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About This Manual 
Congratulations on your purchase of the PASS package! PASS offers: 

• Easy parameter entry. 

• A comprehensive list of power analysis routines that are accurate and verified, yet are 
quick and easy to learn and use. 

• Straightforward procedures for creating paper printouts and file copies of both the 
numerical and graphical reports. 

Our goal is that with the help of these user's guides, you will be up and running on PASS quickly. 
After reading the quick start manual (at the front of User's Guide I) you will only need to refer to 
the chapters corresponding to the procedures you want to use. The discussion of each procedure 
includes one or more tutorials that will take you step-by-step through the tasks necessary to run 
the procedure. 

I believe you will find that these user’s guides provides a quick, easy, efficient, and effective way 
for first-time PASS users to get up and running.  

I look forward to any suggestions you have to improve the usefulness of this manual and/or the 
PASS system. Meanwhile, good computing! 
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PASS License Agreement 
Important: The enclosed Power Analysis and Sample Size software program (PASS) is licensed by NCSS to customers for 
their use only on the terms set forth below. Your purchase and use of the PASS system indicates your acceptance of these 
terms. 
 
1. LICENSE. NCSS hereby agrees to grant you a non-exclusive license to use the accompanying PASS program 
subject to the terms and restrictions set forth in this License Agreement. 
 
2. COPYRIGHT. PASS and its documentation are copyrighted. You may not copy or otherwise reproduce any part of 
PASS or its documentation, except that you may load PASS into a computer as an essential step in executing it on the 
computer and make backup copies for your use on the same computer. 
 
3. BACKUP POLICY. PASS may be backed up by you for your use on the same machine for which PASS was 
purchased. 
 
4. RESTRICTIONS ON USE AND TRANSFER. The original and any backup copies of PASS and its 
documentation are to be used only in connection with a single user.  This user may load PASS onto several machines for 
his/her convenience (such as a desktop and laptop computer), but only for use by the licensee. You may physically transfer 
PASS from one computer to another, provided that PASS is used in connection with only one user. You may not distribute 
copies of PASS or its documentation to others. You may transfer this license together with the original and all backup 
copies of PASS and its documentation, provided that the transferee agrees to be bound by the terms of this License 
Agreement. PASS licenses may not be transferred more frequently than once in twelve months. Neither PASS nor its 
documentation may be modified or translated without written permission from NCSS. 
 You may not use, copy, modify, or transfer PASS, or any copy, modification, or merged portion, in whole or in part, 
except as expressly provided for in this license. 
 
5. NO WARRANTY OF PERFORMANCE. NCSS does not and cannot warrant the performance or results that may 
be obtained by using PASS. Accordingly, PASS and its documentation are licensed "as is" without warranty as to their 
performance, merchantability, or fitness for any particular purpose. The entire risk as to the results and performance of 
PASS is assumed by you. Should PASS prove defective, you (and not NCSS nor its dealer) assume the entire cost of all 
necessary servicing, repair, or correction. 
 
6.  LIMITED WARRANTY ON CD. To the original licensee only, NCSS warrants the medium on which PASS is 
recorded to be free from defects in materials and faulty workmanship under normal use and service for a period of ninety 
days from the date PASS is delivered. If, during this ninety-day period, a defect in a CD should occur, the CD may be 
returned to NCSS at its address, or to the dealer from which PASS was purchased, and NCSS will replace the CD without 
charge to you, provided that you have sent a copy of your receipt for PASS. Your sole and exclusive remedy in the event 
of a defect is expressly limited to the replacement of the CD as provided above. 
 Any implied warranties of merchantability and fitness for a particular purpose are limited in duration to a period of 
ninety (90) days from the date of delivery. If the failure of a CD has resulted from accident, abuse, or misapplication of the 
CD, NCSS shall have no responsibility to replace the CD under the terms of this limited warranty. This limited warranty 
gives you specific legal rights, and you may also have other rights which vary from state to state. 
 
7. LIMITATION OF LIABILITY.  Neither NCSS nor anyone else who has been involved in the creation, production, 
or delivery of PASS shall be liable for any direct, incidental, or consequential damages, such as, but not limited to, loss of 
anticipated profits or benefits, resulting from the use of PASS or arising out of any breach of any warranty. Some states do 
not allow the exclusion or limitation of direct, incidental, or consequential damages, so the above limitation may not apply 
to you. 
 
