 0.8911 0.8911 No 
Score (G. N.) 3.130 0.0009 1.246 0.8936 0.8936 No 

 

This report gives both an exact and three large-sample equivalence tests.  

Test Name 
This column gives the name of the test. The abbreviations are M. N. for Mittinen and Nurminen, 
F. M. for Farrington and Manning, and G. N. for Gart and Nam. 

Lower Test Statistic’s Value 
The equivalence test is based on two, one-sided tests (TOST). This is the test statistic for the 
lower test. 

Lower Test Statistic’s Probability 
The equivalence test is based on two, one-sided tests (TOST). This is the significance level for 
the lower test. 

Upper Test Statistic’s Value 
The equivalence test is based on two, one-sided tests (TOST). This is the test statistic for the 
upper test. 

Upper Test Statistic’s Probability 
The equivalence test is based on two, one-sided tests (TOST). This is the significance level for 
the upper test. 
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Prob Level 
This is the significance level of the test. This value is the maximum of the lower and upper 
probabilities. If this value is less that 0.05, the null hypothesis of non-equivalence is rejected and 
equivalence is concluded. 

Conclude H1 at 5% Significance? 
If this value is ‘No’, equivalence is not established. If this value is ‘Yes’, equivalence is 
established. 
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Chapter 520 

Two Correlated 
Proportions 
(McNemar) 
Introduction 
This module computes confidence intervals and hypothesis tests for quantities derived from two 
paired (correlated) proportions. These quantities include the difference, the (risk) ratio, and the 
odds ratio.  

Historically, McNemar’s test has been used to test the hypothesis that the two proportions are 
equal. Recently, more interest has been placed on obtaining confidence intervals than on a 
specific hypothesis test.  

Experimental Design 
A common design that uses this analysis is when two dichotomous responses are made on each 
subject. For example, each subject is measured once after treatment A and again after the 
application of treatment B. The response is ‘1’ if the event of interest occurs or ‘0’ otherwise. 

This analysis also applies to matched pairs data in which each case subject is matched with a 
similar subject from a control group.  

Comparing Two Correlated Proportions  
Suppose you have two dichotomous measurements Y  and Y  on each of N subjects (the ‘subject’ 
may be a pair of matched individuals). The proportions  and  represent the success 
probabilities. That is, 

1 2

p1 p2

( )p Y1 1 1= =Pr  

( )p Y2 2 1= =Pr  

The corresponding failure proportions are given by q p1 11= −  and q2 1 p2= − , respectively.  
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A sample of N subjects is selected and the two variables are measured. The data from this design 
can be summarized in the following 2-by-2 table:  

   Total Y1 1= Y1 0=

Y2 1=  a c  

Y2 0=  b d  

Total   n 

 

The proportions  and  are estimated from these data using the formulae p1 p2

$p a b
n1 =
+

 and $p a c
n2 =
+

 

Three quantities which allow these proportions to be compared are  
 

Quantity Computation 

Difference   21 pp −=Δ

Risk Ratio 21 / pp=φ  

Odds Ratio 
12

21

p
p

=ψ  

Confidence Intervals 
Several methods for computing confidence intervals for proportion difference, proportion ratio, 
and odds ratio have been proposed. We now show the methods that are available in NCSS. 

Difference 
Four methods are available for computing a confidence interval of the difference between the two 
proportions Δ = −p p1 2 . The lower (L) and upper (U) limits of these intervals are computed as 
follows. Note that z z= α / 2  is the appropriate percentile from the standard normal distribution. 

Newcombe (1998) conducted a comparative evaluation of ten confidence interval methods. He 
recommended that the modified Wilson score method be used instead of the Pearson Chi-square 
or the Yate’s Corrected Chi-square. 

Nam’s Score 
For details, see Nam (1997) or Tango (1998). The lower limit is the solution of 

L z=
−

<
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
inf :

$
~Δ Δ Δ

Δ
0

0

0
σ
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and the upper limit is the solution of 

U z=
−

> −
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
sup :

$
~Δ Δ Δ

Δ
0

0

0
σ

 

where ~σΔ0
 is given by 

~ ~ ~
σΔ

Δ
=

+ −p p
n

21 12
2

 

~p
e e f

21

2 8
4

=
− + −⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

~ ~p p12 21= − Δ  

( ) ( )e p= − − − +$ $Δ Δ Δ1 2 21  

( )f p= +Δ Δ1 21$  

Wilson’s Score as modified by Newcombe 
For further details, see Newcombe (1998c), page 2639. This is Newcombe’s method 10.  

L = −$Δ δ  

U = +$Δ ε  

where 

δ φ= − +f f g2
2

2 3 3
22 $ g  

ε φ= − +g g f f2
2

2 3 3
22 $  

( )f
a b

n
l2 2=

+
−  

( )g u
a b

n2 2= −
+

 

( )f
a c

n
l3 3=

+
−  

( )g u
a c

n3 3= −
+

 

 

and  and u  are the roots of l2 2

( )x a b
n

z
x x

n
−

+
=

−1
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and  and  are the roots of l3 u3

( )x a c
n

z
x x

n
−

+
=

−1
 

$φ  

( )
( )( )( )( )

( )( )( )( )

$φ =
+ + +

>

+ + +

⎧

⎨
⎪
⎪

⎩
⎪
⎪

max ad - bc - n / 2,0
a + b

if

ad - bc
a + b

otherwise

c d a c b d
ad bc

c d a c b d

 

Note that if the denominator of is zero,  is set to zero. $φ $φ

 

Asymptotic Wald Method 
For further details, see Newcombe (1998c), page 2638.  

L z W= −$Δ s

s

 

U z W= +$Δ  

where 

 

( )$ $ $ /Δ = − = −p p b c n1 2  

( )( )s
a d b c bc

nW
2

3

4
=

+ + +
 

Asymptotic Wald Method with Continuity Correction 
For details, see Newcombe (1998c), page 2638. 

L zs
nW= − −$Δ 1

 

U zs
nW= + +$Δ 1

 

Risk Ratio 
Two methods are available for computing a confidence interval of the risk ratioφ = p p1 / 2 . Note 
that z z= α / 2  is the appropriate percentile from the standard normal distribution. 

Nam and Blackwelder (2002) present two methods for computing confidence intervals for the 
risk ratio. These are presented here. Note that the score method is recommended.  
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Score (Nam and Blackwelder) 
For details, see Nam and Blackwelder (2002), page 691. The lower limit is the solution of 

( )z zφ α= / 2  

and the upper limit is the solution of 

( )z zφ α= − / 2  

where 

( ) ( )
( )

z
n p p

p p
φ

φ
φ

=
−

+

$ $
~ ~

1 2

12 21

 

and 

( ) ( )
( )

~ $ $ $ $ $ $ $
p

p p p p p p p
12

1
2

2 12 1 2
2 2

12 122 4
2 1

=
− + + + − +

+

φ φ
φ φ

φ
 

( )( )~ ~ $p p p21 12 221 1= − − −φ φ  

Asymptotic Wald (Nam and Blackwelder) 
For details, see Nam and Blackwelder (2002), page 692. The lower limit is the solution of 

( )z zW φ α= / 2  

and the upper limit is the solution of 

( )z zW φ α= − / 2  

where 

( ) ( )
( )

z
n p p

p pW φ
φ

φ
=

−

+

$ $

$ $

1 2

12 21

 

Odds Ratio 
Sahai and Khurshid (1995) present two methods for computing confidence intervals of the odds 
ratioψ = p p21 12/ . Note that the maximum likelihood estimate of this is given by 

$ /ψ = b c  

Exact Binomial 
The lower limit is 

( )
ψ

α
L

c b

b
c F

=
+ +1 2 2 2 2/ , ,
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and the upper limit 

ψ
α

U
b c

b
cF

=
+

+

1
2 2 2 2/ , ,

 

where F is the ordinate of the F distribution. 

Maximum Likelihood 
The lower limit is 

( ){ }ψ ψ α ψL z s= −exp ln $ / $2  

and the upper limit 

( ){ }ψ ψ α ψU z s= +exp ln $ / $2  

where  

s
b c$ψ = +
1 1

 

Hypothesis Tests 

Difference 
This module tests three statistical hypotheses about the difference in the two proportions: 

1. H p p0 1 2: − = Δ  versus H p pA: 1 2− ≠ Δ ; this is a two-tailed test. 

2. H p pL0 1 2: − ≤ −Δ  versus H p pAL: 1 2− > −Δ ; this is a one-tailed test. 

3. H p pU0 1 2: − ≥ Δ  versus H p pAU : 1 2− < Δ ; this is a one-tailed test. 

McNemar Test 
Fleiss (1981) presents a test that is attributed to McNemar for testing the two-tailed null 
hypothesis. This is calculated as 

( )χ1
2

2

=
−
+

b c
b c

 

McNemar Test with Continuity Correction 
Fleiss (1981) also presents a continuity-corrected version of McNemar test. This is calculated as 

( )χ1
2

2
1

=
− −

+

b c
b c
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Wald Test 
Lui et al. (2002) present a pair of large-sample, Wald-type z tests for testing the two one-tailed 
hypothesis about the difference p p1 2− = Δ . These are calculated as 

zL
n=

+ −$

$

Δ Δ 1
2

σ
 and zU

n=
− +$

$

Δ Δ 1
2

σ
 

where 

$
$ $ $

σ 2 21 12
2

=
+ −p p

n
Δ

 

$ $ $Δ = −p p1 2  

Nam Test 
Lui et al. (2002) recommend a likelihood score test which was originally proposed by Nam 
(1997). Lui et al. (2002) recommend this test. The tests are calculated as 

zL
L

=
+$
~

Δ Δ
σ

 and zU
U

=
−$
~

Δ Δ
σ

 

where 
~σ σL = −Δ  
~σ σU = Δ  

and 

σD
p p D

n
=

+ −~ ~
21 12

2

 

~p
e e f

21

2 8
4

=
− + −⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

~ ~p p12 21 D= −  

( ) ( )e D p= − − − +$ $Δ 1 2 21 D  

( )f D D p= +1 21$  

Ratio 
This module tests three statistical hypotheses about the difference in the two proportions: 

1. H p p0 1 2: / = φ  versus H p pA: /1 2 ≠ φ ; this is a two-tailed test. 

2. H p pL0 1 2 1: / /≤ φ  versus H p pAL: / /1 2 1> φ ; this is a one-tailed test. 

3. H p pU0 1 2: / ≥ φ  versus H p pAU : /1 2 < φ ; this is a one-tailed test. 
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Nam Test 
For details, see Nam and Blackwelder (2002), page 691. The test statistic for testing a specific 
value of φ  is 

( ) ( )
( )

z
n p p

p p
φ

φ
φ

=
−

+

$ $
~ ~

1 2

12 21

 

where 

( ) ( )
( )

~ $ $ $ $ $ $ $
p

p p p p p p p
12

1
2

2 12 1 2
2 2

12 122 4
2 1

=
− + + + − +

+

φ φ
φ φ

φ
 

( )( )~ ~ $p p p21 12 221 1= − − −φ φ  

Equivalence Tests 
Equivalence tests are hypothesis tests in which the alternative hypothesis, not the null hypothesis, 
is equality. The test is set up so that when the null hypothesis is rejected, equality is concluded. 
This is just the opposite of the usual statistical hypothesis. For example, suppose an accurate 
diagnostic test has serious side effects, so a replacement test is sought. In this case, we are not 
interested in showing that the two tests are different, but rather that they are the same.  

These tests are often divided into two categories: equivalence (two-sided) tests and non-
inferiority (one-sided) tests. Here, the term equivalence tests means that we want to show that two 
tests are equivalent—that is, their accuracy is about the same. This requires a two-sided 
hypothesis test. On the other hand, noninferiority tests are used when we want to show that a new 
(experimental) test is no worse than the existing (reference or gold-standard) test. This requires a 
one-sided hypothesis test. 

In the discussion to follow, two ways of expressing difference are considered: the difference and 
the ratio. The simple difference between two proportions is perhaps the most straight forward 
way of expressing that these two proportions are difference. A difference of zero means that the 
two proportions are equal. Unfortunately, this method does not work well near zero or one. For 
example, suppose a diagnostic test achieves 95% accuracy and we wish to establish that a new 
test is within 7 percentage points of the original test. The acceptable range is from 95% - 7% = 
88% to 95% + 7% = 102%. Of course, 102% is impossible. 

A second method of setting up the hypotheses that does not suffer from this problem is to 
consider the ratio of the two proportions. A ratio of one indicates that the two proportions are 
equal. Using the ratio to define the hypotheses will not result in impossible values. 

Equivalence Based on the Difference 
The equivalence between two proportions may be tested using the following hypothesis which is 
based on the difference: 

H p p or H p p0 1 2 0 1 2: :− ≤ − − ≥Δ Δ  versus H p pA: − < − <Δ Δ1 2 . 

where Δ  is an established equivalence limit. 
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This hypothesis is often tested at the alpha significance level by determining if ( )%21100 α−  
confidence limits are both between − Δ and Δ . A second method to test this hypothesis is to 
separate it into two sets of one-sided hypotheses called the non-inferiority hypothesis and the non-
superiority hypothesis.  

Non-Inferiority Test 
H p pL0 1 2: − ≤ −Δ  versus H p pAL: 1 2− > −Δ . 

Non-Superiority Test 
H p pU0 1 2: − ≥ Δ  versus H p pAU : 1 2− < Δ . 

Nam Test 
Both the two, one-sided hypotheses method and the confidence interval test are tested using the 
score test proposed by Nam (1997). These tests and the confidence interval where presented 
above.  

Ratio 
The equivalence between two proportions may be tested using the following hypothesis which is 
based on the ratio: 

H p p or H p p0 1 2 0 1 21: / / : /≤ ≥φ φ  versus H p pA: / /1 1 2φ φ< < . 

where φ  is an established equivalence limit which is assumed to be, without loss of generality, 
greater than one. 

This hypothesis is often tested at the alpha significance level by determining if ( )100 1 2− α %  
confidence limits are both between 1/ φ and φ . A second method to test this hypothesis is to 
separate it into two sets of one-sided hypotheses called the non-inferiority hypothesis and the non-
superiority hypothesis.  

Non-Inferiority Test 
H p pL0 1 2 1: / /≤ φ  versus H p pAL: / /1 2 1> φ . 

Non-Superiority Test 
H p pU0 1 2: / ≥ φ  versus H p pAU : /1 2 < φ . 

Nam Test 
Both the two, one-sided hypotheses method and the confidence interval test are tested using the 
score test proposed by Nam and Blackwelder (2002). These tests and the confidence interval 
where presented above.  
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Procedure Options 
This section describes the options available in this procedure. 

Data Tab 
Enter the data values directly on this panel. 

Data Values 

A Count 
This is the number of individuals the responded positively (with a ‘Yes’) on both variables. This 
must be a non-negative number. 

B Count 
This is the number of individuals the responded positively (with a ‘Yes’) on the first variable and 
negatively (with a ‘No’) on the second variable. This must be a non-negative number. 

C Count 
This is the number of individuals the responded negatively (with a ‘No’) on the first variable and 
positively (with a ‘Yes’) on the second variable. This must be a non-negative number. 

D Count 
This is the number of individuals the responded negatively (with a ‘No’) on both variables. This 
must be a non-negative number. 

Null Hypothesis Details 

H0 Difference 
This is the difference hypothesized by the null hypothesis. For a regular hypothesis test, this value 
will be zero. However, for equivalence and inferiority tests, this value will be nonzero.  

Since this is the difference of two proportions, the range of values is from -1 to 1. 

H0 Ratio 
This is the ratio hypothesized by the null hypothesis. For a regular hypothesis test, this value will 
be one. However, for equivalence and inferiority tests, this value will be other than one.  

Since this is the ratio of two proportions, the range of values is from 0 to infinity. Note that ‘0’ is 
not allowed. 

Alpha 

Confidence Limits 
The quantity (1 - alpha) is the confidence coefficient of the confidence intervals. A 100 x (1 - 
alpha)% confidence interval will be calculated. This must be a value between 0.0 and 0.5. 

Hypothesis Test 
The probability in a hypothesis test of rejecting the null hypothesis (H0) when it is true. This is 
the specified significance level. 
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Equivalence Details 

Max Equivalence Difference 
This is the largest value of the difference that will still result in the conclusion of equivalence. 
Usually, this value is between 0 and 0.2. 

Max Equivalence Ratio 
This is the largest value of the ratio that will still result in the conclusion of equivalence. Usually, 
this value will be between 1.0 and 2.0. 

Decimal Places 

Proportions – Test Values 
The number of digits displayed to the right of the decimal place.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Analysis of Two Correlated Proportions 
This section presents an example of how to run an analysis on hypothetical data. In this example, 
two dichotomous variables where measured on each of fifty subjects; 30 subjects scored ‘yes’ on 
both variables, 9 subjects scored ‘no’ on both variables, 6 scored a ‘yes’ and then a ‘no’, and 5 
scored a ‘no and then a ‘yes’.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Proportions – Two Correlated (McNemar) window. 

1 Open the Proportions – Two Correlated window. 
• On the menus, select Analysis, then Proportions, then Proportions – Two Correlated 

(McNemar). The Proportions – Two Correlated (McNemar) procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  
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2 Specify the data. 
• On the Two Proportions window, select the Data tab.  
• In the A Count box, enter 30. 
• In the B Count box, enter 6. 
• In the C Count box, enter 5. 
• In the D Count box, enter 9. 
• Set the H0 Difference box to 0.0. 
• Set the H0 Ratio box to 1.0. 
• Set the Alpha - Confidence Limits box to 0.05. 
• Set the Alpha - Hypothesis Test box to 0.05. 
• Set the Max Equivalence Difference box to 0.1. 
• Set the Max Equivalence Ratio box to 1.1. 

3 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Data and Proportion Section 
 

Data Section 
 
Data A B C D N 
Source Yes-Yes Yes-No No-Yes No-No Total 
Input 30 6 5 9 50 

 
 Proportion Section 

  Lower 95.0% Upper 95.0%    
 Proportion Conf. Limit Conf. Limit Number Number  
Variable Yes's of Proportion of Proportion of Yes's of No's Total 
One 0.7200 0.5833 0.8253 36 14 50 
Two 0.7000 0.5625 0.8090 35 15 50 

 

The Data Section report shows the values that were input. The Proportion Section gives the 
proportion of Yes’s for each variable along with a large sample confidence interval based on the 
Wilson score method.  

Confidence Intervals for the Difference (P1-P2) 
 

 Lower 95.0%  Upper 95.0% 
Confidence Interval Confidence Estimated Confidence 
Method Limit Value Limit 
Score (Nam RMLE)* -0.1197 0.0200 0.1606 
Score (Wilson) -0.1145 0.0200 0.1537 
Asymptotic Wald -0.1099 0.0200 0.1499 
Asymptotic Wald (C.C.) -0.1299 0.0200 0.1699 

 

This report gives four confidence intervals for the difference. The formulas were given earlier in 
the technical details section. The Nam RMLE confidence interval is recommended. 
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Confidence Intervals for the Ratio (P1/P2) 
 

 Lower 95.0%  Upper 95.0% 
Confidence Interval Confidence Estimated Confidence 
Method Limit Value Limit 
Score (Nam Blackwelder)* 0.8396 1.0286 1.2668 
Asymptotic Wald 0.8567 1.0286 1.2350 

 

This report gives two confidence intervals for the ratio. The formulas were given earlier in the 
technical details section. The Nam Blackwelder confidence interval is recommended. 

Confidence Intervals for the Odds Ratio (P12/P21) 
 

 Lower 95.0%  Upper 95.0% 
Confidence Interval Confidence Estimated Confidence 
Method Limit Value Limit 
Exact Conditional Binomial 0.3051 1.2000 4.9706 
Maximum Likelihood 0.3662 1.2000 3.9320 

 

This report gives two confidence intervals for the odds ratio. The formulas were given earlier in 
the technical details section. Neither confidence interval is recommended in all situations. 

Two-Sided Hypothesis Tests about the Difference (P1-P2) 
 

 Distribution Null Test  Conclusion 
 of Test Hypothesis Statistic Prob at the 5.0% 
Name Statistic (H0) Value Level Level 
Nam* CS(1) P1-P2=0 0.09 0.7630 Cannot reject H0 
McNemar CS(1) P1-P2=0 0.09 0.7630 Cannot reject H0 
McNemar C.C. CS(1) P1-P2=0 0.00 1.0000 Cannot reject H0 
Wald CS(1) P1-P2=0 0.20 0.6508 Cannot reject H0 

 

This report gives four hypotheses test for a specified value of the difference. The Nam test is 
recommended. Although four tests are given, you should pick and use only one of these tests 
before seeing the results. 
The formulas were given earlier in the technical details section.  

Name 
The name (author) of the test. Note that you should only use one of these tests. 

Distribution of Test Statistic 
This is the distribution of the test statistic on which the test is based. In this case, all four test 
statistics are chi-squares with one degree of freedom. 

Null Hypothesis (H0) 
The null hypothesis is the hypothesis that you hope to reject. The alternative hypothesis (the 
opposite of the null hypothesis) is concluded when the null hypothesis is rejected. 

Test Statistic Value 
This is the value of the test statistic under the null hypothesis. This is the chi-square value. 

Prob Level 
This is the p-value of the test. It is also called the significance level. 
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Conclusion at the 5.0% Level 
This is the conclusion that is reached. Note that the conclusion ‘Cannot reject H0’ does not mean 
that the null hypothesis is concluded to be correct. It simply means that there was not enough 
evidence in the data to reject it. 

One-Sided Hypothesis Tests about the Difference (P1-P2) 
 

 Distribution Null Test  Conclusion 
 of Test Hypothesis Statistic Prob at the 5.0% 
Name Statistic (H0) Value Level Level 
Nam Lower* Normal P1-P2<=0 0.30 0.3815 Cannot Reject H0 
Nam Upper* Normal P1-P2>=0 0.30 0.6185 Cannot reject H0 
 
Wald Lower Normal P1-P2<=0 0.45 0.3254 Cannot Reject H0 
Wald Upper Normal P1-P2>=0 0.45 0.6746 Cannot reject H0 

 

This report gives two hypotheses test for a specified value of the difference. Although two tests 
are given, you should pick and use only one of these tests before seeing the results. 
Note that a separate test is given for each null hypothesis. The formulas were given earlier in the 
technical details section. The Nam test is recommended. 

Name 
The name (author) of the test. Note that you should only use one of these tests. 

Distribution of Test Statistic 
This is the distribution of the test statistic on which the test is based. In this case, all test statistics 
are standard normals. 

Null Hypothesis (H0) 
The null hypothesis is the hypothesis that you hope to reject. The alternative hypothesis (the 
opposite of the null hypothesis) is concluded when the null hypothesis is rejected. 

Test Statistic Value 
This is the value of the test statistic under the null hypothesis. This is the z value. 

Prob Level 
This is the p-value of the test. It is also called the significance level. 

Conclusion at the 5.0% Level 
This is the conclusion that is reached. Note that the conclusion ‘Cannot reject H0’ does not mean 
that the null hypothesis is concluded to be correct. It simply means that there was not enough 
evidence in the data to reject it. 

Two-Sided Hypothesis Tests about the Ratio (P1/P2) 
 

 Distribution Null Test  Conclusion 
 of Test Hypothesis Statistic Prob at the 5.0% 
Name Statistic (H0) Value Level Level 
Nam* Normal P1/P2=1 0.09 0.7630 Cannot reject H0 

 

This report gives the results of a two-sided hypotheses test for a specified value of the ratio. The 
formulas were given earlier in the technical details section.  
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Name 
This is the name (author) of the test. 

Distribution of Test Statistic 
This is the distribution of the test statistic on which the test is based. 

Null Hypothesis (H0) 
The null hypothesis is the hypothesis that you hope to reject. The alternative hypothesis (the 
opposite of the null hypothesis) is concluded when the null hypothesis is rejected. 

Test Statistic Value 
This is the value of the test statistic under the null hypothesis. In this case, the test statistic is a z 
value. 

Prob Level 
This is the p-value of the test. It is also called the significance level. 

Conclusion at the 5.0% Level 
This is the conclusion that is reached. Note that the conclusion ‘Cannot reject H0’ does not mean 
that the null hypothesis is concluded to be correct. It simply means that there was not enough 
evidence in the data to reject it. 

One-Sided Hypothesis Tests about the Ratio (P1/P2) 
 

 Distribution Null Test  Conclusion 
 of Test Hypothesis Statistic Prob at the 5.0% 
Name Statistic (H0) Value Level Level 
Nam Lower* Normal P1-P2<=0 0.30 0.3815 Cannot Reject H0 
Nam Upper* Normal P1-P2>=0 0.30 0.6185 Cannot reject H0 
 
Wald Lower Normal P1-P2<=0 0.45 0.3254 Cannot Reject H0 
Wald Upper Normal P1-P2>=0 0.45 0.6746 Cannot reject H0 

 

This report gives two hypotheses tests for a specified value of the ratio. Note that a separate test is 
given for each possible null hypothesis. The formulas were given earlier in the technical details 
section. The Nam test is recommended. 

Name 
The name (author) of the test. Note that you should only use one of these tests. 

Distribution of Test Statistic 
The distribution of the test statistic on which the test is based. In this case, both test statistics are 
standard normal. 

Null Hypothesis (H0) 
The null hypothesis is the hypothesis that you hope to reject. The alternative hypothesis (the 
opposite of the null hypothesis) is concluded when the null hypothesis is rejected. 

Test Statistic Value 
This is the value of the test statistic under the null hypothesis. This is the z value. 

Prob Level 
This is the p-value of the test. It is also called the significance level. 
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Conclusion at the 5.0% Level 
This is the conclusion that is reached. Note that the conclusion ‘Cannot reject H0’ does not mean 
that the null hypothesis is concluded to be correct. It simply means that there was not enough 
evidence in the data to reject it. 

Tests of Equivalence using Nam Score Confidence Intervals 
 
      Min. Equiv.  
  Lower Upper   Bound  
   90.0%  90.0% Lower Upper Attaining Conclusion 
Parameter Prob Conf. Conf. Equiv. Equiv. 5.0% at 5.0% 
Tested Level Limit Limit Bound Bound Signif. Level 
Difference (P1-P2) 0.1219 -0.0950 0.1359 -0.1000 0.1000 0.1359 Cannot Reject H0 
Ratio (P1/P2) 0.2418 0.8717 1.2188 0.9091 1.1000 1.2188 Cannot Reject H0 
 

This report gives the results of two equivalence tests: one for a specified difference and one for a 
specified ratio. The formulas were given earlier in the technical details section.  

Parameter Tested 
This is the parameter being tested.  

Prob Level 
This is the p-value of the test. It is also called the significance level. In this case, it is the 
maximum p-value of the corresponding two one-sided hypothesis tests.  

Lower/Upper 90.0% Conf. Limit 
These are the lower and upper limits of a ( )%21100 α−  confidence interval for the parameter 
tested on this line of the report. Note that the null hypothesis of non-equivalence is rejected when 
these confidence limits are within the lower and upper equivalence bounds.  

Min. Equiv. Bound Attaining 5.0% Signif. 
This is the smallest equivalence bound that just attains significance with these data. 

Conclusion at the 5.0% Level 
This is the conclusion that is reached. Note that the conclusion ‘Cannot reject H0’ does not mean 
that the null hypothesis is concluded to be correct. It simply means that there was not enough 
evidence in the data to reject it. 
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Chapter 525 

Mantel-Haenszel 
Test 
Introduction 
The Mantel-Haenszel test compares the odds ratios of several 2-by-2 tables. Each table is of the 
form:  
 

 Disease 

Exposure Yes (Cases) No (Controls) Total 
Yes A B m  1

No C D  m  2

Total   n n1 n2
 

where A, B, C, and D are counts of individuals.  

The odds of an exposed individual contracting the disease is:  

o p
p

A m
B m

A
B1

1

1

1

11
=

−
= =

/
/

 

The odds of an unexposed individual contracting the disease is:  

o p
p

C m
D m

C
D2

2

2

2

21
=

−
= =

/
/

 

The odds ratio,ψ ,  is calculated using the equation:  

ψ = =
o
o

AD
BC

1

2
 

This is the ratio of the odds of exposed individuals contracting a disease to the odds of unexposed 
individuals contracting a disease. It is closely related to the risk ratio which is: 

Risk p
p

= 1

2
 

When the probability of the disease is rare, 1 11− ≈p  and 1 12− ≈p . Hence, in this case, the odds 
ratio is almost identical to the risk ratio. 
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The above 2-by-2 table may be partitioned according to one or more variables into several 2-by-2 
tables. Each individual table is referred to as a stratum. For example, consider the following data 
presented by Schlesselman (1982) for a case-control study investigating the relationship among 
lung cancer (the disease variable), employment in shipbuilding (exposure to asbestos), and 
smoking: 
 

Smoking Shipbuilding Cancer Control Odds Ratio 
Minimal Yes 11 35 
 No 50 203 1.28 
Moderate Yes 70 42 
 No 217 220 1.69 
Heavy Yes 14 3 
 No 96 50 2.43 
 

These data are contained in the SMOKING database. We see that the odds ratios steadily increase 
as the amount of smoking increases.  

The Mantel-Haenszel analysis provides two closely related pieces of information. First, it 
provides statistical tests of whether the odds ratios are equal (homogeneous) or unequal 
(heterogeneous) across strata. Second, it provides an estimate of the odds ratio of the exposure 
variable, adjusted for the strata variable. In this example, it provides estimates of the odds ratio of 
asbestos exposure to lung cancer after removing the influence of smoking. 

Assumptions 
Two basic assumptions should be considered when using this procedure. 

1. Observations are independent from each other. In practice, this means that each 
observation comes from a different subject, that the subjects were randomly selected 
from the population of interest, and that no specific group of subjects is purposefully 
omitted. 

2. All observations are identically distributed. This means that they are obtained in the same 
way. For example, you could not mix the results of a telephone survey with those of a 
door-to-door survey. 

Data Structure 
The data may be entered in either raw or summarized form. In either case, each variable 
represents a factor and each row of data represents a cell. An optional variable may be used to 
give the count (frequency) of the number of individuals in that cell. When the frequency variable 
is left blank, each row receives a frequency of one. The following table shows how the above 
table was entered in the SMOKING database. 
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SMOKING dataset 

Smoking Shipbuilding Cancer Count 
1_Minimal 1_Yes 1_Yes 11 
1_Minimal 2_No 1_Yes 50 
1_Minimal 1_Yes 2_No 35 
1_Minimal 2_No 2_No 203 
2_Moderate 1_Yes 1_Yes 70 
2_Moderate 2_No 1_Yes 217 
2_Moderate 1_Yes 2_No 42 
2_Moderate 2_No 2_No 220 
3_Heavy 1_Yes 1_Yes 14 
3_Heavy 2_No 1_Yes 96 
3_Heavy 1_Yes 2_No 3 
3_Heavy 2_No 2_No 50 

 

You will note that we have used the phrase “1_Yes” instead of “Yes” and “2_No” instead of 
“No.” We have done this so that the categories are sorted in the correct order. Normally, a “Yes” 
would be sorted after a “No.” However, the data in the table must be arranged so that the upper-
left cell (corresponding to the count A) refers to individuals who are exposed to the risk factor and 
have the disease. Entering “1_Yes” and “2_No” causes the categories to be sorted in the proper 
order. An alternative way of accomplishing this would have been to enter a “1” for Yes and a “2” 
for No.  

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variables to be analyzed. 

Binary Response Variable 

Disease Variable 
This is the binary response variable. The lowest value represents having the response. The highest 
value represents individuals who do not have the response. In a case-control study, this is the 
variable that separates the cases from the controls. The cases must receive the lowest value when 
the two categories are sorted, while the controls must be associated with the highest value. 

Count Variable 

Count Variable 
This optional variable contains the count (frequency) of each cell in the table. If this variable is 
left blank, the frequency or each row in the database is assumed to be one. 
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Exposure Variable 

Exposure Variable 
This is the binary variable representing the risk factor. The lowest value represents individuals 
who have the risk factor. The highest value represents individuals who do not have the risk factor.  

Delta 

Delta  
This value is added to each cell count in 2-by-2 tables with zeros in one or more cells. The 
traditional value is 0.5. Recent simulation studies have indicated that 0.25 produces better results 
under certain situations. Specific statistics that are impacted are indicated later. The Mantel-
Haenszel statistic, for example, does not use this delta value in its calculation. 

Strata Specification 

Stratum (1-4) Variable 
At least one factor variable must be specified. Examples of factor variables are gender, age 
groups, “yes” or “no” responses, etc.  

A factor’s categories need not be consecutive integers. However, the program will display results 
in sorted order. 

You may use text or numeric identification codes. The treatment of text variables is specified for 
each variable by the Data Type option on the Variable Info sheet. 

Report Options 

Alpha 
This option specifies the significance level (alpha) used in calculating confidence limits. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Value Labels 
Indicate whether to display the data values or their labels.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Mantel-Haenszel Test 
This section presents an example of how to run an analysis of the data contained in the 
SMOKING database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Mantel-Haenszel Test window. 

1 Open the SMOKING dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Smoking.s0. 
• Click Open. 

2 Open the Mantel-Haenszel Test window. 
• On the menus, select Analysis, then Proportions, then Mantel-Haenszel Test. The 

Mantel-Haenszel Test procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Mantel-Haenszel Test window, select the Variables tab. 
• Double-click in the Disease Variable text box. This will bring up the variable selection 

window. 
• Select Cancer from the list of variables and then click Ok. “Cancer” will appear in the 

Disease Variables box. 
• Double-click in the Count Variable text box. This will bring up the variable selection 

window. 
• Select Count from the list of variables and then click Ok. “Count” will appear in the 

Count Variable box. 
• Double-click in the Exposure Variable text box. This will bring up the variable selection 

window. 
• Select Shipbuilding from the list of variables and then click Ok. “Shipbuilding” will 

appear in the Exposure Variables box. 
• Double-click in the Stratum 1 Variable text box. This will bring up the variable 

selection window. 
• Select Smoking from the list of variables and then click Ok. “Smoking” will appear in 

the Stratum 1 Variables box. 
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4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Strata Count Section  
 
Strata Count Section 
      Sample 
Strata Smoking A B C D Odds Ratio 
1 1_Minimal 11 35 50 203 1.2760 
2 2_Moderate 70 42 217 220 1.6897 
3 3_Heavy 14 3 96 50 2.4306 
A: Shipbuilding = 1_Yes,  Cancer = 1_Yes 
B: Shipbuilding = 1_Yes,  Cancer = 2_No 
C: Shipbuilding = 2_No,  Cancer = 1_Yes 
D: Shipbuilding = 2_No,  Cancer = 2_No  
 

This report presents the data that were input. Each row of the report represents an individual 2-
by-2 table. The definitions of the four letters (A, B, C, and D) are shown immediately below the 
report. Thus A is the number of individuals with Disease = Yes and Exposure = Yes.  

Sample Odds Ratio 
This is the odds ratio calculated for the 2-by-2 table listed on this row. The formula is 

ψ =
AD
BC

 

The sample odds ratio is not calculated when any of the four cell counts is zero. Note that this 
value is different from the Corrected Odds Ratio report in the Strata Detail Section. 

Strata Detail Section  
 
Strata Detail Section 
 Lower 1/2-Corrected Upper Exact Proportion Proportion 
Strata  95.0% C.L. Odds Ratio  95.0% C.L. Test Exposed Diseased 
1 0.5653 1.2909 2.8335 0.5516 0.1538 0.2040 
2 1.0805 1.6857 2.6465 0.0194 0.2040 0.5228 
3 0.6127 2.2891 11.2098 0.1870 0.1043 0.6748 
 

Each line on this report presents results for an individual 2-by-2 table. The strata number provides 
the identity of particular 2-by-2 table, since the tables in this report are listed in the same order as 
those in the Strata Count Section report described previously. 

Strata 
The row number. 

1/2-Corrected Odds Ratio 
This odds ratio is computed using the formula: 

( )( )
( )( )

′ =
+ +
+ +

ψ
δ δ
δ δ

A D
B C

 

whereδ is the Delta value that was entered (usually, 0.5 or 0.25). Note that this odds ratio is 
defined when one or more cell counts are zero. 
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Lower, Upper 100(1-Alpha)% C.L. 
The odds ratio confidence limits are calculated from those based on the Log Odds Ratio using the 
following procedure. 

1. Compute the corrected odds ratio ′ψ using the formula above. 

2. Compute the logarithm of the odds ratio using: 

( )′ = ′L ln ψ  

3. Compute the standard error of L’ using: 

( ) ( ) ( ) ( )
s

A B C DL ′ = +
+

+
+

+
+

+
1 1 1 1
δ δ δ δ

 

4. Compute the 100(1-α)% confidence limits for L using the fact that L’ is approximately 
normally distributed for large samples: 

′ ± ′L z sLα /2  

 where zα /2  is the appropriate value from the standard normal distribution. 

5. Transform the above confidence limits back to the original scale using: 

ψ α
lower

L z se L= ′− ′/ 2  

ψ α
upper

L z se L= ′+ ′/ 2  

6. Compute the quantities X, Y, W, F, U, and V using the formulas: 

( ) ( )X m n m n= + + −ψ 1 1 2 1  

( )Y X m n= − −2
1 14 1ψ ψ  

( )
N X Y

11 2 1
=

−
−ψ

 

N m N12 1 11= −  

N n N21 1 11= −  

N n m N22 2 1 11= − +  

W
N N N N

= + + +
1 1 1 1

11 12 21 22
 

( )F A N W z= − − −11
1
2

2
2

2
α /  

( )
( ) ([ ]T Y n

Y
X m n m n=

−
− −

−
+ − −⎛

⎝⎜
⎞
⎠⎟

1
2 1

1 2 2 12 1 1 1 1ψ
ψ ψ )  
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U
N N N N

= + − −
1 1 1 1

12
2

21
2

11
2

22
2  

( ) ( )[ ]V T A N U W A N= − − − − −11
1
2

2
11

1
22  

 Finally, use the updating equation below to calculate a new value for the odds ratio. 

( ) ( )ψ ψk k F
V

+ = −1  

7. Continue iterating (computing the values in step 6) until the value of F is arbitrarily close 
to zero (say, if its absolute value is less than 0.0000001). 

This procedure is used separately for the upper and lower confidence limits of the odds ratio.  

Exact Test 
This is the probability (significance) level of Fisher’s exact test versus a two sided alternative. 
Reject the hypothesis that ψ =1 when this value is less than a small value, say 0.05. 

Proportion Exposed 
This is the overall proportion of those in the table that were exposed to the risk factor. The 
calculation is: 

m n1 /  

This figure may or may not estimate this proportion in the population depending on the sampling 
design that was used to obtain the data. 

Proportion Diseased 
This is the overall proportion of those in the table that were diseased. The calculation is: 

n n1 /  

This figure may or may not estimate this proportion in the population depending on the sampling 
design that was used to obtain the data. 

Mantel-Haenszel Statistics Section  
 
Mantel-Haenszel Statistics Section 
 Lower Estimated Upper Chi-Square  Prob 
Method  95.0% C.L. Odds Ratio  95.0% C.L. Value DF Level 
MH C.C. 1.1411 1.6438 2.3679 7.12 1 0.007616 
MH 1.1545 1.6438 2.3404 7.60 1 0.005832 
Robins 1.1558 1.6438 2.3378    
Woolf 1.1417 1.6291 2.3247 7.24 1 0.007137 
Heterogeneity Test    0.81 2 0.667190 
 

This report presents various odds ratio confidence limits and hypothesis tests. From what has 
been written in the statistical literature, we would recommend the following strategy when using 
this report. 
For hypothesis testing, use the Heterogeneity Test to test the hypothesis that all odds ratios are 
equal. Use the MH C.C. hypothesis test to test the hypothesis test that all odds ratios are equal to 
one. Use the Robins confidence limits. 

We will next discuss each row of this report. 
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MH C.C. 
This row presents the Mantel-Haenszel confidence limits and hypothesis test with continuity 
correction. Generally speaking, the continuity correction is used to provide a closer 
approximation to the exact conditional test in which all marginal totals are assumed to be fixed. 

Hypothesis Test 
We will discuss the hypothesis test first. The Mantel-Haenszel chi-square value tests the null 
hypothesis that the individual stratum odds ratios are all equal to one versus the alternative 
hypothesis that at least one odds ratio is different from unity. Note that this is different from the 
Heterogeneity Test which does not test that the odds ratios are equal to one, just equal to each 
other. 

The formula used for this test is: 

χmhcc
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where K is the number of strata and 

( )E A n m
ni
i i

i

= 1 1  
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i i i i

i i

=
−

1 2 1 2
2 1( )

 

This is a chi-square test with one degree of freedom. The probability level provides the upper tail 
probability of the test. Hence, when this value is less that your desired alpha level (say 0.05), 
reject the null hypothesis that all odds ratios are equal to one. 

Confidence Limits for the Odds Ratio 
The within-strata odds ratio is computed as follows: 

ψ mh
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The test-based confidence limits for a 100(1-alpha)% confidence interval are given by 
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MH 
This row presents the Mantel-Haenszel confidence limits and hypothesis test without continuity 
correction. Generally speaking, the uncorrected version of this test is used to provide a closer 
approximation to the unconditional chi-square test. 

Hypothesis Test 
We will discuss the hypothesis test first. The Mantel-Haenszel chi-square value tests the null 
hypothesis that the individual stratum odds ratios are all equal to one versus the alternative 
hypothesis that at least one odds ratio is different from unity. Note that this is different from the 
Heterogeneity Test which does not test that the odds ratios are equal to one, just equal to each 
other. 

The formula used for this test is: 

χmh
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where K is the number of strata and 
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This is a chi-square test with one degree of freedom. The probability level provides the upper tail 
probability of the test. Hence, when this value is less that your desired alpha level (say 0.05), 
reject the null hypothesis that all odds ratios are equal to one. 

Confidence Limits for the Odds Ratio 
The within-strata odds ratio is computed as follows: 
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The test-based confidence limits for a 100(1-alpha)% confidence interval are given by 
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Robins 
Robins (1986) presented an alternative formulation for the confidence limits which they have 
shown to be more accurate that any of the others presented. They did not make modifications to 
the hypothesis test, so no hypothesis test is printed on this line of the report.  

Confidence Limits for the Odds Ratio 
The within-strata odds ratio is computed as follows: 

ψ R

i i

ii

K

i i

ii

K

A D
n

B C
n

= =

=

∑

∑
1

1

 

The confidence limits for a 100(1-alpha)% confidence interval are given by 

( )( )( )ψ ψ αR lower R z Vus, /exp ln= − 2  

( )( )( )ψ ψ αR upper R z Vus, /exp ln= + 2  
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Woolf 
This row presents the confidence limits and hypothesis test developed by Woolf, as described by 
Schlesselman (1982). Recent studies have cast doubt on the usefulness of Woolf’s tests, but they 
are provided anyway for completeness. 

Confidence Limits for the Odds Ratio 
The within-strata odds ratio is computed as follows: 
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If any of the counts in a particular 2-by-2 table are zero, all counts in that table have delta (0.25 or 
0.5) added to them. 

Let W be calculated by: 
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The confidence limits are calculate using the equations: 
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Hypothesis Test 
Woolf’s chi-square statistic tests the hypothesis that all odds ratios are equal to one. 

The formula used for this test is: 

( )χ ψw wW2 2= ln  

This is a chi-square test with one degree of freedom. The probability level provides the upper tail 
probability of the test. Hence, when this value is less that your desired alpha level (say 0.05), 
reject the null hypothesis that all odds ratios are equal to one. 

Heterogeneity Test 
This row presents a hypothesis test developed by Woolf, as described by Schlesselman (1982) for 
testing the more general hypothesis that all odds ratios are equal, but not necessarily equal to one. 

Hypothesis Test 
Woolf’s chi-square statistic tests the hypothesis that all odds ratios are equal. 

The formula used for this test is: 

( )χ ψwh i i w
i

K

v2 1 2

1

= −−

=
∑ ln lnψ  

This is a chi-square test with K-1 degrees of freedom. The probability level provides the upper 
tail probability of the test. Hence, when this value is less that your desired alpha level (say 0.05), 
reject the null hypothesis that all odds ratios are equal to one. 
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Chapter 530 

Loglinear Models 
Introduction 
Loglinear models (LLM) studies the relationships among two or more discrete variables. Often 
referred to as multiway frequency analysis, it is an extension of the familiar chi-square test for 
independence in two-way contingency tables. 

LLM may be used to analyze surveys and questionnaires which have complex interrelationships 
among the questions. Although questionnaires are often analyzed by considering only two 
questions at a time, this ignores important three-way (and multi-way) relationships among the 
questions. The use of LLM on this type of data is analogous to the use of multiple regression 
rather that simple correlations on continuous data. 

There are several textbooks available that explain LLM in detail. We recommend the books by 
Tabachnick (1989) and Jobson (1992) which each have excellent chapters on LLM. Wickens 
(1989) is a book that is completely devoted to LLM. 

Limitations and Assumptions 
Since the use of LLM requires few assumptions about population distributions, it is remarkably 
free of limitations. It may be applied to almost any circumstance in which the variables are (or 
can be made) discrete. It can even be used to analyze continuous variables which fail to meet 
distributional assumptions (by collapsing the continuous variables into a few categories). 

Three basic assumptions should be considered when using LLM. 

1. Observations are independent from each other. In practice, this means that each 
observation comes from a different subject, that the subjects were randomly selected 
from the population of interest, and that no specific group of subjects is purposefully 
omitted. 

2. All observations are identically distributed. This means that they are obtained in the same 
way. For example, you could not mix the results of a telephone survey with those of a 
door-to-door survey. 

3. The number of observations is large. Since LLM makes use of large sample 
approximations, it requires large samples. The LLM algorithm begins by taking the 
natural logarithm of each of the cell frequencies, so empty cells (those with frequencies 
of zero) are not allowed. LLM appears to be less restrictive than traditional chi-square 
contingency tests, so rules that are used for those tests may be used for LLM analysis as 
well. 



530-2  Loglinear Models 

Fundamental Approach 
LLM analysis requires two steps. It is easy to become lost in details of each of these steps, but it 
is important to keep in mind the overall purpose of each task. 

1. Selecting an appropriate model. The first step is to find an appropriate model of the data. 
Several techniques may be used to find an appropriate LLM. One of the most popular is 
the step-down technique in which complex terms are removed until all terms remaining 
are significant. 

 This search for an appropriate model is restricted to those models which are hierarchical. 
Hierarchical models are those in which the inclusion of a term forces the inclusion of all 
components of that term. For example, the inclusion of the two-way interaction, AB, 
forces terms A and B to also be included.  

 Before the model is accepted, you should study the residuals to determine if the model 
fits the data reasonably well. 

2. Interpreting the selected model. Once a model is selected, it must be interpreted. This is 
the step in which you determine what your data are telling you. 

The Notation of Loglinear Models 
Consider a two-way table in which the row-variable A has categories (levels) i=1,...,I and the 
column-variable B has categories j=1,...,J. A multiplicative model that reproduces the cell 
frequencies  exactly is f ij

m Nij i j ij= α β γ  

where is the expected frequency of the i( )m E fij ij= th row and the jth column. When the are 

estimated using maximum likelihood, the results are denoted . Also note that . 

mij

$mij N f ij
ij

=∑

One aspect of the table that is of interest is whether A and B are independent. This is often tested 
using the familiar chi-square test. In the above formula, independence would be established if all 
γ ij were equal to one. 

Because of its multiplicative form, the above formula is difficult to work with. However, if we 
take the logarithm of both sides, we can rewrite it as 

( )ln = + + +mij i
A

j
B

ij
ABθ λ λ λ  

The ′λ s  are called effects. The superscript indicates the variable(s) and the subscripts refer to the 
individual categories of those variables. The order of an effect is equal to the number of variables 
in the superscript. 

Because this formulation is additive, it is called a loglinear model. Because of the logarithms, this 
model has the added constraint that none of the are zero. mij

Notice that the total number of ′λ s  in this model is 1+I+J+(IxJ) which is greater than the 
number of cell frequencies (which is IxJ). When the number of parameters is greater than or equal 
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to the number of cells, we say the model is saturated. A saturated model reproduces the observed 
frequencies exactly. 

By testing whether certain of the ′λ s are zero, you can test various interrelationships. For 
example, to test whether all of the frequencies are equal, you would test whether all first-order 
and second-order effects (the , , and ) are zero. Testing whether the  are zero 
would test whether variables A and B are independent. Testing whether the  were zero would 
test whether the probabilities of the categories of A are equal. As you can see, this model will let 
you answer many interesting questions about factors A and B. 

λA s' λB s' λAB s' λAB s'
λA s'

Hierarchical Models 
The three-way LLM would be written as 

( )ln = + + + + + + +mijk i
A

j
B

ij
AB

k
C

ik
AC

jk
BC

ijk
ABCθ λ λ λ λ λ λ λ  

or, using the familiar ANOVA syntax, it might be written as 

y mean A B AB C AC BC ABCijk i j ij k ik jk ijk= + + + + + + +  

Various models that are subsets of this saturated model might be of interest. For example, the 
main-effects model, A+B+C, would be useful in testing whether the factors are independent. 

Hierarchical models are a particular class of models in which no interaction term is specified 
unless all subset combinations of that term are also in the model. 

Often, a shorthand notation is used to express these models in which only the largest terms are 
specified. The following examples, showing the hierarchical model on the left and the expanded 
model on the right, should give you the idea of how this notation works. 
  
Hierarchical Notation Regular (Expanded) Notation 
ABC A+B+AB+C+AC+BC+ABC 
A,BC A+B+C+BC 
AB A+B+AB 
AB,BC A+B+AB+C+BC 
A,B A+B 
A,B,C A+B+C 
AB,AC,BC A+B+AB+C+AC+BC 
 
In the LLM analysis considered in this program, only hierarchical models are used. Hence, we 
adopt the shorthand model specification on the left, although we are actually fitting the expanded 
model on the right. 
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Goodness of Fit 
When dealing with several competing models, the relative quality of each model must be 
considered. The quality of a model, as measured by its goodness of fit to the data, may be tested 
using either of two chi-square statistics:  

The Pearson chi-square statistic 

( )2

, ,

= 2
$

$
χ

f m

m
ijk ijk

ijki j k

−
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2

 

and the likelihood-ratio statistic 
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G = 2 ln
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Both of these statistics are distributed as a chi-square random variable when N is large and none 
of the are small. If a few of the  are small, the chi-square approximation is still fairly 
close. Both of these statistics have n-p degrees of freedom where n is the number of cells in the 
table and p is the number of parameters in the model on which the  are based. 

$mijk $mijk

$mijk

You should understand exactly what these two chi-square statistics are testing. They test whether 
the terms in the saturated model that are not included in the current model are significantly 
different from zero. 

For example suppose the hierarchical model AB, BC is fit. The expanded version of this 
hierarchical model is A+B+C+AB+BC. Note that the terms AC and ABC are omitted. If 
the and  were computed using the  from this fit, they would test whether the AC and 
ABC effects are zero. That is, these chi-square statistics test whether any important effects have 
been left out of the model. 

χ 2 G 2 $mijk

The likelihood-ratio statistic, , enjoys a very useful property which the Pearson  does not 
have. 

G 2 χ 2

It is additive under partitioning for nested models. To explain this, consider an example. 
Suppose the model AB,AC,BC is fit and the resulting value of  is 17.8 with 8 degrees of 
freedom. A second model A,B,C is fit resulting in a  value of 69.9 with 24 degrees of freedom. 
If you expand each of these models, you will find that the terms AB, AC, and BC are in the first 
model but not in the second. Also, note that the second model is nested (completely contained) in 
the first model. If you subtract the first  from the second, you will get 52.1. This is also a valid 
chi-square statistic with degrees of freedom 24 - 8 = 16. It tests whether AB, AC, and BC are 
significant. 

G 2

G 2

G 2

This additivity property is a very useful. It allows you to test the importance of various individual 
terms. For example, suppose the model AB,AC,BC is tested and the goodness-of-fit test is not 
significant. This means that this particular model, A+B+C+AB+AC+BC, fits the data adequately. 
The next question is whether all six of these terms are necessary. To test the significance of BC 
you would fit the model, A+B+C+AB+AC, and subtract the first  value from the second. This 
would test the significance of BC. 

G 2
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A word of caution: the difference between the two  is distributed as a chi-square only when 
the more complete model fits the data adequately. That means that the  of the larger model 
should be nonsignificant. Because of the additivity property of G , it is very popular in LLM.  

G 2

G 2

2

Again, this additivity property does not hold for the Pearson chi-square statistic. Why do we even 
compute this value? Why not just use the likelihood ratio statistic? For two reasons. First, some 
studies indicate that the Pearson goodness of fit test may be more accurate. Second, since both of 
these are asymptotic tests, you can be more comfortable with small sample results when both tests 
lead to the same conclusion. 

Model Selection Techniques 
One of the main tasks in working with LLM’s is dealing with the large number of possible 
models that can be generated from a single data table. The number of terms in the saturated model 
doubles with each additional factor. For example, there are 16 effects in a four-factor study and 
32 effects in a five-factor study. When you consider the number of possible models that can be 
created from the 16 effects in a four-factor study, you begin to see the magnitude of the task. 
Even limiting your search to just the hierarchical models still leaves you with a large number of 
models to consider. There are over 100 different hierarchical models in a four-factor study, and 
over a 1000 in a five-factor study.  

Since your first task in the analysis is to find a well-fitting model with as few terms as possible, 
you must adopt some method to limit the number of models you consider. The program provides 
several possible model selection methods. The final model will result from applying several of 
these techniques to your data. 

Standardized Parameter Estimates 
This method screens models as follows. First, a standardized estimate of each λ in the saturated 
model is calculated. Next, a list is made of the largest effects (greater than some cutoff value like 
2.0 or 3.0). Finally, a hierarchical model is selected which includes as few terms as possible while 
still including the list of significant effects. This model is tested for adequacy using the chi-square 
test. If the goodness-of-fit test is nonsignificant, the model is used. Otherwise, additional effects 
are added to the model (based on their standardized values) until an adequate model is found. 

Tests of Marginal and Partial Association 
This method computes two tests for each term (up to fourth order terms). These tests assume that 
terms of higher order are negligible. The two tests are for partial and marginal association. The 
partial association considers the significance of a term after considering all other terms of the 
same order. The marginal association tests the significance of the term ignoring the influence of 
the other factors in the model. 

The partial association test is constructed as follows. Fit a model containing all terms with the 
same order as the term being tested. Fit a second model identical with the first except with the 
term of interest. Subtract the first likelihood-ratio statistic from the second. The degrees of 
freedom are also determined by subtraction. 
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For example, to test that the partial association between A and B is zero in a four-way table, 
compute the values of  for the models AB,AC,AD,BC,BD,CD and AC,AD,BC,BD,CD. The 
difference between these two values tests the partial association. 

G 2

The marginal association test is constructed by collapsing the table until the term of interest is the 
highest-order interaction and there are no other terms of the same order. This term is then 
removed and the next lowest model is fit. The G value tests the marginal association among the 
factors in the term. 

2

For example, to test that the marginal association between A and B is zero in a four-way table, 
first collapse the table to the two-way table containing only A and B. Next fit the model A,B on 
the collapsed table and compute the value of  . This  value tests the marginal association 
between A and B. 

G 2 G 2

By considering the results of these two tests for each term, you can gain a fairly good indication 
of which terms are significant and which are not. As before, to obtain the final model, make a list 
of all terms that are significant. Next, write down the minimal hierarchical model that includes 
these terms. 

Simultaneous Order Tests 
The program produces a report that simultaneously tests all terms of a given order and all terms 
of a given order and higher. These tests let you immediately reduce the number of models that 
must be considered. For example, if the test of second-order models and higher is significant 
while the test for third-order models and higher is not, you know that the maximum order that 
must be considered is two. This knowledge allows you to reduce your search to second-order 
models. 

Step-Down Selection Procedure 
This is probably the most popular model selection method. It is the method that is used by default 
in this program. This procedure begins with a specified model (often the saturated model is used 
since it fits the data well) and searches for a model with fewer terms that still fits well. The 
program uses a backward elimination selection technique, which works better than the forward 
selection technique. 

This procedure works as follows. First, a significance level (alpha) is chosen for the goodness of 
fit test to signal a significant model (a model that does not fit the data). Next, each of the highest-
order hierarchical terms is removed, being replaced with appropriate terms so that the resulting 
expanded model is only different by the term of interest. The  values of the original model and 
the subset model are then differenced so that the term may be tested individually. The model 
picked is the sub-model having the largest significance probability. The procedure terminates 
when no sub-model can be found with a probability greater than alpha. 

G 2

Analyzing the Residuals 
Once a candidate model has been found, it must be further analyzed for adequacy. In addition to 
checking goodness of fit statistics, the residuals between the estimated and actual frequencies 
should be studied. If a particular cell seems to be causing distortion in the results, appropriate 
action must be taken (such as adding deleted terms back into the model). 
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Once the residuals appear to be okay, the various terms in the model must be interpreted. This is 
accomplished by considering the percentages in the corresponding collapsed tables. 

Data Structure 
The data may be entered in either raw or summarized form. In either case, each variable 
represents a factor and each row of data represents a cell. An optional variable may be used to 
give the frequency (count) of the number of individuals in that cell. When the frequency variable 
is left blank, each row receives a frequency of one. 

The following data are a portion of the results of a study by Dyke and Patterson (1952) on the 
information sources people use to obtain their knowledge of cancer. The data are contained in the 
LOGLIN1 database. 

 

LOGLIN1 dataset (subset) 

Counts Newspaper Lecture Radio Reading Knowledge 
23 1 1 1 1 1 
102 1 2 1 1 1 
1 2 1 1 1 1 
16 2 2 1 1 1 
8 1 1 1 1 2 
67 1 2 1 1 2 
3 2 1 1 1 2 
16 2 2 1 1 2 
8 1 1 1 2 1 
35 1 2 1 2 1 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
Specify the variables to be analyzed. 

Factor Specification 

Factor Variables (A-G) 
At least two factor variables must be specified. Examples of factor variables are gender, age 
groups, “yes” or “no” responses, etc.  

The factor categories need not be consecutive integers. You may use text or numeric 
identification codes. The treatment of text variables is specified for each variable by the Data 
Type option on the Variable Info sheet. 

The first variable listed becomes factor A, the second becomes factor B, and so on. Up to seven 
factor variables may be designated. 
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Frequency Variable 

Frequency Variable 
This optional variable contains the count (frequency) of each cell in the table. If this variable is 
left blank, the frequency or each row in the database is assumed to be one.  

Delta 

Delta Value 
This value is added to each cell count. It is used to add a small amount (between 0.1 and 0.9) to 
each cell count when zeros are present in the table. Remember that since the algorithm begins by 
taking the logarithm of each cell frequency and since the logarithm of zero is not defined, you 
cannot analyze a table with zero counts. This option lets you analyze data with zero frequencies. 

When using this option, consider running your analysis over with two or three difference delta 
values to determine if the delta value is making a difference in the outcome (it should not).  

Model Specification 

Model 
This option allows you to specify the hierarchical model to be fit. If a step-down selection is to be 
run, this model will serve as the starting point.  

• Full Model 
This option causes the saturated model to be fit. 

• Up to (1,2,3,4)-Way 
These options indicate that only terms up to and including that order are kept in the model.  

For example, if you are studying four factors and you specify “2Way,” you would analyze the 
hierarchical model AB,AC,AD,BC,BD,CD. 

• Custom 
Selecting this option causes the model specified in the Custom Model option (which is next) 
to be used.  

Custom Model 
This box specifies a hierarchical model of your choice. The syntax of hierarchical models is as 
follows: 

Hierarchical terms refer to many actual terms. For example, suppose you have six factors (labeled 
A-F) and you specify the hierarchical model: ABC,BCD,DE,F. The expanded model would be:  
 
Hierarchical Term  Expanded Terms 
ABC  A,B,AB,C,AC,BC,ABC 
BCD  B,C,BC,D,BD,CD,BCD 
DE  D,E,DE 
F  F 
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Notice that the simple terms B, C, and BC are contained in both the ABC list and the BCD list. 
Also, the term D is contained in both the BCD list and the DE list. The actual model fit would be 
the complete list, with each multiple-entry only listed once. Here, the expanded model would be: 
 

A,B,AB,C,AC,BC,ABC,D,CD,BD,BCD,E,DE,F 

 

If you want to specify a saturated model, you simply enter the highest order interaction. For 
example, the saturated four-factor model would be specified by entering “ABCD.” 

Step-Down Search Options 

Perform Step-Down Search 
Specifies whether the step-down model selection procedure is used. The procedure starts with the 
model specified in the Model option. The procedure is controlled by the Max Models and the 
Stopping Alpha options as explained below. 

Note that the step-down search is a lengthy procedure and may require a few minutes to execute. 

Max Models 
This option specifies the maximum number of models that can be tried before the search is 
aborted. On slower computers, the search may go on for hours, so this option lets you abort the 
search after so many iterations. On Pentium class computers, the search will take only a few 
moments, so you can set this option very high.  

Stopping Alpha 
This option specifies the value of alpha which is the significance level for the goodness of fit 
tests. During the search, when no model is found whose probability level is greater than this 
amount, the search is ended. Remember that you are searching for a model the fits the data well 
and thus does not produce a significant goodness of fit test. 

Although you might be in the habit of always selecting an alpha level of 0.05, you should 
consider using a larger value (say 0.15 or 0.25) because you want a model that fits the data well--
that is not even close to significance. A model that is almost significant (has an alpha of 0.06 or 
0.08) might be excluding important terms. When you use a value of 0.25, you can feel confident 
that your model really fits the data well.  

Unfortunately, the appropriate value of alpha is also tied to the sample size. With small samples, 
a significance level of 0.25 might be due to a lack of the goodness of fit test’s ability to reject any 
hypothesis and not a general agreement between the model and the data. Hence, with small 
sample sizes you can have a poor fit and a high alpha. On the other hand, large sample sizes may 
cause even slight deviations between model and fit to be significant at the 0.05 level. Hence, for 
large sample sizes, you would want the value of alpha to be closer to zero. 

Maximum Likelihood Options 

Max Iterations 
This option specifies the maximum number of iterations. Usually, the algorithm will converge in 
less than five iterations, so the default value of twenty-five should be more than ample.  
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Max Difference 
This option specifies the maximum difference between any of the actual frequencies and their 
corresponding predicted frequencies. Once the maximum is less than this amount, the maximum-
likelihood procedure will terminate (has converged). 

Reports Tab 
The following options control which reports are displayed. Note that some reports are not 
produced in certain situations. If a report you want is not created, try rerunning the program with 
a specific model--with all Model Selection reports turned off. 

Select Reports 

Multi-Term Report - Table Report 
Specifies whether the report is produced. 

Report Options 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while double precision will display thirteen-place accuracy. 

Variable Names 
This option lets you select whether to display variable names, variable labels, or both. 

Value Labels 
Indicate whether to display the data values or their labels.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Loglinear Model Analysis 
This section presents an example of how to run an analysis of the data contained in the LOGLIN1 
database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Loglinear Models window. 

1 Open the LOGLIN1 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file Loglin1.s0. 
• Click Open. 

2 Open the Loglinear Models window. 
• On the menus, select Analysis, then Multivariate Analysis, then Loglinear Models. The 

Loglinear Models procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Loglinear Models window, select the Variables tab. 
• Double-click in the Factor A Variable text box. This will bring up the variable selection 

window. 
• Select Newspaper from the list of variables and then click Ok. “Newspaper” will appear 

in the Factor A Variables box. 
• Double-click in the Factor B Variable text box. This will bring up the variable selection 

window. 
• Select Lecture from the list of variables and then click Ok. “Lecture” will appear in the 

Factor B Variables box. 
• Double-click in the Factor C Variable text box. This will bring up the variable selection 

window. 
• Select Radio from the list of variables and then click Ok. “Radio” will appear in the 

Factor C Variables box. 
• Double-click in the Factor D Variable text box. This will bring up the variable selection 

window. 
• Select Reading from the list of variables and then click Ok. “Reading” will appear in the 

Factor D Variables box. 
• Double-click in the Factor E Variable text box. This will bring up the variable selection 

window. 
• Select Knowledge from the list of variables and then click Ok. “Knowledge” will appear 

in the Factor E Variables box. 
• Double-click in the Frequency Variable text box. This will bring up the variable 

selection window. 
• Select Counts from the list of variables and then click Ok. “Counts” will appear in the 

Frequency Variable box. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Multiple-Term Test Section 
 

Multiple-Term Test Section 
  Like. Ratio Prob Pearson Prob 
K-Terms DF Chi-Square Level Chi-Square Level 
1WAY & Higher 31 2666.19 0.0000 3811.81 0.0000 
2WAY & Higher 26 596.84 0.0000 751.31 0.0000 
3WAY & Higher 16 19.56 0.2406 21.21 0.1705 
4WAY & Higher 6 3.23 0.7791 3.32 0.7680 
5WAY & Higher 1 1.02 0.3116 1.01 0.3157 
Note: Fit of all k-factor marginals. Simultaneous test that all interactions of order k and higher are zero. 
 
  Like. Ratio Prob 
K-Terms DF Chi-Square Level 
1WAY Only 5 2069.35 0.0000 
2WAY Only 10 577.28 0.0000 
3WAY Only 10 16.33 0.0906 
4WAY Only 5 2.21 0.8196 
Note: Simultaneous test that all interactions of order k are zero. These Chi-Squares are differences 
in the above table. 
 

This report helps in the model selection process by isolating the highest order term(s) that need to 
be included in the final LLM.  
The top table shows the significance of all terms of a given order and higher. For example, the 
596.84 tests the significance of all terms of order two and above. The 3.23 tests the significance 
of all fourth- and fifth-order terms. Since there are only five factors in the table, the 1.02 tests the 
significance of the five-way interaction. 
By glancing down the significance levels (Prob Level) of this table, you can quickly determine 
the maximum order that is significant. In the present example, note that the one-way and higher is 
significant, as is the two-way and higher. However, the three-way and higher is not significant, 
being only 0.2406 (we use a significance level of 0.20). Hence, all terms of order three or greater 
may be ignored. 

The second table is formed by differencing the first. Since the Pearson chi-square cannot be 
differenced in this manner, only the likelihood-ratio chi-square tests are shown. These tests 
indicate the significance of all terms of a given order. They are used to substantiate the 
conclusions made from the first table.  

In this example, you notice that the four-way and three-way terms are not significant, while the 
two-way and one-way terms are. Again, we are lead to the conclusion that second-order terms 
will be the highest that are needed in our final model. 

Individual definitions of the columns of this report are as follows: 

K-Terms 
These are the terms that are being tested. In the first table they are the terms that are not in the 
model. Hence the goodness-of-fit chi-square test indicates whether these terms may be left out of 
the model. In the second table, these are the terms being tested. 

DF 
The degrees of freedom of the terms being tested. This is a parameter of the chi-square 
distribution. The degrees of freedom of the test are found by adding up the degrees of freedom of 
the individual terms left out of the model. 
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Like. Ratio Chi-Square 
This is the value of the likelihood-ratio statistic calculated using the following formula: 
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This statistic follows the chi-square distribution in moderate to large samples. It is calculated 
using this formula in the top half of the report and by subtracting one row from the previous row 
in the bottom half of the report. 

Note that strictly speaking, the likelihood-ratio statistics in the second table follow the central chi-
square distribution only if the second chi-square (the one subtracted) is not significant.  

Prob Level 
This is the probability of obtaining the above chi-square value or larger by chance. When this 
value is less than some preset alpha level, say 0.15, the test statistic is said to be significant. 
Otherwise, the test statistic is nonsignificant. A nonsignificant model fits the data adequately. The 
choice of 0.15 is arbitrary, and you may use whatever value you feel comfortable with between 
0.300 and 0.001.  

Pearson Chi-Square 
This is the value of the Pearson chi-square statistic calculated using the following formula, 
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Prob Level 
This is the probability of obtaining the above chi-square value or larger by chance. When this 
value is less than some preset alpha level, say 0.15, the test statistic is said to be significant. 
Otherwise, the test statistic is nonsignificant. A nonsignificant model fits the data adequately. The 
choice of 0.15 is arbitrary, and you may use whatever value you feel comfortable with between 
0.300 and 0.001.  



530-14  Loglinear Models 

Single-Term Test Section 
 

Single-Term Test Section 
  Partial Prob Marginal Prob 
Effect DF Chi-Square Level Chi-Square Level 
A (Newspaper) 1 27.31 0.0000 27.31 0.0000 
B (Lecture) 1 1449.22 0.0000 1449.22 0.0000 
C (Radio) 1 498.12 0.0000 498.12 0.0000 
D (Reading) 1 4.58 0.0323 4.58 0.0323 
E (Knowledge) 1 90.11 0.0000 90.11 0.0000 
AB 1 4.52 0.0335 21.60 0.0000 
AC 1 46.15 0.0000 74.23 0.0000 
AD 1 172.49 0.0000 253.71 0.0000 
AE 1 31.75 0.0000 105.78 0.0000 
BC 1 10.27 0.0014 18.95 0.0000 
BD 1 7.33 0.0068 23.75 0.0000 
BE 1 4.82 0.0282 17.16 0.0000 
CD 1 0.42 0.5147 21.08 0.0000 
CE 1 6.28 0.0122 24.25 0.0000 
DE 1 79.58 0.0000 150.45 0.0000 
ABC 1 1.48 0.2240 1.85 0.1733 
ABD 1 0.01 0.9418 0.36 0.5470 
ABE 1 3.16 0.0755 1.16 0.2820 
ACD 1 1.25 0.2642 1.81 0.1790 
ACE 1 0.00 0.9526 0.06 0.8089 
ADE 1 2.75 0.0971 3.06 0.0800 
BCD 1 1.50 0.2208 3.48 0.0621 
BCE 1 1.39 0.2377 0.51 0.4740 
BDE 1 3.86 0.0494 4.30 0.0381 
CDE 1 0.01 0.9435 0.57 0.4486 
 

This report presents partial and marginal association tests on terms of up to the third order. The 
actual computation was discussed earlier in the section of model selection, so we will not repeat it 
here except to note that the chi-squares are the difference between the likelihood-ratio statistics of 
two models. The validity of this procedure depends on the more complex model’s likelihood ratio 
being nonsignificant. 
You should remember that the partial chi-square statistic tests whether the term is significant after 
considering all other terms of the same order. The marginal-association chi-square tests whether 
the term is significant ignoring all other terms of the same order. Hence, when both tests are 
significant, you can be fairly certain that the term is necessary. When neither test is significant, 
you can be fairly certain that the term is not necessary. And when one test is significant and the 
other is not, the term should be watched closely--it may or may not be important. 

In this example, notice that only one three-way term, BDE, is significant. Almost all of the two-
way terms are significant. Hence, our search for the best model might begin with the hierarchical 
model: AB,AC,AD,AE,BC,BDE,CD,CE. The CD term was not significant on the partial 
association test, so we might expect to see it omitted from the final model. 

Notice that even though the simultaneous test of all third-order terms was not significant, this 
report indicated that BDE should be considered. There is always a possibility of this type of 
confusion among the various goodness of fit tests. This is why it is important to look at all of 
them. You can rationalize the difference in conclusions here by noting that the BDE is not highly 
significant, but only mildly significant. 
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Step-Down Model Search Section 
 

Step-Down Model-Search Section 
 
Step Best      Chi- Prob Term      Chi- Prob Hierarchical 
No No DF Square Level Deleted DF Square Level Model 
1 1 0 0.0 1.0000 None 0 0.0 0.0000 ABCDE 
2 1 1 1.0 0.3116 ABCDE 1 1.0 0.3116 BCDE,ACDE,ABDE,ABCE,ABCD 
3 2 2 1.3 0.5096 BCDE 1 0.3 0.5690 ACDE,ABDE,ABCE,ABCD 
4 2 2 1.2 0.5463 ACDE 1 0.2 0.6670 BCDE,ABDE,ABCE,ABCD 
5 2 2 1.8 0.4074 ABDE 1 0.8 0.3796 BCDE,ACDE,ABCE,ABCD 
6 2 2 1.2 0.5598 ABCE 1 0.1 0.7117 BCDE,ACDE,ABDE,ABCD 
7 2 2 1.4 0.4935 ABCD 1 0.4 0.5330 BCDE,ACDE,ABDE,ABCE 
8 6 3 1.7 0.6464 BCDE 1 0.5 0.4808 ACDE,ABDE,ABCD,BCE 
. . . . . . . . . . 
. . . . . . . . . . 
. . . . . . . . . . 
98 86 18 24.4 0.1420 AB 1 4.4 0.0354 CE,AC,BC,AD,AE,DE,BE,BD 
99 86 18 100.7 0.0000 DE 1 80.7 0.0000 CE,AC,BC,AD,AE,AB,BE,BD 
100 86 18 24.7 0.1324 BE 1 4.7 0.0293 CE,AC,BC,AD,AE,AB,DE,BD 
101 86 18 27.7 0.0674 BD 1 7.7 0.0056 CE,AC,BC,AD,AE,AB,DE,BE 
102 98 19 31.5 0.0360 CE 1 7.0 0.0079 AC,BC,AD,AE,DE,BE,BD 
103 98 19 81.6 0.0000 AC 1 57.2 0.0000 CE,BC,AD,AE,DE,BE,BD 
104 98 19 37.8 0.0064 BC 1 13.4 0.0003 CE,AC,AD,AE,DE,BE,BD 
105 98 19 210.5 0.0000 AD 1 186.1 0.0000 CE,AC,BC,AE,DE,BE,BD 
106 98 19 57.3 0.0000 AE 1 32.9 0.0000 CE,AC,BC,AD,DE,BE,BD 
107 98 19 103.8 0.0000 DE 1 79.4 0.0000 CE,AC,BC,AD,AE,BE,BD 
108 98 19 30.6 0.0449 BE 1 6.2 0.0130 CE,AC,BC,AD,AE,DE,BD 
109 98 19 37.4 0.0070 BD 1 13.0 0.0003 CE,AC,BC,AD,AE,DE,BE 
Best model found: CE,AC,BC,AD,AE,DE,BE,BD 
98 98 18 24.4 0.1420 AB 1 4.4 0.0354 CE,AC,BC,AD,AE,DE,BE,BD 
 

This report documents the search algorithm’s progress. It shows the results of each step. 
Remember that the algorithm uses a step down strategy. This means that it begins with the most 
complicated model possible (the saturated model) and proceeds by removing terms. Your main 
interest will be in the final model selected, but sometimes it is of interest to see how this model 
was arrived at. 

Step No 
This is the identification number of this model. This is the number referred to under Best. 

Best No 
The number of the model that is currently the designated as being the best. 

DF 
The degrees of freedom of the chi-square value. This is the degrees of freedom of the terms not in 
the model, since these are the terms being tested. 

Chi-Square 
The likelihood-ratio statistic, G , testing the goodness of fit of this model. This statistic tests the 
significance of the terms omitted from the model. Hence, when the is not significant, you can 
assume that all important terms are in the model. Of course, you might have included some 
negligible terms as well. 

2

G 2

Prob Level 
This is the probability value for the above chi-square statistic. If it is less than some small value, 
say 0.05, the chi-square is said to be significant and you assume that one of the terms left out of 
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the model is important. If the probability is greater than the cutoff value, you assume that all 
significant terms are accounted for. 

Term Deleted 
This is the term that was removed from the current “best” model to obtain this model. Note that 
the model is reduced by that term only and not by all terms of lower order that were included 
because of it. 

DF 
The degrees of freedom of the term removed. 

Chi Square 
This value tests the significance of the removed term. It is calculated as the difference between 
the current chi-square statistic and the current best model’s chi-square statistic. Since these are 
nested likelihood-ratio statistics, this difference is also a chi-square statistic. 

Prob Level 
The probability of rejecting the above chi-square value. If this value is greater than 0.05, you can 
assume that term is not necessary in the model. 

Hierarchical Model 
This is the hierarchical model that was fit. 

Model Section 
 

Model Section 
 
Hierarchical Model: CE,AC,BC,AD,AE,DE,BE,BD 
 
Model Individual Cumulative 
Term DF DF 
Mean 1 1 
A 1 2 
B 1 3 
C 1 4 
AC 1 5 
BC 1 6 
D 1 7 
AD 1 8 
BD 1 9 
E 1 10 
AE 1 11 
BE 1 12 
CE 1 13 
DE 1 14 
Error 18 32 
 

This report presents the expanded model (all terms are listed) as well as the associated degrees of 
freedom. 
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Chi-Square Test Section 
 

Chi-Square Tests Section 
 
 Like. Ratio Prob Pearson Prob  
DF Chi-Square Level Chi-Square Level Model 
18 24.41 0.1420 24.49 0.1395 CE,AC,BC,AD,AE,DE,BE,BD 

 
This report presents details of both the likelihood-ratio and the Pearson chi-square goodness of fit 
tests of the model selected. These terms are defined above. 

Parameter Estimation Section 
 

Parameter Estimation Section 
 
Model Number     Percent Average Effect Effect Effect 
Term Cells Count Count Log(Count) (Lambda) Std. Error Z-Value 
Mean 32 1729 100.00 3.0186 3.0186 0.0598 50.48 
A: Newspaper 
1 16 973 56.28 3.3620 0.3434 0.0598 5.74 
2 16 756 43.72 2.6752 -0.3434 0.0598 -5.74 
B: Lecture 
1 16 135 7.81 1.8370 -1.1816 0.0598 -19.76 
2 16 1594 92.19 4.2001 1.1816 0.0598 19.76 
C: Radio 
1 16 412 23.83 2.5328 -0.4858 0.0598 -8.12 
2 16 1317 76.17 3.5044 0.4858 0.0598 8.12 
D: Reading 
1 16 820 47.43 3.1129 0.0944 0.0598 1.58 
2 16 909 52.57 2.9242 -0.0944 0.0598 -1.58 
E: Knowledge 
1 16 668 38.64 2.8902 -0.1283 0.0598 -2.15 
2 16 1061 61.36 3.1469 0.1283 0.0598 2.15 
AC: Newspaper,Radio 
1,1 8 306 17.70 3.1110 0.2349 0.0598 3.93 
1,2 8 667 38.58 3.6129 -0.2349 0.0598 -3.93 
2,1 8 106 6.13 1.9545 -0.2349 0.0598 -3.93 
2,2 8 650 37.59 3.3959 0.2349 0.0598 3.93 
BC: Lecture,Radio 
1,1 8 54 3.12 1.5274 0.1762 0.0598 2.95 
1,2 8 81 4.68 2.1467 -0.1762 0.0598 -2.95 
2,1 8 358 20.71 3.5381 -0.1762 0.0598 -2.95 
2,2 8 1236 71.49 4.8622 0.1762 0.0598 2.95 
 
(Report continues) 
 

This report provides the details of the loglinear estimation of the specified model. This report was 
the goal of the LLM analysis. The definitions are as follows: 

Model Term 
The particular term in the model. Note that the levels of the term are also listed below the term. 
These levels would have printed out in words (like YES and NO) if Value Labels option had been 
set appropriately. 

Number Cells 
The number of cells involved in this term. 

Count 
The total of all cell counts at the indicated levels. 
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Percent Count 
The percent the Count is of the table total. These percentages are used to understand why the term 
was significant. 

Average Log(Count) 
The average of LOG(count+delta) of all cells at the indicated levels. 

Effect (Lambda) 
The estimated value of λ  for this term. These ′λ s  were identified in above and estimated using 
the routine of Haberman (1972). 

Effect Std. Error 
The asymptotic standard error of the above effect. When a saturated model is fit, the standard 
error is given by the square root of the variance of the effect. The variance is estimated using the 
formulas provided in Lee (1977). When an incomplete (less than saturated) model is estimated, 
the program uses the resulting estimated cell counts in the formulas appropriate for the saturated 
models. This is called the approximate method by Lee (1977). He states that these estimates may 
be a little large. 

Effect Z-Value 
This is the effect divided by the standard error. Since the number of cells included in a term 
differs from term to term, their estimation precision also differs. This z-value allows you to 
compare the relative magnitudes of the effects across all main-effects and interactions. These 
values represent the relative importance of that term in the loglinear model. The term z-value is 
used because these values are asymptotically normal. These were called the standardized 
parameter estimates in the Model Selection section of this chapter (presented earlier). 

One model-selection rule of thumb is that you should keep all terms which have at least one z-
value greater than some cutoff value (say 2.0 or 3.0) in absolute value. 

Interpreting Significant Effects 
The final task in loglinear analysis involves interpreting a significant term. This is usually 
accomplished by collapsing the table to the factors in the term of interest and then analyzing the 
percentages. For example, the term BC was significant. From above report, we can construct the 
following two-way table of percentages from the Percent Count column of the report. Note that 
we have arbitrarily decided to sum across the table. You could have summed down the table 
instead with no loss in analysis capability. 
 
 Lectures 
Radio Yes (B=1) No (B=2) Total 
Yes (C=1) 13% = 100(3.12/23.83) 87% = 100(20.71/23.83) 100% = 100(23.83/23.83) 
No (C=2) 6% = 100(4.68/76.17) 94% = 100(71.49/76.17) 100% = 100(76.17/76.17) 

  

Looking at these percentages, we can now see why this term was significant. Notice that when 
factor C is 1, factor B changes from 13% to 87%. However, when factor C is 2, factor B changes 
from 6% to 94%. This difference in the amount of change is what causes BC to be significant. 
This type of table should be created for every significant term. 
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Data Table Section 
 

Data Table Section 
 
Reading Radio Lecture Newspaper Actual Pred Diff Chi FT-SR 
Knowledge=1 
1 1 1 1 23.0 24.9 -1.9 -0.39 -0.34 
1 1 1 2 1.0 2.7 -1.7 -1.05 -1.04 
1 1 2 1 102.0 103.6 -1.6 -0.15 -0.13 
1 1 2 2 16.0 11.4 4.6 1.38 1.31 
1 2 1 1 27.0 24.7 2.3 0.47 0.50 
1 2 1 2 3.0 6.9 -3.9 -1.49 -1.62 
1 2 2 1 201.0 207.6 -6.6 -0.46 -0.44 
1 2 2 2 67.0 58.2 8.8 1.15 1.14 
2 1 1 1 8.0 4.3 3.7 1.77 1.55 
2 1 1 2 4.0 2.0 2.0 1.39 1.22 
2 1 2 1 35.0 36.2 -1.2 -0.19 -0.15 
2 1 2 2 13.0 16.9 -3.9 -0.95 -0.94 
2 2 1 1 7.0 4.3 2.7 1.32 1.22 
2 2 1 2 2.0 5.1 -3.1 -1.38 -1.49 
2 2 2 1 75.0 72.5 2.5 0.30 0.32 
2 2 2 2 84.0 86.7 -2.7 -0.29 -0.27 
Knowledge=2 
1 1 1 1 8.0 9.6 -1.6 -0.51 -0.44 
1 1 1 2 3.0 2.0 1.0 0.68 0.71 
1 1 2 1 67.0 63.8 3.2 0.40 0.42 
1 1 2 2 16.0 13.5 2.5 0.68 0.71 
1 2 1 1 18.0 13.0 5.0 1.37 1.31 
1 2 1 2 8.0 7.1 0.9 0.35 0.42 
1 2 2 1 177.0 175.8 1.2 0.09 0.11 
1 2 2 2 83.0 95.2 -12.2 -1.25 -1.26 
2 1 1 1 4.0 4.4 -0.4 -0.20 -0.08 
2 1 1 2 3.0 4.0 -1.0 -0.49 -0.38 
2 1 2 1 59.0 59.2 -0.2 -0.03 0.00 
2 1 2 2 50.0 53.5 -3.5 -0.47 -0.45 
2 2 1 1 6.0 6.0 0.0 0.00 0.09 
2 2 1 2 10.0 13.9 -3.9 -1.04 -1.04 
2 2 2 1 156.0 163.1 -7.1 -0.56 -0.55 
2 2 2 2 393.0 376.9 16.1 0.83 0.83 

 

This report presents the cell counts along with their predicted values and residuals. The main 
purpose of this report is to let you look for large residuals--cells that are predicted poorly by the 
LLM. 

Actual 
The cell count which was read in or tabulated from the database. f ijk

Predicted 
The predicted cell count based on the current hierarchical model. The prediction equation is 
of the following form, with estimation by maximum likelihood. 

mijk

( )ln = + + + + + + +mijk i
A

j
B

ij
AB

k
C

ik
AC

jk
BC

ijk
ABCθ λ λ λ λ λ λ λ  

The algorithm of Haberman (1972) is used to produce the maximum-likelihood estimates. 

Difference 
These residuals are Actual - Predicted. They are usually scanned to find cells that are not fit well 
by the model. Since the size of a residual must be judged in terms of the relative size of the cell 
count, you should avoid simply finding the largest residuals. Instead, you should look at a 
standardized residual, such as the Chi value in the last column. 
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Chi 
This is a standardized residual. It is calculated using the formula 

Chi
f m

m
ijk ijk

ijk

=
−

 

It is the square root of the contribution of this cell to the overall Pearson chi-square goodness of 
fit statistic. This standardized residual lets you make direct comparisons among the fits of the 
various cells. Values of Chi larger than 1.96 in absolute value would be considered large. 

FT-SR 
This is the Freeman-Tukey standardized residual. Freeman and Tukey pointed out that for 
observations from a Poisson distribution, the quantity x x+ +1 has a mean approximately 
equal to 4μ +1  and a variance of one. Using this result, they formed this statistic which is 
written in our notation as 

FTSR f f mijk ijk ijk= + + − +1 4 1  

Notice that this value does not suffer when the denominator is zero which is a real difficulty with 
the Chi statistic. 

This value may also be considered as being from the unit normal distribution. Hence, like Chi, 
absolute values greater than 1.96 are considered larger. 
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Chapter 535 

Binary Diagnostic 
Tests – Single 
Sample 
Introduction 
An important task in diagnostic medicine is to measure the accuracy of a diagnostic test. This can 
be done by comparing the test result with the true condition status of a number of patients. The 
results of such a study can be displayed in a 2-by-2 table in which the true condition is shown as 
the rows and the diagnostic test result is shown as the columns.  
 
 Diagnostic Test Result 
True Condition Positive Negative Total 
Present (True) T1 T0 n1 
Absent (False) F1 F0 n0 
Total m1 m0 N 
 

Data such as this can be analyzed using the standard techniques for two proportions. However, 
specialized techniques have been developed for dealing specifically with the questions that arise 
from such a study. These techniques are presented in the book by Zhou, Obuchowski, and 
McClish (2002), and this is the reference that we have used in developing this procedure. 

Test Accuracy 
Several measures of a diagnostic test’s accuracy are available. Probably the most popular 
measures are the test’s sensitivity and the specificity. Sensitivity is the proportion of those that 
have the condition for which the diagnostic test is positive. Specificity is the proportion of those 
that do not have the condition for which the diagnostic test is negative. Other accuracy measures 
that have been proposed are the likelihood ratio and the odds ratio. 
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Technical Details  
Suppose you arrange the results of a diagnostic test into a 2-by-2 table as follows: 
 
 Diagnostic Test Result 
True Condition Positive Negative Total 
Present (True) T1 T0 n1 

Absent (False) F1 F0 n0 

Total m1 m0 N 

Sensitivity and Specificity 
The sensitivity is estimated as 

$Se T1
n1

=   

and the specificity is estimated as 

$Sp F0
n0

=  

Confidence intervals may be formed for these two statistics. Rather than use the common 
confidence interval for a proportion that uses the normal approximation to the binomial, we use 
the more accurate score method of Wilson (1927). This method has been shown by Agresti and 
Coull (1998) to have much better coverage probabilities than either the exact method of inverting 
the binomial or the simple Wald confidence interval.  

The confidence limits for the sensitivity based on the score method are 

( )
$

$ $
/

/

/

/

Se z
n1

z
Se Se z

n1
n1

z
n1

+ ±
− +

+

−
−

−

−

1 2
2

1 2

1 2
2

1 2
2

2

1
4

1

α
α

α

α

  

and for specificity are 
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Likelihood Ratio 
The likelihood ratio (LR) statistic may be used as a measure of accuracy of a diagnostic test. This 
statistic is calculated both for positive and negative test results as follows 

( ) ( )
( )

LR
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= =
= =
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−
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1
  

where FPR is the false positive rate and FNR is the false negative rate. 

Confidence limits for LR(+)are calculated using the skewness adjusted score method of Gart and 
Nam (1998). The lower limit is the solution of 
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Using the substitution 
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The formulas for LR(-) are similar. They are based on the substitution 
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Odds Ratio 
Another measure of accuracy is the odds ratio which is 
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Formulas for computing confidence limits of the odds ratio are given in the chapter on Two 
Proportions and they will not be repeated here. 

Data Structure 
This procedure does not use data from the database. Instead, you enter the values directly into the 
panel. The data are entered in the familiar 2-by-2 table format. 
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Procedure Options 
This section describes the options available in this procedure. 

Data Tab 
Enter the data values directly on this panel. 

Data Values 

T1 
This is the number of patients that had the condition of interest and responded positively to the 
diagnostic test. 

T0 
This is the number of patients that had the condition of interest but responded negatively to the 
diagnostic test. 

F1 
This is the number of patients that did not have the condition of interest but responded positively 
to the diagnostic test. 

F0 
This is the number of patients that did not have the condition of interest and responded negatively 
to the diagnostic test. 

Report Options 

Alpha - Confidence Limits 
The confidence coefficient to use for the confidence limits of the difference in proportions. 100 x 
(1 - alpha)% confidence limits will be calculated. This must be a value between 0 and 0.5. 

Decimal - Proportions 
The number of digits to the right of the decimal place to display when showing proportions on the 
reports.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Binary Diagnostic Test of a Single Sample 
This section presents an example of how to run an analysis on hypothetical data. In this example, 
samples of 50 individuals known to have a certain disease and 50 individuals without the disease 
where selected at random. All 100 individuals were given a diagnostic test. Of those with the 
disease, 42 tested positively and 8 tested negatively for it on the diagnostic test. Of those without 
the disease, 14 tested positively and 36 tested negatively for it on the diagnostic test. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Binary Diagnostic Tests – Single Sample window. 

1 Open the Binary Diagnostic Tests – Single Sample window. 
• On the menus, select Analysis, then Diagnostic Tests, then Binary - Single Sample. The 

Binary Diagnostic Tests – Single Sample procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

2 Specify the data. 
• On the Binary Diagnostic Tests – Single Sample window, select the Data tab.  
• In the T1 box, enter 42. 
• In the T0 box, enter 8. 
• In the F1 box, enter 14. 
• In the F0 box, enter 36. 

3 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Table and Data Sections 
 

Counts Table Proportions 
 
True Diagnostic Test Result Diagnostic Test Result 
Condition Positive Negative Total Positive Negative Total 
Present 42 8 50 0.4200 0.0800 0.5000 
Absent 14 36 50 0.1400 0.3600 0.5000 
Total 56 44 100 0.5600 0.4400 1.0000 
 
Row Proportions Column Proportions 
 
True Diagnostic Test Result Diagnostic Test Result 
Condition Positive Negative Total Positive Negative Total 
Present 0.8400 0.1600 1.0000 0.7500 0.1818 0.5000 
Absent 0.2800 0.7200 1.0000 0.2500 0.8182 0.5000 
Total 0.5600 0.4400 1.0000 1.0000 1.0000 1.0000 

 

These reports display the data table that was input along with various proportions that make 
interpreting the table easier. Note that the sensitivity and specificity are displayed in the Row 
Proportions table. 

Sensitivity and Specificity Section 
 

  Lower 95.0% Upper 95.0% Number Number  
Measure Value Conf. Limit Conf. Limit Matches Different Total 
Sensitivity 0.8400 0.7149 0.9166 42 8 50 
Specificity 0.7200 0.5833 0.8253 36 14 50 
 

This report displays the sensitivity and specificity with their corresponding confidence limits. 
Note that for a perfect diagnostic test, both values would be one. Hence, the higher the values the 
better. 

Likelihood Ratio Section 
 

  Lower 95.0% Upper 95.0% 
Measure Value Conf. Limit Conf. Limit 
LR(Test=Posivitive) 3.0000 1.9753 5.0086    
LR(Test=Negative) 0.2222 0.1062 0.4026    
 

This report displays LR(+) and LR(-) with their corresponding confidence limits. You would 
want LR(+) > 1 and LR(-) < 1, so you should place close attention that the lower limit of LR(+) is 
greater than one and that the upper limit of LR(-) is less than one.  
Note the LR(+) means LR(Test=Positive). Similarly, LR(-) means LR(Test=Negative). 



535-8  Binary Diagnostic Tests – Single Sample 

Odds Ratio Section 
 

  Lower 95.0% Upper 95.0% 
Measure Value Conf. Limit Conf. Limit 
Odds Ratio (+ 1/2) 12.5862 4.8421 32.7155    
Odds Ratio (Fleiss) 12.5862 4.6339 40.8823    
 

This report displays estimates of the odds ratio as well as confidence limits for the odds ratio. 
Because of the better coverage probabilities of the Fleiss confidence interval, we suggest that you 
use the second line of the report. 



  536-1 

Chapter 536 

Binary Diagnostic 
Tests – Paired 
Samples 
Introduction 
An important task in diagnostic medicine is to measure the accuracy of two diagnostic tests. This 
can be done by comparing summary measures of diagnostic accuracy such as sensitivity or 
specificity using a statistical test. Often, you want to show that a new test is similar to another 
test, in which case you use an equivalence test. Or, you may wish to show that a new diagnostic 
test is not inferior to the existing test, so you use a noninferiority test. All of these hypothesis tests 
are available in this procedure for the important case when the diagnostic tests provide a binary 
(yes or no) result.  

Experimental Design 
Suppose you are interested in comparing the sensitivities of two diagnostic tests for a particular 
disease (or condition). Each test provides a binary (yes or no) response. Further suppose you draw 
a random sample of subjects from the population with the disease and administered both 
diagnostic tests to each subject in random order. Assume that Test 1 is a new (experimental or 
treatment) test that will replace Test 2, the existing (standard or reference) test, if it is found to be 
better. 

The results of such a study can be displayed in a 2-by-2 table in which the Test 1 result is shown 
as the rows and the Test 2 result is shown as the columns.  
 
 Test 2 Result 
Test 1 Result Positive Negative Total 
Positive X11 X10 m1 
Negative X01 X00 m0 
Total n1 n0 N 
 
Data such as this can be analyzed using standard techniques for comparing two correlated 
proportions which are presented in the chapter on Two Correlated Proportions. Such a table was 



536-2  Binary Diagnostic Tests – Paired Samples 

originally analyzed using McNemar’s Test. However, procedures with better statistical properties 
have recently been proposed. See for example Nam and Blackwelder (2002). 

Sensitivity 
Sensitivity is the proportion of those that have the condition for which the diagnostic test is 
positive. Since this design assumes that the subjects come from the population of individuals with 
the disease, the sensitivity can be calculated.  

Specificity 
Specificity is the proportion of those that do not have the condition for which the diagnostic test 
is negative. To study specificity, a separate study would have to be conducted in which subjects 
were drawn from the population of individuals without the disease. The data from a such a study 
could be analyzed with this procedure by changing the meaning of positive and negative. Instead 
of positive meaning that the person had the disease, positive would mean that the diagnostic test 
result matched the true condition of the subject. Likewise, negative would mean that the 
diagnostic test result did not match the true condition. In the procedure printouts, you would 
substitute specificity for sensitivity.  

Comparing Sensitivity and Specificity 
Suppose you arrange the results of two diagnostic tests into two 2-by-2 tables as follows: 
 
 Test 2 Result 
Test 1 Result Positive Negative Total 
Positive X11 X10 m1 
Negative X01 X00 m0 
Total n1 n0 N 
 
Hence, the study design include N = N1 + N0 patients. 

The hypotheses of interest when comparing the sensitivities (Se) of two diagnostic tests are either 
the difference hypotheses 

H Se SeO: 1 2 0− H Se SeA: 1 2 0= − ≠   versus 

or the ratio hypothesis 

H Se SeO: /1 2 1 H Se SeA: /1 2 1= ≠   versus 

Similar sets of hypotheses may be defined for the difference or ratio of the specificities (Sp) as 

H Sp SpO: 1 2 0− H Sp SpA: 1 2 0= − ≠   versus 

and 

H Sp SpO: /1 2 1 H Sp SpA: /1 2 1= ≠   versus 

Note that the difference hypotheses usually require a smaller sample size for comparable 
statistical power, but the ratio hypotheses may be more convenient. 
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The sensitivities are estimated as 

$Se1 X11
m1

=  and $Se2 X 1
n1

=
0

 

The sensitivities of the two diagnostic tests may be compared using either their differences or 
their ratios. Hence, the comparison of the sensitivity reduces to the problem of comparing two 
correlated binomial proportions. The formulas used for hypothesis testing and confidence 
intervals are the same as presented in the chapter on testing two correlated proportions. We refer 
you to that chapter for further details. 

Data Structure 
This procedure does not use data from the database. Instead, you enter the values directly into the 
2-by-2 table on the panel.  

Procedure Options 
This section describes the options available in this procedure. 

Data Tab 
Enter the data values directly on this panel. 

Data Values 

X11 
This is the number of patients that responded positively to both diagnostic tests. The value 
entered must be a non-negative number.  

X10 
This is the number of patients that tested positive using Test 1, but negative using Test 2. The 
value entered must be a non-negative number.  

X01 
This is the number of patients that tested negative using Test 1, but positive using Test 2. The 
value entered must be a non-negative number.  

X00 
This is the number of patients that responded negatively to both diagnostic tests. The value 
entered must be a non-negative number.  

Confidence Interval Method 

Difference C.I. Method 
This option specifies the method used to calculate the confidence intervals of the sensitivity 
differences. These methods are documented in detail in the Two Correlated Proportions chapter. 
We recommend the score method proposed by Nam (1990). 
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Ratio C.I. Method 
This option specifies the method used to calculate the confidence intervals of the sensitivity 
ratios. These methods are documented in detail in the Two Correlated Proportions chapter. The 
recommended method is score method proposed by Nam and Blackwelder (2002). 

Report Options 

Alpha - Confidence Intervals 
The confidence coefficient to use for calculating the confidence limits in proportions. 100 x (1 - 
alpha)% confidence limits will be calculated. This must be a value between 0 and 0.5. The most 
common choice is 0.05. 

Alpha - Hypothesis Tests 
This is the significance level of the hypothesis tests, including the equivalence and noninferiority 
tests. Typical values are between 0.01 and 0.10. The most common choice is 0.05. 

Proportion Decimals 
The number of digits to the right of the decimal place to display when showing proportions on the 
reports.  

Probability Decimals 
The number of digits to the right of the decimal place to display when showing probabilities on 
the reports.  

Equivalence or Non-Inferiority 
Settings 

Max Equivalence Difference 
This is the largest value of the difference between the two sensitivities that will still result in the 
conclusion of equivalence. When running equivalence tests, this value is crucial since it defines 
the interval of equivalence. Usually, this value is between 0.01 and 0.20.  

Note that this value must be a positive number. 

Max Equivalence Ratio 
This is the largest value of the ratio of the two sensitivities that will still result in the conclusion 
of diagnostic equivalence. When running equivalence tests, this value is crucial since it defines 
the interval of equivalence. Usually, this value is between 1.05 and 2.0.  

Note that this value must be greater than one. 
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Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Binary Diagnostic Test of Paired Samples 
This section presents an example of how to enter data and run an analysis. In this example, a 
sample of 50 individuals known to have a certain disease was selected. For this study, Test 1 
refers to a new, cheaper, less-invasive diagnostic test and Test 2 refers to the standard diagnostic 
test that is currently being used. The results are summarized into the following table:  
 
 Test 2 Result  
Test 1 Result Positive Negative Total 
Positive 31 5 36 
Negative 4 10 14 
Total 35 15 50 
 
You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Binary Diagnostic Tests – Paired Samples window. 

1 Open the Binary Diagnostic Tests – Paired Samples window. 
• On the menus, select Analysis, then Diagnostic Tests, then Binary – Paired Samples. 

The Binary Diagnostic Tests – Paired Samples procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

2 Enter the data. 
• Select the Data tab.  
• In the X11 box, enter 31. 
• In the X10 box, enter 5. 
• In the X01 box, enter 4. 
• In the X00 box, enter 10. 
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3 Set the other options. 
• Set the Difference C.I. Method to Score (Nam RMLE).  
• Set the Ratio C.I. Method to Score (Nam Blackwelder)  
• Set the Max Equivalence Difference to 0.2. 
• Set the Max Equivalence Ratio to 1.25. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Data and Proportions  
 

Counts  Table Proportions 
 
Test 1 (New) Test 2 (Standard) Result Test 2 (Standard) Result 
Result Positive Negative Total Positive Negative Total 
Positive 31 5 36 0.6200 0.1000 0.7200 
Negative 4 10 14 0.0800 0.2000 0.2800 
Total 35 15 50 0.7000 0.3000 1.0000 
 
 
Row Proportions Column Proportions 
 
Test 1 (New) Test 2 (Standard) Result Test 2 (Standard) Result 
Result Positive Negative Total Positive Negative Total 
Positive 0.8611 0.1389 1.0000 0.8857 0.3333 0.7200 
Negative 0.2857 0.7143 1.0000 0.1143 0.6667 0.2800 
Total 0.7000 0.3000 1.0000 1.0000 1.0000 1.0000 

 

These reports display the counts that were entered along with various proportions that make 
interpreting the table easier. Note that Test 1’s sensitivity of 0.7200 and Test 2’s sensitivity of 
0.7000 are displayed in the margins of the Table Proportions table. 

Sensitivity Confidence Intervals  
 

   Lower 95.0% Upper 95.0% 
Statistic Test Value Conf. Limit Conf. Limit 
Sensitivity (Se1) 1 0.7200 0.5833 0.8253 
Sensitivity (Se2) 2 0.7000 0.5625 0.8090 
Difference (Se1-Se2)  0.0200 -0.1094 0.1511 
Ratio (Se1/Se2)  1.0286 0.8524 1.2491 
 
Notes: 
Sensitivity: proportion of those that actually have the condition for which the diagnostic test is positive. 
Difference confidence limits based on Nam's RMLE method. 
Ratio confidence limits based on Blackwelder and Nam's method. 
 

This report displays the sensitivity for each test as well as corresponding confidence interval. It 
also shows the value and confidence interval for the difference and ratio of the sensitivity. Note 
that for a perfect diagnostic test, the sensitivity would be one. Hence, the larger the values the 
better.  
Note that the type of confidence interval for the difference and ratio is specified on the Data 
panel.  
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Confidence Intervals for the Odds Ratio  
 

   Lower 95.0% Upper 95.0% 
Statistic  Value Conf. Limit Conf. Limit 
Exact Conditional Binomial  1.2500 0.2690 6.2995 
Maximum Likelihood  1.2500 0.3357 4.6549 
 
 
Notes: 
Odds Ratio = Odds(True Condition = +) / Odds(True Condition = -) 
where 
Odds(Condition) = P(Positive Test | Condition) / P(Negative Test | Condition) 
 

This report displays estimates of the odds ratio as well as its confidence interval.  

Hypothesis Tests about Sensitivity Difference 
 
  Null Test  Conclusion 
Test Test Hypothesis Statistic Prob at the 5.0% 
Name Sides (H0) Value Level Level 
Nam  2 Se1-Se2=0 0.1111 0.7389 Cannot Reject H0 
Nam Lower 1 Se1-Se2<=0 0.3333 0.3694 Cannot Reject H0 
Nam Upper 1 Se1-Se2>=0 0.3333 0.6306 Cannot Reject H0 
 

This report displays the results of hypothesis tests comparing the sensitivities of the two 
diagnostic tests using Nam’s test. Note that for this test, identical test results are obtained from 
either the test of differences or test of ratios. 

Tests of Equivalence 
 
      Reject H0 
  Lower Upper   and Conclude 
   90.0%  90.0% Lower Upper Equivalence 
 Prob Conf. Conf. Equiv. Equiv. at the  5.0% 
Statistic Level Limit Limit Bound Bound Significance Level 
Difference (Se1-Se2) 0.0051 -0.0859 0.1274 -0.2000 0.2000 Yes 
Ratio (Se1/Se2) 0.0247 0.8833 1.2039 0.8000 1.2500 Yes 
 
Notes: 
Equivalence is concluded when the confidence limits fall completely inside the equivalence bounds. 
Difference confidence limits based on Nam's RMLE method. 
Ratio confidence limits based on Blackwelder and Nam's method. 
 

This report displays the results of the equivalence tests of sensitivity, one based on the difference 
and the other based on the ratio. Equivalence is concluded if the confidence limits are inside the 
equivalence bounds.  

Prob Level 
The probability level is the smallest value of alpha that would result in rejection of the null 
hypothesis. It is interpreted as any other significance level. That is, reject the null hypothesis 
when this value is less than the desired significance level. 
Note that for many types of confidence limits, a closed form solution for this value does not exist 
and it must be searched for. 
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Confidence Limits 
These are the lower and upper confidence limits calculated using the method you specified. Note 
that for equivalence tests, these intervals use twice the alpha. Hence, for a 5% equivalence test, 
the confidence coefficient is 0.90, not 0.95. 

Lower and Upper Bounds 
These are the equivalence bounds. Values of the difference (ratio) inside these bounds are defined 
as being equivalent. Note that this value does not come from the data. Rather, you have to set it. 
These bounds are crucial to the equivalence test and they should be chosen carefully. 

Reject H0 and Conclude Equivalence at the 5% Significance Level 
This column gives the result of the equivalence test at the stated level of significance. Note that 
when you reject H0, you can conclude equivalence. However, when you do not reject H0, you 
cannot conclude nonequivalence. Instead, you conclude that there was not enough evidence in the 
study to reject the null hypothesis. 

Tests Showing the Sensitivity Noninferiority of Test2 Compared 
to Test1 

 
      Reject H0 
  Lower Upper   and Conclude 
   90.0%  90.0% Lower Upper Equivalence 
 Prob Conf. Conf. Equiv. Equiv. at the  5.0% 
Statistic Level Limit Limit Bound Bound Significance Level 
Diff. (Se1-Se2) 0.0051 -0.0859 0.1274 -0.2000 0.2000 Yes 
Ratio (Se1/Se2) 0.0247 0.8833 1.2039 0.8000 1.2500 Yes 
 
Notes: 
H0: The Sensitivity  of Test2 is inferior to Test1. 
Ha: The Sensitivity  of Test2 is noninferior to Test1. 
The noninferiority of Test2 compared to Test1 is concluded when the upper c.l. < upper bound. 
Difference confidence limits based on Nam's RMLE method. 
Ratio confidence limits based on Blackwelder and Nam's method. 
 

This report displays the results of two noninferiority tests of sensitivity, one based on the 
difference and the other based on the ratio. Report definitions are identical with those above for 
equivalence.  
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Chapter 537 

Binary Diagnostic 
Tests – Two 
Independent 
Samples 
Introduction 
An important task in diagnostic medicine is to measure the accuracy of two diagnostic tests. This 
can be done by comparing summary measures of diagnostic accuracy such as sensitivity or 
specificity using a statistical test. Often, you want to show that a new test is similar to another 
test, in which case you use an equivalence test. Or, you may wish to show that a new diagnostic 
test is not inferior to the existing test, so you use a non-inferiority test. All of these hypothesis 
tests are available in this procedure for the important case when the diagnostic tests provide a 
binary (yes or no) result. 

The results of such studies can be displayed in two 2-by-2 tables in which the true condition is 
shown as the rows and the diagnostic test results are shown as the columns.  
 
 Diagnostic Test 1 Result Diagnostic Test 2 Result 
True Condition Positive Negative Total Positive Negative Total 
Present (True) T11 T10 n11 T21 T20 n21 
Absent (False) F11 F10 n10 F21 F20 n20 
Total m11 m10 N1 m21 m20 N2 
 
Data such as this can be analyzed using standard techniques for comparing two proportions which 
are presented in the chapter on Two Proportions. However, specialized techniques have been 
developed for dealing specifically with the questions that arise from such a study. These 
techniques are presented in chapter 5 of the book by Zhou, Obuchowski, and McClish (2002). 
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Test Accuracy 
Several measures of a diagnostic test’s accuracy are available. Probably the most popular 
measures are the test’s sensitivity and the specificity. Sensitivity is the proportion of those that 
have the condition for which the diagnostic test is positive. Specificity is the proportion of those 
that do not have the condition for which the diagnostic test is negative. Other accuracy measures 
that have been proposed are the likelihood ratio and the odds ratio. Study designs anticipate that 
the sensitivity and specificity of the two tests will be compared. 

Comparing Sensitivity and Specificity 
Suppose you arrange the results of two diagnostic tests into two 2-by-2 tables as follows: 
 
 Standard or Reference Treatment or Experimental 
 Diagnostic Test 1 Result Diagnostic Test 2 Result 
True Condition Positive Negative Total Positive Negative Total 
Present (True) T11 T10 n11 T21 T20 n21 
Absent (False) F11 F10 n10 F21 F20 n20 
Total m11 m10 N1 m21 m20 N2 
 
Hence, the study design include N = N1 + N2 patients. 

The hypotheses of interest when comparing the sensitivities (Se) of two diagnostic tests are either 
the difference hypotheses 

H Se SeO: 1 2 0− =  versus H Se SeA: 1 2 0− ≠  

or the ratio hypothesis 

H Se SeO: /1 2 1=  versus H Se SeA: /1 2 1≠  

Similar sets of hypotheses may be defined for the difference or ratio of the specificities (Sp) as 

H Sp SpO: 1 2 0− =  versus H Sp SpA: 1 2 0− ≠  

and 

H Sp SpO: /1 2 1=  versus H Sp SpA: /1 2 1≠  

Note that the difference hypotheses usually require a smaller sample size for comparable 
statistical power, but the ratio hypotheses may be more convenient. 

The sensitivities are estimated as 

$Se1 T11
n11

=  and $Se2 T21
n21

=  

and the specificities are estimated as 

$Sp1 F10
n10

=  and $Sp2 F20
n20

=  
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The sensitivities and specificities of the two diagnostic test may be compared using either their 
difference or their ratio. 

As can be seen from the above, comparison of the sensitivity or the specificity reduces to the 
problem of comparing two independent binomial proportions. Hence the formulas used for 
hypothesis testing and confidence intervals are the same as presented in the chapter on testing two 
independent proportions. We refer you to that chapter for further details. 

Data Structure 
This procedure does not use data from the database. Instead, you enter the values directly into the 
panel. The data are entered into two tables. The table on the left represents the existing (standard) 
test. The table on the right contains the data for the new diagnostic test. 

Zero Cells 
Although zeroes are valid values, they make direct calculation of ratios difficult. One popular 
technique for dealing with the difficulties of zero values is to enter a small ‘delta’ value such as 
0.50 or 0.25 in the zero cells so that division by zero does not occur. Such method are 
controversial, but they are commonly used. Probably the safest method is to use the hypotheses in 
terms of the differences rather than ratios when zeroes occur, since these may be calculated 
without adding a delta. 

Procedure Options 
This section describes the options available in this procedure. 

Data Tab 
Enter the data values directly on this panel. 

Data Values 

T11 and T21 
This is the number of patients that had the condition of interest and responded positively to the 
diagnostic test. The first character is the true condition: (T)rue or (F)alse. The second character is 
the test number: 1 or 2. The third character is the test result: 1=positive or 0=negative. 

The value entered must be a non-negative number. Many of the reports require the value to be 
greater than zero. 

T10 and T20 
This is the number of patients that had the condition of interest but responded negatively to the 
diagnostic test. The first character is the true condition: (T)rue or (F)alse. The second character is 
the test number: 1 or 2. The third character is the test result: 1=positive or 0=negative. 

The value entered must be a non-negative number. Many of the reports require the value to be 
greater than zero. 
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F11 and F21 
This is the number of patients that did not have the condition of interest but responded positively 
to the diagnostic test. The first character is the true condition: (T)rue or (F)alse. The second 
character is the test number: 1 or 2. The third character is the test result: 1=positive or 0=negative. 

The value entered must be a non-negative number. Many of the reports require the value to be 
greater than zero. 

F10 and F20 
This is the number of patients that did not have the condition of interest and responded positively 
to the diagnostic test. The first character is the true condition: (T)rue or (F)alse. The second 
character is the test number: 1 or 2. The third character is the test result: 1=positive or 0=negative. 

The value entered must be a non-negative number. Many of the reports require the value to be 
greater than zero. 

Confidence Interval Method 

Difference C.I. Method 
This option specifies the method used to calculate the confidence intervals of the proportion 
differences. These methods are documented in detail in the Two Proportions chapter. The 
recommended method is the skewness-corrected score method of Gart and Nam. 

Ratio C.I. Method 
This option specifies the method used to calculate the confidence intervals of the proportion 
ratios. These methods are documented in detail in the Two Proportions chapter. The 
recommended method is the skewness-corrected score method of Gart and Nam. 

Report Options 

Alpha - Confidence Intervals 
The confidence coefficient to use for the confidence limits of the difference in proportions. 100 x 
(1 - alpha)% confidence limits will be calculated. This must be a value between 0 and 0.5. The 
most common choice is 0.05. 

Alpha - Hypothesis Tests 
This is the significance level of the hypothesis tests, including the equivalence and noninferiority 
tests. Typical values are between 0.01 and 0.10. The most common choice is 0.05. 

Proportion Decimals 
The number of digits to the right of the decimal place to display when showing proportions on the 
reports.  

Probability Decimals 
The number of digits to the right of the decimal place to display when showing probabilities on 
the reports.  
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Equivalence or Non-Inferiority 
Settings 

Max Equivalence Difference 
This is the largest value of the difference between the two proportions (sensitivity or specificity) 
that will still result in the conclusion of diagnostic equivalence. When running equivalence tests, 
this value is crucial since it defines the interval of equivalence. Usually, this value is between 
0.01 and 0.20.  

Note that this value must be a positive number. 

Max Equivalence Ratio 
This is the largest value of the ratio of the two proportions (sensitivity or specificity) that will still 
result in the conclusion of diagnostic equivalence. When running equivalence tests, this value is 
crucial since it defines the interval of equivalence. Usually, this value is between 1.05 and 2.0.  

Note that this value must be greater than one. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Binary Diagnostic Test of Two Independent 
Samples 
This section presents an example of how to enter data and run an analysis. In this example, 
samples of 50 individuals known to have a certain disease and 50 individuals without the disease 
where divided into two, equal-sized groups. Half of each group was given diagnostic test 1 and 
the other half was given diagnostic test 2. The results are summarized into the following tables: 
 
 Standard or Reference Treatment or Experimental 
 Diagnostic Test 1 Result Diagnostic Test 2 Result 
True Condition Positive Negative Total Positive Negative Total 
Present (True) 20 5 25 21 4 25 
Absent (False) 7 18 25 5 20 25 
Total 27 23 50 26 24 50 
 
You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Binary Diagnostic Tests – Two Independent Samples 
window. 

1 Open the Binary Diagnostic Tests – Two Independent Samples window. 
• On the menus, select Analysis, then Diagnostic Tests, then Binary - Two Independent 

Samples. The Binary Diagnostic Tests – Two Independent Samples procedure will be 
displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

2 Enter the data. 
• Select the Data tab.  
• In the T11 box, enter 20. 
• In the T10 box, enter 5. 
• In the F11 box, enter 7. 
• In the F10 box, enter 18. 
• In the T11 box, enter 21. 
• In the T10 box, enter 4. 
• In the F11 box, enter 5. 
• In the F10 box, enter 20. 

3 Set the other options. 
• Set the Difference C.I. Method to Score w/Skewness(Gart-Nam).  
• Set the Ratio C.I. Method to Score w/Skewness(Gart-Nam).  
• Set the Max Equivalence Difference to 0.25. 
• Set the Max Equivalence Ratio to 1.25. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Data and Proportions Sections 
 

Counts for Test 1 Counts for Test 2 
 
True Diagnostic Test Result Diagnostic Test Result 
Condition Positive Negative Total Positive Negative Total 
Present 20 5 25 21 4 25 
Absent 7 18 25 5 20 25 
Total 27 23 50 26 24 50 
 
 
Table Proportions for Test 1 Table Proportions for Test 2 
 
True Diagnostic Test Result Diagnostic Test Result 
Condition Positive Negative Total Positive Negative Total 
Present 0.4000 0.1000 0.5000 0.4200 0.0800 0.5000 
Absent 0.1400 0.3600 0.5000 0.1000 0.4000 0.5000 
Total 0.5400 0.4600 1.0000 0.5200 0.4800 1.0000 
 
 
Row Proportions for Test 1 Row Proportions for Test 2 
 
True Diagnostic Test Result Diagnostic Test Result 
Condition Positive Negative Total Positive Negative Total 
Present 0.8000 0.2000 1.0000 0.8400 0.1600 1.0000 
Absent 0.2800 0.7200 1.0000 0.2000 0.8000 1.0000 
Total 0.5400 0.4600 1.0000 0.5200 0.4800 1.0000 
 
 
Column Proportions for Test 1 Column Proportions for Test 2 
 
True Diagnostic Test Result Diagnostic Test Result 
Condition Positive Negative Total Positive Negative Total 
Present 0.7407 0.2174 0.5000 0.8077 0.1667 0.5000 
Absent 0.2593 0.7826 0.5000 0.1923 0.8333 0.5000 
Total 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

These reports display the counts that were entered for the two tables along with various 
proportions that make interpreting the table easier. Note that the sensitivity and specificity are 
displayed in the Row Proportions table. 

Sensitivity Confidence Intervals Section 
 

   Lower 95.0% Upper 95.0% 
Statistic Test Value Conf. Limit Conf. Limit 
Sensitivity (Se1) 1 0.8000 0.6087 0.9114 
Sensitivity (Se2) 2 0.8400 0.6535 0.9360 
Difference (Se1-Se2)  -0.0400 -0.2618 0.1824 
Ratio (Se1/Se2)  0.9524 0.7073 1.2659 
 
Sensitivity: proportion of those that actually have the condition for which the diagnostic test is positive. 
Difference confidence limits based on Gart and Nam's score method with skewness correction. 
Ratio confidence limits based on Gart and Nam's score method with skewness correction. 
 

This report displays the sensitivity for each test as well as corresponding confidence interval. It 
also shows the value and confidence interval for the difference and ratio of the sensitivity. Note 
that for a perfect diagnostic test, the sensitivity would be one. Hence, the larger the values the 
better.  
Also note that the type of confidence interval for the difference and ratio is specified on the Data 
panel. The Wilson score method is used to calculate the individual confidence intervals for the 
sensitivity of each test. 
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Specificity Confidence Intervals Section 
 

   Lower 95.0% Upper 95.0% 
Statistic Test Value Conf. Limit Conf. Limit 
Specificity (Sp1) 1 0.7200 0.5242 0.8572 
Specificity (Sp2) 2 0.8000 0.6087 0.9114 
Difference (Sp1-Sp2)  -0.0800 -0.3173 0.1616 
Ratio (Sp1/Sp2)  0.9000 0.6326 1.2501 
 
Notes: 
Specificity: proportion of those that do not have the condition for which the diagnostic test is negative. 
Difference confidence limits based on Gart and Nam's score method with skewness correction. 
Ratio confidence limits based on Gart and Nam's score method with skewness correction. 
 

This report displays the specificity for each test as well as corresponding confidence interval. It 
also shows the value and confidence interval for the difference and ratio of the specificity. Note 
that for a perfect diagnostic test, the specificity would be one. Hence, the larger the values the 
better.  
Also note that the type of confidence interval for the difference and ratio is specified on the Data 
panel. The Wilson score method is used to calculate the individual confidence intervals for the 
specificity of each test. 

Sensitivity & Specificity Hypothesis Test Section 
 

Hypothesis   Prob Decision at 
Test of Value Chi-Square Level  5.0% Level 
Se1 = Se2 -0.0400 0.1355 0.7128 Cannot Reject H0 
Sp1 = Sp2 -0.0800 0.4386 0.5078 Cannot Reject H0 
 

This report displays the results of hypothesis tests comparing the sensitivity and specificity of the 
two diagnostic tests. The Pearson chi-square test statistic and associated probability level is used. 

Likelihood Ratio Section 
 

Likelihood Ratio Section 
   Lower 95.0% Upper 95.0% 
Statistic Test Value Conf. Limit Conf. Limit 
LR(Test=Posivitive) 1 2.8571 1.5948 6.1346 
 2 4.2000 2.1020 10.8255 
LR(Test=Negative) 1 0.2778 0.1064 0.5729 
 2 0.2000 0.0669 0.4405 
 
Notes: 
LR(Test = +) = P(Test = + | True Condition = +) / P(Test = + | True Condition = -). 
LR(Test = +) > 1 indicates a positive test is more likely among those in which True Condition = +. 
 
LR(Test = -): P(Test = - | True Condition = +) / P(Test = - | True Condition = -). 
LR(Test = -) < 1 indicates a negative test is more likely among those in which True = -. 
 

This report displays the positive and negative likelihood ratios with their corresponding 
confidence limits. You would want LR(+) > 1 and LR(-) < 1, so place close attention that the 
lower limit of LR(+) is greater than one and that the upper limit of LR(-) is less than one.  
Note the LR(+) means LR(Test=Positive). Similarly, LR(-) means LR(Test=Negative). 
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Odds Ratio Section 
 

   Lower 95.0% Upper 95.0% 
Statistic Test Value Conf. Limit Conf. Limit 
Odds Ratio (+ 1/2) 1 9.1939 2.5893 32.6452 
 2 17.8081 4.4579 71.1386 
Odds Ratio (Fleiss) 1 9.1939 2.3607 48.8331 
 2 17.8081 4.1272 123.3154 
 
Notes: 
Odds Ratio = Odds(True Condition = +) / Odds(True Condition = -) 
where 
Odds(Condition) = P(Positive Test | Condition) / P(Negative Test | Condition) 
 

This report displays estimates of the odds ratio as well as its confidence interval. Because of the 
better coverage probabilities of the Fleiss confidence interval, we suggest that you use this 
interval.  

Hypothesis Tests of the Equivalence of Sensitivity 
 
      Reject H0 
  Lower Upper   and Conclude 
   90.0%  90.0% Lower Upper Equivalence 
 Prob Conf. Conf. Equiv. Equiv. at the  5.0% 
Statistic Level Limit Limit Bound Bound Significance Level 
Diff. (Se1-Se2) 0.0314 -0.2246 0.1446 -0.2500 0.2500 Yes 
Ratio (Se1/Se2) 0.1109 0.7471 1.2021 0.8000 1.2500 No 
 
Notes: 
Equivalence is concluded when the confidence limits fall completely inside the equivalence bounds. 
Difference confidence limits based on Gart and Nam's score method with skewness correction. 
Ratio confidence limits based on Gart and Nam's score method with skewness correction. 
 

This report displays the results of the equivalence tests of sensitivity, one based on the difference 
and the other based on the ratio. Equivalence is concluded if the confidence limits are inside the 
equivalence bounds.   

Prob Level 
The probability level is the smallest value of alpha that would result in rejection of the null 
hypothesis. It is interpreted as any other significance level. That is, reject the null hypothesis 
when this value is less than the desired significance level. 
Note that for many types of confidence limits, a closed form solution for this value does not exist 
and it must be searched for. 

Confidence Limits 
These are the lower and upper confidence limits calculated using the method you specified. Note 
that for equivalence tests, these intervals use twice the alpha. Hence, for a 5% equivalence test, 
the confidence coefficient is 0.90, not 0.95. 

Lower and Upper Bounds 
These are the equivalence bounds. Values of the difference (ratio) inside these bounds are defined 
as being equivalent. Note that this value does not come from the data. Rather, you have to set it. 
These bounds are crucial to the equivalence test and they should be chosen carefully. 
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Reject H0 and Conclude Equivalence at the 5% Significance Level 
This column gives the result of the equivalence test at the stated level of significance. Note that 
when you reject H0, you can conclude equivalence. However, when you do not reject H0, you 
cannot conclude nonequivalence. Instead, you conclude that there was not enough evidence in the 
study to reject the null hypothesis. 

Hypothesis Tests of the Equivalence of Specificity 
 
      Reject H0 
  Lower Upper   and Conclude 
   90.0%  90.0% Lower Upper Equivalence 
 Prob Conf. Conf. Equiv. Equiv. at the  5.0% 
Statistic Level Limit Limit Bound Bound Significance Level 
Diff. (Sp1-Sp2) 0.0793 -0.2787 0.1216 -0.2500 0.2500 No 
Ratio (Sp1/ Sp2) 0.2385 0.6744 1.1799 0.8000 1.2500 No 
 
Notes: 
Equivalence is concluded when the confidence limits fall completely inside the equivalence bounds. 
Difference confidence limits based on Gart and Nam's score method with skewness correction. 
Ratio confidence limits based on Gart and Nam's score method with skewness correction. 
 

This report displays the results of the equivalence tests of specificity, one based on the difference 
and the other based on the ratio. Report definitions are identical with those above for sensitivity. 

Hypothesis Tests of the Noninferiority of Sensitivity 
      Reject H0 
  Lower Upper   and Conclude 
   90.0%  90.0% Lower Upper Noninferiority 
 Prob Conf. Conf. Equiv. Equiv. at the  5.0% 
Statistic Level Limit Limit Bound Bound Significance Level 
Diff. (Se1-Se2) 0.0061 -0.2246 0.1446 -0.2500 0.2500 Yes 
Ratio (Se1/Se2) 0.0297 0.7471 1.2021 0.8000 1.2500 Yes 
 
Notes: 
H0: The sensitivity of Test2 is inferior to Test1. 
Ha: The sensitivity of Test2 is noninferior to Test1. 
The noninferiority of Test2 compared to Test1 is concluded when the upper c.l. < upper bound. 
Difference confidence limits based on Gart and Nam's score method with skewness correction. 
Ratio confidence limits based on Gart and Nam's score method with skewness correction. 
 

This report displays the results of two noninferiority tests of sensitivity, one based on the 
difference and the other based on the ratio. The noninferiority of test 2 as compared to test 1 is 
concluded if the upper confidence limit is less than the upper bound. The columns are as defined 
above for equivalence tests.  
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Hypothesis Tests of the Noninferiority of Specificity 
 
      Reject H0 
  Lower Upper   and Conclude 
   90.0%  90.0% Lower Upper Noninferiority 
 Prob Conf. Conf. Equiv. Equiv. at the  5.0% 
Statistic Level Limit Limit Bound Bound Significance Level 
Diff. (Sp1-Sp2) 0.0041 -0.2787 0.1216 -0.2500 0.2500 Yes 
Ratio (Sp1/Sp2) 0.0250 0.6744 1.1799 0.8000 1.2500 Yes 
 
Notes: 
H0: The specificity of Test2 is inferior to Test1. 
Ha: The specificity of Test2 is noninferior to Test1. 
The noninferiority of Test2 compared to Test1 is concluded when the upper c.l. < upper bound. 
Difference confidence limits based on Gart and Nam's score method with skewness correction. 
Ratio confidence limits based on Gart and Nam's score method with skewness correction. 
 

This report displays the results of the noninferiority tests of specificity. Report definitions are 
identical with those above for sensitivity. 
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Chapter 538 

Binary Diagnostic 
Tests – Clustered 
Samples 
Introduction 
A cluster randomization trial occurs when whole groups or clusters of individuals are treated 
together. In the two-group case, each cluster is randomized to receive a particular treatment. In 
the paired case, each group receives both treatments. The unique feature of this design is that each 
cluster is treated the same. The usual binomial assumptions do not hold for such a design because 
the individuals within a cluster cannot be assumed to be independent. Examples of such clusters 
are clinics, hospitals, cities, schools, or neighborhoods.   

When the results of a cluster randomization diagnostic trial are binary, the diagnostic accuracy of 
the tests is commonly summarized using the test sensitivity or specificity. Sensitivity is the 
proportion of those that have the condition for which the diagnostic test is positive. Specificity is 
the proportion of those that do not have the condition for which the diagnostic test is negative.  

Often, you want to show that a new test is similar to another test, in which case you use an 
equivalence test. Or, you may wish to show that a new diagnostic test is not inferior to the 
existing test, so you use a non-inferiority test.  

Specialized techniques have been developed for dealing specifically with the questions that arise 
from such a study. These techniques are presented in chapters 4 and 5 of the book by Zhou, 
Obuchowski, and McClish (2002) under the heading Clustered Binary Data. These techniques are 
referred to as the ratio estimator approach in Donner and Klar (2000). 



538-2  Binary Diagnostic Tests – Clustered Samples 

Comparing Sensitivity and Specificity 
These results apply for either an independent-group design in which each cluster receives only 
one diagnostic test or a paired design in which each cluster receives both diagnostic tests. The 
results for a particular cluster and test combination may be arranged in a 2-by-2 table as follows: 
 
 Diagnostic Test Result 
True Condition Positive Negative Total 
Present (True) T1 T0 n1 
Absent (False) F1 F0 n0 
Total m1 m0 N 
 
The hypothesis set of interest when comparing the sensitivities (Se) of two diagnostic tests are 

H Se SeO: 1 2 0− =  versus H Se SeA: 1 2 0− ≠  

A similar set of hypotheses may be defined for the difference of the specificities (Sp) as 

H Sp SpO: 1 2 0− =  versus H Sp SpA: 1 2 0− ≠  

For each table, the sensitivity is estimated using 

$Se T1
n1

=   

and the specificity is estimated using 

$Sp F0
n0

=  

The hypothesis of equal difference in sensitivity can be tested using the following z-test, which 
follows the normal distribution approximately, especially when the number of clusters is over 
twenty. 
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Here we have used  to represent the number of clusters receiving test i. For an independent 
design,  may not be equal to  and the covariance term will be zero. For a paired design, 

. 

Ki

K1 K2

K K K1 2= =

Similar results may be obtained for the specificity by substituting Sp for Se in the above formulae. 

Data Structure 
This procedure requires four, and usually five, variables. It requires a variable containing the 
cluster identification, the test identification, the result identification, and the actual identification. 
Usually, you will add a fifth variable containing the count for the cluster, but this is not necessary 
if you have entered the individual data rather than the cluster data. 

Here is an example of a independent-group design with four clusters per test. The Cluster column 
gives the cluster identification number. The Test column gives the identification number of the 
diagnostic test. The Result column indicates whether the result was positive (1) or negative (0). 
The Actual column indicates whether the disease was present (1) or absent (0). The Count column 
gives the number of subjects in that cluster with the indicated characteristics. Since we are 
dealing with 2-by-2 tables which have four cells, the data entry for each cluster requires four 
rows. Note that if a cell count is zero, the corresponding row may be omitted. These data are 
contained in the BINCLUST database. 

 

BINCLUST dataset (subset) 

Cluster Test Result Actual Count 
1 1 0 0 10 
1 1 1 0 3 
1 1 0 1 2 
1 1 1 1 21 
2 1 0 0 15 
2 1 1 0 2 
2 1 0 1 5 
2 1 1 1 10 
3 1 0 0 23 
3 1 1 0 3 
3 1 0 1 6 
3 1 1 1 31 
4 1 0 0 9 
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Procedure Options 
This section describes the options available in this procedure. 

Data Tab 
The options on this screen control the variables that are used in the analysis. 

Cluster Variable 

Cluster (Group) Variable 
Specify the variable whose values indicate which cluster (group, subject, community, or hospital) 
is given on that row. Note that each cluster may have several rows on a database. 

ID Variable 

Diagnostic-Test ID Variable 
Specify the variable whose values indicate which diagnostic test is recorded on this row. Note 
that the results of only one diagnostic test are given on each row. 

Count Variable 

Count Variable 
This variable gives the count (frequency) for each row. Specification of this variable is optional. 
If it is left blank, each row will be considered to have a count of one. 

Max Equivalence 

Max Equivalence Difference 
This is the largest value of the difference between the two proportions (sensitivity or specificity) 
that will still result in the conclusion of diagnostic equivalence. When running equivalence tests, 
this value is crucial since it defines the interval of equivalence. Usually, this value is between 
0.01 and 0.20.  

Note that this value must be a positive number. 

Test Result Specification 

Test-Result Variable 
This option specifies the variable whose values indicate whether the diagnostic test was positive 
or negative. Thus, this variable should contain only two unique values. Often, a ‘1’ is used for 
positive and a ‘0’ is used for negative. The value that represents a positive value is given in the 
next option. 

Test = Positive Value 
This option specifies the value which is to be considered as a positive test result. This value must 
match one of the values appearing Test-Result Variable of the database. All other values will be 
considered to be negative. Note that the case of text data is ignored. 
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Condition Specification 

Actual-Condition Variable 
This option specifies the variable whose values indicate whether the subjects given on this row 
actually had the condition of interest or not. Thus, this variable should contain only two unique 
values. Often, a ‘1’ is used for condition present and a ‘0’ is used for condition absent. The value 
that represents a condition-present value is given in the next option. 

True = Present Value 
This option specifies the value which indicates that the condition is actually present. This value 
must match one of the values appearing Actual-Condition Variable. All other values will be 
considered to indicate the absence of the condition. Note that the case of text data is ignored. 

Alpha 

Alpha - Confidence Intervals 
The confidence coefficient to use for the confidence limits of the difference in proportions. 100 x 
(1 - alpha)% confidence limits will be calculated. This must be a value between 0 and 0.5. The 
most common choice is 0.05. 

Alpha - Hypothesis Tests 
This is the significance level of the hypothesis tests, including the equivalence and noninferiority 
tests. Typical values are between 0.01 and 0.10. The most common choice is 0.05. 

Reports Tab 
The options on this screen control the appearance of the reports. 

Cluster Detail Reports 

Show Cluster Detail Report 
Check this option to cause the detail reports to be displayed. Because of their length, you may 
want them omitted. 

Report Options 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also, note that all calculations are performed in double precision regardless of which 
option you select here. Single precision is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 
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Value Labels 
Value Labels are used to make reports more legible by assigning meaningful labels to numbers 
and codes.  

• Data Values 
All data are displayed in their original format, regardless of whether a value label has been set 
or not.  

• Value Labels 
All values of variables that have a value label variable designated are converted to their 
corresponding value label when they are output. This does not modify their value during 
computation.  

• Both 
Both data value and value label are displayed. 

Proportion Decimals 
The number of digits to the right of the decimal place to display when showing proportions on the 
reports.  

Probability Decimals 
The number of digits to the right of the decimal place to display when showing probabilities on 
the reports.  

Skip Line After 
The names of the independent variables can be too long to fit in the space provided. If the name 
contains more characters than this, the rest of the output is placed on a separate line. Note: enter 
‘1’ when you want the results to be printed on two lines. Enter ‘100’ when you want every each 
row’s results printed on one line. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Binary Diagnostic Test of a Clustered 
Sample 
This section presents an example of how to analyze the data contained in the BINCLUST 
database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Binary Diagnostic Tests – Clustered Samples window. 

1 Open the BINCLUST dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file BinClust.s0. 
• Click Open. 

2 Open the Binary Diagnostic Tests – Clustered Samples window. 
• On the menus, select Analysis, then Diagnostic Tests, then Binary - Clustered 

Samples. The Binary Diagnostic Tests – Clustered Samples procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Select the variables. 
• Select the Data tab.  
• Set the Cluster (Group) Variable to CLUSTER. 
• Set the Count Variable to COUNT. 
• Set the Diagnostic-Test ID Variable to TEST. 
• Set the Max Equivalence Difference to 0.2. 
• Set the Test-Result Variable to RESULT. 
• Set the Test = Positive Value to 1. 
• Set the True = Present Value to 1. 
• Set Alpha - Confidence Intervals to 0.05. 
• Set Alpha - Hypothesis Tests to 0.05. 

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Run Summary Section 
 

Parameter Value Parameter Value 
Cluster Variable Cluster Rows Scanned 32 
Test Variable Test(1, 2) Rows Filtered 0 
Actual Variable Actual(+=1) Rows Missing 0 
Result Variable Result(+=1) Rows Used 32 
Count Variable Count Clusters 8 
 

This report records the variables that were used and the number of rows that were processed. 
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Sensitivity Confidence Intervals Section 
 

   Standard Lower 95.0% Upper 95.0% 
Statistic Test Value Deviation Conf. Limit Conf. Limit 
Sensitivity (Se1) 1 0.8214 0.0442 0.7347 0.9081 
Sensitivity (Se2) 2 0.7170 0.0518 0.6154 0.8185 
Difference (Se1-Se2)  0.1044 0.0681 -0.0291 0.2380 
Covariance (Se1 Se2)  0.0000    
 

This report displays the sensitivity for each test as well as the corresponding confidence interval. 
It also shows the value and confidence interval for the difference of the sensitivities. Note that for 
a perfect diagnostic test, the sensitivity would be one. Hence, the larger the values the better.  

Specificity Confidence Intervals Section 
 

   Standard Lower 95.0% Upper 95.0% 
Statistic Test Value Deviation Conf. Limit Conf. Limit 
Specificity (Sp1) 1 0.8636 0.0250 0.8147 0.9126 
Specificity (Sp2) 2 0.7053 0.0768 0.5547 0.8559 
Difference (Sp1-Sp2)  0.1584 0.0808 0.0000 0.3167 
Covariance (Sp1 Sp2)  0.0000    
 

This report displays the specificity for each test as well as corresponding confidence interval. It 
also shows the value and confidence interval for the difference. Note that for a perfect diagnostic 
test, the specificity would be one. Hence, the larger the values the better.  

Sensitivity & Specificity Hypothesis Test Section 
 

Hypothesis   Prob Reject H0 at 
Test of Value Z Value Level  5.0% Level 
Se1 = Se2 0.1044 1.5334 0.1252 No 
Sp1 = Sp2 0.1584 1.9602 0.0500 Yes 
 

This report displays the results of hypothesis tests comparing the sensitivity and specificity of the 
two diagnostic tests. The z test statistic and associated probability level is used. 

Hypothesis Tests of the Equivalence 
 
      Reject H0 
  Lower Upper   and Conclude 
   90.0%  90.0% Lower Upper Equivalence 
 Prob Conf. Conf. Equiv. Equiv. at the  5.0% 
Statistic Level Limit Limit Bound Bound Significance Level 
Diff. (Se1-Se2) 0.0803 -0.0076 0.2165 -0.2000 0.2000 No 
Diff. (Sp1-Sp2) 0.3032 0.0255 0.2913 -0.2000 0.2000 No 
 
Notes: 
Equivalence is concluded when the confidence limits fall completely inside the equivalence bounds. 
 

This report displays the results of the equivalence tests of sensitivity (Se1-Se2) and specificity 
(Sp1-Sp2), based on the difference. Equivalence is concluded if the confidence limits are inside 
the equivalence bounds.  
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Prob Level 
The probability level is the smallest value of alpha that would result in rejection of the null 
hypothesis. It is interpreted as any other significance level. That is, reject the null hypothesis 
when this value is less than the desired significance level. 

Confidence Limits 
These are the lower and upper confidence limits calculated using the method you specified. Note 
that for equivalence tests, these intervals use twice the alpha. Hence, for a 5% equivalence test, 
the confidence coefficient is 0.90, not 0.95. 

Lower and Upper Bounds 
These are the equivalence bounds. Values of the difference inside these bounds are defined as 
being equivalent. Note that this value does not come from the data. Rather, you have to set it. 
These bounds are crucial to the equivalence test and they should be chosen carefully. 

Reject H0 and Conclude Equivalence at the 5% Significance Level 
This column gives the result of the equivalence test at the stated level of significance. Note that 
when you reject H0, you can conclude equivalence. However, when you do not reject H0, you 
cannot conclude nonequivalence. Instead, you conclude that there was not enough evidence in the 
study to reject the null hypothesis. 

Hypothesis Tests of the Noninferiority of Test2 Compared to 
Test1 

 
      Reject H0 
  Lower Upper   and Conclude 
   90.0%  90.0% Lower Upper Noninferiority 
 Prob Conf. Conf. Equiv. Equiv. at the  5.0% 
Statistic Level Limit Limit Bound Bound Significance Level 
Diff. (Se1-Se2) 0.0803 -0.0076 0.2165 -0.2000 0.2000 No 
Diff (Sp1-Sp2) 0.3032 0.0255 0.2913 -0.2000 0.2000 No 
 
Notes: 
H0: The sensitivity/specificity of Test2 is inferior to Test1. 
Ha: The sensitivity/specificity of Test2 is noninferior to Test1. 
The noninferiority of Test2 compared to Test1 is concluded when the upper C(0).l. < upper bound. 
 

This report displays the results of noninferiority tests of sensitivity and specificity. The 
noninferiority of test 2 as compared to test 1 is concluded if the upper confidence limit is less than 
the upper bound. The columns are as defined above for equivalence tests.  
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Cluster Count Detail Section 
 

  True False True False      
  Pos Neg Neg Pos Total Total Total Total  
Cluster Test (TP) (FN) (TN) (FP) True False Pos Neg Total 
1 1 21 2 10 3 23 13 24 12 36 
2 1 10 5 15 2 15 17 12 20 32 
3 1 31 6 23 3 37 26 34 29 63 
4 1 7 2 9 1 9 10 8 11 19 
11 2 25 7 15 6 32 21 31 22 53 
12 2 17 3 22 2 20 24 19 25 44 
13 2 21 12 16 11 33 27 32 28 60 
14 2 13 8 14 9 21 23 22 22 44 
 
Total 1 69 15 57 9 84 66 78 72 150 
Total 2 76 30 67 28 106 95 104 97 201 

 

This report displays the counts that were given in the data. Note that each 2-by-2 table is 
represented on a single line of this table. 

Cluster Proportion Detail Section 
 
  Sens.  Spec.      Prop. 
  True False True False     Cluster 
  Pos Neg Neg Pos Total Total Total Total of 
Cluster Test (TPR) (FNR) (TNR) (FPR) True False Pos Neg Total 
1 1 0.9130 0.0870 0.7692 0.2308 0.6389 0.3611 0.6667 0.3333 0.1026 
2 1 0.6667 0.3333 0.8824 0.1176 0.4688 0.5313 0.3750 0.6250 0.0912 
3 1 0.8378 0.1622 0.8846 0.1154 0.5873 0.4127 0.5397 0.4603 0.1795 
4 1 0.7778 0.2222 0.9000 0.1000 0.4737 0.5263 0.4211 0.5789 0.0541 
11 2 0.7813 0.2188 0.7143 0.2857 0.6038 0.3962 0.5849 0.4151 0.1510 
12 2 0.8500 0.1500 0.9167 0.0833 0.4545 0.5455 0.4318 0.5682 0.1254 
13 2 0.6364 0.3636 0.5926 0.4074 0.5500 0.4500 0.5333 0.4667 0.1709 
14 2 0.6190 0.3810 0.6087 0.3913 0.4773 0.5227 0.5000 0.5000 0.1254 
 
Total 1 0.8214 0.1786 0.8636 0.1364 0.5600 0.4400 0.5200 0.4800 0.4274 
Total 2 0.7170 0.2830 0.7053 0.2947 0.5274 0.4726 0.5174 0.4826 0.5726 

 

This report displays the proportions that were found in the data. Note that each 2-by-2 table is 
represented on a single line of this table. 
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Example 2 – Paired Design 
Zhou (2002) presents a study of 21 subjects to compare the specificities of PET and SPECT for 
the diagnosis of hyperparathyroidism. Each subject had from 1 to 4 parathyroid glands that were 
disease-free. Only disease-free glands are needed to estimate the specificity. 

The data from this study have been entered in the PET database. Open this database now. You 
will see that we have entered four rows for each subject. The first two rows are for the PET test 
(Test = 1) and the last two rows are for the SPECT test (Test = 2). Note that we have entered zero 
counts in several cases when necessary. During the analysis, the rows with zero counts are 
ignored. 

You may follow along here by making the appropriate entries or load the completed template 
Example2 from the Template tab of the Binary Diagnostic Tests – Clustered Samples window. 

1 Open the PET dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file PET.s0. 
• Click Open. 

2 Open the Binary Diagnostic Tests - Clustered Samples window. 
• On the menus, select Analysis, then Diagnostic Tests, then Binary  - Clustered 

Samples. The Binary Diagnostic Test - Clustered Samples procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Select the variables. 
• Select the Data tab.  
• Set the Cluster (Group) Variable to SUBJECT. 
• Set the Count Variable to COUNT. 
• Set the Diagnostic-Test ID Variable to TEST. 
• Set the Max Equivalence Difference to 0.2. 
• Set the Test-Result Variable to RESULT. 
• Set the Test = Positive Value to 1. 
• Set the True = Present Value to 1. 
• Set Alpha – Confidence Intervals to 0.05. 
• Set Alpha - Hypothesis Tests to 0.05. 

4 4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Output 
 

Run Summary Section 
Parameter Value Parameter Value 
Cluster Variable Subject Rows Scanned 84 
Test Variable Test(1, 2) Rows Filtered 0 
Actual Variable Actual(+=1) Rows Missing 0 
Result Variable Result(+=1) Rows Used 53 
Count Variable Count Clusters 21 
 
Specificity Confidence Intervals Section 
   Standard Lower 95.0% Upper 95.0% 
Statistic Test Value Deviation Conf. Limit Conf. Limit 
Specificity (Sp1) 1 0.7843 0.0696 0.6479 0.9207 
Specificity (Sp2) 2 0.9020 0.0380 0.8275 0.9764 
Difference (Sp1-Sp2)  -0.1176 0.0665 -0.2479 0.0127 
Covariance (Sp1 Sp2)  0.0009    
 
Sensitivity & Specificity Hypothesis Test Section 
Hypothesis   Prob Reject H0 at 
Test of Value Z Value Level  5.0% Level 
Sp1 = Sp2 -0.1176 -1.7696 0.0768 No 
 
Hypothesis Tests of Equivalence 
      Reject H0 
  Lower Upper   and Conclude 
   90.0%  90.0% Lower Upper Equivalence 
 Prob Conf. Conf. Equiv. Equiv. at the  5.0% 
Statistic Level Limit Limit Bound Bound Significance Level 
Diff. (Sp1-Sp2) 0.1077 -0.2270 -0.0083 -0.2000 0.2000 No 
 
Tests Showing the Noninferiority of Test2 Compared to Test1 
      Reject H0 
  Lower Upper   and Conclude 
   90.0%  90.0% Lower Upper Noninferiority 
 Prob Conf. Conf. Equiv. Equiv. at the  5.0% 
Statistic Level Limit Limit Bound Bound Significance Level 
Diff (Sp1-Sp2) 0.0000 -0.2270 -0.0083 -0.2000 0.2000 Yes 
 

This report gives the analysis of the study comparing PET (Test=1) with SPECT (Test=2). We 
have removed the results for sensitivity since these were not part of this database. The results 
show that the two specificities are not significantly different. The equivalence test shows that 
although the hypothesis of equality could not be rejected, the hypothesis of equivalence could not 
be concluded either. 
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Chapter 545 

ROC Curves 
Introduction 
This procedure generates both binormal and empirical (nonparametric) ROC curves. It computes 
comparative measures such as the whole, and partial, area under the ROC curve. It provides 
statistical tests comparing the AUCs and partial AUCs for paired and independent sample 
designs.  

Discussion 
A diagnostic test yields a measurement (criterion value) that is used to diagnose some condition 
of interest such as a disease. (In the sequel, we will often call the ‘condition of interest’ the 
‘disease.’) The measurement might be a rating along a discrete scale or a value along a 
continuous scale. A positive or negative diagnosis is made by comparing the measurement to a 
cutoff value. If the measurement is less (or greater as the case may be) than the cutoff, the test is 
negative. Otherwise, the test is positive. Thus the cutoff value helps determine the rates of false 
positives and false negatives.  

A receiver operating characteristic (ROC) curve shows the characteristics of a diagnostic test by 
graphing the false-positive rate (1-specificity) on the horizontal axis and the true-positive rate 
(sensitivity) on the vertical axis for various cutoff values. Examples of an empirical ROC curve 
and a binormal ROC curve are shown below. 

 

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Empirical ROC Curve

1-Specificity = False Positive Rate

S
en

si
tiv

ity
 =

 T
ru

e 
P

os
iti

ve
 R

at
e

 

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Binormal ROC Curve

1-Specificity = False Positive Rate

S
en

si
tiv

ity
 =

 T
ru

e 
P

os
iti

ve
 R

at
e

 
 



545-2  ROC Curves 

Each point on the ROC curve represents a different cutoff value. Cutoff values that result in low 
false-positive rates tend to result low true-positive rates as well. As the true-positive rate 
increases, so does the false positive rate. Obviously, a useful diagnostic test should have a cutoff 
value at which the true-positive rate is high and the false-positive rate is low. In fact, a near-
perfect diagnostic test would have an ROC curve that is almost vertical from (0,0) to (0,1) and 
then horizontal to (1,1). The diagonal line serves as a reference line since it is the ROC curve of a 
diagnostic test that is useless in determining the disease. 

Complete discussions about ROC curves can be found in Altman (1991), Swets (1996), and Zhou 
et al (2002). Gehlbach (1988) provides an example of its use. 

Methods for Creating ROC Curves 
Several methods have been proposed to generate ROC curves. These include the binormal and the 
empirical (nonparametric) methods. 

Binormal 
The most commonly used method to generate smooth ROC curves is the binormal method 
popularized by a group of researchers including Metz (1978) (who developed the popular 
ROCFIT software). This method considers two populations: those with, and those without, the 
disease. It assumes that the criterion variable (or a scale-transformation of it) follows a normal 
distribution in each population. Using this normality assumption, a smooth ROC curve can be 
drawn using the sample means and variances of the two populations. Researchers have shown 
through various simulation studies that this binormal assumption is not as limiting as at first 
thought since non-normal data can often be transformed to a near-normal scale. So, if you want 
to use this method, you should make sure that your data has been transformed so that it is 
nearly normal.  

Empirical or Nonparametric 
An empirical (nonparametric) approach that does not depend on the normality assumptions was 
developed by DeLong, DeLong, and Clarke-Pearson (1988). These ROC curves are especially 
useful when the diagnostic test results in a continuous criterion variable.  

Types of ROC Experimental Designs 
Either of two experimental designs are usually employed when comparing ROC curves. These 
designs are paired or independent samples. Separate methods of analysis are needed to compare 
ROC curves depending upon which experimental design was used. 

Independent Sample (Non-correlated) Designs 
In this design, individuals with, and without, the disease are randomly assigned into two (or 
more) groups. The first group receives diagnostic test A and the second group receives diagnostic 
test B. Each individual receives only one diagnostic test. 
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Paired (Correlated) Designs 
In this design, individuals with, and without, the disease each receive both diagnostic tests. This 
allows each subject to ‘serve as their own control.’  

An Example Using a Paired Design 
ROC curves are explained with an example paraphrased from Gehlbach (1988). Forty-five 
patients with fever, headache, and a history of tick bite were classified into two groups: those 
with Rocky Mountain Spotted Fever (RMSF) and those without it. The serum-sodium level of 
each patient is measured using two techniques. We want to determine if serum-sodium level is 
useful in detecting RMSF, which technique is most accurate in diagnosing RMSF, and what the 
diagnostic cutoff value of the selected test should be. The data are presented next.  
 
RMSF=Yes   RMSF=No 
ID Method1 Method2 Diagnosis ID Method1 Method2 Diagnosis 
1 124 122 1 22 129 124 0 
2 125 124 1 23 131 128 0 
3 126 125 1 24 131 130 0 
4 126 125 1 25 134 133 0 
5 127 126 1 26 134 133 0 
6 128 126 1 27 135 133 0 
7 128 127 1 28 136 134 0 
8 128 128 1 29 136 134 0 
9 128 128 1 30 136 134 0 
10 129 128 1 31 137 134 0 
11 129 130 1 32 137 136 0 
12 131 130 1 33 138 136 0 
13 132 133 1 34 138 137 0 
14 133 133 1 35 139 138 0 
15 133 134 1 36 139 138 0 
16 135 134 1 37 139 140 0 
17 135 134 1 38 139 140 0 
18 135 134 1 39 140 141 0 
19 136 136 1 40 140 141 0 
20 138 138 1 41 141 142 0 
21 139 140 1 42 142 142 0 
    43 142 142 0 
    44 142 142 0 
    45 143 144 0 
 
The first step in analyzing these data is to create a two-by-two table showing the diagnostic 
accuracy of each method at given cutoff value. If the cutoff is set at X, the table would appear as 
follows: 

 

Generic Table for Cutoff=X 

Method 
Cutoff=X 

  RMSF = Yes RMSF = No

Sodium <= X, Positive   A B

Sodium > X, Negative   C D
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The letters A, B, C, and D represent counts of the number of individuals in each of the four 
possible categories. 

For example, if a cutoff of 130 is used to diagnose those with the disease, the tables for each 
sodium measurement method would be: 

 

Table for Method 1, Cutoff = 130 

Method 1 
Cutoff=130 

  RMSF=Yes RMSF=No

Sodium<=130, 
Positive 

  11 1

Sodium>130, 
Negative 

  10 23

 
 

Table for Method 2, Cutoff = 130 

Method 2 
Cutoff=130 

  RMSF=Yes RMSF=No

Sodium<=130, Positive   12 3

Sodium>130, Negative   9 21
 
 

If a cutoff of 137 is used to diagnose those with the disease, the tables for each sodium 
measurement method would be: 

 

Table for Method 1, Cutoff = 137 

Method 1 
Cutoff=137 

  RMSF=Yes RMSF=No

Sodium<=137, Positive   19 11

Sodium>137, Negative   2 13
 

Table for Method 2, Cutoff = 137 

Method 2 
Cutoff=137 

  RMSF=Yes RMSF=No

Sodium<=137, Positive   19 13

Sodium>137, Negative   12 11

As you study these tables, you can see changing the cutoff value changes the table counts. An 
ROC curve is constructed by creating many of these tables and plotting the sensitivity versus one 
minus the specificity.  
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Definition of Terms 
We will now define the indices that are used to create ROC curves. 

Sensitivity 
Sensitivity is the proportion of those with the disease that are correctly identified as having the 
disease by the test. In terms of our two-by-two tables, sensitivity = A/(A+C). 

Specificity 
Specificity is the proportion of those without the disease that are correctly identified as not having 
the disease by the test. In terms of our two-by-two tables, specificity = D/(B+D). 

Prevalence 
Prevalence is the overall proportion of individuals with the disease. In terms of our two-by-two 
tables, prevalence = (A+C)/(A+B+C+D). Notice that since the prevalence is defined in terms of 
the marginal values, it does not depend on the cutoff value.  

Positive Predictive Value (PPV) 
PPV is the proportion of individuals with positive test results who have the disease. In terms of 
our two-by-two tables, PPV = (A)/(A+B). 

Negative Predictive Value (NPV) 
NPV is the proportion of individuals with negative test results who do not have the disease. In 
terms of our two-by-two tables, NPV = (D)/(C+D). 

Discussion about PPV and NPV 
A problem with sensitivity and specificity is that they do not assess the probability of making a 
correct diagnosis. To overcome this, practitioners have developed two other indices: PPV and 
NPV. Unfortunately, these indices have the disadvantage that they are directly impacted by the 
prevalence of the disease in the population. For example, if your sampling procedure is 
constructed to obtain more individuals with the disease than is the case in the whole population of 
interest, the PPV and NPV need to be adjusted. 

Using Bayes theorem, adjusted values of PPV and NPV are calculated based on new prevalence 
values as follows: 

PPV sensitivity prevalence
sensitivity prevalence specificity prevalence

=
×

× + − × −( ) (1 1 )
 

NPV specificity prevalence
sensitivity prevalence specificity prevalence

=
× −

− × + × −
( )

( ) (
1

1 1 )
 

Another way of interpreting these terms is as follows. The prevalence of a disease is the prior 
probability that a subject has the disease before the diagnostic test is run. The values of PPV and 
1-NPV are the posterior probabilities of a subject having the disease after the diagnostic test is 
conducted. 
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Likelihood Ratio 
The likelihood ratio statistic measures the value of the test for increasing certainty about a 
positive diagnosis. It is calculated as follows: 

LR positive test disease
positive test no disease

sensitivity
specificity

= =
−

Pr( | )
Pr( | ) 1

 

Finding the Optimal Criterion Value 
The optimal criterion value is that value that minimizes the average cost. The approach we use 
was given by Metz (1978) and Zhou et al. (2002). This approach is based on an analysis of the 
costs (and benefits) of the four possible outcomes of a diagnostic test: true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN). The cost of each of these outcomes 
must be determined. This is no small task. In fact, a whole field of study has arisen to determine 
these costs. Once these costs are found, the average overall cost C of performing a test is given by 

( ) ( ) ( ) ( )C C C TP C TN C FP C FNTP TN FP FN= + + + +0 P P P P  

Here, 0C is the fixed cost of performing the test,  is the cost associated with a true positive, 
P(TP) is the proportion of TP’s in the population, and so on. Note that P(TP) is equal to  

TPC

P(TP) = Sensitivity [P(Condition = True)] 

Metz (1978) showed that the point along the ROC curve where the average cost is minimum is 
the point where sensitivity - m(1 - specificity) is maximized, where  

( )
( )

m
Condition
Condition

C C
C C

FP TN

FN TP

=
=
=

−
−

⎛
⎝
⎜

⎞
⎠
⎟

P False
P True  

P(Condition = True) is called the prevalence of the disease. Depending on the method used to 
obtain the sample, it may or may not be estimated from the sample. Note that the costs enter this 
equation as the ratio of the net cost for a test of an individual without the disease to the net cost 
for a test of an individual with the disease. 

Using the above result, the cut optimum cutoff may be found by scanning a report that shows 
C(Cutoff) for every value of the cutoff variable. 

Area Under the ROC Curve (AUC) 

The AUC of a Single ROC Curve 
The area under an ROC curve (AUC) is a popular measure of the accuracy of a diagnostic test. 
Other things being equal, the larger the AUC, the better the test is a predicted the existence of the 
disease. The possible values of AUC range from 0.5 (no diagnostic ability) to 1.0 (perfect 
diagnostic ability).  

The AUC has a physical interpretation. The AUC is the probability that the criterion value of an 
individual drawn at random from the population with the disease is larger than the criterion value 
of another individual drawn at random from the population without the disease. 
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A statistical test of usefulness of a diagnostic test is to compare it to the value 0.5. Such a 
statistical test can be made if we are willing to assume that the sample is large enough so that the 
estimated AUC follows the normal distribution. The statistical test is 

( )
z = A

A

~ .
~

− 0 5

V
 

where 
~A  is the estimated AUC and ( )V ~A  is the estimated variance of 

~A . 

Two methods are commonly used to estimate the AUC. The first is the binormal method 
presented by Metz (1978) and McClish (1989). This method results in a smooth ROC curve from 
which both the complete and partial AUC may be calculated. The second method is the empirical 
(nonparametric) method by DeLong et al (1988). This method has become popular because it 
does not make the strong normality assumptions that the binormal method makes. The above z 
test may be used for both methods, as long as an appropriate estimate of ( )V ~A  is used. 

The AUC of a Single Binormal ROC Curve 
The formulas that we use here come from McClish (1989). Suppose there are two populations, 
one made up of individuals with the disease and the other made up of individuals without the 
disease. Further suppose that the value of a criterion variable is available for all individuals. Let X 
refer to the value of the criterion variable in the non-diseased population and Y refer to the value 
of the criterion variable in the diseased population. The binormal model assumes that both X and 
Y are normally distributed with different means and variances. That is,  

( )X N x x~ ,μ σ 2 , ( )Y N y y~ ,μ σ 2  

The ROC curve is traced out by the function 
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where ( )Φ z  is the cumulative normal distribution function.  

The area under the whole ROC curve is  

( ) ( )A TP c FP c c
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The area under a portion of the AUC curve is given by 

( ) ( )A TP c FP c c
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The partial area under an ROC curve is usually defined in terms of a range of false-positive rates 
rather than the criterion limits c  and c . However, the one-to-one relationship between these 
two quantities, given by 

1 2

( )c Fi x x i= + −μ σ Φ 1 P  

allows the criterion limits to be calculated from desired false-positive rates. 

The MLE of A is found by substituting the MLE’s of the means and variances into the above 
expression and using numerical integration. When the area under the whole curve is desired, these 
formulas reduce to  

$ $

$
A a

b
=

+

⎡

⎣
⎢

⎤

⎦
⎥Φ

1 2
 

Note that for ease of reading we will often omit the use of the hat to indicate an MLE in the 
sequel. 

The variance of $A  is derived using the method of differentials as  

( ) ( ) ( ) ( )V V V
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Once estimates of $A  and  are calculated, hypothesis tests and confidence intervals can be 

calculated using standard methods. However, following the advice of Zhou et al. (2002) page 
125, we use the following transformation which results in statistics that are closer to normality 
and ensures confidence limits that are outside the zero-one range. The transformation is 

( )V $A

$ lnψ = A
A

1
2

1
1
+
−

⎛
⎝⎜

⎞
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The variance of $ψ  is estimated using 

( )
( ) ( )V V$

$
$ψ =

A
A4

1 2 2
−

 

An ( )100 1−α %  confidence interval for ψ  may then be constructed as 

( )L U z, $ $/= −ψ ψαm 1 2 V  

Using the inverse transformation, the confidence interval for A is given by the two limits 

1
1

1
1

−
+

−
+

−

−

−

−

e
e

e
e

L

L

U

Uand  

The AUC of a Single Empirical ROC Curve 
The empirical (nonparametric) method by DeLong et al (1988) is a popular method for computing 
the AUC. This method has become popular because it does not make the strong normality 
assumptions that the binormal method makes. The formula for computing this estimate of the 
AUC and its variance are given later in the section on comparing two empirical ROC curves. 

Comparing the AUC of Two ROC Curves 
Occasionally, it is of interest to compare the areas under the ROC curve (AUC) of two diagnostic 
tests using a hypothesis test. This may be done using either the binormal model results shown in 
McClish (1989) or the empirical (nonparametric) results of DeLong (1988).  



545-10  ROC Curves 

Comparing the AUC of Two Empirical ROC Curves 
A statistical test may be constructed that uses empirical estimates of the AUCs, their variances, 
and covariance. The variance and covariance formulas used depend on whether the design is 
paired or independent samples. Following Zhou et al. (2002) page 185, the formula to compare 
two AUCs is the following z test (which asymptotically follows the standard normal distribution) 
is given by 

( )
z = A A

A A
1 2

1 2

−
−V

 

where 

( ) ( ) ( ) ( )V V V CovA A = A A A A1 2 1 2 1 22− + − ,  

Independent Samples 
For independent samples in which each subject receives only one of the two diagnostic tests, the 
covariance is zero and the two variances are  
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Here jkT 0 represents the observed diagnostic test result for the jth subject in group k without the 
disease and  represents the observed diagnostic test result for the jth subject in group k with 
the 

jkT 1

disease. 
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Paired Samples 
For paired samples in which each subject receives both of the two diagnostic tests, the variances 
are given as above and the covariance is given by  

( )Cov A A =
S

n
S

n
T T T T

1 2
1 0

11 21 10 20, +  

where 

( )[ ] ( )[ ]S =
n

T A T AT T j
j

n

j11 21

11
11

11 1
1

21 2−
− −

=
∑ V V  

( )[ ] ( )[ ]S =
n

T A T AT T j
j

n

j10 20

11
10

10 1
1

20 2−
− −

=
∑ V V  

Comparing Two Binormal AUCs 
When the binormal assumption is viable, the hypothesis that the areas under the two ROC curves 
are equal may be tested using  

( )
z = A A

A A
1 2

1 2

−
−V

 

Independent Samples Design 
When an independent sample design is used, the variance of the difference in AUC’s is the sum 
of the variances since the covariance is zero. That is, 

 ( ) ( ) ( )V V VA A A A1 2 1 2− = +   

where  and  are calculated using the formula (with obvious substitution) for ( )V A1 ( )V A2 ( )V A  
given above in the section on a single binormal ROC curve. 

Paired Design 
When a paired design is used, the variance of the difference in AUC’s is  

 ( ) ( ) ( ) ( )V V V CovA A A A A A1 2 1 2 1 22− = + − ,   

where  and  are calculated using the formula for ( )V A1 ( )V A2 ( )V A  given above in the section 
on a single binormal ROC curve. Since the data are paired, a covariance term must also be 
calculated. This is done using the differential method as follows 
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and ( )ρ ρy x  is the correlation between the two sets of criterion values in the diseased (non-
diseased) population. 

Transformation Achieve Normality 
McClish (1989) ran simulations to study the accuracy of the normality approximation of the 
above z statistic for various portions of the AUC curve. She found that a logistic-type 
transformation resulted in a z statistic that was closer to normality. This transformation is  

( )θ A = FP FP A
FP FP A
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The variance of this quantity is given by 
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The adjusted z statistic is 
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Data Structure 
The data are entered in two or more variables. One variable specifies the true condition of the 
individual. The other variable(s) contain the criterion value(s) for the tests being compared.  

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies which variables are used in the analysis. 

Actual Condition (Disease) 

Actual Condition Variable 
A binary response variable which represents whether or not the individual actually has the 
condition of interest. The value representing a yes is specified in the Positive Condition Value 
box. The values may be text or numeric. 

Positive Condition Value 
This is the value of the Actual Condition Variable that indicates that the individual has the 
condition of interest. All other values are considered as not having the condition of interest. 
Often, the positive value is set to ‘1’ and the negative value is set to ‘0.’ However, any numbering 
scheme may be used. 

Actual Condition Prevalence 
This option specifies the prevalence of the disease which is the proportion of individuals in the 
population that have the disease. As a proportion, this number varies between zero and one. Often 
an accurate estimate of this value cannot be calculated from the data, so it must be entered. Using 
this value, adjusted values of PPV and NPV are calculated.  

Cost Benefit Ratios 
This is the ratio of the net cost when the condition is absent to the net cost when the condition is 
present. In symbols, this is 

[Cost(FP)-Benefit(TN)] / [(Cost(FN)-Benefit(TP)] 

This value is used to compute the optimum criterion value. Since it is difficult to calculate this 
value exactly, you can enter a set of up to 4 values. These values will be used in the Cost-Benefit 
Report. 



545-14  ROC Curves 

You can enter a list of values such as ‘0.5 0.8 0.9 1.0’ or use the special list format: ‘0.5:0.8(0.1)’. 

Criterion 

Criterion Variable(s) 
A list of one or more criterion (test, score, discriminant, etc.) variables. If more than one variable 
is listed, a separate curve is drawn for each.  

Note that for a paired design, both criterion variables would be specified here and the Group 
Variable option would be left blank. However, for an independent sample design, a single 
criterion variable would be specified here and a Group Variable would be specified. 

Test Direction 
This option specifies whether low or high values of the criterion variable indicate that the test is 
positive for the disease.  

• Low X = Positive 
A low value of the criterion variable indicates a positive test result. That is, a low value will 
indicate a positive test. 

• High X = Positive 
A high value of the criterion variable indicates a positive test result. That is, a high value will 
indicate a positive test. 

Criterion List 
Specify the specific values of the criterion variable to be shown on the reports. Enter ‘Data’ when 
you want the unique criterion values from the database to be used. 

You can enter a list using numbers separated by blanks such as ‘1 2 3 4 5’ or you can use the ‘xx 
TO yy BY inc’ syntax or the ‘xx:yy(inc)’ syntax. 

For example, entering ‘1 TO 10 BY 3’ or ‘1:10(3)’ is the same as entering ‘1 4 7 10’. 

Other Variables 

Frequency Variable 
An optional variable containing a set of counts (frequencies). Normally, each row represents one 
individual. On occasion, however, each row of data may represent more than one individual. This 
variable contains the number of individuals that a row represents. 

Group Variable 
This optional variable may be used to divide the subjects into groups. It is only used when you 
have an independent samples design and there is just one Criterion Variable specified. If more 
than one Criterion Variables are specified, this variable is ignored. 

When specified and used, a separate ROC curve is generated for each unique value of this 
variable. 
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Max Equivalence 

Max Equivalence Difference 
This value is used by the equivalence and noninferiority tests. This is the largest value of the 
difference in AUCs that will still result in the conclusion of equivalence of the two diagnostic 
tests. That is, if the true difference in AUCs is less than this amount, the two tests are assumed to 
be equivalent. Care must be used to be certain a reasonable value is selected.  

Note that the range of equivalence is from -D to D, where ‘D’ is the value specified here. 

We recommend a value of 0.05 as a reasonable choice. The value is usually between 0 and 0.2. 

AUC Limits (Binormal Reports Only) 

Upper and Lower AUC Limits 
Note that these options are used with binormal reports only. They are not used with the empirical 
(nonparametric) reports. 

The horizontal axis of the ROC curve is the proportion of false-positives (FP). Usually, the AUC 
is computed for full range of false-positive, i.e. from  FP = 0 to FP = 1. These options let you 
compute the area for only the portion of FP values between these two limits. This is useful for 
situations in which only a portion of the ROC curve is of interest. 

Note the these values must be between zero and one and that the Lower Limit must be less than 
the Upper Limit. 

Reports Tab 
The following options control the reports that are displayed.  

Select Reports 

ROC Data Report - Predictive Value Report 
Check to display the corresponding report or plot. 

Area Under Curve (AUC) Analysis: One Curve 
Check to display all reports about a single AUC. 

Area Under Curve (AUC) Analysis: Compare Two Curves 
Check to display all reports comparing two AUCs. 

Area Under Curve (AUC) Analysis: Two Curve Equivalence 
Check to display all reports concerning the testing of equivalence and noninferiority. 

Select ROC Plots 

Empirical and Binormal 
Check to display the empirical and binormal ROC plots. 
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Alpha 

Confidence Intervals 
This option specifies the value of alpha to be used in all confidence intervals. The quantity (1-
Alpha) is the confidence coefficient (or confidence level) of all confidence intervals. Sets of 100 
x (1 - alpha)% confidence limits are calculated. This must be a value between 0.0 and 0.5. The 
most common value is 0.05. 

Hypothesis Tests 
This option specifies the value of alpha to be used in all hypothesis tests including tests of 
noninferiority and equivalence. Alpha is the probability of rejecting the null hypothesis when it is 
true. This must be a value between 0.0 and 0.5. The most common value is 0.05. 

Report Options 

Skip Line After 
When writing a row of information to a report, some variable names/labels may be too long to fit 
in the space allocated. If the name(or label) contains more characters than this, the rest of the 
output for that line is moved down to the next line. Most reports are designed to hold a label of up 
to 15 characters. 

Hint: Enter ‘1’ when you always want each row’s output to by printed on two lines. Enter ‘100’ 
when you want each row printed on only one line. This may cause some columns to be miss-
aligned. 

Show Notes 
Check to display the notes at the end of each report. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 

Report Options – Decimal Places 

Criterion - Z-Value 
Specifies the number of decimal places used. 

Report Options – Page Title 

Report Page Title 
Specify a page title to be displayed in report headings. 
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ROC Curve Tab 
The options on this panel control the appearance of the ROC Curve. 

Vertical and Horizontal Axis 

Label  
This is the text of the label. Press the button on the right of the field to specify the font of the text. 

Tick Label Settings 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the tick labels along each axis. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

ROC Curve Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the ROC style file is used. These style files are created 
in the Scatter Plot procedure. 

Calculation Points 
The range of a criterion variable is divided into this many intervals and a two-by-two table is 
calculated. Note that each interval ends with a cutoff point. 

ROC Curve Settings - Legend 

Show Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies the title of the legend. Click the button on the right to specify the font size, color, and 
style of the legend text. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} are replaced by the response variable name. Press 
the button on the right of the field to specify the font of the text. 

Lines for ROC Curves 
These options set the color, width, and pattern of the up to fifteen lines representing the criterion 
variables. Note that the color of the 45 degree line is specified in the group immediately after the 
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criterion variables. For example, if you had three criterion variables, the color of the Group 4 
option would be the color of the 45 degree line. 

Double-clicking the line, or clicking the button to the right of the symbol, brings up a line 
specification window. This window lets you specify the characteristics of each line in detail. 

Color 
The color of the line. 

Width 
The width of the line. 

Pattern 
The line pattern (solid, dot, dash, etc.). 

Storage Tab 
Various proportions may be stored on the current database for further analysis. These options let 
you designate which statistics (if any) should be stored and which variables should receive these 
statistics. The selected statistics are automatically stored to the current database each time you run 
the procedure. 

Note that the variables you specify must already have been named on the current database. 

Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Criterion Values for Storage 

Criterion Value List 
Specify the specific values of the criterion variable to be used for storing the data back on the 
spreadsheet. Enter 'Data' when you want the values in the database to be used. You can enter a list 
using numbers separated by blanks such as '1 2 3 4 5' or you can use the 'xx TO yy BY inc' syntax 
or you can use the 'xx:yy(inc)' syntax. 

For example, entering '1 TO 10 BY 3' or '1:10(3)' is the same as entering '1 4 7 10'. 

Storage Variables 

Store Variable Name in to Store NPV 2 in 
Specify the variable to receive these values. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – ROC Curve for a Paired Design 
This section presents an example of how to generate an ROC curve for the RMSF data contained 
in the ROC database. This is an example of data from a paired designed.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the ROC Curves window. 

1 Open the ROC dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file ROC.s0. 
• Click Open. 

2 Open the ROC Curves window. 
• On the menus, select Analysis, then Diagnostic Tests, then ROC Curves. The ROC 

Curves procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the ROC Curves window, select the Variables tab.  
• Set the Actual Condition Variable to Fever.  
• Set the Positive Condition Value to 1.  
• Set the Actual Condition Prevalence to 0.10.  
• Set the Cost Benefit Ratios to 1.1 1.3 1.5 1.7.  
• Set the Criterion Variable(s) to Sodium1, Sodium2.  
• Set the Test Direction to Low X = Positive.  
• Set the Criterion List to 120 to 140 by 5.  
• Set the Max Equivalence Difference to 0.05.  

4 Specify the reports. 
• On the ROC Curves window, select the Reports tab.  
• Check all reports and plots. 
• Set the Skip Line After option to 20.  

5 Specify the Lines. 
• On the ROC Curves window, select the ROC Curve tab.  
• Click on the Line 1 arrow. Set the width to 60. 
• Click on the Line 2 arrow. Set the width to 60. 
• Click on the Line 3 arrow. Set the width to 60. 
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6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

ROC Data using the Empirical ROC Curve 
 
ROC Data for Condition = Fever using the Empirical ROC Curve 
 
Sodium1 Count Count Count Count      
Cutoff +|P +|A -|P -|A Sensitivity  False+ Specificity  
Value A B C D A/(A+C) C/(A+C) B/(B+D) D/(B+D)  
120.00 0 0 21 24 0.00000 1.00000 0.00000 1.00000 
125.00 2 0 19 24 0.09524 0.90476 0.00000 1.00000 
130.00 11 1 10 23 0.52381 0.47619 0.04167 0.95833 
135.00 18 6 3 18 0.85714 0.14286 0.25000 0.75000 
140.00 21 19 0 5 1.00000 0.00000 0.79167 0.20833 
 
ROC Data for Condition = Fever using the Empirical ROC Curve 
 
Sodium2 Count Count Count Count      
Cutoff +|P +|A -|P -|A Sensitivity  False+ Specificity  
Value A B C D A/(A+C) C/(A+C) B/(B+D) D/(B+D)  
120.00 0 0 21 24 0.00000 1.00000 0.00000 1.00000 
125.00 4 1 17 23 0.19048 0.80952 0.04167 0.95833 
130.00 12 3 9 21 0.57143 0.42857 0.12500 0.87500 
135.00 18 10 3 14 0.85714 0.14286 0.41667 0.58333 
140.00 21 17 0 7 1.00000 0.00000 0.70833 0.29167 
 
Notes: 
A is the number of subjects with a POSITIVE test when the condition was PRESENT. 
B is the number of subjects with a POSITIVE test when the condition was ABSENT. 
C is the number of subjects with a NEGATIVE test when the condition was PRESENT. 
D is the number of subjects with a NEGATIVE test when the condition was ABSENT. 
Sensitivity is the Pr(Positive Test|Condition Present). 
False+ is the Pr(Positive Test|Condition Absent). 
Specificity is the Pr(Negative Test|Condition Absent). 
 

The report displays the numeric information used to generate the empirical ROC curve. 

Cutoff 
The cutoff values of the criterion variable as set in the Criterion List option of the Reports panel. 

A B C D 
These four columns give the counts of the two-by-two tables that are formed at each of the 
corresponding cutoff points.  

Sensitivity A/(A+C) 
This is the proportion of those that had the disease that were correctly diagnosed by the test. 

C/(A+C) 
This is the proportion of those that had the disease that were incorrectly diagnosed. 

False + B/(B+D) 
The proportion of those who did not have the disease who were incorrectly diagnosed by the test 
as having it. 
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Specificity D/(B+D) 
This is the proportion of those who did not have the disease who were correctly diagnosed as 
such. 

ROC Data using the Binormal ROC Curve 
 
ROC Data for Condition = Fever using the Binormal ROC Curve 
 
Sodium1 Count Count Count Count      
Cutoff +|P +|A -|P -|A Sensitivity  False+ Specificity  
Value A B C D A/(A+C) C/(A+C) B/(B+D) D/(B+D)  
120.00 0 0 21 24 0.00751 1.00000 0.00000 1.00000 
125.00 2 0 19 24 0.09734 0.90476 0.00000 0.99957 
130.00 11 1 10 23 0.43561 0.47619 0.04167 0.97664 
135.00 18 6 3 18 0.83464 0.14286 0.25000 0.74153 
140.00 21 19 0 5 0.98246 0.00000 0.79167 0.24423 
 
ROC Data for Condition = Fever using the Binormal ROC Curve 
 
Sodium2 Count Count Count Count      
Cutoff +|P +|A -|P -|A Sensitivity  False+ Specificity  
Value A B C D A/(A+C) C/(A+C) B/(B+D) D/(B+D)  
120.00 0 0 21 24 0.01869 1.00000 0.00000 0.99949 
125.00 4 1 17 23 0.14344 0.80952 0.04167 0.98899 
130.00 12 3 9 21 0.48070 0.42857 0.12500 0.90223 
135.00 18 10 3 14 0.83352 0.14286 0.41667 0.61742 
140.00 21 17 0 7 0.97642 0.00000 0.70833 0.24291 
 

The report displays the numeric information used to generate the binormal ROC curve. 

Cutoff 
The cutoff values of the criterion variable as set in the Criterion List option of the Reports panel. 

A B C D 
These four columns give the counts of the two-by-two tables that are formed at each of the 
corresponding cutoff points.  

Sensitivity A/(A+C) 
This is the proportion of those that had the disease that were correctly diagnosed by the test. Note 
that these values are based on the binormal model. 

C/(A+C) 
This is the proportion of those that had the disease that were incorrectly diagnosed. Note that 
these values are based on the binormal model. 

False + B/(B+D) 
The proportion of those who did not have the disease who were incorrectly diagnosed by the test 
as having it. Note that these values are based on the binormal model. 

Specificity D/(B+D) 
This is the proportion of those who did not have the disease who were correctly diagnosed as 
such. Note that these values are based on the binormal model. 
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Cost-Benefit Analysis – Empirical Curve 
 
Cost - Benefit Analysis for Condition = Fever with Prevalence = 0.1 using Empirical Curve 
 
   Cost - Cost - Cost - Cost - 
Sodium1   Benefit Benefit Benefit Benefit 
Cutoff   When Ratio When Ratio When Ratio When Ratio 
Value Sensitivity Specificity = 1.1000 = 1.3000 = 1.5000 = 1.7000 
120.00 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000   
125.00 0.0952 1.0000 0.0952 0.0952 0.0952 0.0952   
130.00 0.5238 0.9583 0.1113 0.0363 -0.0387 -0.1137   
135.00 0.8571 0.7500 -1.6179 -2.0679 -2.5179 -2.9679   
140.00 1.0000 0.2083 -6.8375 -8.2625 -9.6875 -11.1125   

 
Cost - Benefit Analysis for Condition = Fever with Prevalence = 0.1 using Empirical Curve 
 
   Cost - Cost - Cost - Cost - 
Sodium2   Benefit Benefit Benefit Benefit 
Cutoff   When Ratio When Ratio When Ratio When Ratio 
Value Sensitivity Specificity = 1.1000 = 1.3000 = 1.5000 = 1.7000 
120.00 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000   
125.00 0.1905 0.9583 -0.2220 -0.2970 -0.3720 -0.4470   
130.00 0.5714 0.8750 -0.6661 -0.8911 -1.1161 -1.3411   
135.00 0.8571 0.5833 -3.2679 -4.0179 -4.7679 -5.5179   
140.00 1.0000 0.2917 -6.0125 -7.2875 -8.5625 -9.8375   
 
Notes: 
The cost-benefit ratio is the ratio of the net cost when the condition is absent to the net cost when it is present. 
Select the cutoff value for which the computed cost value is maximized (or minimized). 
Prevalence is the actual probability of the condition in the population. 
 