8. TERM. The license is effective until terminated. You may terminate it at any time by destroying PASS and 
documentation together with all copies, modifications, and merged portions in any form. It will also terminate if you fail to 
comply with any term or condition of this License Agreement. You agree upon such termination to destroy PASS and 
documentation together with all copies, modifications, and merged portions in any form. 
 
9. YOUR USE OF PASS ACKNOWLEDGES that you have read this customer license agreement and agree to its 
terms. You further agree that the license agreement is the complete and exclusive statement of the agreement between us 
and supersedes any proposal or prior agreement, oral or written, and any other communications between us relating to the 
subject matter of this agreement. 
 
Dr. Jerry L. Hintze & NCSS, Kaysville, Utah 



Preface 
PASS (Power Analysis and Sample Size) is an advanced, easy-to-use statistical analysis software 
package. The system was designed and written by Dr. Jerry L. Hintze and other members of the 
development team over the last twenty years. Dr. Hintze drew upon his experience both in 
teaching statistics at the university level and in various types of statistical consulting. 

The present version, written for 32-bit and 64-bit versions of Microsoft Windows (7, Vista, XP) 
computer systems, is the result of several iterations. Experience over the years with several 
different types of users has helped the program evolve into its present form. 

NCSS maintains a website at www.ncss.com where we make the latest edition of PASS available 
for free downloading. The software is password protected, so only users with valid serial numbers 
may use this downloaded edition. We hope that you will download the latest edition routinely and 
thus avoid any bugs that have been corrected since you purchased your copy. 

We believe PASS to be an accurate, exciting, easy-to-use program. If you find any portion which 
you feel needs to be changed, please let us know. Also, we openly welcome suggestions for 
additions and enhancements. 

Verification 
All calculations used in this program have been extensively tested and verified. First, they have 
been verified against the original journal article or textbook that contained the formulas. Second, 
they have been verified against second and third sources when these exist. 

 

http://www.ncss.com/
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Chapter 290 

Control Charts for 
Process Means 
(Simulation) 
Introduction 
This procedure allows you to study the run length distribution of Shewhart (Xbar), Cusum, FIR 
Cusum, and EWMA process control charts for means using simulation. This procedure can also be 
used to study charts with a single observation at each sample. The in-control mean and standard 
deviation can be input directly or a specified number of in-control preliminary samples can be 
simulated based on a user-determined in-control distribution. The out-of-control distribution is 
flexible in terms of distribution type and distribution parameters. The Shewhart, Cusum, and 
EWMA parameters can also be flexibly input. This procedure can also be used to determine the 
necessary sample size to obtain a given run length. 

Simulation Details 
If the in-control mean and in-control standard deviation are assumed to be known, the steps to the 
simulation process are as follows (assume a sample consists of n observations). 

1. An out-of-control sample of size n is generated according to the specified distribution 
parameters of the out-of-control distribution. 

2. The average of the sample is produced and, if necessary for the particular type of control 
chart, the standard deviation. 

3. Based on the control chart criteria, it is determined whether this sample results in an out-of-
control signal. 

4. If the sample results in an out-of-control signal, the sample number is recorded as the run 
length for that simulation. If the sample does not result in an out-of-control signal, return to 
Step 1. 

5. Steps 1 through 4 are repeated until the number of simulations (Nsim) is reached. The result 
is Nsim run lengths. 

6. The average or median or specified percentile of the run length distribution is reported. 
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If the in-control mean and in-control standard deviation are to be simulated based on in-control 
preliminary samples (NPrelim), the steps to the simulation process are as follows (assume a sample 
consists of n observations). 

1. NPrelim in-control samples of size n are generated according to the specified distribution 
parameters of the in-control distribution. 

2. The in-control average and standard deviation are calculated based on the NPrelim 
simulated in-control samples. 

3. An out-of-control sample of size n is generated according to the specified distribution 
parameters of the out-of-control distribution. 

4. The average of the sample is produced and, if necessary for the particular type of control 
chart, the standard deviation. 