The report displays the numeric information used to generate the ROC curve.  

Cutoff 
The cutoff values of the criterion variable as set in the Criterion List option on the Reports tab.  

Sensitivity 
This is the proportion of those that had the disease that were correctly diagnosed by the test.  

Specificity 
This is the proportion of those who did not have the disease who were correctly diagnosed as 
such. 

Cost-Benefit When Ratio = 1.1 
The cost-benefit ratio is the ratio of the net cost when the condition is absent to the net cost when 
it is present. The optimum cutoff value is that one at which the computed cost value is maximized 
(or minimized). 
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Cost-Benefit Analysis – Binormal Curve 
 
Cost - Benefit Analysis for Condition = Fever with Prevalence = 0.1 using Binormal Curve 
 
   Cost - Cost - Cost - Cost - 
Sodium1   Benefit Benefit Benefit Benefit 
Cutoff   When Ratio When Ratio When Ratio When Ratio 
Value Sensitivity Specificity = 1.1000 = 1.3000 = 1.5000 = 1.7000 
120.00 0.0075 1.0000 0.0075 0.0075 0.0075 0.0075   
125.00 0.0973 0.9996 0.0930 0.0922 0.0915 0.0907   
130.00 0.4356 0.9766 0.2044 0.1623 0.1203 0.0783   
135.00 0.8346 0.7415 -1.7242 -2.1895 -2.6547 -3.1200   
140.00 0.9825 0.2442 -6.4997 -7.8600 -9.2204 -10.5808 
  
Cost - Benefit Analysis for Condition = Fever with Prevalence = 0.1 using Binormal Curve 
 
   Cost - Cost - Cost - Cost - 
Sodium2   Benefit Benefit Benefit Benefit 
Cutoff   When Ratio When Ratio When Ratio When Ratio 
Value Sensitivity Specificity = 1.1000 = 1.3000 = 1.5000 = 1.7000 
120.00 0.0187 0.9995 0.0137 0.0127 0.0118 0.0109   
125.00 0.1434 0.9890 0.0345 0.0146 -0.0052 -0.0250   
130.00 0.4807 0.9022 -0.4872 -0.6632 -0.8392 -1.0151   
135.00 0.8335 0.6174 -2.9540 -3.6427 -4.3313 -5.0200   
140.00 0.9764 0.2429 -6.5188 -7.8816 -9.2443 -10.6071   
 

The report displays the numeric information used to generate the ROC curve. 

Cutoff 
The cutoff values of the criterion variable as set in the Criterion List option on the Reports tab. 

Sensitivity 
This is the proportion of those that had the disease that were correctly diagnosed by the test.  

Specificity 
This is the proportion of those who did not have the disease who were correctly diagnosed as 
such. 

Cost-Benefit When Ratio = 1.1 
The cost-benefit ratio is the ratio of the net cost when the condition is absent to the net cost when 
it is present. The optimum cutoff value is that one at which the computed cost value is maximized 
(or minimized). 
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Predicted Value Section – Empirical Method 
 
Predictive Value Section for Fever using the Empirical ROC Curve 
 
Sodium1 
Cutoff   Likelihood Prev. = 0.47 Prev. = 0.10 
Value Sensitivity Specificity Ratio PPV NPV PPV NPV 
120.00 0.00000 1.00000  0.00000 0.53333 0.00000 0.90000 
125.00 0.09524 1.00000  1.00000 0.55814 1.00000 0.90865 
130.00 0.52381 0.95833 12.57143 0.91667 0.69697 0.58278 0.94768 
135.00 0.85714 0.75000 3.42857 0.75000 0.85714 0.27586 0.97927 
140.00 1.00000 0.20833 1.26316 0.52500 1.00000 0.12308 1.00000 
 
Predictive Value Section for Fever using the Empirical ROC Curve 
 
Sodium2 
Cutoff   Likelihood Prev. = 0.47 Prev. = 0.10 
Value Sensitivity Specificity Ratio PPV NPV PPV NPV 
120.00 0.00000 1.00000  0.00000 0.53333 0.00000 0.90000 
125.00 0.19048 0.95833 4.57143 0.80000 0.57500 0.33684 0.91420 
130.00 0.57143 0.87500 4.57143 0.80000 0.70000 0.33684 0.94839 
135.00 0.85714 0.58333 2.05714 0.64286 0.82353 0.18605 0.97351 
140.00 1.00000 0.29167 1.41176 0.55263 1.00000 0.13559 1.00000 
 
Notes: 
Sensitivity is the Pr(Positive Test|Condition Present). 
Specificity is the Pr(Negative Test|Condition Absent). 
Likelihood Ratio is the ratio Pr(Positive Test|Condition Present)/Pr(Positive Test|Condition Absent). 
Prev stands for the prevalence of the disease. The first value is from the data. The other was input. 
PPV or Positive Predictive Value is the Pr(Condition Present|Positive Test). 
NPV or Negative Predictive Value is the Pr(Condition Absent|Negative Test). 
 

The report displays the information to assess the predicted value of the diagnostic test. 

Cutoff 
The cutoff values of the criterion variable as set in the Criterion List option on the Reports tab. 

Sensitivity 
This is the proportion of those that had the disease that were correctly diagnosed by the test. 

Specificity 
This is the proportion of those who did not have the disease who were correctly diagnosed as 
such. 

Likelihood Ratio 
The likelihood ratio statistic measures the value of the test for increasing certainty about a 
positive diagnosis. It is calculated as follows: 

LR positive test disease
positive test no disease

sensitivity
specificity

= =
−

Pr( | )
Pr( | ) 1

 

Prev = x.xxxx PPV 
The values of PPV for the two prevalence values. The first prevalence value is the one that was 
calculated from the data. The second prevalence value was set by the user.  

Prev = x.xxxx NPV 
The values of NPV for the two prevalence values. The first prevalence value is the one that was 
calculated from the data. The second prevalence value was set by the user. 
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Predicted Value Section – Binormal Method 
 
Predictive Value Section for Fever using the Empirical ROC Curve 
 
Sodium1 
Cutoff   Likelihood Prev. = 0.47 Prev. = 0.10 
Value Sensitivity Specificity Ratio PPV NPV PPV NPV 
120.00 0.00751 1.00000 5003.14160 0.99977 0.53521 0.99820 0.90068 
125.00 0.09734 0.99957 223.92737 0.99492 0.55860 0.96136 0.90881 
130.00 0.43561 0.97664 18.65033 0.94226 0.66416 0.67451 0.93966 
135.00 0.83464 0.74153 3.22914 0.73860 0.83673 0.26405 0.97582 
140.00 0.98246 0.24423 1.29995 0.53215 0.94088 0.12621 0.99208 
 
Predictive Value Section for Fever using the Empirical ROC Curve 
 
Sodium2 
Cutoff   Likelihood Prev. = 0.47 Prev. = 0.10 
Value Sensitivity Specificity Ratio PPV NPV PPV NPV 
120.00 0.01869 0.99949 36.74964 0.96984 0.53790 0.80328 0.90164 
125.00 0.14344 0.98899 13.02933 0.91936 0.56888 0.59145 0.91221 
130.00 0.48070 0.90223 4.91677 0.81140 0.66506 0.35330 0.93989 
135.00 0.83352 0.61742 2.17868 0.65592 0.80911 0.19490 0.97091 
140.00 0.97642 0.24291 1.28969 0.53018 0.92170 0.12534 0.98933 
 

The report displays the information to assess the predicted value of the diagnostic test. 

Cutoff 
The cutoff values of the criterion variable as set in the Criterion List option on the Reports tab. 

Sensitivity 
This is the proportion of those that had the disease that were correctly diagnosed by the test. 

Specificity 
This is the proportion of those who did not have the disease who were correctly diagnosed as 
such. 

Likelihood Ratio 
The likelihood ratio statistic measures the value of the test for increasing certainty about a 
positive diagnosis. It is calculated as follows: 

LR positive test disease
positive test no disease

sensitivity
specificity

= =
−

Pr( | )
Pr( | ) 1

 

Prev = x.xxxx PPV 
The values of PPV for the two prevalence values. The first prevalence value is the one that was 
calculated from the data. The second prevalence value was set by the user.  

Prev = x.xxxx NPV 
The values of NPV for the two prevalence values. The first prevalence value is the one that was 
calculated from the data. The second prevalence value was set by the user. 
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Area Under Curve Hypothesis Tests 
 
Empirical Area Under Curve Analysis for Condition = Fever 
 
 Empirical AUC's Z-Value 1-Sided 2-Sided Prevalence 
 Estimate of Standard to Test Prob Prob of 
Criterion AUC Error AUC > 0.5 Level Level Fever Count 
Sodium1 0.87500 0.05052 7.42 0.0000 0.0000 0.46667 45 
Sodium2 0.80754 0.06431 4.78 0.0000 0.0000 0.46667 45 
 
Notes: 
1. This approach underestimates AUC when there are only a few (3 to 7) unique criterion values. 
2. The AUCs, SEs, and hypothesis tests above use the empirical approach for correlated (paired) 
     samples developed by DeLong, DeLong, and Clarke-Pearson. 
3. The Z-Value compares the AUC to 0.5, since the AUC of a 'useless' criterion is 0.5. The one-sided 
     test is usually used here since your only interest is that the criterion is better than 'useless'. 
4. The Z test used here is only accurate for larger samples with at least 30 subjects with,  
     and another 30 subjects without, the condition of interest. 
 
 
Binormal Area Under Curve Analysis for Condition = Fever 
 
 Binormal AUC's Z-Value 1-Sided 2-Sided Prevalence 
 Estimate of Standard to Test Prob Prob of 
Criterion AUC Error AUC > 0.5 Level Level Fever Count 
Sodium1 0.87720 0.03995 4.70 0.0000 0.0000 0.46667 45 
Sodium2 0.81350 0.06379 3.12 0.0009 0.0018 0.46667 45 
 
Notes: 
1. The AUCs, SEs, and hypothesis tests above use the binormal approach given by McClish (1989). 
2. The Z-Value compares the AUC to 0.5, since the AUC of a 'useless' criterion is 0.5. The one-sided 
     test is usually used here since your only interest is that the criterion is better than 'useless'. 
3. The Z tests used here are only accurate for larger samples with at least 30 subjects with,  
     and another 30 subjects without, the condition of interest. 
4. The Z tests use a logistic-type transformation to achieve better normality. 
 

These reports display areas under the ROC curve and associated standard errors and hypotheses 
tests for each of the criterion variables. The first report is based on the empirical ROC method 
and the second report is based on the binormal ROC method. 

The one-sided and two-sided hypothesis tests test the hypothesis that the diagnostic test is better 
than flipping a coin to make the diagnosis. The actual formulas used where presented earlier in 
this chapter. 
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Area Under Curve Confidence Intervals 
 
Empirical Confidence Interval of AUC for Condition = Fever 
 
 Empirical AUC's Lower 95.0% Upper 95.0% Prevalence 
 Estimate of Standard Confidence Confidence of 
Criterion AUC Error Limit Limit Fever Count 
Sodium1 0.87500 0.05052 0.73131 0.94432 0.46667 45 
Sodium2 0.80754 0.06431 0.63966 0.90188 0.46667 45 
 
Notes: 
1. This approach underestimates AUC when there are only a few (3 to 7) unique criterion values. 
2. The AUCs, SEs, and hypothesis tests above use the nonparametric approach developed by 
     DeLong, DeLong, and Clarke-Pearson. 
3. The confidence interval is based on the transformed AUC as given by Zhou et al (2002). 
4. This method is only accurate for larger samples with at least 30 subjects with,  
     and another 30 subjects without, the condition of interest. 
 
 
Binormal Confidence Interval of AUC for Condition = Fever 
 
 Binormal AUC's Lower 95.0% Upper 95.0% Prevalence 
 Estimate of Standard Confidence Confidence of 
Criterion AUC Error Limit Limit Fever Count 
Sodium1 0.87720 0.03995 0.77143 0.93580 0.46667 45 
Sodium2 0.81350 0.06379 0.64553 0.90640 0.46667 45 
 
Notes: 
1. The AUCs, SEs, and hypothesis tests above use the binormal approach given by McClish (1989). 
2. The confidence intervals given here are only accurate for larger samples with at least 30 subjects with,  
     and another 30 subjects without, the condition of interest. 
3. The confidence interval use a logistic-type transformation to achieve better normality. 
 

These reports display areas under the ROC curve and associated standard errors and confidence 
intervals for each of the criterion variables. The first report is based on the empirical ROC 
method and the second report is based on the binormal ROC method. The actual formulas used 
where presented earlier in this chapter. 
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Tests of (AUC1-AUC2) = 0 
 
Empirical Test of (AUC1 - AUC2) = 0 for Condition = Fever 
 
   Difference Difference Difference  Prob 
Criterions 1,2 AUC1 AUC2 Value Std Error Percent Z-Value Level 
Sodium1, Sodium2 0.87500 0.80754 0.06746 0.02130 -7.71 3.17 0.0015 
Sodium2, Sodium1 0.80754 0.87500 -0.06746 0.02130 8.35 -3.17 0.0015 
 
Notes: 
1. This approach underestimates AUC when there are only a few (3 to 7) unique criterion values. 
2. The AUCs, SEs, and hypothesis tests above use the nonparametric approach developed by 
     DeLong, DeLong, and Clarke-Pearson. 
3. This method is only accurate for larger samples with at least 30 subjects with,  
     and another 30 subjects without, the condition of interest. 
 
 
Binormal Test of (AUC1 - AUC2) = 0 for Condition = Fever 
 
   Difference Difference Difference  Prob 
Criterions 1,2 AUC1 AUC2 Value Std Error Percent Z-Value Level 
Sodium1, Sodium2 0.87720 0.81350 0.06371 0.02717 -7.26 4.61 0.0000 
Sodium2, Sodium1 0.81350 0.87720 -0.06371 0.02717 7.83 -4.61 0.0000 
 
Notes: 
1. The AUCs, SEs, and hypothesis tests above use the binormal approach. 
2. The z-test is based on a logistic-type transformation of the areas. 
 

These reports display the results of hypothesis tests concerning the equality of two AUCs. The 
first report is based on the empirical ROC method and the second report is based on the binormal 
ROC method. The actual formulas used where presented earlier in this chapter. 

Variances and Covariances of (AUC1-AUC2) = 0 
 
Empirical Test Variances and Covariances for Condition = Fever 
 
   AUC1 AUC2 AUC1,AUC2 Difference 
Criterions 1,2 AUC1 AUC2 Variance Variance Covariance Variance 
Sodium1, Sodium2 0.87500 0.80754 0.00255 0.00414 0.00312 0.00045 
Sodium2, Sodium1 0.80754 0.87500 0.00414 0.00255 0.00312 0.00045 
 
Notes: 
1. These AUCs, variances, and covariances use the nonparametric approach developed by 
     DeLong, DeLong, and Clarke-Pearson. 
2. This method is only accurate for larger samples with at least 30 subjects with,  
     and another 30 subjects without, the condition of interest. 
 
Binormal Test Variances and Covariances for Condition = Fever 
 
   AUC1 AUC2 AUC1,AUC2 Difference 
Criterions 1,2 AUC1 AUC2 Variance Variance Covariance Variance 
Sodium1, Sodium2 0.87720 0.81350 0.00160 0.00407 0.00246 0.00074 
Sodium2, Sodium1 0.81350 0.87720 0.00407 0.00160 0.00246 0.00074 
 
Notes: 
1. The AUCs, SEs, and hypothesis tests above use the binormal approach. 
2. The z-test is based on a logistic-type transformation of the areas. 
 

These reports display the variances and covariances associated with the hypothesis tests given in 
the last set of reports. The first report is based on the empirical ROC method and the second 
report is based on the binormal ROC method. The actual formulas used where presented earlier in 
this chapter. 
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Confidence Intervals of (AUC1-AUC2) = 0 
 
Empirical Confidence Intervals of Differences in AUCs for Condition = Fever 
 
     Lower 95.0% Upper 95.0% 
   Difference Difference Confidence Confidence 
Criterions 1,2 AUC1 AUC2 Value Std Error Limit Limit 
Sodium1, Sodium2 0.87500 0.80754 0.06746 0.02130 0.02571 0.10921  
Sodium2, Sodium1 0.80754 0.87500 -0.06746 0.02130 -0.10921 -0.02571  
 
Notes: 
1. This approach underestimates AUC when there are only a few (3 to 7) unique criterion values. 
2. The AUCs, SEs, and confidence limits above use the nonparametric approach developed by 
     DeLong, DeLong, and Clarke-Pearson. 
3. This method is only accurate for larger samples with at least 30 subjects with,  
     and another 30 subjects without, the condition of interest. 
 
Binormal Confidence Interval of Difference in AUCs for Condition = Fever 
 
     Lower 95.0% Upper 95.0% 
   Difference Difference Confidence Confidence 
Criterions 1,2 AUC1 AUC2 Value Std Error Limit Limit 
Sodium1, Sodium2 0.87720 0.81350 0.06371 0.02717 0.01046 0.11696  
Sodium2, Sodium1 0.81350 0.87720 -0.06371 0.02717 -0.11696 -0.01046  
 
Notes: 
1. The AUCs, SEs, and hypothesis tests above use the binormal approach. 
2. The z-test is based on a logistic-type transformation of the areas. 
 

These reports display the confidence intervals for difference between a pair of AUCs. The first 
report is based on the empirical ROC method and the second report is based on the binormal 
ROC method. The actual formulas used where presented earlier in this chapter. 
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Equivalence Tests Comparing AUC1 and AUC2 
 
Empirical Equivalence Test of the AUCs for Condition = Fever 
      Reject H0 
  Lower Upper   and Conclude 
   90.0%  90.0% Lower Upper Equivalence 
Criterion Prob Conf. Conf. Equiv. Equiv. at the  5.0% 
Variable1, Variable2 Level Limit Limit Bound Bound Significance Level 
Sodium1, Sodium2 0.7938 0.03242 0.10250 -0.05000 0.05000 Cannot reject H0  
Sodium2, Sodium1 0.7938 -0.10250 -0.03242 -0.05000 0.05000 Cannot reject H0  
 
Notes: 
1. This approach underestimates AUC when there are only a few (3 to 7) unique criterion values. 
2. The AUCs, SEs, and confidence limits above use the empirical approach developed by 
     DeLong, DeLong, and Clarke-Pearson. 
3. This method is only accurate for larger samples with at least 30 subjects with,  
     and another 30 subjects without, the condition of interest. 
4. Equivalence means that Test2 does not differ from Test1 except for a small, negligible amount 
     which we call the 'Equivalence Bound'. 
 
Binormal Equivalence Test of the AUCs for Condition = Fever 
      Reject H0 
  Lower Upper   and Conclude 
   90.0%  90.0% Lower Upper Equivalence 
Criterion Prob Conf. Conf. Equiv. Equiv. at the  5.0% 
Variable1, Variable2 Level Limit Limit Bound Bound Significance Level 
Sodium1, Sodium2 0.0000 0.01902 0.10839 -0.05000 0.05000 Yes: (AUC1-AUC2)<0.05  
Sodium2, Sodium1 0.6930 -0.10839 -0.01902 -0.05000 0.05000 Cannot reject H0  
 
Notes: 
1. The AUCs, SEs, and confidence limits above use the binormal approach. 
2. Equivalence means that Test2 does not differ from Test1 except for a small, negligible amount 
     which we call the 'Equivalence Bound'. 
3. The logistic-type transformation is not used in these calculations. 
 

These reports display the results of an equivalence test. This hypothesis test tests whether the two 
diagnostics are equivalence in the sense that their AUC’s are no more different than the 
maximum amount specified. The first report is based on the empirical ROC method and the 
second report is based on the binormal ROC method.  

Often, you want to show that one diagnostic test is equivalent to another. In this case, you would 
use a test of equivalence.  
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Noninferiority Tests Comparing AUC1 and AUC2 
 
Empirical Noninferiority Test of the AUCs for Condition = Fever 
 
    Reject H0 
  1-Sided  and Conclude 
   95.0%  Noninferiority 
Criterion Prob Conf. Noninferiority at the  5.0% 
Variable1, Variable2 Level Limit Bound Significance Level 
Sodium1, Sodium2 0.0000 0.03242 0.05000 Yes: (AUC1-AUC2)<0.05 
Sodium2, Sodium1 0.7938 -0.10250 0.05000 Cannot reject H0 
 
Notes: 
1. This approach underestimates AUC when there are only a few (3 to 7) unique criterion values. 
2. The AUCs, SEs, and confidence limits above use the empirical approach developed by 
     DeLong, DeLong, and Clarke-Pearson. 
3. This method is only accurate for larger samples with at least 30 subjects with,  
     and another 30 subjects without, the condition of interest. 
4. Noninferiority means that Test2 is no worse than Test1 except for a small, negligible amount 
     which we call the 'Noninferiority Bound'. 
 
Binormal Noninferiority Test of the AUCs for Condition = Fever 
 
    Reject H0 
  1-Sided  and Conclude 
   95.0%  Noninferiority 
Criterion Prob Conf. Noninferiority at the  5.0% 
Variable1, Variable2 Level Limit Bound Significance Level 
Sodium1, Sodium2 0.0000 0.01902 0.05000 Yes: (AUC1-AUC2)<0.05 
Sodium2, Sodium1 0.6930 -0.10839 0.05000 Cannot reject H0 
 
Notes: 
1. The AUCs, SEs, and confidence limits above use the binormal approach. 
2. Noninferiority means that Test2 is no worse than Test1 except for a small, negligible amount 
     which we call the 'Noninferiority Bound'. 
3. The logistic-type transformation is not used in these calculations. 
 

These reports display the results of a noninferiority test. This hypothesis test tests whether 
diagnostic test 2 is no worse than diagnostic test 1 in the sense that AUC2 is not less than AUC1 
by more than a small amount. The first report is based on the empirical ROC method and the 
second report is based on the binormal ROC method.  
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ROC Plot Section 
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Both the empirical and binormal ROC curves are displayed here. The empirical curve is shown 
first. It always has a ‘zig-zag’ pattern. The smooth, binormal ROC curve is shown second. 

The ROC curves plot the proportion of those who actually had the disease who were correctly 
diagnosed on the vertical axis versus the proportion of those who did not have the disease who 
were falsely diagnosed as having it on the horizontal axis. Hence, an optimum test procedure is 
one whose ROC curve proceeds from the lower-left corner vertically until it reaches the top and 
then horizontally across the top to the right side. The 45 degree line represents what you would 
expect from a chance (flip of the coin) classification procedure. 

When you are comparing two curves as in this example, you would generally take the outside 
curve (the one furthest from the middle line). However, it is possible for the curves to cross so 
that one test is optimum in a certain range but not in another. 
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Example 2 – Validation Using Zhou et al. (2002) 
Zhou et al. (2002) page 175 presents an example comparing the results of two mammography 
tests: plain film and digitized film. In this example, both tests were administered to 58 people, 
yielding a paired design. The results given in Zhou (2002) contain a few typos. We have obtained 
the corrected results from the authors, which are as follows: 
 
Test AUC SE 
Plain 0.83504 0.06581 
Digitized 0.84701 0.05987 
 
The data for this example is contained in the dataset ZHOU 175.S0 . You may follow along here 
by making the appropriate entries or load the completed template Example2 from the Template 
tab of the ROC Curves window. 

1 Open the ZHOU 175 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file ZHOU 175.S0. 
• Click Open. 

2 Open the ROC Curves window. 
• On the menus, select Analysis, then Diagnostic Tests, then ROC Curves. The ROC 

Curves procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the ROC Curves window, select the Variables tab.  
• Set the Actual Condition Variable to CANCER.  
• Set the Positive Condition Value to 1.  
• Set the Actual Condition Prevalence to 0.10.  
• Set the Cost Benefit Ratios to 1.  
• Set the Criterion Variable(s) to Plainfilm-Digifilm.  
• Set the Test Direction to High X = Positive.  
• Set the Criterion List to 1 2 3 4.  
• Set the Frequency Variable to Count. 
• Set the Max Equivalence Difference to 0.05.  

4 Specify the reports. 
• On the ROC Curves window, select the Reports tab.  
• Check the box next to Area Under Curve (AUC): One Curve. 
• Set the Skip Line After option to 20.  

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Validation Output 
 

Empirical Area Under Curve Analysis for Condition = Cancer 
 
 Empirical AUC's Z-Value 1-Sided 2-Sided Prevalence 
 Estimate of Standard to Test Prob Prob of 
Criterion AUC Error AUC > 0.5 Level Level Fever Count 
PlainFilm 0.83504 0.06581 5.09 0.0000 0.0000 0.22414 58 
DigiFilm 0.84701 0.05987 5.80 0.0000 0.0000 0.22414 58 

 

Note that the estimated AUC’s and standard errors match those given by Zhou (2002) exactly. 
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Chapter 550 

Distribution 
(Weibull) Fitting 
Introduction 
This procedure estimates the parameters of the exponential, extreme value, logistic, log-logistic, 
lognormal, normal, and Weibull probability distributions by maximum likelihood. It can fit 
complete, right censored, left censored, interval censored (readout), and grouped data values. It 
also computes the nonparametric Kaplan-Meier and Nelson-Aalen estimates of survival and 
associated hazard rates. It outputs various statistics and graphs that are useful in reliability and 
survival analysis. When the choice of the probability distribution is in doubt, the procedure helps 
select an appropriate probability distribution from those available.  

Features of this procedure include: 

1.  Probability plotting, hazard plotting, and reliability plotting for the common life 
distributions. The data may be any combination of complete, right censored, left 
censored, and interval censored data. 

2.  Maximum likelihood and probability plot estimates of distribution parameters, 
percentiles, reliability (survival) functions, hazard rates, and hazard functions. 

3.  Confidence intervals for distribution parameters and percentiles. 

4.  Nonparametric estimates of survival using the Kaplan-Meier procedure. 

Overview of Survival and Reliability Analysis 
This procedure may be used to conduct either survival analysis or reliability analysis. When a 
study concerns a biological event associated with the study of animals (including humans), it is 
usually called survival analysis. When a study concerns machines in an industrial setting, it is 
usually called reliability analysis. Survival analysis emphasizes a nonparametric estimation 
approach (Kaplan-Meier estimation), while reliability analysis emphasizes a parametric approach 
(Weibull or lognormal estimation). In the rest of this chapter, when we refer to survival analysis, 
you can freely substitute ‘reliability’ for ‘survival.’ The two terms refer to the same type of 
analysis. 

We will give a brief introduction to the subject in this section. For a complete account of survival 
analysis, we suggest the book by Klein and Moeschberger (1997).  

Survival analysis is the study of the distribution of life times. That is, it is the study of the elapsed 
time between an initiating event (birth, start of treatment, diagnosis, or start of operation) and a 



550-2  Distribution (Weibull) Fitting 

terminal event (death, relapse, cure, or machine failure). The data values are a mixture of 
complete (terminal event occurred) and censored (terminal event has not occurred) observations. 
From the data values, the survival analyst makes statements about the survival distribution of the 
failure times. This distribution allows questions about such quantities as survivability, expected 
life time, and mean time to failure to be answered. 

Let T be the elapsed time until the occurrence of a specified event. The event may be death, 
occurrence of a disease, disappearance of a disease, appearance of a tumor, etc. The probability 
distribution of T may be specified using one of the following basic functions. Once one of these 
functions has been specified, the others may be derived using the mathematical relationships 
presented. 

1.  Probability density function, f(t). This is the probability that an event occurs at time t. 

2.  Cumulative distribution function, F(t). This is the probability that an individual survives 
until time t. 

F t f x dx
t
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3.  Survival function, S(t) or Reliability function, R(t). This is the probability that an 
individual survives beyond time t. This is usually the first quantity that is studied. It may 
be estimated using the nonparametric Kaplan-Meier curve or one of the parametric 
distribution functions.  
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4.  Hazard rate, h(t). This is the probability that an individual at time t experiences the event 
in the next instant. It is a fundamental quantity in survival analysis. It is also known as 
the conditional failure rate in reliability, the force of mortality in demography, the 
intensity function in stochastic processes, the age-specific failure rate in epidemiology, 
and the inverse of Mill’s ratio in economics. The empirical hazard rate may be used to 
identify the appropriate probability distribution of a particular mechanism, since each 
distribution has a different hazard rate function. Some distributions have a hazard rate 
that decreases with time, others have a hazard rate that increases with time, some are 
constant, and some exhibit all three behaviors at different points in time. 
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5.  Cumulative hazard function, H(t). This is integral of h(t) from 0 to t. 
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Nonparametric Estimators of Survival 
There are two competing nonparametric estimators of the survival distribution, S(t), available in 
this procedure. The first is the common Kaplan-Meier Product limit estimator. The second is the 
Nelson-Aalen estimator of the cumulative hazard function, H(t). 

Kaplan-Meier Product-Limit Estimator 
The most common nonparametric estimator of the survival function is called the Kaplan-Meier 
product limit estimator. This estimator is defined as follows in the range of time values for which 
there are data. 
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In the above equation, represents the number of deaths at time and Y represents the number of 
individuals who are at risk at time . 

di ti i

ti

The variance of S(t) is estimated by Greenwood’s formula 
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The product limit estimator may be used to estimate the cumulative hazard function H(t) using 
the relationship 

$ ( ) log[ $( )]H t S t= −  

Linear (Greenwood) Confidence Limits 
This estimator may be used to create confidence limits for S(t) using the formula 

$( ) ( ) $( )/S t z t S tS± −1 2α σ  

where 

[ ]
σ S t

V S t

S t
2

2( )
$ $( )
$ ( )

=  

and z is the appropriate value from the standard normal distribution. We call this the Linear 
(Greenwood) confidence interval. 

Log Hazard Confidence Limits 
Better confidence limits may be calculated using the logarithmic transformation of the hazard 
functions. These limits are 
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ArcSine-Square Root Hazard Confidence Limits 
Another set of confidence limits using an improving transformation is given by the (intimidating) 
formula 
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Nelson-Aalen Hazard Confidence Limits 
An alternative estimator of H(t), which has better small sample size properties is the Nelson-
Aalen estimator given by 
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The variance of this estimate is given by the formula 
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The 100(1-alpha)% confidence limits for H(t) are calculated using 

( )~( )exp ( ) / ~( )/H t z t H tH± −1 2α σ  

This hazard function may be used to generate the Nelson-Aalen estimator of S(t) using the 
formula 

~
( )

~ ( )S t eH t=  

Using these formulas, a fourth set of confidence limits for S(t) may be calculated as 

{ }exp ~( ) ( )/H t z tH± −1 2α σ  

Parametric Survival Distributions 
This section presents the parametric probability distributions that may be analyzed with this 
procedure. 

Normal Distribution 
The normal distribution is one of the most commonly used in statistics. However, it is used 
infrequently as a lifetime distribution because it allows negative values while lifetimes are always 
positive. It has been found that the logarithms of failure times may be fit by the normal 
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distribution. Hence the lognormal has become a popular distribution in reliability work, while the 
normal has been put on the sideline.  

The normal distribution is indexed by a location (M) and a scale (S) parameter. A threshold 
parameter is meaningless in this case, since it is an adjustment to the location parameter. Using 
these symbols, the normal density function may be written as 
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Location Parameter - M 
The location parameter of the normal distribution is often called the mean.  

Scale Parameter - S 
The scale parameter of the normal distribution is usually called the standard deviation.  

Lognormal Distribution 
The normal distribution is one of the most commonly used in statistics. Although the normal 
distribution itself does not often work well with time-to-failure data, it has been found that the 
logarithm of failure time often does. Hence the lognormal has become a popular distribution in 
reliability work. 

The lognormal distribution is indexed by a shape (S) , a scale (M), and a threshold (D) parameter. 
Using these symbols, the three parameter lognormal density function may be written as 
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It is often more convenient to work with logarithms to the base 10 (denoted by log) rather than 
logarithms to the base e (denoted by ln). The lognormal10 density function is written as 
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Shape Parameter - S 
The shape parameter of the lognormal distribution of t is the standard deviation in the normal 
distribution of ln(t-D) or log(t-D). That is, the scale parameter of the normal distribution is the 
shape parameter of the lognormal distribution. 

Scale Parameter - M 
The scale parameter of the lognormal distribution t is the mean in the normal distribution of ln(t-
D) or log(t-D). That is, the location parameter of the normal distribution is the scale parameter of 
the lognormal distribution. 
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Threshold Parameter - D 
The threshold parameter is the minimum value of the random variable t. When D is set to zero, 
we obtain the two parameter lognormal distribution. When a positive value is given to D, we are 
inferring that no failures can occur between zero and D. 

Reliability Function 
The reliability (or survivorship) function, R(t), gives the probability of surviving beyond time t. 
For the Lognormal distribution, the reliability function is 
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where ( )Φ z  is the standard normal distribution function.  

The conditional reliability function, R(t,T), may also be of interest. This is the reliability of an 
item given that it has not failed by time T. The formula for the conditional reliability is 
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Hazard Function 
The hazard function represents the instantaneous failure rate. For this distribution, the hazard 
function is 

h t f t
R t
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Weibull Distribution 
The Weibull distribution is named for Professor Waloddi Weibull whose papers led to the wide 
use of the distribution. He demonstrated that the Weibull distribution fit many different datasets 
and gave good results, even for small samples. The Weibull distribution has found wide use in 
industrial fields where it is used to model time to failure data. 

The three parameter Weibull distribution is indexed by a shape (B) , a scale (C), and a threshold 
(D) parameter. Using these symbols, the three parameter Weibull density function may be written 
as 
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The symbol t represents the random variable (usually elapsed time). The threshold parameter D 
represents the minimum value of t that can occur. Setting the threshold to zero results in the 
common, two parameter Weibull distribution. 
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Shape Parameter - B 
The shape (or power) parameter controls the overall shape of the density function. Typically, this 
value ranges between 0.5 and 8.0. The estimated standard errors and confidence limits displayed 
by the program are only valid when B > 2.0. 

One of the reasons for the popularity of the Weibull distribution is that it includes other useful 
distributions as special cases or close approximations. For example, if 

 B = 1 The Weibull distribution is identical to the exponential distribution. 

 B = 2 The Weibull distribution is identical to the Rayleigh distribution. 

 B = 2.5 The Weibull distribution approximates the lognormal distribution. 

 B = 3.6 The Weibull distribution approximates the normal distribution. 

Scale Parameter - C 
The scale parameter only changes the scale of the density function along the time axis. Hence, a 
change in this parameter has the same effect on the distribution as a change in the scale of time—
for example, from days to months or from hours to days. However, it does not change the actual 
shape of the distribution.  

C is known as the characteristic life. No matter what the shape, 63.2% of the population fails by t 
= C+D. 

Some authors use 1/C instead of C as the scale parameter. Although this is arbitrary, we prefer 
dividing by the scale parameter since that is how you usually scale a set of numbers. For example, 
remember how you create a z-score when dealing with the normal data or create a percentage by 
dividing by the maximum. 

Threshold Parameter - D 
The threshold parameter is the minimum value of the random variable t. Often, this parameter is 
referred to as the location parameter. We use ‘threshold’ rather than ‘location’ to stress that this 
parameter sets the minimum time. We reserve ‘location’ to represent the center of the 
distribution. This is a fine point and we are not upset when people refer to this as the location 
parameter. 

When D is set to zero, we obtain the two parameter Weibull distribution. It is possible, but 
unusual, for D to have a negative value. When using a search algorithm to find the estimated 
value of D, a nonzero value will almost certainly be found. However, you should decide 
physically if a zero probability of failure in the interval between 0 and D is truly warranted. 

A downward or upward sloping tail on the Weibull probability plot or values of B > 6.0 are 
indications that a nonzero threshold parameter will produce a better fit to your data. 

Negative values of D represent an amount of time that has been subtracted from the actual times. 
On the other hand, positive values of D represent a period of time between the starting point and 
when any failures can occur. For example, positive values of D may represent the amount of time 
between the production of an item and when it is placed in service. 

Relationship to the Extreme Value Distribution 
The extreme value distribution is directly related to the Weibull distribution. If x = ln(t) and t 
follows the Weibull distribution, x follows the extreme value distribution. 
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Reliability Function 
The reliability (or survivorship) function, R(t), gives the probability of surviving beyond time t. 
For the Weibull distribution, the reliability function is 
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The reliability function is one minus the cumulative distribution function. That is, 
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The conditional reliability function, R(t,T), may also be of interest. This is the reliability of an 
item given that it has not failed by time T. The formula for the conditional reliability is 
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Hazard Function 
The hazard function represents the instantaneous failure rate. For this distribution, the hazard 
function is 
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Depending on the values of the distribution’s parameters, the Weibull’s hazard function can be 
decreasing (when B<1), constant (when B=1 at 1/C), or increasing (when B>1) over time. 

Extreme Value Distribution 
The extreme value distribution is occasionally used to model lifetime data. It is included here 
because of its close relationship to the Weibull distribution. It turns out that if t is distributed as a 
Weibull random variable, then ln(t) is distributed as the extreme value distribution. 

The density of the extreme value distribution may be written as 
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Exponential Distribution 
The exponential distribution was one of the first distributions used to model lifetime data. It has 
now been superceded by the Weibull distribution, but is still used occasionally. The exponential 
distribution may be found from the Weibull distribution by setting B = 1. 

The exponential distribution is a model for the life of products with a constant failure rate. The 
two parameter exponential distribution is indexed by both a scale and a threshold parameter. The 
density of the exponential distribution may be written as 
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Scale Parameter - S 
The scale parameter changes the scale of the density function along the time axis. Hence, a 
change in this parameter has the same effect on the distribution as a change in the scale of time—
for example, from days to months or from hours to days. However, it does not change the actual 
shape of the distribution.  

Some authors use 1/S instead of S as the scale parameter. Although this is arbitrary, we prefer 
dividing by the scale parameter since that is how a set of numbers is usually scaled. For example, 
remember how z-scores are created when dealing with the normal distribution. 

Threshold Parameter - D 
The threshold parameter is the minimum value of the random variable t. Often, this parameter is 
referred to as the location parameter. We use ‘threshold’ rather than ‘location’ to stress that this 
parameter sets the minimum time. We reserve ‘location’ to represent the center of the 
distribution. This is a fine point and we are not upset when people refer to this as the location 
parameter. 

When D is set to zero, we obtain the two parameter exponential distribution. It is possible, but 
unusual, for D to have a negative value. When using a search algorithm to find the estimated 
value of D, a nonzero value will almost certainly be found. However, you should decide 
physically if a zero probability of failure in the interval between 0 and D is truly warranted. 

A downward or upward sloping tail on the exponential probability plot is an indication that a 
nonzero threshold parameter will produce a better fit to your data. 

Negative values of D represent an amount of time that has been subtracted from the actual times. 
On the other hand, positive values of D represent a period of time between the starting point and 
when any failures can occur. For example, positive values of D may represent the amount of time 
between the production of an item and when it is placed in service. 

Reliability Function 
The reliability (or survivorship) function, R(t), gives the probability of surviving beyond time t. 
For the exponential distribution, the reliability function is 
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Hazard Function 
The hazard function represents the instantaneous failure rate. For this distribution, the hazard 
function is constant. The rate is given by the function 
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Logistic Distribution 
The density of the logistic distribution may be written as 
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Log-logistic Distribution 
The density of the log-logistic distribution may be written as 
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The log-logistic distribution is used occasionally to model lifetime data, but it is so similar to the 
lognormal and the Weibull distributions that it adds little and is thus often dropped from 
consideration.  

Parameter Estimation 
The parameters of the reliability distributions may be estimated by maximum likelihood or by 
applying least squares regression to the probability plot. The probability plot method is popular 
because it uses a nice graphic (the probability plot) which allows a visual analysis of the goodness 
of fit of the distribution to the data. Maximum likelihood estimation is usually favored by 
statisticians because it has been shown to be optimum in most situations and because it provides 
estimates of standard errors and confidence limits. However, there are situations in which 
maximum likelihood does not do as well as the regression approach. For example, maximum 
likelihood does not do a good job of estimating the threshold parameter. When you want to 
include the threshold parameter in your model, we suggest that you use the regression approach to 
estimate it and then treat the threshold value as a known quantity in the maximum likelihood 
estimation. 

Maximum Likelihood 
Maximum likelihood estimation consists of finding the values of the distribution parameters that 
maximize the log-likelihood of the data values. Loosely speaking, these are the values of the 
parameters which maximize the probability that the current set of data values occur. 

The general form of the log-likelihood function is given by 
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( ) ln ( , ) ln ( , ) ln ( , ) ln ( , ) ( , )= + + + −∑ ∑ ∑ ∑  

where F stands for the set of failed items, R stands for the set of right censored items, L stands for 
the set of left censored items, and I stands for the set of interval censored items. In the case of 
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interval censored observations, tlk represents the first time of the interval and tuk represents the 
last time of the interval. Also, P represents one or two parameters as the case may be. 

L(P) is maximized using two numerical procedures. First, a recently developed method called 
differential evolution is used. This is a robust maximization procedure that only requires 
evaluations of the function, but not its derivatives. The solution of the differential evolution phase 
is then used as starting values for the Newton-Raphson algorithm. Newton-Raphson is used 
because it provides an estimate of the variance-covariance matrix of the parameters, which is 
needed in computing confidence limits. The amount of emphasis on the differential evolution 
phase as opposed to the Newton-Raphson phase may be controlled using the maximum number of 
iterations allowed for each. Numerical differentiation is used to compute the first and second 
order derivatives that are needed by the Newton-Raphson procedure.  

Data Structure 
Survival data is somewhat more difficult to enter because of the presence of various types of 
censoring.  

Failed or Complete 
A failed observation is one in which the time until the terminal event was measured exactly; for 
example, the machine stopped working or the mouse died of the disease being studied. 

Right Censored 
A right censored observation provides a lower bound for the actual failure time. All that is known 
is that the failure occurred (or will occur) at some point after the given time value. Right censored 
observations occur when a study is terminated before all items have failed. They also occur when 
an item fails due to an event other than the one of interest. 

Left Censored 
A left censored observation provides an upper bound for the actual failure time. All we know is 
that the failure occurred at some point before the time value. Left censoring occurs when the 
items are not checked for failure until some time after the study has begun. When a failed item is 
found, we do not know exactly when it failed, only that it was at some point before the left censor 
time. 

Interval Censored or Readout 
An interval censored observation is one in which we know that the failure occurred between two 
time values, but we do not know exactly when. This type of data is often called readout data. It 
occurs in situations where items are checked periodically for failures. 

Sample Dataset 
Most data sets require two (and often three) variables: the failure time variable, an optional censor 
variable indicating the type of censoring, and an optional count variable which gives the number 
of items occurring at that time. If the censor variable is omitted, all time values represent failed 
items. If the count variable is omitted, all counts are assumed to be one. 
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The table below shows the results of a study to test the failure rate of a particular machine. This 
particular experiment began with 30 items being tested. After the twelfth item failed at 152.7 
hours, the experiment was stopped. The remaining eighteen observations were right censored. 
That is, we know that they will fail at some time in the future. These data are contained in the 
WEIBULL database. 

 

WEIBULL dataset 

Time Censor Count 
12.5 1 1 
24.4 1 1 
58.2 1 1 
68.0 1 1 
69.1 1 1 
95.5 1 1 
96.6 1 1 
97.0 1 1 
114.2 1 1 
123.2 1 1 
125.6 1 1 
152.7 1 1 
152.7 0 18 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the probability distribution that is fit and the variables used in the analysis. 

Time Variables 

Time Variable 
This variable contains the time values for both failed and censored observations. When interval 
(readout) data are used, this variable specifies the ending time of the interval. 

Negative time values are treated as missing values. Zero time values are replaced by the value in 
the Zero field. 

These time values represent elapsed times. If your dataset is made up of dates (such as the failure 
date), you must subtract the starting date from the failure date so that you can analyze the elapsed 
time. 

Start Time Variable 
This variable contains the starting time for interval (readout) data. Hence its value is only used 
when the row’s censor value indicates an interval data type. 

Negative time values are treated as missing values. Zero time values are replaced by the value in 
the Zero field. 
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Zero time Replacement Value 
Under normal conditions, a respondent beginning the study is “alive” and cannot “die” until after 
some small period of time has elapsed. Hence, a time value of zero is not defined and is ignored 
(treated as a missing value). If a zero time value does occur in the database, it is replaced by this 
positive amount. If you do not want zero time values replaced, enter a “0.0” here. 

This option is used when a “zero” on the database does not actually mean zero time. Instead, it 
means that the response occurred before the first reading was made and so the actual survival 
time is only known to be less.  

Censor Variable 

Censor Variable 
The values in this optional variable indicate the type of censoring active for each row. Four 
possible data types may be entered: failed (complete), right censored, left censored, or interval. 
The values used to indicate each data type are specified in the four boxes to the right. These 
values may be text or numeric.  

Failed 
When this value is entered in the Censor Variable, the corresponding time value is treated as a 
failed observation. The value may be a number or a letter. We suggest the letter “F” when you are 
in doubt as to what to use. 

A failed observation is one in which the time until the event of interest was measured exactly; for 
example, the machine stopped working or the mouse died of the disease being studied. The exact 
failure time is known. 

Right 
When this value is entered in the Censor Variable, the corresponding time value is treated as a 
right censored data value. The value may be a number or a letter. We suggest the letter “R” when 
you are in doubt as to what to use. 

A right censored observation provides a lower bound for the actual failure time. All that is known 
is that the failure time occurred (or will occur) at some point after the given time value. Right 
censored observations occur when a study is terminated before all items have failed. They also 
occur when an item fails due to an event other than the one of interest. 

Left 
When this value is entered in the Censor Variable, the corresponding time value is treated as a left 
censored data value. The value may be a number or a letter. We suggest the letter “L” when you 
are in doubt as to what to use. 

A left censored observation provides an upper bound for the actual failure time. All we know is 
that the failure time occurred at some point before the time value. Left censoring occurs when the 
items are not checked until some time after the study has begun. When a failed item is found, we 
do not know exactly when it failed, only that it was at some point before the left censor time. 

Interval 
When this value is entered in the Censor Variable, the corresponding time value is treated as an 
interval censored data value. The value may be a number or a letter. We suggest the letter “I” 
when you are in doubt as to what to use. When interval censoring is specified, the program uses 
both the Time Variable and the Start Time Variable. 
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An interval censored observation is one in which we know that the failure occurred between the 
two time values, but we do not know exactly when. This type of data is often called readout data. 
It occurs in situations where items are checked periodically for failures. 

Note that when interval data are obtained, the first observation is usually left censored and the last 
observation is usually right censored. 

Group Variable 

Group Variable 
An optional categorical (grouping) variable may be specified. If it is used, a separate analysis is 
conducted for each unique value of this variable.  

Frequency Variable 

Frequency Variable 
This variable gives the count, or frequency, of the time displayed on that row. When omitted, 
each row receives a frequency of one. Frequency values should be positive integers. This is 
usually used to indicate the number of right censored values at the end of a study or the number 
of failures occurring within an interval. It may also be used to indicate ties for failure data. 

Note that the probability plot estimation procedure requires that repeated time values be 
combined into a single observation which uses the value of this variable to represent the number 
of items. 

Distribution to Fit 

Distribution 
This option specifies which probability distribution is fit. All results are for the specified 
probability distribution. If you select Find Best, the program displays reports and graphs that will 
help you select an appropriate probability distribution. When in the Find Best mode, the regular 
individual distribution reports and graphs are not displayed. 

Distribution to Fit – Distributions 
Searched 

Exponential - Weibull 
These options are used by the distribution search procedure (Distribution = Find Best) to specify 
which of the available probability distributions should be included in the search. 

Options 

Threshold (Shift) Parameter 
This option controls the setting and estimation of the threshold parameter. When this value is set 
to zero (which is the default) the threshold parameter is not fit. You can put in a fixed, nonzero 
value for the threshold here or you can specify ‘Search 0.’ Specifying a fixed value sets the 
threshold to that value. Specifying ‘Search 0’ causes a search for the threshold parameter to be 
conducted during the probability plot regression phase. The probability plot estimate is then used 
as if it were a fixed value in the maximum likelihood estimation phase.  
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In the case of the probability plot (least squares) estimates, a grid search is conducted for the 
value of the threshold that maximizes the correlation of the data on the probability plot. 

Options Tab 
The following options control the algorithms used during parameter estimation. 

Estimation Options – Differential 
Evolution 

Maximum Generations 
Specify the maximum number of differential evolution iterations used to find a starting value 
before switching to Newton’s method. A value between 100 and 200 is usually adequate. For 
large datasets (number of rows greater than 1000), you may want to reduce this number. Your 
strategy would be to let this algorithm provide reasonable starting values for Newton’s algorithm 
which converges much more quickly when it has good starting values. 

Individuals 
This is the number of trial points that are used by the differential evolution algorithm at each 
iteration. In the terminology of differential evolution, this is the population size. A value between 
15 and 25 is recommended. More points may dramatically increase the running time. Fewer 
points may not allow the algorithm to converge. 

Inheritance 
This value controls the amount of movement of the differential evolution algorithm toward the 
current best. Usually, a value between 0.5 and 1.0 is used. We suggest 0.85. A larger value 
accelerates movement toward the current best, but reduces the chance of locating the global 
maximum. A smaller value improves the chances of finding the global, rather than a local, 
solution, but increases the number of iterations until convergence. 

Mutation Rate 
This value controls the mutation rate of the differential evolution algorithm. This is the 
probability that the random adjustment of a parameter is set to zero—which is a mutation in the 
algorithm. Values between 0 and 1 are allowed. A value of 0.3 is recommended. 

Grid Range 
This is the initial range about each of the initial parameter values that is sampled during the 
differential evolution algorithm. The algorithm is not limited to this range, but specifying a value 
large enough to include the solution will increase the probability of convergence. 

Estimation Options – Newton’s 
Method 

Maximum Iterations 
This option assigns a maximum to the number of iterations used while performing Newton’s 
method. We suggest a value of 100. This should be large enough to let the algorithm converge, 
but small enough to avoid a large delay if convergence cannot be obtained. 
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Maximum Restarts 
If Newton’s method begins to diverge, it is restarted using slightly different starting values. This 
option specifies the number of times the algorithm is restarted. 

Minimum Change 
This value is used to terminate Newton’s method. When the relative change in all of the 
parameters is less than this amount, Newton’s method is terminated. 

Step Adjustment 
Newton’s method calculates a change for each parameter value at each step. Instead of taking the 
whole parameter change, this option lets you take only a fraction of the indicated change. For 
datasets that diverge, taking only partial steps may allow the algorithm to converge. In essence, 
the algorithm tends to over correct the parameter values. This factor allows you to dampen this 
over correction. We suggest a value of about 0.2. This may increase the number of iterations (and 
you will have to increase the Max Iterations accordingly), but it provides a greater likelihood that 
the algorithm will converge. 

Step Reduction 
When Newton’s method fails to converge, the Step Adjustment is reduced by multiplying by this 
amount. This forces Newton’s method to take smaller steps which provides a better chance at 
convergence. 

Estimation Options – Miscellaneous 

Derivatives 
This value specifies the machine precision value used in calculating numerical derivatives. Slight 
adjustments to this value can change the accuracy of the numerical derivatives (which impacts the 
variance/covariance matrix estimation).  

Remember from calculus that the derivative is the slope calculated at a point along the function. It 
is the limit found by calculating the slope between two points on the function curve that are very 
close together. Numerical differentiation mimics this limit by calculating the slope between two 
function points that are very close together and then computing the slope. This value controls how 
close together these two function points are.  

Numerical analysis suggests that this distance should be proportional to the machine precision of 
the computer. We have found that our algorithm achieves four-place accuracy in the variance-
covariance matrix no matter what value is selected here (within reason). However, increasing or 
decreasing this value by two orders of magnitude may achieve six or seven place accuracy in the 
variance-covariance matrix. We have found no way to find the optimal value except trial and 
error. 

Note that the parameter estimates do not seem to be influenced a great deal, only their standard 
errors. 

Parameter 1 (Shape) 
Specify a starting value for parameter one, the shape (location) parameter. If convergence fails, 
try a different value here or try increasing the grid range. Select ‘Data’ to calculate an appropriate 
value from the data. 
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Parameter 2 (Scale) 
Specify a starting value for parameter two, the scale parameter. If convergence fails, try a 
different value here or try increasing the grid range. Select ‘Data’ to calculate an appropriate 
value from the data. 

Prob Plot Model 
When a probability plot method is used to estimate the parameters of the probability distribution, 
this option designates which variable (time or frequency) is used as the dependent variable.  

• F=A+B(Time) 
On the probability plot, F is regressed on Time and the resulting intercept and slope are used 
to estimate the parameters. See the discussion of probability plots below for more 
information. 

• Time=A+B(F) 
On the probability plot, Time is regressed on F and the resulting intercept and slope are used 
to estimate the parameters. 

Hazard Options 
The following options control the calculation of the hazard rate and cumulative hazard function. 

Bandwidth Method 
This option designates the method used to specify the smoothing bandwidth used to calculate the 
hazard rate. Specify an amount or a percentage of the time range. The default is to specify a 
percent of the time range. 

Bandwidth Amount 
This option specifies the bandwidth size used to calculate the hazard rate. If the Bandwidth 
Method was set to Amount, this is a value in time units (such as 10 hours). If Percentage of Time 
Range was selected, this is a percentage of the overall range of the data. 

Smoothing Kernel 
This option specifies the kernel function used in the smoothing to estimate the hazard rate. You 
can select uniform, Epanechnikov, or biweight smoothing. The actual formulas for these functions 
are provided later in the Hazard Rate output section. 

Product Limit and Hazard Confidence Limits Method 
The standard nonparametric estimator of the reliability function is the Product Limit estimator. 
This option controls the method used to estimate the confidence limits of the estimated reliability. 
The options are Linear, Log Hazard, Arcsine Square Root, and Nelson-Aalen. The formulas used 
by these options were presented earlier. Although the Linear (Greenwood) is the most commonly 
used, recent studies have shown that either the Log Hazard or the Arsine Square Root Hazard are 
better in the sense that they require a smaller sample size to be accurate. The Nelson-Aalen has 
also become a more popular choice. 
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Reports Tab 
The following options control which reports are displayed and the format of those reports. 

Select Reports 

Data Summary Report - Parametric Hazard Rate Report 
These options indicate whether to display the corresponding report. 

Report Options 

Alpha Level 
This is the value of alpha used in the calculation of confidence limits. For example, if you specify 
0.04 here, then 96% confidence limits will be calculated. 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run  

into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option lets you select whether to display only values, value labels, or both. Use this option if 
you want to automatically attach labels to the values of the group variable (like 1=Yes, 2=No, 
etc.). See the section on specifying Value Labels elsewhere in this manual.  

Report Options – Survival and Haz Rt 
Calculation Values 

Percentiles 
This option specifies a list of percentiles (range 1 to 99) at which the reliability (survivorship) is 
reported. The values should be separated by commas.  

Specify sequences with a colon, putting the increment inside parentheses after the maximum in 
the sequence. For example: 5:25(5) means 5,10,15,20,25 and 1:5(2),10:20(2) means 
1,3,5,10,12,14,16,18,20. 

Times 
This option specifies a list of times at which the percent surviving is reported. Individual values 
are separated by commas. You can specify a sequence by specifying the minimum and maximum 
separate by a colon and putting the increment inside parentheses. For example: 5:25(5) means 
5,10,15,20,25. Avoid 0 and negative numbers. Use ‘(10)’ alone to specify ten values between 
zero and the maximum value found in the data. 
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Report Options – Residual Life 
Calculation Values 

Residual Life Percentiles 
This option specifies a list of up to four percentiles (range 1 to 99) at which the residual life is 
reported. The values should be separated by commas. Only the first four values are used on the 
report. 

Report Options – Decimal Places 

Time 
This option specifies the number of decimal places shown on reported time values. 

Probability 
This option specifies the number of decimal places shown on reported probability and hazard 
values. 

Plots Tab 
The following options control which plots are displayed. 

Select Plots 

Survival/Reliability Plot - Probability Plot 
These options specify which plots are displayed. 

Select Plots – Plots Displayed 

Show Individual Plots 
When checked, this option specifies that a separate chart is to be displayed for each group (as 
specified by the Group Variable). 

Show Combined Plots 
When checked, this option specifies that a chart combining all groups is to be displayed. 

Plot Options 

Number of Intervals 
This option specifies the number of points along the time axis at which calculations are made. 
This controls the resolution of the plots. Usually, a value between 50 and 100 is sufficient. 

Plot Options – Plot Arrangement 

Two Plots Per Line 
When a lot of charts are specified, checking this option will cause the size of the charts to be 
reduced so that they can be displayed two per line. This will reduce the overall size of the output. 
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Plot Options – Plot Contents 

Show Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies legend label. A {G} is replaced by the name of the group variable. 

Survival Plot Tab 
These options control the attributes of the survival (reliability) curves. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Survival Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Censor Tickmarks 
This option indicates the size of the tickmarks (if any) showing where the censored points fall on 
the Kaplan-Meier survival curve. The values are at a scale of 1000 = one inch. 

RECOMMENDED: Enter 0 for no censor tickmarks. Enter 100 when you want to display the 
tickmarks. 
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Survival Plot Settings – Plot Contents 

Nonparametric Survival 
This box indicates whether to display the Kaplan-Meier survival curve. 

Nonparametric Confidence Limits 
This box indicates whether to display confidence limits about the nonparametric survival curve. 

Parametric Survival 
This box indicates whether to display the parametric survival curve, based on the selected 
probability distribution. 

Parametric Confidence Limits 
This box indicates whether to display confidence limits about the parametric survival curve. 

Titles 

Title Line 1 and 2 
These are the text lines of the titles. The characters {Y}, {X}, {Z}, and {M} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 

Cum Haz Plot Tab 
These options control the attributes of the cumulative hazard function plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 
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Cum Haz Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Cum Haz Plot Settings – Plot 
Contents 

Nonparametric Hazard Function 
This box indicates whether to display the Kaplan-Meier hazard curve. 

Parametric Hazard Function 
This box indicates whether to display the parametric cumulative hazard curve, based on the 
probability distribution that was selected. 

Parametric Hazard Confidence Limits 
This box indicates whether to display confidence limits about the parametric hazard curve. 

Titles 

Title Line 1 and 2 
These are the text lines of the titles. The characters {Y}, {X}, {Z}, and {M} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 

Haz Rt Plot Tab 
These options control the attributes of the hazard rate plot. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 
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Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Haz Rt Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Haz Rt Plot Settings – Plot Contents 

Nonparametric Hazard Rate 
This box indicates whether to display the smoothed, nonparametric hazard rate curve. 

Parametric Hazard Rate 
This box indicates whether to display the parametric hazard rate curve, based on the probability 
distribution that was selected. 

Parametric Hazard Rate Confidence Limits 
This box indicates whether to display confidence limits about the parametric hazard rate. Note 
that these are asymptotic confidence limits based on large sample results. We have found that 
these limits do not work well for some distributions, especially the lognormal and the log-logistic.  

Titles 

Title Line 1 and 2 
These are the text lines of the titles. The characters {Y}, {X}, {Z}, and {M} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 

Probability Plot Tab 
These options control the attributes of the probability plot(s). 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 
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Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Prob Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Let us emphasize that this probability plot uses the Scatter Plot style files, not the Probability Plot 
style files. 

Plotting Position - F(T) 
The probability plot shows either time or the log of time on the vertical axis (depending on the 
distribution) and the appropriate transformation of F(t) on the horizontal axis. Note that F(t) is the 
cumulative distribution function. This option specifies the method used to determine F(t)—used 
to calculate the vertical plotting positions on the probability plot. Note that method selected here 
also influences the probability plot estimates of the parameters. 

The five alternatives available are 

• Median (j-0.3)/(n+0.4) 
The most popular method is to calculate the median rank for each sorted data value. That is, 
this is the value for the jth sorted time value. Since the median rank requires extensive 
calculations, this approximation to the median rank is often used. 
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• Median (Exact) 
The most popular method is to calculate the median rank for each data value. This is the 
median rank of the jth sorted time value out of n values. This method will be a little more time 
consuming to calculate. The exact value of the median rank is calculated using the formula 
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• Mean j/(n+1) 
The mean rank is sometimes recommended. In this case, the formula is 

F t j
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• White (j-3/8)/(n+1/4) 
A formula proposed by White is sometimes recommended. The formula is 
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• (j-0.5)/n 
The following formula is sometimes used 
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Prob Plot Settings – Plot Contents 

Trend Line 
This option controls whether the trend (least squares) line is calculated and displayed. 

Residuals from Trend Line 
This option controls whether the vertical deviations from the trend line are displayed. Displaying 
these residuals may let you see departures from linearity more easily. 

Titles 

Title Line 1 and 2 
These are the text lines of the titles. The characters {Y}, {X}, {Z}, and {M} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 

Lines & Symbols Tab 
These options specify the attributes of the lines used for each group in the hazard curves and 
survival curves and the symbols used for each group in the probability plots. 

Plotting Lines 

Line 1 - 15 
These options specify the color, width, and pattern of the lines used in the plots of each group. 
The first line is used by the first group, the second line by the second group, and so on. These line 
attributes are provided to allow the various groups to be indicated on black-and-white printers. 

Clicking on a line box (or the small button to the right of the line box) will bring up a window 
that allows the color, width, and pattern of the line to be changed. 
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Plotting Symbols 

Symbol 1 - 15 
These options specify the symbols used in the plot of each group. The first symbol is used by the 
first group, the second symbol by the second group, and so on. These symbols are provided to 
allow the various groups to be easily identified, even on black and white printers. 

Clicking on a symbol box (or the small button to the right of the symbol box) will bring up a 
window that allows the color, width, and pattern of the line to be changed. 

Labels Tab 
The options on this tab specify the labels that a printed on the reports and plots. 

Report and Plot Labels 

Failure Time Label - Residual Life Label 
These options specify the term(s) used as headings for these items in the reports and labels on the 
plots. Since these reports are used for performing survival analysis in medical research and 
reliability analysis in industry, and since these fields often use different terminology, these 
options are needed to provide appropriate headings for the reports. 

Storage Tab 
These options control the storage of information back to the database for further use. 

Data Storage Variables 

Failure Time - Parametric UCL 
Each of the fields on these two options let you specify columns (variables) on the database to 
which the corresponding data are automatically stored. 

Warning: existing data are replaced, so make sure that the columns you select are empty. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 
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Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Fitting a Weibull Distribution 
This section presents an example of how to fit the Weibull distribution. The data used were 
shown above and are found in the WEIBULL database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Distribution (Weibull) Fitting window. 

1 Open the WEIBULL dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file WEIBULL.S0. 
• Click Open. 

2 Open the Distribution (Weibull) Fitting window. 
• On the menus, select Analysis, then Survival / Reliability, then Distribution (Weibull) 

Fitting. The Distribution (Weibull) Fitting procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Distribution (Weibull) Fitting window, select the Variables tab.  
• Double-click in the Time Variable box. This will bring up the variable selection 

window.  
• Select Time from the list of variables and then click Ok.  
• Double-click in the Censor Variable box. This will bring up the variable selection 

window.  
• Select Censor from the list of variables and then click Ok.  
• Double-click in the Frequency Variable box. This will bring up the variable selection 

window.  
• Select Count from the list of variables and then click Ok.  

4 Set the Derivative constant. 
• On the Distribution (Weibull) Fitting window, select the Options tab.  
• Set the Derivatives value to 0.00006.  

5 Specify the plots. 
• On the Distribution (Weibull) Fitting window, select the Plots tab.  
• In addition to the items that are already checked, check Hazard Function Plot and 

Hazard Rate Plot.  
• On the Distribution (Weibull) Fitting window, select the Survival Plot tab.  
• In addition to the items that are already checked, check Parametric C.L. 
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6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Data Summary Section 
 
 Data Summary Section 
  
 Type of 
 Observation Rows Count Minimum Maximum 
 Failed 12 12 12.5 152.7 
 Right Censored 1 18 152.7 152.7 
 Left Censored 0 0 
 Interval Censored 0 0 
 Total 13 30 12.5 152.7 
 
This report displays a summary of the amount of data that were analyzed. Scan this report to 
determine if there were any obvious data errors by double checking the counts and the minimum 
and maximum. 

Parameter Estimation Section 
 
 Weibull Parameter Estimation Section 
  Probability Maximum MLE MLE MLE 
  Plot Likelihood Standard 95% Lower 95% Upper 
 Parameter Estimate Estimate Error Conf. Limit Conf. Limit 
 Shape 1.26829 1.511543 0.4128574 0.8849655 2.581753 
 Scale 279.7478 238.3481 57.21616 148.8944 381.5444 
 Threshold 0 0    
 Log Likelihood  -80.05649 
 Mean 259.7101 214.9709 
 Median 209.5383 187.0276 
 Mode 82.19741 116.3898 
 Sigma 206.2112 144.9314 
 
 Differential Evolution Iterations 31 
 Newton Raphson Restart 1 
 Newton Raphson Iterations 8 
 
This report displays parameter estimates along with standard errors and confidence limits for the 
maximum likelihood estimates. In this example, we have set the threshold parameter to zero so 
we are fitting the two-parameter Weibull distribution. 

Probability Plot Estimate 
This estimation procedure uses the data from the probability plot to estimate the parameters. The 
estimation formula depends on which option was selected for the Prob Plot Model (in the 
Estimation tab window). 

Prob Plot Model: F=A+B(Time) 
The cumulative distribution function F(t)  
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may be rearranged as (assuming D is zero) 
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[ ] [ ]ln( ln( ( ))) ln( ) ln( )− − = − +1 F t B C B t  

This is now in a linear form. If we let y = ln(-ln(1-F(t))) and x = ln(t), the above equation 
becomes 

[ ]y B C Bx= − +ln( )  

Using simple linear regression, we can estimate the intercept and slope. Using these estimates, we 
obtain estimates of the Weibull parameters B and C as 

B = slope  

and 

C
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We assumed that D was zero. If D is not zero, it is treated as a known value and subtracted from 
the time values before the above regression is calculated. 

Prob Plot Model: Time=A+B(F) 
The cumulative distribution function F(t)  
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This is now in a linear form. If we let x = ln(-ln(1-F(t))) and y = ln(t), the above equation 
becomes 

y
B

x C= +
1 ln( )  

Using simple linear regression, we can estimate the intercept and slope. Using these estimates, we 
obtain estimates of the Weibull parameters B and C as 

B =
1

slope
 

and 

( )C = exp intercept  

Parameter estimates for the other distributions are found in a similar manner. 

Maximum Likelihood Estimates of B, C, M, and S 
These are the usual maximum likelihood estimates (MLE) of the parameters. The formulas for the 
standard errors and confidence limits use the estimated variance covariance matrix which is the 
inverse of the Fisher information matrix, { }vci j, . The standard errors are given as the square 

roots of the diagonal elements and .  vc1 1, vc2 2,
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In the case of the Weibull distribution, the confidence limits for B are 
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In the case of the Weibull distribution, the confidence limits for C are 
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In the case of all other distributions, the confidence limits for M are 
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In the case of all other distributions, the confidence limits for S are 
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Log Likelihood 
This is the value of the log likelihood function calculated using the maximum likelihood 
parameter estimates. This is the value of the function being maximized. It is often used as a 
goodness-of-fit statistic. You can compare the log likelihood values achieved by each distribution 
and select as the best fitting the one with the maximum value. 

Note that we have found that several popular statistical programs calculate this value without 
including all of the terms. Hence, they present erroneous values. The error occurs because they 
omit the 1/t term in the denominator of the lognormal and the Weibull log-likelihood functions. 
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Also, they may fail to include a correction for using the logarithm to the base 10 in the 
lognormal10. Hopefully, future editions of these programs will calculate the likelihood correctly. 

Mean 
This is the mean time to failure (MTTF). It is the mean of the random variable (failure time) 
being studied given that the fitted distribution provides a reasonable approximation to your data’s 
actual distribution. In the case of the Weibull distribution, the formula for the mean is 

Mean D C
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where ( )Γ x  is the gamma function. 

Median 
The median is the value of t where F(t)=0.5. In the case of the Weibull distribution, the formula 
for the median is 

( )Median D C B= + log /2 1  

Mode 
The mode of the Weibull distribution is given by 
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Sigma 
This is the standard deviation of the failure time. The formula for the standard deviation (sigma) 
of a Weibull random variable is 
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C
B B

Γ Γ1 2 1 12  

where ( )Γ x  is the gamma function. 

Differential Evolution Iterations 
This is the number of iterations used in the differential evolution phase of the maximum 
likelihood algorithm. If this value is equal to the maximum number of generations allowed, the 
algorithm did not converge, so you should increase the maximum number of generations and re-
run the procedure. 

Newton Raphson Restarts 
This is the number of times the Newton Raphson phase of the maximum likelihood algorithm was 
restarted because the algorithm diverged. Make sure that the maximum number of restarts was 
not reached. 

Newton Raphson Iterations 
This is the number of iterations used in the Newton Raphson phase of the maximum likelihood 
algorithm. If this value is equal to the maximum number of iterations allowed, the algorithm did 
not converge, so you should increase the maximum number of iterations and re-run the procedure. 
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Inverse of Fisher Information Matrix 
 
 Inverse of Fisher Information Matrix 
 Parameter Shape Scale 
 Shape 0.1706034 -14.33367 
 Scale -14. 33367 3273.362 
 
This table gives the inverse of the Fisher information matrix evaluated at the maximum likelihood 
estimates which is an asymptotic estimate of the variance-covariance matrix of the two 
parameters. These values are calculated using numerical second-order derivatives.  

Note that because these are numerical derivatives based on a random start provided by differential 
evolution, the values of the last two decimal places may vary from run to run. You can stabilize 
the values by changing the value of Derivatives constant, but this will have little effect on the 
overall accuracy of your results. 

Kaplan-Meier Product-Limit Survival Distribution 
 
 Kaplan-Meier Product-Limit Survival Distribution 
 Failure  Lower Upper Hazard Lower Upper Sample 
 Time Survival 95% C.L. 95% C.L. Fn 95% C.L. 95% C.L. Size 
 12.5 0.9667 0.9024 1.0000 0.0339 0.0000 0.1027 30 
 24.4 0.9333 0.8441 1.0000 0.0690 0.0000 0.1695 29 
 58.2 0.9000 0.7926 1.0000 0.1054 0.0000 0.2324 28 
 68.0 0.8667 0.7450 0.9883 0.1431 0.0118 0.2943 27 
 69.1 0.8333 0.7000 0.9667 0.1823 0.0339 0.3567 26 
 95.5 0.8000 0.6569 0.9431 0.2231 0.0585 0.4203 25 
 96.6 0.7667 0.6153 0.9180 0.2657 0.0855 0.4856 24 
 97.0 0.7333 0.5751 0.8916 0.3102 0.1148 0.5532 23 
 114.2 0.7000 0.5360 0.8640 0.3567 0.1462 0.6236 22 
 123.2 0.6667 0.4980 0.8354 0.4055 0.1799 0.6972 21 
 125.6 0.6333 0.4609 0.8058 0.4568 0.2160 0.7746 20 
 152.7 0.6000 0.4247 0.7753 0.5108 0.2545 0.8564 19 
 152.7+       18 
 Confidence Limits Method: Linear (Greenwood) 
 
This report displays the Kaplan-Meier product-limit survival distribution and hazard function 
along with confidence limits. The formulas used were presented earlier. Note that these estimates 
do not use the selected parametric distribution in any way. They are the nonparametric estimates 
and are completely independent of the distribution that is being fit.  

Note that censored observations are marked with a plus sign on their time value. The survival and 
hazard functions are not calculated for censored observations. Also note that left censored and 
interval censored observations are treated as failed observations for the calculations on this report. 

Also note that the Sample Size is given for each time period. As time progresses, participants are 
removed from the study, reducing the sample size. Hence, the survival results near the end of the 
study are based on only a few participants and are therefore less precise. This shows up as a 
widening of the confidence limits. 
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Nonparametric Hazard Rate Section 
      
 Nonparametric Hazard Rate Section 
    95% Lower 95% Upper 
  Nonparametric Std Error of Conf. Limit of Conf. Limit of 
 Failure Hazard Hazard Hazard Hazard 
 Time Rate Rate Rate Rate 
 8.0 0.0016 0.0014 0.0003 0.0090 
 16.0 0.0019 0.0014 0.0005 0.0078 
 24.0 0.0016 0.0012 0.0004 0.0066 
 32.0 0.0015 0.0010 0.0004 0.0052 
 40.0 0.0016 0.0009 0.0005 0.0047 
 48.0 0.0021 0.0011 0.0008 0.0059 
 56.0 0.0024 0.0014 0.0008 0.0075 
 64.0 0.0027 0.0015 0.0009 0.0082 
 72.0 0.0036 0.0016 0.0015 0.0086 
 80.0 0.0042 0.0017 0.0019 0.0095 
 88.0 0.0043 0.0018 0.0018 0.0099 
 96.0 0.0045 0.0019 0.0019 0.0105 
 104.0 0.0052 0.0022 0.0023 0.0117 
 112.0 0.0054 0.0022 0.0024 0.0121 
 120.0 0.0047 0.0021 0.0019 0.0113 
 128.0 0.0038 0.0020 0.0014 0.0105 
 136.0 0.0038 0.0021 0.0013 0.0111 
 144.0 0.0038 0.0036 0.0006 0.0246 
 152.0 0.0081 0.0081 0.0011 0.0575 
 
This report displays the nonparametric estimate of the hazard rate, h(t). Note that this is not the 
cumulative hazard function H(t) shown in the last report. It is the derivative of H(t). Since it is 
h(t) that needs to be studied in order to determine the characteristics of the failure process, this 
report and its associated plot (which is shown below) become very import. 

The formula for the Nelson-Aalen estimator of the cumulative hazard is 

~( )H t
if t t

d
Y

if t ti

it t

=
<

≤

⎧
⎨
⎪
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∑

0 1

1
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The variance of this estimate is 

( )
( )

σH
i i

i it t

t
Y d d
Y Y

i

2
21

( ) =
−
−≤

∑ i  

In the above equation, represents the number of deaths at time and Y represents the number 
of individuals who are at risk at time . 

di ti i

ti

The hazard rate is estimated using kernel smoothing of the Nelson-Aalen estimator as given in 
Klein and Moeschberger (1997). The formulas for the estimated hazard rate and its variance are 
given by 
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where b is the bandwidth about t and 
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( ) ( ) ( )Δ
~ ~ ~H t H t H tk k k= − −1  

( )[ ] ( )[ ] ( )[ ]Δ $ ~ $ ~ $ ~V H t V H t V H tk k= − −1k  

Three choices are available for the kernel function K(x) in the above formulation. These are 
defined differently for various values of t. Note that the tk ’s are for failed items only and that tD  
is the maximum failure time. For the uniform kernel the formulas for the various values of t are 
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For the Epanechnikov kernel the formulas for the various values of t are 

( ) ( )K x x for t b t t b= − − ≤ ≤ +
3
4

1 2  

( ) ( )( )K x K x A Bx for t bL = + <  

( ) ( )
( )

( )
( )

K x
r

r
r

r
x for t b t tR D=

+

+
−

−

+
− < <

4 1

1
6 1
1

3

4 3 D  

where 

( )
( ) ( )

A
q q q

q q
=

− + −

+ − +

64 2 4 6 3

1 19 18 3

2 3

4 2q
 

( )
( ) ( )

B
q

q q
=

−

+ − +

240 1
1 19 18 3

2

4 2q
 

q t
b

=  



 Distribution (Weibull) Fitting  550-35 

r t t
b
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For the biweight kernel the formulas for the various values of t are 

( ) ( )K x x for t b t t b= − − ≤ ≤ +
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Confidence intervals for h(t) are given by 
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Care must be taken when using these kernel-smoothed estimators since they are actually 
estimating a smoothed version of the hazard rate, not the hazard rate itself. Thus, they may be 
biased and are greatly influenced by the choice of the bandwidth b. We have found that you must 
experiment with b to find an appropriate value for each dataset.  
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Parametric Hazard Rate Section 
      
 Weibull Hazard Rate Section 

  95% Lower 95% Upper 
  Weibull Conf. Limit of Conf. Limit of 
Failure Hazard Hazard Hazard 
Time Rate Rate Rate 
8.0 0.0011 0.0005 0.0023 
16.0 0.0016 0.0008 0.0032 
24.0 0.0020 0.0010 0.0040 
32.0 0.0023 0.0011 0.0046 
40.0 0.0025 0.0012 0.0052 
48.0 0.0028 0.0014 0.0057 
56.0 0.0030 0.0015 0.0062 
64.0 0.0032 0.0016 0.0066 
72.0 0.0034 0.0017 0.0070 
80.0 0.0036 0.0018 0.0074 
88.0 0.0038 0.0019 0.0078 
96.0 0.0040 0.0020 0.0081 
104.0 0.0041 0.0020 0.0085 
112.0 0.0043 0.0021 0.0088 
120.0 0.0045 0.0022 0.0091 
128.0 0.0046 0.0023 0.0094 
136.0 0.0048 0.0023 0.0097 
144.0 0.0049 0.0024 0.0100 
152.0 0.0050 0.0025 0.0103 
160.0 0.0052 0.0025 0.0105 

 
This report displays the maximum likelihood estimates of the hazard rate, h(t), based on the 
selected probability distribution and the definition of the hazard rate 

( )h t f t
R t

=
( )
( )

 

Asymptotic confidence limits are computed using the formula from Nelson (1991) page 294. 
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The partial derivatives are evaluated using numerical differentiation. 

Note that we have found that the above approximation behaves poorly for some distributions. 
However, this is the only formula that we have been able to find, so this is what we provide. If 
you find that the confidence limits have a strange appearance (especially, in that the width goes to 
zero), please ignore them. They should appear as nice expanding lines about the estimated hazard 
rate.  
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Parametric Failure Distribution Section 
  

 Weibull Failure Distribution Section 
 Prob Plot Max Like 95% Lower 95% Upper 

Failure Estimate of Estimate of Conf. Limit of Conf. Limit of 
Time Failure Failure Failure Failure 
8.0 0.0110 0.0059 0.0005 0.0622 
16.0 0.0262 0.0167 0.0027 0.1011 
24.0 0.0434 0.0306 0.0067 0.1345 
32.0 0.0619 0.0469 0.0127 0.1649 
40.0 0.0814 0.0651 0.0209 0.1935 
48.0 0.1014 0.0849 0.0310 0.2209 
56.0 0.1219 0.1060 0.0431 0.2477 
64.0 0.1427 0.1281 0.0569 0.2741 
72.0 0.1637 0.1510 0.0723 0.3005 
80.0 0.1849 0.1747 0.0888 0.3272 
88.0 0.2060 0.1989 0.1064 0.3543 
96.0 0.2271 0.2235 0.1245 0.3819 
104.0 0.2480 0.2483 0.1431 0.4102 
112.0 0.2689 0.2734 0.1617 0.4391 
120.0 0.2895 0.2984 0.1801 0.4688 
128.0 0.3099 0.3234 0.1982 0.4991 
136.0 0.3301 0.3483 0.2158 0.5298 
144.0 0.3500 0.3730 0.2328 0.5607 
152.0 0.3695 0.3975 0.2491 0.5917 
160.0 0.3888 0.4216 0.2648 0.6225 

 
This report displays the estimated values of the cumulative failure distribution, F(t), at the time 
values that were specified in the Times option of the Reports Tab. These failure values are the 
estimated probability that failure occurs by the given time point. For example, the maximum 
likelihood estimate that a unit will fail within 88 hours is 0.1989. The 95% confidence estimate of 
this probability is 0.1064 to 0.3543. 

The asymptotic confidence limits are computed using the following formula: 

( ) ( )( )$ $ $ $ $/F t F u z V uL = − −1 2α  

( ) ( )( )$ $ $ $ $/F t F u z V uU = + −1 2α  

where 

$
$

$
u t
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− μ
σ

 

( ) ( ) ( ) ( )$ $
$ $ $ $ $ , $

$
V u

V u V uCov
=

+ +μ σ μ
σ

2

2

2 σ
 

Note that limits for the Weibull, lognormal, and log-logistic are found using the corresponding 
extreme value, normal, and logistic probability functions using the substitution y=ln(t). 
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Parametric Reliability Section 
  
 Reliability Section 
  Prob Plot Max Like 95% Lower 95% Upper 

Failure Estimate of Estimate of Conf. Limit of Conf. Limit of 
Time Survival Survival Survival Survival 
8.0 0.9890 0.9941 0.9378 0.9995 
16.0 0.9738 0.9833 0.8989 0.9973 
24.0 0.9566 0.9694 0.8655 0.9933 
32.0 0.9381 0.9531 0.8351 0.9873 
40.0 0.9186 0.9349 0.8065 0.9791 
48.0 0.8986 0.9151 0.7791 0.9690 
56.0 0.8781 0.8940 0.7523 0.9569 
64.0 0.8573 0.8719 0.7259 0.9431 
72.0 0.8363 0.8490 0.6995 0.9277 
80.0 0.8151 0.8253 0.6728 0.9112 
88.0 0.7940 0.8011 0.6457 0.8936 
96.0 0.7729 0.7765 0.6181 0.8755 
104.0 0.7520 0.7517 0.5898 0.8569 
112.0 0.7311 0.7266 0.5609 0.8383 
120.0 0.7105 0.7016 0.5312 0.8199 
128.0 0.6901 0.6766 0.5009 0.8018 
136.0 0.6699 0.6517 0.4702 0.7842 
144.0 0.6500 0.6270 0.4393 0.7672 
152.0 0.6305 0.6025 0.4083 0.7509 
160.0 0.6112 0.5784 0.3775 0.7352 

 
This report displays the estimated reliability (survival) at the time values that were specified in 
the Times option of the Reports Tab. Reliability may be thought of as the probability that failure 
occurs after the given failure time. Thus, (using the ML estimates) the probability is 0.9531 that 
failure will not occur until after 32 hours. The 95% confidence for this estimated probability is 
0.8351 to 0.9873. 

Two reliability estimates are provided. The first uses the parameters estimated from the 
probability plot and the second uses the maximum likelihood estimates. Confidence limits are 
calculated for the maximum likelihood estimates. (They have not been derived for the probability 
plot estimates for all data situations). The formulas used are as follows. 

( ) ( )( )$ $ $ $ $/R t R u z V uL = − −1 2α  

( ) ( )( )$ $ $ $ $/R t R u z V uU = + −1 2α  
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2

2
 

Note that limits for the Weibull, lognormal, and log-logistic are found using the corresponding 
extreme value, normal, and logistic probability functions using the substitution y=ln(t). 
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Parametric Percentile Section 
  

Percentile Section 
  Prob Plot Max Like 95% Lower 95% Upper 
Failure Estimate of Estimate of Conf. Limit of Conf. Limit of 
Time Failure Failure Failure Failure 
Percentage Time Time Time Time 
5.0000 26.9 33.4 14.2 78.4 
10.0000 47.4 53.8 28.5 101.4 
15.0000 66.8 71.6 42.7 120.3 
20.0000 85.7 88.4 56.5 138.3 
25.0000 104.7 104.5 69.7 156.8 
30.0000 124.1 120.5 82.2 176.7 
35.0000 144.0 136.5 93.9 198.6 
40.0000 164.7 152.8 104.8 222.9 
45.0000 186.5 169.6 115.0 250.1 
50.0000 209.5 187.0 124.7 280.5 
55.0000 234.3 205.4 134.0 314.8 
60.0000 261.1 225.0 143.1 353.7 
65.0000 290.7 246.1 152.1 398.3 
70.0000 323.8 269.5 161.3 450.3 
75.0000 361.9 295.8 170.9 512.1 
80.0000 407.1 326.5 181.3 588.2 
85.0000 463.5 364.1 193.0 686.7 
90.0000 540.0 413.9 207.4 826.0 
95.0000 664.5 492.6 227.8 1065.0 

 
This report displays failure time percentiles and, for the maximum likelihood estimates, 
confidence intervals for those percentiles. For example, the estimated median failure time is 187 
hours. The 95% confidence limits for the median time are 124.7 to 280.5. Note that these limits 
are very wide for two reasons. First, the sample size is small. Second, the shape parameter is less 
than 2.0. 

The estimated 100pth percentile and associated confidence interval is computed using the 
following steps. 

1. Compute ( )   w F pp =
−1

2. Compute Sp
$ $ . Note that in the case of the Weibull and exponential 

distributions, we let and $ / $S B

y M wp = +
$ ln( $ )M C= =1 . 

3. Compute  p 1 22 , . ( )V y VC y VC y VCp p= + +1 1
2

2 2, ,

4. For the normal, extreme value, and logistic distributions, the confidence interval for the 
percentile is given by 

( )T y z V yLower p p p, /= − +−1 2α D  

( )T y z V yUpper p p p, /= + +−1 2α D  

For the lognormal, exponential, Weibull, and log-logistic distributions, the confidence 
interval for the percentile is given by 
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( )T y z V yLower p p p, /exp= −⎛
⎝⎜

⎞
⎠⎟ +−1 2α D  

( )T y z V yUpper p p p, /exp= +⎛
⎝⎜

⎞
⎠⎟ +−1 2α D  

For the lognormal base 10 distribution, the confidence interval for the percentile is given 
by 

( )T DLower p
y z V yp p

,
/= +

− −10 1 2α  

( )T DUpper p
y z V yp p

,
/= +

+ −10 1 2α  

Parametric Residual Life Section 
  

Weibull Residual Life Section 
  25.0th %tile 50.0th %tile 75.0th %tile 95.0th %tile 
Failure Proportion Residual Residual Residual Residual 
Time Failing Life Life Life Life 
8.0 0.0059 97.9 180.1 288.7 406.6 
16.0 0.0167 92.5 174.0 282.2 399.9 
24.0 0.0306 87.9 168.5 276.2 393.5 
32.0 0.0469 83.8 163.5 270.6 387.5 
40.0 0.0651 80.1 158.9 265.3 381.8 
48.0 0.0849 76.9 154.5 260.2 376.3 
56.0 0.1060 73.9 150.5 255.4 371.1 
64.0 0.1281 71.3 146.7 250.9 366.0 
72.0 0.1510 68.8 143.2 246.5 361.1 
80.0 0.1747 66.6 139.9 242.4 356.4 
88.0 0.1989 64.6 136.7 238.4 351.8 
96.0 0.2235 62.7 133.8 234.5 347.4 
104.0 0.2483 60.9 131.0 230.9 343.1 
112.0 0.2734 59.3 128.3 227.3 339.0 
120.0 0.2984 57.8 125.8 223.9 335.0 
128.0 0.3234 56.4 123.4 220.7 331.1 
136.0 0.3483 55.1 121.1 217.5 327.3 
144.0 0.3730 53.8 118.9 214.5 323.6 
152.0 0.3975 52.7 116.9 211.5 320.0 
160.0 0.4216 51.6 114.9 208.7 316.6 

 
This report gives percentiles of the estimating life remaining after a certain time period. For 
example, the estimated median remaining life of items reaching 80.0 hours is 139.9 hours.  

The percentile and associated confidence interval of residual (remaining) life is computed using 
the following steps. 

1. Compute z
y M

Sp
p=
− $

$
. Note that in the case of the Weibull and exponential 

distributions, we let and $ / $S B$ ln( $ )M C= =1 . Also note that for the normal, extreme 
value, and logistic distributions, y tp = . For the lognormal, Weibull, and log-logistic 

distributions, y ep
t= . And for the lognormal base 10 distribution, yp

t= 10 . 

2. Compute ( )  p F zp0 =

3. Compute ( )  where P is the percentile of residual life to be estimated. p p P1 0 1= + ,
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4. Compute ( )S− $1
1 . Note that in the case of the Weibull and exponential 

distributions, we let and $ / $S B

w M F pp = +$

$ ln( $ )M C= =1 . 

For the normal, extreme value, and logistic distributions, the estimate is given by 

T wp p=  

For the lognormal, exponential, Weibull, and log-logistic distributions, the estimate is 
given by 

T ep
w p=  

For the lognormal base 10 distribution, the estimate is given by 

Tp
w p= 10  

Hazard Function Plot 
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This plot shows the parametric and nonparametric cumulative hazard functions for the data 
analyzed. Confidence limits for the parametric cumulative hazard function are also given. 

If you have several groups, then a separate line is drawn for each group. The shape of the hazard 
function is often used to determine an appropriate survival distribution. 
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Hazard Rate Plot 
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This plot shows the parametric and nonparametric hazard rate plots with confidence limits for the 
parametric hazard rate. This plot is especially useful for studying the shape of the nonparametric 
hazard rate and comparing that with the parametric hazard rate. When selecting a probability 
distribution to represent a set of data, it is important to determine if the parametric hazard rate 
plot has a general shape that is consistent both with the nonparametric hazard rate and with your 
prior knowledge of the hazard distribution. This plot allows you to make this comparison. 

Note that the asymptotic confidence intervals are not well behaved for some distributions. If the 
confidence intervals seem to have zero width at some point along the plot, you should realize that 
they fall into this category and ignore them.  
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Survival Plot 
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This plot shows the product-limit survivorship function (the step function) as well as the 
parametric survival plot and associated confidence intervals. If there are several groups, a 
separate line is drawn for each group.  

Probability Plot 
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This is the Weibull probability plot of these data. The expected quantile of the theoretical 
distribution is plotted on the horizontal axis. The natural logarithm of the time value is plotted on 
the vertical axis. Note that censored points are not shown on this plot. Also note that for tied data, 
only one point is shown for each set of ties. 
This plot lets you investigate the goodness of fit of the selected probability distribution to your 
data. If the points seem to fall along a straight line, the selected probability model may be useful. 
If the plot shows a downward curve, the value of the threshold parameter, D, may need to be 
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increased. If the plot shows an upward curve, the value of the threshold parameter may need to be 
decreased. Or you may need to select a different distribution. 

You have to decide whether the probability distribution is a good fit to your data by looking at 
this plot and by comparing the value of the log likelihood to that of other distributions. 

Multiple-Censored and Grouped Data 
The case of grouped and multiple-censored data cause special problems when creating a 
probability plot. Remember that the horizontal axis represents the expected quantile from the 
selected distribution for each (sorted) failure time. In the regular case, we use the rank of the 
observation in the overall dataset. However, in the case of grouped or multiple-censored data, we 
use a modified rank. This modified rank, , is computed as follows Oj

O O Ij p j= +  

where 

( )I
n O

cj
p=

+ −
+
1

1
 

where I j is the increment for the jth failure; n is the total number of data points, both censored 
and uncensored; Op is the order of the previous failure; and c is the number of data points 
remaining in the data set, including the current data. Implementation details of this procedure may 
be found in Dodson (1994).  

Left censored and interval censored data are treated as failures for making the probability plots. 

Example 2 – Distribution Selection 
This section presents an example of how to let the program help you pick an appropriate 
parametric distribution. The data used were shown above and are found in the WEIBULL 
database. 

You may follow along here by making the appropriate entries or load the completed template 
Example2 from the Template tab of the Distribution (Weibull) Fitting window. 

1 Open the WEIBULL dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file WEIBULL.S0. 
• Click Open. 

2 Open the Distribution (Weibull) Fitting window. 
• On the menus, select Analysis, then Survival / Reliability, then Distribution (Weibull) 

Fitting. The Distribution (Weibull) Fitting procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  
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3 Specify the variables. 
• On the Distribution (Weibull) Fitting window, select the Variables tab.  
• Double-click in the Time Variable box. This will bring up the variable selection 

window.  
• Select Time from the list of variables and then click Ok.  
• Double-click in the Censor Variable box. This will bring up the variable selection 

window.  
• Select Censor from the list of variables and then click Ok.  
• Double-click in the Frequency Variable box. This will bring up the variable selection 

window.  
• Select Count from the list of variables and then click Ok.  
• Select Find Best in the Distribution box.  

4 Set the Derivative constant. 
• On the Distribution (Weibull) Fitting window, select the Options tab.  
• Set Derivatives box to 0.00006.  

5 Set the Plots 
• On the Distribution (Weibull) Fitting window, select the Plots tab.  
• Make sure the Two Plots Per Line box is checked.  

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Data Summary Section 
 
 Data Summary Section 
  
 Type of 
 Observation Rows Count Minimum Maximum 
 Failed 12 12 12.5 152.7 
 Right Censored 1 18 152.7 152.7 
 Left Censored 0 0 
 Interval Censored 0 0 
 Total 13 30 12.5 152.7 
 
This report displays a summary of the data that were analyzed. Scan this report to determine if 
there were any obvious data errors by double-checking the counts and the minimum and 
maximum. 
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Distribution Fit Summary Section 
 
 Distribution Fit Summary Section 
 Distribution Likelihood Shape Scale Threshold 
 Weibull -80.05649 1.511543 238.3481 0.0 
 Loglogistic -80.11679 5.28008 0.5909371 0.0 
 Lognormal -80.38821 5.349999 1.137753 0.0 
 Lognormal10 -80.38821 2.323475 0.4941201 0.0 
 Exponential -81.04864 1 315.4667 0.0 
 Normal -81.24539 171.1062 84.88175 0.0 
 Logistic -81.74763 169.1118 49.77026 0.0 
 Extreme Value -82.1103 189.3399 57.44398 0.0 
 
This report displays the values of the log-likelihood for each distribution along with the estimated 
values of its parameters. Since our desire is to maximize the likelihood, under normal 
circumstances, we would pick the distribution at the top of the report since it has the largest 
likelihood value. In this example, we would select the Weibull distribution. 

Probability Plots 
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By studying these probability plots, we can determine which distributions fit the data the best. In 
this example, since there are only a few observations, it is difficult to select one distribution over 
another. We can see that our candidate from the last section, the Weibull distribution, certainly 
cannot be removed on the basis of its probability plot. Without further information, our decision 
would be to select the Weibull distribution to fit these data. 

Example 3 – Readout Data 
This section presents an example of how to analyze readout data. The data used are found in the 
READOUT105 database. The table below shows the results of a study to test the failure rate of a 
particular machine. This study began with 40 test machines. After each time period (24, 72, 168, 
etc.) the number of machines that had failed since the period began was recorded. This number is 
entered into the Count variable. Hence, two machines failed during the first 24 hours, one 
machine failed between 24 and 72 hours, and so on. 

After 1500 hours, the study was terminated. Sixteen machines still had not failed. The data are 
entered in the spreadsheet as shown below. 

We have used obvious indicators for censoring. Since the first period begins with a zero time, this 
entry represents left censored data. We indicate left censoring with an ‘L.’ The next eight rows 
represent interval censored data. Both beginning and ending times are needed for these entries. 
We indicate interval censoring with an ‘I.’ The last row corresponds to the sixteen machines that 
did not fail. These are entered as right censored data, which is indicated with an ‘R.’ 

 

READOUT105 dataset 

Time1 Time2 Censor Count 
24 0 L 2 
72 24 I 1 
168 72 I 3 
300 168 I 2 
500 300 I 2 
750 500 I 4 
1000 750 I 5 
1250 1000 I 1 
1500 1250 I 4 
1500  R 16 
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You may follow along here by making the appropriate entries or load the completed template 
Example3 from the Template tab of the Distribution (Weibull) Fitting window. 

1 Open the READOUT105 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file READOUT105.S0. 
• Click Open. 

2 Open the Distribution (Weibull) Fitting window. 
• On the menus, select Analysis, then Survival / Reliability, then Distribution (Weibull) 

Fitting. The Distribution (Weibull) Fitting procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Distribution (Weibull) Fitting window, select the Variables tab.  
• Double-click in the Time Variable box. This will bring up the variable selection 

window.  
• Select Time1 from the list of variables and then click Ok. 
• Double-click in the Start Time Variable box. This will bring up the variable selection 

window.  
• Select Time2 from the list of variables and then click Ok.   
• Double-click in the Censor Variable box. This will bring up the variable selection 

window.  
• Select Censor from the list of variables and then click Ok.  
• Set Failed to F.  
• Set Right to R.  
• Set Left to L.  
• Set Interval to I.  
• Double-click in the Frequency Variable box. This will bring up the variable selection 

window. 
• Select Count from the list of variables and then click Ok.  
• Select Find Best in the Distribution box.  

4 Set the Derivative constant. 
• On the Distribution Fitting window, select the Options tab.  
• Set the Derivatives box to 0.00006.  

5 Set the Plots 
• On the Distribution Fitting window, select the Plots tab.  
• Make sure the Two Plots Per Line box is checked.  

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Data Summary Section 
 
 Data Summary Section 
  
 Type of 
 Observation Rows Count Minimum Maximum 
 Failed 0 0   
 Right Censored 1 16 1500 1500 
 Left Censored 1 2 24 24 
 Interval Censored 8 22 24 1500 
 Total 10 40 24 1500 
 
This report displays a summary of the data that were analyzed. We note that the number of rows 
and the total count appear to be correct. 

Distribution Fit Summary Section 
 
 Distribution Fit Summary Section 
 Distribution Likelihood Shape Scale Threshold 
 Weibull -79.42889 0.8222772 1746.067 0.0 

Exponential -79.96207 1 1631.161 0.0 
Loglogistic -80.27086 7.044066 1.030881 0.0 
Lognormal -81.19075 7.015936 1.886779 0.0 
Lognormal10 -81.19075 3.046982 0.8194178 0.0 
Normal -81.44245 1213.697 913.7082 0.0 
Logistic -82.05516 1199.686 563.52 0.0 
Extreme Value -83.09204 1525.271 726.1455 0.0 

 
It appears that the Weibull distribution is a reasonable choice for the parametric distribution, 
although the shape parameter is less than one. This may point to the need for a nonzero threshold 
value. 

To finish this example, you would view the probability plots. Finally, you would try fitting the 
Weibull distribution to these data. We will leave that to you to do. Simply change the Distribution 
box to Weibull and rerun the procedure. 

Example 4 – Engine Fan Data 
Nelson (1982) gives data on the failure times of seventy diesel engine fans. Twelve of the fans 
failed during the duration of the test. Fifty-eight of the fans completed the test without failure, so 
only their running times were recorded. These data are contained in the FANFAILURE database. 
You can observe the data by opening this database. Note that ‘F’ designates a failure and ‘C’ 
designates a censored (non-failed) fan. 

Two questions were to be answered from these data. First of all, the warranty period for the fan is 
8000 hours. Management wanted to know what percentage would fail on or before the warranty 
period ended. Second, management wanted to know what happens to the failure rate as the fans 
age.  

The following steps will set up the procedure to analyze these data and answer the two questions 
given above. You may follow along here by making the appropriate entries or load the completed 
template Example4 from the Template tab of the Distribution (Weibull) Fitting window. 
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1 Open the FANFAILURE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file FANFAILURE.S0. 
• Click Open. 

2 Open the Distribution (Weibull) Fitting window. 
• On the menus, select Analysis, then Survival / Reliability, then Distribution (Weibull) 

Fitting. The Distribution (Weibull) Fitting procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Distribution (Weibull) Fitting window, select the Variables tab.  
• Double-click in the Time Variable box. This will bring up the variable selection 

window.  
• Select Hours from the list of variables and then click Ok. 
• Double-click in the Censor Variable box. This will bring up the variable selection 

window.  
• Select Censor from the list of variables and then click Ok.  
• Set Failed to F.  
• Set Right to C.  
• Double-click in the Frequency Variable box. This will bring up the variable selection 

window. 
• Select Count from the list of variables and then click Ok.  
• Select Weibull in the Distribution box.  

4 Set the Reports 
• On the Distribution (Weibull) Fitting window, select the Reports tab.  
• Set the Times box to 1000:15000(1000). 
• Set the Probability Decimal Places box to 7. This forces the display of seven decimal 

places.  

5 Set the Hazard Rate Plot 
• On the Distribution (Weibull) Fitting window, select the Haz Rt Plot tab.  
• Click on the Vertical Axis Tick Label Settings button. This will allow you to reset the 

reference numbers on the vertical (Y) axis. 
• Set Decimals to 7. 
• Set Max Characters to 10.  

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
 

We will show only those portions of the printout that are necessary to answer the two questions 
that were posed at the beginning of this section. 
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Parameter Estimation Section 
 
 Weibull Parameter Estimation Section 
  Probability Maximum MLE MLE MLE 
  Plot Likelihood Standard 95% Lower 95% Upper 
 Parameter Estimate Estimate Error Conf. Limit Conf. Limit 
 Shape 1.202295 1.058446 0.2683138 0.6440074 1.739588 
 Scale 17283.81 26296.85 12254.1 10549.97 65547.48 
 Threshold 0 0    
 Log Likelihood  -135.1527 
 Mean 16250.13 25715.61 
 Median 12742.28 18600.24 
 Mode 3925.094 1703.919 
 Sigma 13574.96 24306.58 
 
This report shows the estimated parameters. We are particularly interested to see that the shape 
parameter is almost exactly one. The confidence limits for the estimated shape parameter include 
one between them. Remember that when the shape parameter is one, the Weibull distribution 
reduces to the exponential distribution, a distribution which ‘has no memory.’ From this, we get 
an indication that the failure pattern of the fans does not change over time. That is, the failure rate 
does not change as the fans get older. 

Parametric Failure Distribution Section 
 
 Weibull Failure Distribution Section 
  Prob Plot Max Like 95% Lower 95% Upper 
 Failure Estimate of Estimate of Conf. Limit of Conf. Limit of 
 Time Failure Failure Failure Failure 
 1000.0 0.0319854 0.0309247 0.0104713 0.0894825 
 2000.0 0.0720737 0.0633292 0.0288586 0.1359862 
 3000.0 0.1146709 0.0956044 0.0501483 0.1782088 
 4000.0 0.1581267 0.1273811 0.0718910 0.2203039 
 5000.0 0.2015573 0.1584891 0.0927279 0.2635977 
 6000.0 0.2444119 0.1888367 0.1120577 0.3082572 
 7000.0 0.2863235 0.2183722 0.1297484 0.3538902 
 8000.0 0.3270409 0.2470672 0.1458995 0.3998867 
 9000.0 0.3663914 0.2749082 0.1606924 0.4456080 
 10000.0 0.4042590 0.3018915 0.1743176 0.4904755 
 11000.0 0.4405694 0.3280202 0.1869456 0.5340032 
 12000.0 0.4752803 0.3533026 0.1987208 0.5758038 
 13000.0 0.5083738 0.3777505 0.2097617 0.6155832 
 14000.0 0.5398509 0.4013782 0.2201653 0.6531311 
 15000.0 0.5697275 0.4242020 0.2300113 0.6883101 
 
This report presents the estimated failure proportions at various time periods. We note that at 
8000 hours, the maximum likelihood estimate for the proportion failing is 0.247. The 95% 
confidence limits are 0.146 to 0.400. That is, almost 25% of the fans can be expected to fail by 
8000 hours—a very high failure rate. Management will have to change the fans to decrease the 
proportion failing! 
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Hazard Rate Plot 
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This plot shows both the parametric and nonparametric estimates of the hazard rates. First, we 
analyze the nonparametric estimate. Notice that the line wanders up and then down, but it does 
not extend outside the confidence limits of the parametric hazard rate. The sharp rise at the end of 
the plot is due to a lack of data in this region and should be ignored. We see that the parametric 
estimate of the hazard rate, the middle horizontal line, is a reasonable approximation for the 
nonparametric line. The above considerations again lead us to conclude that the failure rates do 
not change with age. 

This ends this example. Notice how quickly we have been able to answer the two questions posed 
by management. The only task that we did not complete was to make sure that the Weibull 
distribution was appropriate for these data. A quick look at the probability plot will show you that 
it is. 
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Chapter 551 

Beta Distribution 
Fitting 
Introduction 
This module fits the beta probability distributions to a complete set of individual or grouped data 
values. It outputs various statistics and graphs that are useful in reliability and survival analysis.  

The beta distribution is useful for fitting data which have an absolute maximum (and minimum). 
It finds some application as a lifetime distribution. 

Technical Details 
The four-parameter beta distribution is indexed by two shape parameters (P and Q) and two 
parameters representing the minimum (A) and maximum (B). We will not estimate A and B, but 
rather assume that they are known parameters. 

Using these symbols, the beta density function may be written as 
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Making the transformation 
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results in the two-parameter beta distribution. This is also known as the standardized form of the 
beta distribution. In this case, the density function is 
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Reliability Function 
The reliability (or survivorship) function, R(t), gives the probability of surviving beyond time t. 
For the beta distribution, the reliability function is 

( )R T f t P Q A B dt
A

T

( ) | , , ,= − ∫1  

where the integral is known as the incomplete beta function ratio.  

The conditional reliability function, R(t,T), may also be of interest. The is the reliability of an 
item given that it has not failed by time T. The formula for the conditional reliability is 

R t R T t
R T
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Hazard Function 
The hazard function represents the instantaneous failure rate. For this distribution, the hazard 
function is 

h t f t
R t

( ) ( )
( )

=  

Kaplan-Meier Product-Limit Estimator 
The production limit estimator is covered in the Distribution Fitting chapter and will not be 
repeated here. 

Data Structure 
Beta datasets require only a failure time variable. Censored data may not be fit with this program. 
An optional count variable which gives the number of items occurring at that time period. If the 
count variable is omitted, all counts are assumed to be one. 

The table below shows the results of a study to test failure rate of a particular machine which has 
a maximum life of 100 hours. This particular experiment began with 10 items under test. After all 
items had failed, the experiment was stopped. These data are contained on the BETA database. 

 

BETA dataset (subset) 

Time 
23.5 
50.1 
65.3 
68.9 
70.4 
77.3 
81.6 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Time Variable 

Time Variable 
This variable contains the failure times. Note that negative time values and time values less than 
the minimum parameter are treated as missing values. Zero time values are replaced by the value 
in the Zero Time Replacement option. 

These time values represent elapsed times. If your data has dates (such as the failure date), you 
must subtract the starting date so that you can analyze the elapsed time. 

Zero Time Replacement 
Under normal conditions, a respondent beginning the study is “alive” and cannot “die” until after 
some small period of time has elapsed. Hence, a time value of zero is not defined and is ignored 
(treated as a missing value). If a zero time value does occur on the database, it is replaced by this 
positive amount. If you do not want zero time values replaced, enter a “0.0” here. 

This option would be used when a “zero” on the database does not actually mean zero time. 
Instead, it means that the response occurred before the first reading was made and so the actual 
survival time is only known to be less.  

Group Variable 

Group Variable 
An optional categorical (grouping) variable may be specified. If it is used, a separate analysis is 
conducted for each unique value of this variable. 

Frequency Variable 

Frequency Variable 
This variable gives the number of individuals (the count or frequency) at a given failure (or 
censor) time. When omitted, each row receives a frequency of one. Frequency values should be 
positive integers.  

Options 

Product Limit and Hazard Conf. Limits Method 
The standard nonparametric estimator of the reliability function is the Product Limit estimator. 
This option controls the method used to estimate the confidence limits of the estimated reliability. 
The options are Linear, Log Hazard, Arcsine Square Root, and Nelson-Aalen. The formulas used 
by these options were presented in the Technical Details section of the Distribution Fitting 
chapter. Although the Linear (Greenwood) is the most commonly used, recent studies have 



551-4  Beta Distribution Fitting 

shown either the Log Hazard or the Arsine Square Root Hazard are better in the sense that they 
require a smaller sample size to be accurate. 

Beta Minimum 
This option sets the value of the minimum. Usually, this value is zero. All data values used must 
be greater than this value. 

Beta Maximum 
This option sets the value of the maximum. Often, this value is one. All data values used must be 
less than this value. 

Options – Search 

Maximum Iterations 
Many of the parameter estimation algorithms are iterative. This option assigns a maximum to the 
number of iterations used in any one algorithm. We suggest a value of about 100. This should be 
large enough to let the algorithm converge, but small enough to avoid a large delay if 
convergence cannot be obtained. 

Minimum Relative Change 
This value is used to control the iterative algorithms used in parameter estimation. When the 
relative change in any of the parameters is less than this amount, the iterative procedure is 
terminated. 

Reports Tab 
The following options control which reports are displayed and the format of those reports. 

Select Reports 

Data Summary Report - Percentiles Report 
These options indicate whether to display the corresponding report. 

Select Plots 

Survivorship Plot - Probability Plot 
These options indicate whether to display the corresponding report or plot. 

Report Options 

Alpha Level 
This is the value of alpha used in the calculation of confidence limits. For example, if you specify 
0.04 here, then 96% confidence limits will be calculated. 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
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into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option lets you select whether to display only values, value labels, or both. Use this option if 
you want to automatically attach labels to the values of the group variable (like 1=Yes, 2=No, 
etc.). See the section on specifying Value Labels elsewhere in this manual.  

Report Options – Survival and Haz Rt 
Calculation Values 

Percentiles 
This option specifies a list of percentiles (range 1 to 99) at which the reliability (survivorship) is 
reported. The values should be separated by commas.  

Specify sequences with a colon, putting the increment inside parentheses after the maximum in 
the sequence. For example: 5:25(5) means 5,10,15,20,25 and 1:5(2),10:20(2) means 
1,3,5,10,12,14,16,18,20. 

Times 
This option specifies a list of times at which the percent surviving is reported. Individual values 
are separated by commas. You can specify a sequence by specifying the minimum and maximum 
separate by a colon and putting the increment inside parentheses. For example: 5:25(5) means 
5,10,15,20,25. Avoid 0 and negative numbers. Use ‘(10)’ alone to specify ten values between 
zero and the maximum value found in the data. 

Report Options – Decimal Places 

Time Decimals 
This option specifies the number of decimal places shown on reported time values. 

Plot Options 

Show Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies legend label. A {G} is replaced by the name of the group variable. 
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Survival and Cum Haz Plot Tabs 
These options control the attributes of the survival curves and the hazard curves. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 
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Beta Plot Tab 
These options control the attributes of the beta reliability curve. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Beta Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Time Values 
Specify the number of points along the curve at which calculations are made. This controls the 
resolution of the curve. Usually, values between 50 and 200 produce good results. 

Beta Plot Settings – Plot Contents 

Product-Limit Curve 
Indicate whether to overlay the product-limit curve on this plot. Overlaying the PL curve lets you 
determine whether the beta curve is a reasonable approximation to this curve. 
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Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Probability Plot Tab 
These options control the attributes of the beta probability plot.  

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Y Scaling 
Indicate whether the vertical scaling on all means plots should uniform across all plots. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Prob Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Let us emphasize that this probability plot uses the Scatter Plot style files, not the Probability Plot 
style files. 

Plotting Position - F(T) 
The probability plot shows time on the vertical axis and the gamma quantile on the horizontal 
axis. This option specifies the method used to determine F(t) which used to calculate the vertical 
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plotting positions on the probability plot. Note that method selected here also influences the 
probability plot estimates of the parameters. 

The five alternatives available are 

• Median (j-0.3)/(n+0.4) 
The most popular method is to calculate the median rank for each sorted data value. That is, 
this is the value for the jth sorted time value. Since the median rank requires extensive 
calculations, this approximation to the median rank is often used. 

F t j
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• Median (Exact) 
The most popular method is to calculate the median rank for each data value. This is the 
median rank of the jth sorted time value out of n values. The exact value of the median rank is 
calculated using the formula 
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• Mean j/(n+1) 
The mean rank is sometimes recommended. In this case, the formula is 

F t j
nj( ) =
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• White (j-3/8)/(n+1/4) 
A formula proposed by White is sometimes recommended. The formula is 
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• (j-0.5)/n 
The following formula is sometimes used 

F t j
nj( ) .

=
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Prob Plot Settings – Plot Contents 

Trend Line 
This option controls whether the trend (least squares) line is calculated and displayed. 

Residuals from Trend Line 
This option controls whether the vertical deviations from the trend line are displayed. Displaying 
these residuals may let you see departures from linearity more easily. 
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Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Lines & Symbols Tab 
These options specify the attributes of the lines used for each group in the hazard curves and 
survival curves and the symbols used for each group in the probability plots. 

Plotting Lines 

Line 1 - 15 
These options specify the color, width, and pattern of the lines used in the plots of each group. 
The first line is used by the first group, the second line by the second group, and so on. These line 
attributes are provided to allow the various groups to be indicated on black-and-white printers. 

Clicking on a line box (or the small button to the right of the line box) will bring up a window 
that allows the color, width, and pattern of the line to be changed. 

Plotting Symbols 

Symbol 1 - 15 
These options specify the symbols used in the plot of each group. The first symbol is used by the 
first group, the second symbol by the second group, and so on. These symbols are provided to 
allow the various groups to be easily identified, even on black and white printers. 

Clicking on a symbol box (or the small button to the right of the symbol box) will bring up a 
window that allows the color, width, and pattern of the line to be changed. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 
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Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Fitting a Beta Distribution 
This section presents an example of how to fit a beta distribution. The data used were shown 
above and are found in the BETA database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Beta Distribution Fitting window. 

1 Open the BETA dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file BETA.S0. 
• Click Open. 

2 Open the Beta Distribution Fitting window. 
• On the menus, select Analysis, then Survival / Reliability, then Beta Distribution 

Fitting. The Beta Distribution Fitting procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Beta Distribution Fitting window, select the Variables tab.  
• Double-click in the Time Variable box. This will bring up the variable selection 

window.  
• Select Time from the list of variables and then click Ok.  
• Click in the Beta Maximum box. Enter 100 for the maximum value.  

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Data Summary Section 
  
 Data Summary Section 
  
 Type of 
 Observation Rows Count Minimum Maximum Average Sigma 
 Failed 10 10 23.5 95.3 70.8 21.2021 
 
This report displays a summary of the data that were analyzed. Scan this report to determine if 
there were any obvious data errors by double-checking the counts and the minimum and 
maximum. 
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Parameter Estimation Section 
  
 Parameter Estimation Section 
  Method of Maximum MLE MLE MLE 
  Moments Likelihood Standard 95% Lower 95% Upper 
 Parameter Estimate Estimate Error Conf. Limit Conf. Limit 
 Minimum (A) 0 0 
 Maximum (B) 100 100 
 P 2.548055 3.301583 1.485834 0.3894027 6.213764 
 Q 1.050893 1.414615 0.577846 0.2820573 2.547172 
 Log Likelihood  -3.403845 
 Mean 70.8 70.00519 
 Median 74.91825 73.002 
 Mode 96.81711 84.73547 
 Sigma 21.2021 19.16614 
 
This report displays parameter estimates along with standard errors and confidence limits in the 
maximum likelihood case. 

Method of Moments Estimate 
By equating the theoretical moments with the data moments, the following estimates are 
obtained. 
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where m1 is the usual estimator of the mean and m2 is the usual estimate of the standard deviation. 

Maximum Likelihood Estimates of A, C, and D 
These estimates maximize the likelihood function. The maximum likelihood equations are 
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where ( )ψ x  is the digamma function. 
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The formulas for the standard errors and confidence limits come from the inverse of the Fisher 
information matrix, {f(i,j)}. The standard errors are given as the square roots of the diagonal 
elements f(1,1) and f(2,2). The confidence limits for P are 

$ $ ( , ), / /P P z flower 1 2 1 2 11− −= −α α  

$ $ ( , ), / /P P z fupper 1 2 1 2 11− −= +α α  

The confidence limits for Q are 

$ $ ( , ), / /Q Q z flower 1 2 1 2 2 2− −= −α α  

$ $ ( , ), / /Q Q z fupper 1 2 1 2 2 2− −= +α α  

Log Likelihood 
This is the value of the log likelihood function. This is the value being maximized. It is often used 
as a goodness-of-fit statistic. You can compare the log likelihood value from the fits of your data 
to several distributions and select as the best fitting the one with the largest value. 

Mean 
This is the mean time to failure (MTTF). It is the mean of the random variable (failure time) 
being studied given that the beta distribution provides a reasonable approximation to your data’s 
actual distribution. 

The formula for the mean is 

( )Mean A
P B A

P Q
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Median 
The median of the beta distribution is the value of t where F(t)=0.5. 

Median A I P Q= + ( . , , )0 5  

where I(0.5,P,C) is the incomplete beta function. 

Mode 
The mode of the beta distribution is given by 
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when A > 1 and D otherwise. 

Sigma 
This is the standard deviation of the failure time. The formula for the standard deviation (sigma) 
of a beta random variable is 
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Inverse of Fisher Information Matrix 
  
 Inverse of Fisher Information Matrix 
 Parameter Scale Shape 
 Scale 2.207702 0.6725335 
 Shape 0.6725335 0.333906 
 
This table gives the inverse of the Fisher information matrix for the two-parameter beta. These 
values are used in creating the standard errors and confidence limits of the parameters and 
reliability statistics. The approximate Fisher information matrix is given by the 2-by-2 matrix 
whose elements are 
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where ( )′ψ z  is the trigamma function and n represents the sample size. 

Kaplan-Meier Product-Limit Survival Distribution 
  
 Kaplan-Meier Product-Limit Survival Distribution 
  Lower  Upper Lower  Upper  
 Failure 95% C.L. Estimated 95% C.L. 95% C.L. Estimated 95% C.L. Sample 
 Time Survival Survival Survival Hazard Hazard Hazard Size 
 23.5 0.714061 0.900000 1.000000 0.000000 0.105361 0.336786 10 
 50.1 0.552082 0.800000 1.000000 0.000000 0.223144 0.594059 9 
 65.3 0.415974 0.700000 0.984026 0.016103 0.356675 0.877132 8 
 68.9 0.296364 0.600000 0.903636 0.101328 0.510826 1.216168 7 
 70.4 0.190102 0.500000 0.809898 0.210848 0.693147 1.660192 6 
 77.3 0.096364 0.400000 0.703636 0.351494 0.916291 2.339626 5 
 81.6 0.015974 0.300000 0.584026 0.537810 1.203973 4.136778 4 
 85.7 0.000000 0.200000 0.447918 0.803145 1.609438  3 
 89.9 0.000000 0.100000 0.285939 1.251978 2.302585  2 
 95.3             1 
 Confidence Limits Method: Linear (Greenwood) 
 
This report displays the Kaplan-Meier product-limit survival distribution and hazard function 
along with confidence limits. The formulas used were presented in the Technical Details section 
earlier in this chapter. Note that these estimates do not use the beta distribution in any way. They 
are the nonparametric estimates and are completely independent of the distribution that is being 
fit. We include them for reference.  

Note that the Sample Size is given for each time period. As time progresses, participants are 
removed from the study, reducing the sample size. Hence, the survival results near the end of the 
study are based on only a few participants and are therefore less reliable. This shows up in a 
widening of the confidence limits. 
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Reliability Section 
  
 Reliability Section 
  ProbPlot MLE 
  Estimated Estimated 
 Fail Time Reliability Reliability 
 5.0 0.999474 0.999900 
 10.0 0.996931 0.999030 
 15.0 0.991393 0.996366 
 20.0 0.982123 0.990777 
 25.0 0.968503 0.981102 
 30.0 0.949995 0.966195 
 35.0 0.926119 0.944961 
 40.0 0.896446 0.916390 
 45.0 0.860585 0.879593 
 50.0 0.818187 0.833836 
 55.0 0.768940 0.778582 
 60.0 0.712568 0.713545 
 65.0 0.648840 0.638750 
 70.0 0.577573 0.554623 
 75.0 0.498648 0.462119 
 80.0 0.412033 0.362916 
 85.0 0.317839 0.259761 
 90.0 0.216436 0.157159 
 95.0 0.108834 0.063202 
 100.0 0.000000 0.000000 
 
This report displays the estimated reliability (survivorship) at the time values that were specified 
in the Times option of the Reports Tab. Reliability may be thought of as the probability that 
failure occurs after the given failure time. Thus, (using the ML estimates) the probability is 
0.944961 that failure will not occur until after 35 hours. 

Two reliability estimates are provided. The first uses the method of moments estimates and the 
second uses the maximum likelihood estimates. Confidence limits are not available. The formulas 
used are as follows. 

Estimated Reliability 
The reliability (survivorship) is calculated using the beta distribution as 
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Percentile Section 
  
 Percentile Section 
 
  MOM MLE 
  Failure Failure 
 Percentile Time Time 
 5.00 30.0 33.9 

10.00 39.5 42.4 
15.00 46.3 48.3 
20.00 51.9 53.2 
25.00 56.8 57.3 
30.00 61.0 61.0 
35.00 64.9 64.3 
40.00 68.5 67.4 
45.00 71.8 70.3 
50.00 74.9 73.0 
55.00 77.9 75.6 
60.00 80.7 78.2 
65.00 83.3 80.6 
70.00 85.9 83.1 
75.00 88.4 85.5 
80.00 90.8 87.9 
85.00 93.1 90.4 
90.00 95.4 92.9 
95.00 97.7 95.8 

 
This report displays failure time percentiles using the method of moments and the maximum 
likelihood estimates. No confidence limit formulas are available. 

The formulas used are 

Estimated Percentile 
The time percentile at P (which ranges between zero and one hundred) is calculated using 

( )[ ]$ ( ; , )t A I p A C B Ap = + − ×100  

Product-Limit Survivorship Plot 
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This plot shows the product-limit survivorship function for the data analyzed. If you have several 
groups, a separate line is drawn for each group. The step nature of the plot reflects the 
nonparametric product-limit survival curve. 
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Hazard Function Plot 
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This plot shows the cumulative hazard function for the data analyzed. If you have several groups, 
then a separate line is drawn for each group. The shape of the hazard function is often used to 
determine an appropriate survival distribution. 

Beta Reliability Plot 
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This plot shows the product-limit survival function (the step function) and the beta distribution 
overlaid. If you have several groups, a separate line is drawn for each group.  
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Beta Probability Plots 
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This is a beta probability plot for these data. The expected quantile of the theoretical distribution 
is plotted on the horizontal axis. The time value is plotted on the vertical axis. Also note that for 
grouped data, only one point is shown for each group. 
This plot lets you investigate the goodness of fit of the beta distribution to your data. If the points 
seem to fall along a straight line, the beta probability model may be useful. You have to decide 
whether the beta distribution is a good fit to your data by looking at this plot and by comparing 
the value of the log likelihood to that of other distributions. 

Grouped Data 
The case of grouped data causes special problems when creating a probability plot. Remember 
that the horizontal axis represents the expected quantile from the beta distribution for each 
(sorted) failure time. In the regular case, we used the rank of the observation in the overall 
dataset. However, in case of grouped data, we most use a modified rank. This modified rank, , 
is computed as follows 

Oj

O O Ij p j= +  

where 

( )I
n O
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+ −
+
1

1
 

were I j is the increment for the jth failure; n is the total number of data points; Op is the order of 
the previous failure; and c is the number of data points remaining in the data set, including the 
current data. Implementation details of this procedure may be found in Dodson (1994).  
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Chapter 552 

Gamma 
Distribution Fitting 
Introduction 
This module fits the gamma probability distributions to a complete or censored set of individual 
or grouped data values. It outputs various statistics and graphs that are useful in reliability and 
survival analysis.  

The gamma distribution competes with the Weibull distribution as a model for lifetime. Since it is 
more complicated to deal with mathematically, it has been used less. While the Weibull is a 
purely heuristic model (approximating the data well), the gamma distribution does arise as a 
physical model since the sum of exponential random variables results in a gamma random 
variable.  

At times, you may find that the distribution of log lifetime follows the gamma distribution. 

The Three-Parameter Gamma Distribution 
The three-parameter gamma distribution is indexed by a shape , a scale, and a threshold 
parameter. Many symbols have been used to represent these parameters in the statistical 
literature. We have selected the symbols A, C, and D for the shape, scale, and threshold. Our 
choice of symbols was made to make remembering their meanings easier. That is, just remember 
shApe, sCale, and thresholD and you will remember the general meaning of each symbol. Using 
these symbols, the three parameter gamma density function may be written as 
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Shape Parameter - A 
This parameter controls the shape of the distribution. When A = 1, the gamma distribution is 
identical to the exponential distribution. When C = 2 and A = v/2, where v is an integer, the 
gamma becomes the chi-square distribution with v degrees of freedom. When A is restricted to 
integers, the gamma distribution is referred to as the Erlang distribution used in queueing theory. 
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Scale Parameter - C 
This parameter controls the scale of the data. When C becomes large, the gamma distribution 
approaches the normal distribution. 

Threshold Parameter - D 
The threshold parameter is the minimum value of the random variable t. When D is set to zero, 
we obtain the two parameter gamma distribution. In NCSS, the threshold is not an estimated 
quantity but rather a fixed constant. Care should be used in using the threshold parameter because 
it forces the probability of failure to be zero between 0 and D.  

Reliability Function 
The reliability (or survivorship) function, R(t), gives the probability of surviving beyond time t. 
For the gamma distribution, the reliability function is 

R t I t( ) ( )= −1  

where I(t) in this case represents the incomplete gamma function.  

The conditional reliability function, R(t,T), may also be of interest. The is the reliability of an 
item given that it has not failed by time T. The formula for the conditional reliability is 

R t R T t
R T

( ) ( )
( )

=
+

 

Hazard Function 
The hazard function represents the instantaneous failure rate. For this distribution, the hazard 
function is 

h t f t
R t

( ) ( )
( )

=  

Kaplan-Meier Product-Limit Estimator 
The production limit estimator is covered in the Distribution Fitting chapter and will not be 
repeated here. 
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Data Structure 
Most gamma datasets require two (and often three) variables: the failure time variable, an 
optional censor variable formed by entering a zero for a censored observation or a one for a failed 
observation, and an optional count variable which gives the number of items occurring at that 
time period. If the censor variable is omitted, all time values represent observations from failed 
items. If the count variable is omitted, all counts are assumed to be one. 

The table below shows the results of a study to test failure rate of a particular machine. This 
particular experiment began with 30 items under test. After the twelfth item failed at 152.7 hours, 
the experiment was stopped. The remaining eighteen observations were censored. That is, we 
know that they will fail at some time in the future. These data are contained on the WEIBULL 
database. 

 

WEIBULL dataset 

Time Censor Count 
12.5 1 1 
24.4 1 1 
58.2 1 1 
68.0 1 1 
69.1 1 1 
95.5 1 1 
96.6 1 1 
97.0 1 1 
114.2 1 1 
123.2 1 1 
125.6 1 1 
152.7 1 1 
152.7 0 18 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Time Variable 

Time Variable 
This variable contains the failure times. Note that negative time values and time values less than 
the threshold parameter are treated as missing values. Zero time values are replaced by the value 
in the Zero Time Replacement option. 

These time values represent elapsed times. If your data has dates (such as the failure date), you 
must subtract the starting date so that you can analyze the elapsed time. 
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Zero Time Replacement 
Under normal conditions, a respondent beginning the study is “alive” and cannot “die” until after 
some small period of time has elapsed. Hence, a time value of zero is not defined and is ignored 
(treated as a missing value). If a zero time value does occur on the database, it is replaced by this 
positive amount. If you do not want zero time values replaced, enter a “0.0” here. 

This option would be used when a “zero” on the database does not actually mean zero time. 
Instead, it means that the response occurred before the first reading was made and so the actual 
survival time is only known to be less.  

Censor Variable 

Censor Variable 
This optional variable contains the censor indicator variable. The value is set to zero for censored 
observations and one for failed observations.  

Group Variable 

Group Variable 
An optional categorical (grouping) variable may be specified. If it is used, a separate analysis is 
conducted for each unique value of this variable. 

Frequency Variable 

Frequency Variable 
This variable gives the number of individuals (the count or frequency) at a given failure (or 
censor) time. When omitted, each row receives a frequency of one. Frequency values should be 
positive integers.  

Options 

Threshold Value 
This option controls the setting of the threshold parameter. When this value is set to zero (which 
is the default) the two-parameter gamma distribution is fit. You can put in a fixed, nonzero value 
for D here.  

A cautionary note is needed. The maximum value that D can have is the minimum time value. If 
the minimum time is a censored observation you may be artificially constraining D to an 
inappropriately low value. It may make more sense to ignore these censored observations or to fit 
the two-parameter gamma. 

Product Limit and Hazard Conf. Limits Method 
The standard nonparametric estimator of the reliability function is the Product Limit estimator. 
This option controls the method used to estimate the confidence limits of the estimated reliability. 
The options are Linear, Log Hazard, Arcsine Square Root, and Nelson-Aalen. The formulas used 
by these options were presented in the Technical Details section of the Distribution Fitting 
chapter. Although the Linear (Greenwood) is the most commonly used, recent studies have 
shown either the Log Hazard or the Arsine Square Root Hazard are better in the sense that they 
require a smaller sample size to be accurate. 
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Options – Probability Plot 

Least Squares Model 
When a probability plot is used to estimate the parameters of the gamma model, this option 
designates which variable (time or frequency) is used as the dependent variable.  

• F=A+B(Time) 
On the probability plot, F is regressed on Time and the resulting intercept and slope are used 
to estimate the gamma parameters. See the discussion of probability plots below for more 
information. 

• Time=A+B(F) 
On the probability plot, Time is regressed on F and the resulting intercept and slope are used 
to estimate the gamma parameters. 

Shape Values 
This options specifies values for the shape parameter, A, at which probability plots are to be 
generated. You can use a list of numbers separated by blanks or commas. Or, you can use the 
special list format: e.g. 0.5:2.0(0.5) which means 0.5 1.0 1.5 2.0. All values must be greater than 
zero. 

Final Shape Value 
This option specifies the shape parameter value that is used in the reports. The value in the list 
above that is closest to this value is used. 

Use of this option usually requires two runs. In the first run, the probability plots of several trial A 
values are considered. The value of A for which the probability plot appears the straightest (in 
which all points fall along an imaginary straight line) is determined and used in a second run. Or, 
you may decide to use a value near the maximum likelihood estimate of A.  

Options – Search 

Maximum Iterations 
Many of the parameter estimation algorithms are iterative. This option assigns a maximum to the 
number of iterations used in any one algorithm. We suggest a value of about 100. This should be 
large enough to let the algorithm converge, but small enough to avoid a large delay if 
convergence cannot be obtained. 

Minimum Relative Change 
This value is used to control the iterative algorithms used in parameter estimation. When the 
relative change in any of the parameters is less than this amount, the iterative procedure is 
terminated. 
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Reports Tab 
The following options control which reports are displayed and the format of those reports. 

Select Reports 

Data Summary Report - Percentiles Report 
These options indicate whether to display the corresponding report. 

Select Plots 

Survivorship Plot - Probability Plot 
These options indicate whether to display the corresponding report or plot. 

Report Options 

Alpha Level 
This is the value of alpha used in the calculation of confidence limits. For example, if you specify 
0.04 here, then 96% confidence limits will be calculated. 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option lets you select whether to display only values, value labels, or both. Use this option if 
you want to automatically attach labels to the values of the group variable (like 1=Yes, 2=No, 
etc.). See the section on specifying Value Labels elsewhere in this manual.  

Report Options – Survival and Haz Rt 
Calculation Values 

Percentiles 
This option specifies a list of percentiles (range 1 to 99) at which the reliability (survivorship) is 
reported. The values should be separated by commas.  

Specify sequences with a colon, putting the increment inside parentheses after the maximum in 
the sequence. For example: 5:25(5) means 5,10,15,20,25 and 1:5(2),10:20(2) means 
1,3,5,10,12,14,16,18,20. 

Times 
This option specifies a list of times at which the percent surviving is reported. Individual values 
are separated by commas. You can specify a sequence by specifying the minimum and maximum 
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separate by a colon and putting the increment inside parentheses. For example: 5:25(5) means 
5,10,15,20,25. Avoid 0 and negative numbers. Use ‘(10)’ alone to specify ten values between 
zero and the maximum value found in the data. 

Time Decimals 
This option specifies the number of decimal places shown on reported time values. 

Plot Options 

Show Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies legend label. A {G} is replaced by the name of the group variable. 

Survival and Cum Haz Plot Tabs 
These options control the attributes of the survival curves and the hazard curves. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Y Scaling 
Indicate whether the vertical scaling on all means plots should uniform across all plots. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 
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Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Gamma Plot Tab 
These options control the attributes of the gamma reliability curve. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Y Scaling 
Indicate whether the vertical scaling on all means plots should uniform across all plots. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 
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Gamma Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Time Values 
Specify the number of points along the curve at which calculations are made. This controls the 
resolution of the curve. Usually, values between 50 and 200 produce good results. 

Gamma Plot Settings – Plot Contents 

Product-Limit Curve 
Indicate whether to overlay the product-limit curve on this plot. Overlaying the PL curve lets you 
determine whether the gamma curve is a reasonable approximation to this curve. 

Confidence Limits 
Indicate whether to display the confidence limits of the reliability curve on the plot. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Probability Plot Tab 
These options control the attributes of the gamma probability plot. Remember that the probability 
plot can only be generated for a given value of the shape parameter. This value is set in the Final 
Shape option of the Search tab, which was described earlier. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Y Scaling 
Indicate whether the vertical scaling on all means plots should uniform across all plots. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 
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Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Prob Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Let us emphasize that this probability plot uses the Scatter Plot style files, not the Probability Plot 
style files. 

Plotting Position - F(T) 
The probability plot shows time on the vertical axis and the gamma quantile on the horizontal 
axis. This option specifies the method used to determine F(t) which used to calculate the vertical 
plotting positions on the probability plot. Note that method selected here also influences the 
probability plot estimates of the parameters. 

The five alternatives available are 

• Median (j-0.3)/(n+0.4) 
The most popular method is to calculate the median rank for each sorted data value. That is, 
this is the value for the jth sorted time value. Since the median rank requires extensive 
calculations, this approximation to the median rank is often used. 

F t j
nj( ) .

.
=

−
+

0 3
0 4

 

• Median (Exact) 
The most popular method is to calculate the median rank for each data value. This is the 
median rank of the jth sorted time value out of n values. The exact value of the median rank is 
calculated using the formula 
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• Mean j/(n+1) 
The mean rank is sometimes recommended. In this case, the formula is 

F t j
nj( ) =
+1
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• White (j-3/8)/(n+1/4) 
A formula proposed by White is sometimes recommended. The formula is 

F t j
nj( ) /

/
=

+
+

3 8
1 4

 

• (j-0.5)/n 
The following formula is sometimes used 

F t j
nj( ) .

=
− 05

 

Prob Plot Settings – Plot Contents 

Trend Line 
This option controls whether the trend (least squares) line is calculated and displayed. 

Residuals from Trend Line 
This option controls whether the vertical deviations from the trend line are displayed. Displaying 
these residuals may let you see departures from linearity more easily. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Lines & Symbols Tab 
These options specify the attributes of the lines used for each group in the hazard curves and 
survival curves and the symbols used for each group in the probability plots. 

Plotting Lines 

Line 1 - 15 
These options specify the color, width, and pattern of the lines used in the plots of each group. 
The first line is used by the first group, the second line by the second group, and so on. These line 
attributes are provided to allow the various groups to be indicated on black-and-white printers. 

Clicking on a line box (or the small button to the right of the line box) will bring up a window 
that allows the color, width, and pattern of the line to be changed. 

Plotting Symbols 

Symbol 1 - 15 
These options specify the symbols used in the plot of each group. The first symbol is used by the 
first group, the second symbol by the second group, and so on. These symbols are provided to 
allow the various groups to be easily identified, even on black and white printers. 
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Clicking on a symbol box (or the small button to the right of the symbol box) will bring up a 
window that allows the color, width, and pattern of the line to be changed. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Fitting a Gamma Distribution 
This section presents an example of how to fit a gamma distribution. The data used were shown 
above and are found in the WEIBULL database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Gamma Distribution Fitting window.  

1 Open the WEIBULL dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file WEIBULL.S0. 
• Click Open. 

2 Open the Gamma Distribution Fitting window. 
• On the menus, select Analysis, then Survival / Reliability, then Gamma Distribution 

Fitting. The Gamma Distribution Fitting procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Gamma Distribution Fitting window, select the Variables tab.  
• Double-click in the Time Variable box. This will bring up the variable selection 

window.  
• Select Time from the list of variables and then click Ok.  
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• Double-click in the Censor Variable box. This will bring up the variable selection 
window.  

• Select Censor from the list of variables and then click Ok.  
• Double-click in the Frequency Variable box. This will bring up the variable selection 

window.  
• Select Count from the list of variables and then click Ok.  

4 Specify the plots. 
• On the Gamma Distribution Fitting window, select the Plots tab.  
• Check the Confidence Limits box.  

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Data Summary Section 
  
 Data Summary Section 
  
 Type of 
 Observation Rows Count Minimum Maximum Average Sigma 
 Failed 12 12 12.5 152.7 86.41666 41.66633 
 Censored 1 18 152.7 152.7  
 Total 13 30 12.5 152.7 
 Type of Censoring: Singly  
 
This report displays a summary of the data that were analyzed. Scan this report to determine if 
there were any obvious data errors by double-checking the counts and the minimum and 
maximum. 

Parameter Estimation Section 
  
 Parameter Estimation Section 
  Probability Maximum MLE MLE MLE 
  Plot Likelihood Standard 95% Lower 95% Upper 
 Parameter Estimate Estimate Error Conf. Limit Conf. Limit 
 Shape 2 2.407362 0.9228407 0.598627 4.216096 
 Scale 107.21 85.21822 36.31201 36.96837 196.4422 
 Threshold 0 0    
 Log Likelihood  -80.6078 
 Mean 214.42 205.1511 
 Median 179.9356 177.551 
 Mode 107.21 119.9329 
 Sigma 151.6178 132.2218 
 
This report displays parameter estimates along with standard errors and confidence limits in the 
maximum likelihood case. In this example, we have set the threshold parameter to zero so we are 
fitting the two-parameter gamma distribution. 

Probability Plot Estimate 
This estimation procedure uses the data from the gamma probability plot to estimate the 
parameters. The estimation formula depends on which option was selected for the Least Squares 
Model. Note that the value of A is given—only C is estimated from the plot. 
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Least Squares Model: F=A+B(Time) 
Using simple linear regression through the origin, we obtain the estimate of C as 

~C = slope  

Least Squares Model: Time=A+B(F) 
Using simple linear regression through the origin, we obtain the estimate of C as 

~
C

slope
=

1
 

Maximum Likelihood Estimates of A, C, and D 
These estimates maximize the likelihood function. The formulas for the standard errors and 
confidence limits come from the inverse of the Fisher information matrix, {f(i,j)}. The standard 
errors are given as the square roots of the diagonal elements f(1,1) and f(2,2). The confidence 
limits for A are 
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Log Likelihood 
This is the value of the log likelihood function. This is the value being maximized. It is often used 
as a goodness-of-fit statistic. You can compare the log likelihood value from the fits of your data 
to several distributions and select as the best fitting the one with the largest value. 

Mean 
This is the mean time to failure (MTTF). It is the mean of the random variable (failure time) 
being studied given that the gamma distribution provides a reasonable approximation to your 
data’s actual distribution. 

The formula for the mean is 

Mean D AC= +  

Median 
The median of the gamma distribution is the value of t where F(t)=0.5. 

Median D I A C= + ( . , , )0 5  

where I(0.5,A,C) is the incomplete gamma function. 
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Mode 
The mode of the gamma distribution is given by 

( )Mode D C A= + −1  

 

when A > 1 and D otherwise. 

Sigma 
This is the standard deviation of the failure time. The formula for the standard deviation (sigma) 
of a gamma random variable is 

σ = C A  

Inverse of Fisher Information Matrix 
  
 Inverse of Fisher Information Matrix 
 Parameter Shape Scale 
 Shape 0.8516349 -30.14704 
 Scale -30.14704 1318.562 
 
This table gives the inverse of the Fisher information matrix for the two-parameter gamma. These 
values are used in creating the standard errors and confidence limits of the parameters and 
reliability statistics. These statistics are very difficult to calculate directly for the gamma 
distribution when censored data are present. We use a large sample approximation that has been 
suggested by some authors. These results are only accurate when the shape parameter is greater 
than two. 

The approximate Fisher information matrix is given by the 2-by-2 matrix whose elements are 
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where ( )′ψ z  is the trigamma function and n represents the number of failed items (does not 
include censored items). 
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Kaplan-Meier Product-Limit Survival Distribution 
  
 Kaplan-Meier Product-Limit Survival Distribution 
  Lower  Upper Lower  Upper  
 Failure 95% C.L. Estimated 95% C.L. 95% C.L. Estimated 95% C.L. Sample 
 Time Survival Survival Survival Hazard Hazard Hazard Size 
 12.5 0.902433 0.966667 1.000000 0.000000 0.033902 0.102661 30 
 24.4 0.844073 0.933333 1.000000 0.000000 0.068993 0.169517 29 
 58.2 0.792648 0.900000 1.000000 0.000000 0.105361 0.232376 28 
 68.0 0.745025 0.866667 0.988308 0.011760 0.143101 0.294338 27 
 69.1 0.699975 0.833333 0.966692 0.033875 0.182322 0.356711 26 
 95.5 0.656864 0.800000 0.943136 0.058545 0.223144 0.420278 25 
 96.6 0.615318 0.766667 0.918016 0.085541 0.265703 0.485616 24 
 97.0 0.575091 0.733333 0.891576 0.114765 0.310155 0.553227 23 
 114.2 0.536018 0.700000 0.863982 0.146203 0.356675 0.623588 22 
 123.2 0.497980 0.666667 0.835354 0.179900 0.405465 0.697196 21 
 125.6 0.460893 0.633333 0.805774 0.215952 0.456758 0.774590 20 
 152.7 0.424695 0.600000 0.775305 0.254499 0.510826 0.856383 19 
 152.7+       18 
 Confidence Limits Method: Linear (Greenwood) 
 
This report displays the Kaplan-Meier product-limit survival distribution and hazard function 
along with confidence limits. The formulas used were presented in the Technical Details section 
earlier in this chapter. Note that these estimates do not use the gamma distribution in any way. 
They are the nonparametric estimates and are completely independent of the distribution that is 
being fit. We include them for reference.  

Note that censored observations are marked with a plus sign on their time value. The survival and 
hazard functions are not calculated for censored observations. 

Also note that the Sample Size is given for each time period. As time progresses, participants are 
removed from the study, reducing the sample size. Hence, the survival results near the end of the 
study are based on only a few participants and are therefore less reliable. This shows up in a 
widening of the confidence limits. 

Reliability Section 
  
 Reliability Section 
  ProbPlot MLE MLE MLE 
  Estimated Estimated 95% Lower 95% Upper 
 Fail Time Reliability Reliability Conf. Limit Conf. Limit 
 8.0 0.997351 0.998953 0.929195 1.000000 
 16.0 0.989912 0.994798 0.921475 1.000000 
 24.0 0.978387 0.987065 0.910223 1.000000 
 32.0 0.963401 0.975768 0.895440 1.000000 
 40.0 0.945512 0.961121 0.877317 1.000000 
 48.0 0.925214 0.943434 0.856131 1.000000 
 56.0 0.902947 0.923062 0.832187 1.000000 
 64.0 0.879099 0.900376 0.805796 0.994957 
 72.0 0.854012 0.875743 0.777251 0.974235 
 80.0 0.827987 0.849515 0.746827 0.952203 
 88.0 0.801290 0.822024 0.714773 0.929274 
 96.0 0.774151 0.793576 0.681318 0.905834 
 104.0 0.746772 0.764451 0.646672 0.882229 
 112.0 0.719328 0.734901 0.611036 0.858766 
 120.0 0.691969 0.705152 0.574602 0.835701 
 128.0 0.664826 0.675402 0.537563 0.813240 
 136.0 0.638009 0.645826 0.500114 0.791538 
 144.0 0.611611 0.616574 0.462450 0.770698 
 152.0 0.585711 0.587777 0.424773 0.750781 
 160.0 0.560373 0.559543 0.387282 0.731804 
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This report displays the estimated reliability (survivorship) at the time values that were specified 
in the Times option of the Reports Tab. Reliability may be thought of as the probability that 
failure occurs after the given failure time. Thus, (using the ML estimates) the probability is 
0.975768 that failure will not occur until after 32 hours. The 95% confidence for this estimated 
probability is 0.895440 to 1.000000. 

Two reliability estimates are provided. The first uses the parameters estimated from the 
probability plot and the second uses the maximum likelihood estimates. Confidence limits are 
calculated for the maximum likelihood estimates. The formulas used are as follows. 

Estimated Reliability 
The reliability (survivorship) is calculated using the gamma distribution as 

( )$( ) $( ) ; ,R t S t I t D A C= = − −1  

Confidence Limits for Reliability 
The confidence limits for this estimate are computed using the following formulas. Note that 
these estimates lack accuracy when A is less than 2.0. 

( )$ ( ) $( ) $( )/R t R t z Var R tupper = − −1 2α  

( )$ ( ) $( ) $( )/R t R t z Var R tupper = + −1 2α  
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where ( )φ z  is the standard normal density and 
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Percentile Section 
  
 Percentile Section 
 
  MLE 
  Failure 
 Percentile Time 
 5.00 45.2 

10.00 64.1 
15.00 79.9 
20.00 94.2 
25.00 107.9 
30.00 121.4 
35.00 134.9 
40.00 148.6 
45.00 162.7 
50.00 177.6 
55.00 193.2 
60.00 210.1 
65.00 228.5 
70.00 249.1 
75.00 272.6 
80.00 300.4 
85.00 335.1 
90.00 382.2 
95.00 459.4 

 
This report displays failure time percentiles using the maximum likelihood estimates. No 
confidence limit formulas are available. 

Estimated Percentile 
The time percentile at P (which ranges between 0 and 100) is calculated using 

[ ]$ ( ; , )t D I p A Cp = + ×100  

Product-Limit Survivorship Plot 
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This plot shows the product-limit survivorship function for the data analyzed. If you have several 
groups, a separate line is drawn for each group. The step nature of the plot reflects the 
nonparametric product-limit survival curve. 
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Hazard Function Plot 
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This plot shows the cumulative hazard function for the data analyzed. If you have several groups, 
then a separate line is drawn for each group. The shape of the hazard function is often used to 
determine an appropriate survival distribution. 

Gamma Reliability Plot 
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This plot shows the product-limit survival function (the step function) and the gamma distribution 
overlaid. The confidence limits are also displayed. If you have several groups, a separate line is 
drawn for each group.  
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Gamma Probability Plots 
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There is a gamma probability plot for each specified value of the shape parameter (set in the 
Prob.Plot Shape Values option of the Search tab). The expected quantile of the theoretical 
distribution is plotted on the horizontal axis. The time value is plotted on the vertical axis. Note 
that censored points are not shown on this plot. Also note that for grouped data, only one point is 
shown for each group. 
These plot let determine an appropriate value of A. They also let you investigate the goodness of 
fit of the gamma distribution to your data. You have to decide whether the gamma distribution is 
a good fit to your data by looking at these plots and by comparing the value of the log likelihood 
to that of other distributions. 

For this particular set of data, it appears that A equal two or three would work just fine. Note that 
the maximum likelihood estimate of A is 2.4—right in between! 
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Multiple-Censored and Grouped Data 
The case of grouped, or multiple-censored, data cause special problems when creating a 
probability plot. Remember that the horizontal axis represents the expected quantile from the 
gamma distribution for each (sorted) failure time. In the regular case, we used the rank of the 
observation in the overall dataset. However, in case of grouped or multiple-censored data, we 
most use a modified rank. This modified rank, , is computed as follows Oj

O O Ij p j= +  

where 

( )I
n O

cj
p=

+ −
+
1

1
 

were is the increment for the jth failure; n is the total number of data points, both censored and 
uncensored; is the order of the previous failure; and c is the number of data points remaining 
in the data set, including the current data. Implementation details of this procedure may be found 
in Dodson (1994). 

I j

Op
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Chapter 555 

Kaplan-Meier 
Curves (Logrank 
Tests) 
Introduction 
This procedure computes the nonparametric Kaplan-Meier and Nelson-Aalen estimates of 
survival and associated hazard rates. It can fit complete, right censored, left censored, interval 
censored (readout), and grouped data values. It outputs various statistics and graphs that are 
useful in reliability and survival analysis.  

It also performs several logrank tests and provides both the parametric and randomization test 
significance levels. 

Overview of Survival Analysis 
We will give a brief introduction to the subject in this section. For a complete account of survival 
analysis, we suggest the book by Klein and Moeschberger (1997).  

Survival analysis is the study of the distribution of life times. That is, it is the study of the elapsed 
time between an initiating event (birth, start of treatment, diagnosis, or start of operation) and a 
terminal event (death, relapse, cure, or machine failure). The data values are a mixture of 
complete (terminal event occurred) and censored (terminal event has not occurred) observations. 
From the data values, the survival analyst makes statements about the survival distribution of the 
failure times. This distribution allows questions about such quantities as survivability, expected 
life time, and mean time to failure to be answered. 

Let T be the elapsed time until the occurrence of a specified event. The event may be death, 
occurrence of a disease, disappearance of a disease, appearance of a tumor, etc. The probability 
distribution of T may be specified using one of the following basic functions. Once one of these 
functions has been specified, the others may be derived using the mathematical relationships 
presented. 

1.  Probability density function, f(t). This is the probability that an event occurs at time t. 



555-2  Kaplan-Meier Curves (Logrank Tests) 

2.  Cumulative distribution function, F(t). This is the probability that an individual survives 
until time t. 

F t f x dx
t

( ) ( )= ∫
0

 

3.  Survival function, S(T). This is the probability that an individual survives beyond time T. 
This is usually the primary quantity of interest. It is estimated using the nonparametric 
Kaplan-Meier curve.  

S T f x dx

F T
T

( ) ( )

( )

=

= −

∞

∫
1

 

( )[ ]

S T h x dx

H T

T

( ) exp ( )

exp

= −
⎡

⎣
⎢

⎤

⎦
⎥

= −

∫
0  

4.  Hazard rate, h(T). This is the probability that an individual at time T experiences the 
event in the next instant. It is a fundamental quantity in survival analysis. It is also known 
as the conditional failure rate in reliability, the force of mortality in demography, the 
intensity function in stochastic processes, the age-specific failure rate in epidemiology, 
and the inverse of Mill’s ratio in economics. The empirical hazard rate may be used to 
identify the appropriate probability distribution of a particular mechanism, since each 
distribution has a different hazard rate function. Some distributions have a hazard rate 
that decreases with time, others have a hazard rate that increases with time, some are 
constant, and some exhibit all three behaviors at different points in time. 

h T f T
S T

( ) ( )
( )

=  

5.  Cumulative hazard function, H(T). This is integral of h(T) from 0 to T. 

( )[ ]

H T h x dx

S T

T

( ) ( )

ln

=

= −

∫
0  

Nonparametric Estimators of Hazard and Survival 
All of the following results are from Klein and Moeschberger (1997).  

The recommended nonparametric estimator of the survival distribution, S(T), is the Kaplan-Meier 
product-limit estimator. The recommended nonparametric estimator of the cumulative hazard 
function, H(T), is the Nelson-Aalen estimator. Although each of these estimators could be used to 
estimate the other quantity using the relationship 

( )[ ]H T S T( ) ln= −  
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or 

( ) ( )[ ]S T H T= −exp  

this is not recommended. 

The following notation will be used to define both of these estimators. Let  index the 
M unique termination (failure or death) times . Note that M does not include 
duplicate times or times at which only censored observations occur. Associated with each of these 
failure times is an entry time  at which the subject began to be observed. Usually, these entry 
times are taken to be zero. If positive entry times are specified, the data are said to have been left 
truncated. When data are left truncated, it is often necessary to define a minimum time, A, below 
which failures are not considered. When a positive A is used, the unconditional survival function 
S(T) is changed to a conditional survival function S(T|T>A).  

t = 1, ,L M

j

T T TM1 2, ,...,

Et

The set of all failures (deaths) that occur at time  is referred to as  and the number in this set 
is given by . The risk set at t, , is the set of all individuals that are at risk immediately before 
time T . This set includes all individuals whose entry and termination times include . That is, 

 is made up of all individuals with times such that 

Tt Dt

dt Rt

t Tt

Rt E T Tj t< ≤  and . The number of 

individuals in the risk set is given by . 

A Tt≤
rt

Kaplan-Meier Product-Limit Estimator 
Using the above notation, the Kaplan-Meier product-limit estimator is defined as follows in the 
range of time values for which there are data. 

$( )
min

min
S T

if T T
d
r

if T Ti

iA T Ti

=
>

−
⎡

⎣
⎢

⎤

⎦
⎥ ≤

⎧
⎨
⎪

⎩⎪ ≤ ≤
∏

1

1  

The variance of S(T) is estimated by Greenwood’s formula 

[ ]$ $( ) $( )
( )

V S T S T d
r r d

i

i i iA T Ti

=
−≤ ≤

∑2  

Pointwise Confidence Intervals of Survival 
A pointwise confidence interval for the survival probability at a specific time T  of  is 
represented by two confidence limits which have been constructed so that the probability that the 
true survival probability lies between them is 1

0 ( )S T0

−α . Note that these limits are constructed for a 
single time point. Several of them cannot be used together to form a confidence band such that 
the entire survival function lies within the band. When these are plotted with the survival curve, 
these limits must be interpreted on an individual, point by point, basis. 

Three difference confidence intervals are available. All three confidence intervals perform about 
the same in large samples. The linear (Greenwood) interval is the most commonly used. 
However, the log-transformed and the arcsine-square intervals behave better in small to moderate 
samples, so they are recommended. 
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Linear (Greenwood) Pointwise Confidence Interval for S(T) 
This estimator may be used to create a confidence interval at a specific time point T  of  
using the formula 

0 ( )S T0

$( ) ( )/S T z TS0 1 2 0± −α σ  

where 

[ ]
σ S T

V S T

S T
2

0
0

2
0

( )
$ $( )
$ ( )

=  

and z is the appropriate value from the standard normal distribution.  

Log-Transformed Pointwise Confidence Interval for S(T) 
Better confidence limits may be calculated using the logarithmic transformation of the hazard 
functions. These limits are 

$( ) , $( )/S T S T0
1

0
θ θ  

where 

θ σα=
⎧
⎨
⎩

⎫
⎬
⎭

−exp ( )
log[ $( )]

/z T
S T

S1 2 0

0

 

ArcSine-Square Root Pointwise Confidence Interval for S(T) 
Another set of confidence limits using an improving transformation is given by the formula 

{ }

{ }

sin max ,arcsin $( ) . ( )
$( )
$( )

( )
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$( )
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Nelson-Aalen Hazard Estimator 
The Nelson-Aalen estimator is recommended as the best estimator of the cumulative hazard 
function, H(T). This estimator is give as 

~( )
min

min
H T

if T T
d
r

if T Ti

iA T Ti

=
>

≤

⎧
⎨
⎪

⎩⎪ ≤ ≤
∑

0
 

Three estimators of the variance of this estimate are mentioned on page 34 of Therneau and 
Grambsch (2000). These estimators differ in the way they model tied event times. When there are 
no event time ties, they give almost identical results.  
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1. Simple (Poisson) Variance Estimate 
This estimate assumes that event time ties occur because of rounding and a lack of measurement 
precision. This estimate is the largest of the three, so it gives the widest, most conservative, 
confidence limits. The formula for this estimator, derived assuming a Poisson model for the 
number of deaths, is 

σ ~ ( )H
i

iA T T

T d
r

i

1
2

2=
≤ ≤
∑  

2. Plug-in Variance Estimate 
This estimate also assumes that event time ties occur because of rounding and a lack of 
measurement precision. The formula for this estimator, derived by substituting sample quantities 
in the theoretical variance formula, is 

( )σ ~ ( )H
i i i

iA T T

T
d r d

r
i

2
2

3=
−

≤ ≤
∑  

Note that when , a ‘1’ is substituted for ri = 1 ( )r d ri i i− /  in this formula. 

3. Binomial Variance Estimate 
This estimate assumes that event time ties occur because the process is fundamentally discrete 
rather than due to lack of precision and/or rounding. The formula for this estimator, derived 
assuming a binomial model for the number of events, is 

( )
( )

σ ~ ( )H
i i i

i iA T T

T
d r d
r r

i

3
2

2 1
=

−
−≤ ≤

∑  

Note that when , a ‘1’ is substituted for ri = 1 ( ) ( )r d ri i i− −/ 1  in this formula. 

Which Variance Estimate to Use 
Therneau and Grambsch (2000) indicate that, as of the writing of their book, there is no clear-cut 
champion. The simple estimate is often suggested because it is always largest and thus gives the 
widest, most conservative confidence, confidence limits. In practice, there is little difference 
between them and the choice of which to use will make little difference in the final interpretation 
of the data. We have included all three since each occurs alone in various treatises on survival 
analysis. 

Pointwise Confidence Intervals of Cumulative Hazard 
A pointwise confidence interval for the cumulative hazard at a specific time T  of  is 
represented by two confidence limits which have been constructed so that the probability that the 
true hazard lies between them is 

0 ( )H T0

α−1 . Note that these limits are constructed for a single time 
point. Several of them cannot be used together to form a confidence band such that the entire 
hazard function lies within the band. When these are plotted with the hazard curve, these limits 
must be interpreted on an individual, point by point, basis. 

Three difference confidence intervals are available. All three confidence intervals perform about 
the same in large samples. The linear (Greenwood) interval is the most commonly used. 
However, the log-transformed and the arcsine-square intervals behave better in small to moderate 
samples, so they are recommended. 
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Linear Pointwise Confidence Interval for H(T) 
This estimator may be used to create a confidence interval at a specific time point T  of  
using the formula 

0 ( )H T0

~( ) ( )/ ~H T z TH0 1 2 0± −α σ  

where z is the appropriate value from the standard normal distribution.  

Log-Transformed Pointwise Confidence Interval for H(T) 
Better confidence limits may be calculated using the logarithmic transformation of the hazard 
functions. These limits are 

~( ) / , ~( )H T H T0 0φ φ  

where 

( )
φ

σα=
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪
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H1 2 0
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ArcSine-Square Root Pointwise Confidence Interval for H(T) 
Another set of confidence limits using an improving transformation is given by the formula 
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Survival Quantiles 
The median survival time is an example of a quantile of the survival distribution. It is the smallest 
value of T such that . In fact, more general results are available for any quantile p. 
The pth quantile is estimated by  

$( ) .S T = 050

( ){ }T T S Tp = ≤inf : $ 1 p−  

In words, T  is smallest time at which  is less than or equal to 1 - p. p
$( )S T

A ( )%1100 α−  confidence interval for T  can be generated using each of the three estimation 
methods. These are given next. 

p
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Linear Pointwise Confidence Interval for Tp 
This confidence interval is given by the set of all times such that 

( )
( )[ ]

− ≤
− −

≤− −z
S T p

V S T
z1 2 1 2

1
α α/ /

$( )
$ $

 

where z is the appropriate value from the standard normal distribution.  

Log-Transformed Pointwise Confidence Interval for Tp 
This confidence interval is given by the set of all times such that 

( )[ ]{ } [ ]{ }[ ] [ ][ ]
( )[ ]

− ≤
− − − −

≤− −z
S T p S T S T

V S T
z1 2 1 2

1
α α/ /

ln ln $ ln ln $( )ln $( )

$ $
 

where z is the appropriate value from the standard normal distribution.  

ArcSine-Square Root Pointwise Confidence Interval for Tp 
This confidence interval is given by the set of all times such that 

( ) [ ] [ ]
( )[ ]

− ≤

⎡
⎣⎢

⎤
⎦⎥
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⎫⎬⎭
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V S T
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2 1 1
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where z is the appropriate value from the standard normal distribution.  

Hazard Rate Estimation 
The characteristics of the failure process are best understood by studying the hazard rate, h(T), 
which is the derivative (slope) of the cumulative hazard function H(T). The hazard rate is 
estimated using kernel smoothing of the Nelson-Aalen estimator as given in Klein and 
Moeschberger (1997). The formulas for the estimated hazard rate and its variance are given by 
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A T T
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where b is the bandwidth about T and 

( ) ( ) ( )Δ
~ ~ ~H T H T H Tk k k= − −1  

( )[ ] ( )[ ] ( )[ ]Δ $ ~ $ ~ $ ~V H T V H T V H Tk k= − −1k  
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Three choices are available for the kernel function K(x) in the above formulation. These are 
defined differently for various values of T. Note that the T ’s are for failed items only and that 

 is the maximum failure time. For the uniform kernel the formulas for the various values of T 
are 

i

TMax

( )K x for T b T T b= − ≤ ≤
1
2

+  
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r T T
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For the Epanechnikov kernel the formulas for the various values of T are 

( ) ( )K x x for T b T T b= − − ≤ ≤ +
3
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1 2  
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( ) ( )( )K x K x A Bx for T b T TR Max= − Max− − < <  

where 

( )
( ) ( )

A
q q q

q q
=

− + −

+ − +

64 2 4 6 3

1 19 18 3

2 3

4 2q
 

( )
( ) ( )

B
q

q q
=

−

+ − +

240 1
1 19 18 3

2

4 2q
 

q T
b

=  

r T T
b

Max=
−

 



 Kaplan-Meier Curves (Logrank Tests)  555-9 

For the biweight kernel the formulas for the various values of T are 

( ) ( )K x x for T b T T b= − − ≤ ≤ +
15
16

1 2 2
 

( ) ( )( )K x K x A Bx for T bL = + <  
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Confidence intervals for h(T) are given by 
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Care must be taken when using this kernel-smoothed estimator since it is actually estimating a 
smoothed version of the hazard rate, not the hazard rate itself. Thus, it may be biased. Also, it is 
greatly influenced by the choice of the bandwidth b. We have found that you must experiment 
with b to find an appropriate value for each dataset.  

Hazard Ratio 
Often, it will be useful to compare the hazard rates of two groups. This is most often 
accomplished by creating the hazard ratio (HR). The hazard ratio is discussed in depth in Parmar 
and Machin (1995) and we refer you to this reference for details which we summarize here. The 
Cox-Mantel estimate of HR for two groups A and B is given by 

HR H
H
O E
O E

CM
A

B

A A

B B

=

=
/
/

 

where  is the observed number of events (deaths) in group i ,  is the expected number of 
events (deaths) in group i, and  is the overall hazard rate for the ith group. The calculation of 
the  is explained in Parmar and Machin (1995). 

Oi Ei

Hi

Ei
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A confidence interval for HR is found by first transforming to the log scale which is better 
approximated by the normal distribution, calculating the limits, and then transforming back to the 
original scale. The calculation is made using 

( ) ( )ln / lnHR z SECM HRCM
± −1 2α  

where 

SE
E EHR

A B
CMln = +

1 1
 

which results in the limits 

( ) ( )[ ]exp ln / lnHR z SECM HRCM
− −1 2α  

and 

( ) ( )[ ]exp ln / lnHR z SECM HRCM
+ −1 2α  

An alternative estimate of HR that is sometimes used is the Mantel-Haenszel estimator which is 
calculated using 

HR O E
VMH

A A=
−⎛

⎝⎜
⎞
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exp  

where V is the hypergeometric variance. For further details, see Parmar and Machin (1995). A 
confidence interval for HR is found by first transforming to the log scale which is better 
approximated by the normal distribution, calculating the limits, and then transforming back to the 
original scale. The calculation is made using 

( ) ( )ln / lnHR z SEMH HRMH
± −1 2α  

where 

SE
VHRMHln =
1

 

which results in the limits 

( ) ( )[ ]exp ln / lnHR z SEMH HRMH
− −1 2α  

and 

( ) ( )[ ]exp ln / lnHR z SEMH HRMH
+ −1 2α  
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Hypothesis Tests 
This section presents methods for testing that the survival curves, and thus the hazard rates, of 
two or more populations are equal. The specific hypothesis set that is being tested is 

( ) ( ) ( )
( ) ( )

H h T h T h T T

H h T h T i j T
K

A i j

0 1 2: , .

: ,

= = = ≤

≠ ≤

L for all 

for at least one value of   ,  and 

τ

τ .
 

Here τ  is taken to be the largest observed time in the study.  

In words, the null hypothesis is that the hazard rates of all populations are equal at all times less 
than the maximum observed time and the alternative hypothesis is that at least two of the hazard 
rates are different at some time less than the observed maximum time. 

In the remainder of this section, we will present a general formulation that includes many of the 
most popular tests. We use the same notation as before, except that now we add an additional 
subscript, k, that represents one of the K populations. The test is formed by making a comparison 
of the actual versus the expected hazard rates. The various hazard rates may be weighted 
differently. These different weights result in different tests with different properties.  

The test is based on the K-1 statistics 
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The Z’s have a covariance matrix Σ  with elements 
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where 
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=
=
≠

⎧
⎨
⎩

1 if 
0 if 

 

If we let Z represent the vector of K-1 statistics and Σ  represent the covariance matrix, the test 
statistic is given by 

Q Z Z= ′ −Σ 1  

In large samples, Q is approximately distributed as a chi-squared random variable with K-1 
degrees of freedom. Details of the above formulas can be found in Klein and Moeschberger 
(1997), pages 191-202 and Andersen, Borgan, Gill, and Keiding (1992), pages 345-356. 

Ten different choices for the weight function, W(T), result in the ten different tests that are 
available in NCSS. The most commonly used test is the logrank test which has equal weighting. 
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The other nine tests shift the heaviest weighting to the beginning or end of the trial. This may be 
appropriate in some studies, but the use of one of these other weighting schemes should be 
designated before the data have been seen. Also, even though ten tests are displayed, you should 
only use one of them. Because of the different weighting patterns, they will often give quite 
different results. It is bad science to look at all the tests and pick the one that matches your own 
conclusions. That is why you must designate the test you will use before you have seen the data.  

The following table describes each of these tests.  

 
Test Weight Comments 
Logrank 1 This is the most commonly used test 

and the one we recommend. Equal 
weights across all times. This test has 
optimum power when the hazard rates 
of the K populations are proportional to 
each other. 

Gehan  Places very heavy weight on hazards at 
the beginning of the study. 

ri

Tarone-Ware ir  Places heavy weight on hazards at the 
beginning of the study. 

Peto-Peto ( )iTS~  Places a little more weight on hazards at 
the beginning of the study. 

Modified Peto-Peto ( ) ( )1/~ +iii rrTS  Places a little more weight on hazards at 
the beginning of the study. 

Fleming-Harrington (0,0)  Places heavy weight on hazards at the 
end of the study. 

( )1
ˆ1 −− iTS

Fleming-Harrington (1,0)  Places almost equal weight at all times. ( )1
ˆ

−iTS

Fleming-Harrington (1,1) ( ) ( )( )11
ˆ1ˆ

−− − ii TSTS  Places heavy weight on hazards at the 
end of the study. 

Fleming-Harrington (0.5,0.5) ( ) ( )( )11
ˆ1ˆ

−− − ii TSTS  Places a little more weight on hazards at 
the end of the study. 

Fleming-Harrington (0.5,2) ( )( ) ( )1
2

1
ˆˆ1 −−− ii TSTS  Places very heavy weight on hazards at 

the end of the study. 

This table uses the following definitions. 

( ) ∏
≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

TT i

i

i
r
dTS 1ˆ  

( ) ∏
≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
TT i

i

i
r

dTS
1

1~  



 Kaplan-Meier Curves (Logrank Tests)  555-13 

Logrank Tests 
The logrank test is perhaps the most popular test for testing equality of hazard functions. This test 
uses W(T) = 1, that is, equal weighting. This test has optimum power when the hazard rates of the 
K populations are proportional to each other. 

Note that this version of the logrank test is different from the version used in NCSS’s Logrank 
procedure. That procedure uses the permutation covariance matrix of Lee and Desu which is only 
valid for equal censoring. The covariance matrix used here is valid for any random censoring 
pattern, so it is much less restrictive. 

Cox-Mantel and Mantel-Haenszel Logrank Tests 
When there are only two groups, two versions of the logrank test are commonly used. These tests 
test the hypothesis that the hazard ratio (HR) is one; that is, that the two hazard rates being 
compared are zero. Note that these tests are equivalent except in small samples. 

Cox-Mantel Logrank Test 
Using the notation given above in the section on the hazard ratios, the Cox-Mantel logrank test 
statistic is computed using 

( ) ( )χCM
A A

A

B B

B

O E
E

O E
E

2
2 2

=
−

+
−

 

This test statistic is approximately distributed as a chi-square random variable with one degree of 
freedom. 

Mantel-Haenszel Logrank Test 
The Mantel-Haenszel logrank test statistic is computed using 

( )χCM
A AO E

V
2

2

=
−

 

This test statistic is also approximately distributed as a chi-square random variable with one 
degree of freedom. 

Randomization Probability Levels 
Because of assumptions that must be made when using this procedure, NCSS also includes a 
randomization test as outlined by Edgington (1987). Randomization tests are becoming more and 
more popular as the speed of computers allows them to be computed in seconds rather than hours. 

A randomization test is conducted by forming a Monte Carlo sampling of all possible 
permutations of the sample data, calculating the test statistic for each sampled permutation, and 
counting the number of permutations that result in a chi-square value greater than or equal to the 
actual chi-square value. Dividing this count by the number of permutations sampled gives the 
significance level of the test. Edgington suggests that at least 1,000 permutations by selected.  

Data Structure 
Survival data sets require up to three components for the survival time: the ending survival time, 
an optional beginning survival time during which the subject was not observed, and an indicator 
of whether an observation was censored or failed.  
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Based on these three components, various types of data may be analyzed. Right censored data are 
specified using only the ending time variable and the censor variable. Left truncated and Interval 
data are entered using all three variables.  

Sample Dataset 
Most survival data sets require at least two variables: the failure time variable and a censor 
variable that indicates whether time is a failure or was censored. Optional variables include a 
count variable which gives the number of items occurring at that time and a group variable that 
identifies which group this observation belongs to. If the censor variable is omitted, all time 
values represent failed items. If the count variable is omitted, all counts are assumed to be one. 

The table below shows a dataset reporting on a two-group time-to-tumor study. In this data set, 
time-to-tumor (in days) is given for twelve mice. The twelve mice were randomly divided into 
two groups. The first group served as a control group, while the second group received a dose of a 
certain chemical. These data are contained in the SURVIVAL database. 

 

SURVIVAL dataset (subset) 

Tumor6 Censor6 Trtmnt6 
8 1 1 
8 1 1 
10 1 1 
12 1 1 
12 1 1 
13 1 1 
9 1 2 
12 1 2 
15 1 2 
20 1 2 
30 0 2 
30 0 2 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Time Variables 

Time Variable 
This variable contains the length of time that an individual was observed. This may represent a 
failure time or a censor time. Whether the subject actually died is specified by the Censor 
Variable. Since the values are elapsed times, they must be positive. Zeroes and negative values 
are treated as missing values. 
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During the maximum likelihood calculations, a risk set is defined for each individual. The risk set 
is defined to be those subjects who were being observed at this subject’s failure and who lived as 
long or longer. It may take several rows of data to specify a subject’s history. 
This variable and the Entry Time Variable define a period during which the individual was at risk 
of failing. If the Entry Time Variable is not specified, its value is assumed to be zero. 
Several types of data may be entered. These will be explained next. 

• Failure 
This type of data occurs when a subject is followed from their entrance into the study until 
their death. The failure time is entered in this variable and the Censor Variable is set to the 
failed code, which is often a one.  

The Entry Time Variable is not necessary. If an Entry Time Variable is used, its value should 
be zero for this type of observation.  

• Interval Failure 
This type of data occurs when a subject is known to have died during a certain interval. The 
subject may, or may not, have been observed during other intervals. If they were, they are 
treated as Interval Censored data. An individual may require several rows on the database to 
record their complete follow-up history.  

For example, suppose the condition of the subjects is only available at the end of each month. 
If a subject fails during the fifth month, two rows of data would be required. One row, 
representing the failure, would have a Time of 5.0 and an Entry Time of 4.0. The Censor 
variable would contain the failure code. A second row, representing the prior periods, would 
have a Time of 4.0 and an Entry Time of 0.0. The Censor variable would contain the censor 
code. 

• Right Censored 
This type of data occurs when a subject has not failed up to the specified time. For example, 
suppose that a subject enters the study and does not die until after the study ends 12 months 
later. The subject’s time (365 days) is entered here. The Censor variable contains the censor 
code.  

• Interval Censored 
This type of data occurs when a subject is known not to have died during a certain interval. 
The subject may, or may not, have been observed during other intervals. An individual may 
require several rows on the database to record their complete follow-up history. 

For example, suppose the condition of the subjects is only available at the end of each month. 
If a subject fails during the fifth month, two rows of data would be required. One row, 
representing the failure, would have a Time of 5.0 and an Entry Time of 4.0. The Censor 
variable would contain the failure code. A second row, representing the prior periods, would 
have a Time of 4.0 and an Entry Time of 0.0. The Censor variable would contain the censor 
code. 

Entry Time Variable 
This optional variable contains the elapsed time before an individual entered the study. Usually, 
this value is zero. However, in cases such as left truncation and interval censoring, this value 
defines a time period before which the individual was not observed.  
Negative entry times are treated as missing values. It is possible for the entry time to be zero. 
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Min Entry Time 
When you have left truncation, this value gives the minimum entry time after which events are 
considered. When used, all survival and hazard rates are conditional on the subject reaching this 
age.When there is no left truncation (Entry Time Variable), this value is set to zero. 

This value is necessary because with left truncation, it is possible for the Kaplan-Meier estimate 
to reach (and then stay at) zero to soon. Conditioning the probability statements so that this age 
must be reached in order for an individual to be in a risk set removes this zeroing out problem. 

Censor Variable 

Censor Variable 
The values in this variable indicate whether the value of the Time Variable represents a censored 
time or a failure time. These values may be text or numeric. The interpretation of these codes is 
specified by the Failed and Censored options to the right of this option. 
Only two values are used, the Failure code and the Censor code. The Unknown Type option 
specifies what is to be done with values that do not match either the Failure code or the Censor 
code.  
Rows with missing values (blanks) in this variable are omitted. 

Failed 
This value identifies those values of the Censor Variable that indicate that the Time Variable 
gives a failure time. The value may be a number or a letter.  
We suggest the letter ‘F’ or the number ‘1’ when you are in doubt as to what to use. 
A failed observation is one in which the time until the event of interest was measured exactly; for 
example, the subject died of the disease being studied. The exact failure time is known. 

(Left Censoring) 
When the exact failure time is not known, but instead only an upper bound on the failure time is 
known, the time value is said to have been left censored. In this case, the time value is treated as 
if it were the true failure time, not just an upper bound. So left censored observations should be 
coded as failed observations. 

Censored 
This value identifies those values of the Censor Variable that indicate that the individual recorded 
on this row was censored. That is, the actual failure time occurs sometime after the value of the 
Time Variable.  
We suggest the letter ‘C’ or the number ‘0’ when you are in doubt as to what to use. 
A censored observation is one in which the time until the event of interest is not known because 
the individual withdrew from the study, the study ended before the individual failed, or for some 
similar reason. 
Note that it does not matter whether the censoring was Right or Interval. All you need to indicate 
here is that they were censored. 
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Unknown Censor 
This option specifies what the program is to assume about rows whose censor value is not equal 
to either the Failed code or the Censored code. Note that observations with missing censor values 
are always treated as missing.  

• Censored 
Observations with unknown censor values are assumed to have been censored. 

• Failed 
Observations with unknown censor values are assumed to have failed. 

• Missing 
Observations with unknown censor values are assumed to be missing and they are removed 
from the analysis. 

Group Variable 

Group Variable 
An optional categorical (grouping) variable may be specified. If it is used, a separate analysis is 
conducted for each unique value of this variable and the log rank tests are performed. If it is not 
specified, the log rank tests cannot be generated. 

Resampling 

Run Randomization tests 
Check this option to run randomization tests. Note that these tests are computer-intensive and 
may require a great deal of time to run. 

Monte Carlo Samples 
Specify the number of Monte Carlo samples used when conducting randomization tests. You also 
need to check the ‘Run randomization tests’ box to run these tests. 
Somewhere between 1,000 and 100,000 Monte Carlo samples are usually necessary. We suggest 
the use of 10,000. 

Frequency Variable 

Frequency Variable 
This variable gives the count, or frequency, of the time displayed on that row. When omitted, 
each row receives a frequency of one. Frequency values should be positive integers. This is 
usually used to indicate the number of right censored values at the end of a study or the number 
of failures occurring within an interval. It may also be used to indicate ties for failure data. 
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Options – KM Survival and 
Cumulative Hazard 

Confidence Limits 
This option specifies the method used to estimate the confidence limits of the Kaplan-Meier 
Survival and the Cumulative Hazard. The options are: 

• Linear 
This is the classical method which uses Greenwood’s estimate of the variance. 

• Log Transform 
This method uses the logarithmic transformation of Greenwood’s variance estimate. It 
produces better limits than the Linear method and has better small sample properties. 

• ArcSine 
This method uses the arcsine square-root transformation of Greenwood’s variance estimate to 
produce better limits. 

Variance 
The option specifies which estimator of the variance of the Nelson-Aalen cumulative hazard 
estimate is to be used. Three estimators have been proposed. When there are no event-time ties, 
all three give about the same results.  

We recommend that you use the Simple estimator unless ties occur naturally in the theoretical 
event times. 

• Simple 
This estimator should be used when event-time ties are caused by rounding and lack of 
measurement precision. This estimate gives the largest value and hence the widest, most 
conservation, confidence intervals. 

• Plug In 
This estimator should be used when event-time ties are caused by rounding and lack of 
measurement precision. 

• Binomial 
This estimator should be used when ties occur in the theoretical distribution of event times. 

Options – Hazard Rate 
The following options control the calculation of the hazard rate and cumulative hazard function. 

Bandwidth Method 
This option designates the method used to specify the smoothing bandwidth used to calculate the 
hazard rate. Specify an amount or a percentage of the time range. The default is to specify a 
percent of the time range. 
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Bandwidth Amount 
This option specifies the bandwidth size used to calculate the hazard rate. If the Bandwidth 
Method was set to Amount, this is a value in time units (such as 10 hours). If Percentage of Time 
Range was selected, this is a percentage of the overall range of the data. 

Smoothing Kernel 
This option specifies the kernel function used in the smoothing to estimate the hazard rate. You 
can select uniform, Epanechnikov, or biweight smoothing. The actual formulas for these 
functions were provided above. 

Reports Tab 
The following options control which reports are displayed and the format of those reports. 

Select Reports 

Data Summary Section - Hazard Ratio Tests 
These options indicate whether to display the corresponding report. 

Report Options 

Alpha Level 
This is the value of alpha used in the calculation of confidence limits. For example, if you specify 
0.04 here, then 96% confidence limits will be calculated. 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. Single precision is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option lets you select whether to display only values, only value labels, or both for values of 
the group variable. Use this option if you want to automatically attach labels to the values of the 
group variable (like 1=Male, 2=Female, etc.). See the section on specifying Value Labels 
elsewhere in this manual.  

Report Options – Survival and Hazard 
Rate Calculation Values 

Percentiles 
This option specifies a list of percentiles (range 1 to 99) at which the reliability (survivorship) is 
reported. The values should be separated by commas.  
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You can specify sequences with a colon, putting the increment inside parentheses after the 
maximum in the sequence. For example: 5:25(5) means 5,10,15,20,25 and 1:5(2),10:20(2) means 
1,3,5,10,12,14,16,18,20. 

Times 
This option specifies a list of times at which the percent surviving and cumulative hazard values 
are reported. Individual values are separated by commas. You can specify a sequence by 
specifying the minimum and maximum separate by a colon and putting the increment inside 
parentheses. For example: 5:25(5) means 5,10,15,20,25. Avoid 0 and negative numbers. Use 
‘(10)’ alone to specify ten values between zero and the maximum value found in the data. 

Report Options – Decimal Places 

Time 
This option specifies the number of decimal places shown on reported time values. 

Probability 
This option specifies the number of decimal places shown on reported probability and hazard 
values. 