5. Based on the control chart criteria, it is determined whether this sample results in an out-of-
control signal. 

6. If the sample results in an out-of-control signal, the sample number is recorded as the run 
length for that simulation. If the sample does not result in an out-of-control signal, return to 
Step 3. 

7. Steps 1 through 6 are repeated until the number of simulations (Nsim) is reached. The result 
is Nsim run lengths. 

8. The average or median or specified percentile of the run length distribution is reported. 

Data Distributions 
A wide variety of distributions may be studied. These distributions can vary in skewness, 
elongation, or other features such as bimodality. A detailed discussion of the distributions that may 
be used in the simulation is provided in the chapter ‘Data Simulator’.  

 

Formulas for Constructing Control Charts 
Suppose we have k subgroups, each of size n. Let xij represent the measurement in the jth sample 
of the ith subgroup. Three statistics that are routinely computed (depending on the type of control 
chart) for each subgroup are: 

The subgroup mean 
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Estimating Sigma 
Control limits vary according to the type of control chart used. These require an estimate of the 
process mean, μx (mu), and the process variability, σx (sigma). A known estimate of μx may be 
supplied by the user, or it may be estimated by the average of the averages of a number of in-
control preliminary samples, ‘x double bar’ (also known as the grand mean): 

x
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ij
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k

= =
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1  

When sigma is not input directly, there are two methods available for estimating σx.  

Method 1: Estimating Sigma from the Ranges 
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Making the assumption that the xij’s follow the normal distribution with constant mean and 
variance, we can derive values for d2 through the use of numerical integration. 

Method 2: Estimating Sigma from the Standard Deviations 
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. Making the assumption that the xij’s follow the normal distribution with constant mean and 
variance, we can derive values for c4 from the following formula.  
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Estimating Sigma when n = 1 
When n is one, we cannot calculate Ri or si  since these require at least two measurements. In this 
case, we use the standard deviation of all k measurements. Unfortunately, this method does not 
approximate the within-subgroup variation. Rather, it combines the within and the between 
subgroup variation.  

 

Xbar Chart Limits 
The lower and upper control limits for the Xbar chart are calculated using the formula 
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where z is a multiplier (often set to three) chosen to reduce the possibility of false alarms 
(signaling an out-of-control situation when the process is in control). 

Cusum  and FIR Cusum Charts 
The Cusum chart has been shown to detect small shifts in the process average much quicker than 
the Xbar chart.  

In PASS we use the Cusum procedure presented by Ryan (1989). This procedure may be 
summarized as follows: 

1. Calculate all statistics as if you were going to generate an Xbar chart. 

2. Calculate the zi  using the formula 

  z
x x

i
i
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3. Calculate the lower and upper cumulative sums as follows 

( )[ ]S z KLi i Li= − − − + −max ,0 1S  

( )[ ]S z K SHi i Hi= − + −max ,0 1  

4. The control limits are chosen as plus or minus h. Often, K is set to 0.5 (for detecting one-
sigma shifts in the mean) and h is set to 5. 

5. Usually, the starting value for SLi and SHi is zero. Occasionally, however, a “fast initial 
response” (FIR) value of h/2 is used. 



Control Charts for Process Means (Simulation)  290-5 

EWMA Chart Limits 
The lower and upper control limits for the exponentially weighted moving-average (EWMA) 
chart are calculated using the formula 
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where L is a multiplier (usually set to three) and R is smoothing constant.  

 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 

Solve For 

Find (Solve For) 
Solve for either the run length distribution or the sample size. This is the parameter displayed on 
the vertical axis of the plot. 

Note: The search for the sample size may take several minutes to complete. You may find it 
quicker and more informative to solve for run length distribution for a range of sample sizes. 

Run Length 

Run Length Summary 1 and 2 
Select the first and second run length distribution summary value to be reported. 

If a value between 0 and 1 (not inclusive) is entered, the corresponding distribution percentile is 
reported. 

For example, if 0.40 is entered, the run length such that 40% of simulated run lengths are shorter 
is reported. 

Percentile or Average 
When solving for N, the value entered for "Percentile or Average" indicates whether the search is 
based on the average run length or some percentile, such as the median. 

If a value between 0 and 1 (not inclusive) is entered, the corresponding distribution percentile is 
used in the search for N. 

For example, if ARL (Average Run Length) is entered, and "Run Length" is 10, the program will 
search for the smallest N for which the average run length is 10.if 0.40 is entered, and "Run 
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Length" is 10, the program will search for the smallest N for which 40% of simulated run lengths 
are shorter than 10. 

Run Length 
When solving for N, this is run length that is searched for based on the specified "Percentile or 
Average". 

For example, if ARL (Average Run Length) is entered, and "Run Length" is 10, the program will 
search for the smallest N for which the average run length is 10.if 0.40 is entered, and "Run 
Length" is 10, the program will search for the smallest N for which 40% of simulated run lengths 
are shorter than 10. 

Sample Size 

N (Sample Size) 
Enter a value for the sample size, N. This is the number of observations in each sample. This 
sample size is also used when preliminary samples are used. 

When a sample size of one is used, the preliminary sample standard deviation is estimated with 
all the preliminary data jointly. 

You may enter a range such as 2 to 10 by 2 or a list of values separated by commas or blanks. 

You might try entering the same number two or three times to get an idea of the variability in 
your results. For example, you could enter "10 10 10". 

Simulations 

Simulations 
Specify the number of Monte Carlo iterations. Each simulation consists of the full process 
required to obtain a run length. That is, the number of simulations here is the number of run 
lengths that are used to form the run length distribution. 

A 2007 article in Communication in Statistics-Simulation and Computation suggests that 5000 to 
10000 simulations is usually sufficient. For estimating percentiles near 0 or 1, more simulations 
may be needed. 

For searches for N, you may wish to use fewer simulations to determine the ballpark for N and 
then larger numbers of simulations for fine-tuning. 
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Maximum Run Length 
For each simulation, if the run length reaches the maximum run length, the maximum run length 
is used for that simulation. This keeps simulations from going on indefinitely when run lengths 
are extremely long. 

For example, if the average run length is close to the maximum run length, the maximum run 
length should be increased. 

Distributions Tab 

In-Control and Out-of-Control 
Distributions 

In-Control Distributions Specified By 
Specify whether a known mean and standard deviation will be used for the centerline and 
standard deviation for boundaries, or if the centerline and standard deviation for boundaries will 
be based on simulated preliminary samples. 

In-Control and Out-of-Control 
Distributions - Known 

In-Control Mean (Center Line) 
This is the centerline mean from which boundaries and the in-control standard deviation are 
based. 

In-Control Standard Deviation 
This is an assumed known standard deviation from which the boundaries are calculated. 

In-Control and Out-of-Control 
Distributions – Preliminary Samples 

In-Control Distribution 
This is the distribution from which in-control preliminary samples are simulated. The mean and 
standard deviation of the in-control samples are used to define the centerline and the control 
boundaries for that simulation. 

The parameters of the distribution can be specified using numbers or letters. If letters are used, 
their values are specified in the boxes below. The value "M0" is reserved for the value of the 
mean under the null hypothesis. 

M0 (In-Control Mean) 
This is the mean of the in-control distribution. Preliminary samples are simulated based on a 
distribution with this mean. 

These values are substituted for the "M0" in the distribution specification given above. 

You can enter a list of values using the syntax 0 2 3 or 0 to 3 by 1. 

Note that whether "M0" is the mean of the simulated distribution depends on the formula you 
have entered. For example, "N(M0 S)" does have M0 as its mean, 
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but "N(M0 S)-N(M0 S)" has a mean of zero. 

Number of Preliminary Samples 
For each run length simulation, this is the number of samples that are simulated to determine the 
centerline and standard deviation for the control chart. 

For example, if a control chart uses 50 samples with N = 5 to establish the in control centerline 
and standard deviation, 50 should be entered here. The program will generate 50 samples of size 
5 each, obtain means and standard deviations (or ranges) for each sample and use those to 
produce a centerline and standard deviation estimate as a basis for the simulated control chart. 

Commonly recommended numbers of in-control preliminary samples are 30, 50, and 60. 

Varying this number allows one to see the effect on the distribution of run lengths. 

Standard Deviation Estimation Method 
Specify whether the overall control chart standard deviation for each simulation is to be estimated 
from the ranges of the preliminary samples or the standard deviations of the preliminary samples. 