Chi-Square 
This option specifies the number of decimal places shown on reported chi-square values. 

Ratio 
This option specifies the number of decimal places shown on reported ratio values. 

Plots Tab 
The following options control the plots that are displayed. 

Select Plots 
These options specify which plots type of plots are displayed.  

Survival/Reliability Plot – Hazard Rate Plot 
Specify whether to display each of these plots. 

Select Plots – Plots Displayed 

Individual-Group Plots 
When checked, this option specifies that a separate chart of each designated type is displayed. 

Combined Plots 
When checked, this option specifies that a chart combining all groups is to be displayed. 

Plot Options – Plot Arrangement 
These options control the size and arrangement of the plots. 
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Two Plots Per Line 
When a man charts are specified, checking this option will cause the size of the charts to be 
reduced so that they can be displayed two per line. This will reduce the overall size of the output. 

Plot Options – Plot Contents 
These options control objects that are displayed on all plots. 

Function Line 
Indicate whether to display the estimated survival (Kaplan-Meier) or hazard function on the plots. 

C.L. Lines 
Indicate whether to display the confidence limits of the estimated function on the plots. 

Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies legend label. A {G} is replaced by the name of the group variable. 

Horizontal (Time) Axis 
These options control the horizontal axis of the plots. 

Label 
This is the text of the horizontal label. The characters {X} are replaced the name of the time 
variable. Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the horizontal (X) 
axes. If left blank, these values are calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 
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Survival Plot Tab 
These options control the attributes of the survival curves. Note that the horizontal axis is 
specified in the Plots tab. 

Vertical Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Survival Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Censor Tickmarks 
This option indicates the size of the tickmarks (if any) showing where the censored points fall on 
the Kaplan-Meier survival curve. The values are at a scale of 1000 equals one inch. 
We recommend that you use ‘0’ to indicate no marks or ‘100’ to display the marks. 

Titles 

Title Line 1 and 2 
These are the text lines of the titles. The characters {Y}, {X}, and {Z} are replaced by appropriate 
names. Press the button on the right of the field to specify the font of the text. 
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Cum Haz Plot Tab 
These options control the attributes of the cumulative hazard function plot. 

Vertical Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Cum Hazard Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Titles 

Title Line 1 and 2 
These are the text lines of the titles. The characters {Y}, {X}, and {Z} are replaced by appropriate 
names. Press the button on the right of the field to specify the font of the text. 
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Haz Rt Plot Tab 
These options control the attributes of the hazard rate plot. 

Vertical Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Hazard Rate Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Titles 

Title Line 1 and 2 
These are the text lines of the titles. The characters {Y}, {X}, and {Z} are replaced by appropriate 
names. Press the button on the right of the field to specify the font of the text. 
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Lines Tab 
These options specify the attributes of the lines used for each group in the hazard curves and 
survival curves. 

Plotting Lines 

Line 1 - 15 
These options specify the color, width, and pattern of the lines used in the plots of each group. 
The first line is used by the first group, the second line by the second group, and so on. These line 
attributes are provided to allow the various groups to be indicated on black-and-white printers. 
Clicking on a line box (or the small button to the right of the line box) will bring up a window 
that allows the color, width, and pattern of the line to be changed. 

Labels Tab 
The options on this tab specify the labels that a printed on the reports and plots. 

Report and Plot Labels 

Failure Time Label - Hazard Rate Label 
These options specify the term(s) used as labels for these items on the plots. Since these reports 
are used for performing survival analysis in medical research and reliability analysis in industry, 
and since these fields often use different terminology, these options are needed to provide 
appropriate headings for the reports. 

Storage Tab 
These options let you specify if, and where on the database, various statistics are stored. 

Warning: Any data already in these variables are replaced by the new data. Be careful not to 
specify variables that contain important data. 

Data Storage Options 

Storage Option 
This option controls whether the values indicated below are stored on the database when the 
procedure is run. 

• Do not store data 
No data are stored even if they are checked. 

• Store in empty columns only 
The values are stored in empty columns only. Columns containing data are not used for data 
storage, so no data can be lost. 
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• Store in designated columns 
Beginning at the First Storage Variable, the values are stored in this column and those to the 
right. If a column contains data, the data are replaced by the storage values. Care must be 
used with this option because it cannot be undone. 

Store First Variable In 
The first item is stored in this variable. Each additional item that is checked is stored in the 
variables immediately to the right of this variable.  

Leave this value blank if you want the data storage to begin in the first blank column on the right-
hand side of the data. 

Warning: any existing data in these variables is automatically replaced, so be careful. 

Data Storage Options – Select Items 
to Store on the Spreadsheet 

Survival Group - Hazard Rate UCL 
Indicate whether to store these values, beginning at the variable indicated by the Store First 
Variable In option.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Kaplan-Meier Survival Analysis 
This section presents an example of how to analyze a typical set of survival data. In this study, 
thirty subjects were watched to see how long until a certain event happened after the subject 
received a certain treatment. The study was terminated at 152.7 hours. At this time, the event had 
not occurred in eighteen of the subjects. The data used are recorded in the WEIBULL database.  
You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Kaplan-Meier Curves (Logrank Tests) Fitting window. 

1 Open the WEIBULL dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file WEIBULL.S0. 
• Click Open. 

2 Open the Kaplan-Meier Curves (Logrank Tests) window. 
• On the menus, select Analysis, then Survival / Reliability, then Kaplan-Meier Curves 

(Logrank Tests). The Kaplan-Meier Curves (Logrank Tests) procedure will be 
displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Kaplan-Meier Curves (Logrank Tests) window, select the Variables tab.  
• Set the Time Variable to Time.  
• Set the Censor Variable to Censor.  
• Set the Frequency Variable to Count.  

4 Specify the reports. 
• Select the Reports tab.  
• Set the Times box to 10:150(10).  

5 Specify the plots. 
• Select the Plots tab. 
• Check Hazard Function Plot. 
• Check Hazard Rate Plot.  
• Check C.L. Lines.  

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Data Summary Section 
 
 Data Summary Section 
  
 Type of 
 Observation Rows Count Minimum Maximum 
 Failed 12 12 12.5 152.7  
 Censored 1 18 152.7 152.7  
 Total 13 30 12.5 152.7  
 

This report displays a summary of the amount of data that were analyzed. Scan this report to 
determine if there were any obvious data errors by double checking the counts and the minimum 
and maximum times. 

Survival at Specific Event Times 
 

 Cumulative Standard Lower Upper  
Event Survival Error 95% C.L. % C.L. At 
Time (T) S(T) of S(T) for S(T) for S(T) Risk 
10.0 1.0000 0.0000 1.0000 1.0000 30  
20.0 0.9667 0.0328 0.9024 1.0000 29  
30.0 0.9333 0.0455 0.8441 1.0000 28  
40.0 0.9333 0.0455 0.8441 1.0000 28  
50.0 0.9333 0.0455 0.8441 1.0000 28  
60.0 0.9000 0.0548 0.7926 1.0000 27  
70.0 0.8333 0.0680 0.7000 0.9667 25  
80.0 0.8333 0.0680 0.7000 0.9667 25  
90.0 0.8333 0.0680 0.7000 0.9667 25  
100.0 0.7333 0.0807 0.5751 0.8916 22  
110.0 0.7333 0.0807 0.5751 0.8916 22  
120.0 0.7000 0.0837 0.5360 0.8640 21  
130.0 0.6333 0.0880 0.4609 0.8058 19  
140.0 0.6333 0.0880 0.4609 0.8058 19  
150.0 0.6333 0.0880 0.4609 0.8058 19  

 

This report displays the Kaplan-Meier product-limit survival probabilities at the specified time 
points. The formulas used were presented earlier.  

Event Time (T) 
This is the time point being reported on this line. The time values were specified in the Times box 
under the Report tab. 

Cumulative Survival S(T) 
This is the probability that a subject does not have the event until after the event time given on 
this line. This probability is estimated using the Kaplan-Meier product limit method. The estimate 
is given by the formula 
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Standard Error of S(T) 
This is the estimated standard error of the Kaplan-Meier survival probability. The variance of 
S(T) is estimated by Greenwood’s formula 

[ ]$ $( ) $( )
( )

V S T S T d
r r d

i

i i iA T Ti

=
−≤ ≤

∑2  

The standard error is the square root of this variance. 

Lower and Upper Confidence Limits for S(T) 
The lower and upper confidence limits provide a pointwise confidence interval for the survival 
probability at each time point. These limits are constructed so that the probability that the true 
survival probability lies between them is 1−α . Note that these limits are constructed for a single 
time point. Several of them cannot be used together to form a confidence band such that the entire 
survival function lies within the band.  

Three difference confidence intervals are available. All three confidence intervals perform about 
the same in large samples. The linear (Greenwood) interval is the most commonly used. 
However, the log-transformed and the arcsine-square intervals behave better in small to moderate 
samples, so they are recommended. The formulas for these limits were given at the beginning of 
the chapter and are not repeated here. 

At Risk 
This value is the number of individuals at risk. The number at risk is all those under study who 
died or were censored at a time later than the current time. As the number of individuals at risk is 
decreased, the estimates become less reliable. 

Quantiles of Survival Time 
 

   Lower Upper 
   95% C.L. 95% C.L. 
Proportion Proportion Survival Survival Survival 
Surviving Failing Time Time Time 
0.9500 0.0500 24.4 12.5 69.1  
0.9000 0.1000 58.2 24.4 96.6  
0.8500 0.1500 69.1 24.4 114.2  
0.8000 0.2000 95.5 58.2 125.6  
0.7500 0.2500 97.0 68.0 152.7  
0.7000 0.3000 114.2 69.1 152.7  
0.6500 0.3500 125.6 96.6 152.7  
0.6000 0.4000 152.7 97.0 152.7  
0.5500 0.4500  114.2 152.7  
0.5000 0.5000  123.2 152.7  
0.4500 0.5500  152.7 152.7  
0.4000 0.6000   152.7  
0.3500 0.6500   152.7  
0.3000 0.7000   152.7  
0.2500 0.7500   152.7  
0.2000 0.8000   152.7  
0.1500 0.8500   152.7  
0.1000 0.9000   152.7  
0.0500 0.9500   152.7  
    

This report displays the estimated survival times for various survival proportions. For example, it 
gives the median survival time if it can be estimated. 
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Proportion Surviving 
This is the proportion surviving that is reported on this line. The proportion values were specified 
in the Percentiles box under the Report tab.  

Proportion Failing 
This is the proportion failing. The proportion is equal to one minus the proportion surviving. 

Survival Time 
This is the time value corresponding to the proportion surviving. The pth quantile is estimated by  

( ){ }T T S Tp = ≤inf : $ 1 p−  

In words, T  is smallest time at which  is less than or equal to 1 - p. p
$( )S T

For example, this table estimates that 95% of the subjects will survive longer than 24.4 hours. 

Lower and Upper Confidence Limits on Survival Time 

These values provide a pointwise ( )%1100 α−  confidence interval for T . For example, if p is 
0.50, this provides a confidence interval for the median survival time. 

p

Three methods are available for calculating these confidence limits. The method is designated 
under the Variables tab in the Confidence Limits box. The formulas for these confidence limits 
were given in the Survival Quantiles section.  

Note that because of censoring, estimates and confidence limits are not available for all survival 
proportions. 

Cumulative Hazards for Specific Times 
 

 Cumulative Standard Lower Upper  
Event Hazard Error 95% C.L. 95% C.L. At 
Time (T) H(T) of H(T) for H(T) for H(T) Risk 
10.0 0.0000 0.0000 0.0000 0.0000 30 
20.0 0.0333 0.0333 0.0000 0.0987 29 
30.0 0.0678 0.0480 0.0000 0.1618 28 
40.0 0.0678 0.0480 0.0000 0.1618 28 
50.0 0.0678 0.0480 0.0000 0.1618 28 
60.0 0.1035 0.0598 0.0000 0.2207 27 
70.0 0.1790 0.0802 0.0219 0.3362 25 
80.0 0.1790 0.0802 0.0219 0.3362 25 
90.0 0.1790 0.0802 0.0219 0.3362 25 
100.0 0.3042 0.1079 0.0926 0.5158 22 
110.0 0.3042 0.1079 0.0926 0.5158 22 
120.0 0.3496 0.1171 0.1201 0.5792 21 
130.0 0.4472 0.1360 0.1808 0.7137 19 
140.0 0.4472 0.1360 0.1808 0.7137 19 
150.0 0.4472 0.1360 0.1808 0.7137 19 

 

This report displays estimates of the cumulative hazard function at the specified time points. The 
formulas used were presented earlier.  

Event Time (T) 
This is the time point being reported on this line. The time values were specified in the Times box 
under the Report tab. 
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Cumulative Hazard H(T) 
This is the Nelson-Aalen estimator of the cumulative hazard function, H(T). This estimator is give 
by 
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Standard Error of H(T) 
This is the estimated standard error of the above cumulative hazard function. The formula used 
was specified under the Variables tab in the Variance box. These formulas were given above in 
the section discussing the Nelson-Aalen estimator.  

The standard error is the square root of this variance. 

Lower and Upper Confidence Limits for H(T) 
The lower and upper confidence limits provide a pointwise confidence interval for the cumulative 
hazard at each time point. These limits are constructed so that the probability that the true 
cumulative hazard lies between them is 1−α . Note that these limits are constructed for a single 
time point. Several of them cannot be used together to form a confidence band such that the entire 
cumulative hazard function lies within the band.  

Three difference confidence intervals are available. All three confidence intervals perform about 
the same in large samples. The linear (Greenwood) interval is the most commonly used. 
However, the log-transformed and the arcsine-square intervals behave better in small to moderate 
samples, so they are recommended. The formulas for these limits were given at the beginning of 
the chapter and are not repeated here. 

At Risk 
This value is the number of individuals at risk. The number at risk is all those under study who 
died or were censored at a time later than the current time. As the number of individuals at risk is 
decreased, the estimates become less reliable. 

Hazard Rates Section 
 

   95% Lower 95% Upper 
 Nonparametric Std Error of Conf. Limit of Conf. Limit of 
Failure Hazard Hazard Hazard Hazard 
Time Rate Rate Rate Rate 
10.0 0.0018 0.0014 0.0004 0.0085 
20.0 0.0018 0.0013 0.0005 0.0073 
30.0 0.0015 0.0010 0.0004 0.0055 
40.0 0.0016 0.0009 0.0005 0.0047 
50.0 0.0022 0.0012 0.0008 0.0063 
60.0 0.0026 0.0015 0.0008 0.0080 
70.0 0.0034 0.0016 0.0014 0.0084 
80.0 0.0042 0.0017 0.0019 0.0095 
90.0 0.0043 0.0019 0.0018 0.0101 
100.0 0.0048 0.0021 0.0020 0.0111 
110.0 0.0054 0.0022 0.0024 0.0121 
120.0 0.0047 0.0021 0.0019 0.0113 
130.0 0.0038 0.0020 0.0014 0.0105 
140.0 0.0036 0.0025 0.0009 0.0143 
150.0 0.0066 0.0066 0.0009 0.0468 
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This report displays estimates of the hazard rates at the specified time points. The formulas used 
were presented earlier.  

Failure Time 
This is the time point being reported on this line. The time values were specified in the Times box 
under the Report tab. 

Nonparametric Hazard Rate 
The characteristics of the failure process are best understood by studying the hazard rate, h(T), 
which is the derivative (slope) of the cumulative hazard function H(T). The hazard rate is 
estimated using kernel smoothing of the Nelson-Aalen estimator as given in Klein and 
Moeschberger (1997). The formulas used were given earlier and are not repeated here. 

Care must be taken when using this kernel-smoothed estimator since it is actually estimating a 
smoothed version of the hazard rate, not the hazard rate itself. Thus, it may be biased. Also, it is 
greatly influenced by the choice of the bandwidth b. We have found that you must experiment 
with b to find an appropriate value for each dataset.  

The values of the smoothing parameters are specified under the Hazards tab. 

Standard Error of Hazard Rate 
This is the estimated standard error of the above hazard rate. The formula used was specified 
under the Variables tab in the Variance box. These formulas were given above in the section 
discussing the Nelson-Aalen estimator.  

The standard error is the square root of this variance. 

Lower and Upper Confidence Limits of Hazard Rate 
The lower and upper confidence limits provide a pointwise confidence interval for the smoothed 
hazard rate at each time point. These limits are constructed so that the probability that the true 
hazard rate lies between them is 1−α . Note that these limits are constructed for a single time 
point. Several of them cannot be used together to form a confidence band such that the entire 
hazard rate function lies within the band.  

Product-Limit Survival Analysis 
 
  Cumulative Standard Lower Upper    

Event Survival Error 95% C.L. 95% C.L. At  Total 
Time (T) S(T) of S(T) for S(T) for S(T) Risk Count Events 
12.5 0.9667 0.0328 0.9024 1.0000 30 1 1 
24.4 0.9333 0.0455 0.8441 1.0000 29 1 2 
58.2 0.9000 0.0548 0.7926 1.0000 28 1 3 
68.0 0.8667 0.0621 0.7450 0.9883 27 1 4 
69.1 0.8333 0.0680 0.7000 0.9667 26 1 5 
95.5 0.8000 0.0730 0.6569 0.9431 25 1 6 
96.6 0.7667 0.0772 0.6153 0.9180 24 1 7 
97.0 0.7333 0.0807 0.5751 0.8916 23 1 8 
114.2 0.7000 0.0837 0.5360 0.8640 22 1 9 
123.2 0.6667 0.0861 0.4980 0.8354 21 1 10 
125.6 0.6333 0.0880 0.4609 0.8058 20 1 11 
152.7 0.6000 0.0894 0.4247 0.7753 19 1 12 
152.7+     18 18 12 

 

This report displays the Kaplan-Meier product-limit survival distribution along with confidence 
limits. The formulas used were presented earlier.  
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Also note that the sample size is given for each time period. As time progresses, participants are 
removed from the study, reducing the sample size. Hence, the survival results near the end of the 
study are based on only a few participants and are therefore less precise. This shows up as a 
widening of the confidence limits. 

Event Time (T) 
This is the time point being reported on this line. The time values are specific event times that 
occurred in the data.  

Note that censored observations are marked with a plus sign on their time value. The survival 
functions are not calculated for censored observations.  

Cumulative Survival S(T) 
This is the probability that a subject does not have the event until after the event time given on 
this line. This probability is estimated using the Kaplan-Meier product limit method. The estimate 
is given by the formula 
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Standard Error of S(T) 
This is the estimated standard error of the Kaplan-Meier survival probability. The variance of 
S(T) is estimated by Greenwood’s formula 
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The standard error is the square root of this variance. 

Lower and Upper Confidence Limits for S(T) 
The lower and upper confidence limits provide a pointwise confidence interval for the survival 
probability at each time point. These limits are constructed so that the probability that the true 
survival probability lies between them is α−1 . Note that these limits are constructed for a single 
time point. Several of them cannot be used together to form a confidence band such that the entire 
survival function lies within the band.  

Three difference confidence intervals are available. All three confidence intervals perform about 
the same in large samples. The linear (Greenwood) interval is the most commonly used. 
However, the log-transformed and the arcsine-square intervals behave better in small to moderate 
samples, so they are recommended. The formulas for these limits were given at the beginning of 
the chapter and are not repeated here. 

At Risk 
This value is the number of individuals at risk. The number at risk is all those under study who 
died or were censored at a time later than the current time. As the number of individuals at risk is 
decreased, the estimates become less reliable. 

Count 
This is the number of individuals having the event (failing) at this time point. 
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Total Events 
This is the cumulative number of individuals having the event (failing) up to and including this 
time value. 

Nelson-Aalen Cumulative Hazard Section 
 

 Cumulative Standard Lower Upper    
Event Hazard Error 95% C.L. 95% C.L. At  Total 
Time (T) H(T) of H(T) for H(T) for H(T) Risk Count Events 
12.5 0.0333 0.0333 0.0000 0.0987 30 1 1 
24.4 0.0678 0.0480 0.0000 0.1618 29 1 2 
58.2 0.1035 0.0598 0.0000 0.2207 28 1 3 
68.0 0.1406 0.0703 0.0027 0.2784 27 1 4 
69.1 0.1790 0.0802 0.0219 0.3362 26 1 5 
95.5 0.2190 0.0896 0.0434 0.3946 25 1 6 
96.6 0.2607 0.0988 0.0670 0.4544 24 1 7 
97.0 0.3042 0.1079 0.0926 0.5158 23 1 8 
114.2 0.3496 0.1171 0.1201 0.5792 22 1 9 
123.2 0.3972 0.1264 0.1494 0.6451 21 1 10 
125.6 0.4472 0.1360 0.1808 0.7137 20 1 11 
152.7 0.4999 0.1458 0.2141 0.7856 19 1 12 
152.7+     18 18 12 

 

This report displays estimates of the cumulative hazard function at the time points encountered in 
the dataset. The formulas used were presented earlier.  

Event Time (T) 
This is the time point being reported on this line. The time values are specific event times that 
occurred in the data.  

Note that censored observations are marked with a plus sign on their time value. The survival 
functions are not calculated for censored observations.  

Cumulative Hazard H(T) 
This is the Nelson-Aalen estimator of the cumulative hazard function, H(T).  

Standard Error of H(T) 
This is the estimated standard error of the above cumulative hazard function. The formula used 
was specified under the Variables tab in the Variance box. These formulas were given above in 
the section discussing the Nelson-Aalen estimator.  

The standard error is the square root of this variance. 

Lower and Upper Confidence Limits for H(T) 
The lower and upper confidence limits provide a pointwise confidence interval for the cumulative 
hazard at each time point. These limits are constructed so that the probability that the true 
cumulative hazard lies between them is 1−α . Note that these limits are constructed for a single 
time point. Several of them cannot be used together to form a confidence band such that the entire 
cumulative hazard function lies within the band.  

Three difference confidence intervals are available. All three confidence intervals perform about 
the same in large samples. The linear (Greenwood) interval is the most commonly used. 
However, the log-transformed and the arcsine-square intervals behave better in small to moderate 
samples, so they are recommended. The formulas for these limits were given at the beginning of 
the chapter and are not repeated here. 
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At Risk 
This value is the number of individuals at risk. The number at risk is all those under study who 
died or were censored at a time later than the current time. As the number of individuals at risk is 
decreased, the estimates become less reliable. 

Count 
This is the number of individuals having the event (failing) at this time point. 

Total Events 
This is the cumulative number of individuals having the event (failing) up to and including this 
time value. 

Survival Plot 
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This plot shows the product-limit survivorship function as well as the pointwise confidence 
intervals. If there are several groups, a separate line is drawn for each group.  
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Hazard Function Plot 
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This plot shows the Nelson-Aalen cumulative hazard function for the data analyzed. Confidence 
limits are also given. 

If you have several groups, then a separate line is drawn for each group.  

Hazard Rate Plot 
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This plot shows the hazard rate with associated confidence limits.  
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Example 2 – Logrank Tests 
This section presents an example of how to use a logrank test to compare the hazard rates of two 
or more groups.  
The data used are recorded in the variables Tumor6, Censor6, and Trtmnt6 of the SURVIVAL 
database.  
You may follow along here by making the appropriate entries or load the completed template 
Example2 from the Template tab of the Kaplan-Meier Curves (Logrank Tests) Fitting window. 

1 Open the SURVIVAL dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file SURVIVAL.S0. 
• Click Open. 

2 Open the Kaplan-Meier Curves (Logrank Tests) window. 
• On the menus, select Analysis, then Survival / Reliability, then Kaplan-Meier Curves 

(Logrank Tests). The Kaplan-Meier Curves (Logrank Tests) procedure will be 
displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Kaplan-Meier Curves (Logrank Tests) window, select the Variables tab.  
• Set the Time Variable to TUMOR6.  
• Set the Censor Variable to CENSOR6.  
• Set the Group Variable to TRTMNT6.  
• Check the Run Randomization Tests box. 
• Set the Monte Carlo Samples to 1000.  

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Logrank Tests Section 
 
   Randomization Weighting  
    Test of Hazard 
   Prob Prob Comparisons 
Test Name Chi-Square DF Level* Level* Across Time 
Logrank 4.996 1 0.0254 0.0470 Equal 
Gehan-Wilcoxon 3.956 1 0.0467 0.0520 High++ to Low++ 
Tarone-Ware 4.437 1 0.0352 0.0510 High to Low 
Peto-Peto 3.729 1 0.0535 0.0670 High+ to Low+ 
Mod. Peto-Peto 3.618 1 0.0572 0.0740 High+ to Low+ 
F-H (1, 0) 3.956 1 0.0467 0.0520 Almost Equal 
F-H (.5, .5) 3.507 1 0.0611 0.0920 Low+ to High+ 
F-H (1, 1) 4.024 1 0.0449 0.0760 Low to High 
F-H (0, 1) 5.212 1 0.0224 0.0650 Low to High 
F-H (.5, 2) 5.942 1 0.0148 0.0420 Low++ to High++ 
 
*These probability levels are only valid when a single test was selected before this analysis is seen. 
You cannot select a test to report after viewing this table without adding bias to the results. 
Unless you have good reason to do otherwise, you should use the equal weighting (logrank) test. 
 

This report gives the results of the ten logrank type tests that are provided by this procedure. We 
strongly suggest that you select the test that will be used before viewing this report. Unless you 
have a good reason for doing so, we recommend that you use the first (Logrank) test.  

Chi-Square 
This is the chi-square value of the test. Each of these tests is approximately distributed as a chi-
square in large samples. 

DF 
This is the degrees of freedom of the chi-square distribution. It is one less than the number of 
groups. 

Prob Level 
This is the significance level of the test. If this value is less than your chosen significance level 
(often 0.05), the test is significant and the hazard rates of the groups are not identical at all time 
values. 

Randomization Test Prob Level 
This is the significance level of the corresponding randomization test. This significance level is 
exact if the assumption that any censoring is independent of which group the subject was in. 

In this example, several of the tests that were just significant at the 0.05 level are not significant 
using corresponding the randomization test. In cases like this, the randomization test should be 
considered more accurate than the chi-square test. 

Weighting of Hazard Comparisons Across Time 
The type of weighting pattern that is used by this test is given here. 
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Logrank Test Detail Section 
 

Logrank Test Detail Section 
  Standard Standardized 
Group Z-Value Error Z-Value 
1 2.831 1.266 2.235 
2 -2.831 1.266 -2.235 
Probability Level was 0.0254 
 
Gehan-Wilcoxon Test Detail Section 
  Standard Standardized 
Group Z-Value Error Z-Value 
1 24.000 12.066 1.989 
2 -24.000 12.066 -1.989 
Probability Level was 0.0467 
 
Tarone-Ware Test Detail Section 
  Standard Standardized 
Group Z-Value Error Z-Value 
1 8.130 3.859 2.106 
2 -8.130 3.859 -2.106 
Probability Level was 0.0352 
. 
. 
. 
report continues for all ten tests. 
 

This report gives the details of each of the ten logrank tests that are provided by this procedure. 
We strongly suggest that you select the test that will be used before viewing this report. Unless 
you have a good reason for doing so, we recommend that you use the first (Logrank) test. 

Group 
This is the group reported about on this line. 

Z-Value 
This is a weighted average of the difference between the observed hazard rates of this group and 
the expected hazard rates under the null hypothesis of hazard rate equality. The expected hazard 
rates are found by computing new hazard rates based on all that data as if they all came from a 
single group. 

By considering the magnitudes of these values, you can determine which group (or groups) are 
different from the rest.  

Standard Error 
This is the standard error of the above z-value. It is used to standardize the z-values. 

Standardized Z-Value 
The standardized z-value is created by dividing the z-value by its standard error. This provides an 
index number that will usually very between -3 and 3. Larger values represent groups that quite 
different from the typical group, at least at some time values. 
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Hazard Ratio Detail Section 
 
     Cox-  
     Mantel  
 Sample Observed Expected Hazard Hazard Hyper. 
 Size Events Events Rates Ratio Var. 
Groups (nA/nB) (OA/OB) (EA/EB) (HRA/HRB) (HR) (V) 
1/2 6/6 6/4 3.17/6.83 1.89/0.59 3.23 1.60 
2/1 6/6 4/6 6.83/3.17 0.59/1.89 0.31 1.60 
 

This report gives the details of the hazard ratio calculation. One line of the report is devoted to 
each pair of groups.  

Groups 
These are the two groups reported about on this line, separated by a slash. 

Sample Size 
These are the sample sizes of the two groups. 

Observed Events 
These are the number of events (deaths) observed in the two groups. 

Expected Events 
These are the number of events (deaths) expected in each group under the hypothesis that the two 
hazard rates are equal. 

Hazard Rates 
These are the hazard rates of the two groups. The hazard rate is computed as the ratio of the 
number of observed and expected events. 

Cox-Mantel Hazard Ratio 
This is the value of the Cox-Mantel hazard ratio. This is the ratio of the two hazard rates. 

Hyper. Var. 
This is the value of V, the hypergeometric variance. This value is used to compute the Mantel-
Haenszel hazard ratio and confidence interval. 

Hazard Ratio Confidence Interval Section 
 
 Cox-     
 Mantel Lower Upper Log Log 
 Hazard 95% C.L. 95% C.L. Hazard Hazard 
 Ratio for for Ratio Ratio 
Groups (HR) HR HR Value S.E. 
1/2 3.23 0.85 12.25 1.1733 0.6796  
2/1 0.31 0.08 1.17 -1.1733 0.6796 
 

This report gives the details of the Cox-Mantel confidence interval for the hazard ratio. The 
formulas for these quantities were given earlier in this chapter. One line of the report is devoted to 
each pair of groups.  
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Groups 
These are the two groups reported about on this line, separated by a slash. 

Cox-Mantel Hazard Ratio (HR) 
This is the value of the Cox-Mantel hazard ratio. 

Lower & Upper 95% C.L. for HR 
These are the lower and upper confidence limits of the Cox-Mantel confidence interval of the 
hazard ratio. 

Log Hazard Ratio Value 
This is the natural logarithm of the hazard ratio. The logarithmic transformation is applied 
because the distribution is better approximated by the normal distribution. 

Log Hazard Ratio S.E. 
This is the standard deviation of the log hazard ratio. 

Hazard Ratio Logrank Tests Section 
 
   Cox-  Mantel-  
 Cox- Mantel- Mantel Cox- Haenszel Mantel- 
 Mantel Haenszel Logrank Mantel Logrank Haenszel 
 Hazard Hazard Test Prob Test Prob 
Groups Ratio Ratio Chi2 Level Chi2 Level 
1/2 3.23 5.84 3.701 0.0544 4.996 0.0254 
2/1 0.31 0.17 3.701 0.0544 4.996 0.0254 
 

This report gives the two logrank tests which test the null hypothesis that the hazard ratio is one 
(that is, that the hazard rates are equal). The formulas for these quantities were given earlier in 
this chapter. One line of the report is devoted to each pair of groups.     

Groups 
These are the two groups reported about on this line, separated by a slash. 

Cox-Mantel Hazard Ratio 
This is the value of the Cox-Mantel hazard ratio. 

Mantel-Haenszel Hazard Ratio 
This is the value of the Mantel-Haenszel hazard ratio. 

Cox-Mantel Logrank Test 
This is the test statistic for the Cox-Mantel logrank test. This value is approximately distributed as 
a chi-square with one degree of freedom. 

Note that this test is more commonly used than the Mantel-Haenszel test. 

Cox-Mantel Prob Level 
This is the significance level of the Cox-Mantel logrank test. The hypothesis of hazard rate 
equality is rejected if this value is less than 0.05 (or 0.01). 
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Mantel-Haenszel Logrank Test 
This is the test statistic for the Mantel-Haenszel logrank test. This value is approximately 
distributed as a chi-square with one degree of freedom. 

Mantel-Haenszel Prob Level 
This is the significance level of the Mantel-Haenszel logrank test. The hypothesis of hazard rate 
equality is rejected if this value is less than 0.05 (or 0.01). 

Example 3 – Validation of Kaplan-Meier Product Limit 
Estimator using Collett (1994) 
This section presents validation of the Kaplan-Meier product limit estimator and associated 
statistics. Collett (1994) presents an example on page 5 of the time to discontinuation of use of an 
IUD. The data are as follows: 10, 13+, 18+, 19, 23+, 30, 36, 38+, 54+, 56+, 59, 75, 93, 97, 104+, 
107, 107+, 107+. These data are contained in the COLLETT5.S0 database.  
On page 26, Collett (1994) gives the product-limit estimator, its standard deviation, and 95% 
confidence interval. A partial list of these results is given here: 
 
Time S(T) s.e. 95% C.I 
10 0.9444 0.0540 (0.839, 1.000) 
36 0.7459 0.1170 (0.529, 0.963) 
93 0.4662 0.1452 (0.182, 0.751) 
107 0.2486 0.1392 (0.000, 0.522)  
 
We will now run these data through this procedure to see that NCSS gets these same results. You 
may follow along here by making the appropriate entries or load the completed template 
Example3 from the Template tab of the Kaplan-Meier Curves (Logrank Tests) Fitting window. 

1 Open the COLLETT5 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file COLLETT5.S0. 
• Click Open. 

2 Open the Kaplan-Meier Curves (Logrank Tests) window. 
• On the menus, select Analysis, then Survival / Reliability, then Kaplan-Meier Curves 

(Logrank Tests). The Kaplan-Meier Curves (Logrank Tests) procedure will be 
displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Kaplan-Meier Curves (Logrank Tests) window, select the Variables tab.  
• Set the Time Variable to TIME.  
• Set the Censor Variable to CENSOR.  
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4 Specify the reports. 
• On the Kaplan-Meier Curves (Logrank Tests) window, select the Reports tab.  
• Uncheck all reports except the Kaplan-Meier Detail report.  

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Kaplan-Meier Output 
 
  Cumulative Standard Lower Upper    

Event Survival Error 95% C.L. 95% C.L. At  Total 
Time (T) S(T) of S(T) for S(T) for S(T) Risk Count Events 
10.0 0.9444 0.0540 0.8386 1.0000 18 1 1 
13.0+     17 1 1 
18.0+     16 1 1 
19.0 0.8815 0.0790 0.7267 1.0000 15 1 2 
23.0+     14 1 2 
30.0 0.8137 0.0978 0.6220 1.0000 13 1 3 
36.0 0.7459 0.1107 0.5290 0.9628 12 1 4 
38.0+     11 1 4 
54.0+     10 1 4 
56.0+     9 1 4 
59.0 0.6526 0.1303 0.3972 0.9081 8 1 5 
75.0 0.5594 0.1412 0.2827 0.8361 7 1 6 
93.0 0.4662 0.1452 0.1816 0.7508 6 1 7 
97.0 0.3729 0.1430 0.0927 0.6532 5 1 8 
104.0+     4 1 8 
107.0 0.2486 0.1392 0.0000 0.5215 3 1 9 
107.0+     2 2 9 

 

You can check this table to see that the results are the same as Collett’s. 

Example 4 – Validation of Nelson-Aalen Estimator using 
Klein and Moeschberger (1997) 
This section presents validation of the Nelson-Aalen estimator and associated statistics. Klein and 
Moeschberger (1997) present an example of output for the cumulative hazard function on page 
89. The data are available on their website. These data are contained in the BMT.S0 database.  
A partial list of these results for the ALL group (our group 1) is given here: 
 
Time H(T) s.e.  
1 0.0263 0.0263  
332 0.5873 0.1449  
662 1.0152 0.2185 
  
We will now run these data through this procedure to see that NCSS gets these same results. You 
may follow along here by making the appropriate entries or load the completed template 
Example4 from the Template tab of the Kaplan-Meier Curves (Logrank Tests) Fitting window. 
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1 Open the BMT dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file BMT.S0. 
• Click Open. 

2 Open the Kaplan-Meier Curves (Logrank Tests) window. 
• On the menus, select Analysis, then Survival / Reliability, then Kaplan-Meier Curves 

(Logrank Tests). The Kaplan-Meier Curves (Logrank Tests) procedure will be 
displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Kaplan-Meier Curves (Logrank Tests) window, select the Variables tab.  
• Set the Time Variable to TIME.  
• Set the Censor Variable to D3.  
• Set the Group Variable to Group.  

4 Specify the reports. 
• On the Kaplan-Meier Curves (Logrank Tests) window, select the Reports tab.  
• Uncheck all reports except the Cumulative Hazard Detail report.  

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Nelson-Aalen Output 
 

 Cumulative Standard Lower Upper    
Event Hazard Error 95% C.L. 95% C.L. At  Total 
Time (T) H(T) of H(T) for H(T) for H(T) Risk Count Events 
1.0 0.0263 0.0263 0.0000 0.0779 38 1 1 
55.0 0.0533 0.0377 0.0000 0.1273 37 1 2 
74.0 0.0811 0.0468 0.0000 0.1729 36 1 3 
86.0 0.1097 0.0549 0.0021 0.2172 35 1 4 
104.0 0.1391 0.0623 0.0171 0.2611 34 1 5 
107.0 0.1694 0.0692 0.0337 0.3051 33 1 6 
109.0 0.2007 0.0760 0.0518 0.3495 32 1 7 
110.0 0.2329 0.0825 0.0712 0.3947 31 1 8 
122.0 0.2996 0.0950 0.1133 0.4859 30 2 10 
129.0 0.3353 0.1015 0.1363 0.5343 28 1 11 
172.0 0.3723 0.1081 0.1605 0.5842 27 1 12 
192.0 0.4108 0.1147 0.1860 0.6356 26 1 13 
194.0 0.4508 0.1215 0.2127 0.6889 25 1 14 
226.0+     24 1 14 
230.0 0.4943 0.1290 0.2414 0.7472 23 1 15 
276.0 0.5397 0.1368 0.2716 0.8079 22 1 16 
332.0 0.5873 0.1449 0.3034 0.8713 21 1 17 
383.0 0.6373 0.1532 0.3370 0.9377 20 1 18 
418.0 0.6900 0.1620 0.3724 1.0076 19 1 19 
466.0 0.7455 0.1713 0.4098 1.0813 18 1 20 
487.0 0.8044 0.1811 0.4494 1.1593 17 1 21 
526.0 0.8669 0.1916 0.4913 1.2424 16 1 22 
530.0+     15 1 22 
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609.0 0.9383 0.2045 0.5375 1.3390 14 1 23 
662.0 1.0152 0.2185 0.5870 1.4434 13 1 24 
996.0+     12 1 24 
1111.0+     11 1 24 
1167.0+     10 1 24 
1182.0+     9 1 24 
1199.0+     8 1 24 
1330.0+     7 1 24 
1377.0+     6 1 24 
1433.0+     5 1 24 
1462.0+     4 1 24 
1496.0+     3 1 24 
1602.0+     2 1 24 
2081.0+     1 1 24 
 

You can check this table to see that the results are the same as Klein and Moeschberger’s. 

Example 5 – Validation of Logrank Tests using Kleing 
and Moeschberger (1997) 
This section presents validation of the logrank tests. Klein and Moeschberger (1997) present an 
example of output for the ten logrank tests on page 196. The data are available on their website. 
These data are contained in the KLEIN6.S0 database.  
A list of these results is given here: 
 
Test Chi-Square P-Value  
Logrank 2.53 0.112  
Gehan 0.002 0.964  
Tarone-Ware 0.40 0.526 
Peto-Peto 1.40 0.237 
Modified Peto-Peto 1.28 0.259 
Fleming-Harrington(0,1) 9.67 0.002 
Fleming-Harrington(1,0) 1.39 0.239 
Fleming-Harrington(1,1) 9.83 0.002 
Fleming-Harrington(0.5,0.5) 9.28 0.002 
Fleming-Harrington(0.5,2) 8.18 0.004 
 
 

We will now run these data through this procedure to see that NCSS gets these same results. You 
may follow along here by making the appropriate entries or load the completed template 
Example5 from the Template tab of the Kaplan-Meier Curves (Logrank Tests) Fitting window. 

1 Open the KLEIN6 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file KLEIN6.S0. 
• Click Open. 
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2 Open the Kaplan-Meier Curves (Logrank Tests) window. 
• On the menus, select Analysis, then Survival / Reliability, then Kaplan-Meier Curves 

(Logrank Tests). The Kaplan-Meier Curves (Logrank Tests) procedure will be 
displayed.  

• On the menus, select File, then New Template. This will fill the procedure with the 
default template.  

3 Specify the variables. 
• On the Kaplan-Meier Curves (Logrank Tests) window, select the Variables tab.  
• Set the Time Variable to TIME.  
• Set the Censor Variable to CENSOR.  
• Set the Group Variable to GROUP.  

4 Specify the reports. 
• On the Kaplan-Meier Curves (Logrank Tests) window, select the Reports tab.  
• Uncheck all reports except the Logrank Test Summary report.  

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Logrank Test Output 
 
    Randomization Weighting  
    Test of Hazard 
   Prob Prob Comparisons 
Test Name Chi-Square DF Level* Level* Across Time 
Logrank 2.530 1 0.1117 0.1210 Equal 
Gehan-Wilcoxon 0.002 1 0.9636 0.9670 High++ to Low++ 
Tarone-Ware 0.403 1 0.5257 0.5480 High to Low 
Peto-Peto 1.399 1 0.2369 0.2390 High+ to Low+ 
Mod. Peto-Peto 1.276 1 0.2587 0.2710 High+ to Low+ 
F-H (1, 0) 1.387 1 0.2390 0.2450 Almost Equal 
F-H (.5, .5) 9.285 1 0.0023 0.0030 Low+ to High+ 
F-H (1, 1) 9.834 1 0.0017 0.0030 Low to High 
F-H (0, 1) 9.668 1 0.0019 0.0020 Low to High 
F-H (.5, 2) 8.179 1 0.0042 0.0060 Low++ to High++ 
 

You can check this table to see that the results are the same as Klein and Moeschberger’s. Note 
that the order of the tests is different. 

Also note that the randomization test probability levels will change slightly from run to run 
because they are based on Monte Carlo sampling. 
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Chapter 560 

Cumulative 
Incidence  
Introduction 
This routine calculates nonparametric, maximum-likelihood estimates and confidence limits of the 
probability of failure (the cumulative incidence) for a particular cause in the presence of other 
causes. This is sometimes called the problem of competing risks.  

An often used, though incorrect, approach is to treat all failures from causes other than that of 
interest as censored observations and estimate the cumulative incidence using 1 - KM (Kaplan-
Meier estimate). The problem with this approach is that it makes the incorrect assumption that the 
probability of failing prior to time t from other causes is zero. This leads to overestimation of the 
cumulative incidence. This overestimation can be quite substantial if there are many failures from 
other causes in the data. 

Technical Details 
The following results are summarized from Marubini and Valsecchi (1996). Suppose that one of K 
mutually exclusive events may occur to a subject. These events may be failure, death, etc. When an 
event occurs, the time until it occurred T and the type of event k is recorded. The experiment may be 
terminated before any event occurs for some subjects in which case they are called censored 
observations and the time until censoring is recorded. The cause-specific hazard functions are 
defined as 
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The overall survival function is denoted by  

( ) ( )S t T t= >Pr  

and the probability of failing for cause k is denoted by  

( ) ( )I t T t k K k Kk = ≤ = =Pr , , , , ...,1 2  

These cause-specific failure probabilities, also known as the cumulative incidence functions, are 
defined as 

( ) ( ) ( )I t h u S u du k Kk k

t
= =∫0 1 2, , , ...,  



560-2  Cumulative Incidence 

where 
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This makes use of the assumption that a subject must be event free up to time u to then fail of 
cause k at time u. 

If we let  denote the number of subjects having event k and time , , and  

denote the number of subjects at risk at time , the likelihood may be written as 
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The ML estimate of the cause-specific hazard is 
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The variance of the crude cumulative incidence is estimated by  
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Finally, using the above estimate cumulative incidence and its estimated variance, approximate 
( )%1100 α−  confidence intervals may be calculated using 
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This expression guarantees that the resulting values will be between zero and one. 
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Data Structure 
This routine requires at least two variables: one containing the elapsed time values and another 
containing the type of event. Optional variables include a group identification variable and a 
frequency variable. 

Marubini and Valsecchi (1996) include an example of hypothetical data consisting of two 
treatment groups and two events. The events are local relapse (1) and distant metastases (2). 
Censored observations are represented with a zero. Information is available on 35 subjects in each 
group. These data are stored in the MARUBINI database. The table below shows the data. 

 

MARUBINI dataset 

Time Treatment Event  Time Treatment Event 
1 A 1  7 B 1 
13 A 1  16 B 1 
17 A 1  16 B 1 
30 A 1  20 B 1 
34 A 1  39 B 1 
41 A 1  49 B 1 
78 A 1  56 B 1 
100 A 1  73 B 1 
119 A 1  93 B 1 
169 A 1  113 B 1 
1 A 2  1 B 2 
6 A 2  2 B 2 
8 A 2  4 B 2 
13 A 2  6 B 2 
13 A 2  8 B 2 
15 A 2  9 B 2 
33 A 2  10 B 2 
37 A 2  13 B 2 
44 A 2  17 B 2 
45 A 2  17 B 2 
63 A 2  17 B 2 
80 A 2  18 B 2 
89 A 2  18 B 2 
89 A 2  27 B 2 
91 A 2  29 B 2 
132 A 2  39 B 2 
144 A 2  50 B 2 
171 A 2  69 B 2 
183 A 2  76 B 2 
240 A 2  110 B 2 
34 A 0  34 B 0 
60 A 0  60 B 0 
63 A 0  63 B 0 
149 A 0  78 B 0 
207 A 0  149 B 0 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Time Variable 

Time Variable 
This variable contains the times for each subject. These are elapsed times. If your data are event 
dates, you must subtract a starting date so that the values are elapsed time. You can scale your 
data in days, months, or years by dividing by the appropriate constant. 
Note that negative time values are treated as missing values. Zero time values are replaced by the 
value in the Zero Time Replacement option. 

Zero Time Replacement 
Under normal conditions, a respondent beginning the study is alive and cannot die until after 
some small period of time has elapsed. Hence, a time value of zero is not defined and is ignored 
(treated as a missing value). If a zero time value does occur in the database, it is replaced by this 
positive amount. If you do not want zero time values replaced, enter a “0.0” here. 
This option would be used when a “zero” on the database does not actually mean zero time. 
Instead, it means that the response occurred before the first reading was made and so the actual 
survival time is only known to be less than one. 

Type Variable 

Type Variable 
Specify the variable containing an identifier for the event type of each observation. If the 
observation was censored, indicate that using another identifier.  
The meaning of these event-type identifiers is designated in the Event Types and Censored Types 
boxes. 

Event Types 
This box lists the values of the Type Variable that are to be designated as events. These values 
may be letters or numbers. For a competing risks analysis, at least two events must be present on 
the database. 
The event may be any occurrence of interest such as failure, death, or recovery. For example, in 
heart surgery, the events might be death because of heart failure or death for other reasons 
(accident, cancer, etc.). In this case, two events would be used. 

Censor Types 
This box lists the values of the Type Variable that are to be designated as being censored. These 
values may be letters or numbers. Usually, at least one censor value is used. 
All of the censor-type values are interpreted as meaning that the observation is right censored. A 
right censored observation is withdrawn from the study before an event occurs. Hence, you know 
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that the event will occur after the given length of time, but you do not know when it will occur. 
For example, the study may end before the patient has died. 

Group Variable 

Group Variable 
An optional categorical (grouping) variable may be specified. If it is used, a separate analysis is 
conducted for each unique value of this variable. 

Frequency Variable 

Frequency Variable 
This optional variable gives the count, or frequency, of the time value. Frequency values must be 
positive integers. When omitted, each row has a frequency of one. 
This variable is often used to indicate the number of CENSORED values at the end of a study. It 
may also be used to indicate TIES for event-type data. 

Reports Tab 
The following options control which reports are displayed and the format of those reports. 

Select Reports 

Data Summary Report - Cumulative Survival Summary Report 
These options specify whether to display the corresponding reports. 

Report Options 

Alpha Level 
This is the value of alpha used in the calculation of confidence limits. For example, if you specify 
0.04 here, then 96% confidence limits will be calculated. 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option lets you select whether to display only values, value labels, or both. Use this option if 
you want to automatically attach labels to the values of the group variable (like 1=Yes, 2=No, 
etc.). See the section on specifying Value Labels elsewhere in this manual.  
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Report Options – Events to Report 

Events Reported On 
This option limits the reports to those event-types that are of primary interest. Separate sets of 
reports and plots are generated for each event type listed here. Enter ALL to have all event types 
reported on. 
Note that this option does not change the analysis, just the reports. 

Report Options – Times Displayed on 
Summary Reports 

Summary Report Times 
Specify a list of times that are reported on in the summary reports. The regular reports contain 
output for each time on the database. These may not represent the most useful time values. For 
example, in a study that lasts two years, you may want a summary report for every six months. 
To specify the time values, use numbers separated by commas or blanks. You may specify a 
sequence of values with a colon, putting the increment inside parentheses. For example: 5:25(5) 
means 5,10,15,20,25. Avoid 0 and negative numbers.  
Use (10) alone to specify ten, equal-spaced values between zero and the maximum (zero not 
included). 

Report Options – Decimal Places 

Time  
This option specifies the number of decimal places shown on reported time values. 

Probability 
This option specifies the number of decimal places shown on reported probability and hazard 
values. 

Report Options – Title 

Report Title 
This option specifies a title to appear at the top of each page. 

Plots Tab 
The following options control which plots are displayed and the format of those plots. 

Select Plots 

Individual Incidence Plots - Combined Survival Plots 
Specify whether to display each of these plots. 

Plot Options 
These options control the contents and arrangement of the plots. 
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Plot Options – Plot Arrangement 

Two Plots Per Line 
Specify whether to display one or two plots per line. Choosing two plots forces the plots to be 
smaller so that two will fit across a page. 

Plot Options – Plot Contents 

Cumulative Line 
Specify whether to display the estimated line (cumulative incidence or cumulative survival) on 
the plots. 

Confidence Limits on Individual & Combined Plots 
Specify whether to display the confidence limits on each type of the plot. 

Legend on Individual Plots & Combined Plots 
Specify whether to display the legend on each of the plots. 

Legend Text 
Specify the text that is to be displayed as the heading of the legend. When {G} is entered, it is 
automatically replaced by the name of the group variable. 

Censor Tickmarks 
This option indicates the size of the tickmarks (if any) showing where the censored points fall on 
the curve. The values are at a scale of 1000 equals one inch. Enter 0 for no censor tickmarks or 
100 to display tickmarks. 

Cum Inc Plot and Cum Surv Plot Tabs 
These options control the attributes of the cumulative incidence and survival curves. 

Vertical and Horizontal Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 
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Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Titles 

Title Lines 1 and 2 
These options contain the text of the titles. The characters {Y}, {X}, and {M} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 

Lines Tab 
These options specify the attributes of the lines used for each group in the various curves. 

Plotting Lines 

Line 1 - 15 
These options specify the color, width, and pattern of the lines used in the plots of each group. 
The first line is used by the first group, the second line by the second group, and so on. These line 
attributes are provided to allow the various groups to be indicated on black-and-white printers. 
Clicking on a line box (or the small button to the right of the line box) will bring up a window 
that allows the color, width, and pattern of the line to be changed. 

Storage Tab 
These options control the storage of information back to the database for further use. 

Data Storage Variables 

Group - Product Limit 
Each of these options let you specify columns (variables) on the database to which the 
corresponding data are automatically stored. Warning: existing data are replaced, so make sure 
that the columns you select are empty. 
Note that no attempt is made to store the time values in their original order. That’s why you have 
to store the Group and Event Type to identify the incidence values. 
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Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Cumulative Incidence 
This section presents an example of how to generate cumulative incidence reports. The data used 
were shown above and are found in the MARUBINI database. 
You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Cumulative Incidence window. 

1 Open the MARUBINI dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file MARUBINI.s0. 
• Click Open. 

2 Open the Cumulative Incidence window. 
• On the menus, select Analysis, then Survival / Reliability, then Cumulative Incidence. 

The Cumulative Incidence procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Cumulative Incidence window, select the Variables tab.  
• Enter 1 in the Time Variable box. This sets the Time Variable to the first variable on the 

database which is the Time variable.  
• Enter 3 in the Type Variable box.  
• Enter 1 2 in the Event Types box. 
• Enter 0 in the Censor Types box. 
• Enter 2 in the Group Variable box.  
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4 Specify the reports. 
• On the Cumulative Incidence window, select the Reports tab.  
• Enter 1 in the Events Reported On box. 
• Enter 25 50 75 100 125 150 175 200 in the Summary Report Times box. 

5 Specify the plots. 
• On the Cumulative Incidence window, select the Plots tab.  
• Check the Two Plots Per Line box. 
• Check the Confidence Limits on Individual Plots box. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Data Summary Section 
 
Data Summary Section.   Treatment = A 
Type of 
Observation Values Count Minimum Maximum 
Censored 5 5 34 207 
Treatment = 1 10 10 1 169 
Treatment = 2 18 20 1 240 
Total 33 35 0 240 
 

This section of the report displays information about the database. It is especially useful to allow 
you to check for obvious data-entry errors. The Values column gives the number of unique time 
values. The Count column uses the values in the Frequency Variable when it was used. 

Cumulative Incidence Detail Report 
 
Cumulative Incidence Detail Report for Event = 1 and Treatment = A 
 Number Events Events  Lower Upper Standard 1 - 
 At of Type of All Cumulative 95% C.L. 95% C.L. Error of Product 
Time Risk 1 Types Incidence Cum. Inc. Cum. Inc. Cum. Inc. Limit 
1.0 35 1 2 0.0286 0.0041 0.1972 0.0282 0.0571 
6.0 33 0 1 0.0286 0.0041 0.1972 0.0282 0.0857 
8.0 32 0 1 0.0286 0.0041 0.1972 0.0282 0.1143 
13.0 31 1 3 0.0571 0.0149 0.2195 0.0392 0.2000 
15.0 28 0 1 0.0571 0.0149 0.2195 0.0392 0.2286 
. . . . . . . . . 
. . . . . . . . . 
. . . . . . . . . 
240.0 1 0 1 0.3144 0.1871 0.5285 0.0833 1.0000 
 

This report displays the cumulative incidence values along with their confidence intervals and 
standard errors. 

Time 

This is the time value, t ,  being reported on. These values are from the dataset being analyzed. 
Note that tied values are combined. 

j
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Number at Risk 

This is the number of individuals at risk, , just before time .  jn jt

Events of Type 1 

This is the number of events of the type indicated (in this report, the type is 1), , that occurred 
at . 

kjd

jt

Events of All Types 

This is the number of events of all types, , that occurred at time . Note that censored 
observations have a zero in this column. 

kjd jt

Cumulative Incidence 

This is the cumulative incidence, ( )jk tÎ . This is the cumulative probability of event k up through 
the current time value, accounting for all other events. The formula used to calculate this value 
was given in the Technical Details section earlier in this chapter. 

Lower and Upper 95% C.L. Cum. Inc. 
These are confidence limits for the above cumulative incidence. 

Standard Error of Cum. Inc. 
This is the estimated standard error of the cumulative incidence. It is calculated using 

( )[ ]jk tIVar ˆ . 

1 – Product Limit 
This is one minus the Kaplan-Meier product limit estimate. This is a cumulative incidence 
measure calculated assuming that there are no other possible events other than the event of 
interest. 

Cumulative Survival Detail Report 
 
Cumulative Survival Detail Report for Event = 1 and Treatment = A 
 Number Events Events  Lower Upper Standard  
 At of Type of All Cumulative 95% C.L. 95% C.L. Error of Product 
Time Risk 1 Types Survival Cum. Surv. Cum. Surv. Cum. Surv. Limit 
1.0 35 1 2 0.9714 0.9959 0.8028 0.0282 0.9429 
6.0 33 0 1 0.9714 0.9959 0.8028 0.0282 0.9143 
8.0 32 0 1 0.9714 0.9959 0.8028 0.0282 0.8857 
13.0 31 1 3 0.9429 0.9851 0.7805 0.0392 0.8000 
15.0 28 0 1 0.9429 0.9851 0.7805 0.0392 0.7714 
. . . . . . . . . 
. . . . . . . . . 
. . . . . . . . . 
240.0 1 0 1 0.6856 0.8129 0.4715 0.0833 0.0000 
 

This report displays the cumulative survival values along with their confidence intervals and 
standard errors. The cumulative survival values are equal to one minus the cumulative incidence 
values. 
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Cumulative Incidence Summary Report 
 
Cumulative Incidence Summary Report for Event = 1 and Treatment = A 
 Number Events Events  Lower Upper Standard 1 - 
 At of Type of All Cumulative 95% C.L. 95% C.L. Error of Product 
Time Risk 1 Types Incidence Cum. Inc. Cum. Inc. Cum. Inc. Limit 
25.0 27 1 1 0.0857 0.0290 0.2529 0.0473 0.2571 
50.0 19 0 1 0.1727 0.0834 0.3578 0.0642 0.4623 
75.0 17 0 1 0.1727 0.0834 0.3578 0.0642 0.4940 
100.0 10 1 1 0.2402 0.1308 0.4411 0.0745 0.6964 
125.0 9 1 1 0.2739 0.1564 0.4797 0.0783 0.7301 
150.0 6 0 0 0.2739 0.1564 0.4797 0.0783 0.7976 
175.0 4 0 1 0.3144 0.1871 0.5285 0.0833 0.8786 
200.0 3 0 1 0.3144 0.1871 0.5285 0.0833 0.9190 
 

This report displays the cumulative incidence values at designated time values. All definitions are 
the same as in the Cumulative Incidence report. The number at risk and the numbers of events are 
for the last actual time value in the data before the current time value. For example, the values 
shown for the time of 75.0 are actually the values for the time of 63.0 on the database since 63.0 
is the largest time value before 75.0. 

Cumulative Survival Summary Report 
 
Cumulative Incidence Summary Report for Event = 1 and Treatment = A 
 Number Events Events  Lower Upper Standard 1 - 
 At of Type of All Cumulative 95% C.L. 95% C.L. Error of Product 
Time Risk 1 Types Incidence Cum. Inc. Cum. Inc. Cum. Inc. Limit 
25.0 27 1 1 0.9143 0.9710 0.7471 0.0473 0.7429 
50.0 19 0 1 0.8273 0.9166 0.6422 0.0642 0.5377 
75.0 17 0 1 0.8273 0.9166 0.6422 0.0642 0.5060 
100.0 10 1 1 0.7598 0.8692 0.5589 0.0745 0.3036 
125.0 9 1 1 0.7261 0.8436 0.5203 0.0783 0.2699 
150.0 6 0 0 0.7261 0.8436 0.5203 0.0783 0.2024 
175.0 4 0 1 0.6856 0.8129 0.4715 0.0833 0.1214 
200.0 3 0 1 0.6856 0.8129 0.4715 0.0833 0.0810 
 

This report displays the survival values at designated time values. All definitions are the same as 
in the Cumulative Survival report. The number at risk and the numbers of events are for the last 
actual time value in the data before the current time value. For example, the values shown for the 
time of 75.0 are actually the values for the time of 63.0 on the database since 63.0 is the largest 
time value before 75.0. 
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Individual Cumulative Incidence Plots 
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These plots show the cumulative incidence curve surrounded by the 95% confidence interval. 

Combined Cumulative Incidence Plot 
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This plot shows the cumulative incidence for each of the two groups. 
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Individual Cumulative Survival Plots 
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These plots display the cumulative survival values and confidence intervals for each group, one 
group per plot. 

Combined Cumulative Survival Plot 
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This plot displays the cumulative survival values for both groups. 

Validation of Cumulative Incidence Values using 
Marubini and Valsecchi (1996) 
Marubini and Valsecchi (1996) reported cumulative incidence values calculated for the data in 
the MARUBINI database. For group B, for the time value of 16, they calculated a cumulative 
incidence of 0.08571, a standard error of 0.04732, and confidence limits of 0.02905 and 0.25292. 
You can check the NCSS output to see that it obtains these same values, which validates its 
accuracy. 
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Chapter 565 

Cox Regression 
Introduction 
This program performs Cox (proportional hazards) regression analysis, which models the 
relationship between a set of one or more covariates and the hazard rate. Covariates may be discrete 
or continuous. Cox’s proportional hazards regression model is solved using the method of marginal 
likelihood outlined in Kalbfleisch (1980).  

This routine can be used to study the impact of various factors on survival. You may be interested 
in the impact of diet, age, amount of exercise, and amount of sleep on the survival time after an 
individual has been diagnosed with a certain disease such as cancer. Under normal conditions, the 
obvious statistical tool to study the relationship between a response variable (survival time) and 
several explanatory variables would be multiple regression. Unfortunately, because of the special 
nature of survival data, multiple regression is not appropriate. Survival data usually contain 
censored data and the distribution of survival times is often highly skewed. These two problems 
invalidate the use of multiple regression. Many alternative regression methods have been 
suggested. The most popular method is the proportional hazard regression method developed by 
Cox (1972). Another method, Weibull regression, is available in NCSS in the Distribution 
Regression procedure. 

Further Reading 
Several books provide in depth coverage of Cox regression. These books assume a familiarity 
with basic statistical theory, especially with regression analysis. Collett (1994) provides a 
comprehensive introduction to the subject. Hosmer and Lemeshow (1999) is almost completely 
devoted to this subject. Therneau and Grambsch (2000) provide a complete and up-to-date 
discussion of this subject. We found their discussion of residual analysis very useful. Klein and 
Moeschberger (1997) provides a very readable account of survival analysis in general and 
includes a lucid account of Cox regression. 

The Cox Regression Model 
Survival analysis refers to the analysis of elapsed time. The response variable is the time between 
a time origin and an end point. The end point is either the occurrence of the event of interest, 
referred to as a death or failure, or the end of the subject’s participation in the study. These 
elapsed times have two properties that invalidate standard statistical techniques, such as t-tests, 
analysis of variance, and multiple regression. First of all, the time values are often positively 
skewed. Standard statistical techniques require that the data be normally distributed. Although 
this skewness could be corrected with a transformation, it is easier to adopt a more realistic data 
distribution.  
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The second problem with survival data is that part of the data are censored. An observation is 
censored when the end point has not been reached when the subject is removed from study. This 
may be because the study ended before the subject’s response occurred, or because the subject 
withdrew from active participation. This may be because the subject died for another reason, 
because the subject moved, or because the subject quit following the study protocol. All that is 
known is that the response of interest did not occur while the subject was being studied. 

When analyzing survival data, two functions are of fundamental interest—the survivor function 
and the hazard function. Let T be the survival time. That is, T is the elapsed time from the 
beginning point, such as diagnosis of cancer, and death due to that disease. The values of T can be 
thought of as having a probability distribution. Suppose the probability density function of the 
random variable T is given by . The probability distribution function of T is then given by ( )Tf

( ) ( )
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ttf

TtTF

0
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Pr
 

The survivor function, , is the probability that an individual survives past T. This leads to ( )TS

( ) ( )
( )TF

tTTS
−=

≥=
1
Pr  

The hazard function is the probability that a subject experiences the event of interest (death, 
relapse, etc.) during a small time interval given that the individual has survived up to the 
beginning of that interval. The mathematical expression for the hazard function is 
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The cumulative hazard function  is the sum of the individual hazard rates from time zero to 
time T. The formula for the cumulative hazard function is 

( )TH

( ) ( )duuhTH
T

∫=
0

 

Thus, the hazard function is the derivative, or slope, of the cumulative hazard function. The 
cumulative hazard function is related to the cumulative survival function by the expression 

( ) ( )THeTS −=  

or 

( ) ( )( )TSTH ln−=  

We see that the distribution function, the hazard function, and the survival function are 
mathematically related. As a matter of convenience and practicality, the hazard function is used in 
the basic regression model.  
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Cox (1972) expressed the relationship between the hazard rate and a set of covariates using the  
model 
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where  are covariates, x x xp1 2, , ,L β β β1 2, , ,L p  are regression coefficients to be estimated, T is 

the elapsed time, and  is the baseline hazard rate when all covariates are equal to zero. Thus 
the linear form of the regression model is  
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Taking the exponential of both sides of the above equation, we see that this is the ratio between the 
actual hazard rate and the baseline hazard rate, sometimes called the relative risk. This can be 
rearranged to give the model 
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The regression coefficients can thus be interpreted as the relative risk when the value of the 
covariate is increased by one unit.  

Note that unlike most regression models, this model does not include an intercept term. This is 
because if an intercept term were included, it would become part of ( )h T0 . 

Also note that the above model does not include T on the right-hand side. That is, the relative risk is 
constant for all time values. This is why the method is called proportional hazards. 

An interesting attribute of this model is that you only need to use the ranks of the failure times to 
estimate the regression coefficients. The actual failure times are not used except to generate the 
ranks. Thus, you will achieve the same regression coefficient estimates regardless of whether you 
enter the time values in days, months, or years. 

Cumulative Hazard 
Under the proportional hazards regression model, the cumulative hazard is 
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Note that the survival time T is present in ( )TH0 , but not in . Hence, the cumulative hazard 
up to time T is represented in this model by a baseline cumulative hazard 

e
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Cumulative Survival 
Under the proportional hazards regression model, the cumulative survival is 
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Note that the survival time T is present in ( )TS0 , but not in .  e
xi i

i

p
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A Note On Using e 
The discussion that follows uses the terms exp(x) and . These terms are identical. That is ex

( )
( )x

xex
67182818284.2

exp
=
=  

The decision as to which form to use depends on the context. The preferred form is . But often, 
the expression used for x becomes so small that it cannot be printed. In these situations, the exp(x) 
form will be used.  

ex

One other point needs to be made while we are on this subject. People often wonder why we use the 
number e. After all, e is an unfamiliar number that cannot be expressed exactly. Why not use a more 
common number like 2, 3, or 10? The answer is that it does matter because the choice of the base is 
arbitrary in that you can easily switch from one base to another. That is, it is easy to find constants 
a, b, and c so that 

e a b c= = =2 3 10  

In fact, a is 1/ln(2) = 1.4427, b is 1/ln(3)=0.9102, and c is 1/ln(10) = 0.4343. Using these constants, 
it is easy to switch from one base to another. For example, suppose a calculate only computes 10  
and we need the value of . This can be computed as follows 

x

e3
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The point is, it is simple to change from base e to base 3 to base 10. The number e is used for 
mathematical convenience.  

Maximum Likelihood Estimation 
Let  index the M unique failure times . Note that M does not include 
duplicate times or censored observations. The set of all failures (deaths) that occur at time  is 
referred to as . Let  index the members of . The set of all individuals that 
are at risk immediately before time T  is referred to as . This set, often called the risk set, 
includes all individuals that fail at time T  as well as those that are censored or fail at a time later 
than T . Let  index the members of . Let X refer to a set of p covariates. These 
covariates are indexed by the subscripts i, j, or k. The values of the covariates at a particular failure 
time  are written  or  in general. The regression coefficients to be estimated 
are 

t = 1, ,L M

m
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d

T T TM1 2, ,...,
Tt

Dt c d tand = 1, ,L Dt

t Rt

t

t r t= 1, ,L Rt

Td x x xd d p1 2, , ,L xid

β β β1 2, , ,L p .  

The Log Likelihood 
When there are no ties among the failure times, the log likelihood is given by Kalbfleisch and 
Prentice (1980) as 
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The following notation for the first-order and second-order partial derivatives will be useful in the 
derivations in this section. 
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The maximum likelihood solution is found by the Newton-Raphson method. This method requires 
the first and second order partial derivatives. The first order partial derivatives are 
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The second order partial derivatives, which are the information matrix, are  
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When there are failure time ties (note that censor ties are not a problem), the exact likelihood is very 
cumbersome. NCSS allows you to select either the approximation proposed by Breslow (1974) or 
the approximation given by Efron (1977). Breslow’s approximation was used by the first Cox 
regression programs, but Efron’s approximation provides results that are usually closer to the results 
given by the exact algorithm and it is now the preferred approximation (see for example Homer and 
Lemeshow (1999). We have included Breslow’s method because of its popularity. For example, 
Breslow’s method is the default method used in SAS.  

Breslow’s Approximation to the Log Likelihood 
The log likelihood of Breslow’s approximation is given by Kalbfleisch and Prentice (1980) as 
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The maximum likelihood solution is found by the Newton-Raphson method. This method requires 
the first-order and second-order partial derivatives. The first order partial derivatives are 
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The negative of the second-order partial derivatives, which form the information matrix, are  
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Efron’s Approximation to the Log Likelihood 
The log likelihood of Efron’s approximation is given by Kalbfleisch and Prentice (1980) as 
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The maximum likelihood solution is found by the Newton-Raphson method. This method requires 
the first and second order partial derivatives. The first partial derivatives are  
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The second partial derivatives provide the information matrix which estimates the covariance 
matrix of the estimated regression coefficients. The negative of the second partial derivatives are 
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Estimation of the Survival Function 
Once the maximum likelihood estimates have been obtained, it may be of interest to estimate the 
survival probability of a new or existing individual with specific covariate settings at a particular 
point in time. The methods proposed by Kalbfleisch and Prentice (1980) are used to estimate the 
survival probabilities.  

Cumulative Survival 
This estimates the cumulative survival of an individual with a set of covariates all equal to zero. The 
survival for an individual with covariate values of  is X0
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The estimate of the baseline survival function ( )TS0  is calculated from the cumulated hazard 
function using  
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The value of αt , the conditional baseline survival probability at time T, is the solution to the 
conditional likelihood equation 
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When there are no ties at a particular time point,  contains one individual and the above equation 
can be solved directly, resulting in the solution  
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When there are ties, the equation must be solved iteratively. The starting value of this iterative 
process is  
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Baseline Hazard Rate 
Hosmer and Lemeshow (1999) estimate the baseline hazard rate ( )tTh0  as follows 

( ) ttTh α−= 10  

They mention that this estimator will typically be too unstable to be of much use. To overcome this, 
you might smooth these quantities using lowess function of the Scatter Plot program. 

Cumulative Hazard 
An estimate of the cumulative hazard function ( )TH0  derived from relationship between the 
cumulative hazard and the cumulative survival. The estimated baseline survival is 
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This leads to the estimated cumulative hazard function is 
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Cumulative Survival 
The estimate of the cumulative survival of an individual with a set of covariates values of  is X0
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Statistical Tests and Confidence Intervals 
Inferences about one or more regression coefficients are all of interest. These inference 
procedures can be treated by considering hypothesis tests and/or confidence intervals. The 
inference procedures in Cox regression rely on large sample sizes for accuracy.  

Two tests are available for testing the significance of one or more independent variables in a 
regression: the likelihood ratio test and the Wald test. Simulation studies usually show that the 
likelihood ratio test performs better than the Wald test. However, the Wald test is still used to test 
the significance of individual regression coefficients because of its ease of calculation.  

These two testing procedures will be described next. 

Likelihood Ratio and Deviance 
The Likelihood Ratio test statistic is -2 times the difference between the log likelihoods of two 
models, one of which is a subset of the other. The distribution of the LR statistic is closely 
approximated by the chi-square distribution for large sample sizes. The degrees of freedom (DF) 
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of the approximating chi-square distribution is equal to the difference in the number of regression 
coefficients in the two models. The test is named as a ratio rather than a difference since the 
difference between two log likelihoods is equal to the log of the ratio of the two likelihoods. That 
is, if   is the log likelihood of the full model and  is the log likelihood of a subset of the 
full model, the likelihood ratio is defined as  

Lfull Lsubset
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Note that the -2 adjusts LR so the chi-square distribution can be used to approximate its 
distribution.  

The likelihood ratio test is the test of choice in Cox regression. Various simulation studies have 
shown that it is more accurate than the Wald test in situations with small to moderate sample 
sizes. In large samples, it performs about the same. Unfortunately, the likelihood ratio test 
requires more calculations than the Wald test, since it requires the fitting of two maximum-
likelihood models.  

Deviance 
When the full model in the likelihood ratio test statistic is the saturated model, LR is referred to as 
the deviance. A saturated model is one which includes all possible terms (including interactions) 
so that the predicted values from the model equal the original data. The formula for the deviance 
is 

[ ]SaturatedReduced2 LLD −−=  

The deviance in Cox regression is analogous to the residual sum of squares in multiple regression. 
In fact, when the deviance is calculated in multiple regression, it is equal to the sum of the 
squared residuals.  

The change in deviance, ΔD , due to excluding (or including) one or more variables is used in 
Cox regression just as the partial F test is used in multiple regression. Many texts use the letter G 
to represent ΔD . Instead of using the F distribution, the distribution of the change in deviance is 
approximated by the chi-square distribution. Note that since the log likelihood for the saturated 
model is common to both deviance values, ΔD  can be calculated without actually fitting the 
saturated model. This fact becomes very important during subset selection. The formula for ΔD  
for testing the significance of the regression coefficient(s) associated with the independent 
variable X1 is 
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Note that this formula looks identical to the likelihood ratio statistic. Because of the similarity 
between the change in deviance test and the likelihood ratio test, their names are often used 
interchangeably.  

Wald Test 
The Wald test will be familiar to those who use multiple regression. In multiple regression, the 
common t-test for testing the significance of a particular regression coefficient is a Wald test. In 
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Cox regression, the Wald test is calculated in the same manner. The formula for the Wald statistic 
is 

z
b
sj

j

bj

=  

where  is an estimate of the standard error of  provided by the square root of the 

corresponding diagonal element of the covariance matrix, 

sb j
bj

( ) 1ˆ −= IV β .  

With large sample sizes, the distribution of  is closely approximated by the normal distribution. 
With small and moderate sample sizes, the normal approximation is described as ‘adequate.’  

z j

The Wald test is used in NCSS to test the statistical significance of individual regression 
coefficients. 

Confidence Intervals 
Confidence intervals for the regression coefficients are based on the Wald statistics. The formula 
for the limits of a ( )100 1−α %  two-sided confidence interval is  

jbj szb 2/α±  

R-Squared 
Hosmer and Lemeshow (1999) indicate that at the time of the writing of their book, there is no 
single, easy to interpret measure in Cox regression that is analogous to R2  in multiple regression. 
They indicate that if such a measure “must be calculated” they would use 
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where  is the log likelihood of the model with no covariates, n is the number of observations 
(censored or not), and  is the log likelihood of the model that includes the covariates.  

L0

Lp

Subset Selection 
Subset selection refers to the task of finding a small subset of the available regressor variables 
that does a good job of predicting the dependent variable. Because Cox regression must be solved 
iteratively, the task of finding the best subset can be time consuming. Hence, techniques which 
look at all possible combinations of the regressor variables are not feasible. Instead, algorithms 
that add or remove a variable at each step must be used. Two such searching algorithms are 
available in this module: forward selection and forward selection with switching.  

Before discussing the details of these two algorithms, it is important to comment on a couple of 
issues that can come up. The first issue is what to do about the binary variables that are generated 
for a categorical independent variable. If such a variable has six categories, five binary variables 
are generated. You can see that with two or three categorical variables, a large number of binary 
variables may result, which greatly increases the total number of variables that must be searched. 
To avoid this problem, the algorithms used here search on model terms rather than on the 
individual variables. Thus, the whole set of binary variables associated with a given term are 
considered together for inclusion in, or deletion from, the model. Its all or none. Because of the 
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time consuming nature of the algorithm, this is the only feasible way to deal with categorical 
variables. If you want the subset algorithm to deal with them individually, you can generate the 
set of binary variables manually and designate them as Numeric Variables. 

Hierarchical Models 
A second issue is what to do with interactions. Usually, an interaction is not entered in the model 
unless the individual terms that make up that interaction are also in the model. For example, the 
interaction term A*B*C is not included unless the terms A, B, C, A*B, A*C, and B*C are already 
in the model. Such models are said to be hierarchical. You have the option during the search to 
force the algorithm to only consider hierarchical models during its search. Thus, if C is not in the 
model, interactions involving C are not even considered. Even though the option for non-
hierarchical models is available, we recommend that you only consider hierarchical models. 

Forward Selection 
The method of forward selection proceeds as follows.  

1.  Begin with no terms in the model. 

2.  Find the term that, when added to the model, achieves the largest value of R-squared. 
Enter this term into the model. 

3.  Continue adding terms until a preset limit on the maximum number of terms in the model 
is reached. 

This method is comparatively fast, but it does not guarantee that the best model is found except 
for the first step when it finds the best single term. You might use it when you have a large 
number of observations so that other, more time consuming methods, are not feasible, or when 
you have far too many possible regressor variables and you want to reduce the number of terms in 
the selection pool. 

Forward Selection with Switching 
This method is similar to the method of Forward Selection discussed above. However, at each 
step when a term is added, all terms in the model are switched one at a time with all candidate 
terms not in the model to determine if they increase the value of R-squared. If a switch can be 
found, it is made and the candidate terms are again searched to determine if another switch can be 
made.  

When the search for possible switches does not yield a candidate, the subset size is increased by 
one and a new search is begun. The algorithm is terminated when a target subset size is reached 
or all terms are included in the model. 

Discussion 
These algorithms usually require two runs. In the first run, you set the maximum subset size to a 
large value such as 10. By studying the Subset Selection reports from this run, you can quickly 
determine the optimum number of terms. You reset the maximum subset size to this number and 
make the second run. This two-step procedure works better than relying on some F-to-enter and 
F-to-remove tests whose properties are not well understood to begin with. 



 Cox Regression  565-13 

Residuals 
The following presentation summarizes the discussion on residuals found in Klein and 
Moeschberger (1997) and Hosmer and Lemeshow (1999). For a more thorough treatment of this 
topic, we refer you to either of these books.  

In most settings in which residuals are studied, the dependent variable is predicted using a model 
based on the independent variables. In these cases, the residual is simply the difference between 
the actual value and the predicted value of the dependent variable. Unfortunately, in Cox 
regression there is no obvious analog this actual minus predicted. Realizing this, statisticians have 
looked at how residuals are used and then, based on those uses, developed quantities that meet 
those needs. They call these quantities residuals because they are used in place of residuals. 
However, you must remember that they are not equivalent to usual the residuals that you see in 
multiple regression, for example. 

In the discussion that follows, the formulas will be simplified if we use the substitution 
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Cox-Snell Residuals 
The Cox-Snell residuals were used to assess the goodness-of-fit of the Cox regression. The Cox-
Snell residuals are defined as  

( ) ttBt THr θ0=  

where there b’s are the estimated regression coefficients and ( )H Tt0  is Breslow’s estimate of the 
cumulative baseline hazard function. This value is defined as follows 
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The Cox-Snell residuals were the first to be proposed in the literature. They have since been 
replaced by other types of residuals and are now only of historical interest. See, for example, the 
discussion of Marubini and Valsecchi (1996) who state that the use of these residuals on 
distributional grounds should be avoided. 

Martingale Residuals 
Martingale residuals can not be used to assess goodness-of-fit as are the usual residuals in 
multiple regression. The best model need not have the smallest sum of squared martingale 
residuals. Martingale residuals follow the unit exponential distribution. Some authors suggested 
analyzing these residuals to determine how close they are to the exponential distribution, hoping 
that a lack of exponetiality indicated a lack of fit. Unfortunately, just the opposite is the case since 
in a model with no useful covariates, these residuals are exactly exponential in distribution. 
Another diagnostic tool for in regular multiple regression is a plot of the residuals versus the 
fitted values. Here again, the martingale residuals cannot be used for this purpose since they are 
negatively correlated with the fitted values.   
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So of what use are martingale residuals? They have two main uses. First, they can be used to find 
outliers—individuals who are poorly fit by the model. Second, martingale residuals can be used 
to determine the functional form of each of the covariates in the model.  

Finding Outliers 
The martingale residuals are defined as 

M c rt t t= −  

where  is one if there is a failure at time  and zero otherwise. The martingale residual measures 
the difference between whether an individual experiences the event of interest and the expected 
number of events based on the model. The maximum value of the residual is one and the minimum 
possible value is negative infinity. Thus, the residual is highly skewed. A large negative martingale 
residual indicates a high risk individual who still had a long survival time.  

ct Tt

Finding the Function Form of Covariates 
Martingale residuals can be used to determine the functional form of a covariate. To do this, you 
generate the Martingale residuals from a model without the covariates. Next, you plot these 
residuals against the value of the covariate. For large datasets, this may be a time consuming 
process. Therneau and Grambsch (2000) suggest that the martingale residuals from a model with no 
covariates be plotted against each of the covariates. These plots will reveal the appropriate 
functional form of the covariates in the model so long as the covariates are not highly correlated 
among themselves.  

Deviance Residuals 
Deviance residuals are used to search for outliers. The deviance residuals are defined as   

( ) ( )[ ]tttttt MccMMsignDEV −+−= ln2  

or zero when  is zero. These residuals are plotted against the risk scores given by Mt
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When there is slight to moderate censoring, large absolute values in these residuals point to 
potential outliers. When there is heavy censoring, there will be a large number of residuals near 
zero. However, large absolute values will still indicate outliers.  

Schoenfeld’s Residuals 
A set of p Schoenfeld residuals is defined for each noncensored individual. The residual is 
missing when the individual is censored.  The Schoenfeld residuals are defined as follows   
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where 
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Thus this residual is the difference between the actual value of the covariate and a weighted average 
where the weights are determined from the risk scores. 

These residuals are used to estimate the influence of an observation on each of the regression 
coefficients. Plots of these quantities against the row number or against the corresponding covariate 
values are used to study these residuals. 

Scaled Schoenfeld’s Residuals 
Hosmer and Lemeshow (1999) and Therneau and Grambsch (2000) suggest that scaling the 
Schoenfeld residuals by an estimate of their variance gives quantities with greater diagnostic 
ability. Hosmer and Lemeshow (1999) use the covariance matrix of the regression coefficients to 
perform the scaling. The scaled Schoenfeld residuals are defined as follows    
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where m is the total number of deaths in the dataset and V is the estimated covariance matrix of the 
regression coefficients.  

These residuals are plotted against time to validate the proportional hazards assumption. If the 
proportional hazards assumption holds, the residuals will fall randomly around a horizontal line 
centered at zero. If the proportional hazards assumption does not hold, a trend will be apparent in 
the plot. 

Data Structure 
Survival data sets require up to three components for the survival time: the ending survival time, 
the beginning survival time during which the subject was not observed, and an indicator of 
whether the observation was censored or failed.  

Based on these three components, various types of data may be analyzed. Right censored data are 
specified using only the ending time variable and the censor variable. Left truncated and Interval 
data are entered using all three variables.  

The table below shows survival data ready for analysis. These data are from a lung cancer study 
reported in Kalbfleisch (1980), page 223. These data are in the LUNGCANCER database. The 
variables are   
 
TIME days of survival. 
CENSOR censor indicator. 
STATUS performance status. 
MONTHS months from diagnosis. 
AGE age in years. 
THERAPY prior therapy. 
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LUNGCANCER dataset (subset) 

TIME CENSOR STATUS MONTHS AGE THERAPY 
72 1 60 7 69 0 
411 1 70 5 64 10 
228 1 60 3 38 0 
126 1 60 9 63 10 
118 1 70 11 65 10 
10 1 20 5 49 0 
82 1 40 10 69 10 
110 1 80 29 68 0 
314 1 50 18 43 0 
100 0 70 6 70 0 
42 1 60 4 81 0 
8 1 40 58 63 10 
144 1 30 4 63 0 
25 0 80 9 52 10 
11 1 70 11 48 10 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel lets you designate which variables are used in the analysis. 

Time Variables 

Time Variable 
This variable contains the length of time that an individual was observed. This may represent a 
failure time or a censor time. Whether the subject actually died is specified by the Censor 
Variable. Since the values are elapsed times, they must be positive. Zeroes and negative values 
are treated as missing values.   
During the maximum likelihood calculations, a risk set is defined for each individual. The risk set 
is defined to be those subjects who were being observed at this subject’s failure and who lived as 
long or longer. It may take several rows of data to specify a subject’s history. 
This variable and the Entry Time Variable define a period during which the individual was at risk 
of failing. If the Entry Time Variable is not specified, its value is assumed to be zero. 
Several types of data may be entered. These will be explained next. 

• Failure 
This type of data occurs when a subject is followed from their entrance into the study until 
their death. The failure time is entered in this variable and the Censor Variable is set to the 
failed code, which is often a one.  

The Entry Time Variable is not necessary. If an Entry Time Variable is used, its value should 
be zero for this type of observation.  
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• Interval Failure 
This type of data occurs when a subject is known to have died during a certain interval. The 
subject may, or may not, have been observed during other intervals. If they were, they are 
treated as Interval Censored data. An individual may require several rows on the database to 
record their complete follow-up history. 

For example, suppose the condition of the subjects is only available at the end of each month. 
If a subject fails during the fifth month, two rows of data would be required. One row, 
representing the failure, would have a Time of 5.0 and an Entry Time of 4.0. The Censor 
variable would contain the failure code. A second row, representing the prior periods, would 
have a Time of 4.0 and an Entry Time of 0.0. The Censor variable would contain the censor 
code. 

• Censored 
This type of data occurs when a subject has not failed up to the specified time. For example, 
suppose that a subject enters the study and does not die until after the study ends 12 months 
later. The subject’s time (365 days) is entered here. The Censor variable contains the censor 
code.  

• Interval Censored 
This type of data occurs when a subject is known not to have died during a certain interval. 
The subject may, or may not, have been observed during other intervals. An individual may 
require several rows on the database to record their complete follow-up history.  

For example, suppose the condition of the subjects is only available at the end of each month. 
If a subject fails during the fifth month, two rows of data would be required. One row, 
representing the failure, would have a Time of 5.0 and an Entry Time of 4.0. The Censor 
variable would contain the failure code. A second row, representing the prior periods, would 
have a Time of 4.0 and an Entry Time of 0.0. The Censor variable would contain the censor 
code. 

Entry Time Variable 
This optional variable contains the elapsed time before an individual entered the study. Usually, 
this value is zero. However, in cases such as left truncation and interval censoring, this value 
defines a time period before which the individual was not observed.  
Negative entry times are treated as missing values. It is possible for the entry time to be zero. 

Ties Method 
The basic Cox regression model assumes that all failure times are unique. When ties exist among 
the failure times, one of two approximation methods is used to deal with the ties. When no ties 
are present, both of these methods result in the same estimates.  

• Breslow 
This method was suggested first and is the default in many programs. However, the Efron 
method has been shown to be more accurate in most cases. The Breslow method is only used 
when you want to match the results of some other (older) Cox regression package. 

• Efron 
This method has been shown to be more accurate, but requires slightly more time to calculate. 
This is the recommended method. 
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Censor Variable 

Censor Variable 
The values in this variable indicate whether the value of the Time Variable represents a censored 
time or a failure time. These values may be text or numeric. The interpretation of these codes is 
specified by the Failed and Censored options to the right of this option. 
Only two values are used, the Failure code and the Censor code. The Unknown Type option 
specifies what is to be done with values that do not match either the Failure code or the Censor 
code.  
Rows with missing values (blanks) in this variable are omitted from the estimation phase, but 
results are shown in any reports that output predicted values. 

Failed 
This value identifies those values of the Censor Variable that indicate that the Time Variable 
gives a failure time. The value may be a number or a letter.  
We suggest the letter ‘F’ or the number ‘1’ when you are in doubt as to what to use. 
A failed observation is one in which the time until the event of interest was measured exactly; for 
example, the subject died of the disease being studied. The exact failure time is known. 

Left Censoring 
When the exact failure time is not known, but instead only an upper bound on the failure time is 
known, the time value is said to have been left censored. In this case, the time value is treated as 
if it were the true failure time, not just an upper bound. So left censored observations should be 
coded as failed observations. 

Censored 
This value identifies those values of the Censor Variable that indicate that the individual recorded 
on this row was censored. That is, the actual failure time occurs sometime after the value of the 
Time Variable.  
We suggest the letter ‘C’ or the number ‘0’ when you are in doubt as to what to use. 
A censored observation is one in which the time until the event of interest is not known because 
the individual withdrew from the study, the study ended before the individual failed, or for some 
similar reason. 
Note that it does not matter whether the censoring was Right or Interval. All you need to indicate 
here is that they were censored. 

Unknown Censor 
This option specifies what the program is to assume about observations whose censor value is not 
equal to either the Failed code or the Censored code. Note that observations with missing censor 
values are always treated as missing.  

• Censored 
Observations with unknown censor values are assumed to have been censored. 

• Failed 
Observations with unknown censor values are assumed to have failed. 
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• Missing 
Observations with unknown censor values are assumed to be missing and they are removed 
from the analysis. 

Frequency Variable 

Frequency Variable 
This is an optional variable containing the frequency (observation count) for each row. Usually, 
you would leave this option blank and let each row receive the default frequency of one.  

If your data have already been summarized, this option lets you specify how many actual rows 
each physical row represents. 

Options 

Centering of X’s 
The values of the independent variables may be centered to improve the stability of the algorithm. 
An value is ‘centered’ when its mean is subtracted from it.  

Centering does not change the values of the regression coefficients, except that the algorithm 
might provide slightly different results because of better numerical stability.  

Centering does affect the values of the row-wise statistics such as XB, Exp(XB), S0, H0, and so 
on because it changes the value of X in these expressions. When the data are centered, the 
deviation from the mean (X-Xbar) is substituted for X in these expressions. 

The options are available: 

• None 
The data are not centered. 

• All 
All variables, both numeric and binary, are centered. 

Alpha Level 
Alpha is the significance level used in the hypothesis tests. One minus alpha is the confidence 
level of the confidence intervals. A value of 0.05 is most commonly used. This corresponds to a 
chance of error of 1 in 20. You should not be afraid to use other values since 0.05 became popular 
in pre-computer days when it was the only value available. 

Typical values range from 0.001 to 0.20. 

Numeric Independent Variables 

X’s: Numeric Independent Variables 
Specify the numeric (continuous) independent variables. By numeric, we mean that the values are 
numeric and at least ordinal. Nominal variables, even when coded with numbers, should be 
specified as Categorical Independent Variables. Although you may specify binary (0-1) variables 
here, they are better analyzed when you specify them as Categorical Independent Variables. 

If you want to create powers and cross-products of these variables, specify an appropriate model 
in the ‘Custom Model’ field under the Model tab. 
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If you want to create hazard values for values of X not in your database, add the X values to the 
bottom of the database and leave their time and censoring blank. They will not be used during 
estimation, but various hazard and survival statistics will be generated for them and displayed in 
the Predicted Values report. 