If N is one, then this selection is ignored and the standard deviation is calculated based on all the 
preliminary samples jointly. 

In-Control and Out-of-Control 
Distributions – Out-of-Control 

Out-of-Control Distribution 
This is the distribution from which out-of-control samples are simulated. 

The parameters of the distribution can be specified using numbers or letters. If letters are used, 
their values are specified in the boxes below. The value "M1" is reserved for the value of the 
mean under the alternative hypothesis. 

M1 (Out-of-Control Mean) 
This is the mean of the out-of-control distribution. Out-of-control samples are simulated based on 
a distribution with this mean. 

These values are substituted for the "M1" in the distribution specification given above. 

You can enter a list of values using the syntax 0 2 3 or 0 to 3 by 1. 

Note that whether "M1" is the mean of the simulated distribution depends on the formula you 
have entered. For example, "N(M1 S)" does have M1 as its mean, but "N(M1 S)-N(M1 S)" has a 
mean of zero. 

In-Control and Out-of-Control 
Distributions – S and Other 
Parameters 

Parameter Values (S, A, B, C) 
Enter the numeric value(s) of parameter listed above. These values are substituted for the 
corresponding letter in the distribution specifications. 

You can enter a list of values using syntax such as 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter. 
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Tests Tab 
Include Tests 
Specify whether to include this test in the Reports and Plots. The specific options for each test are 
specified below. 

Shewhart (Xbar) Options 

Use Z-Multiplier or Probability 
Specify whether the Z-multiplier will be input directly or calculated based on the two-sided 
probability. 

The Z-multiplier is the value of Z in the Shewhart Xbar chart formula for the limits: 

meanline +/- Z * SDmean 

Z-Multiplier 
The Z-multiplier is the value of Z in the Shewhart Xbar chart formula for the limits: 

meanline +/- Z * SDmean 

Two-Sided Probability 
This probability is used to calculate the Z-multiplier to create the Shewhart limits. 

The Z-multiplier is the value of Z in the Shewhart Xbar chart formula for the limits: 

meanline +/- Z * SDmean 

Cusum and FIR Cusum Options 

K 
K is the value that is subtracted from the z-score in the CUSUM procedure formula. 

H 
H is the out-of-control threshold for the CUSUM procedure. 

Typical choices are 4 and 5. 

FIR 
FIR or Fast Initial Response is a value that may be used to shorten the run lengths of the CUSUM 
procedure. 

FIR is often set to H/2. 

EWMA Options 

R 
R is the weight assigned to the terms of the moving average chart. 

It is sometimes known as lambda or w. 

Values in the range of 0.10 to 0.30 are common. 
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L 
L defines the distance to the boundary. It is essentially a Z-multiplier used to create L-sigma 
limits. 

It is sometimes known as q. 

A typical value is 3. 

Example 1 – Run Length Distribution 
A researcher wishes to examine the run length distribution for a process monitored by a Shewhart 
(Xbar) chart. Six observations are to make up the sample examined at each hour. The in-control 
mean and standard deviation are known to be 5.2 and 3.1, respectively. The researcher would like 
see the run length distribution if the out-of-control mean and standard deviation are 6.2 and 3.1, 
respectively. A Z-Multiplier of 3.0 is to be used in the control chart for the boundaries.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Control Charts for Means (Simulation) procedure window 
by clicking on Quality Control, and then clicking on Control Charts for Means (Simulation). 
You may then make the appropriate entries as listed below, or open Example 1 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Run Length Distribution 
Run Length Summary 1 .......................... ARL (Average Run Length) 
Run Length Summary 2 .......................... MRL (Median Run Length) 
Percentile or Average .............................. Ignored since this is the Find setting 
Run Length .............................................. Ignored since this is the Find setting 
N (Sample Size) ...................................... 6 
Simulations .............................................. 5000 
Maximum Run Length ............................. 5000 

Distributions Tab 
In-Control Distributions Specified By ...... Mean, Standard Deviation Directly 
In-Control Mean ...................................... 5.2 
In-Control Standard Deviation ................. 3.1 
Out-of-Control Distribution ...................... N(M1 S) 
M1 (Out-of-Control Mean) ....................... 6.2 
S .............................................................. 3.1 