Categorical Independent Variables 

X’s: Categorical Independent Variable(s) 
Specify categorical (nominal) independent variables in this box. By categorical we mean that the 
variable has only a few unique, numeric or text, values like 1, 2, 3 or Yes, No, Maybe. The values 
are used to identify categories.  

The values in a categorical variable are not used directly in the regression analysis. Instead, a set 
of numeric variables is substituted for them. Suppose a categorical variable has G categories. 
NCSS automatically generates the G-1 indicator variables that are needed for the analysis. The 
type of indicator variable created is determined by the selection for the Default Reference Value 
and the Default Contrast Type. The type of indicator created can also be controlled by entering 
the reference value and contrast type directly according to the syntax below. See the Default 
Reference Value and Default Contrast Type sections below for a discussion of the reference value 
and contrast type options.  

You can create the interactions among these variables automatically using the Custom Model 
field under the Model tab.  

Syntax 
The syntax for specifying a categorical variable is VarName(RefValue;CType) where VarName is 
the name of the variable, RefValue is the reference value, and CType is the type of numeric 
variables generated: B for binary, P for polynomial, R for contrast with the reference value, and S 
for a standard set of contrasts.For example, suppose a categorical variable, STATE, has four 
values: Texas, California, Florida, and New York. To process this variable, the values are 
arranged in sorted order: California, Florida, New York, and Texas. Next, the reference value is 
selected. If a reference value is not specified, the default value specified in the Default Reference 
Value window is used. Finally, the method of generating numeric variables is selected. If such a 
method is not specified, the contrast type selected in the Default Contrast Type window is used. 
Possible ways of specifying this variable are 
STATE RefValue = Default, CType = Default 
STATE(New York) RefValue = New York, CType = Default 
STATE(California;R) RefValue = California, CType = Contrast with Reference 
STATE(Texas;S) RefValue = Texas, CType = Standard Set 

 

More than one category variable may be designated using a list. Examples of specifying three 
variables with various options are shown next. 
STATE  BLOODTYPE  GENDER 
STATE(California;R)  BLOODTYPE(O)  GENDER(F) 
STATE(Texas;S)  BLOODTYPE(O;R)  GENDER(F;B) 
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Default Reference Value 
This option specifies the default reference value to be used when automatically generating 
indicator variables during the processing of selected categorical independent variables. The 
reference value is often the baseline, and the other values are compared to it. The choices are 

• First Value after Sorting 
Use the first value in alpha-numeric sorted order as the reference value. 

• Last Value after Sorting 
Use the last value in alpha-numeric sorted order as the reference value. 

The reference value may also be designated within parentheses after the name of the categorical 
independent variable, in which case the default reference value is ignored. For example, suppose 
that the categorical independent variable, STATE, has four values: 1, 3, 4, and 5.  

1. If this option is set to 'First Value after Sorting' and the categorical independent variable 
is entered as 'STATE', the reference value would be 1.  

2. If this option is set to 'Last Value after Sorting' and the categorical independent variable 
is entered as 'STATE', the reference value would be 5.  

3. If the categorical independent variable is entered as 'STATE(4)', the choice for this 
setting would be ignored, and the reference value would be 4. 

Default Contrast Type 
Select the default type of numeric variable that will be generated when processing categorical 
independent variables. The values in a categorical variable are not used directly in regression 
analysis. Instead, a set of numeric variables is automatically created and substituted for them. 
This option allows you to specify what type of numeric variable will be created. The options are 
outlined in the sections below. 

The contrast type may also be designated within parentheses after the name of each categorical 
independent variable, in which case the default contrast type is ignored. 

If your model includes interactions of categorical variables, this option should be set to something 
other than 'Binary'. 

• Binary (This is the default) 
Categories are converted to numbers using a set of binary indicator variables by assigning a 
'1' to the active category and a '0' to all other values. For example, suppose a categorical 
variable has G categories. NCSS automatically generates the G-1 binary (indicator) variables 
that are used in the regression. These indicator variables are set to 1 for those rows in which 
the value of this variable is equal to a certain value. They are set to 0 otherwise. The G-1 
occurs because the Gth indicator variable is redundant (when all G-1 indicators are 0, wIfe 
know that the Gth indicator variable would be a 1). The value that is skipped is called the 
Reference Value. 

If your model includes interactions, using the binary indicator type may cause strange results.   
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For the STATE variable, three binary variables would be generated. Suppose that the Default 
Contrast Type was 'Binary' and the statement used was 'STATE(Florida)'. The categories 
would be converted to numbers as follows: 

STATE B1 B2 B3 
California 1 0 0 
Florida 0 0 0 
New York 0 1 0 
Texas 0 0 1 

• Contrast with Reference 
Categories are converted to numbers using a set of contrast variables by assigning a '1' to the 
active category, a '-1' to the reference value, and a '0' to all other values. A separate contrast is 
generated for each value other than the reference value.  

For the STATE variable, three numeric variables would be generated. Suppose the Default 
Contrast Type was 'Contrast with Reference', the Default Reference Type was 'Last Value 
after Sorting', and the variable was entered as 'STATE'. The categories would be converted to 
numbers as follows: 

STATE R1 R2 R3 
California 1 0 0 
Florida 0 1 0 
New York 0 0 1 
Texas -1 -1 -1 

• Polynomial 
If a variable has five or fewer categories, it can be converted to a set of polynomial contrast 
variables that account for the linear, quadratic, cubic, quartic, and quintic relationships. Note 
that these assignments are made after the values are sorted. Usually, the polynomial method 
is used on a variable for which the categories represent the actual values. That is, the values 
themselves are ordinal, not just category identifiers. Also, it is assumed that these values are 
equally spaced. Note that with this method, the reference value is ignored. 

For the STATE variable, linear, quadratic, and cubic variables are generated. Suppose that the 
Default Contrast Type was 'Polynomial' and the statement used was 'STATE'.  The categories 
would be converted to numbers as follows: 

STATE Linear Quadratic Cubic 
California -3 1 -1 
Florida -1 -1 3 
New York 1 -1 -3 
Texas 3 1 1 

• Standard Set 
A variable can be converted to a set of contrast variables using a standard set of contrasts. 
This set is formed by comparing each value with those below it. Those above it are ignored. 
Note that these assignments are made after the values are sorted. The reference value is 
ignored.  
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For the STATE variable, three numeric variables are generated. Suppose that the Default 
Contrast Type was 'Standard Set' and the statement used was 'STATE'. The categories would 
be converted to numbers as follows: 

STATE S1 S2 S3 
California -3 0 0 
Florida 1 -2 0 
New York 1 1 -1 
Texas 1 1 1 

Model Tab 
These options control the regression model. 

Subset Selection 

Subset Selection 
This option specifies the subset selection algorithm used to reduce the number of independent 
variables that used in the regression model. Note that since the solution algorithm is iterative, the 
selection process can be very time consuming. The Forward algorithm is much quicker than the 
Forward with Switching algorithm, but the Forward algorithm does not usually find as good of a 
model.  

Also note that in the case of categorical independent variables, the algorithm searches among the 
original categorical variables, not among the generated individual binary variables. That is, either 
all binary variables associated with a particular categorical variable are included or not—they are 
not considered individually. 

Hierarchical models are such that if an interaction is in the model, so are the terms that can be 
derived from it. For example, if A*B*C is in the model, so are A, B, C, A*B, A*C, and B*C. 
Statisticians usually adopt hierarchical models rather than non-hierarchical models. The subset 
selection procedure can be made to consider only hierarchical models during its search.  

The subset selection options are: 

• None 
No subset selection is attempted. All specified independent variables are used in the 
regression equation. 

• (Hierarchical) Forward 
With this algorithm, the term with the largest log likelihood is entered into the model. Next, 
the term that increases the log likelihood the most is added. This selection is continued until 
all the terms have been entered or until the maximum subset size has been reach. 

If hierarchical models are selected, only those terms that will keep the model hierarchical are 
candidates for selection. For example, the interaction term A*B will not be considered unless 
both A and B are already in the model.  

When using this algorithm, you must make one run that allows a large number of terms to 
find the appropriate number of terms. Next, a second run is made in which you decrease the 
maximum terms in the subset to the number after which the log likelihood does not change 
significantly. 
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• (Hierarchical) Forward with Switching 
This algorithm is similar to the Forward algorithm described above. The term with the largest 
log likelihood is entered into the regression model. The term which increases the log 
likelihood the most when combined with the first term is entered next. Now, each term in the 
current model is removed and the rest of the terms are checked to determine if, when they are 
used instead, the likelihood function is increased. If a term can be found by this switching 
process, the switch is made and the whole switching operation is begun again. The algorithm 
continues until no term can be found that improves the likelihood. This model then becomes 
the best two-term model.  

Next, the subset size is increased by one, the best third term is entered into the model, and the 
switching process is repeated. This process is repeated until the maximum subset size is 
reached. Hence, this model finds the optimum subset for each subset size. You must make 
one run to find an appropriate subset size by looking at the change in the log likelihood. You 
then reset the maximum subset size to this value and rerun the analysis. 

If hierarchical models are selected, only those terms that will keep the model hierarchical are 
candidates for addition or deletion. For example, the interaction term A*B will not be 
considered unless both A and B are already in the model. Likewise, the term A cannot be 
removed from a model that contains A*B. 

Max Terms in Subset 
Once this number of terms has been entered into the model, the subset selection algorithm is 
terminated. Often you will have to run the procedure twice to find an appropriate value. You 
would set this value high for the first run and then reset it appropriately for the second run, 
depending upon the values of the log likelihood. 

Note that the intercept is counted in this number. 

Estimation Options 
These options control the number of iterations used while the algorithm is searching for the 
maximum likelihood solution.  

Maximum Iterations 
This option specifies the maximum number of iterations used while finding a solution. If this 
number is reached, the procedure is terminated prematurely. This is used to prevent an infinite 
loop and to reduce the running time of lengthy variable selection runs. 
Usually, no more the 20 iterations are needed. In fact, most runs converge in about 7 or 8 
iterations. 
During a variable selection run, it may be advisable reset this value to 4 or 5 to speed up the 
variable selection. Usually, the last few iterations make little difference in the estimated values of 
the regression coefficients.  

Convergence Zero 
This option specifies the convergence target for the maximum likelihood estimation procedure. 
The algorithm finds the maximum relative change of the regression coefficients. If this amount is 
less than the value set here, the maximum likelihood procedure is terminated. 
For large datasets, you might want to increase this value to about 0.0001 so that fewer iterations 
are used, thus decreasing the running time of the procedure. 
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Model Specification 

Which Model Terms 
This option specifies which terms (terms, powers, cross-products, and interactions) are included 
in the regression model. For a straight-forward regression model, select Up to 1-Way.  

The options are 

• Full Model 
The complete, saturated model (all terms and their interactions) is generated. This requires a 
dataset with no missing categorical-variable combinations (you can have unequal numbers of 
observations for each combination of the categorical variables). 

For example, if you have three independent variables A, B, and C, this would generate the 
model: 

A + B + C + A*B + A*C + B*C + A*B*C  

Note that the discussion of the Custom Model option discusses the interpretation of this 
model. 

• Up to 1-Way 
This option generates a model in which each variable is represented by a single model term. 
No cross-products or interaction terms are added. Use this option when you want to use the 
variables you have specified, but you do not want to generate other terms.  

This is the option to select when you want to analyze the independent variables specified 
without adding any other terms. 

For example, if you have three independent variables A, B, and C, this would generate the 
model: 

A + B + C 

• Up to 2-Way 
This option specifies that all main effects and two-way interactions are included in the model. 
For example, if you have three independent variables A, B, and C, this would generate the 
model: 

A + B + C + A*B + A*C + B*C 

• Up to 3-Way 
All main effects, two-way interactions, and three-way interactions are included in the model. 
For example, if you have three independent variables A, B, and C, this would generate the 
model: 

A + B + C + A*B + A*C + B*C + A*B*C 

• Up to 4-Way 
All main effects, two-way interactions, three-way interactions, and four-way interactions are 
included in the model. For example, if you have four independent variables A, B, C, and D, 
this would generate the model: 

A + B + C + D + A*B + A*C + A*D + B*C + B*D + C*D + A*B*C + A*B*D + A*C*D + 
B*C*D + A*B*C*D 
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• Custom Model 
The model specified in the Custom Model box is used.  

Write Model in Custom Model Field 
When this option is checked, no data analysis is performed when the procedure is run. Instead, a 
copy of the full model is stored in the Custom Model box. You can then edit the model as desired. 
This option is useful when you want to be selective about which terms to keep and you have 
several variables. 

Note that the program will not do any calculations while this option is checked. 

Model Specification – Custom Model 

Max Term Order 
This option specifies that maximum number of variables that can occur in an interaction term in a 
custom model. For example, A*B*C is a third order interaction term and if this option were set to 
2, the A*B*C term would be excluded from the model. 

This option is particularly useful when used with the bar notation of a custom model to allow a 
simple way to remove unwanted high-order interactions. 

Custom Model 
This options specifies a custom model. It is only used when the Which Model Terms option is set 
to Custom Model. A custom model specifies the terms (single variables and interactions) that are 
to be kept in the model.  

Interactions 
An interaction expresses the combined relationship between two or more variables and the 
dependent variable by creating a new variable that is the product of the variables. The interaction 
between two numeric variables is generated by multiplying them. The interaction between to 
categorical variables is generated by multiplying each pair of indicator variables. The interaction 
between a numeric variable and a categorical variable is created by generating all products 
between the numeric variable and the indicator variables generated from the categorical variable.  

Syntax 
A model is written by listing one or more terms.  The terms are separated by a blank or plus sign. 
Terms include variables and interactions. Specify regular variables (main effects) by entering the 
variable names. Specify interactions by listing each variable in the interaction separated by an 
asterisk (*), such as Fruit*Nuts or A*B*C.  

You can use the bar (|) symbol as a shorthand technique for specifying many interactions quickly. 
When several variables are separated by bars, all of their interactions are generated. For example, 
A|B|C is interpreted as A + B + C + A*B + A*C + B*C + A*B*C. 

You can use parentheses. For example, A*(B+C) is interpreted as A*B + A*C. 

Some examples will help to indicate how the model syntax works: 

A|B = A + B + A*B 

A|B A*A B*B = A + B + A*B + A*A + B*B 
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Note that you should only repeat numeric variables. That is, A*A is valid for a numeric variable, 
but not for a categorical variable. 

A|A|B|B (Max Term Order=2) = A + B + A*A + A*B + B*B 

A|B|C = A + B + C + A*B + A*C + B*C + A*B*C 

(A + B)*(C + D) = A*C + A*D + B*C + B*D 

(A + B)|C = (A + B) + C + (A + B)*C = A + B + C + A*C + B*C 

Reports Tab 
The following options control which reports are displayed. 

Select Reports – Summaries 

Run Summary 
Indicate whether to display this summary report.  

Select Reports – Subset Selection 

Subset Selection - Summary and Subset Selection - Detail 
Indicate whether to display these subset selection reports.  

Select Reports – Estimation 

Regression Coefficients ... C.L. of Regression Coefficients 
Indicate whether to display these estimation reports.  

Select Reports – Goodness-of-Fit 

Analysis of Deviance ... Baseline Hazard and Survival 
Indicate whether to display these model goodness-of-fit reports.  

Select Reports – Row-by-Row Lists 

Residuals ... Predicted Values 
Indicate whether to display these list reports. Note that since these reports provide results for each 
row, they may be too long for normal use when requested on large databases. 

Order of Row Reports 
This option specifies the order of the observations displayed on reports that display a separate 
value for each row. The rows can be displayed in the original order of the database or sorted by 
the time value, from lowest to highest. 

Select Plots 

Null Martingale Resid vs X Plot ... Deviance Resid vs Time Plot 
Indicate whether to display these plots.  
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Format Tab 
These options control format of the reports. 

Report Options 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Skip Line After 
The names of the indicator variables can be too long to fit in the space provided. If the name 
contains more characters than the number specified here, only the name is shown on the first line 
of the report and the rest of the output is placed on the next line. 

Enter 1 when you want the each variable’s results printed on two lines. 

Enter 100 when you want each variable’s results printed on a single line. 

Report Options – Decimal Places 

Time ... Z or Chi2 Decimals 
These options specify the number of decimal places shown on the reports for the indicated values. 

MResid vs X Plots to Resid vs Time Plots Tabs 
These options control the attributes of the various plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 
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Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This option contains the text of the plot title. The characters {Y} and {X} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 

Storage Tab 
These options let you specify if, and where on the database, various statistics are stored. 

Warning: Any data already in these variables are replaced by the new data. Be careful not to 
specify variables that contain important data. 

Data Storage Options 

Storage Option 
This option controls whether the values indicated below are stored on the database when the 
procedure is run. 

• Do not store data 
No data are stored even if they are checked. 

• Store in empty columns only 
The values are stored in empty columns only. Columns containing data are not used for data 
storage, so no data can be lost. 

• Store in designated columns 
Beginning at the First Storage Variable, the values are stored in this column and those to the 
right. If a column contains data, the data are replaced by the storage values. Care must be 
used with this option because it cannot be undone. 

Store First Variable In 
The first item is stored in this variable. Each additional item that is checked is stored in the 
variables immediately to the right of this variable.  
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Leave this value blank if you want the data storage to begin in the first blank column on the right-
hand side of the data. 

Warning: any existing data in these variables is automatically replaced, so be careful.. 

Data Storage Options – Select Items 
to Store 

Expanded X Values ... Covariance Matrix 
Indicate whether to store these row-by-row values, beginning at the variable indicated by the 
Store First Variable In option. Note that several of these values include a different value for each 
covariate and so they require several columns when they are stored. 

Expanded X Values 
This option refers to the experimental design matrix. They include all binary and interaction 
variables generated. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Cox Regression Analysis 
This section presents an example of how to run a Cox regression analysis. The data used are 
found in the LUNGCANCER database. These data are an excerpt from a lung cancer study 
reported in Kalbfleisch (1980). The variables used in the analysis are  

 
TIME Days of survival 
CENSOR Censor indicator 
STATUS Karnofsky rating performance status 
MONTHS Months from diagnosis 
AGE Age in years 
THERAPY Prior therapy: 0 no, 10 yes 

 

The purpose of this analysis is study the relationship between length of patient survival and the 
covariates. You may follow along here by making the appropriate entries or load the completed 
template Example1 from the Template tab of the Cox Regression window. 

1 Open the LUNGCANCER dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file LungCancer.s0. 
• Click Open. 

2 Open the Cox Regression window. 
• On the menus, select Analysis, then Regression/Correlation, then Cox Regression. The 

Cox Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will load the default template.  

3 Specify the variables. 
• On the Cox Regression window, select the Variables tab.  
• Enter Time in the Time Variable box.  
• Set the Ties Method to Efron. 
• Enter Censor in the Censor Variable box.  
• Enter Status-Therapy in the X’s: Numeric Independent Variables box.  

4 Specify the reports. 
• On the Cox Regression window, select the Reports tab.  
• Check all of the reports. Although under normal circumstances you would not need all of 

the reports, we will view them all here so they can be annotated. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Run Summary Section 
   
Run Summary Section 
Parameter Value Parameter Value 
Rows Read 15 Time Variable Time 
Rows Filtered Out 0 Censor Variable Censor 
Rows Missing X's 0 Frequency Variable None 
Rows Processed 15 Subset Method None 
Rows Prediction Only 0 Ind. Var's Available 4 
Rows Failed 13 No. of X's in Model 4 
Rows Censored 2 Iterations 7 
Sum of Frequencies 15 Maximum Iterations 20 
Sum Censored Freqs 2 Convergence Criterion 1E-09 
Sum Failed Freqs 13 Achieved Convergence 1.473012E-15 
Final Log Likelihood -20.1143 Completion Message Normal completion 

 

This report summarizes the characteristics of the dataset and provides useful information about 
the reports to follow. It should be studied to make sure that the data were read in properly and that 
the estimation algorithm terminated normally. We will only discuss those parameters that need 
special explanation.  

Rows Read 
This is the number of rows processed during the run. Check this count to make certain it agrees 
with what you anticipated. 

Iterations 
This is the number of iterations used by the maximum likelihood procedure. This value should be 
compared against the value of the Maximum Iterations option to see if the iterative procedure 
terminated early. 

Achieved Convergence 
This is the maximum of the relative changes in the regression coefficients on the last iteration. If 
this value is less than the Convergence Criterion, the procedure converged normally. Otherwise, 
the specified convergence precision was not achieved. 

Final Log Likelihood 
This is the log likelihood of the model.  

Regression Coefficients Section 
   

Regression Coefficients Section 
 Regression  Risk     
Independent Coefficient Standard Ratio  Wald Prob Pseudo 
Variable (B) Error of B Exp(B) Mean Z-Value Level R2 
B1 Age 0.039805 0.035232 1.0406 60.3333 1.1298 0.2586 0.1242 
B2 Months 0.064557 0.033056 1.0667 12.6000 1.9530 0.0508 0.2977 
B3 Status -0.032415 0.020324 0.9681 57.3333 -1.5949 0.1107 0.2204 
B4 Therapy 0.013967 0.068384 1.0141 4.6667 0.2042 0.8382 0.0046 

 
Estimated Cox Regression Model 
Exp( 3.98048128120681E-02 + 6.45571159984993E-02*Months -3.24152392634531E-02*Status  
+ 1.39668973406698E-02*Therapy ) 

 

This report displays the results of the proportional hazards estimation. Following are the detailed 
definitions:  
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Independent Variable 
This is the variable from the model that is displayed on this line. If the variable is continuous, it is 
displayed directly. If the variable is discrete, the binary variable is given. For example, suppose 
that a discrete independent GRADE variable has three values: A, B, and C. The name shown here 
would be something like GRADE=B. This refers to a binary variable that is one for those rows in 
which GRADE was B and zero otherwise. 

Note that the placement of the name is controlled by the Skip Line After option of the Format tab. 

Regression Coefficient (B) 
This is the estimate of the regression coefficient, βi . Remember that the basic regression 
equation is 
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Thus the quantity βi  is the amount that the log of the hazard rate changes when  is increased by 
one unit. Note that a positive coefficient implies that as the value of the covariate is increased, the 
hazard increases and the prognosis gets worse. A negative coefficient indicates that as the 
variable is increased, the hazard decreases and the prognosis gets better.  

xi

Standard Error 
This is , the large-sample estimate of the standard error of the regression coefficient. This is 

an estimate of the precision of the regression coefficient. It is provided by the square root of the 
corresponding diagonal element of the covariance matrix, 

sb j

( ) 1ˆ −= IV β . It is also used as the 
denominator of the Wald test. 

Risk Ratio Exp(B) 
This the value of . This value is often called the risk ratio since it is the ratio of two hazards 
whose only difference is that  is increased by one unit. That is,  
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In this example, if Months is increased by one, the hazard rate is increased by 6.67%. If you want 
to calculate the affect of increasing Months by three, the hazard rate is increased by 

, or 21.37%. Note that is not equal to 3.0 times 6.67. 10667 121373. .=

Mean 
This is the average of this independent variable. The means are especially important in 
interpreting the baseline hazard rates. Unless you have opted otherwise, the independent variables 
have been centered by subtracting these mean values. Hence, the baseline hazard rate occurs 
when each independent variable is equal to its mean.  

Wald Z-Value 
This is the z value of the Wald test used for testing the hypothesis that βi = 0  against the 
alternative βi ≠ 0 . The Wald test is calculated using the formula   

z
b
si

ij

bi

=  
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The distribution of the Wald statistic is closely approximated by the normal distribution in large 
samples. However, in small samples, the normal approximation may be poor. For small samples, 
likelihood ratio tests perform better and are preferred. 

Prob Level 
This is the two-sided probability level. This is the probability of obtaining a z-value larger in 
absolute value than the one obtained. If this probability is less than the specified significance 
level (say 0.05), the regression coefficient is significantly different from zero.  

Pseudo R2 
An index value, similar to R-Squared in regression, representing the relative influence of this 
variable. If C = z^2, n = sample size, and p = number of variables, then R2 = C/(n-p+C).  

Estimated Cox Model 
This section gives the Cox regression model in a regular text format that can be used as a 
transformation formula. The regression coefficients are displayed in double precision because a 
single-precision formula does not include the accuracy necessary to calculate the hazard rates. 

Note that transformation must be less than 255 characters. Since these formulas are often greater 
than 255 characters in length, you must use the FILE(filename) transformation. To do so, copy 
the formula to a text file using Notepad, Windows Write, or Word to receive the model text. Be 
sure to save the file as an unformatted text (ASCII) file. The transformation is FILE(filename) 
where filename is the name of the text file, including directory information. When the 
transformation is executed, it will load the file and use the transformation stored there. 

Confidence Limits Section 
 
Confidence Limits Section 
 Regression Lower 95.0% Upper 95.0% Risk Lower  Upper  
Independent Coefficient Confidence Confidence Ratio 95.0% C.L. 95.0% C.L. 
Variable (B) Limit of B Limit of B Exp(B) of Exp(B) of Exp(B) 
B1 Age 0.039805 -0.029249 0.108858 1.0406 0.9712 1.1150 
B2 Months 0.064555 -0.000231 0.129341 1.0667 0.9998 1.1381 
B3 Status -0.032415 -0.072249 0.007420 0.9681 0.9303 1.0074 
B4 Therapy 0.013965 -0.120064 0.147993 1.0141 0.8869 1.1595 
 

This report provides the confidence intervals for the regression coefficients and the risk ratios. 
The confidence coefficient, in this example 95%, was specified on the Format tab.  

Independent Variable 
This is the independent variable that is displayed on this line. If the variable is continuous, it is 
displayed directly. If the variable is discrete, the definition of the binary variable that was 
generated is given. For example, suppose that a discrete independent GRADE variable has three 
values: A, B, and C. The name shown here would be something like GRADE=B. This refers to a 
binary variable that is one for those rows in which GRADE  was B and zero otherwise. 

Note that the placement of the name is controlled by the Skip Line After option of the Format tab. 

Regression Coefficient (B or Beta) 
This is the estimate of the regression coefficient, βi . Remember that the basic regression 
equation is 
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Thus the quantity iβ  is the amount that the log of the hazard rate changes when  is increased by 
one unit. Note that a positive coefficient implies that as the value of the covariate is increased, the 
hazard increases and the prognosis gets worse. A negative coefficient indicates that as the 
variable is increased, the hazard decreases and the prognosis gets better. 

xi

Confidence Limits of B 
A 95% confidence interval for iβ  is given by an upper and lower limit. These limits are based on 
the Wald statistic using the formula  

ibi szb 2/1 α−±  

Since they are based on the Wald test, they are only valid for large samples. 

Risk Ratio Exp(B) 
This the value of . This value is often called the risk ratio since it is the ratio of two hazards 
whose only difference is that  is increased by one unit. That is,  
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In this example, if Months is increased by one, the hazard rate is increased by 6.67%. If you want 
to calculate the affect of increasing Months by three, the hazard rate is increased by 

, or 21.37%. Note that is not equal to 3.0 times 6.67. 2137.10667.1 3 =

Confidence Limits of Exp(B) 
A 95% confidence interval for  is given by an upper and lower limit. These limits are based on 
the Wald statistic using the formula  

e iβ

( )
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Since they are based on the Wald test, they are only valid for large samples. 

Analysis of Deviance Section 
 
   Increase   
   From Model   
Term(s)  -2 Log Deviance Prob  
Omitted DF Likelihood (Chi Square) Level  
All Terms 4 46.6698 6.4413 0.1685  
AGE 1 41.5943 1.3657 0.2426  
MONTHS 1 44.3928 4.1642 0.0413  
STATUS 1 42.7787 2.5501 0.1103  
THERAPY 1 40.2704 0.0419 0.8379  
None(Model) 4 40.2286    
 

This report is the Cox regression analog of the analysis of variance table. It displays the results of 
a chi-square test used to test whether each of the individual terms in the regression are statistically 
significant after adjusting for all other terms in the model.  
This report is not produced during a subset selection run. 
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Note that this report requires that a separate regression be run for each line. Thus, if the running 
time is too long, you might consider omitting this report. 

Term Omitted 
This is the model term that is being tested. The test is formed by comparing the deviance statistic 
when the term is removed with the deviance of the complete model. Thus, the deviance when the 
term is left out of the model is shown. 

The “All” line refers to a no-covariates model. The “None(Model)” refers to the complete model 
with no terms removed. 

Note that it is usually not advisable to include an interaction term in a model when one of the 
associated main effects is missing—which is what happens here. However, in this case, we 
believe this to be a useful test. 

Note also that the name may become very long, especially for interaction terms. These long 
names may misalign the report. You can force the rest of the items to be printed on the next line 
by using the Skip Line After option in the Format tab. This should create a better looking report 
when the names are extra long. 

DF 
This is the degrees of freedom of the chi-square test displayed on this line. DF is equal to the 
number of individual independent variables in the term. 

Log Likelihood 
This is the log likelihood achieved by the model being described on this line of the report.  

R-Squared of Remaining Terms 
This is the difference between the deviance for the model described on this line and the deviance 
of the complete model. This value follows the chi-square distribution in medium to large samples. 
This value can be thought of as the analog of the residual sum of squares in multiple regression. 
Thus, you can think of this value as the increase in the residual sum of squares that occurs when 
this term is removed from the model. 

Another way to interpret this test is as a redundancy test because it tests whether this term is 
redundant after considering all of the other terms in the model. 

Prob Level 
This is the significance level of the chi-square test. This is the probability that a chi-square value 
with degrees of freedom DF is equal to this value or greater. If this value is less than 0.05 (or 
other appropriate value), the term is said to be statistically significant. 

Log Likelihood & R-Squared Section 
 
   R-Squared Reduction  
Term(s)  Log Of Remaining From Model  
Omitted DF Likelihood Term(s) R-Squared  
All Terms 4 -23.3349 0.0000 0.3491  
AGE 1 -20.7971 0.2871 0.0620  
MONTHS 1 -22.1964 0.1408 0.2083  
STATUS 1 -21.3893 0.2285 0.1206  
THERAPY 1 -20.1352 0.3473 0.0018  
None(Model) 4 -20.1143 0.3491 0.0000 
 



 Cox Regression  565-37 

This report provides the log likelihoods and R-squared values of various models. This report is 
not produced during a subset selection run.  
Note that this report requires that a separate Cox regression be run for each line. Thus, if the 
running time is too long, you might consider omitting this report. 

Term Omitted 
This is the term that is omitted from the model. The “All” line refers to no-covariates model. The 
“None(Model)” refers to the complete model with no terms removed. The “None(Model)” refers 
to the complete model with no terms removed. 

Note that the name may become very long, especially for interaction terms. These long names 
may misalign the report. You can force the rest of the items to be printed on the next line by using 
the Skip Line After option in the Format tab. This should create a better looking report when the 
names are extra long. 

DF 
This is the degrees of freedom of the term displayed on this line.  

Log Likelihood 
This is the log likelihood of the model displayed on this line. Note that this is the log likelihood 
of the logistic regression without the term listed. 

R-Squared of Remaining Term(s) 
This is the R-squared of the model displayed on this line. Note that the model does not include the 
term listed at the beginning of the line. This R-squared is analogous to the R-squared in multiple 
regression, but it is not the same.  

Hosmer and Lemeshow (1999) indicate that at the time of the writing of their book, there is no 
single, easy to interpret measure in Cox regression that is analogous to R2  in multiple regression. 
They indicate that if such a measure “must be calculated” they would use 
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where  is the log likelihood of the model with no covariates, n is the number of observations 
(censored or not), and  is the log likelihood of the model that includes the covariates.  

L0

Lp

Reduction From Model R-Squared 
This is amount that R-squared is reduced when the term is omitted from the regression model. 
This reduction is calculated from the R-squared achieved by the full model. 

This quantity is used to determine if removing a term causes a large reduction in R-squared. If it 
does not, then the term can be safely removed from the model. 
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Baseline Cumulative Hazard & Survival Section 
 
 Centered Centered  Centered 
 Baseline Baseline  Baseline 
 Cumulative Cumulative  Hazard 
Time Survival Hazard Alpha Rate 
8 0.9654 0.0352 0.9654 0.0346 
10 0.8912 0.1152 0.9232 0.0768 
11 0.8183 0.2006 0.9181 0.0819 
42 0.7449 0.2945 0.9103 0.0897 
72 0.6717 0.3980 0.9017 0.0983 
82 0.5934 0.5220 0.8834 0.1166 
110 0.4942 0.7048 0.8329 0.1671 
118 0.3904 0.9407 0.7898 0.2102 
126 0.2911 1.2341 0.7457 0.2543 
144 0.1843 1.6915 0.6330 0.3670 
228 0.0922 2.3841 0.5003 0.4997 
314 0.0288 3.5461 0.3128 0.6872 
411 0.0288 3.5461 0.0000 1.0000 
 

This report displays various estimated survival and hazard values. These are centered if the 
Centered X’s option is selected.  

Baseline Cumulative Survival 
This estimates the cumulative survival probability of an individual with all covariates equal to their 
means or to zero depending on whether the data are centered or not. It is the value of  which is 
estimated using the formula    
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Baseline Cumulative Hazard 
This estimates the cumulative baseline hazard of an individual with a set of covariates all equal to 
zero. It is the value of  which is calculated using the formula ( )TH0

( ) ( )( )TSTH 00 ln−=  

Alpha 
This is the value of the conditional baseline survival probabilities at the times listed. These values 
are used to calculate . ( )TS0

Baseline Hazard Rate 
This is the estimate of the baseline hazard rates ( )tTh0  which are calculated as follows 

( ) ttTh α−= 10  
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Residual Section 
 
  Cox-Snell  Martingale  Deviance  
Row Time Residual  Residual  Residual  
12 8 1.3861 ||||||......... -0.3861 ||............. -0.3453 ||............. 
6 10 0.1411 |.............. 0.8589 ||||||......... 1.4828 ||||||||||||... 
15 11 0.0791 |.............. 0.9209 ||||||......... 1.7978 ||||||||||||||| 
14+ 25 0.0590 |.............. -0.0590 |.............. -0.3434 ||............. 
11 42 0.3307 |.............. 0.6693 ||||........... 0.9351 |||||||........ 
1 72 0.3364 |.............. 0.6636 ||||........... 0.9229 |||||||........ 
7 82 1.1774 |||||.......... -0.1774 |.............. -0.1679 |.............. 
10+ 100 0.3112 |.............. -0.3112 |.............. -0.7890 ||||||......... 
8 110 1.2387 ||||||......... -0.2387 |.............. -0.2220 |.............. 
5 118 0.7300 |||............ 0.2700 |.............. 0.2991 |.............. 
4 126 1.0748 |||||.......... -0.0748 |.............. -0.0730 |.............. 
13 144 2.4532 ||||||||||||... -1.4532 ||||||||||..... -1.0543 ||||||||....... 
3 228 0.4532 ||............. 0.5468 |||............ 0.6995 |||||.......... 
9 314 2.9953 ||||||||||||||| -1.9953 ||||||||||||||| -1.3403 |||||||||||.... 
2 411 1.7951 ||||||||....... -0.7951 |||||.......... -0.6481 |||||.......... 
 

The various residuals were discussed in detail earlier in this chapter. Only a brief definition will 
be given were.  

Row 
This is the row from the database that is displayed on this line. Rows with a plus sign were 
censored. 

Time 
This is the value of the elapsed time. 

Cox-Snell Residuals 
Cox-Snell residuals were created to assess the goodness-of-fit of the Cox regression. They have 
since been replaced by other types of residuals and are now only of historical interest. See, for 
example, the discussion of Marubini and Valsecchi (1996) who state that the use of these residuals 
on distributional grounds should be avoided.  

Martingale Residuals 
The martingale residuals are defined as  

M c rt t t= −  

where  is one if there is a failure at time  and zero otherwise. The martingale residual measures 
the difference between whether an individual experiences the event of interest and the expected 
number of events based on the model. The maximum value of the residual is one and the minimum 
possible value is negative infinity. Thus, the residual is highly skewed. A large negative martingale 
residual indicates a high risk individual who still had a long survival time. 

ct Tt

Martingale residuals can not be used to assess goodness-of-fit as are the usual residuals in 
multiple regression. They have two main uses. First, they can be used to find outliers—
individuals who are poorly fit by the model. Second, martingale residuals can be used to 
determine the functional form of each of the covariates in the model.  

Martingale residuals can be used to determine the functional form of a covariate. To do this, you 
generate the Martingale residuals from a model without the covariate. Next, you plot these residuals 
against the value of the covariate.  
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Deviance Residuals 
Deviance residuals are used to search for outliers. The deviance residuals are defined as  

( ) ( )[ ]tttttt MccMMsignDEV −+−= ln2  

or zero when  is zero. These residuals are plotted against the risk scores given by Mt
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When there is slight to moderate censoring, large absolute values in these residuals point to 
potential outliers. When there is heavy censoring, there will be a large number of residuals near 
zero. However, large absolute values will still indicate outliers.  

Martingale Residuals Section 
 
  Null    
  Martingale  Martingale  
Row Time Residual  Residual  
12 8 0.9310 ||||||||....... -0.3862 ||............. 
6 10 0.8569 ||||||||....... 0.8589 ||||||......... 
15 11 0.7769 |||||||........ 0.9209 ||||||......... 
14+ 25 -0.2231 |.............. -0.0590 |.............. 
11 42 0.6815 ||||||......... 0.6693 ||||........... 
1 72 0.5762 |||||.......... 0.6636 ||||........... 
7 82 0.4584 |||............ -0.1774 |.............. 
10+ 100 -0.5416 ||||........... -0.3112 |.............. 
8 110 0.3043 ||............. -0.2387 |.............. 
5 118 0.1219 |.............. 0.2700 |.............. 
4 126 -0.1012 |.............. -0.0748 |.............. 
13 144 -0.3889 |||............ -1.4532 ||||||||||..... 
3 228 -0.7944 |||||||........ 0.5468 |||............ 
9 314 -1.4875 ||||||||||||||| -1.9953 ||||||||||||||| 
2 411 -1.4875 ||||||||||||||| -0.7951 |||||.......... 
 

The various residuals were discussed in detail earlier in this chapter. Only a brief definition will 
be given were.  

Row 
This is the row from the database that is displayed on this line. Rows with a plus sign were 
censored. 

Time 
This is the value of the elapsed time. 

Null Martingale Residuals 
These are the null martingale residuals. They are computed from a null (no covariate) model. 
Therneau and Grambsch (2000) suggest that the null-model martingale residuals can show the ideal 
functional form of the covariates so long as the covariates are not highly correlated among 
themselves. To find the appropriate functional form, each covariate is plotted against these 
residuals.  

Martingale Residuals 
The martingale residuals are repeated here. They were defined in the Residuals Section. 
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Schoenfeld Residuals Section 
 
Schoenfeld Residuals Section 
  Resid  Resid  Resid  
Row Time Age  Months  Status  
12 8 -0.1121 |.............. 11.8151 ||||||||||||... -3.4330 |.............. 
6 10 -14.4483 ||||||||||||... -5.7471 |||||.......... -33.7298 ||||||||||||||| 
15 11 -16.9356 ||||||||||||||| -0.3387 |.............. 12.7982 |||||.......... 
11 42 15.1298 |||||||||||||.. -7.4119 |||||||........ 3.8457 |.............. 
1 72 4.8130 ||||........... -5.2365 |||||.......... 4.2736 |.............. 
7 82 5.2529 ||||........... -2.7151 ||............. -15.3358 ||||||......... 
8 110 6.6884 |||||.......... 14.7013 ||||||||||||||| 20.6226 |||||||||...... 
5 118 6.2230 |||||.......... 2.2723 ||............. 18.4375 ||||||||....... 
4 126 5.4733 ||||........... 0.7289 |.............. 12.1419 |||||.......... 
13 144 7.0668 ||||||......... -4.0589 ||||........... -14.3231 ||||||......... 
3 228 -11.2819 |||||||||...... -8.8791 |||||||||...... 2.1963 |.............. 
9 314 -7.8694 ||||||......... 4.8715 ||||........... -7.4947 |||............ 
2 411 0.0000 |.............. 0.0000 |.............. 0.0000 |.............. 
 
Schoenfeld Residuals Section 
  Resid      
Row Time Therapy      
12 8 1.5297 |||............     
6 10 -3.8822 |||||||||......     
15 11 5.7182 |||||||||||||..     
11 42 -3.9309 |||||||||......     
1 72 -4.3682 ||||||||||.....     
7 82 5.2326 ||||||||||||...     
8 110 -3.3664 |||||||........     
5 118 5.3579 ||||||||||||...     
4 126 6.4343 |||||||||||||||     
13 144 -1.6923 |||............     
3 228 -3.2851 |||||||........     
9 314 -3.7473 ||||||||...... 
     

This report displays the Schoenfeld residuals for each noncensored individual. Note that most 
authors suggest using the scaled Schoenfeld residuals rather than these residuals. Since these 
residuals were discussed earlier in this chapter, only a brief definition will be given were. 

Row 
This is the row from the database that is displayed on this line. Rows with a plus sign were 
censored.  

Time 
This is the value of the elapsed time. 

Schoenfeld Residuals 
The Schoenfeld residuals are defined as follows 
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Thus, this residual is the difference between the actual value of the covariate and a weighted 
average where the weights are determined from the risk scores. These residuals are used to estimate 
the influence of an observation on each of the regression coefficients. Plots of these quantities 
against the row number or against the corresponding covariate values are used to study these 
residuals. 

Scaled Schoenfeld Residuals Section 
 
Scaled Schoenfeld Residuals Section 
  Resid  Resid  Resid  
Row Time Age  Months  Status  
12 8 0.0276 |.............. 0.1828 ||||||||||||||| -0.0569 ||||||......... 
6 10 -0.1660 |||||||........ -0.0528 ||||........... -0.1280 ||||||||||||||| 
15 11 -0.3476 ||||||||||||||| -0.0731 |||||.......... 0.0701 ||||||||....... 
11 42 0.2516 ||||||||||..... -0.0812 ||||||......... 0.0355 ||||........... 
1 72 0.0959 ||||........... -0.0873 |||||||........ 0.0487 |||||.......... 
7 82 0.0482 ||............. 0.0410 |||............ -0.1048 ||||||||||||... 
8 110 0.1586 ||||||......... 0.1616 |||||||||||||.. 0.0753 ||||||||....... 
5 118 0.0300 |.............. 0.0237 |.............. 0.0611 |||||||........ 
4 126 0.0116 |.............. 0.0206 |.............. 0.0280 |||............ 
13 144 0.1376 |||||.......... -0.0020 |.............. -0.0690 ||||||||....... 
3 228 -0.1832 |||||||........ -0.1822 ||||||||||||||. 0.0663 |||||||........ 
9 314 -0.0642 ||............. 0.0489 ||||........... -0.0262 |||............ 
2 411 0.0000 |.............. 0.0000 |.............. 0.0000 |.............. 
 
Scaled Schoenfeld Residuals Section 
  Resid      
Row Time Therapy      
12 8 0.1550 |||||..........     
6 10 0.0223 |..............     
15 11 0.4537 |||||||||||||||     
11 42 -0.4288 ||||||||||||||.     
1 72 -0.3501 |||||||||||....     
7 82 0.3223 ||||||||||.....     
8 110 -0.2982 |||||||||......     
5 118 0.1971 ||||||.........     
4 126 0.2903 |||||||||......     
13 144 -0.1256 ||||...........     
3 228 -0.1361 ||||...........     
9 314 -0.1018 |||............     
2 411 0.0000 |..............      
 

This report displays the scaled Schoenfeld residuals for each noncensored individual. These 
residuals are often used to find influential observations. Since these residuals were discussed 
earlier in this chapter, only a brief definition will be given were.  

Row 
This is the row from the database that is displayed on this line. Rows with a plus sign were 
censored. 

Time 
This is the value of the elapsed time. 

Scaled Schoenfeld Residuals 
The scaled Schoenfeld residuals are defined as follows 
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where m is the total number of deaths in the dataset and V is the estimated covariance matrix of the 
regression coefficients. Hosmer and Lemeshow (1999) and Therneau and Grambsch (2000) 
suggest that scaling the Schoenfeld residuals by an estimate of their variance gives quantities with 
greater diagnostic ability. Hosmer and Lemeshow (1999) use the covariance matrix of the 
regression coefficients to perform the scaling.  

These residuals are plotted against time to validate the proportional hazards assumption. If the 
proportional hazards assumption holds, the residuals will fall randomly around a horizontal line 
centered at zero. If the proportional hazards assumption does not hold, a trend will be apparent in 
the plot. 

Predicted Values Section 
 
  Cumulative Linear Relative Cumalitive Cumulative 
  Baseline Predictor Risk Hazard Survival 
Row Time Hazard XB Exp(XB) H(T|X) S(T|X) 
12 8 0.0352 3.6734 39.3805 1.3861 0.2500 
6 10 0.1152 0.2032 1.2254 0.1411 0.8684 
15 11 0.2006 -0.9303 0.3944 0.0791 0.9239 
14+ 25 0.2006 -1.2244 0.2939 0.0590 0.9427 
11 42 0.2945 0.1158 1.1228 0.3307 0.7184 
1 72 0.3980 -0.1681 0.8452 0.3364 0.7143 
7 82 0.5220 0.8135 2.2557 1.1774 0.3081 
10+ 100 0.5220 -0.5170 0.5963 0.3112 0.7325 
8 110 0.7048 0.5640 1.7576 1.2387 0.2898 
5 118 0.9407 -0.2536 0.7760 0.7300 0.4819 
4 126 1.2341 -0.1382 0.8709 1.0748 0.3414 
13 144 1.6915 0.3718 1.4503 2.4532 0.0860 
3 228 2.3840 -1.6603 0.1901 0.4532 0.6356 
9 314 3.5461 -0.1688 0.8447 2.9953 0.0500 
2 411 3.5461 -0.6808 0.5062 1.7951 0.1661 
 

This report displays various values estimated by the model. These are centered if the Centered 
X’s option is selected.  

Row 
This is the row from the database that is displayed on this line. Rows with a plus sign were 
censored. 

Time 
This is the value of the elapsed time. 

Baseline Cumulative Hazard 
This estimates the cumulative baseline hazard of this individual. The baseline hazard occurs when 
all covariates are equal to zero (or to their means if centering is used). It is the value of ( )TH0  
which is calculated using the formula 

( ) ( )( )TSTH 00 ln−=  

Linear Predictor 
This is the value of the linear portion of the Cox regression model. It is the logarithm of the ratio of 
the hazard rate to the baseline hazard rate. That is, it is the logarithm of the hazard ratio (or relative 
risk). The formula for the linear predictor is  
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This value is occasionally suggested for use in plotting.  

Relative Risk Exp(XB) 
This is the ratio between the actual hazard rate and the baseline hazard rate, sometimes called the 
risk ratio or the relative risk. The formula for this quantity is 
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Cumulative Hazard H(T|X) 
Under the proportional hazards regression model, the cumulative hazard is the sum of the individual 
hazard rates from time zero to time T. 
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Note that the time survival time T is present in ( )TH0 , but not in e . Hence, the cumulative 
hazard up to time T is represented in this model by a baseline cumulative hazard  which is 

adjusted for the covariates by multiplying by the factor . 
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Cumulative Survival S(T|X) 
Under the proportional hazards regression model, the cumulative survival is the probability that an 
individual survives past T. The formula for the cumulative survival is 
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Plots of Null Martingale Residuals Versus Each of the Covariates 
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Each of the covariates are plotted against the null martingale residuals. If the covariates are not 
highly correlated, these plot will show the appropriate functional form of each covariate. A 
lowess curve and a regular least squares line are added to the plot to aid the eye. Ideally, the 
lowess curve will track along the least squares line. Be careful not to over interpret the ends of the 
lowess curves which are based on only a few individuals.  
When curvature is present, you have to decide how the model should be modified to deal with it. 
You might need to add the square or the logarithm of the covariate to the model. 
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Plots of Schoenfeld Residuals Versus Time 
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The Schoenfeld residuals are plotted for two reasons. First of all, these plots are useful in 
assessing whether the proportional hazards assumption is met. If the least squares line is 
horizontal and the lowess curve seems to track the least squares line fairly well, the proportional 
hazard assumption is reasonable. 

Second, points that are very influential in determining the estimated regression coefficient for a 
covariate show up as outliers on these plots. When influential points are found, it is important to 
make sure that the data associated with these points are accurate. It is not advisable to remove 
these influential points unless a specific reason can be found for doing so. 

Many authors suggest that the scaled Schoenfeld residuals are more useful than these, unscaled, 
residuals. 
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Plots of Scaled Schoenfeld Residuals Versus Time 
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The scaled Schoenfeld residuals are plotted for two reasons. First of all, these plots are useful in 
assessing whether the proportional hazards assumption is met. If the least squares line is 
horizontal and the lowess curve seems to track the least squares line fairly well, the proportional 
hazard assumption is reasonable. 

Second, points that are very influential in determining the estimated regression coefficient for a 
covariate show up as outliers on these plots. When influential points are found, it is important to 
make sure that the data associated with these points are accurate. It is not advisable to remove 
these influential points unless a specific reason can be found for doing so. 

Plots of Residuals Versus Row 
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These plots are made to allow you to find outliers. These outliers should be double-checked to be 
certain that the data are not in error. You should not routinely remove outliers unless you can find 
a good reason for doing so. Often, the greatest insight during an investigation comes while 
considering why these outliers are different. 

Plots of Residuals Versus Time 
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These plots are made to allow you to find outliers. These outliers should be double-checked to be 
certain that the data are not in error. You should not routinely remove outliers unless you can find 
a good reason for doing so. Often, the greatest insight during an investigation comes while 
considering why these outliers are different. 

Example 2 – Subset Selection 
This section presents an example of how to conduct a subset selection. We will again use the 
LUNGCANCER database that was used in Example 1. In this run, we will be trying to find a 
subset of the covariates that should be kept in the regression model.  

You may follow along here by making the appropriate entries or load the completed template 
Example2 from the Template tab of the Cox Regression window. 

1 Open the LUNGCANCER dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file LungCancer.s0. 
• Click Open. 

2 Open the Cox Regression window. 
• On the menus, select Analysis, then Regression/Correlation, then Cox Regression. The 

Cox Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will load the default template.  

3 Specify the variables. 
• On the Cox Regression window, select the Variables tab.  
• Enter Time in the Time Variable box.  
• Set the Ties Method to Efron. 
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• Enter Censor in the Censor Variable box.  
• Enter Status-Therapy in the X’s: Numeric Independent Variables box.  

4 Specify the model. 
• On the Cox Regression window, select the Models tab.  
• Set the Subset Selection box to Hierarchical Forward with Switching. 

5 Specify the reports. 
• On the Cox Regression window, select the Reports tab.  
• Check all of the reports. Although under normal circumstances you would not need all of 

the reports, we will view them all here so they can be annotated. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Subset Selection Summary Section 
 
Number of Number of Log R-Squared R-Squared 
Terms X's Likelihood Value Change 
0 0 -23.3349 0.0000 0.0000 
1 1 -21.8803 0.1763 0.1763 
2 2 -21.0354 0.2641 0.0878 
3 3 -20.1352 0.3473 0.0832 
4 4 -20.1143 0.3491 0.0018 
 

This report shows the best log-likelihood value for each subset size. In this example, it appears 
that a model with three terms provides the best model. Note that adding the fourth variable does 
not increase the R-squared value very much. 

No. Terms 
The number of terms. 

No. X’s  
The number of X’s that were included in the model. Note that in this case, the number of terms 
matches the number of X’s. This would not be the case if some of the terms were categorical 
variables. 

Log Likelihood 
This is the value of the log likelihood function evaluated at the maximum likelihood estimates. 
Our goal is to find a subset size above which little is gained by adding more variables. 

R-Squared Value 
This is the value of R-squared calculated using the formula 

( )⎥⎦
⎤

⎢⎣
⎡ −−= kk LL
n

R 0
2 2exp1  

as discussed in the introduction. We are looking for the subset size after which this value does not 
increase by a meaningful amount. 
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R-Squared Change 
This is the increase in R-squared that occurs when each new subset size is reached. Search for the 
subset size below which the R-squared value does not increase by more than 0.02 for small 
samples or 0.01 for large samples.  

In this example, the optimum subset size appears to be three terms. 

Subset Selection Detail Section 
 
  No. of No. of Log  Term Terms 
Step Action Terms X's Likelihood R-Squared Entered Removed 
1 Begin 0 0 -23.3349 0.0000   
2 Add 1 1 -21.8803 0.1763 MONTHS  
3 Add 2 2 -21.0354 0.2641 STATUS  
4 Add 3 3 -20.1352 0.3473 AGE  
5 Add 4 4 -20.1143 0.3491 THERAPY  
 

This report shows the highest log likelihood for each subset size. In this example, it appears that 
three terms provide the best model. Note that adding THERAPY does not increase the R-squared 
value very much.  

Action 
This item identifies the action that was taken at this step. A term was added, removed, or two 
were switched.  

No. Terms 
The number of terms. 

No. X’s  
The number of X’s that were included in the model. Note that in this case, the number of terms 
matches the number of X’s. This would not be the case if some of the terms were categorical 
variables. 

Log Likelihood 
This is the value of the log likelihood function after the completion of this step. Our goal is to 
find a subset size above which little is gained by adding more variables. 

R-Squared Value 
This is the value of R-squared calculated using the formula 

( )⎥⎦
⎤

⎢⎣
⎡ −−= kk LL
n

R 0
2 2exp1  

as discussed in the introduction. We are looking for the subset size after which this value does not 
increase by a meaningful amount. 

Terms Entered and Removed 
These columns identify the terms added, removed, or switched. 
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Discussion of Example 2 
After considering these reports, it was decided to include AGE, MONTHS, and STATUS in the 
final regression model. Another run is performed using only these independent variables. A 
complete residual analysis would be necessary before the equation is finally adopted. 
   

Regression Coefficients Section 
 Regression  Risk     
Independent Coefficient Standard Ratio  Wald Prob Pseudo 
Variable (B) Error of B Exp(B) Mean Z-Value Level R2 
Age 0.041940 0.033413 1.0428 60.3333 1.2552 0.2094 0.1361 
Months 0.063724 0.032004 1.0658 12.6000 1.9912 0.0465 0.2838 
Status -0.031482 0.019680 0.9690 57.3333 -1.5997 0.1097 0.2037 

 

This report displays the results of the proportional hazards estimation. Note that the Wald tests 
indicate that only MONTHS is statistically significant. Because of the small sample size of this 
example and because they add a great deal to the R-squared value, we have added AGE and 
STATUS to the final model.  

Example 3 – Cox Regression with Categorical Variables 
This example will demonstrate the analysis of categorical independent variables. A study was 
conducted to evaluate the influence on survival time of three variables: Age, Gender, and 
Treatment. The ages of the study participants were grouped into three age categories: 20, 40, and 
60. The first age group (20) was selected as the reference group. The female group was selected 
as the reference group for Gender. The Treatment variable represented three groups: a control and 
two treatment groups. The control group was selected as the reference group for Treatment. The 
data for this study are contained in the COXREG database.  

You may follow along here by making the appropriate entries or load the completed template 
Example3 from the Template tab of the Cox Regression window. 

1 Open the COXREG dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file COXREG.s0. 
• Click Open. 

2 Open the Cox Regression window. 
• On the menus, select Analysis, then Regression/Correlation, then Cox Regression. The 

Cox Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will load the default template.  

3 Specify the variables. 
• On the Cox Regression window, select the Variables tab.  
• Enter Time in the Time Variable box.  
• Set the Ties Method to Efron. 
• Enter Status in the Censor Variable box.  
• Enter Count in the Frequency Variable box.  
• Enter Treatment AGE GENDER in the X’s: Categorical Independent Variables box.  
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4 Specify the model. 
• On the Cox Regression window, select the Model tab.  
• Set Which Model Terms to Up to 2-Way. 

5 Specify the reports. 
• On the Cox Regression window, select the Reports tab.  
• Check the Run Summary, Regression Coefficients, C.L. of Regression Coefficients, 

Analysis of Deviance, and Log-Likelihood and R-Squared reports. 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Run Summary Section 
   

Run Summary Section 
Parameter Value Parameter Value 
Rows Read 73 Time Variable Time 
Rows Filtered Out 0 Censor Variable Status 
Rows Missing X's 0 Frequency Variable Count 
Rows Processed 73 Subset Method None 
Rows Prediction Only 0 Ind. Var's Available 3 
Rows Failed 54 No. of X's in Model 13 
Rows Censored 19 Iterations 6 
Sum of Frequencies 137 Maximum Iterations 20 
Sum Censored Freqs 83 Convergence Criterion 1E-09 
Sum Failed Freqs 54 Achieved Convergence 2.499645E-16 
Final Log Likelihood -222.9573 Completion Message Normal completion 

 

This report summarizes the characteristics of the dataset. Note that 137 individuals were included 
in this study of which 83 were censored. 

Regression Coefficients Section 
   

Regression Coefficients Section 
 Regression  Risk     
Independent Coefficient Standard Ratio  Wald Prob Pseudo 
Variable (B) Error of B Exp(B) Mean Z-Value Level R2 
B1 (Age=40) 0.178527 0.720145 1.1955 0.3066 0.2479 0.8042 0.0014 
B2 (Age=60) 0.747377 0.652733 2.1115 0.3431 1.1450 0.2522 0.0283 
B3 (Gender="M") 0.199655 0.629734 1.2210 0.5182 0.3170 0.7512 0.0022 
B4 (Treatment="T1") 
 0.315769 0.707474 1.3713 0.3358 0.4463 0.6554 0.0044 
B5 (Treatment="T2") 
 0.606087 0.674007 1.8332 0.3212 0.8992 0.3685 0.0177 
B6 (Age=40)*(Gender="M") 
 0.420448 0.701899 1.5226 0.1679 0.5990 0.5492 0.0079 
B7 (Age=60)*(Gender="M") 
 0.366048 0.709829 1.4420 0.1971 0.5157 0.6061 0.0059 
B8 (Age=40)*(Treatment="T1") 
 -0.228646 0.872282 0.7956 0.1095 -0.2621 0.7932 0.0015 
B9 (Age=40)*(Treatment="T2") 
 -0.442119 0.843234 0.6427 0.0876 -0.5243 0.6001 0.0061 
B10 (Age=60)*(Treatment="T1") 
 -0.124997 0.851308 0.8825 0.1022 -0.1468 0.8833 0.0005 
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B11 (Age=60)*(Treatment="T2") 
 -1.726851 0.885161 0.1778 0.1168 -1.9509 0.0511 0.0780 
B12 (Gender="M")*(Treatment="T1") 
 -0.976831 0.714997 0.3765 0.1752 -1.3662 0.1719 0.0398 
B13 (Gender="M")*(Treatment="T2") 
 -0.553592 0.721736 0.5749 0.1606 -0.7670 0.4431 0.0129 

 

This report displays the results of the proportional hazards estimation. Note that the names of the 
interaction terms are too long to fit in the space allotted, so the rest of the information appears on 
the next line. 

Independent Variable 
It is important to understand the variable names of the interaction terms. For example, consider 
the last name: (Gender=“M”)*(Treatment=“T2”). This variable was created by multiplying two 
indicator variables. The first indicator is “1” when the gender is “M” and “0” otherwise. The 
second indicator is “1” when the treatment is “T2” and “0” otherwise. This portion of the gender-
by-treatment interaction is represented by the product of these two variables. 

The rest of the definitions are the same as before and so they are not repeated here. 

Confidence Limits Section 
 
Confidence Limits Section 
 Regression Lower 95.0% Upper 95.0% Risk Lower  Upper  
Independent Coefficient Confidence Confidence Ratio 95.0% C.L. 95.0% C.L. 
Variable (B) Limit of B Limit of B Exp(B) of Exp(B) of Exp(B) 
B1 (Age=40) 0.178527 -1.232933 1.589986 1.1955 0.2914 4.9037 
B2 (Age=60) 0.747377 -0.531956 2.026709 2.1115 0.5875 7.5891 
B3 (Gender="M") 0.199655 -1.034602 1.433911 1.2210 0.3554 4.1951 
B4 (Treatment="T1") 
 0.315769 -1.070855 1.702392 1.3713 0.3427 5.4871 
B5 (Treatment="T2") 
 0.606087 -0.714943 1.927116 1.8332 0.4892 6.8697 
B6 (Age=40)*(Gender="M") 
 0.420448 -0.955248 1.796145 1.5226 0.3847 6.0264 
B7 (Age=60)*(Gender="M") 
 0.366048 -1.025192 1.757288 1.4420 0.3587 5.7967 
B8 (Age=40)*(Treatment="T1") 
 -0.228646 -1.938287 1.480996 0.7956 0.1440 4.3973 
B9 (Age=40)*(Treatment="T2") 
 -0.442119 -2.094827 1.210589 0.6427 0.1231 3.3555 
B10 (Age=60)*(Treatment="T1") 
 -0.124997 -1.793530 1.543536 0.8825 0.1664 4.6811 
B11 (Age=60)*(Treatment="T2") 
 -1.726851 -3.461735 0.008033 0.1778 0.0314 1.0081 
B12 (Gender="M")*(Treatment="T1") 
 -0.976831 -2.378199 0.424538 0.3765 0.0927 1.5289 
B13 (Gender="M")*(Treatment="T2") 
 -0.553592 -1.968169 0.860985 0.5749 0.1397 2.3655 
 

This report provides the confidence intervals for the regression coefficients and the risk ratios. 
The confidence coefficient, in this example 95%, was specified on the Format tab. Note that the 
names of the interaction terms are too long to fit in the space allotted, so the rest of the 
information appears on the next line. 

Independent Variable 
It is important to understand the variable names of the interaction terms. For example, consider 
the last name: (Gender=“M”)*(Treatment=“T2”). This variable was created by multiplying two 
indicator variables. The first indicator is “1” when the gender is “M” and “0” otherwise. The 



565-54  Cox Regression 

second indicator is “1” when the treatment is “T2” and “0” otherwise. This portion of the gender-
by-treatment interaction is represented by the product of these two variables. 

The rest of the definitions are the same as before and so they are not repeated here. 

Analysis of Deviance Section 
 
   Increase   
   From Model   
Term(s)  -2 Log Deviance Prob  
Omitted DF Likelihood (Chi Square) Level  
All Terms 13 454.5022 8.5876 0.8033  
AGE 2 447.2661 1.3515 0.5088  
GENDER 1 446.0147 0.1001 0.7517  
TREATMENT 2 446.7191 0.8044 0.6688  
AGE*GENDER 2 446.3421 0.4275 0.8076  
AGE*TREATMENT 4 451.1965 5.2819 0.2596  
GENDER*TREATMENT 
 2 447.7827 1.8681 0.3930  
None(Model) 13 445.9146    
 

This report is the Cox regression analog of the analysis of variance table. It displays the results of 
a chi-square test used to test whether each of the individual terms are statistically significant after 
adjusting for all other terms in the model.  
The DF (degrees of freedom) column indicates the number of binary variables needed to 
represent each term. The chi-square test is used to test the significance of all binary variables 
associated with a particular term. 

Log Likelihood & R-Squared Section 
 
   R-Squared Reduction  
Term(s)  Log Of Remaining From Model  
Omitted DF Likelihood Term(s) R-Squared  
All Terms 13 -227.2511 0.0000 0.0608  
AGE 2 -223.6331 0.0514 0.0093  
GENDER 1 -223.0074 0.0601 0.0007  
TREATMENT 2 -223.3595 0.0552 0.0055  
AGE*GENDER 2 -223.1711 0.0578 0.0029  
AGE*TREATMENT 4 -225.5982 0.0238 0.0369  
GENDER*TREATMENT 
 2 -223.8914 0.0479 0.0129  
None(Model) 13 -222.9573 0.0608 0.0000 
 

This report displays the Log Likelihood and R-Squared that is achieved when each term is 
omitted from the regression model. The DF (degrees of freedom) column indicates the number of 
binary variables needed to represent each term. The chi-square test is used to test the significance 
of all binary variables associated with a particular term. 
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Example 4 – Validation of Cox Regression using Collett 
(1994) 
Collett (1994), pages 156 and 157, present a dataset giving the results of a small study about 
kidney dialysis. This dataset contains two independent variables: Age and Sex. These data are 
contained in the NCSS database called COLLETT157.  

Collett (1994) gives the estimated regression coefficients as 0.030 for Age and -2.711 for Sex. 
The chi-square test for Sex is 6.445 and the chi-square test for Age is 1.320. The Cox-Snell 
residual for the first patient is 0.3286. The martingale residual for this patient is 0.6714. The 
deviance residual for this patient is 0.9398. The Schoenfeld residuals for this patient are -1.0850 
and -.2416. 

We will run these data through NCSS and check that we obtain the same values. You may follow 
along here by making the appropriate entries or load the completed template Example4 from the 
Template tab of the Cox Regression window. 

1 Open the COLLETT157 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file COLLETT157.s0. 
• Click Open. 

2 Open the Cox Regression window. 
• On the menus, select Analysis, then Regression/Correlation, then Cox Regression. The 

Cox Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will load the default template.  

3 Specify the variables. 
• On the Cox Regression window, select the Variables tab.  
• Enter Time in the Time Variable box.  
• Set the Ties Method to Efron. 
• Enter Status in the Censor Variable box.  
• Enter Age Sex in the X’s: Numerical Independent Variables box.  

4 Specify the reports. 
• On the Cox Regression window, select the Reports tab.  
• Check the Run Summary, Regression Coefficients, Analysis of Deviance, Residuals, 

and Schoenfeld Residuals reports. 

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Validation Report 
   

Regression Coefficients Section 
 Regression  Risk     
Independent Coefficient Standard Ratio  Wald Prob Pseudo 
Variable (B) Error of B Exp(B) Mean Z-Value Level R2 
B1 Age 0.030371 0.026237 1.0308 31.4615 1.1576 0.2470 0.1181 
B2 Sex -2.710762 1.095898 0.0665 1.7692 -2.4736 0.0134 0.3795 
 
Analysis of Deviance Section 
   Increase   
   From Model   
Term(s)  -2 Log Deviance Prob  
Omitted DF Likelihood (Chi Square) Level  
All Terms 2 40.9454 6.4779 0.0392  
AGE 1 35.7880 1.3204 0.2505  
SEX 1 40.9132 6.4456 0.0111  
None(Model) 2 34.4676    
 
 
Residuals Section 
  Cox-Snell  Martingale  Deviance  
Row Time Residual  Residual  Residual  
1 8 0.3286 |.............. 0.6714 ||||........... 0.9398 |||||.......... 
2 15 0.0785 |.............. 0.9215 ||||||||....... 1.8020 ||||||||||||||| 
3 22 1.4331 ||||||||....... -0.4331 |.............. -0.3828 |.............. 
4 24 0.0939 |.............. 0.9061 ||||||||....... 1.7087 ||||||||||||||. 
5 30 1.7736 ||||||||||..... -0.7736 ||||||......... -0.6334 ||............. 
6+ 54 0.3117 |.............. -0.3117 |.............. -0.7895 ||||........... 
7 119 0.2655 |.............. 0.7345 |||||.......... 1.0877 |||||||........ 
8 141 0.5386 ||............. 0.4614 ||............. 0.5611 |.............. 
9 185 1.6523 ||||||||||..... -0.6523 ||||........... -0.5480 |.............. 
10 292 1.4234 ||||||||....... -0.4234 |.............. -0.3751 |.............. 
11 402 1.4207 ||||||||....... -0.4207 |.............. -0.3730 |.............. 
12 447 2.3927 ||||||||||||||| -1.3927 ||||||||||||||| -1.0201 ||||||......... 
13 536 1.5640 |||||||||...... -0.5640 |||............ -0.4832 |.............. 
 
Schoenfeld Residuals Section 
  Resid  Resid    
Row Time Age  Sex    
1 8 -1.0850 |.............. -0.2416 |||||..........   
2 15 14.4930 ||||||||||||... 0.6644 |||||||||||||||   
3 22 3.1291 ||............. -0.3065 ||||||.........   
4 24 -10.2215 ||||||||....... 0.4341 |||||||||......   
5 30 -16.5882 |||||||||||||.. -0.5504 ||||||||||||...   
7 119 -17.8286 ||||||||||||||| 0.0000 |..............   
8 141 -7.6201 ||||||......... 0.0000 |..............   
9 185 17.0910 ||||||||||||||. 0.0000 |..............   
10 292 10.2390 ||||||||....... 0.0000 |..............   
11 402 2.8575 ||............. 0.0000 |..............   
12 447 5.5338 ||||........... 0.0000 |..............   
13 536 0.0000 |.............. 0.0000 |..............   

 

You can verify that are results matched those of Collett (1994) within rounding. 
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Chapter 566 

Parametric 
Survival (Weibull) 
Regression 
Introduction 
This module fits the regression relationship between a positive-valued dependent variable (often 
time to failure) and one or more independent variables. The distribution of the residuals (errors) is 
assumed to follow the exponential, extreme value, logistic, log-logistic, lognormal, lognormal10, 
normal, or Weibull distribution. The data may include failed, left censored, right censored, and 
interval observations. This type of data often arises in the area of accelerated life testing.    

When testing highly reliable components at normal stress levels, it may be difficult to obtain a 
reasonable amount of failure data in a short period of time. For this reason, tests are conducted at 
higher than expected stress levels. The models that predict failure rates at normal stress levels 
from test data on items that fail at high stress levels are called acceleration models. 

The basic assumption of acceleration models is that failures happen faster at higher stress levels. 
That is, the failure mechanism is the same, but the time scale has been changed (shortened). 

Technical Details 
The linear regression equation is 

Y B B X B X Se= + + + +0 1 1 2 2 L  

Here, S represents the value of a constant standard deviation, Y is a transformation of time (either 
ln(t), log(t), or just t), the X’s are one or more independent variables, the B’s are the regression 
coefficients, and e is the residual (error) that is assumed to follow a particular probability 
distribution. The problem reduces to estimating the B’s and S. The density functions of the eight 
distributions that are fit by this module were given in the Distribution Fitting section and will not 
be repeated here. 

So that you can get the general idea, we will give detailed results for the lognormal distribution. 
The results for other distributions follow a similar pattern. 

The lognormal probability density function may be written as 
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Maximum likelihood estimation consists of finding the values of the distribution parameters that 
maximize the log-likelihood of the data values. Loosely speaking, these are the values of the 
parameters which maximize the probability that the current set of data values occur. 

The general form of the log-likelihood function is given by 
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where F represents the set of failed items, R represents the set of right censored items, L represents 
the set of left censored items, and I represents the set of interval censored items. In the case of 
interval censored observations, t represents the first time of the interval and t represents the last 
time of the interval. Also, 

lk

P represents the parameters, including S and the B’s. 

We employ the Newton-Raphson algorithm with numerical differentiation to obtain the 
maximum likelihood estimates. These estimates have been shown to have optimality 
characteristics in large samples (number of failures greater than 20).  They have been shown to be 
competitive estimates even for sample sizes less than 20. 

Data Structure 
Survival data are somewhat more difficult to enter because of the presence of various types of 
censoring.  

Time Variable(s) 
One (or two in the case of interval data) variable is needed to contain the time values. 

Censor Variable 
Another variable is needed to indicate the type of censoring. 

Failed or Complete 
A failed observation is one in which the time until the terminal event was measured exactly; for 
example, the machine stopped working or the mouse died of the disease being studied. 

Right Censored 
A right censored observation provides a lower bound for the actual failure time. All that is known 
is that the failure occurred (or will occur) at some point after the given time value. Right censored 
observations occur when a study is terminated before all items have failed. They also occur when 
an item fails due to an event other than the one of interest. 
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Left Censored 
A left censored observation provides an upper bound for the actual failure time. All we know is 
that the failure occurred at some point before the time value. Left censoring occurs when the 
items are not checked for failure until some time after the study has begun. When a failed item is 
found, we do not know exactly when it failed, only that it was at some point before the left censor 
time. 

Interval Censored or Readout 
An interval censored observation is one in which we know that the failure occurred between two 
time values, but we do not know exactly when. This type of data is often called readout data. It 
occurs in situations where items are checked periodically for failures. 

Independent Variable(s) 
One or more independent variables must be supplied also. 

Sample Data 
The following data, found in Nelson (1990), are quoted in many books and articles on accelerated 
testing. These data come from a temperature-accelerated life test of a Class-B insulation for 
electric motors. Ten motorettes were tested at each of four temperatures. When the testing was 
stopped, the following failure times were recorded. These data are stored in the MOTORS.S0 
database. 

 

MOTORS dataset 

Hours Censor Count Temperature 
 1 1 130 
8064 0 10 150 
1764 1 1 170 
2772 1 1 170 
3444 1 1 170 
3542 1 1 170 
3780 1 1 170 
4860 1 1 170 
5196 1 1 170 
5448 0 3 170 
408 1 2 190 
1344 1 2 190 
1440 1 1 190 
1680 0 5 190 
408 1 2 220 
504 1 3 220 
528 0 5 220 
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Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the probability distribution that is fit and the variables used in the analysis. 

Time Variables 

Y: Time Variable 
This variable contains the time values for both failed and censored observations. When interval 
(readout) data are used, this variable specifies the ending time of the interval. 

Negative time values are treated as missing values. Zero time values are not allowed. They may 
be automatically replaced by the value in the Zero field. 

These time values represent elapsed times. If your dataset is made up of dates (such as the failure 
date), you must subtract the starting date from the failure date so that you can analyze the elapsed 
time. 

Start Time Variable 
This variable contains the starting time for interval (readout) data. Hence its value is only used 
when the row’s censor value indicates an interval data type. 

Negative time values are treated as missing values. Rows with zero starting time values are reset 
to left censored type data. 

Zero Time Replacement Value 
Under normal conditions, a respondent beginning the study is “alive” and cannot “die” until after 
some small period of time has elapsed. Hence, a time value of zero is not defined and is ignored 
(treated as a missing value). If a zero time value does occur, it is replaced by this positive amount. 
If you do not want zero time values replaced, enter a “0.0” here. 

This option is used when a “zero” on the database does not actually mean zero time. Instead, it 
means that the response occurred before the first reading was made and so the actual survival 
time is only known to be less.  

Censor Variable 

Censor Variable 
The values in this optional variable indicate the type of censoring active for each row. Four 
possible data types may be entered: failed (complete), right censored, left censored, or interval. 
The values used to indicate each data type are specified in the four boxes to the right. These 
values may be text or numeric.  

Failed 
When this value is entered in the Censor Variable, the corresponding time value is treated as a 
failed observation. The value may be a number or a letter. We suggest the letter “F” when you are 
in doubt as to what to use. 
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A failed observation is one in which the time until the event of interest was measured exactly; for 
example, the machine stopped working or the mouse died of the disease being studied. The exact 
failure time is known. 

Right 
When this value is entered in the Censor Variable, the corresponding time value is treated as a 
right censored data value. The value may be a number or a letter. We suggest the letter “R” when 
you are in doubt as to what to use. 

A right censored observation provides a lower bound for the actual failure time. All that is known 
is that the failure time occurred (or will occur) at some point after the given time value. Right 
censored observations occur when a study is terminated before all items have failed. They also 
occur when an item fails due to an event other than the one of interest. 

Left 
When this value is entered in the Censor Variable, the corresponding time value is treated as a left 
censored data value. The value may be a number or a letter. We suggest the letter “L” when you 
are in doubt as to what to use. 

A left censored observation provides an upper bound for the actual failure time. All we know is 
that the failure time occurred at some point before the time value. Left censoring occurs when the 
items are not checked until some time after the study has begun. When a failed item is found, we 
do not know exactly when it failed, only that it was at some point before the left censor time. 

Interval 
When this value is entered in the Censor Variable, the corresponding time value is treated as an 
interval censored data value. The value may be a number or a letter. We suggest the letter “I” 
when you are in doubt as to what to use. When interval censoring is specified, the program uses 
both the Time Variable and the Start Time Variable. 

An interval censored observation is one in which we know that the failure occurred between the 
two time values, but we do not know exactly when. This type of data is often called readout data. 
It occurs in situations where items are checked periodically for failures. 

Note that when interval data are obtained, the first observation is usually left censored and the last 
observation is usually right censored. 

Independent Variables 

X’s: Independent Variables 
Specify additional independent variables. You can leave this option blank or you can leave the 
Stress Variable blank, but you cannot leave both blank.  

These variables may be thought of as additional variables for which statistical adjustment is 
desired. They can contain both discrete and continuous variables. If discrete variables are 
specified, it is up to you to specify the appropriate number of dummy variables. For example, 
suppose you have three suppliers. Since this has three possible values, two indicator variables will 
be needed to specify the appropriate information. 
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Frequency Variable 

Frequency Variable 
This variable gives the count, or frequency, of the time displayed on that row. When omitted, 
each row receives a frequency of one. Frequency values should be positive integers. This is 
usually used to indicate the number of right censored values at the end of a study or the number 
of failures occurring within an interval. It may also be used to indicate ties for failure data. 

Stress Variable 

Stress Variable 
This variable contains the values of the independent variable that will be transformed according 
to either the Arrhenius or Power transformation. This variable is optional, although when it is not 
specified, several of the reports and graphs will not be displayed. 

You can leave this option blank or you can leave the Independent Variables option blank, but you 
cannot leave both blank.  

Stress A 
Specify the value of A in the Arrhenius transformation X=A/(Stress+B). If A is zero, the 
logarithm of stress is used and the model is X=log(stress). 

Set A to 1000 for Arrhenius model. Set A to 0 for Power model. 

Stress B 
Specify B in the transformation X=A/(Stress+B). Ignore it by setting B to zero.  

For the Arrhenius model, B is set to 273.16 when stress is measured in degrees Celsius. Usually, 
A and B are set to convert temperature values to degrees Kelvin. 

For the Power acceleration model, this value is ignored. 

Probability Distribution 

Distribution 
This option specifies which probability distribution is fit. All results are for the specified 
probability distribution. Usually, you will use one of the distributions that is based on the 
logarithm of time such as the lognormal, Weibull, exponential, or log-logistic.  

Alpha Level 

Alpha Level 
This is the value of alpha used in the calculation of confidence limits. For example, if you specify 
0.04 here, then 96% confidence limits will be calculated. 
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Estimation Tab 
The following options control the searching algorithms used during parameter estimation. 

Estimation Options 

Maximum Iterations 
Many of the parameter estimation algorithms are iterative. This option assigns a maximum to the 
number of iterations used in any one algorithm. We suggest a value of at least 100. This should be 
large enough to let the algorithm converge, but small enough to avoid a large delay if 
convergence cannot be obtained. If the number of iterations reaches this amount, you should re-
run your analysis with a larger value. 

Minimum Relative Change 
This value is used to control the iterative algorithms used in maximum likelihood estimation. 
When the relative change in all of the parameters is less than this amount, the iterative procedure 
is terminated. 

Parameter Adjustment 
Newton’s method calculates a change for each parameter value at each step. Instead of taking the 
whole parameter change, this option lets you take only a fraction of the indicated change. For 
datasets that diverge, taking only partial steps may allow the algorithm to converge. In essence, 
the algorithm tends to over correct the parameter values. This factor allows you to dampen this 
over correction. We suggest a value of about 0.2. This may increase the number of iterations (and 
you will have to increase the Maximum Iterations accordingly), but it provides a greater 
likelihood that the algorithm will converge. 

Starting Sigma 
Specify a starting value for S, the standard deviation of the residuals (errors). Select ‘0 - Data’ to 
calculate an appropriate value from the data. If convergence fails, try a different value.  

Derivatives 
This value specifies the machine precision value used in calculating numerical derivatives. Slight 
adjustments to this value can change the accuracy of the numerical derivatives (which impacts the 
variance/covariance matrix estimation).  

Remember from calculus that the derivative is the slope calculated at a point along the function. It 
is the limit found by calculating the slope between two points on the function curve that are very 
close together. Numerical differentiation mimics this limit by calculating the slope between two 
function points that are very close together and then computing the slope. This value controls how 
close together these two function points are.  

Numerical analysis suggests that this distance should be proportional to the machine precision of 
the computer. We have found that our algorithm achieves four-place accuracy in the variance-
covariance matrix no matter what value is selected here (within reason). However, increasing or 
decreasing this value by two orders of magnitude may achieve six or seven place accuracy in the 
variance-covariance matrix. We have found no way to find the optimal value except trial and 
error. 

Note that the parameter estimates do not seem to be influenced a great deal, only their standard 
errors. 
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Reports Tab 
The following options control which reports are displayed and the format of those reports. 

Select Reports 

Data Summary Report ... Residual Report 
Each of these options specifies whether the indicated report is calculated and displayed.  

Percent Failing and Failure Time Percentile Reports 
These options indicate whether to display the corresponding report and which rows are to be 
shown. Usually, you will add rows with missing time values at the end of the database to be 
reported on. The percent failing will then be estimated for those values. 

You can choose to omit these reports entirely, show only those rows with missing time values, or 
show the results for all rows. 

Select Plots 

Stress - Time Plot ... X - Residual Plots 
Each of these options specifies whether the indicated plot is displayed.  

Report Options 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also, note that all calculations are performed in double precision regardless of which 
option you select here. Single precision is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Percent Failing Report Calculation Times 
This option specifies a list of times at which the percent failing is reported on the Percent Failing 
Section report. Individual values are separated by commas. You can specify a sequence by 
specifying the minimum and maximum separated by a colon and putting the increment inside 
parentheses. For example: 5:25(5) means 5,10,15,20,25. Avoid 0 and negative numbers. Use 
‘(10)’ alone to specify ten values between zero and the maximum value found in the data. 

Note that each time is used for all selected observations. 

Failure Time Report and Stress-Time Plot Percentiles 
This option specifies a list of percentiles (range 1 to 99) at which the failure time is reported, one 
percentile per line on the Failure Time Percentile report. It also specifies which percentiles are 
shown on the Stress plot. The values should be separated by commas.  

You can specify sequences with a colon, putting the increment inside parentheses after the 
maximum in the sequence. For example: 5:25(5) means 5,10,15,20,25 and 1:5(2),10:20(2) means 
1,3,5,10,12,14,16,18,20. Note that this option also controls which percentiles are displayed on the 
Stress - Time plot. 
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Report Options – Decimal Places 

Time ... Stress Decimals 
This option specifies the number of decimal places shown on reported time, probability, and 
stress values. 

Plot Options 

Show Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies legend label. A {G} is replaced by the appropriate legend name. 

Stress - Time Plot to X - Resid Plots Tabs 
These options control the attributes of the plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Y Log Scale (Vertical Axis of Stress - Time Plot Only) 
This box lets you designate whether to display the vertical axis in a regular or logarithmic scale. 
This option is not appropriate when you have used logarithms to the base e. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 
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Min and Max Stress 
These option let you specify the minimum and maximum stress values displayed on the Stress - 
Time Plot. Since you are usually interested in values of stress lower than in your data, you will 
want to set these values carefully so that you include values at the typical stress levels. 

Number Stresses or Number Predicted 
This options sets resolution of the plot along the horizontal axis. A value near 50 is usually 
adequate. 

Titles 

Plot Title 
This option contains the text of the plot title. The characters {Y} and {X} are replaced by 
appropriate names. Press the button on the right of the field to specify the font of the text. 

Lines & Symbols Tab 
These options specify the attributes of the lines and symbols used to display the percentiles in the 
Stress - Time plot. 

Plotting Lines 

Line 1 - 15 
These options specify the color, width, and pattern of the lines used in the plots of each group. 
The first line is used by the first group, the second line by the second group, and so on. These line 
attributes are provided to allow the various groups to be indicated on black-and-white printers. 

Clicking on a line box (or the small button to the right of the line box) will bring up a window 
that allows the color, width, and pattern of the line to be changed. 

Plotting Symbols 

Right Censored – Predicted 
This option specifies the symbol used for each type of data, censored, failed, and predicted. These 
symbols are provided to allow the various censoring types to be identified, even on black and 
white printers. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 
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Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Lognormal Regression 
This section presents an example of how to fit a lognormal regression. The data used were shown 
above and are found in the MOTORS database.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Parametric Survival (Weibull) Regression window. 

1 Open the MOTORS dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file MOTORS.S0. 
• Click Open. 

2 Open the Distribution Regression window. 
• On the menus, select Analysis, then Survival / Reliability, then Parametric Survival 

Regression. The Parametric Survival (Weibull) Regression procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Parametric Survival (Weibull) Regression window, select the Variables tab.  
• Double-click in the Y: Time Variable box. This will bring up the variable selection 

window.  
• Select HOURS from the list of variables and then click Ok.  
• Double-click in the Censor Variable box. This will bring up the variable selection 

window.  
• Select CENSOR from the list of variables and then click Ok.  
• Double-click in the Frequency Variable box. This will bring up the variable selection 

window.  
• Select COUNT from the list of variables and then click Ok.  
• Double-click in the Stress Variable box. This will bring up the variable selection 

window.  
• Select TEMP from the list of variables and then click Ok. Note that the default values of 

Stress A and Stress B are appropriate for this problem. 
• Set the Distribution to Log10normal. 

4 Specify the reports. 
• On the Parametric Survival (Weibull) Regression window, select the Reports tab.  
• Enter 10000:100000(10000) in the Percent Failing Report Calculation Times box. 
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5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Data Summary Section 
  
 Data Summary Section 
  
 Type of   Hours Hours 
 Observation Rows Count Minimum Maximum 
 Missing or Prediction 1 
 Failed 12 17 408.0 5196.0 
 Right Censored 4 23 528.0 8064.0 
 Left Censored 0 0   
 Interval Censored 0 0 
 Total (Nonmissing) 16 40 408.0 8064.0 
 
 Means for Rows with Failures 
 Variable Mean 
 Hours 1919.412 
 Temp 190.5882 
 

This report displays a summary of the data that were analyzed. Scan this report to determine if 
there are any obvious data-entry errors by double-checking the counts and the minimum and 
maximum. 

The means given for each variable are for the noncensored rows. 

Parameter Estimation Section 
 
 Maximum Likelihood Parameter Estimation Section 
 Parameter Parameter Standard  Prob Lower Upper 
 Name Estimate Error Z Value Level 95.0% C.L. 95.0% C.L. 
 Intercept -6.018403 0.9464583 -6.3589 0.000000 -7.873427 -4.163379 
 Temp 4.31048 0.4364686 9.8758 0.000000 3.455017 5.165942 
 Sigma 0.2591772 4.730405E-02 5.4790 0.000000 0.1812336 0.3706422 
  
 R-Squared 0.531405 
 Log Likelihood -148.5373 
 Iterations 55 
 

This report displays parameter estimates along with standard errors, significance tests, and 
confidence limits. Note that the significance levels and confidence limits all use large sample 
formulas. How large is a large sample? We suggest that you only use these results when the 
number of failed items is greater than twenty. 

Parameter Estimates 
These are the maximum likelihood estimates (MLE) of the parameters. They are the estimates 
that maximize the likelihood function. Details are found in Nelson (1990) pages 287 - 295.  

Standard Error 
The standard errors are the square roots of the diagonal elements of the estimated Variance 
Covariance matrix.  
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Z Value 
The z value is equal to the parameter estimate divided by the estimated standard error. This ratio, 
for large samples, follows the normal distribution. It is used to test the hypothesis that the 
parameter value is zero. This value corresponds to the t value that is used in multiple regression. 

Prob Level 
This is the two-tailed p-value for testing the significance of the corresponding parameter. You 
would deem independent variables with small p-values (less than 0.05) important in the 
regression equation.  

Upper and Lower 100(1-Alpha)% Confidence Limits 
These are the lower and upper confidence limits for the corresponding parameters. They are large 
sample limits. They should be ignored when the number of failed items is less than thirty. For the 
regression coefficients B, the formulas are  

CL B z i pi i Bi
= ± =−
$ $ , ,/ $1 2 0α σ L  

where is the estimated regression coefficient, $Bi $
$σ Bi

is its standard error, and z is found from tables 

of the standard normal distribution. 

For the estimate of sigma, the formula is 

CL S
z

S
S=

±⎧
⎨
⎩

⎫
⎬
⎭

−$ exp
$

$
/ $1 2α σ

 

R-Squared 
R-Squared reflects the percent of variation in log(time) explained by the independent variables in 
the model. A value near zero indicates a complete lack of fit, while a value near one indicates a 
perfect fit. 

Note that this R-Squared value is computed for the failed observations only. Censored 
observations are ignored. 

Log Likelihood 
This is the value of the log likelihood function. This is the value being maximized. It is often used 
as a goodness-of-fit statistic. You can compare the log likelihood value from the fits of your data 
to several distributions and select as the best fitting the one with the largest value. 

Iterations 
This is the number of iterations that were required to solve the likelihood equations. If this is 
greater than the maximum you specified, you will receive a warning message. You should then 
increase the Maximum Iterations and rerun the analysis. 
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Variance Covariance Matrix 
 
 Inverse of Fisher Information Matrix 
  Intercept Temp Sigma 
 Intercept 0.8957834 -0.4123897 -8.21986E-03 
 Temp -0.4123897 0.1905048 4.377223E-03 
 Sigma -8.21986E-03 4.377223E-03 2.237673E-03 
 

This table gives an estimate of the asymptotic variance covariance matrix which is the inverse of the 
Fisher information matrix. The elements of the Fisher information matrix are calculated using 
numerical differentiation. 

Percent Failing Section 
  
 Percent Failing Section 
    Percent Lower Upper 
 Row Temp Hours Failing 95.0% C.L. 95.0% C.L. 
 1 130.0 10000.0 0.4689 0.0159 12.2509 
 1 130.0 20000.0 7.5434 0.9597 40.7218 
 1 130.0 30000.0 22.4510 4.5245 63.8811 
 1 130.0 40000.0 39.1662 9.9947 78.8708 
 1 130.0 50000.0 53.9401 15.9924 87.8111 
 1 130.0 60000.0 65.7053 21.7004 92.9798 
 1 130.0 70000.0 74.6251 26.7964 95.9395 
 1 130.0 80000.0 81.2324 31.2200 97.6345 
 1 130.0 90000.0 86.0786 35.0227 98.6098 
 1 130.0 100000.0 89.6239 38.2932 99.1751 
 

This report displays the estimated percent failing at the time values that were specified in the 
Report Times box of the Reports Tab for each observation with a missing time value. In our 
example, the first row of the Motors database is missing. The value of Temp (the stress variable) 
equal to 130 degrees. Reliability is one minus probability of failure. Thus, the reliability at 80,000 
hours at a temperature of 130 degrees is 100-81.2324 which is 18.7676%. The confidence limits 
for reliability may also be converted from the percent failing confidence limits by subtracting 
from 100. 