Tests Tab 
Shewhart (Xbar) ...................................... Checked 
All Other Tests ........................................ Unchecked 
Use Z-Multiplier or Probability ................. Z-Multiplier 



Control Charts for Process Means (Simulation)  290-11 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Control Charts for a Process Mean 
Shewhart control limits were determined by specifying a centerline mean and standard deviation directly. 
Out-of-Control Distribution (determines size of shift): Normal(M1 S) 

 
 Average Median  In-  In-   Out-of- 
Chart Run Run  Cntrl  Cntrl   Cntrl 
Type Length Length N Mean Z SD LCL UCL Mean M1 S   
Shewhart 72.3 50.0 6 5.20 3.000 3.10 1.40 9.00 6.20 3.10  

  
Notes 
Simulations: 5000. Run Time: 12.16 seconds. 
 
References 
Ryan, T.P. 1989. Statistical Methods for Quality Improvement. Wiley. New York. 
Montgomery, D.C. 1991. Introduction to Statistical Quality Control. Wiley. New York. 
 
Report Definitions 
Average Run Length is the mean of the run lengths across all simulations. 
Median Run Length is the median of the run lengths across all simulations. 
N is the number of units measured in each sample. 
In-control Mean is the assumed known value of the center line of the control chart. 
Z is the Z-multiplier which corresponds to the two-sided probability of a single sample mean outside the 
   control limits. 
In-control SD is the assumed known standard deviation that is used in the calculation of limits. 
LCL and UCL are the lower and upper control chart limits, respectively. 
Out-of-Control Mean (M1) is the mean of the distribution from which out-of-control samples are drawn. It's 
   difference from the Mean Line is the shift to detect. 
Other parameters, often S (standard deviation), define the distribution from which out-of-control samples are 
   drawn. 
 
Summary Statements 
For a Xbar control chart with a mean line at 5.20 and lower and upper Shewhart control limits 
of 1.40 and 9.00, respectively, samples of size 6 from the distribution Normal(M1 S) with mean 
6.20 have an average run length of 72.3 and a median run length of 50.0. These results are 
based on 5000 Monte Carlo samples. 
 
Individual Summaries 
Out-of-Control Distribution (determines size of shift): Normal(M1 S) 
 
 Average Median  In-  In-   Out-of- 
Chart Run Run  Cntrl  Cntrl   Cntrl 
Type Length Length N Mean Z SD LCL UCL Mean M1 S   
Shewhart 72.3 50.0 6 5.20 3.000 3.10 1.40 9.00 6.20 3.10   
 
Average Run Length 95% CI: (70.3, 74.3) 
Median Run Length 95% CI: (48.0, 52.0) 

 
Average Run Length and Percentiles 
Avg 1% 5% 10% 25% 50% 75% 90% 95% 99% 
72.3 1.0 4.0 8.0 21.0 50.0 97.0 170.0 221.0 331.0 
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Plots Section 
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This plot shows the distribution of run lengths of 5000 simulated runs.  

Example 2 – Comparing Tests 
Continuing with the Example 1 parameters, the researchers would like to compare the various 
control chart tests available. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Control Charts for Means (Simulation) procedure window 
by clicking on Quality Control, and then clicking on Control Charts for Means (Simulation). 
You may then make the appropriate entries as listed below, or open Example 2 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Run Length Distribution 
Run Length Summary 1 .......................... ARL (Average Run Length) 
Run Length Summary 2 .......................... MRL (Median Run Length) 
Percentile or Average .............................. Ignored since this is the Find setting 
Run Length .............................................. Ignored since this is the Find setting 
N (Sample Size) ...................................... 6 
Simulations .............................................. 5000 
Maximum Run Length ............................. 5000 
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Distributions Tab 
In-Control Distributions Specified By ...... Mean, Standard Deviation Directly 
In-Control Mean ...................................... 5.2 
In-Control Standard Deviation ................. 3.1 
Out-of-Control Distribution ...................... N(M1 S) 
M1 (Out-of-Control Mean) ....................... 6.2 
S .............................................................. 3.1 

Tests Tab 
All Tests .................................................. Checked 
Use Z-Multiplier or Probability ................. Z-Multiplier 
K .............................................................. 0.5 
H .............................................................. 5 
FIR ........................................................... 2.5 
R .............................................................. 0.25 
L .............................................................. 3 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Control Charts for a Process Mean 
Shewhart control limits were determined by specifying a centerline mean and standard deviation directly. 
Out-of-Control Distribution (determines size of shift): Normal(M1 S) 
Cusum Parameters: K: 0.5, H: 5, FIR: 2.5 
EWMA parameters: R: 0.25, L: 3 
 

 
 Average Median  In-  In-   Out-of- 
Chart Run Run  Cntrl  Cntrl   Cntrl 
Type Length Length N Mean Z SD LCL UCL Mean M1 S   
Shewhart 74.3 53.0 6 5.20 3.000 3.10 1.40 9.00 6.20 3.10   
Cusum 15.6 13.0 6 5.20  3.10   6.20 3.10   
Cus+Shew 14.5 12.0 6 5.20 3.000 3.10 1.40 9.00 6.20 3.10   
FIR Cusum 10.0 7.0 6 5.20  3.10   6.20 3.10   
FIR+Shew 10.0 7.0 6 5.20 3.000 3.10 1.40 9.00 6.20 3.10   
EWMA 17.1 13.0 6 5.20  3.10   6.20 3.10   
EWMA+Shew 16.6 13.0 6 5.20 3.000 3.10 1.40 9.00 6.20 3.10   
  
Notes 
Simulations: 5000. Run Time: 23.22 seconds. 

 

The FIR tests show the process is out-of-control much sooner than the other tests.  
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Example 3 – Validation Using Montgomery 
A table in Montgomery (1991), page 298, gives the average run lengths for a mean shift of one 
standartd deviation to be Cusum (10.4), Cusum with Shewhart (10.20), Cusum with FIR (6.35), 
Cusum with FIR and Shewhart (6.32).  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Control Charts for Means (Simulation) procedure window 
by clicking on Quality Control, and then clicking on Control Charts for Means (Simulation). 
You may then make the appropriate entries as listed below, or open Example 3 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Run Length Distribution 
Run Length Summary 1 .......................... ARL (Average Run Length) 
Run Length Summary 2 .......................... MRL (Median Run Length) 
Percentile or Average .............................. Ignored since this is the Find setting 
Run Length .............................................. Ignored since this is the Find setting 
N (Sample Size) ...................................... 1 
Simulations .............................................. 100000 
Maximum Run Length ............................. 5000 

Distributions Tab 
In-Control Distributions Specified By ...... Mean, Standard Deviation Directly 
In-Control Mean ...................................... 0 
In-Control Standard Deviation ................. 1 
Out-of-Control Distribution ...................... N(M1 S) 
M1 (Out-of-Control Mean) ....................... 1 
S .............................................................. 1 

Tests Tab 
Cusum ..................................................... Checked 
Cusum + Shewhart.................................. Checked 
FIR Cusum .............................................. Checked 
FIR Cusum + Shewhart ........................... Checked 
All Other Tests ........................................ Unchecked 
Use Z-Multiplier or Probability ................. Z-Multiplier 
Z-Multiplier............................................... 3.5 
K .............................................................. 0.5 
H .............................................................. 5 
FIR ........................................................... 2.5 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Control Charts for a Process Mean 
Shewhart control limits were determined by specifying a centerline mean and standard deviation directly. 
Out-of-Control Distribution (determines size of shift): Normal(M1 S) 
Cusum Parameters: K: 0.5, H: 5, FIR: 5 
Cusum Parameters: K: 0.5, H: 5, FIR: 2.5 
 

 
 Average Median  In-  In-   Out-of- 
Chart Run Run  Cntrl  Cntrl   Cntrl 
Type Length Length N Mean Z SD LCL UCL Mean M1 S   
Cusum 10.36 9.00 1 0.00  1.00   1.00 1.00   
Cus+Shew 10.26 9.00 1 0.00 3.500 1.00 -3.50 3.50 1.00 1.00   
FIR Cusum 6.35 5.00 1 0.00  1.00   1.00 1.00   
FIR+Shew 6.33 5.00 1 0.00 3.500 1.00 -3.50 3.50 1.00 1.00   
  
Notes 
Simulations: 100000. Run Time: 22.67 seconds. 