Percent Failing 
The percent failing at a particular temperature is calculated as 
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where F(z) is the cumulative distribution of  f(z), the probability density function. That is, 

F z f t B B S X dt
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Confidence Limits for Percent Failing 
The confidence limits for this estimate are computed using the following formulas from Nelson 
(1990) page 296. Note that these estimates are large sample estimates based on the assumption 
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that the distribution of F is asymptotically normal. We recommend that the number of failures be 
at least thirty when using these estimates. 
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and is the corresponding element from the variance covariance matrix. The function y(t) is ln(t) 
for the Weibull, log-logistic, exponential, and lognormal distributions,  log(t) for the lognormal10 
distribution, and simply t for the normal, extreme value, and logistic distributions. The value of  g(x) 
depends on the distribution. For the Weibull, exponential, and extreme value distributions 

vcij

g z ez e z

( ) = −  

For the normal, lognormal, and lognormal10 distributions 
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For the logistic and log-logistic distributions 

( )
g z e

e

z

z
( ) =

+1
2  

Failure Time Percentile Section 
 
 Failure Time Percentile Section 
    Estimated Lower Upper 
 Row Temp Percentile Hours 95.0% C.L. 95.0% C.L. 
 1 130.0 10.0000 21937.2 11781.4 40847.6 
 1 130.0 50.0000 47133.6 24111.6 92137.3 
 1 130.0 90.0000 101269.8 44892.1 228449.2 
 

This report displays failure time percentiles and confidence intervals for those percentiles 
specified in the Report Percentiles box of the Report tab. For example, the median failure time is 
47,135.1 hours. The 95% confidence limits for the median time are 24,106.6 to 92,162.2 hours. 

The confidence limits rely on the asymptotic normality of the distribution of the percentiles. The 
sample size should be greater than thirty failed items before you use these confidence limits. The 
formulas for these limits are given in Nelson (1990) page 295. 

Percentile 
This is the percentile being found. For example, the value of 50 here refers to the median failure 
time.  

Estimated Hours 
The estimated time value (dependent variable) at which 100P of the items are expected to fail. 
The percentile is found by solving the equation 
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for y(t). The function y(t) is ln(t) for the Weibull, log-logistic, exponential, and lognormal 
distributions, log(t) for the lognormal10 distribution, and simply t for the normal, extreme value, 
and logistic distributions. F(t) is the cumulative distribution function.  

Confidence Limits for a Percentile 
The confidence limits are computed as follows. First compute  

u F Pp =
−1( )  

Next compute 

σ $t i j ij
j

p

i

p

p
x x vc=

=

+

=

+

∑∑
0

1

0

1

 



 Parametric Survival (Weibull) Regression  566-17 

where is the corresponding element of the variance covariance matrix and  vcij
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Finally, for the lognormal, Weibull, exponential, and log-logistic distributions, compute 
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For the lognormal10 distribution, compute 

$
,

$
/ $

tlower p

x B u S zi i
i

p
p t p= =

−∑ + −⎛
⎝⎜

⎞
⎠⎟10 0

1 2α σ
 

$
,

$
/ $

tupper p

x B u S zi i
i

p
p t p= =

−∑ + +⎛
⎝⎜

⎞
⎠⎟10 0

1 2α σ
 

For the normal, extreme value, and logistic distributions, compute 
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Residual Section 
 
 Residual Section 
  (T)  Predicted Raw Standardized Cox-Snell 
 Row Hours Log10(T) Log10(T) Residual Residual Residual 
 1   4.673331    
 2R 8064.0 3.90655 4.168003 -0.2614523 -1.008778 0.1702434 
 3 1764.0 3.246499 3.708286 -0.4617874 -1.781744 3.811264E-02 
 4 2772.0 3.442793 3.708286 -0.2654927 -1.024368 0.1658548 
 5 3444.0 3.537063 3.708286 -0.1712228 -0.6606401 0.293595 
 6 3542.0 3.549248 3.708286 -0.1590374 -0.6136243 0.3143435 
 7 3780.0 3.577492 3.708286 -0.1307942 -0.5046515 0.3665836 
 8 4860.0 3.686636 3.708286 -2.164969E-02 -8.353239E-02 0.6286976 
 9 5196.0 3.715669 3.708286 7.383185E-03 2.848702E-02 0.7161357 
 10R 5448.0 3.736237 3.708286 2.795114E-02 0.1078457 0.7829427 
 11 408.0 2.61066 3.288272 -0.6776116 -2.614473 4.47828E-03 
 12 1344.0 3.128399 3.288272 -0.1598725 -0.6168463 0.3128878 
 13 1440.0 3.158362 3.288272 -0.1299092 -0.5012372 0.3683169 
 14R 1680.0 3.225309 3.288272 -6.296246E-02 -0.2429321 0.5175633 
 15 408.0 2.61066 2.722126 -0.1114662 -0.4300773 0.4058197 
 16 504.0 2.70243 2.722126 -1.969583E-02 -7.599371E-02 0.6343351 
 17R 528.0 2.722634 2.722126 5.075522E-04 1.958322E-03 0.6947109 
 

This report displays the predicted value and residual for each row. If the analysis is being run on 
logarithms of time, all values are in logarithms. The report provides predicted values for all rows 
with values for the independent variables. Hence, you can add rows of data with missing time 
values to the bottom of your database and obtain the predicted values for them from this report. 
The report also allows you to obtain predicted values for censored observations. 

You should ignore the residuals for censored observations, since the residual is calculated as if 
the time value was a failure. 

Row 
This is the number of the observation being reported on. Censored observations have a letter 
appended to the row number. 

(T) Hours 
This is the original value of the dependent variable. 

Log10(T) 
This is the transformed value of the dependent variable. 

Predicted Log10(T) 
This is the predicted transformed value of the dependent variable (usually time). Note that y 
depends on the distribution being fit. For the Weibull, exponential, lognormal, and log-logistic 
distributions, the y is ln(t). For the lognormal10 distribution, y is log(t). For the extreme value, 
normal, and logistic distributions, y is t. The formula for y is 
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Raw Residual 
This is the residual in the y scale. The formula is 

r y x Bk k i
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p
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Note that the residuals of censored observations are not directly interpretable, since there is no 
obvious value of y. The row is displayed so that you can see the predicted value for this censored 
observation. 

Standardized Residual 
This is the residual standardized by dividing by the standard deviation. The formula is 
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Cox-Snell Residual 
The Cox-Snell residual is defined as 
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Here again, the residual does not have a direct interpretation for censored values.  

Stress Plot 
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This plot displays the time on the vertical axis and the stress variable on the horizontal axis. The 
plotted lines represent the percentiles specified on the Reports tab window. This allows you to 
quickly view the percentiles for a wide range of stress values. 
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X-Y Plots 
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These plots show the data values from which the analysis was run. The plot on the left shows 
time versus stress in the original scale. The plot on the right shows time versus stress in the 
transformed metric. The prediction equation is also show on the chart. This lets you decide 
whether predictions are accurate. It also lets you study the goodness of fit. 

Residual Plots 
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This plot shows the residuals in the transformed scale. You would study this chart just as you 
would any other residual versus independent variable plot from a multiple regression analysis. 
You are especially interested in finding outliers, as they can distort your results. 



 Parametric Survival (Weibull) Regression  566-21 

Discussion of Example 
This example will look at an analysis of the electric motor data that was presented above and for 
which all of the above sample reports were generated. As mentioned earlier, a temperature-
accelerated life test of a Class-B insulation was conducted using ten motors tested at each of four 
temperatures. When the testing was stopped, the failure times were recorded. These data are 
stored in the MOTORS.S0 database. 

The purpose of this study was to determine the reliability of these motors at the normal operating 
temperature of 130°C by testing the reliability at higher temperatures. Note that at 150°C, none of 
the motors failed during the duration of the test.  

The first step in the analysis is to determine if the fit is adequate. We look at the plots, the value 
of R-Squared, and the estimated value of sigma to determine this. The plots do not show any 
alarming points, although the residual plots show what might be a mild outlier in the 190°C 
batch. 

Once the adequacy of the fit has been substantiated, we look at the Failure Time Percentile 
Section. This report provides the 10th, 50th, and 90th percentiles. The estimated failure times for 
these percentiles are 21,937 hours, 47,134 hours, and 101,270 hours. That is, we would expect 
about 10% of the motors to fail by 22,000 hours and 90% of the machines to have failed by 
100,000 hours. No further calculations are necessary. 
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Chapter 570 

Life-Table 
Analysis 
Introduction 
A life table presents the proportion surviving, the cumulative hazard function, and the hazard rates 
of a large group of subjects followed over time. The analysis accounts for subjects who die (fail) as 
well as subjects who are censored (withdrawn). The life-table method competes with the Kaplan-
Meier product-limit method as a technique for survival analysis. The life-table method was 
developed first, but the Kaplan-Meier method has been shown to be superior and with the advent of 
computers is now the method of choice. However, for large samples, the life-table method is still 
popular in that it provides a simple summary of a large set of data.  

Construction of a Life Table 
We will give a brief introduction to the subject in this section. For a complete account of life-
table analysis, we suggest the books by Lee (1992) and Elandt-Johnson and Johnson (1980). We 
will use the same terminology as in the Kaplan-Meier Survival Curves chapter. We suggest that 
you read the introduction to survival analysis given in that chapter if you are not familiar with 
common survival analysis terms such as cumulative survival distribution, cumulative hazard 
function, and hazard rates.  

A life table is constructed from a set of grouped or ungrouped failure data. The columns of the 
table are created using a set of formulas. The rows of the table represent various time intervals. 
We will now define each of the columns in the life table. Note, however, that because of the large 
number of columns required to display all of the items, there will be several output reports 
produced. 

Time Interval 
Each time interval is represented by 1+<≤ tt TTT  or , where t),[ 1+tt TT s= 1, ,L . The interval is 
from  up to but not including . The intervals are assumed to be fixed. The intervals do not 
have to be of equal length, but it is often convenient to make them so.  

tT 1+tT

The midpoint of the interval, , is defined as half way through the interval.  mtT

The width of the interval is  where tb ttt TTb −= +1 . The width of the last interval, , is 
theoretically infinite, so items requiring this value will be left blank. 

sb
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Number Lost to Follow-Up 
The number lost to follow-up, , is the number of individuals who were loss to observation during 
this interval, so their survival status is unknown.  

tl

Number Withdrawn Alive 
The number withdrawn alive, , is the number of individuals who had not died (failed) by the end 
of the study. 

tw

Number Dying 
The number dying, , is the number of individuals who die (fail) during the interval. td

Number Entering the tth Interval 
The number entering the tth interval, , is computed as follows. In the first interval, it is the total 
sample size. In the remaining intervals, it is computed using the formula 

′nt

1111 −−−− −−−′=′ ttttt dwlnn  

Number Exposed to Risk 
The number exposed to risk, , is computed using the formula  nt

( )112
1

1 −−− +−′= tttt wlnn  

This formula assumes that times to loss or withdrawal are distributed uniformly across the interval. 

Conditional Proportion Dying 
The conditional proportion dying, , is an estimate of the conditional probability of death in the 
interval given exposure to the risk of death in the interval. It is computed using the formula 

qt

t

t
t n

dq =  

Conditional Proportion Surviving 
The conditional proportion surviving, , is an estimate of the conditional probability of surviving 
through the interval. It is computed using the formula 

pt

tt qp −= 1  

Cumulative Proportion Surviving 
The cumulative proportion surviving, ( )tTS , is an estimate of cumulative survival rate at time T . 
It is computed using the formula 

t

( ) ( ) 11 −−= ttt pTSTS  

where 
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( ) 11 =TS  

The variance of this estimate is itself estimated using the formula 
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Using these estimates, pointwise confidence intervals are given using the Kaplan-Meier product-
limit formulas given in the Kaplan-Meier chapter. 

Estimated Death Density Function 
The estimated death density function, ( )mtTf , is an estimate of the probability of dying in this 
interval per unit width. At the interval midpoint, it is computed using the formula  
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The variance of this estimate is itself estimated using the formula 
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Hazard Rate Function 
The estimated hazard rate function, ( )mtTh , is an estimate of the number of deaths per unit time 
divided by the average number of survivors at the interval midpoint. It is computed using the 
formula  
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The variance of this estimate is itself estimated using the formula 
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Using these estimates, pointwise confidence intervals are given using the cumulative hazard 
confidence interval formulas given in the Kaplan-Meier chapter. 

Cumulative Hazard Function 
The cumulative hazard function, ( )tTH , is estimated using the Nelson-Aalen method. It is 
computed using the formula 
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The variance of this estimate is itself estimated using the formula 
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Using these estimates, pointwise confidence intervals are given using the Nelson-Aalen formulas 
given in the Kaplan-Meier chapter. 

Median Remaining Lifetime 
The median remaining lifetime, , is the time value at which exactly one-half of those who 
survived until  are still alive.  

tMRT

tT

To compute this value, find the value j such that ( ) ( )tj TSTS 2
1≥  and ( ) ( )tj TSTS 2

1
1 <+ . Next, 

computed the median remaining lifetime using the formula 
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The variance of this estimate is itself estimated using the formula 

( ) ( )
( )[ ]2

2

4 mji

t
t Tfn

TSMRTV =  

Using these estimates, pointwise confidence intervals are given using the Nelson-Aalen formulas 
given in the Kaplan-Meier chapter. Note that in this case, the confidence intervals are very crude 
since the  are not necessarily distributed normally, even in large samples. tMRT

Data Structure 
Survival datasets require the ending survival time and an indicator of whether an observation was 
censored or failed. Additionally, you may also include a frequency variable the gives the count 
for each row. 

The table below shows a dataset from which Lee (1992) constructs a life table. The survival 
experience of 2418 males with angina pectoris is recorded in years. The life table will use 16 
intervals of one year each. These data are contained in the LEE91 database. Note that two rows 
are required for each data value, one for the failed individuals and another for the censored 
individuals. 
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MOTORS dataset  

Time Censor Count 
0.5 1 456 
1.5 1 226 
2.5 1 152 
3.5 1 171 
4.5 1 135 
5.5 1 125 
6.5 1 83 
7.5 1 74 
8.5 1 51 
9.5 1 42 
10.5 1 43 
11.5 1 34 
12.5 1 18 
13.5 1 9 
14.5 1 6 
15.5 1 0 
0.5 0 0 
1.5 0 39 
2.5 0 22 
3.5 0 23 
4.5 0 24 
5.5 0 107 
6.5 0 133 
7.5 0 102 
8.5 0 68 
9.5 0 64 
10.5 0 45 
11.5 0 53 
12.5 0 33 
13.5 0 27 
14.5 0 23 
15.5 0 30 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Time Variables 

Time Variable 
This variable contains the length of time that an individual was observed. This may represent a 
failure time or a censor time. Whether the subject actually died is specified by the Censor 
Variable. Since the values are elapsed times, they must be positive. Zeroes and negative values 



570-6  Life-Table Analysis 

are treated as missing values. If you have date values, you much subtract them so that you have a 
column of elapsed times. 

Time Interval Boundaries 
Specify a list of times to be used as boundary points along the time scale. These become the left 
boundaries of the time intervals. Care should be taken to specify a left-most boundary that is less 
than the smallest time value. This number is often zero. 
It is often convenient to make all intervals of the same width, but it is not necessary to do so. 
Each interval is closed on the left and open on the right. That is, the interval is T(i) <= T < T(i+1). 
Numbers representing the times are separated by blanks or commas. Specify sequences with a 
colon, putting the increment inside parentheses. For example: 5:25(5) means 5 10 15 20 25. 
Avoid negative numbers.  
Use ‘(10)’ alone to specify ten, equal-spaced values between zero and the maximum. 

Censor Variable 

Censor Variable 
The values in this variable indicate whether the value of the Time Variable represents a censored 
time or a failure time. These values may be text or numeric. The interpretation of these codes is 
specified by the Failed and Censored options to the right of this option. 
Only two values are used, the Failure code and the Censor code. The Unknown Type option 
specifies what is to be done with values that do not match either the Failure code or the Censor 
code.  
Rows with missing values (blanks) in this variable are omitted. 

Failed 
This value identifies those values of the Censor Variable that indicate that the Time Variable 
gives a failure time. The value may be a number or a letter.  
We suggest the letter ‘F’ or the number ‘1’ when you are in doubt as to what to use. 

Censored 
This value identifies those values of the Censor Variable that indicate that the individual recorded 
on this row was censored. That is, the actual failure time occurs sometime after the value of the 
Time Variable.  
We suggest the letter ‘C’ or the number ‘0’ when you are in doubt as to what to use. 
A censored observation is one in which the time until the event of interest is not known because 
the individual withdrew from the study, the study ended before the individual failed, or for some 
similar reason. 

Unknown Censor 
This option specifies what the program is to assume about rows whose censor value is not equal 
to either the Failed code or the Censored code. Note that observations with missing censor values 
are always treated as missing.  

• Censored 
Observations with unknown censor values are assumed to have been censored. 
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• Failed 
Observations with unknown censor values are assumed to have failed. 

• Missing 
Observations with unknown censor values are assumed to be missing and they are removed 
from the analysis. 

Group Variable 

Group Variable 
An optional categorical (grouping) variable may be specified. If it is used, a separate analysis is 
conducted for each unique value of this variable. 

Frequency Variable 

Frequency Variable 
This variable gives the count, or frequency, of the time displayed on that row. This is the number 
of subjects represented by each row. When omitted, each row receives a frequency of one. 
Frequency values should be positive integers.  

Options 

Confidence Limits 
This option specifies the method used to estimate the confidence limits of the survival and hazard 
values that are displayed. The options are: 

• Linear 
This is the classical method which uses Greenwood’s estimate of the variance. 

• Log Transform 
This method uses the logarithmic transformation of Greenwood’s variance estimate. It 
produces better limits than the Linear method and has better small sample properties. 

• ArcSine 
This method uses the arcsine square-root transformation of Greenwood’s variance estimate to 
produce better limits. 

Variance 
The option specifies which estimator of the variance of the Nelson-Aalen cumulative hazard 
estimate is to be used. Three estimators have been proposed. When there are no event-time ties, 
all three give about the same results.  

We recommend that you use the Simple estimator unless ties occur naturally in the theoretical 
event times. 
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• Simple 
This estimator should be used when event-time ties are caused by rounding and lack of 
measurement precision. This estimate gives the largest value and hence the widest, most 
conservation, confidence intervals. 

• Plug In 
This estimator should be used when event-time ties are caused by rounding and lack of 
measurement precision. 

• Binomial 
This estimator should be used when ties occur in the theoretical distribution of event times. 

Reports Tab 
The following options control which reports are displayed and the format of those reports. 

Select Reports 

Data Summary - Median Remaining Lifetime 
These options indicate whether to display the corresponding report. 

Report Options 

Alpha Level 
This is the value of alpha used in the calculation of confidence limits. For example, if you specify 
0.04 here, then 96% confidence limits will be calculated. 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. Single precision is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option lets you select whether to display only values, only value labels, or both for values of 
the group variable. Use this option if you want to automatically attach labels to the values of the 
group variable (like 1=Male, 2=Female, etc.). See the section on specifying Value Labels 
elsewhere in this manual.  

Report Options – Decimal Places 

Time 
This option specifies the number of decimal places shown on reported time values. 
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Probability 
This option specifies the number of decimal places shown on reported probability and hazard 
values. 

N 
This option specifies the number of decimal places shown on the number exposed. 

Plots Tab 
The following options control the plots that are displayed. 

Select Plots 

Survival/Reliability Plot - Hazard Rate Plot 
These options specify which plots type of plots are displayed. Check the plots that you want to 
see. 

Select Plots – Plots Displayed 

Individual-Group Plots 
When checked, this option specifies that a separate chart of each designated type is displayed. 

Combined Plots 
When checked, this option specifies that a chart combining all groups is to be displayed. 

Plot Options – Plot Arrangement 
These options control the size and arrangement of the plots. 

Two Plots Per Line 
When a man charts are specified, checking this option will cause the size of the charts to be 
reduced so that they can be displayed two per line. This will reduce the overall size of the output. 

Plot Options – Plot Contents 
These options control objects that are displayed on all plots. 

Function Line 
Indicate whether to display the estimated survival (Kaplan-Meier) or hazard function on the plots. 

C.L. Lines 
Indicate whether to display the confidence limits of the estimated function on the plots. 

Legend 
Specifies whether to display the legend. 

Legend Text 
Specifies legend label. A {G} is replaced by the name of the group variable. 



570-10  Life-Table Analysis 

Horizontal (Time) Axis 
These options control the horizontal axis of the plots. 

Label 
This is the text of the horizontal label. The characters {X} are replaced the name of the time 
variable. Press the button on the right of the field to specify the font of the text. 

Number of Intervals 
This option specifies the number of points along the time axis at which calculations are made. 
This controls the resolution of the plots. Usually, a value between 50 and 100 is sufficient. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the horizontal (X) 
axes. If left blank, these values are calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Survival Plot Tab 
These options control the attributes of the survival curves. Note that the horizontal axis is 
specified in the Plots tab. 

Vertical Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 
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Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Survival Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Titles 

Title Line 1 and 2 
These are the text lines of the titles. The characters {Y}, {X}, and {Z} are replaced by appropriate 
names. Press the button on the right of the field to specify the font of the text. 

Cum Haz Plot Tab 
These options control the attributes of the cumulative hazard function plot. 

Vertical Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 
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Cum Hazard Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Titles 

Title Line 1 and 2 
These are the text lines of the titles. The characters {Y}, {X}, and {Z} are replaced by appropriate 
names. Press the button on the right of the field to specify the font of the text. 

Haz Rt Plot Tab 
These options control the attributes of the hazard rate plot. 

Vertical Axis 

Label 
This is the text of the label. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 

Minimum 
This option specifies the minimum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Maximum 
This option specifies the maximum value displayed on the corresponding axis. If left blank, it is 
calculated from the data. 

Tick Label Settings… 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Major Ticks - Minor Ticks 
These options set the number of major and minor tickmarks displayed on the axis. 

Show Grid Lines 
This check box indicates whether the grid lines that originate from this axis should be displayed. 

Hazard Rate Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 
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Titles 

Title Line 1 and 2 
These are the text lines of the titles. The characters {Y}, {X}, and {Z} are replaced by appropriate 
names. Press the button on the right of the field to specify the font of the text. 

Lines Tab 
These options specify the attributes of the lines used for each group in the hazard curves and 
survival curves. 

Plotting Lines 

Line 1 - 15 
These options specify the color, width, and pattern of the lines used in the plots of each group. 
The first line is used by the first group, the second line by the second group, and so on. These line 
attributes are provided to allow the various groups to be indicated on black-and-white printers. 
Clicking on a line box (or the small button to the right of the line box) will bring up a window 
that allows the color, width, and pattern of the line to be changed. 

Labels Tab 
The options on this tab specify the labels that a printed on the reports and plots. 

Report and Plot Labels 

Failure Time Label - Hazard Rate Label 
These options specify the term(s) used as labels for these items on the plots. Since these reports 
are used for performing survival analysis in medical research and reliability analysis in industry, 
and since these fields often use different terminology, these options are needed to provide 
appropriate headings for the reports. 

Storage Tab 
These options let you specify if, and where on the database, various statistics are stored. 

Warning: Any data already in these variables are replaced by the new data. Be careful not to 
specify variables that contain important data. 

Data Storage Options 

Storage Option 
This option controls whether the values indicated below are stored on the database when the 
procedure is run. 

• Do not store data 
No data are stored even if they are checked. 
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• Store in empty columns only 
The values are stored in empty columns only. Columns containing data are not used for data 
storage, so no data can be lost. 

• Store in designated columns 
Beginning at the First Storage Variable, the values are stored in this column and those to the 
right. If a column contains data, the data are replaced by the storage values. Care must be 
used with this option because it cannot be undone. 

Store First Variable In 
The first item is stored in this variable. Each additional item that is checked is stored in the 
variables immediately to the right of this variable.  

Leave this value blank if you want the data storage to begin in the first blank column on the right-
hand side of the data. 

Warning: any existing data in these variables is automatically replaced, so be careful. 

Data Storage Options – Select Items 
to Store on the Spreadsheet 

Group - Median R.L. UCL 
Indicate whether to store these values, beginning at the variable indicated by the Store First 
Variable In option.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Creating a Life Table 
This section presents an example of how to create a life table. This example will use the survival 
data contained in the LEE91 dataset . 
You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Life-Table Analysis window. 

1 Open the LEE91 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file LEE91.S0. 
• Click Open. 

2 Open the Life-Table Analysis window. 
• On the menus, select Analysis, then Survival / Reliability, then Life-Table Analysis. 

The Life-Table Analysis procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Life-Table Analysis window, select the Variables tab.  
• Set the Time Variable to Time.  
• Set the Time Interval Boundaries to 0:15(1).  
• Set the Censor Variable to Censor.  
• Set the Frequency Variable to Count.  

4 Specify the plots. 
• On the Life-Table Analysis window, select the Plots tab.  
• Check the Hazard Function Plot box.  
• Check the Hazard Rate Plot box.  

5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Data Summary Section 
  
 Type of 
 Observation Rows Count Minimum Maximum 

Failed 15 1625 0.5 14.5  
Censored 15 793 1.5 15.5  
Total 30 2418 0.5 15.5  

 

This report displays a summary of the amount of data that were analyzed. Scan this report to 
determine if there were any obvious data errors by double checking the counts and the minimum 
and maximum times. 
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Life-Table Analysis Detail Section 
 
 No.   No. Conditonal Cumulative  
 Start No. No. Exp'd Proportion Proportion Hazard 
Time Int'l Lost Died to Risk Surviving Surviving Rate 
0.0 2418 0 456 2418.0 0.81141 1.00000 0.20822 
1.0 1962 39 226 1942.5 0.88366 0.81141 0.12353 
2.0 1697 22 152 1686.0 0.90985 0.71701 0.09441 
3.0 1523 23 171 1511.5 0.88687 0.65237 0.11992 
4.0 1329 24 135 1317.0 0.89749 0.57856 0.10804 
5.0 1170 107 125 1116.5 0.88804 0.51926 0.11860 
6.0 938 133 83 871.5 0.90476 0.46112 0.10000 
7.0 722 102 74 671.0 0.88972 0.41721 0.11672 
8.0 546 68 51 512.0 0.90039 0.37120 0.10483 
9.0 427 64 42 395.0 0.89367 0.33422 0.11230 
10.0 321 45 43 298.5 0.85595 0.29868 0.15523 
11.0 233 53 34 206.5 0.83535 0.25566 0.17942 
12.0 146 33 18 129.5 0.86100 0.21356 0.14938 
13.0 95 27 9 81.5 0.88957 0.18388 0.11688 
14.0 59 23 6 47.5 0.87368 0.16357 0.13483 
15.0 30 30 0 15.0 1.00000 0.14291  

 

This report displays the standard life table. The formulas used were presented earlier.  

Time 
This is the left boundary of the time interval reported on this line. The right boundary is the entry 
on the following line. Each interval is represented by T T Tt t≤ < +1 . 

No. Start Int’l 
This is the number entering the tth interval. In the first interval, it is the total sample size. 

No. Lost 
This is the number lost to follow-up and the number withdrawn from the study alive. 

No. Died 
This is the number of individuals who died (failed) during the interval. 

No. Exp’d to Risk 
This is the average number exposed to risk in the interval. It is calculated under the assumption 
that losses and withdrawals are distributed uniformly across the interval. 

Conditional Proportion Surviving 
This is the conditional proportion surviving through the interval. 

Cumulative Proportion Surviving 
This is the estimate of the survivorship function, ( )S Tt . It is also called the cumulative survival 
rate at time . It is the probability of surviving to the start of the interval and then through the 
interval. 

Tt

Hazard Rate 
This is the estimated hazard rate function, ( )h Tmt . It is an estimate of the number of deaths per 
unit time divided by the average number of survivors computed at the interval midpoint. 



 Life-Table Analysis  570-17 

Life-Table Analysis Summary Section 
 
 Cumulative Cumulative  Death Median No. 
 Proportion Hazard Hazard Density Remaining Starting 
Time Surviving Function Rate Function Lifetime Int'l 
0.0 1.00000 0.18859 0.20822 0.18859 5.3 2418 
1.0 0.81141 0.30493 0.12353 0.09440 6.2 1962 
2.0 0.71701 0.39508 0.09441 0.06464 6.3 1697 
3.0 0.65237 0.50822 0.11992 0.07380 6.2 1523 
4.0 0.57856 0.61072 0.10804 0.05931 6.2 1329 
5.0 0.51926 0.72268 0.11860 0.05813 5.9 1170 
6.0 0.46112 0.81792 0.10000 0.04392 5.6 938 
7.0 0.41721 0.92820 0.11672 0.04601 5.2 722 
8.0 0.37120 1.02781 0.10483 0.03697 4.9 546 
9.0 0.33422 1.13414 0.11230 0.03554 4.8 427 
10.0 0.29868 1.27819 0.15523 0.04303 4.7 321 
11.0 0.25566 1.44284 0.17942 0.04209  233 
12.0 0.21356 1.58184 0.14938 0.02968  146 
13.0 0.18388 1.69227 0.11688 0.02031  95 
14.0 0.16357 1.81858 0.13483 0.02066  59 
15.0 0.14291 1.81858    30 

 

This report displays the most interesting quantities from a life table. The formulas used were 
presented earlier.  

Time 
This is the left boundary of the time interval reported on this line. The right boundary is the entry 
on the following line. Each interval is represented by T T Tt t≤ < +1 . 

Cumulative Survival 
This is the estimate of the survivorship function, ( )S Tt . It is also called the cumulative survival 
rate at time . It is the probability of surviving to the start of the interval and then through the 
interval. 

Tt

Cumulative Hazard Function 
This is the estimate of the cumulative hazard function, ( )H Tt . 

Hazard Rate 
This is the estimated hazard rate function, ( )h Tmt . It is an estimate of the number of deaths per 
unit time divided by the average number of survivors computed at the interval midpoint. 

Death Density Function 
This is the estimated death density function, ( )f Tmt . It is an estimate of the probability of dying at 
the interval midpoint. 

Median Remaining Lifetime 
This is the median remaining lifetime, . It is the time value at which exactly one-half of 
those who survived until  are still alive.  

MRTt

Tt

No. Start Int’l 
This is the number entering the tth interval. In the first interval, it is the total sample size. 
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Survival Analysis Section 
 

 Cumulative Standard Lower Upper 
Time Survival Error 95% C.L. 95% C.L. 
0.0 1.00000 0.00000 1.00000 1.00000 
1.0 0.81141 0.00796 0.79582 0.82701 
2.0 0.71701 0.00918 0.69902 0.73500 
3.0 0.65237 0.00973 0.63329 0.67145 
4.0 0.57856 0.01014 0.55869 0.59844 
5.0 0.51926 0.01030 0.49906 0.53945 
6.0 0.46112 0.01038 0.44078 0.48147 
7.0 0.41721 0.01045 0.39672 0.43769 
8.0 0.37120 0.01058 0.35046 0.39193 
9.0 0.33422 0.01072 0.31322 0.35523 
10.0 0.29868 0.01089 0.27734 0.32003 
11.0 0.25566 0.01112 0.23385 0.27746 
12.0 0.21356 0.01140 0.19123 0.23590 
13.0 0.18388 0.01177 0.16082 0.20694 
14.0 0.16357 0.01226 0.13954 0.18760 
15.0 0.14291 0.01330 0.11684 0.16898 

 

This report displays the life-table survival distribution along with confidence limits. The formulas 
used were presented earlier.  

Time 
This is the left boundary of the time interval reported on this line. The right boundary is the entry 
on the following line. Each interval is represented by T T Tt t≤ < +1 . 

Cumulative Survival 
This is the estimate of the survivorship function, ( )S Tt . It is also called the cumulative survival 
rate at time . It is the probability of surviving to the start of the interval and then through the 
interval. 

Tt

Standard Error 
This is the large-sample estimate of standard error of the survival function. It is a measure of the 
precision of the survival estimate. 

Lower and Upper Confidence Limits 
The lower and upper confidence limits provide a pointwise confidence interval for the survival 
function. These limit are constructed so that the probability that the true survival probability lies 
between them is 1−α . Note that these limits are constructed for a single time point. Several of 
them cannot be used together to form a confidence band such that the entire survival function lies 
within the band.  

Three difference confidence intervals are available. All three confidence intervals perform about the 
same in large samples. The linear (Greenwood) interval is the most commonly used. However, the 
log-transformed and the arcsine-square intervals behave better in small to moderate samples, so 
they are recommended. The formulas for these limits were given at the beginning of the chapter and 
are not repeated here. 
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Cumulative Hazard Section 
 
 Cumulative Standard Lower Upper    
Time Hazard Error 95% C.L. 95% C.L. 
0.0 0.18859 0.00883 0.17128 0.20589 
1.0 0.30493 0.01174 0.28192 0.32795 
2.0 0.39508 0.01383 0.36797 0.42220 
3.0 0.50822 0.01632 0.47624 0.54020 
4.0 0.61072 0.01855 0.57437 0.64708 
5.0 0.72268 0.02108 0.68137 0.76399 
6.0 0.81792 0.02353 0.77180 0.86403 
7.0 0.92820 0.02679 0.87568 0.98072 
8.0 1.02781 0.03021 0.96860 1.08702 
9.0 1.13414 0.03438 1.06676 1.20151 
10.0 1.27819 0.04080 1.19824 1.35815 
11.0 1.44284 0.04961 1.34560 1.54009 
12.0 1.58184 0.05946 1.46531 1.69837 
13.0 1.69227 0.06993 1.55521 1.82932 
14.0 1.81858 0.08689 1.64829 1.98888 
15.0 1.81858 0.08689 1.64829 1.98888 

 

This report displays estimates of the cumulative hazard function. The formulas used were 
presented earlier.  

Time 
This is the left boundary of the time interval reported on this line. The right boundary is the entry 
on the following line. Each interval is represented by T T Tt t≤ < +1 . 

Cumulative Hazard 
This is the Nelson-Aalen estimate of the cumulative hazard function, ( )H Tt .  

Standard Error 
This is the estimated standard error of the above cumulative hazard function. The formula used 
was specified under the Variables tab in the Variance box. The standard error is the square root of 
this variance. 

Lower and Upper Confidence Limits 
The lower and upper confidence limits provide a pointwise confidence interval for the cumulative 
hazard at each time point. These limits are constructed so that the probability that the true 
cumulative hazard lies between them is 1−α . Note that these limits are constructed for a single 
time point. Several of them cannot be used together to form a confidence band such that the entire 
cumulative hazard function lies within the band.  

Three difference confidence intervals are available. All three confidence intervals perform about the 
same in large samples. The linear (Greenwood) interval is the most commonly used. However, the 
log-transformed and the arcsine-square intervals behave better in small to moderate samples, so 
they are recommended. The formulas for these limits were given at the beginning of the chapter and 
are not repeated here. 
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Hazard Rate Section 
 
 Hazard Standard Lower Upper 
Time Rate Error 95% C.L. 95% C.L. 
0.0 0.20822 0.00970 0.18921 0.22723 
1.0 0.12353 0.00820 0.10746 0.13961 
2.0 0.09441 0.00765 0.07942 0.10940 
3.0 0.11992 0.00915 0.10197 0.13786 
4.0 0.10804 0.00929 0.08984 0.12624 
5.0 0.11860 0.01059 0.09784 0.13935 
6.0 0.10000 0.01096 0.07851 0.12149 
7.0 0.11672 0.01355 0.09017 0.14327 
8.0 0.10483 0.01466 0.07610 0.13356 
9.0 0.11230 0.01730 0.07839 0.14621 
10.0 0.15523 0.02360 0.10898 0.20149 
11.0 0.17942 0.03065 0.11935 0.23948 
12.0 0.14938 0.03511 0.08056 0.21819 
13.0 0.11688 0.03889 0.04065 0.19311 
14.0 0.13483 0.05492 0.02719 0.24247 
15.0     

 

This report displays estimates of the hazard rates at the midpoints of each of the time intervals. 
The formulas used were presented earlier.  

Time 
This is the left boundary of the time interval reported on this line. The right boundary is the entry 
on the following line. Each interval is represented by T T Tt t≤ < +1 . Note that the hazard rate is 
actually computed at the midpoint of each interval. 

Cumulative Hazard 
This is the estimate of the hazard rate, ( )h Tmt .  

Standard Error 
This is the estimated standard error of the above hazard rate. The formula used was given earlier. 
The standard error is the square root of this variance. 

Lower and Upper Confidence Limits 
The lower and upper confidence limits provide a pointwise confidence interval for the hazard rate 
at the midpoint of the time interval. These limits are constructed so that the probability that the 
true hazard rate lies between them is 1−α . Note that these limits are constructed for a single time 
point. Several of them cannot be used together to form a confidence band such that the entire hazard 
rate lies within the band.  

Three difference confidence intervals are available. All three confidence intervals perform about the 
same in large samples. The linear (Greenwood) interval is the most commonly used. However, the 
log-transformed and the arcsine-square intervals behave better in small to moderate samples, so 
they are recommended. The formulas for these limits were given at the beginning of the chapter and 
are not repeated here. 
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Death Density Function Section 
 
 Death Standard Lower Upper 
Time Density Error 95% C.L. 95% C.L. 
0.0 0.18859 0.00796 0.17299 0.20418 
1.0 0.09440 0.00598 0.08269 0.10612 
2.0 0.06464 0.00507 0.05471 0.07458 
3.0 0.07380 0.00543 0.06317 0.08444 
4.0 0.05931 0.00495 0.04961 0.06900 
5.0 0.05813 0.00503 0.04827 0.06800 
6.0 0.04392 0.00469 0.03472 0.05311 
7.0 0.04601 0.00518 0.03587 0.05615 
8.0 0.03697 0.00502 0.02713 0.04682 
9.0 0.03554 0.00531 0.02513 0.04594 
10.0 0.04303 0.00627 0.03074 0.05532 
11.0 0.04209 0.00685 0.02867 0.05551 
12.0 0.02968 0.00668 0.01659 0.04278 
13.0 0.02031 0.00651 0.00754 0.03307 
14.0 0.02066 0.00804 0.00491 0.03641 
15.0     

 

This report displays estimates of the hazard rates at the midpoints of each of the time intervals. 
The formulas used were presented earlier.  

Time 
This is the left boundary of the time interval reported on this line. The right boundary is the entry 
on the following line. Each interval is represented by T T Tt t≤ < +1 . Note that the hazard rate is 
actually computed at the midpoint of each interval. 

Death Density 
This is the estimate of the death density, ( )f Tmt .  

Standard Error 
This is the estimated standard error of the above density. The formula used was given earlier. The 
standard error is the square root of this variance. 

Lower and Upper Confidence Limits 
The lower and upper confidence limits provide a pointwise confidence interval for the death 
density at the midpoint of the time interval. These limits are constructed so that the probability 
that the true density lies between them is 1−α .  

Three difference confidence intervals are available. All three confidence intervals perform about the 
same in large samples. The linear (Greenwood) interval is the most commonly used. However, the 
log-transformed and the arcsine-square intervals behave better in small to moderate samples, so 
they are recommended. The formulas for these limits were given at the beginning of the chapter and 
are not repeated here. 
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Median Remaining Lifetime Section 
 
 Median    
 Remaining Standard Lower Upper 
Time Lifetime Error 95% C.L. 95% C.L. 
0.0 5.3 0.17491 5.0 5.7 
1.0 6.2 0.20006 5.9 6.6 
2.0 6.3 0.23614 5.9 6.8 
3.0 6.2 0.23609 5.8 6.7 
4.0 6.2 0.18526 5.9 6.6 
5.0 5.9 0.18059 5.6 6.3 
6.0 5.6 0.18554 5.2 6.0 
7.0 5.2 0.27129 4.6 5.7 
8.0 4.9 0.27632 4.4 5.5 
9.0 4.8 0.41408 4.0 5.6 
10.0 4.7 0.41835 3.9 5.5 
11.0     
12.0     
13.0     
14.0 
15.0 
     

This report displays estimates of the median remaining lifetime of those who are alive at the 
beginning of the interval. The formulas used were presented earlier.  

Time 
This is the left boundary of the time interval reported on this line. The right boundary is the entry 
on the following line. Each interval is represented by T T Tt t≤ < +1 .  

Median Remaining Lifetime 
This is the estimate of the median remaining lifetime of an individual who survives to the 
beginning of this interval.  

Standard Error 
This is the estimated standard error of the above lifetime. The formula used was given earlier.  

Lower and Upper Confidence Limits 
The lower and upper confidence limits provide a pointwise confidence interval for the hazard rate 
at the midpoint of the time interval. These limits are constructed so that the probability that the 
true remaining lifetime lies between them is 1−α .  

These confidence intervals are highly approximate. They depend on the assumption that the median 
remaining lifetime is normally distributed. This may not be true even in large samples. 
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Survival Plot 
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This plot shows the survivorship function. If there are several groups, a separate line is drawn for 
each group.  

Hazard Function Plot 
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This plot shows the Nelson-Aalen cumulative hazard function. If you have several groups, then a 
separate line is drawn for each group.  



570-24  Life-Table Analysis 

Hazard Rate Plot 
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This plot shows the hazard rates. Note the unusual step-like appearance of the plot because the 
hazard rates are assumed constant for the duration of the interval. 

Validation of Life-Table Estimator using Lee (1992) 
This section presents validation of our life-table estimator. Lee (1992) presents an example on 
page 91 of a calculated life table. We will include the results of one line of that table so that you 
can compare those results with those produced by this program. If you compare these values with 
those shown above, you can validate that NCSS provides the correct results. 
 
Parameter Value 
Time 3 
Lost 23 
Dying 171 
Entering 1523 
Exposed 1511.5 
Proportion Dying 0.1131 
Proportion Surviving 0.8869 
S(T) 0.6524 
S.E. S(T) 0.0097 
h(T) 0.1199 
S.E. h(T) 0.0092 
Median Rem. Lifetime 6.23 
S.E. MRL(T) 0.9 
f(T) 0.0738 
S.E. f(T) 0.0054   
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Chapter 575 

Probit Analysis 
Introduction 
Probit Analysis is a method of analyzing the relationship between a stimulus (dose) and the 
quantal (all or nothing) response. Quantitative responses are almost always preferred, but in many 
situations they are not practical. In these cases, it is only possible to determine if a certain 
response (such as death) has occurred. In a typical quantal response experiment, groups of 
animals are given different doses of a drug. The percent dying at each dose level is recorded. 
These data may then be analyzed using Probit Analysis.  

The Probit Model assumes that the percent response is related to the log dose as the cumulative 
normal distribution. That is, the log doses may be used as variables to read the percent dying from 
the cumulative normal. Using the normal distribution, rather than other probability distributions, 
influences the predicted response rate at the high and low ends of possible doses, but has little 
influence near the middle. Hence, much of the comparison of different drugs is done using 
response rates of fifty percent. The probit model may be expressed mathematically as follows: 

( )[ ]P D= +α β log10 ose  

where P is five plus the inverse normal transform of the response rate (called the Probit). The five 
is added to reduce the possibility of negative probits, a situation that caused confusion when 
solving the problem by hand. 

The popularity of the method is due in large part to the work of Finney (1971), in his book Probit 
Analysis. He explains the proper use and analysis of quantal response data. In NCSS, we have 
coded the algorithms given in his book, and we refer you to it for further information and 
background. 

Data Structure 
The data below are suitable for analysis by this procedure. Note that the first variable, Dose, gives 
the dose level of the treatment. The second variable, Subjects, gives the number of individuals 
receiving a specific dose level. The third variable, Response, gives the number of treated 
individuals who exhibited the response of interest. 

These data are contained on the SURVIVAL database. 
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SURVIVAL dataset 

Dose Subjects Response 
50 102 19 
60 121 26 
70 111 24 
80 105 31 
90 117 54 
100 108 83 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Count Variable 

R: Count Variable 
This variable contains the number of individuals with the desired response. It must be less than 
the number of animals. The analysis adds one-half to zero and subtracts one-half if the R = N. 
This slight modification avoids division by zero in the calculations. 

Dose Variable 

X: Dose Variable 
This option contains the name of the variable containing the dose levels. Note that the analysis 
uses the log (base 10) transformation of dose levels. 

Sample Size Variable 

N: Sample Size Variable 
This is the variable containing the total number of individuals sampled at a particular dose level. 

Group Variable 

Group Variable 
An optional categorical (grouping) variable may be specified. If it is used, a separate analysis is 
conducted for each unique value of this variable. 
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Reports Tab 
The following options control the display of reports and plots. 

Select Reports 

Percentiles 
A separate row in the Dose Percentile report is created for each percentage value given here. This 
is a list of numbers between 0 and 100 separated by blanks or commas. 

Probit Estimation Report ... Dose Percentiles Report 
These options specify whether to display the corresponding report. 

Select Plots 

Dose - Response Plot ... Probit Plot 
These options specify whether to display the corresponding plot. 

Report Options 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. Note that the 
reports are formatted for single precision. If you select double precision, some numbers may run 
into others. Also note that all calculations are performed in double precision regardless of which 
option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option lets you select whether to display only values, value labels, or both. Use this option if 
you want to automatically attach labels to the values of the group variable (like 1=Yes, 2=No, 
etc.). See the section on specifying Value Labels elsewhere in this manual.  

Plot Options 

Connect Points on Plots 
Checking this option causes all points to be connected with a solid line. This option is useful 
when you want to study trends across dose levels. 

Plot Options – Legend 
This section specifies the legend. 

Show Legend 
Specifies whether to display the legend. 
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Legend Text 
Specifies legend label. A {G} is replaced by the name of the group variable. 

Dose - Resp Plot to Probit Plot Tabs 
These options control the attributes of the corresponding plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. Press 
the button on the right of the field to specify the font of the text. 
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Symbols Tab 
These options specify the attributes of the symbols used for each group in the plots. 

Plotting Symbols 

Group 1 – 15  
These options specify the attributes of the symbols used in the plots of each group. The first 
symbol is used by the first group, the second symbol by the second group, and so on. 

Clicking on a symbol box (or the small button to the right of the line box) will bring up a window 
that allows the attributes to be changed. 

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Probit Analysis 
This section presents an example of how perform a probit analysis using the data that were shown 
earlier and found in the SURVIVAL database. 

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Probit Analysis window. 

1 Open the SURVIVAL dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file SURVIVAL.s0. 
• Click Open. 
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2 Open the Probit Analysis window. 
• On the menus, select Analysis, then Survival / Reliability, then Probit Analysis. The 

Probit Analysis procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• On the Probit Analysis window, select the Variables tab.  
• Double-click in the R: Count Variable box. This will bring up the variable selection 

window.  
• Select Response from the list of variables and then click Ok.  
• Double-click in the X: Dose Variable box. This will bring up the variable selection 

window.  
• Select Dose from the list of variables and then click Ok.  
• Double-click in the N: Sample Size Variable box. This will bring up the variable 

selection window.  
• Select Subjects from the list of variables and then click Ok.  

4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

Probit Estimation Section 
  
 Probit Estimation Section 
 Parameter Estimate Std. Error 
 Alpha -4.545974 1.032341 
 Beta 4.901165 0.5483724 
 LD50 1.947695 1.304145E-02 
 Dose50 88.65325 2.662173 
 

Alpha 
The estimated value of the intercept, with its associated standard error. 

Beta 
The estimated value of the slope, with its associated standard error. 

LD50 
The estimated value, on the log10(dose) scale, at which 50% responded. 

Dose50 
The estimated value, on the dose scale, at which 50% responded. 
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Probit Detail Section 
  
 Probit Detail Section 
  Actual Probit 
 Dose Percent Percent N R E(R) Difference Chi-Square 
 50 18.63 11.14 102 19.00 11.36 7.64 5.77 
 60 21.49 20.30 121 26.00 24.56 1.44 0.11 
 70 21.62 30.75 111 24.00 34.14 -10.14 4.35 
 80 29.52 41.35 105 31.00 43.41 -12.41 6.05 
 90 46.15 51.28 117 54.00 60.00 -6.00 1.23 
 100 76.85 60.12 108 83.00 64.93 18.07 12.62 
       Total Chi-Square 30.13 
       D.F. 4 
       Prob Level 0.00 
 

This report displays a table that would have been used if the calculations were carried out by 
hand. It is presented more for completeness than for any analytic purpose. It does, however, let 
you investigate the goodness-of-fit of the dose-response model to the data by considering the Chi-
square values. 

Dose 
The dose level. 

Actual Percent 
The ratio of the count to the sample size (R/N). 

Probit Percent 
The estimated ratio (R/N) based on the probit model. 

N 
The sample size. 

R 
The count (number responding). 

E(R) 
The expected count based on the probit model. 

Difference 
The difference between the actual and the expected counts. 

Chi-Square 
The Chi-Square statistic for testing the significance (non-zero) of the difference. Since these are 
single degree of freedom tests, the value should be greater than 3.81 to be significant at the 0.05 
level. 

Total Chi-Square 
The total of the Chi-Square values, used to test the overall significance of the differences from the 
model. 

D.F. 
The degrees of freedom of the Chi-Square test. 
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Prob Level 
The probability to the right of the above Chi-Square value. The significance level of the Total 
Chi-Square test. 

Dose Percentile Section 
 
    Std. Error  Std. Error 
 Percentile Probit Log(Dose) Log(Dose) Dose Dose 
 1 2.6737 1.4730 0.0468 29.7196 3.2008 
 5 3.3551 1.6121 0.0318 40.9346 2.9993 
 10 3.7184 1.6862 0.0242 48.5530 2.7013 
 20 4.1584 1.7760 0.0158 59.7002 2.1685 
 25 4.3255 1.8101 0.0132 64.5768 1.9640 
 30 4.4756 1.8407 0.0115 69.2946 1.8364 
 40 4.7467 1.8960 0.0108 78.7052 1.9529 
 50 5.0000 1.9477 0.0130 88.6533 2.6622 
 60 5.2533 1.9994 0.0171 99.8587 3.9219 
 70 5.5244 2.0547 0.0222 113.4200 5.8064 
 75 5.6745 2.0853 0.0253 121.7063 7.0888 
 80 5.8416 2.1194 0.0288 131.6477 8.7309 
 90 6.2816 2.2092 0.0383 161.8727 14.2814 
 95 6.6449 2.2833 0.0463 191.9991 20.4873 
 99 7.3263 2.4223 0.0616 264.4519 37.5022 

 

This report displays the dose levels yielding various predicted response rates. 

Percentile 
The response rate times 100. 

Probit 
The normal transform of the percentage plus five. (The five is added to avoid the possibility of a 
negative probit. This practice was helpful when calculations were done by hand, but is based 
solely on tradition now that calculations are carried out by computer.) 

Log Dose 
The logarithm of the dose level (base 10). 

Std. Error Log(Dose) 
The standard error of the estimated log dose level. 

Dose 
The dose level. 

Std. Error Dose 
The standard error of the estimated dose level. 
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Dose-Response Plot 
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This plot lets you look at the relationship between percent response and dose. Usually, this plot 
will be nonlinear.  

Log(Dose) - Response Plot 
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This plot lets you look at the relationship between percent response and log dose. Usually, this 
plot will be nonlinear. 
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Log(Dose) - Probit Plot 
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This plot presents the probit model. If the probit model is to be a good approximation, this plot 
should show a linear relationship. Obviously, in this example, the relationship is quadratic, 
indicating that the probit model should be modified--perhaps by using the square of Log dose.  
 



  580-1 

Chapter 580 

Time Calculator 
Introduction 
This program module generates and stores elapsed times and censor codes from a database of 
patient entry, follow-up, and termination dates. It was designed as a supplement for programs like 
Kaplan-Meier survival analysis and Cox regression which require elapsed times and censor codes 
as inputs.  

Data Structure 
This procedure uses up to three date variables to calculate elapsed time and censor codes for each 
row. These are discussed further below. 

Procedure Options 
This section describes the options available in this procedure. 

Data Tab 
Specify the variables to be processed. 

Data Variable Specification 

Entry (Surgery) Date Variable 
This (optional) variable contains the date the subject entered the study. Usually, this corresponds 
to the surgery or procedure date. The value should be a standard date value such as mm/dd/yyyy or 
dd/mm/yyyy. A non-missing value here will override the ‘Group Start Date’ value.  

The elapsed time is calculated by subtracting the entry date from either the Last Follow-Up Date 
or the Event Date. 

Last Follow-Up Date Variable 
This variable contains the date the subject was last seen before an event occurred. It is assumed 
that if, on that visit, the event of interest was seen, the date will be entered in the ‘Event Date 
Variable’ and not here. Thus, only subjects who have not exhibited the event should have their 
times recorded here. The value should be a standard date value such as mm/dd/yyyy or 
dd/mm/yyyy. If a ‘Group End Date’ is specified, this value will override it.  

The elapsed time is calculated by subtracting the entry date from either the Last Follow-Up Date 
or the Event Date. If the Last Follow-Up Date value is non-missing and the Event Date is 
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missing, the censor variable will be set to a zero (signaling a censored value). Otherwise, the 
censor variable will be set to a one (signaling an event). 

Event (Death) Date Variable 
This variable contains the date the subject showed the event (death, remission, etc.). If a subject 
has not shown the event, this value should be left blank on the database. The value should be a 
standard date value such as mm/dd/yyyy or dd/mm/yyyy. 

The elapsed time is calculated by subtracting the entry date from either the Last Follow-Up Date 
or the Event Date. If the Last Follow-Up Date value is non-missing and the Event Date is 
missing, the censor variable will be set to a zero (signaling a censored value). Otherwise, the 
censor variable will be set to a one (signaling an event).  

Group Date Specification 

Group Start Date 
If all subjects begin the study on the same date and this date is not on your database, you can 
enter that date here. The value should be a standard date value such as mm/dd/yyyy or 
dd/mm/yyyy. If an ‘Entry Date Variable’ is specified, its value will override this value. 

Group End Date 
If follow-up on all subjects ended on the same date and this date is not on your database, you can 
enter that date here. The value should be a standard date value such as mm/dd/yyyy or 
dd/mm/yyyy. If a non-missing ‘Last Follow-Up Date Variable’ value is entered, it will override 
this value. 

Storage Variable Specification 

Elapsed-Time Variable 
This variable will receive the calculated elapsed-time. This value can be used as the Time 
Variable in the Kaplan-Meier or Cox Regression procedures. Note that this value will either be 
the time to event or the time until end of follow up. The scale of the elapsed time (day, month, or 
year) is set by the Time Scale option 

The elapsed time is calculated by subtracting the entry date from either the Last Follow-Up Date 
or the Event Date. If the Last Follow-Up Date value is non-missing and the Event Date is 
missing, the censor variable will be set to a zero (signaling a censored value). Otherwise, the 
censor variable will be set to a one (signaling an event). 

Censor Variable 
This variable will receive the censor indicator. A one will appear for all subjects that exhibited 
the event and a zero will appear for all others. This value can be used as the Censor Variable in 
the Kaplan-Meier or Cox Regression procedures. 

If the Last Follow-Up Date value is non-missing and the Event Date is missing, the censor 
variable will be set to a zero (signaling a censored value). Otherwise, the censor variable will be 
set to a one (signaling an event). 

Warning: any existing data in this variable will be lost, so choose an empty variable. 

Time Scale 
Specify the scale that you want to use for the time values. 
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Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Preparing Data for Kaplan-Meier Analysis 
using the Time Calculator 
This section presents an example of how to prepare a set of date data for analysis by the Kaplan-
Meier procedure. The date values are contained on a database called TIMECALC.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Time Calculator window. 

1 Open the TIMECALC dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file TimeCalc.S0. 
• Click Open. 

2 Open the Time Calculator window. 
• On the menus, select Analysis, then Survival / Reliability, then Time Calculator. The 

Time Calculator procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• Select the Data tab.  
• Set the Entry Date Variable to Entry. 
• Set the Last Follow-Up Date Variable to FollowUp. 
• Set the Event Date Variable to Event. 
• Set the Elapsed-Time Variable to Time. 
• Set the Censor Variable to Censor. 
• Set the Time Scale to Year. 
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4 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
 

This procedure does not produce any output. Upon running the procedure, the elapsed times and 
censor codes will be displayed on the spreadsheet. 
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Chapter 585 

Tolerance 
Intervals 
Introduction 
This procedure calculates one-, and two-, sided tolerance intervals based on either a distribution-
free (nonparametric) method or a method based on a normality assumption (parametric). A two-
sided tolerance interval consists of two limits between which a given proportionβ of the 
population falls with a given confidence level α−1 . A one-sided tolerance interval is similar, but 
consists of a single upper or lower limit.  

Technical Details 
Let be a random sample for a population with distribution function . A X X Xn1 2, , ,L ( )XF
( )αβ −1 ,  two-sided β -content tolerance interval ( )UL TT ,  is defined by  

( ) ( )[ ] αβ −≥≥− 1Pr LU TFTF  

A ( )αβ −1 ,  lower, one-sided β -content tolerance bound is defined by  TL

( )[ ] αβ −≥≥− 11Pr LTF  

A ( )αβ −1 ,  upper, one-sided β -content tolerance bound T  is defined by  U

( )[ ] αβ −≥≥ 1Pr UTF  

Note that a one-sided tolerance limit is the same as the one-sided confidence limit of the quantile 
of F. 

Distribution-Free Tolerance Intervals 
The definition of two-sided distribution-free tolerance intervals is found in many places. We use 
the formulation given by Bury (1999). The only distributional assumption made about F is that it 
is a continuous, non-decreasing, probability distribution. That is, these intervals should not be 
used with discrete data. Given this, the tolerance limits are 

T X T XL r U s= =( ) ( ),  

where r and s are two order indices. The values of r and s are determined using the formula 
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The value of c is found as the largest value for which the above inequality is true. 

A lower, one-sided tolerance bound is where r is the largest value for with the following 
inequality is true. 
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An upper, one-sided tolerance bound is where s is the largest value for with the following 
inequality is true. 
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Normal-Distribution Tolerance Interval 
The limits discussed in this section are based on the assumption that F is the normal distribution.  

Two-Sided Limits 
In this case, the two-sided tolerance interval is defined by the interval 

T x ks T x ksL U= − = +,  

The construction reduces to the determination of the constant k. Howe (1969) provides the 
following approximation which is ‘nearly’ exact for all values of n greater than one  

k uvw=  

where 

u z
n

= ++1
2

1 1
β  

v n
n
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−
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2 1

1
2
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Note that originally, Howe (1969) used n – 2 in the above definition of w. But Guenther (1977) 
gives the corrected version using n – 3 shown above. 



 Tolerance Intervals  585-3 

One-Sided Bound 
A one-sided tolerance bound (‘bound’ is used instead of ‘limit’ in the one-sided case) is given by 

T x kU s= +  

Here k is selected so that 

( )Pr ,′ = = −−t k nn 1 1δ α  

where represents a noncentral t distribution with f degrees of freedom and noncentrality  ′t f ,δ

δ β= z n . 

Data Structure 
The data are contained in a single variable. 

Procedure Options 
This section describes the options available in this procedure. To find out more about using a 
procedure, turn to the Procedures chapter. 

Following is a list of the procedure’s options. 

Variables Tab 
The options on this panel specify which variables to use.  

Data Variables 

Variables 
Specify a list of one or more variables for which tolerance intervals are to be generated. You can 
double-click the field or single click the button on the right of the field to bring up the Variable 
Selection window. 

Group Variable 
You can specify a grouping variable. When specified, a separate set of reports is generated for 
each unique value of this variable. 

Exponent 
Occasionally, you might want to obtain a statistical report on the square root or log of your 
variable. This option lets you specify an on-the-fly transformation of the variable. The form of 
this transformation is X Y A= , where Y is the original value, A is the selected exponent, and X is 
the resulting value. 

Additive Constant 
Occasionally, you might want to obtain a statistical report on a transformed version of a variable. 
This option lets you specify an on-the-fly transformation of the variable. The form of this 
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transformation is X = Y+B, where Y is the original value, B is the specified constant, and X is the 
value that results. 

Note that if you apply both the Exponent and the Additive Constant, the form of the 
transformation is . ( )X Y B A= +

Frequency Variable 

Frequency Variable 
This optional variable specifies the number of observations (counts) that each row represents. 
When omitted, each row represents a single observation. If your data is the result of a previous 
summarization, you may want certain rows to represent several observations. Note that negative 
values are treated as a zero count and are omitted.  

Population Percentages 

Population Percentages for Tolerances 
Specify a list of percentages for which tolerance intervals are to be calculated. Note that a 
tolerance interval is a pair of numbers between which a specified percentage of the population 
falls. This value is that specified percentage. 

In the list, numbers are separated by blanks or commas. Specify sequences with a colon, putting 
the increment inside parentheses. For example: 5:25(5) means 5 10 15 20 25. 

All values in the list must be between 1 and 99.  

Data Transformation Options 

Exponent 
Occasionally, you might want to obtain a statistical report on the square root or log of your 
variable. This option lets you specify an on-the-fly transformation of the variable. The form of 
this transformation is X Y A= , where Y is the original value, A is the selected exponent, and X is 
the resulting value. 

Additive Constant 
Occasionally, you might want to obtain a statistical report on a transformed version of a variable. 
This option lets you specify an on-the-fly transformation of the variable. The form of this 
transformation is X = Y+B, where Y is the original value, B is the specified constant, and X is the 
value that results. 

Note that if you apply both the Exponent and the Additive Constant, the form of the 
transformation is . ( )X Y B A= +
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Reports Tab 
The options on this panel control the reports and plots displayed.  

Select Reports 

Descriptive Statistics ... Normality Tests 
Indicate whether to display the indicated reports. 

Select Plots 

Histogram and Probability Plot 
Indicate whether to display these plots. 

Report Options 

Alpha Level 
This is the value of alpha for the confidence limits and rejection decisions. Usually, this number 
will range from 0.1 to 0.001. The default value of 0.05 results in 95% tolerance limits. 

Precision 
Specify the precision of numbers in the report. A single-precision number will show seven-place 
accuracy, while a double-precision number will show thirteen-place accuracy. The double-
precision option only works when the Decimals option is set to General. 

Note that the reports were formatted for single precision. If you select double precision, some 
numbers may run into others. Also note that all calculations are performed in double precision 
regardless of which option you select here. This is for reporting purposes only. 

Variable Names 
This option lets you select whether to display only variable names, variable labels, or both. 

Value Labels 
This option applies to the Group Variable. It lets you select whether to display data values, value 
labels, or both. Use this option if you want the output to automatically attach labels to the values 
(like 1=Yes, 2=No, etc.). See the section on specifying Value Labels elsewhere in this manual.  

Report Options – Decimal Places 

Values ... Probabilities Decimals 
Specify the number of digits after the decimal point to display on the output of values of this type. 
Note that this option in no way influences the accuracy with which the calculations are done. 

Enter 'General' to display all digits available. The number of digits displayed by this option is 
controlled by whether the PRECISION option is SINGLE or DOUBLE. 
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Probability Plot Tab 
The options on this panel control the appearance of the probability plot. 

Vertical and Horizontal Axis 

Label  
This is the text of the label. The characters {Y} are replaced by the name of the variable. The 
characters {M} are replaced by the name of the selected probability distribution. Press the button 
on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on each axis. If left 
blank, these values are calculated from the data. 

Tick Label Settings 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the tick labels along each axis. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Probability Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 

Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} are replaced by the name of the variable. The 
characters {M} are replaced by the name of the selected probability distribution. Press the button 
on the right of the field to specify the font of the text. 
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Histogram Tab 
The options on this panel control the appearance of the histogram. 

Vertical and Horizontal Axis 

Label  
This is the text of the label. The characters {Y} are replaced by the name of the variable. The 
characters {M} are replaced by the name of the selected probability distribution. Press the button 
on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on each axis. If left 
blank, these values are calculated from the data. 

Tick Label Settings 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the tick labels along each axis. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Histogram Settings 

Plot Style File 
Designate a histogram style file. This file sets all histogram options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Histogram procedure. 

Number of Bars 
Specify the number of intervals, bins, or bars used in the histogram. 

Titles 

Plot Title 
This is the text of the title. The characters {X} are replaced by the name of the variable. Press the 
button on the right of the field to specify the font of the text. 
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Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 

Example 1 – Generating Tolerance Intervals 
This section presents a detailed example of how to generate tolerance intervals for the Height 
variable in the SAMPLE data base. To run this example, take the following steps (note that step 1 
is not necessary if the SAMPLE dataset is open): 

1 Open the SAMPLE dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file SAMPLE.S0. 
• Click Open. 

2 Open the Tolerance Intervals window. 
• On the menus, select Analysis, then Descriptive Statistics, then Tolerance Intervals. 

The Tolerance Intervals procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3  Specify the options on the Variables tab. 
• On the Tolerance Intervals window, select the Variables tab. (This is the default.) 
• Double-click in the Variables text box. This will bring up the variable selection window. 
• Select Height from the list of variables and then click Ok. 
• Set the Population Percentages to 50 75 80 90 95 99. 

4 Specify the options on the Reports tab. 
• On the Tolerance Intervals window, select the Reports tab. 
• Set the Decimals-Values to 3. 
• Set the Decimals-Means to 3. 
• Set the Decimals-Probabilities to 2. 
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5 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 

The following reports and charts will be displayed in the Output window. 

Descriptive Statistics 
 
   Standard Standard 
 Count Mean Deviation Error Minimum Maxim m Range u
 20 62.100 8.441 1.887 51.000 79.000 28.000 
 

This report was defined and discussed in the Descriptive Statistics procedure chapter. We refer 
you to the Summary Section of that chapter for details. 

Two-Sided Tolerance Intervals 
 
 Percent of Parametric Parametric Nonparametric Nonparametric 
 Population Lower Upper Lower Upper 
 Between Tolerance Tolerance Tolerance Tolerance 
 Limits Limit Limit Limit Limit 
 50.00 54.074 70.126 52.000 73.000 
 75.00 48.411 75.789 51.000 79.000 
 80.00 46.850 77.350   
 90.00 42.527 81.673   
 95.00 38.777 85.423   
 99.00 31.449 92.751 
  

This section gives the parametric and nonparametric two-sided tolerance intervals. 

Percent of Population Between Limits 
This is the percentage of population values that are contained in the tolerance interval. 

Parametric Lower (Upper) Tolerance Limits 
These are the values of the limits of a tolerance interval based on the assumption that the 
population is normally distributed.  

Nonparametric Lower (Upper) Tolerance Limits 
These are the values of the limits of a distribution-free tolerance interval. These intervals make no 
distributional assumption.  
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Lower One-Sided Tolerance Bounds 
 
 Percent of Parametric Nonparametric 
 Population Lower Lower 
 Greater Than Tolerance Tolerance 
 Bound Bound Bound 
 50.00 60.264 56.000 
 75.00 52.254 52.000 
 80.00 50.524 51.000 
 90.00 45.842  
 95.00 41.875  
 99.00 34.285  
  

This section gives the parametric and nonparametric one-sided tolerance bounds. 

Percent of Population Greater Than Bound 
This is the percentage of population values that are above the tolerance bound. 

Parametric Lower Tolerance Bound 
This is the lower parametric (normal distribution) tolerance bound.  

Nonparametric Lower (Upper) Tolerance Limits 
This is the lower nonparametric (distribution-free) tolerance bound. Note that some values are 
missing because of the small sample size in this example. 

Upper One-Sided Tolerance Bounds 
 
 Percent of Parametric Nonparametric 
 Population Upper Upper 
 Less Than Tolerance Tolerance 
 Bound Bound Bound 
 50.00 63.936 65.000 
 75.00 71.946 73.000 
 80.00 73.676 76.000 
 90.00 78.358 79.000 
 95.00 82.325 79.000 
 99.00 89.915 79.000 
   

This section gives the parametric and nonparametric one-sided tolerance bounds. 

Percent of Population Less Than Bound 
This is the percentage of population values that are below the tolerance bound. 

Parametric Lower Tolerance Bound 
This is the upper parametric (normal distribution) tolerance bound.  

Nonparametric Lower (Upper) Tolerance Limits 
This is the upper nonparametric (distribution-free) tolerance bound.  
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Normality Test Section 
 
  Test Prob 10% Critical 5% Critical Decision 
 Test Name Value Level Value Value (5%) 
 Shapiro-Wilk W 0.937 0.21   Can’t reject normality 
 Anderson-Darling 0.427   Can’t reject normality  0.31 
 Kolmogorov-Smirnov 0.148  0.176 0.192 Can’t reject normality 
 D'Agostino Skewness 1.037 .30 1.645 1.960 Can’t reject normality 
 D'Agostino Kurtosis -.7855 .43 1.645 1.960 Can’t reject normality 
 D'Agostino Omnibus 1.6918 .43 4.605 5.991 Can’t reject normality 
 

This report was defined and discussed in the Descriptive Statistics procedure chapter. We refer 
you to the Normality Test Section of that chapter for details.  

Plots Section 
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The plots section displays a histogram and a probability plot to allow you to assess the accuracy 
of the normality assumption. 
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Binormal 

ROC curves, 545-2 
Bioequivalence 

cross-over analysis using t-tests, 
235-5 

Bisquare weights 
linear regression, 300-14 

Bivariate normal distribution 
probablility calculator, 135-2 

Biweight 
Weibull fitting, 550-17 

Biweight estimator of scale, 200-22 
Biweight kernel 

Kaplan-Meier, 555-9 
Weibull fitting, 550-35 

Blackwelder test 
correlated proportions, 520-5 

Bleasdale-Nelder model 
curve fitting, 351-5 
growth curves, 360-3 

Block size 
balanced incomplete block 

designs, 262-3 
fractional factorial designs, 261-2 

Block variable 
fractional factorial designs, 261-1 
response surface designs, 264-2 

Blocking 
two level designs, 260-2 

BMDP exporting, 116-1 
BMT dataset, 555-43 
Bonferroni 

one-way ANOVA, 210-4 
Bonferroni adjustment 

mixed models, 220-14 
Bonferroni C.I.’s 

T2, 405-9, 410-9 
Bootstrap 

linear regression, 300-42 
Bootstrap C.I. method 

linear regression, 300-30 
two proportions, 515-28 

Bootstrap C.I.’s 
multiple regression, 305-31 

Bootstrap confidence coefficients 
linear regression, 300-30 

Bootstrap histograms 
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linear regression, 300-31, 300-44, 
305-42 

multiple regression, 305-75 
Bootstrap percentile type 

linear regression, 300-30 
two proportions, 515-28 

Bootstrap report 
multiple regression, 305-74 

Bootstrap retries 
linear regression, 300-30 
two proportions, 515-28 

Bootstrap sample size 
linear regression, 300-29 
two proportions, 515-28 

Bootstrap sampling method 
linear regression, 300-30 

Bootstrapping 
curve fitting, 351-14 
linear regression, 300-22 
multiple regression, 305-21 
t-test, 205-3 
two-sample t-test, 206-3 

Bootstrapping example 
multiple regression, 305-72, 305-

76 
Box plot 

adjacent values, 152-2 
fences, 152-6 
interquartile range, 152-1 
whiskers, 152-5 

Box plot style file, 152-13 
Box plots, 140-5, 152-1 

multiple comparisons, 152-2 
Box’s M, 214-1 
Box’s M test, 402-1, 402-7 

Hotelling’s T2, 410-2 
repeated measures, 214-22 
T2, 410-10 

BOX320 dataset, 213-6 
BOX402 dataset, 213-12 
Box-Behnken designs, 264-1 
Box-Jenkins 

ARIMA, 471-1 
automatic ARMA, 474-1 

Box-Jenkins analysis, 470-1 
Box-Pierce-Ljung statistic 

automatic ARMA, 474-12 
Box's M test 

MANOVA, 415-5 
BRAIN WEIGHT dataset, 2-2 
Breslow ties 

Cox regression, 565-6 

C 
C.I.method 

multiple regression, 305-41 
Calibration 

linear regression, 300-6, 300-41 

Caliper matching, 123-4 
Caliper radius, 123-5 
Candidate points 

D-optimal designs, 267-14 
Canonical correlation, 400-1 
Canonical variate 

MANOVA, 415-13 
Capability analysis 

Xbar R, 250-11 
Capacities 

Xbar R, 250-30 
Carryover effect 

cross-over analysis using t-tests, 
235-3 

Cascade, 106-5 
Categorical IV’s 

Cox regression, 565-20 
logistic regression, 320-20 
multiple regression, 305-29 
Poisson regression, 325-9 

Categorical variables 
multiple regression, 305-3, 305-

87 
Cauchy distribution 

simulation, 122-5 
Cbar 

logistic regression, 320-15 
C-chart, 251-2 
Cell edit box, 103-10 
Cell reference, 103-10 
Censor variable 

parametric survival regression, 
566-4 

Censored 
Cox regression, 565-17 
Kaplan-Meier, 555-15 
Weibull fitting, 550-11 

Censored regression, 566-1 
Centering 

Cox regression, 565-19 
Central moments 

descriptive statistics, 200-11 
Central-composite designs, 264-1 
Centroid 

double dendrograms, 450-2 
hierarchical clustering, 445-3 

Charts 
pareto, 253-1 
variables, 250-1 

Checklist 
one sample tests, 205-21 
one-way ANOVA, 210-26 
two-sample tests, 206-25 

Chen’s method 
two proportions, 515-20 

Chi 
loglinear models, 530-20 

Chi-square 
cross tabulation, 501-10 
frequency tables, 500-11 
Poisson regression, 325-26 

Chi-square distribution 
probablility calculator, 135-2 

Chi-square test 
cross tabulation, 501-1 
two proportions, 515-6 

Chi-square test example, 16-1 
CHOWLIU73 dataset, 235-9, 235-15 
Circular correlation, 230-12 
Circular data analysis, 230-1 
Circular histogram, 230-17 
Circular histograms, 230-1 
Circular statistics, 230-1 
Circular uniform distribution, 230-3 
CIRCULAR1 dataset, 230-22 
Circularity 

repeated measures, 214-3, 214-23 
Clear, 103-5 
Cluster analysis 

double dendrograms, 450-1 
K-means, 446-1 

Cluster centers 
K-means clustering, 446-1 

Cluster cutoff 
hierarchical clustering, 445-8 

Cluster means 
K-means clustering, 446-8 

Cluster medoids section 
fuzzy clustering, 448-9 
medoid partitioning, 447-14 

Cluster randomization 
clustered binary diagnostic, 538-1 

Cluster variables 
K-means clustering, 446-3 

Clustering 
centroid, 445-7 
complete linkage, 445-7 
flexible strategy, 445-7 
fuzzy, 448-1 
group average, 445-7 
hierarchical, 445-1 
median, 445-7 
medoid, 447-1 
regression, 449-1 
simple average, 445-7 
single linkage, 445-7 
Ward’s minimum variance, 445-7 

Cochran’s Q test 
meta analysis of hazard ratios, 

458-4 
meta-analysis of correlated 

proportions, 457-4 
meta-analysis of means, 455-3 
meta-analysis of proportions, 

456-4 
Cochran’s test 

two proportions, 515-7 
Cochrane-Orcutt procedure, 306-1 
COD 

appraisal ratios, 485-8 
descriptive statistics, 200-20 
hybrid appraisal models, 487-17 
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Code cross-reference, 310-7 
Coefficient alpha 

item analysis, 505-2 
Coefficient of dispersion 

appraisal ratios, 485-8 
descriptive statistics, 200-18 
hybrid appraisal models, 487-17 

Coefficient of variation 
descriptive statistics, 200-18 
linear regression, 300-38 
multiple regression, 305-45 

Coefficients 
regression, 305-47 
stepwise regression, 311-8 

Collate transformation, 119-12 
COLLETT157 dataset, 565-55 
COLLETT266 dataset, 320-73 
COLLETT5 dataset, 555-42 
Collinearity 

MANOVA, 415-5 
Color 

mixer, 180-2 
model, 180-2 
wheel, 180-3 

Color selection window, 180-1 
Column widths, 103-15 
Communality 

factor analysis, 420-3, 420-12, 
420-16 

principal components analysis, 
425-16 

Communality iterations 
factor analysis, 420-8 

Comparables 
sales price, 486-1 

COMPARABLES dataset, 486-10 
Competing risks 

cumulative incidence, 560-1 
Complete linkage 

double dendrograms, 450-2 
hierarchical clustering, 445-3 

Compound symmetry 
repeated measures, 214-3 

CONCENTRATION dataset, 240-21 
Concordance 

Kendall’s coefficient, 211-15 
Condition number 

multiple regression, 305-58 
PC regression, 340-13 
ridge regression, 335-17 

Conditional tests 
two proportions, 515-5 

Confidence band 
linear regression, 300-6, 300-33, 

300-60 
Confidence coefficient 

multiple regression, 305-32 
T2, 410-5 

Confidence interval 
descriptive statistics, 200-13 
multiple regression, 305-14 

Poisson regression, 325-26 
Confidence intervals 

Cox regression, 565-11 
curve fitting, 350-4 
linear regression, 300-6 
T2, 405-9, 410-9 
two proportions, 515-18 

Confidence intervals of odds ratio 
two proportions, 515-23 

Confidence intervals of ratio 
two proportions, 515-21 

Confidence limits, 200-2 
linear regression, 300-33 
Nelson-Aalen hazard, 550-4 

Confounding 
two level designs, 260-2 

Confounding size, 213-3 
Constant distribution 

simulation, 122-6 
Constraint section 

linear programming, 480-5 
Constraints 

linear programming, 480-1 
Contains transformation, 119-17 
Contaminated normal simulation, 

122-21 
Continuity correction 

two proportions, 515-7 
Contour plots, 140-11, 172-1 

response surface regression, 330-
19 

Contrast type 
multiple regression, 305-29 
Poisson regression, 325-9 

Contrast variables 
multiple regression, 305-4 

Control charts 
attribute, 251-1 
formulas, 250-5 
Xbar R, 250-1 

Control limits 
Xbar R, 250-2 

Cook’s D 
linear regression, 300-20, 300-62, 

300-63, 300-65, 300-66 
multiple regression, 305-20, 305-

64 
Cook’s distance 

logistic regression, 320-15 
Cophenetic correlation 

hierarchical clustering, 445-14 
Cophenetic correlation coefficient, 

445-4 
Copy, 103-4 
Copy output, 106-3 
Copying data, 7-2 
COR 

correspondence analysis, 430-14 
Correlation, 300-1 

canonical, 400-1 
confidence limits, 300-12 

cross, 473-1 
linear regression, 300-2, 300-11, 

300-45 
Pearson, 300-45 
Spearman, 300-45 
Spearman rank, 401-1 
Spearman’s rank, 300-12 

Correlation coefficient 
linear regression, 300-9 

Correlation coefficient distribution 
probablility calculator, 135-3 

Correlation matrices 
factor analysis, 420-5 
principal components analysis, 

425-8 
Correlation matrix, 401-1 
Correlation matrix report 

multiple regression, 305-46 
Correlations 

medoid partitioning, 447-10 
partial, 401-3 
principal components analysis, 

425-17 
Correlogram 

autocorrelation, 472-1 
CORRES1 dataset, 430-6, 430-10, 

430-16 
Correspondence analysis, 430-1 

eigenvalues, 430-12 
CorrProb transformation, 119-8 
CorrValue transformation, 119-8 
Cos transformation, 119-17 
Cosh transformation, 119-17 
Cosine transformation, 119-17 
Cost benefit analysis 

ROC curves, 545-22 
Count tables, 500-1 
Count transformation, 119-15 
Covariance 

analysis of, 212-25 
multiple regression, 305-86 

Covariance matrices, 402-1 
Covariance matrix 

repeated measures, 214-3 
Covariance pattern models 

mixed models, 220-5 
Covariates 

GLM, 212-3 
mixed models, 220-9 
response surface regression, 330-

5 
CovRatio 

linear regression, 300-21, 300-63 
multiple regression, 305-20, 305-

64 
Cox model 

Cox regression, 565-1 
Cox proportional hazards regression 

model, 565-1 
Cox regression, 565-1 
Cox test 
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circular data, 230-9 
Cox-Mantel logrank test 

Kaplan-Meier, 555-41 
COXREG dataset, 565-51 
COXSNELL dataset, 123-23 
Cox-Snell residual 

parametric survival regression, 
566-19 

Cox-Snell residuals 
Cox regression, 565-13, 565-39 
nondetects regression, 345-13 

Cp 
all possible regressions, 312-8 
multiple regression, 305-55 
Xbar R, 250-12 

Cp variable plot 
all possible regressions, 312-10 

Cpk 
Xbar R, 250-12, 250-31 

Cramer’s V 
cross tabulation, 501-14 

Creating a database, 2-1 
Creating a new database 

tutorial, 101-2 
Creating data 

simulation, 122-1 
Cronbach’s alpha 

item analysis, 505-2, 505-6 
Cronbachs alpha 

correlation matrix, 401-6 
CROSS dataset, 220-101 
Cross tabulation, 501-1 

summarized data, 16-1 
Cross-correlations, 473-1 
Crossed factors 

design generator, 268-1 
Crossover analysis, 220-1 
Cross-over analysis using t-tests, 

235-1 
Crossover data example 

mixed models, 220-101 
Crosstabs, 501-1 
CsProb transformation, 119-9 
CsValue transformation, 119-9 
CTR 

correspondence analysis, 430-14 
Cubic fit 

curve fitting, 351-2 
Cubic terms 

response surface regression, 330-
7 

Cum transformation, 119-7 
Cumulative hazard 

Cox regression, 565-2 
Cumulative hazard function 

Kaplan-Meier, 555-2 
Weibull fitting, 550-2 

Cumulative incidence analysis, 560-
1 

Cumulative survival 
Cox regression, 565-2 

Curve equivalence 
curve fitting, 351-16 

Curve fitting, 351-1 
introduction, 350-1 

Curve inequality test 
curve fitting, 351-32 

Custom model 
Cox regression, 565-26 
multiple regression, 305-34 

CUSUM chart, 250-4, 250-8 
CUSUM Charts, 250-37 
Cut, 103-4 
Cut output, 106-3 
Cycle-input variable 

decomposition forecasting, 469-5 

D 
D’Agostino kurtosis 

descriptive statistics, 200-24 
D’Agostino kurtosis test 

linear regression, 300-49 
D’Agostino omnibus 

descriptive statistics, 200-25 
D’Agostino omnibus test 

linear regression, 300-49 
D’Agostino skewness 

descriptive statistics, 200-23 
D’Agostino skewness test 

linear regression, 300-49 
DAT exporting, 116-1 
Data 

entering, 2-1 
estimating missing, 118-1 
importing, 12-1 
numeric, 102-1 
printing, 2-7, 103-3, 117-1 
saving, 2-6 
simulation, 15-1 
simulation of, 122-1 
text, 102-1 

Data features, 200-1 
Data imputation, 118-1 
Data matching 

caliper, 123-4 
caliper radius, 123-5 
distance calculation method, 123-

3 
forced match variable, 123-4 
full (variable), 123-3 
greedy, 123-1, 123-2 
optimal, 123-1, 123-2 
propensity score, 123-2 
standardized difference, 123-15 

Data orientation 
bar charts, 141-2 

Data report, 103-6, 117-1 
Data screening 

T2 alpha, 118-3 

Data screening, 118-1 
Data screening, 200-3 
Data simulator, 122-1 
Data stratification, 124-1 
Data transformation, 3-1 
Data type, 102-10 
Data window, 1-4, 7-1 
Database, 102-1 

clearing, 2-9 
creating, 2-1, 101-2 
Excel compatible, 102-1 
exporting, 115-1, 116-1 
introduction, 101-1 
limits, 102-1 
loading, 2-1, 2-10, 7-1 
opening, 101-3 
printing, 2-7 
S0, 102-1 
s0 and s1 files, 2-6 
S0-type, 2-9 
S0Z (zipped), 102-1 
S0Z-type, 2-9 
saving, 101-2 
size, 102-1 
sorting, 103-6 
subsets, 14-1 

Database/spreadsheet comparison, 
102-4 

Databases 
merging two, 104-1 

Dataset 
2BY2, 320-62 
ANCOVA, 212-25, 305-86 
ARSENIC, 240-16 
ASCII, 12-1 
ASSESS, 487-11 
AUC, 390-2, 390-6 
AUC1, 390-2 
BBALL, 445-5, 445-12, 446-2, 

446-6, 447-6, 447-12 
BEAN, 220-79, 220-82 
BETA, 551-2, 551-11 
BINCLUST, 538-3, 538-7 
BMT, 555-43 
BOX320, 213-6 
BOX402, 213-12 
BRAIN WEIGHT, 2-2 
CHOWLIU73, 235-9, 235-15 
CIRCULAR1, 230-22 
COLLETT157, 565-55 
COLLETT266, 320-73 
COLLETT5, 555-42 
COMPARABLES, 486-10 
CONCENTRATION, 240-21 
CORRES1, 430-6, 430-10, 430-

16 
COXREG, 565-51 
COXSNELL, 123-23 
CROSS, 220-101 
DCP, 345-2, 345-9 
DIOXIN, 240-2, 240-11 

 



Index-6 

DOPT_MIXED, 267-22 
DOPT3, 267-20 
DRUGSTUDY, 501-19 
DS476, 315-2, 315-9, 385-2, 385-

9 
EXAMS, 450-12 
EXERCISE, 214-6, 214-16 
FANFAILURE, 550-49 
FISH, 220-90 
FISHER, 143-14, 144-15, 150-8, 

151-13, 152-12, 153-8, 154-8, 
170-2, 170-9, 173-7, 402-2, 
402-5, 440-4, 440-10, 440-20, 
440-22 

FNREG1, 360-15, 380-7 
FNREG2, 365-11 
FNREG3, 163-4, 370-6, 375-8 
FNREG4, 371-6, 376-8 
FNREG5, 351-30 
FRUIT, 141-1, 141-17 
FUZZY, 448-3, 448-8 
HAIR, 220-103 
HEART, 212-23 
HOUSING, 306-4, 306-10 
INTEL, 465-7, 466-9, 471-7, 

473-5 
IQ, 305-27, 305-43, 305-72, 305-

76, 305-79 
ITEM, 505-2, 505-5, 506-2, 506-

6 
KLEIN6, 555-45 
KOCH36, 325-7, 325-21 
LACHIN91, 320-71 
LATINSQR, 212-22 
LEAD, 240-19 
LEE91, 570-4, 570-15 
LEUKEMIA, 320-18, 320-34, 

320-57 
LINREG1, 300-24, 300-37 
LOGLIN1, 530-7, 530-11 
LP, 480-2, 480-4 
LUNGCANCER, 565-15, 565-

31, 565-48 
MAMMALS, 3-1, 4-1, 10-1 
MAMMALS1, 5-1, 6-1 
MANOVA1, 410-3, 410-6, 415-

5, 415-10 
MARUBINI, 560-3, 560-9 
MDS2, 435-6, 435-10 
MDS2, 435-15 
METACPROP, 457-6, 457-14 
METAHR, 458-6, 458-12 
MLCO2, 470-11 
MOTORS, 566-3, 566-11 
NC CRIMINAL, 320-64, 320-68 
NONDETECTS, 240-4 
ODOR, 330-3, 330-11 
PAIN, 220-51 
PCA2, 420-5, 420-11, 425-9, 

425-15 
PCA2, 118-4 

PET, 538-11 
PIE, 142-6 
PLANT, 212-27 
POISREG, 325-37 
POLITIC, 13-1, 14-1 
PREPOST, 305-87 
PROPENSITY, 123-5, 123-12, 

124-4 
QATEST, 250-14, 250-27, 250-

33, 250-35, 250-37, 251-3, 
251-11, 253-2, 253-7, 253-9 

RCBD, 220-94 
REACTION, 214-29 
REACTION, 214-6 
READOUT105, 550-47 
REGCLUS, 449-2, 449-5 
RESALE, 117-4, 151-14, 155-1, 

155-7, 201-1, 201-11, 201-12, 
201-14, 201-15, 201-17, 201-
19, 201-21, 305-81, 500-1, 
500-9, 500-10, 500-12, 500-
14, 501-1, 501-8, 501-11, 
501-17 

RIDGEREG, 335-7, 335-15, 340-
3, 340-11 

RMSF, 545-3 
RNDBLOCK, 211-4, 211-11, 

212-3, 212-12 
ROC, 545-19 
RRSTUDY, 254-1, 254-10 
RRSTUDY1, 254-24 
SALES, 467-9, 469-9 
SALESRATIO, 485-1, 485-6, 

486-4 
SAMPLE, 101-3, 161-20, 162-5, 

171-9, 172-7, 200-4, 200-10, 
205-12, 206-12, 210-16, 310-
3, 310-6, 311-3, 311-6, 312-2, 
312-6, 400-8, 401-2, 401-5, 
585-8 

SERIESA, 470-8, 474-7 
SMOKING, 525-2, 525-5 
SUNSPOT, 468-9, 472-7 
SURVIVAL, 555-14, 555-37, 

575-1, 575-5 
SUTTON 22, 456-6, 456-14 
SUTTON30, 455-6, 455-13 
T2, 405-3, 405-5, 405-10 
TIMECALC, 580-3 
TUTOR, 220-98 
TWOSAMPLE, 220-69, 220-72 
TWOSAMPLE2, 220-70, 220-73 
TWOSAMPLECOV, 220-76 
WEIBULL, 550-12, 550-27, 550-

44, 552-3, 552-12, 555-27 
WEIBULL2, 144-17 
WEIGHTLOSS, 220-85 
WESTGARD, 252-9 
ZHOU 175, 545-33 
ZINC, 345-15 

Datasheet, 101-1 

Datasheets, 102-1 
Date formats, 102-8 
Date function transformations, 119-6 
Day format, 102-8 
Day transformation, 119-6 
DB, 115-1 
Dbase importing, 115-1 
DBF exporting, 116-1 
DBF importing, 115-1 
DCP dataset, 345-2, 345-9 
Death density 

life-table analysis, 570-3 
Decision variables 

linear programming, 480-1 
Decomposition forecasting, 469-1 
Default template, 105-1 
Defects/defectives variable, 251-4 
D-efficiency 

D-optimal designs, 267-12 
Degrees of freedom 

factor analysis, 420-14 
two-sample t-test, 206-13 

Delta 
cluster goodness-of-fit, 445-4 
loglinear models, 530-8 
Mantel-Haenszel test, 525-4 

Dendrogram 
hierarchical clustering, 445-15 

Dendrograms, 445-1 
double, 450-1, 450-3 

Density trace 
histograms, 143-1 
histograms – comparative, 151-2 
violin plot, 154-1 

Dependent variable 
linear regression, 300-25 
multiple regression, 305-1 
Poisson regression, 325-8 

Depth 
3D scatter plot, 170-8 
3D surface plot, 171-7 
bar charts, 141-13 

Derivatives 
Weibull fitting, 550-16 

Descriptive statistics, 4-1, 200-1 
additive constant, 200-5 
Anderson-Darling test, 200-22 
central moments, 200-11 
COD, 200-20 
coefficient of dispersion, 200-18 
coefficient of variation, 200-18 
confidence interval, 200-13 
D’Agostino kurtosis, 200-24 
D’Agostino omnibus, 200-25 
D’Agostino skewness, 200-23 
dispersion, 200-16 
EDF, 200-7 
Fisher's g1, 200-18 
Fisher's g2, 200-18 
geometric mean, 200-14 
harmonic mean, 200-14 
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Histogram, 200-25 
interquartile range, 200-17 
IQR, 200-17 
Kolmogorov-Smirnov, 200-23 
kurtosis, 200-18 
Lilliefors' critical values, 200-23 
MAD, 200-20 
Martinez-Iglewicz, 200-22 
mean, 200-13 
mean absolute deviation, 200-20 
mean deviation, 200-20 
mean-deviation, 200-20 
median, 200-14 
mode, 200-15 
moment, 200-11 
Normal probability plot, 200-26 
normality, 200-21 
normality tests, 200-21 
percentile type, 200-6 
Probability plot, 200-26 
quartiles, 200-21 
range, 200-17 
Shapiro-Wilk test, 200-22 
skewness, 200-17 
Skewness test, 200-24 
standard deviation, 200-16 
standard error, 200-13 
Stem-leaf plot, 200-27 
trim-mean, 200-19 
trimmed, 200-19 
trim-std dev, 200-19 
unbiased Std Dev, 200-17 
variance, 200-15 

Descriptive statistics report 
multiple regression, 305-45 

Descriptive tables, 201-1 
Design generator, 268-1 
Designs 

analysis of, 213-1 
Box-Behnken, 264-1 
central-composite, 264-1 
design generator, 268-1 
factorial, 260-3 
fractional factorial, 261-1 
Plackett-Burman, 265-1 
response surface, 264-1 
screening, 265-1 
Taguchi, 266-1 
two-level factorial, 260-1, 268-1 

Determinant 
D-optimal designs, 267-13 

Determinant analysis 
D-optimal designs, 267-11 

Deviance 
Cox regression, 565-10 
logistic regression, 320-8 
Poisson regression, 325-4, 325-5 

Deviance residuals 
Cox regression, 565-14, 565-40 
logistic regression, 320-13 
Poisson regression, 325-31 

Deviance test 
Poisson regression, 325-3 

DFBETA 
logistic regression, 320-14 

DFBETAS 
linear regression, 300-21, 300-63 
multiple regression, 305-20, 305-

65 
DFCHI2 

logistic regression, 320-15 
DFDEV 

logistic regression, 320-15 
Dffits 

linear regression, 300-63 
DFFITS 

linear regression, 300-20 
multiple regression, 305-19, 305-

64 
Diagnostic test 

1-sample binary diagnostic test, 
535-1 

2-sample binary diagnostic, 537-
1 

paired binary diagnostic, 536-1 
DIF exporting, 116-1 
Differencing 

ARIMA, 471-2 
autocorrelation, 472-2 
Box Jenkins, 470-7 
spectral analysis, 468-4 

Differential evolution 
hybrid appraisal models, 487-2 
Weibull fitting, 550-11 

Digamma 
beta distribution fitting, 551-12 

Dimensions 
multidimensional scaling, 435-4 

DIOXIN dataset, 240-2, 240-11 
Directional test 

meta analysis of hazard ratios, 
458-3 

meta-analysis of correlated 
proportions, 457-4 

meta-analysis of proportions, 
456-4 

Disabling the filter, 121-4 
Discriminant analysis, 440-1 

logistic regression, 320-1 
Discrimination parameter 

item response analysis, 506-8 
Dispersion 

descriptive statistics, 200-16 
Dissimilarities 

medoid partitioning, 447-1 
multidimensional scaling, 435-4 

Distance 
multidimensional scaling, 435-2 

Distance calculation 
medoid partitioning, 447-2 

Distance calculation method 
data matching, 123-3 

Distance method 
fuzzy clustering, 448-5 
hierarchical clustering, 445-8 

Distances 
medoid partitioning, 447-10 

Distinct categories 
R & R, 254-3, 254-19 

Distribution 
circular uniform, 230-3 
Von Mises, 230-5 

Distribution fitting 
Weibull fitting, 550-1 

Distribution statistics, 200-1 
Distributions 

combining, 122-13 
exponential, 550-1 
extreme value, 550-1 
logistic, 550-1 
log-logistic, 550-1 
lognormal, 550-1 
mixing, 122-13 
simulation, 122-1 
Weibull, 550-1 

Dmn-criterion value, 206-23 
DOPT_MIXED dataset, 267-22 
DOPT3 dataset, 267-20 
D-optimal designs, 267-1 
Dose 

probit analysis, 575-1 
Dose-response plot 

probit analysis, 575-9 
Dot plots, 140-4, 150-1 

jittering, 150-1 
Double dendrograms, 450-1 
Double exponential smoothing, 466-

1 
Double-precision accuracy, 101-2, 

102-4 
DRUGSTUDY dataset, 501-19 
DS476 dataset, 315-2, 315-9, 385-2, 

385-9 
Dummy variables 

multiple regression, 305-3 
Duncan’s test 

one-way ANOVA, 210-5 
Dunn’s partition coefficient 

fuzzy clustering, 448-2 
Dunn’s test 

one-way ANOVA, 210-7 
Dunnett’s test 

one-way ANOVA, 210-6 
Duplicates 

D-optimal designs, 267-5 
Durbin-Watson 

linear regression, 300-17 
multiple regression, 305-17 

Durbin-Watson test 
multiple regression, 305-53 
multiple regression with serial 

correlation, 306-3 
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E 
e - using 

Cox regression, 565-4 
E notation, 102-4 
EDF 

descriptive statistics, 200-7 
EDF plot, 240-15 
Edit 

clear, 103-5 
copy, 103-4 
cut, 103-4 
delete, 103-5 
fill, 103-6 
find, 103-6 
insert, 103-5 
paste, 103-4 
undo, 103-4 

Efron ties 
Cox regression, 565-7 

Eigenvalue 
MANOVA, 415-14 
PC regression, 340-13 

Eigenvalues, 425-17 
correspondence analysis, 430-12 
factor analysis, 420-14 
multidimensional scaling, 435-11 
multiple regression, 305-58, 305-

59 
principal components analysis, 

425-12 
ridge regression, 335-17 

Eigenvector 
multiple regression, 305-58, 305-

60 
Eigenvectors 

factor analysis, 420-15 
Elapsed time 

time calculator, 580-1 
Elevation 

3D scatter plot, 170-7 
3D surface plot, 171-6 
bar charts, 141-13 

Ellipse (probability) 
linear regression, 300-8 

Else 
if-then transformation, 120-4 

EM algorithm 
principal components analysis, 

425-5 
Empirical 

ROC curves, 545-2 
Empty cells, 102-5 
Entry date 

time calculator, 580-2 
Entry time 

Cox regression, 565-17 
Kaplan-Meier, 555-15 

Epanechnikov 
Weibull fitting, 550-17 

Epanechnikov kernel 
Kaplan-Meier, 555-8 
Weibull fitting, 550-34 

Epsilon 
Geisser-Greenhouse, 214-4 
repeated measures, 214-20 

Equal slopes 
multiple regression, 305-86 

Equality of covariance matrices, 
402-1 

Equivalence 
2-sample binary diagnostic, 537-

9 
clustered binary diagnostic, 538-8 
cross-over analysis using t-tests, 

235-1 
paired binary diagnostic, 536-7 
ROC curves, 545-30 

Equivalence test 
correlated proportions, 520-8 
two proportions, 515-17 
two-sample, 207-1 

Equivalence tests 
two proportions, 515-38 

Error-bar charts, 140-6, 155-1 
Euclidean distance 

medoid partitioning, 447-2 
Event date 

time calculator, 580-2 
EWMA chart, 250-4, 250-35 
EWMA chart limits, 250-8 
EWMA parameter, 250-19 
Exact test 

two proportions, 515-12 
Exact tests 

two proportions, 515-4, 515-36 
EXAMS dataset, 450-12 
Excel exporting, 116-1 
EXERCISE dataset, 214-6, 214-16 
Exiting NCSS, 101-4 
Exp transformation, 119-7 
Experiment (Run) 

two level designs, 260-2 
Experimental design, 260-1 

two level designs, 260-2 
Experimental error 

two level designs, 260-2 
Experimentwise error rate, 210-3 
Exponential 

curve fitting, 351-10 
using, 565-4 

Exponential distribution 
simulation, 122-6 
Weibull fitting, 550-8 

Exponential model 
curve fitting, 351-6 
growth curves, 360-4 

Exponential regression, 566-1 
Exponential smoothing 

double, 466-1 
horizontal, 465-1 

simple, 465-1 
trend, 466-1 
trend and seasonal, 467-1 

ExpoProb transformation, 119-9 
Export, 103-3 
Export limitations, 116-1 
Exporting data, 116-1 
Exposure 

Poisson regression, 325-1 
Exposure variable 

Poisson regression, 325-12 
ExpoValue transformation, 119-9 
Extract transformation, 119-18 
Extreme value distribution 

Weibull fitting, 550-8 

F 
F distribution 

probablility calculator, 135-3 
simulation, 122-7 

Factor analysis, 420-1 
Factor loadings 

factor analysis, 420-16 
principal components analysis, 

425-2 
Factor rotation 

factor analysis, 420-7 
Factor scaling 

D-optimal designs, 267-2 
Factorial designs 

two level designs, 260-3 
two-level designs, 260-1 

Factors 
how many, 420-3, 425-6 

Failed 
parametric survival regression, 

566-2 
Weibull fitting, 550-11 

Failure 
Cox regression, 565-16 
Kaplan-Meier, 555-15 

Failure distribution 
Weibull fitting, 550-37 

Familywise error rate, 210-3 
FANFAILURE dataset, 550-49 
Farazdaghi and Harris model 

curve fitting, 351-5 
growth curves, 360-3 

Farrington-Manning test 
two proportions, 515-10 

Fast Fourier transform 
spectral analysis, 468-3 

Fast initial restart, 250-9 
Feedback model, 487-1 
Fences 

box plot, 152-6 
File function transformation, 119-15 
Files 
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Access, 115-1 
ASCII, 115-3 
BMDP, 115-1 
creating text, 115-1 
Dbase, 115-1 
Excel, 115-1 
NCSS 5.0, 115-1 
Paradox, 115-1 
SAS, 115-1 
SPSS, 115-1 
text, 115-1 

Fill, 103-6 
Fill functions transformations, 119-6 
Filter, 121-1 

disabling, 10-4 
specifying, 103-7 

Filter statements, 103-7 
Filters, 10-1 
Final Tableau section 

linear programming, 480-6 
Find, 103-6 
Find a procedure, 107-1 
Find in output, 106-4 
Find next in output, 106-4 
FIR, 250-9 
FISH dataset, 220-90 
FISHER dataset, 143-14, 144-15, 

150-8, 151-13, 152-12, 153-8, 
154-8, 170-2, 170-9, 173-7, 402-
2, 402-5, 440-4, 440-10, 440-20, 
440-22 

Fisher information matrix 
beta distribution fitting, 551-14 
gamma distribution fitting, 552-

15 
Weibull fitting, 550-32 

Fisher’s exact test, 501-1, 501-13 
cross tabulation, 501-17 

Fisher’s Z transformation 
linear regression, 300-11 

Fisher's exact test 
cross tabulation, 501-11 

Fisher's g1 
descriptive statistics, 200-18 

Fisher's g2 
descriptive statistics, 200-18 

Fisher's LSD 
one-way ANOVA, 210-6 

Fixed effects 
mixed models, 220-9 

Fixed effects model 
meta-analysis of correlated 

proportions, 457-5 
meta-analysis of hazard ratios, 

458-4 
meta-analysis of means, 455-4 
meta-analysis of proportions, 

456-5 
Fixed effects models 

mixed models, 220-4 
Fixed factor 

ANOVA balanced, 211-5 
GLM, 212-4 
repeated measures, 214-8 

Fixed sigma 
Xbar R, 250-19 

Fixed Xbar 
Xbar R, 250-18 

Fleiss Confidence intervals 
two proportions, 515-24 

Fleming-Harrington tests 
Kaplan-Meier, 555-12 

Flexible strategy 
double dendrograms, 450-3 
hierarchical clustering, 445-4 

Flipping constant, 240-2 
FNREG1 dataset, 360-15, 380-7 
FNREG2 dataset, 365-11 
FNREG3 dataset, 163-4, 370-6, 375-

8 
FNREG4 dataset, 371-6, 376-8 
FNREG5 dataset, 351-30 
Follow-up 

life-table analysis, 570-2 
Forced match variable, 123-4 
Forced points 

D-optimal designs, 267-5 
Forced X’s 

variable selection, 310-4 
Forecast 

ARIMA, 471-11 
automatic ARMA, 474-10 
decomposition forecasting, 469-

10 
exponential smoothing, 465-8, 

466-12, 467-10 
Forecasts 

multiple regression with serial 
correlation, 306-3 

Forest plot 
meta analysis of hazard ratios, 

458-17 
meta-analysis of correlated 

proportions, 457-20 
meta-analysis of means, 455-17 
meta-analysis of proportions, 

456-20 
Format, 102-6 
Forward selection 

Cox regression, 565-23 
logistic regression, 320-17 
Poisson regression, 325-6 

Forward selection with switching 
logistic regression, 320-18 
multiple regression, 305-24 
Poisson regression, 325-7 

Forward variable selection 
multiple regression, 305-23 

Fourier plot 
spectral analysis, 468-10 

Fourier series 
spectral analysis, 468-2 

Fprob transformation, 119-9 
Fraction transformation, 119-7 
Fractional-factorial designs, 261-1 
F-ratio 

linear regression, 300-47 
Freeman-Tukey standardized 

residual 
loglinear models, 530-20 

Frequency 
spectral analysis, 468-1 

Frequency polygon 
histograms, 143-13 

Frequency tables, 500-1 
Frequency variable 

linear regression, 300-25 
Poisson regression, 325-8 

Friedman’s Q statistic, 211-15 
Friedman’s rank test, 211-3 
FRUIT dataset, 141-1, 141-17 
F-test 

multiple regression, 305-50 
FT-SR 

loglinear models, 530-20 
Full matching, 123-3 
Function plots, 160-1 
Functions 

nonlinear regression, 315-4 
Fuzz factor 

filter, 121-2 
in filter comparisons, 103-8 

Fuzzifier 
fuzzy clustering, 448-5 

Fuzzy clustering, 448-1 
FUZZY dataset, 448-3, 448-8 
Fvalue transformation, 119-9 

G 
G statistic test 

Poisson regression, 325-3 
Gamma 

hierarchical clustering, 445-8 
Gamma distribution 

probablility calculator, 135-4 
simulation, 122-7 

Gamma distribution fitting, 552-1 
GammaProb transformation, 119-9 
GammaValue transformation, 119-9 
Gap between bars 

bar charts, 141-14 
Gap between sets of bars 

bar charts, 141-15 
Gart-Nam test 

two proportions, 515-11 
Gehan test 

Kaplan-Meier, 555-12 
nondetects analysis, 240-3 

Geisser-Greenhouse adjustment, 
214-1, 214-5 

 



Index-10 

Geisser-Greenhouse epsilon, 214-4, 
214-20 

General linear models, 212-1 
Generating data, 122-1 
Generations 

hybrid appraisal models, 487-8 
Geometric mean 

descriptive statistics, 200-14 
Gleason-Staelin redundancy measure 

principal components analysis, 
425-17 

GLM 
checklist, 212-18 

Gompertz model 
curve fitting, 351-7 
growth curves, 360-5 

Goodness of fit 
loglinear models, 530-4 
Poisson regression, 325-3 

Goodness-of-fit 
hierarchical clustering, 445-4 
K-means clustering, 446-2 
multidimensional scaling, 435-3 
ratio of polynomials, 370-2 

Goto in output, 106-4 
Graeco-Latin square designs, 263-1 
Greedy matching, 123-1, 123-2 
Greenwood’s formula 

Kaplan-Meier, 555-3, 555-29, 
555-33 

Weibull fitting, 550-3 
Grid / tick settings window, 185-1 
Grid lines, 185-1 
Grid plot style file, 173-8 
Grid plots, 140-11, 173-1 

response surface regression, 330-
19 

Grid range 
hybrid appraisal models, 487-9 

Group average 
double dendrograms, 450-2 
hierarchical clustering, 445-4 

Group variables 
logistic regression, 320-19 

Growth curves, 360-1 

H 
HAIR dataset, 220-103 
Harmonic mean 

descriptive statistics, 200-14 
Hat diagonal 

linear regression, 300-19, 300-62 
multiple regression, 305-18, 305-

64 
Hat matrix 

linear regression, 300-18 
logistic regression, 320-14 
multiple regression, 305-18 

Poisson regression, 325-34 
Hat values 

Poisson regression, 325-5 
Hazard 

baseline, 565-8 
cumulative, 565-3 
Nelson-Aalen, 555-4 

Hazard function 
beta distribution fitting, 551-2 
Cox regression, 565-2 
gamma distribution fitting, 552-2 

Hazard function plot 
Kaplan-Meier, 555-36 

Hazard rate 
Kaplan-Meier, 555-2 
life-table analysis, 570-3 
Weibull fitting, 550-2, 550-36 

Hazard rate plot 
Kaplan-Meier, 555-36 

Hazard ratio 
confidence interval, 555-40 
Kaplan-Meier, 555-40 

Hazard ratio test 
Kaplan-Meier, 555-41 

Hazard ratios 
meta analysis, 458-1 

Hazard-baseline 
Cox regression, 565-38 

HEART dataset, 212-23 
Heat map colors, 187-5 
Heat map settings window, 187-1 
Help system, 1-10, 100-1 
Heterogeneity test 

meta-analysis of proportions, 
456-4 

Heteroscedasticity 
linear regression, 300-3 

Hierarchical cluster analysis, 450-1 
dendrograms, 450-3 

Hierarchical clustering, 445-1 
Hierarchical models 

Cox regression, 565-23 
loglinear models, 530-3 
multiple regression, 305-32 
response surface regression, 330-

1 
Hierarchical-classification designs, 

212-27 
Histogram 

bootstrap, 300-31, 305-42 
definition, 140-2 
density trace, 143-1 
descriptive statistics, 200-25 
linear regression, 300-34 
multiple regression, 305-67 
t-test, 205-20 
Xbar R, 250-32 

Histogram style file, 143-16 
Histograms, 140-2, 143-1 
Histograms - comparative, 140-4, 

151-1 

Histograms – comparative 
density trace, 151-2 

Holliday model 
curve fitting, 351-5 
growth curves, 360-4 

Holt’s linear trend, 466-1 
Holt-Winters forecasting 

exponential smoothing, 467-1 
Hotelling’s one sample T2, 405-1 
Hotelling’s T2, 410-1 

1-Sample, 405-1 
Hotelling’s T2 distribution 

probablility calculator, 135-4 
Hotelling’s T2 value, 410-7 
Hotelling’s two-sample T2, 410-1 
Hour format, 102-8 
HOUSING dataset, 306-4, 306-10 
Hsu’s test 

one-way ANOVA, 210-6 
Huber’s method 

multiple regression, 305-26 
Huynh Feldt epsilon, 214-20 
Huynh-Feldt adjustment, 214-1 
Hybrid appraisal models, 487-1 
Hybrid model, 487-1 
HYP(z) 

piecewise polynomial models, 
365-6 

Hypergeometric distribution 
probablility calculator, 135-4 

HypergeoProb transformation, 119-9 
Hypothesis tests 

linear regression, 300-6 
multiple regression, 305-13 

I 
Identicalness 

curve fitting, 350-6 
IEEE format, 102-4 
If-then transformations, 120-1 
Import limitations, 115-1 
Importing, 103-2 
Importing data, 12-1, 115-1 
Imputation, 118-1 

principal components analysis, 
425-4 

Imputing data values, 118-1 
Incidence 

Poisson regression, 325-1 
Incidence rate 

Poisson regression, 325-34 
Inclusion points 

D-optimal designs, 267-6 
Incomplete beta function ratio 

beta distribution fitting, 551-2 
Independence tests 

cross tabulation, 501-1 
Independent variable 
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linear regression, 300-25 
Independent variables 

logistic regression, 320-20 
multiple regression, 305-1 
multiple regression, 305-28 
Poisson regression, 325-8 

Indicator variables 
creating, 119-19 
multiple regression, 305-3 

Individuals 
hybrid appraisal models, 487-8 

Individuals chart, 250-4 
Xbar R, 250-33 

Inertia 
correspondence analysis, 430-13 

Influence 
multiple regression, 305-17 

Influence  report 
linear regression, 300-66 

Influence detection 
linear regression, 300-65 

Information matrix 
Cox regression, 565-7 

Inheritance 
hybrid appraisal models, 487-9 
Weibull fitting, 550-15 

Initial communality 
factor analysis, 420-3 

Initial Tableau section 
linear programming, 480-4 

Initial values 
backcasting, 465-2, 466-3, 467-3 

Insert, 103-5 
Installation, 1-1, 100-1 

folders, 1-1 
Int transformation, 119-7 
INTEL dataset, 465-7, 466-9, 471-7, 

473-5 
Interaction 

two level designs, 260-3 
Interactions 

multiple regression, 305-4 
Intercept 

linear regression, 300-25, 300-39 
multiple regression, 305-34 
Poisson regression, 325-15 

Interquartile range 
box plot, 152-1 
descriptive statistics, 200-17 

Interval censored 
parametric survival regression, 

566-3 
Weibull fitting, 550-11 

Interval data 
Cox regression, 565-17 

Interval failure 
Kaplan-Meier, 555-15 

Interval variables 
fuzzy clustering, 448-4 
hierarchical clustering, 445-6 
medoid partitioning, 447-1 

Intervals 
tolerance, 585-1 

Inverse prediction 
linear regression, 300-6, 300-41, 

300-67, 300-68 
IQ dataset, 305-27, 305-43, 305-72, 

305-76, 305-79 
IQR 

descriptive statistics, 200-17 
Isolines, 140-11 

contour plot, 172-1 
Item analysis, 505-1 
ITEM dataset, 505-2, 505-5, 506-2, 

506-6 
Item response analysis, 506-1 

J 
Jittering 

dot plots, 150-1 
Join transformation, 119-18 
Julian date transformation, 119-6 

K 
K analysis 

ridge regression, 335-22 
K values 

ridge regression, 335-8 
Kaplan-Meier 

Weibull fitting, 550-1 
Kaplan-Meier estimates, 555-1 
Kaplan-Meier product limit 

estimator 
Weibull fitting, 550-3 

Kaplan-Meier product-limit, 555-32 
beta distribution fitting, 551-14 
gamma distribution fitting, 552-

16 
nondetects analysis, 240-14 
Weibull fitting, 550-33 

Kaplan-Meier product-limit 
estimator 
beta distribution fitting, 551-2 

Kappa reliability test 
cross tabulation, 501-15 

Kaufman and Rousseeuw 
medoid partitioning, 447-4 

Kendall’s coefficient 
concordance, 211-15 

Kendall's tau-B 
cross tabulation, 501-15 

Kendall's tau-C 
cross tabulation, 501-15 

Kenward and Roger method 
mixed models, 220-28 

Kernel-smoothed estimators 

Kaplan-Meier, 555-9 
Weibull fitting, 550-35 

Keyboard 
commands, 103-11 

KLEIN6 dataset, 555-45 
K-means cluster analysis, 446-1 
KOCH36 dataset, 325-7, 325-21 
Kolmogorov-Smirnov 

descriptive statistics, 200-23 
Kolmogorov-Smirnov test 

two-sample, 206-1, 206-23 
Kruskall-Wallis test statistic, 210-21 
Kruskal-Wallis test, 210-1 
Kruskal-Wallis Z test 

one-way ANOVA, 210-7 
Kurtosis, 200-2 

descriptive statistics, 200-18 
t-test, 205-15 

L 
L’Abbe plot 

meta-analysis of correlated 
proportions, 457-22 

meta-analysis of means, 455-18 
meta-analysis of proportions, 

456-22 
Labeling values, 102-10 
Labeling variables, 2-4 
Labels 

values, 13-1 
LACHIN91 dataset, 320-71 
Lack of fit 

linear regression, 300-16 
Lack-of-fit test 

response surface regression, 330-
1 

Lagk transformation, 119-16 
Lambda 

canonical correlation, 400-10 
discriminant analysis, 440-12 
loglinear models, 530-18 

Lambda A 
cross tabulation, 501-14 

Lambda B 
cross tabulation, 501-15 

Latin square designs, 263-1 
LATINSQR dataset, 212-22 
Latin-square 

GLM, 212-21 
Lawley-Hotelling trace 

MANOVA, 415-3 
Lcase transformation, 119-18 
LEAD dataset, 240-19 
Least squares 

linear regression, 300-5 
multiple regression, 305-13 

Least squares trend, 466-1 
Ledk transformation, 119-16 
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LEE91 database, 570-15 
LEE91 dataset, 570-4 
Left censored 

parametric survival regression, 
566-3 

Weibull fitting, 550-11 
Left transformation, 119-18 
Length transformation, 119-18 
LEUKEMIA dataset, 320-18, 320-

34, 320-57 
Levenberg-Marquardt algorithm, 

385-1 
Levene test 

linear regression, 300-27 
modified, 206-20 
modified (multiple-groups), 210-

18 
Levene test (modified) 

linear regression, 300-50 
Levey-Jennings control charts, 252-1 
Life-table analysis, 570-1 
Like. ratio chi-square 

loglinear models, 530-13 
Likelihood 

Cox regression, 565-5 
Likelihood ratio 

1-sample binary diagnostic test, 
535-3 

logistic regression, 320-8 
ROC curves, 545-24 

Likelihood ratio test 
Cox regresion, 565-10 

Likelihood ratio test of difference 
two proportions, 515-8 

Likelihood-ratio statistic 
loglinear models, 530-4 

Likert-scale 
simulation, 122-8, 122-22 

Lilliefors' critical values 
descriptive statistics, 200-23 

Limitations 
exporting, 116-1 

Line charts, 140-1, 141-1 
Line granularity 

linear regression, 300-33 
Line settings window, 183-1 
Linear discriminant functions 

discriminant analysis, 440-2 
Linear model, 212-1 
Linear programming, 480-1 
Linear regression, 300-1 

assumptions, 300-3 
Linearity 

MANOVA, 415-5 
multiple regression, 305-6 

Linear-linear fit 
curve fitting, 351-11 

Linear-logistic model, 320-1 
Linkage type 

hierarchical clustering, 445-7 
LINREG1 dataset, 300-24, 300-37 

Ljung statistic 
automatic ARMA, 474-12 

LLM, 530-1 
Ln(X) transformation, 119-7 
Loading a database, 2-1, 2-10, 7-1 
Loess 

robust, 300-14 
LOESS 

linear regression, 300-13 
LOESS %N 

linear regression, 300-33 
LOESS curve 

linear regression, 300-33 
LOESS order 

linear regression, 300-33 
LOESS robust 

linear regression, 300-34 
Loess smooth 

scatter plot, 161-14 
Log document, 106-1 
Log file 

tutorial, 101-4 
Log likelihood 

Poisson regression, 325-23 
Weibull fitting, 550-30 

Log odds ratio transformation 
logistic regression, 320-2 

Log of output, 9-6 
Log transformation, 119-7 
Logarithmic fit 

curve fitting, 351-8 
LogGamma transformation, 119-9 
Logistic distribution 

Weibull fitting, 550-10 
Logistic item characteristic curve 

item response analysis, 506-1 
Logistic model 

curve fitting, 351-6 
growth curves, 360-5 

Logistic regression, 320-1 
parametric survival regression, 

566-1 
Logit transformation, 119-7 

logistic regression, 320-1 
LOGLIN1 dataset, 530-7, 530-11 
Loglinear models, 530-1 
Log-logistic distribution 

Weibull fitting, 550-10 
Log-logistic regression, 566-1 
Lognormal 

curve fitting, 351-10, 351-11 
growth curves, 360-9 

Lognormal distribution 
nondetects regression, 345-2 
Weibull fitting, 550-5 

Lognormal regression, 566-1 
Logrank test 

Kaplan-Meier, 555-41 
Log-rank test 

Kaplan-Meier, 555-12 
nondetects analysis, 240-3 

randomization, 555-1 
Log-rank tests 

Kaplan-Meier, 555-38 
Longitudinal data example 

mixed models, 220-51 
Longitudinal data models 

mixed models, 220-4 
Longitudinal models, 220-1 
Lookup transformation, 119-14 
Lotus 123 exporting, 116-1 
Lotus 123 importing, 115-1 
Lowess smooth 

scatter plot, 161-14 
LP dataset, 480-2, 480-4 
LUNGCANCER dataset, 565-15, 

565-31, 565-48 

M 
MA order (Q) 

automatic ARMA, 474-8 
Macros, 130-1 

command list, 130-25 
commands, 130-6 
examples, 130-26 
syntax, 130-2 

MAD 
descriptive statistics, 200-20 

MAD constant 
multiple regression, 305-40 

MAE 
exponential smoothing, 466-4, 

467-2 
Mallow's Cp 

variable selection and, 312-8 
Mallow's Cp statistic 

multiple regression, 305-55 
MAMMALS dataset, 3-1, 4-1, 10-1 
MAMMALS1 dataset, 5-1, 6-1 
Manhattan distance 

medoid partitioning, 447-3 
Mann-Whitney U test, 206-1, 206-20 
MANOVA, 415-1 

multivariate normality and 
Outliers, 415-4 

MANOVA1 dataset, 410-3, 410-6, 
415-5, 415-10 

Mantel Haenszel test 
two proportions, 515-7 

Mantel-Haenszel logrank test 
Kaplan-Meier, 555-41 

Mantel-Haenszel test, 525-1 
MAPE 

exponential smoothing, 466-4, 
467-2 

Maps 
contour plots, 172-1 
contour plots, 140-11 

Mardia-Watson-Wheeler test 
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circular data, 230-10 
Marginal association 

loglinear models, 530-6 
Martinez-Iglewicz 

descriptive statistics, 200-22 
Martingale residuals 

Cox regression, 565-13, 565-39 
Cox regression, 565-40 

MARUBINI dataset, 560-3, 560-9 
Mass 

correspondence analysis, 430-13 
Matched pairs 

correlated proportions, 520-1 
Matching 

caliper, 123-4 
caliper radius, 123-5 
distance calculation method, 123-

3 
forced match variable, 123-4 
full (variable), 123-3 
greedy, 123-1, 123-2 
optimal, 123-1, 123-2 
propensity score, 123-2 
standardized difference, 123-15 

Mathematical functions 
transformations, 119-7 

Matrix determinant 
equality of covariance, 402-8 

Matrix type 
principal components analysis, 

425-11 
Mauchley’s test of compound 

symmetry, 214-5 
Mavk transformation, 119-16 
Max % change in any beta 

multiple regression, 305-78 
Max terms 

multiple regression, 305-33 
Max transformation, 119-16 
Maximum likelihood 

Cox regression, 565-5 
mixed models, 220-17 
Weibull fitting, 550-10 

Maximum likelihood estimates 
beta distribution fitting, 551-12 

McHenry's select algorithm, 310-1 
McNemar test 

correlated proportions, 520-1, 
520-6 

cross tabulation, 501-16 
McNemar's tests, 501-1 
MDB exporting, 116-1 
MDB importing, 115-1 
MDS, 435-1 
MDS2 dataset, 435-6, 435-10, 435-

15 
Mean 

confidence interval for, 200-13 
descriptive statistics, 200-13 
deviation, 200-20 
geometric, 200-14 

harmonic, 200-14 
standard error of, 200-13 

Mean absolute deviation 
descriptive statistics, 200-20 

Mean deviation 
descriptive statistics, 200-20 
estimate of standard error of, 

200-20 
Mean square 

linear regression, 300-47 
Mean squared error 

linear regression, 300-19 
multiple regression, 305-19 

Mean squares 
multiple regression, 305-50 

Mean-deviation 
descriptive statistics, 200-20 

Means 
meta-analysis of means, 455-1 

Measurement error 
R & R, 254-19 

Measurement error ratio 
R & R, 254-3 

Median 
cluster method, 445-4 
confidence interval, 200-14 
descriptive statistics, 200-14 

Median cluster method 
double dendrograms, 450-2 

Median remaining lifetime 
life-table analysis, 570-4, 570-22 

Median smooth 
scatter plot, 161-15 

Median survival time 
Kaplan-Meier, 555-30 

Medoid clustering, 447-1 
Medoid partitioning, 447-1 
Membership 

fuzzy clustering, 448-1 
Merging two databases, 104-1 
M-estimators 

multiple regression, 305-25 
Meta-analysis 

correlated proportions, 457-1 
Meta-analysis of hazard ratios, 458-1 
Meta-analysis of means, 455-1 
Meta-analysis of proportions, 456-1 
METACPROP dataset, 457-6, 457-

14 
METAHR dataset, 458-6, 458-12 
Method of moments estimates 

beta distribution fitting, 551-12 
Metric multidimensional scaling, 

435-5 
Michaelis-Menten 

curve fitting, 351-1, 351-4 
Miettinen - Nurminen test 

two proportions, 515-8 
Mill’s ratio 

Kaplan-Meier, 555-2 
Weibull fitting, 550-2 

Min transformation, 119-16 
Minimum Percent Beta Change, 305-

40 
Minute format, 102-8 
Missing 

if-then transformation, 120-4 
Missing value estimation 

factor analysis, 420-7 
Missing values, 102-5, 320-8, 320-18, 

425-4 
cross tabs, 501-4 
descriptive tables, 201-7 
estimating, 118-1 
GLM, 212-19 
principal components analysis, 

425-3 
Missing-value imputation 

principal components analysis, 
425-4 

Mixed model 
defined, 220-2 

Mixed models, 220-1 
AIC, 220-7 
Bonferroni adjustment, 220-14 
covariates, 220-9 
differential evolution, 220-29 
F test, 220-28 
Fisher scoring, 220-29 
fixed effects, 220-9 
G matrix, 220-18 
Kenward and Roger method, 220-

28 
L matrix, 220-26 
likelihood formulas, 220-17 
maximum likelihood, 220-17 
MIVQUE, 220-29 
model building, 220-13 
multiple comparisons, 220-14 
Newton-Raphson, 220-29 
R matrix, 220-19 
random vs repeated error, 220-7 
restricted maximum likelihood, 

220-18 
technical details, 220-16 
time, 220-11 
types, 220-4 
zero variance estimate, 220-8 

Mixture design 
D-optimal designs, 267-22 

MLCO2 dataset, 470-11 
Mod transformation, 119-7 
Mode 

descriptive statistics, 200-15 
Model 

Bleasdale-Nelder, 351-5, 360-3 
exponential, 351-6, 360-4 
Farazdaghi and Harris, 351-5, 

360-3 
four-parameter logistic, 351-7, 

360-5 
Gompertz, 351-7, 360-5 
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Holliday, 351-5, 360-4 
Kira, 351-4, 360-2 
monomolecular, 351-6, 360-4 
Morgan-Mercer-Floding, 351-8, 

360-6 
multiple regression, 305-33 
reciprocal, 351-4, 360-2 
Richards, 351-8, 360-7 
Shinozaki, 351-4, 360-2 
three-parameter logistic, 351-6, 

360-5 
Weibull, 351-7, 360-6 

Model size 
all possible regressions, 312-8 

Models 
growth curves, 360-1 
hierarchical, 530-3 
multiphase, 365-1 
multiple regression, 305-35 
piecewise polynomial, 365-1 
ratio of polynomials, 370-1, 375-

1 
sum of functions, 380-1 
user written, 385-1 

Modified Kuiper’s test 
circular data, 230-4 

Moment 
descriptive statistics, 200-11 

Monomolecular model 
curve fitting, 351-6 
growth curves, 360-4 

Monte Carlo samples 
1-Sample T2, 405-4 
linear regression, 300-31 

Monte Carlo simulation, 122-1 
Month format, 102-8 
Month transformation, 119-6 
Morgan-Mercer-Floding model 

curve fitting, 351-8 
growth curves, 360-6 

MOTORS dataset, 566-3, 566-11 
Moving average chart, 250-4 
Moving average chart limits, 250-8 
Moving average parameters 

ARIMA, 471-3 
theoretical ARMA, 475-2 

Moving data, 103-14 
Moving range 

Xbar R, 250-33 
Moving range chart, 250-4 
MSEi 

multiple regression, 305-19 
Multicollinearity 

canonical correlation, 400-2 
discriminant analysis, 440-4 
MANOVA, 415-5 
multiple regression, 305-7 
ridge regression, 335-1 
stepwise regression, 311-2 

Multicollinearity report 
multiple regression, 305-57 

Multidimensional scaling, 435-1 
metric, 435-1 

Multinomial chi-square tests 
frequency tables, 500-1 

Multinomial distribution 
simulation, 122-8 

Multinomial test 
frequency tables, 500-10 

Multiple comparisons 
Bonferroni, 210-4 
box plots, 152-2 
Duncan’s test, 210-5 
Dunn’s test, 210-7 
Dunnett’s test, 210-6 
Fisher's LSD, 210-6 
Hsu’s test, 210-6 
Kruskal-Wallis Z test, 210-7 
mixed models, 220-14 
Newman-Keuls test, 210-8 
one-way ANOVA, 210-3 
recommendations, 210-8 
Scheffe’s test, 210-8 
Tukey-Kramer test, 210-8 

Multiple regression 
robust, 305-24 

Multiple regression, 305-1 
assumptions, 305-6 

Multiple regression 
all possible, 312-1 

Multiple regression 
binary response, 320-8 

Multiple regression with serial 
correlation, 306-1 

Multiplicative seasonality 
exponential smoothing, 467-2 

Multiplicity factor 
t-test, 205-19 

Multivariate analysis of variance, 
415-1 

Multivariate normal 
factor analysis, 420-7 
principal components analysis, 

425-11 
Multivariate polynomial ratio fit, 

376-1 
Multivariate variable selection, 310-

1 
Multiway frequency analysis 

loglinear models, 530-1 
Mutation rate 

hybrid appraisal models, 487-9 
Weibull fitting, 550-15 

N 
Nam and Blackwelder test 

correlated proportions, 520-5 
Nam test 

correlated proportions, 520-7 

Nam’s score 
correlated proportions, 520-2 

Navigator, 107-1 
NC CRIMINAL dataset, 320-64, 

320-68 
NcBetaProb transformation, 119-9 
NcBetaValue transformation, 119-10 
NcCsProb transformation, 119-10 
NcCsValue transformation, 119-10 
NcFprob transformation, 119-10 
NcFvalue transformation, 119-10 
NCSS 

quitting, 101-4 
NcTprob transformation, 119-10 
NcTvalue transformation, 119-10 
Nearest neighbor 

double dendrograms, 450-2 
hierarchical clustering, 445-3 

Negative binomial distribution 
probablility calculator, 135-5 

Negative binomial transformation, 
119-10 

NegBinomProb transformation, 119-
10 

Neighborhood 
appraisal ratios, 485-7 

Nelson-Aalen estimates 
Weibull fitting, 550-1 

Nelson-Aalen estimator, 555-7 
Weibull fitting, 550-33 

Nelson-Aalen hazard 
Kaplan-Meier, 555-1 
Weibull fitting, 550-4 

Nested factor 
GLM, 212-4 

Nested factors 
design generator, 268-1 

New database, 103-1 
New spreadsheet, 103-1 
New template, 105-1 
Newman-Keuls test 

one-way ANOVA, 210-8 
Newton-Raphson 

Weibull fitting, 550-11 
Nominal variables 

fuzzy clustering, 448-4 
hierarchical clustering, 445-7 
medoid partitioning, 447-2 

Non-central Beta transformation, 
119-10 

Non-central Chi-square 
transformation, 119-10 

noncentral-F distribution 
transformation, 119-10 

Noncentral-t distribution 
transformation, 119-10 

Nondetects analysis, 240-1 
confidence limits, 240-7 
flipping constant, 240-2 
Gehan test, 240-3 
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Kaplan-Meier product-limit, 240-
14 

log-rank test, 240-3 
Peto-Peto test, 240-3 
Tarone-Ware test, 240-3 

NONDETECTS dataset, 240-4 
Nondetects regression, 345-1 

confidence limits, 345-11 
Cox-Snell residual, 345-13 
R-squared, 345-11 
standardized residual, 345-13 

Noninferiority 
2-sample binary diagnostic, 537-

10 
clustered binary diagnostic, 538-9 
paired binary diagnostic, 536-8 
ROC curves, 545-31 

Noninferiority test 
correlated proportions, 520-8 
two proportions, 515-17 

Noninferiority tests 
two proportions, 515-37 

Nonlinear regression, 315-1 
appraisal, 487-1 
functions, 315-4 
starting values, 315-1 
user written models, 385-1 

Nonparametric tests 
t-test, 205-17 

Nonstationary models 
Box Jenkins, 470-3 

Normal 
curve fitting, 351-10 
growth curves, 360-9 

Normal distribution 
probablility calculator, 135-5 
simulation, 122-9, 122-20 
Weibull fitting, 550-4 

Normal line 
histograms, 143-12 

Normal probability plot 
descriptive statistics, 200-26 

Normality, 200-4 
descriptive statistics, 200-21 
ROC curves, 545-12 
t-test, 205-15 

Normality test alpha, 118-3 
Normality tests 

Anderson-Darling test, 200-22 
D’Agostino kurtosis, 200-24 
D’Agostino omnibus, 200-25 
D’Agostino skewness, 200-23 
descriptive statistics, 200-21 
Kolmogorov-Smirnov, 200-23 
Lilliefors' critical values, 200-23 
linear regression, 300-48 
Martinez-Iglewicz, 200-22 
multiple regression, 305-52 
Shapiro-Wilk test, 200-22 
skewness test, 200-24 
tolerance intervals, 585-11 

NormalProb transformation, 119-10 
NormalValue transformation, 119-10 
NormScore transformation, 119-16 
Notes 

omitting them in linear 
regression, 300-26 

NP-chart, 251-1 
Number exposed 

life-table analysis, 570-2 
Number of correlations 

canonical correlation, 400-5 
Number of points 

linear regression, 300-33 
Numeric data, 102-1 
Numeric functions, 119-6 

O 
Objective function 

linear programming, 480-1 
Observational study matching, 123-1 
Observational study stratification, 

124-1 
Odds ratio 

1-sample binary diagnostic test, 
535-4 

2-sample binary diagnostic, 537-
9 

confidence interval of, 515-23 
correlated proportions, 520-5 
meta-analysis of correlated 

proportions, 457-2 
meta-analysis of proportions, 

456-2 
two proportions, 515-1, 515-3 

Odds ratios 
Mantel-Haenszel test, 525-1 

ODOR dataset, 330-3, 330-11 
Omission report 

multiple regression, 305-54 
One proportion, 510-1 
One-sample tests, 205-1 
One-sample t-test, 205-1 
One-way analysis of variance, 210-1 
One-way ANOVA 

Bonferroni, 210-4 
Duncan’s test, 210-5 
Dunn’s test, 210-7 
Dunnett’s test, 210-6 
Fisher's LSD, 210-6 
Hsu’s test, 210-6 
Kruskal-Wallis Z test, 210-7 
multiple comparisons, 210-3 
Newman-Keuls test, 210-8 
orthogonal contrasts, 210-11 
orthogonal polynomials, 210-11 
planned comparisons, 210-10 
Scheffe’s test, 210-8 
Tukey-Kramer test, 210-8 

Open database, 103-1 
Open log file, 106-2 
Open output file, 106-2 
Open spreadsheet, 103-1 
Open template, 105-1 
Opening a database 

tutorial, 101-3 
Optimal matching, 123-1, 123-2 
Optimal solution section 

linear programming, 480-5 
Optimal value 

linear programming, 480-5 
Or 

if-then transformation, 120-2 
Ordinal variables 

fuzzy clustering, 448-4 
hierarchical clustering, 445-6 
medoid partitioning, 447-2 

Original cost 
linear programming, 480-5 

Orthogonal arrays, 266-1 
Orthogonal contrasts 

one-way ANOVA, 210-11 
Orthogonal polynomial 

ANOVA balanced, 211-6 
GLM, 212-5 
repeated measures, 214-11 

Orthogonal polynomials 
one-way ANOVA, 210-11 

Orthogonal regression 
linear regression, 300-9, 300-41 

Orthogonal sets of Latin squares, 
263-2 

Outlier detection 
linear regression, 300-64 
multiple regression, 305-83 

Outlier report 
linear regression, 300-66 

Outliers 
Cox regression, 565-14 
linear regression, 300-15 
multiple regression, 305-1, 305-

24, 305-78 
stepwise regression, 311-3 
t-test, 205-22 

Outliers, 200-3 
Output, 106-1 

log of, 9-6 
printing, 9-4 
ruler, 106-4 
saving, 9-5 

Output document, 106-1 
Output window, 1-6, 9-1 
Overdispersion 

Poisson regression, 325-3, 325-12 
Overlay 

scatter plot, 161-3 
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P 
Page setup, 103-2 
PAIN dataset, 220-51 
Paired data 

clustered binary diagnostic, 538-
11 

Paired t-test 
1-Sample T2, 405-1 

Paired t-tests, 205-1 
Pair-wise removal 

correlation matrix, 401-3 
Paradox exporting, 116-1 
Paradox importing, 115-1 
Parallel slopes 

multiple regression, 305-86 
Parameterization 

curve fitting, 350-5 
Pareto chart, 253-1 
Pareto charts, 250-41 
Parsimony 

ratio of polynomials, 370-2 
Partial association 

loglinear models, 530-5 
Partial autocorrelation, 472-1 
Partial autocorrelation function 

Box Jenkins, 470-4 
Partial correlation 

multiple regression, 305-56 
Partial residual plots, 305-71 
Partial variables 

canonical correlation, 400-4 
correlation matrix, 401-3 

Partial-regression coefficients, 305-
47 

Partition coefficient 
fuzzy clustering, 448-3 

Paste, 103-4 
Paste output, 106-3 
Pasting data, 7-2 
PCA, 425-1 
PCA2 dataset, 118-4, 420-5, 420-11, 

425-9, 425-15 
P-chart, 251-1 
Pearson chi-square 

loglinear models, 530-4, 530-13 
Pearson correlation 

linear regression, 300-45 
Pearson correlations 

matrix of, 401-1 
Pearson residuals 

logistic regression, 320-13 
Poisson regression, 325-5, 325-31 

Pearson test 
Poisson regression, 325-3 

Pearson’s contingency coefficient 
cross tabulation, 501-14 

Percentile plots, 140-5 
Percentile Plots, 153-1 
Percentile type 

descriptive statistics, 200-6 
Percentiles, 200-2 
Percentiles of absolute residuals 

multiple regression, 305-78 
Period effect 

cross-over analysis using t-tests, 
235-4 

Period plot 
cross-over analysis using t-tests, 

235-24 
Periodogram 

spectral analysis, 468-1 
Perspective 

3D scatter plot, 170-6 
3D surface plot, 171-6 
bar charts, 141-12 

PET dataset, 538-11 
Peto-Peto test 

Kaplan-Meier, 555-12 
nondetects analysis, 240-3 

Phase 
spectral analysis, 468-1 

Phi 
cross tabulation, 501-14 
factor analysis, 420-13 
Poisson regression, 325-3, 325-

12, 325-27 
principal components analysis, 

425-17 
Phis 

theoretical ARMA, 475-2 
Pie charts, 140-2, 142-1 
PIE dataset, 142-6 
Piecewise polynomial models, 365-1 
Pillai's trace 

MANOVA, 415-3 
Plackett-Burman design, 265-1 
Planned comparisons 

one-way ANOVA, 210-10 
PLANT dataset, 212-27 
Plot size 

linear regression, 300-29 
Plots 

3D scatter plots, 140-10, 170-1 
3D surface plots, 140-10, 171-1 
area charts, 140-1, 141-1 
bar charts, 140-1, 141-1 
box plots, 140-5, 152-1 
contour plots, 140-11, 172-1 
density trace, 143-1 
dot plots, 140-4, 150-1 
error-bar charts, 140-6, 155-1 
function plots, 160-1 
grid plots, 140-11, 173-1 
histograms, 140-2, 143-1 
histograms - comparative, 140-4, 

151-1 
line charts, 140-1, 141-1 
percentile plots, 140-5, 153-1 
pie charts, 140-2 
probability plots, 140-3, 144-1 

scatter plot matrix, 140-8, 162-1 
scatter plot matrix (curve fitting), 

163-1 
scatter plot matrix for curve 

fitting, 140-9 
scatter plots, 140-7, 161-1 
single-variable charts, 140-1 
surface charts, 140-1, 141-1 
surface plots, 140-10, 171-1 
three-variable charts, 140-10 
two-variable charts, 140-4, 140-7 
violin plots, 140-6, 154-1 

POISREG dataset, 325-37 
Poisson distribution 

probablility calculator, 135-5 
simulation, 122-9 

Poisson regression, 325-1 
PoissonProb transformation, 119-11 
POLITIC dataset, 13-1, 14-1 
Polynomial 

logistic regression, 320-23 
multiple regression, 305-31 
multivariate ratio fit, 376-1 
Poisson regression, 325-11 

Polynomial fit 
scatter plot, 161-13 

Polynomial model 
response surface regression, 330-

1 
Polynomial models, 365-1 
Polynomial ratio fit, 375-1 
Polynomial ratios 

model search (many X variables), 
371-1 

Polynomial regression model, 330-1 
Polynomials 

ratio of, 370-1, 375-1 
Pooled terms, 213-2 
POR exporting, 116-1 
Portmanteau test 

ARIMA, 471-12 
automatic ARMA, 474-12 
Box Jenkins, 470-10 

Power 
multiple regression, 305-47 

Power spectral density 
spectral analysis, 468-3 

Power spectrum 
theoretical ARMA, 475-8 

PRD 
appraisal ratios, 485-8 

Precision-to-tolerance 
R & R, 254-20 

Precision-to-tolerance ratio 
R & R, 254-3 

Predicted value 
Poisson regression, 325-32 

Predicted values 
linear regression, 300-27, 300-52 
multiple regression, 305-61 

Prediction interval 
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multiple regression, 305-61 
Prediction limits 

linear regression, 300-33, 300-53, 
300-59 

multiple regression, 305-61 
Pre-post 

multiple regression, 305-87 
PREPOST dataset, 305-87 
PRESS 

linear regression, 300-21, 300-51 
multiple regression, 305-21, 305-

51 
PRESS R2 

multiple regression, 305-52 
Press R-squared 

multiple regression, 305-21 
PRESS R-squared 

linear regression, 300-22 
Prevalence 

ROC curves, 545-5 
Price related differential 

appraisal ratios, 485-8 
hybrid appraisal models, 487-17 

Principal axis method 
factor analysis, 420-1 

Principal components 
linear regression, 300-9 

Principal components analysis, 425-
1 

Principal components regression, 
340-1 

Print 
output, 106-3 

Printer setup, 103-2 
Printing 

data, 2-7, 103-3 
output, 9-4 
output reports, 4-5 

Printing data, 117-1 
Prior probabilities 

discriminant analysis, 440-5 
Prob level, 415-13 

linear regression, 300-47 
Prob to enter 

stepwise regression, 311-4 
Prob to remove 

stepwise regression, 311-4 
Probability Calculator, 135-1 

Beta distribution, 135-1 
Binomial distribution, 135-2 
Bivariate normal distribution, 

135-2 
Chi-square distribution, 135-2 
Correlation coefficient 

distribution, 135-3 
F distribution, 135-3 
Gamma distribution, 135-4 
Hotelling’s T2 distribution, 135-4 
Hypergeometric distribution, 

135-4 

Negative binomial distribution, 
135-5 

Normal distribution, 135-5 
Poisson distribution, 135-5 
Student’s t distribution, 135-6 
Studentized range distribution, 

135-6 
Weibull distribution, 135-6 

Probability ellipse 
linear regression, 300-8, 300-33 

Probability functions 
transformations, 119-8 

Probability plot 
descriptive statistics, 200-26 
linear regression, 300-57 
multiple regression, 305-67 
t-test, 205-20 
Weibull, 144-17 

Probability plot style file, 144-19 
Probability plots, 140-3 

asymmetry, 144-3 
quantile scaling, 144-7 

Probability Plots, 144-1 
Probit analysis, 575-1 
Probit plot 

probit analysis, 575-10 
Procedure, 105-1 

running, 101-3 
Procedure window, 1-5, 8-1 
Product-limit survival distribution 

beta distribution fitting, 551-14 
gamma distribution fitting, 552-

16 
Kaplan-Meier, 555-32 
Weibull fitting, 550-33 

Product-moment correlation 
correlation matrix, 401-3 

Profiles 
correspondence analysis, 430-1 

Projection method 
3D scatter plot, 170-8 
3D surface plot, 171-7 
bar charts, 141-14 

PROPENSITY dataset, 123-5, 123-
12, 124-4 

Propensity score, 123-2 
stratification, 124-1 

Proportion trend test 
Armitage, 501-5 

Proportions 
2-sample binary diagnostic, 537-

1 
clustered binary diagnostic, 538-1 
confidence interval of ratio, 515-

21 
correlated, 520-1 
Meta-analysis of correlated 

proportions, 457-1 
meta-analysis of proportions, 

456-1 
one, 510-1 

paired binary diagnostic, 536-1 
two, 515-1 

Proportions test 
1-sample binary diagnostic test, 

535-1 
Proximity matrix 

multidimensional scaling, 435-1 
Proximity measures 

multidimensional scaling, 435-4 
Pseudo R-squared 

multidimensional scaling, 435-12 
Poisson regression, 325-4 

Pure error 
linear regression, 300-16 

Q 
QATEST dataset, 250-14, 250-27, 

250-33, 250-35, 250-37, 251-3, 
251-11, 253-2, 253-7, 253-9 

Quadratic fit 
curve fitting, 351-2 

Qualitative factors 
D-optimal designs, 267-6, 267-25 

Quality 
correspondence analysis, 430-13 

Quantile scaling 
probability plots, 144-7 

Quantile test, 205-17 
Quantiles 

Kaplan-Meier, 555-30 
Quartiles 

descriptive statistics, 200-21 
Quartimax rotation 

factor analysis, 420-4 
principal components analysis, 

425-8 
Quatro exporting, 116-1 
Quick launch window, 107-1, 107-2 
Quick start, 100-1 
Quitting NCSS, 101-4 

R 
R & R study, 254-1 
Radial plot 

meta analysis of hazard ratios, 
458-18 

meta-analysis of correlated 
proportions, 457-21 

meta-analysis of means, 455-18 
meta-analysis of proportions, 

456-21 
Random coefficients example 

mixed models, 220-103 
Random coefficients models 

mixed models, 220-5 
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Random effects model 
meta-analysis of correlated 

proportions, 457-5 
meta-analysis of hazard ratios, 

458-5 
meta-analysis of means, 455-4 
meta-analysis of proportions, 

456-5 
Random effects models, 220-1 

mixed models, 220-4 
Random factor 

ANOVA balanced, 211-5 
GLM, 212-4 
repeated measures, 214-8 

Random numbers, 122-1 
uniform, 15-1 

Randomization 
Latin square designs, 263-2 

Randomization test 
curve fitting, 351-16 
linear regression, 300-24 
log-rank, 555-1 
T2, 410-7 

Randomization tests 
1-Sample T2, 405-1, 405-8 
T2, 410-1 

Randomized block design 
repeated measures, 214-6 

RandomNormal transformation, 119-
11 

Random-number functions 
transformations, 119-11 

Range 
descriptive statistics, 200-17 
interquartile, 200-17 

Range chart, 250-1 
Rank transformation, 119-16 
Rate ratio 

Poisson regression, 325-30 
Ratio of polynomials 

model search (many X variables), 
371-1 

model search (one X variable), 
370-1 

Ratio of polynomials fit, 375-1 
many variables, 376-1 

Ratio of two proportions 
two proportions, 515-6 

Ratio plot 
decomposition forecasting, 469-

12 
Ratio section 

appraisal ratios, 485-7 
Ratio study 

appraisal ratios, 485-1 
Ratio variables 

fuzzy clustering, 448-4 
hierarchical clustering, 445-6 
medoid partitioning, 447-2 

Rayleigh test 
circular data, 230-4 

Rbar-squared 
linear regression, 300-8 
multiple regression, 305-15 

RCBD data example 
mixed models, 220-94 

RCBD dataset, 220-94 
REACTION dataset, 214-6, 214-29 
Readout 

parametric survival regression, 
566-3 

Weibull fitting, 550-11 
READOUT105 dataset, 550-47 
Rearrangement functions 

transformations, 119-12 
Recalc all, 103-9, 119-4 
Recalc current, 103-8, 119-4 
Reciprocal model 

curve fitting, 351-4 
growth curves, 360-2 

Recode functions transformations, 
119-14 

Recode transformation, 3-4, 119-15 
Recoding, 11-1 
Reduced cost 

linear programming, 480-5 
Redundancy indices 

canonical correlation, 400-4 
Reference group 

logistic regression, 320-19 
Reference value 

logistic regression, 320-21 
multiple regression, 305-3, 305-

29 
Poisson regression, 325-9 
Xbar R, 250-23 

Reflection C.I. method 
multiple regression, 305-41 

Reflection method 
linear regression, 300-30 
two proportions, 515-28 

REGCLUS dataset, 449-2, 449-5 
Regression 

all possible, 312-1 
appraisal model, 487-1 
backward selection, 311-2 
binary response, 320-1, 320-8 
clustering, 449-1 
Cox, 565-1 
diagnostics, 305-63 
exponential, 566-1 
extreme value, 566-1 
forward selection, 311-1 
growth curves, 360-1 
hybrid appraisal model, 487-1 
linear, 300-1 
logistic, 320-1, 566-1 
log-logistic, 566-1 
lognormal, 566-1 
model search (many X variables), 

371-1 
multiple, 312-8 

nondetects, 345-1 
nonlinear, 315-1 
normal, 566-1 
orthogonal regression, 300-9 
Poisson, 325-1 
polynomial ratio, 375-1 
polynomial ratio (search), 370-1 
principal components, 340-1 
proportional hazards, 565-1 
response surface regression, 330-

1 
ridge, 335-1 
stepwise, 311-1 
sum of functions models, 380-1 
user written, 385-1 
variable selection, 311-1 
Weibull, 566-1 

Regression analysis, 6-1 
multiple regression, 305-1 

Regression clustering, 449-1 
Regression coefficients 

Cox regression, 565-32 
Regression coefficients report 

multiple regression, 305-48 
Regression equation report 

multiple regression, 305-46 
Relative risk 

meta-analysis of correlated 
proportions, 457-2 

meta-analysis of proportions, 
456-2 

two proportions, 515-1 
Reliability 

beta distribution fitting, 551-1, 
551-15 

gamma distribution fitting, 552-1 
item analysis, 505-1 
Kaplan-Meier, 555-1 
kappa, 501-15 
Weibull fitting, 550-1 

Reliability analysis 
Weibull fitting, 550-1 

Reliability function 
beta distribution fitting, 551-2 
gamma distribution fitting, 552-2 
Weibull fitting, 550-2 

Remove last sheet, 103-2 
Remove transformation, 119-18 
Removed lambda 

discriminant analysis, 440-12 
Repeat transformation, 119-18 
Repeatability 

R & R, 254-1, 254-14 
Repeated measures, 214-1 

1-Sample T2, 405-6 
mixed models, 220-1 

Repeated measures data example 
mixed models, 220-51 

Repeated measures design 
generating, 268-7 

Repeated-measures design 

 



  Index-19 

GLM, 212-23 
Replace, 103-6 
Replace in output, 106-4 
Replace transformation, 119-18 
Replication 

two level designs, 260-4 
Reporting data, 117-1 
Reports 

selecting in linear regression, 
300-26 

Reproducibility 
R & R, 254-1, 254-14 

RESALE dataset, 117-4, 151-14, 
155-1, 155-7, 201-1, 201-11, 
201-12, 201-14, 201-15, 201-17, 
201-19, 201-21, 305-81, 500-1, 
500-9, 500-10, 500-12, 500-14, 
501-1, 501-8, 501-11, 501-17 

Resampling tab 
linear regression, 300-29 

Residual 
diagnostics, 305-63 
linear regression, 300-2, 300-18 
multiple regression, 305-17 

Residual diagnostics 
linear regression, 300-15 
multiple regression, 305-15 
Poisson regression, 325-33 

Residual life 
life-table analysis, 570-22 
Weibull fitting, 550-40 

Residual plots 
linear regression, 300-53 
multiple regression, 305-67, 305-

70 
partial residuals, 305-71 

Residual report 
linear regression, 300-61 
multiple regression, 305-62 

Residuals 
Cox regression, 565-13 
Cox regression, 565-39 
logistic regression, 320-11 
multiple regression, 305-1 
Poisson regression, 325-4, 325-31 

Residuals-deviance 
Cox regression, 565-14 

Residuals-Martingale 
Cox regression, 565-13 

Residuals-scaled Schoenfeld 
Cox regression, 565-15 

Residuals-Schoenfeld 
Cox regression, 565-14 

Response surface regression, 330-1 
Response-surface designs, 264-1 
Restart method 

Xbar R, 250-23 
Restricted maximum likelihood 

mixed models, 220-18 
Richards model 

curve fitting, 351-8 

growth curves, 360-7 
Ridge regression, 335-1 
Ridge trace 

ridge regression, 335-4, 335-18 
RIDGEREG dataset, 335-7, 335-15, 

340-3, 340-11 
Right censored 

parametric survival regression, 
566-2 

Weibull fitting, 550-11 
Right transformation, 119-19 
Right-hand sides 

linear programming, 480-1 
Risk ratio 

correlated proportions, 520-4 
Cox regression, 565-33, 565-35 
meta-analysis of correlated 

proportions, 457-2 
meta-analysis of proportions, 

456-2 
Risk set 

Cox regression, 565-16 
Kaplan-Meier, 555-3 

RMSF dataset, 545-3 
RNDBLOCK dataset, 211-4, 211-11, 

212-3, 212-12 
Robins odds ratio C. L. 

Mantel-Haenszel test, 525-11 
Robust estimation 

principal components analysis, 
425-5 

Robust iterations 
Xbar R, 250-18 

Robust loess 
linear regression, 300-14 

Robust method 
multiple regression, 305-39 

Robust regression 
multiple regression, 305-24, 305-

31 
Robust regression reports 

multiple regression, 305-77 
Robust regression tutorial 

multiple regression, 305-76 
Robust sigma multiplier 

Xbar R, 250-18 
Robust tab 

multiple regression, 305-39 
Robust weight 

factor analysis, 420-7 
principal components analysis, 

425-11 
Robust weights 

multiple regression, 305-78 
ROC curves, 545-1 

comparing, 545-9 
ROC dataset, 545-19 
Root MSE 

all possible regressions, 312-8 
Rose plot 

circular data, 230-16 

Rose plots, 230-1 
Rotation 

3D scatter plot, 170-7 
3D surface plot, 171-7 
bar charts, 141-13 
factor analysis, 420-7 
principal components analysis, 

425-11 
Round transformation, 119-7 
Row heights, 103-15 
Row profiles 

correspondence analysis, 430-1 
Rows, 251-4, 251-5 
Row-wise removal 

correlation matrix, 401-3 
Roy’s largest root 

MANOVA, 415-4 
RRSTUDY dataset, 254-1, 254-10 
RRSTUDY1 dataset, 254-24 
R-squared 

adjusted, 300-46 
adjusted, 305-45 
all possible regressions, 312-8 
Cox regression, 565-11 
definition, 305-44 
linear regression, 300-7, 300-46 
logistic regression, 320-10 
multiple regression, 305-14 
Poisson regression, 325-4, 325-24 

R-squared increment 
stepwise regression, 311-8 

R-squared report 
multiple regression, 305-53 

R-squared vs variable count plot, 
310-8 

RStudent 
linear regression, 300-20, 300-62 
multiple regression, 305-19, 305-

63 
RStudent plot 

multiple regression, 305-69 
Rstudent residuals 

scatter plot of, 300-55 
RTF, 106-3 

tutorial, 101-4 
RTF output format, 106-1 
Ruler 

output, 106-4 
Run summary report 

multiple regression, 305-44 
Running a procedure 

tutorial, 101-3 
Running a regression analysis, 6-1 
Running a two-sample t-test, 5-1 
Running descriptive statistics, 4-1 
Runs tests 

attribute charts, 251-3 
Xbar R, 250-9 
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S 
S0 database, 102-1 
S0/S0Z comparison, 102-4 
S0Z/S0 comparison, 102-4 
Sale date variable 

appraisal ratios, 485-4 
comparables, 486-7 

Sale price variables 
appraisal ratios, 485-2 

SALES dataset, 467-9, 469-9 
Sales price 

multiple regression, 305-81 
SALESRATIO dataset, 485-1, 485-

6, 486-4 
SAMPLE dataset, 101-3, 161-20, 

162-5, 171-9, 172-7, 200-4, 200-
10, 205-12, 206-12, 210-16, 310-
3, 310-6, 311-3, 311-6, 312-2, 
312-6, 400-8, 401-2, 401-5, 585-
8 

SAS exporting, 116-1 
SAS importing, 115-1 
Saturated model 

loglinear models, 530-3 
Save, 103-3 
Save as, 103-3 
Save output, 106-3 
Saved colors, 180-3 
Saving 

data, 2-6 
tutorial, 101-2 

output, 9-5 
template, 8-5 

Saving a template, 105-2 
Saving results 

multiple regression, 305-42 
SC 

medoid partitioning, 447-5 
Scaled Schoenfeld residuals 

Cox regression, 565-15, 565-42 
Scaling 

multidimensional, 435-1 
Scaling factors 

D-optimal designs, 267-2 
Scaling method 

fuzzy clustering, 448-5 
hierarchical clustering, 445-8 

Scatter plot 
loess smooth, 161-14 
lowess smooth, 161-14 
median smooth, 161-15 
overlay, 161-3 
polynomial fit, 161-13 
spline, 161-15 
sunflower plot, 161-18 

Scatter plot matrix, 140-8, 162-1 
Scatter plot matrix (curve fitting), 

163-1 

Scatter plot matrix for curve fitting, 
140-9 

Scatter plot style file, 161-22 
Scatter plots, 140-7, 161-1 

3D, 140-10, 170-1 
Scheffe’s test 

one-way ANOVA, 210-8 
Schoenfeld residuals 

Cox regression, 565-14, 565-41 
Schuirmann’s test 

cross-over analysis using t-tests, 
235-7 

Scientific notation, 102-4 
Score, 320-45 
Score coefficients 

factor analysis, 420-17 
principal components analysis, 

425-2 
Scores plots 

canonical correlation, 400-12 
Scree graph 

factor analysis, 420-3 
Scree plot 

factor analysis, 420-15 
principal components analysis, 

425-18 
Screening data, 118-1, 200-3 
Screening designs, 265-1 
Searches 

ratio of polynomials, 370-1, 371-
1 

Seasonal adjustment 
exponential smoothing, 467-1 

Seasonal autoregressive parameters 
ARIMA, 471-3 

Seasonal decomposition forecasting, 
469-1 

Seasonal differencing 
ARIMA, 471-2 

Seasonal moving average parameters 
ARIMA, 471-3 

Seasonal time series 
Box Jenkins, 470-4 

Second format, 102-8 
Select all output, 106-4 
Selecting procedures, 1-7 
Selection method 

stepwise regression, 311-4 
Selection procedure 

forward, 311-1 
Sensitivity 

1-sample binary diagnostic test, 
535-2 

2-sample binary diagnostic, 537-
2 

clustered binary diagnostic, 538-8 
paired binary diagnostic, 536-2 
ROC curves, 545-1, 545-24 

Sequence plot 
multiple regression, 305-69 

Sequence transformation, 119-6 

Sequential models report 
multiple regression, 305-56 

Ser transformation, 119-6 
Serial correlation 

linear regression, 300-4 
residuals, 305-53 

Serial correlation plot 
multiple regression, 305-68 

Serial numbers, 1-3, 100-1 
Serial-correlation 

linear regression, 300-50 
SERIESA dataset, 470-8, 474-7 
Shapiro-Wilk 

linear regression, 300-18 
multiple regression, 305-17 

Shapiro-Wilk test 
descriptive statistics, 200-22 
linear regression, 300-49 

Shinozaki and Kari model 
curve fitting, 351-4 
growth curves, 360-2 

Short transformation, 119-7 
Sigma 

Xbar R, 250-19 
Sigma multiplier 

Xbar R, 250-17 
Sign test, 205-17 
Sign transformation, 119-8 
SIGN(z) 

piecewise polynomial models, 
365-6 

Signal-to-noise ratio 
R & R, 254-3 

Silhouette 
fuzzy clustering, 448-9 
medoid partitioning, 447-13 

Silhouettes 
medoid partitioning, 447-5 

Similarities 
multidimensional scaling, 435-4 

Simple average 
double dendrograms, 450-2 
hierarchical clustering, 445-3 

Simplex algorithm 
linear programming, 480-1 

Simulation, 122-1 
Beta distribution, 122-3 
Binomial distribution, 122-5 
Cauchy distribution, 122-5 
Constant distribution, 122-6 
contaminated normal, 122-21 
data, 15-1 
Exponential distribution, 122-6 
F distribution, 122-7 
Gamma distribution, 122-7 
Likert-scale, 122-8, 122-22 
Multinomial distribution, 122-8 
Normal distribution, 122-9, 122-

20 
Poisson distribution, 122-9 
skewed distribution, 122-10 
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Student's T distribution, 122-10 
syntax, 122-13 
T distribution, 122-10 
Tukey's lambda distribution, 122-

10 
Uniform distribution, 122-11 
Weibull distribution, 122-12 

Simultaneous C.I.’s 
T2, 405-9, 410-10 

Sin transformation, 119-17 
Single linkage 

double dendrograms, 450-2 
hierarchical clustering, 445-3 

Single-to-noise ratio 
R & R, 254-19 

Single-variable charts, 140-1 
Sinh transformation, 119-17 
Skewed distribution 

simulation, 122-10 
Skewness, 200-2 

descriptive statistics, 200-17 
t-test, 205-15 

Skewness test 
descriptive statistics, 200-24 

Slices 
pie charts, 142-1 

Slope 
linear regression, 300-39 

Slopes 
testing for equal 

multiple regression, 305-86 
SMOKING dataset, 525-2, 525-5 
Smooth transformation, 119-16 
Smoothing constant 

exponential smoothing, 465-1, 
466-2 

Smoothing constants 
exponential smoothing, 467-2 

Smoothing interval 
item response analysis, 506-4 

Solo exporting, 116-1 
Solo exporting, 116-1 
Solo importing, 115-1 
Sort, 103-6 
Sort transformation, 119-12 
Spath 

medoid partitioning, 447-4 
SPC fundamentals 

Xbar R, 250-38 
Spearman correlation 

linear regression, 300-45 
Spearman rank 

correlation matrix, 401-3 
Spearman rank correlation 

linear regression, 300-12 
Specificity 

1-sample binary diagnostic test, 
535-2 

2-sample binary diagnostic, 537-
2 

clustered binary diagnostic, 538-8 

paired binary diagnostic, 536-2 
ROC curves, 545-1, 545-24 

Spectral analysis, 468-1 
Spectral density 

spectral analysis, 468-3 
Spectrum 

spectral analysis, 468-1 
Sphericity test 

factor analysis, 420-14 
Splice transformation, 119-12 
Spline 

scatter plot, 161-15 
Split plot analysis 

mixed models, 220-1 
Split plot data example 

mixed models, 220-98 
Spread, 140-5 
Spreadsheet 

limits, 102-1 
overview, 102-1 

Spreadsheet/database comparison, 
102-4 

SPSS importing, 115-1 
Sqrt transformation, 119-8 
Standard deviation, 200-16 

confidence limits, 207-2 
descriptive statistics, 200-16 
ratio, 207-2 
unbiased, 200-17 

Standard error, 200-13 
linear regression, 300-40 
Poisson regression, 325-26 

Standardization 
PC regression, 340-1 
ridge regression, 335-3 

Standardize transformation, 119-16 
Standardized coefficients 

linear regression, 300-40 
multiple regression, 305-49 

Standardized difference, 123-15 
Standardized residual 

linear regression, 300-19, 300-61, 
300-64 

multiple regression, 305-18, 305-
63 

nondetects regression, 345-13 
Start time variable 

Weibull fitting, 550-12 
Starting NCSS, 1-2, 2-1, 100-1, 101-

2 
Starting values 

curve fitting, 350-3 
nonlinear regression, 315-1 

Stata file exporting, 116-1 
Statistical functions transformations, 

119-15 
Std error 

of kurtosis, 200-18 
of skewness, 200-18 
of standard deviation, 200-16 
of variance, 200-15 

of X-mean, 200-20 
Std Error 

of Coefficient of Variation, 200-
18 

Stddev transformation, 119-16 
StdRangeProb transformation, 119-

11 
StdRangeValue transformation, 119-

11 
Stem-leaf 

depth, 200-27 
leaf, 200-28 
stem, 200-27 
unit, 200-28 

Stem-leaf plot 
descriptive statistics, 200-27 

Stephens test 
circular data, 230-7 

Stepwise regression, 311-1 
Cox regression, 565-11 
logistic regression, 320-17 
multiple regression, 305-23 
Poisson regression, 325-6 

Storing results 
linear regression, 300-35 
multiple regression, 305-42 

Stratification based on propensity 
scores, 124-1 

Stratification of a database, 124-1 
Stress 

multidimensional scaling, 435-3 
Stress A 

parametric survival regression, 
566-6 

Stress B 
parametric survival regression, 

566-6 
Stress plot 

parametric survival regression, 
566-19 

Stress variable 
parametric survival regression, 

566-6 
Student’s t distribution 

probablility calculator, 135-6 
Studentized deviance residuals 

Poisson regression, 325-5 
Studentized Pearson residuals 

Poisson regression, 325-5 
Studentized range 

one-way ANOVA, 210-5 
Studentized range distribution 

probablility calculator, 135-6 
Studentized residuals 

Poisson regression, 325-34 
Studentized-range distribution 

transformation, 119-11 
Student's T distribution 

simulation, 122-10 
Style file 

grid plot, 173-8 
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Style file 
box plot, 152-13 
histogram, 143-16 
probability plot, 144-19 
scatter plot, 161-22 

Style files 
multiple regression, 305-38 

Subset of a database, 14-1 
Subset selection 

Cox regression, 565-11, 565-48 
logistic regression, 320-17 
multiple regression, 305-23, 305-

32 
Poisson regression, 325-6, 325-37 

Subset selection report 
multiple regression, 305-80 

Subset selection tutorial 
multiple regression, 305-79 

Sum of exponentials 
curve fitting, 351-9 
growth curves, 360-8 

Sum of functions models, 380-1 
Sum of squares 

multiple regression, 305-49, 305-
55 

Sum transformation, 119-16 
Sunflower plot 

scatter plot, 161-18 
SUNSPOT dataset, 468-9, 472-7 
Support services, 100-2 
Surface charts, 140-1, 141-1 
Surface plot 

depth, 171-7 
elevation, 171-6 
perspective, 171-6 
projection method, 171-7 
rotation, 171-7 

Surface plots, 140-10, 171-1 
Survival 

cumulative, 565-4 
Survival analysis 

Kaplan-Meier, 555-1 
life-table analysis, 570-1 
time calculator, 580-1 
Weibull fitting, 550-1 

Survival curves 
Kaplan-Meier, 555-1 

SURVIVAL dataset, 555-14, 555-
37, 575-1, 575-5 

Survival distribution 
Cox regression, 565-2 

Survival function 
Kaplan-Meier, 555-2 
Weibull fitting, 550-2 

Survival plot 
Kaplan-Meier, 555-35 

Survival quantiles 
Kaplan-Meier, 555-6, 555-30 

SUTTON 22 dataset, 456-6, 456-14 
SUTTON30 dataset, 455-6, 455-13 
Symbol settings window, 181-1 

Symmetric-binary variables 
fuzzy clustering, 448-4 
hierarchical clustering, 445-6 
medoid partitioning, 447-2 

Symmetry, 200-2, 206-25 
Symphony exporting, 116-1 
Syntax 

macros, 130-2 
SYS exporting, 116-1 
Systat exporting, 116-1 
Systat importing, 115-1 
System requirements, 1-1 

T 
T distribution 

simulation, 122-10 
T2 alpha 

data screening, 118-3 
T2 Dataset, 405-3, 405-5, 405-10 
T2 value, 410-7 
Tables 

descriptive, 201-1 
Taguchi designs, 266-1 
Tan transformation, 119-17 
Tanh transformation, 119-17 
Target specification, 250-20 
Tarone-Ware test 

Kaplan-Meier, 555-12 
nondetects analysis, 240-3 

Template, 105-1 
default, 105-1 
new, 105-1 
open, 105-1 
save, 105-2 
saving, 8-5 

Terms 
multiple regression, 305-35 

Text data, 102-1 
Text functions transformations, 119-

17 
Text settings window, 182-1 
Theoretical ARMA, 475-1 
Thetas 

theoretical ARMA, 475-2 
Three-variable charts, 140-10 
Threshold limit 

Xbar R, 250-23 
Tick label settings window, 186-1 
Tick settings window, 185-1 
Tickmarks, 185-1 
Ties method 

Cox regression, 565-17 
Tile horizontally, 106-5 
Tile vertically, 106-5 
Time calculator, 580-1 
Time format, 102-8 
Time remaining 

life-table analysis, 570-4 

Time variable 
Cox regression, 565-16 
life-table analysis, 570-6 
parametric survival regression, 

566-4 
TIMECALC dataset, 580-3 
TNH(Z) 

piecewise polynomial models, 
365-6 

Tolerance 
multiple regression, 305-57 
PC regression, 340-13 
ridge regression, 335-17 

Tolerance intervals, 585-1 
Toolbar 

customizing, 107-3 
Topic search 

goto window, 106-4 
TOST 

two-sample, 207-1 
Tprob transformation, 119-11 
TPT exporting, 116-1 
Transformation 

recoding, 3-4 
Transformation operators, 119-4 
Transformations, 3-1, 102-6, 119-1 

Abs, 119-7 
Arc sine, 119-17 
Arc tangent, 119-17 
ArCosh, 119-17 
Arsine, 119-17 
ArSinh, 119-17 
ArTan, 119-17 
ArTanh, 119-17 
Average, 119-15 
BetaProb, 119-8 
BetaValue, 119-8 
BinomProb, 119-8 
BinomValue, 119-8 
BinormProb transformation, 119-

8 
Collate, 119-12 
conditional, 120-1 
Contains, 119-17 
CorrProb, 119-8 
CorrValue, 119-8 
Cos, 119-17 
Cosh, 119-17 
Cosine, 119-17 
Count, 119-15 
CsProb, 119-9 
CsValue, 119-9 
Cum, 119-7 
date functions, 119-6 
Day, 119-6 
Exp, 119-7 
ExpoProb, 119-9 
ExpoValue, 119-9 
Extract, 119-18 
file function, 119-15 
fill functions, 119-6 
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Fprob, 119-9 
Fraction, 119-7 
Fvalue, 119-9 
GammaProb, 119-9 
GammaValue, 119-9 
HypergeoProb, 119-9 
if-then, 120-1 
indicator variables, 119-19 
Int, 119-7 
Join, 119-18 
Julian date, 119-6 
Lagk, 119-16 
Lcase, 119-18 
Ledk, 119-16 
Left, 119-18 
Length, 119-18 
Ln(X), 119-7 
Log, 119-7 
LogGamma, 119-9 
logic operators, 119-5 
Logit, 119-7 
Lookup, 119-14 
mathematical functions, 119-7 
Mavk, 119-16 
Max, 119-16 
Min, 119-16 
Mod, 119-7 
Month, 119-6 
NcBetaProb, 119-9 
NcBetaValue, 119-10 
NcCsProb, 119-10 
NcCsValue, 119-10 
NcFprob, 119-10 
NcFvalue, 119-10 
NcTprob, 119-10 
NcTvalue, 119-10 
Negative binomial, 119-10 
NegBinomProb, 119-10 
Non-central Beta, 119-10 
Non-central Chi-square, 119-10 
noncentral-F distribution, 119-10 
noncentral-t distribution 

transformation, 119-10 
NormalProb, 119-10 
NormalValue, 119-10 
NormScore, 119-16 
numeric functions, 119-6 
PoissonProb, 119-11 
probability functions, 119-8 
RandomNormal, 119-11 
random-number functions, 119-

11 
Rank, 119-16 
rearrangement functions, 119-12 
Recode, 119-15 
recode functions, 119-14 
recoding, 11-1 
Remove, 119-18 
Repeat, 119-18 
Replace, 119-18 
Right, 119-19 

Round, 119-7 
Sequence, 119-6 
Ser, 119-6 
Short, 119-7 
Sign, 119-8 
simulation, 15-1 
Sin, 119-17 
Sinh, 119-17 
Smooth, 119-16 
Sort, 119-12 
Splice, 119-12 
Sqrt, 119-8 
Standardize, 119-16 
statistical functions, 119-15 
Stddev, 119-16 
StdRangeProb, 119-11 
StdRangeValue, 119-11 
Studentized-range distribution, 

119-11 
Sum, 119-16 
Tan, 119-17 
Tanh, 119-17 
text functions, 119-17 
Tprob, 119-11 
trigonometric functions, 119-17 
Tvalue, 119-11 
Ucase, 119-19 
UnCollate, 119-13 
Uniform, 119-11 
Uniques, 119-13 
UnSplice, 119-14 
WeibullProb, 119-11 
WeibullValue, 119-11 
Year, 119-6 

Transition type 
piecewise polynomial models, 

365-6 
Tricube weights 

linear regression, 300-13 
Trigamma 

beta distribution fitting, 551-14 
Trigonometric functions 

transformations, 119-17 
Trim-mean 

descriptive statistics, 200-19 
Trimmed 

descriptive statistics, 200-19 
Trim-std dev 

descriptive statistics, 200-19 
Tschuprow’s T 

cross tabulation, 501-14 
T-test 

1-Sample T2, 405-1 
assumptions, 205-22 
average difference plot, 205-20 
bootstrapping, 205-3 
histogram, 205-20 
kurtosis, 205-15 
multiplicity factor, 205-19 
nonparametric tests, 205-17 
normality, 205-15 

outliers, 205-22 
probability plot, 205-20 
skewness, 205-15 

T-test of difference 
two proportions, 515-8 

T-tests 
meta-analysis of means, 455-1 
one sample, 205-1 
paired, 205-1 
two-sample, 206-1 
two-sample (means/SDs), 207-1 

Tukey’s biweight 
multiple regression, 305-27 

Tukey-Kramer test 
one-way ANOVA, 210-8 

Tukey's lambda distribution 
simulation, 122-10 

TUTOR dataset, 220-98 
Tutorial 

general, 101-1 
linear regression, 300-37 

Tvalue transformation, 119-11 
Two correlated proportions, 520-1 
Two independent proportions, 515-1 
Two proportions, 515-1 
Two sample t-test (from 

means/SDs), 207-1 
Two-level designs, 260-1 
Two-level factorial designs, 260-1 
TWOSAMPLE dataset, 220-69, 220-

72 
Two-sample t-test, 5-1, 206-1 

assumptions, 206-18, 206-27 
bootstrapping, 206-3 
degrees of freedom, 206-13 

TWOSAMPLE2 dataset, 220-70, 
220-73 

TWOSAMPLECOV dataset, 220-76 
Two-variable charts, 140-4, 140-7 
Two-way tables 

cross tabulation, 501-1 
TXT exporting, 116-1 
TXT importing, 115-1 

U 
Ucase transformation, 119-19 
U-chart, 251-2 
Unbiased std dev 

descriptive statistics, 200-17 
UnCollate transformation, 119-13 
Unconditional tests 

two proportions, 515-5 
Undo, 103-4 
Unequal variance t-test, 206-2 
Uniform distribution 

simulation, 122-11 
Uniform kernel 

Kaplan-Meier, 555-8 
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Weibull fitting, 550-34 
Uniform transformation, 119-11 
Uniformity test 

circular data, 230-3 
Uniques transformation, 119-13 
Unknown censor 

Cox regression, 565-18 
Kaplan-Meier, 555-17 
life-table analysis, 570-6 

UnSplice transformation, 119-14 
Unweighted means F-tests, 211-1 
User written models, 385-1 
UWM F-tests, 211-1 

properties of, 211-1 

V 
Validation 

Cox regression, 565-55 
life-table analysis, 570-24 

Validity 
item analysis, 505-1 

Value labels, 13-1, 102-10 
Variable 

data type, 102-10 
format, 102-6 
labels, 102-6 
names, 101-1, 102-5 
numbers, 102-5 
transformations, 102-6 

Variable format, 102-6 
Variable info, 102-5 

tutorial, 101-2 
Variable info file, 102-1 
Variable info sheet, 102-1 
Variable info tab, 2-4 
Variable labeling, 2-4 
Variable labels, 102-6 
Variable matching, 123-3 
Variable name, 2-4 
Variable names, 102-5 

rules for, 2-5 
Variable numbers, 102-5 
Variable selection, 310-1 

Cox regression, 565-11 
logistic regression, 320-17 
multiple regression, 305-23 
Poisson regression, 325-6 
principal components analysis, 

425-8 
Variables 

naming, 101-2 
Variables charts, 250-1 
Variance 

descriptive statistics, 200-15 
linear regression, 300-5 
multiple regression, 305-13 

Variance components 
R & R, 254-3, 254-11 

Variance inflation factor 
multiple regression, 305-8, 305-

57 
PC regression, 340-12 
ridge regression, 335-16 

Variance inflation factor plot 
ridge regression, 335-19 

Variance inflation factors 
ridge regression, 335-2 

Variance ratio test, 206-19 
Variance test 

equal, 206-19 
linear regression, 300-50 

Variances 
equality of, 206-20 
testing equality of multiple, 210-

18 
Variates 

canonical correlation, 400-1 
Varimax rotation 

factor analysis, 420-4 
principal components analysis, 

425-7 
VIF 

multiple regression, 305-8 
ridge regression, 335-2 

Violin plot 
density trace, 154-1 

Violin plots, 140-6, 154-1 
Von Mises distribution 

circular data, 230-5 

W 
W mean 

appraisal ratios, 485-8 
Wald method 

correlated proportions, 520-4 
Wald statistic 

Poisson regression, 325-26 
Wald test 

Cox regression, 565-11, 565-33 
logistic regression, 320-9 

Walter’s confidence intervals 
two proportions, 515-22 

Ward’s minimum variance 
double dendrograms, 450-3 
hierarchical clustering, 445-4 

Watson & Williams test 
circular data, 230-7 

Watson test 
circular data, 230-4 

Watson-Williams F test 
circular data, 230-10 

WEIBULL dataset, 550-12, 550-27, 
550-44, 552-3, 552-12, 555-27 

Weibull distribution 
probablility calculator, 135-6 
simulation, 122-12 

Weibull fitting, 550-6 
Weibull fitting, 550-1 
Weibull model 

curve fitting, 351-7 
growth curves, 360-6 

Weibull probability plot, 144-17 
Weibull regression, 566-1 
WEIBULL2 dataset, 144-17 
WeibullProb transformation, 119-11 
WeibullValue transformation, 119-

11 
Weight variable 

linear regression, 300-25 
multiple regression, 305-28 

WEIGHTLOSS dataset, 220-85 
WESTGARD dataset, 252-9 
Westgard rules, 252-1 
Westlake’s confidence interval, 235-

6 
Whiskers 

box plot, 152-5 
Wilcoxon rank-sum test, 206-1, 206-

20 
Wilcoxon signed-rank test, 205-18 
Wilcoxon-Mann-Whitney test 

cross-over analysis using t-tests, 
235-8 

Wilks’ lambda 
canonical correlation, 400-10 
discriminant analysis, 440-2 
MANOVA, 415-2 

Wilson score limits 
one proportion, 510-2 

Wilson’s score 
correlated proportions, 520-3 
two proportions, 515-19 

Window 
data, 7-1 
output, 9-1 

Windows 
navigating, 1-4 

Winters forecasting 
exponential smoothing, 467-1 

Within factor 
repeated measures, 214-9 

Within subject 
repeated measures, 214-2 

WK exporting, 116-1 
WKQ exporting, 116-1 
Woolf’s odds ratio analysis 

Mantel-Haenszel test, 525-11 
Word processor, 9-1 
Working-Hotelling C.I. band 

linear regression, 300-6 
Working-Hotelling limits 

linear regression, 300-60 
WR1 exporting, 116-1 
WRK exporting, 116-1 

 



  Index-25 

 

X 
Xbar chart, 250-1 
Xbar R chart, 250-1 
XLS exporting, 116-1 

Y 
Year format, 102-8 

Year transformation, 119-6 
Yule-Walker 

automatic ARMA, 474-1 

Z 
Zero time replacement 

beta distribution fitting, 551-3 
cumulative incidence, 560-4 
gamma distribution fitting, 552-4 

parametric survival regression, 
566-4 

Weibull fitting, 550-13 
ZHOU 175 dataset, 545-33 
ZINC dataset, 345-15 
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