 

The average run lengths are very close to those presented in Montgomery (1991).  
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Chapter 295 

Control Charts for 
Process Variation 
(Simulation) 
Introduction 
This procedure allows you to study the run length distribution of R, S, and S with probability limits 
process control charts using simulation. This procedure can also be used to study charts with two or 
more observations at each sample. The in-control standard deviation can be input directly or a 
specified number of in-control preliminary samples can be simulated based on a user-determined in-
control distribution. This procedure can also be used to determine the necessary sample size to 
obtain a given run length. 

Simulation Details 
If the in-control standard deviation is assumed to be known (standard), the steps to the simulation 
process are as follows (assume a sample consists of n observations). 

1. An out-of-control sample of size n is generated from a normal distribution with the 
specified out-of-control standard deviation. 

2. The standard deviation of the sample is calculated and compared to the control limits. 

3. If the sample results in an out-of-control signal, the sample number is recorded as the run 
length for that simulation. If the sample does not result in an out-of-control signal, return to 
Step 1. 

4. Steps 1 through 3 are repeated until the number of simulations (Nsim) is reached. The result 
is Nsim run lengths. 

5. The average or median or specified percentile of the run length distribution is reported. 

If the in-control standard deviation is to be simulated based on in-control preliminary samples 
(NPrelim), the steps to the simulation process are as follows (assume a sample consists of n 
observations). 

1. NPrelim in-control samples of size n are generated from a normal distribution with 
specified standard deviation of the in-control distribution. 
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2. The in-control standard deviation is calculated based on the NPrelim simulated in-control 
samples. 

3. An out-of-control sample of size n is generated from a normal distribution with the 
specified out-of-control standard deviation. 

4. The standard deviation of the sample is calculated and compared to the control limits. 

5. If the sample results in an out-of-control signal, the sample number is recorded as the run 
length for that simulation. If the sample does not result in an out-of-control signal, return to 
Step 3. 

6. Steps 1 through 5 are repeated until the number of simulations (Nsim) is reached. The result 
is Nsim run lengths. 

7. The average or median or specified percentile of the run length distribution is reported. 

 

Formulas for Constructing Control Charts 
The formula used for each set of control chart limits depends on whether the standard deviation is 
assumed to be a known, standard value, or estimated from in-control preliminary samples. 

 

R Chart Limits 
If the standard deviation is a known, standard value, the lower and upper control limits for the R 
chart are calculated (see Montgomery, 1991) using the formulae 

σσ α 3212 dzdLCL /−−=  

σσ α 3212 dzdUCL /−+=  

where σ/Rd =2   and  σσ /Rd =3 .  

If the limits are to be created from in-control preliminary samples, the lower and upper control 
limits for the R chart are calculated using the formulae 

2
321 d

RdzRLCL /α−−=  

2
321 d

RdzRUCL /α−+=  

The statistic that is compared to the limits at each subgroup is the subgroup range 

R x xi n= −( ) ( )1  

 

S Chart Limits 
If the standard deviation is a known, standard value, the lower and upper control limits for the S 
chart are calculated (see Montgomery, 1991) using the formulae 
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If the limits are to be created from in-control preliminary samples, the lower and upper control 
limits for the S chart are calculated using the formulae 
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The statistic that is compared to the limits at each subgroup is the subgroup standard deviation 
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S Chart with Probability Limits 
If the standard deviation is a known, standard value, the lower and upper control limits for the S 
chart with probability limits are calculated (see Ryan, 1989) using the formulae 
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If the limits are to be created from in-control preliminary samples, the lower and upper control 
limits for the S chart with probability limits are calculated using the formulae 
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The statistic that is compared to the limits at each subgroup is the same as that of the previous S 
Chart, namely, the subgroup standard deviation 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 

Solve For 

Find (Solve For) 
Solve for either the run length distribution or the sample size. This is the parameter displayed on 
the vertical axis of the plot. 

Note: The search for the sample size may take several minutes to complete. You may find it 
quicker and more informative to solve for run length distribution for a range of sample sizes. 

Run Length 

Run Length Summary 1 and 2 
Select the first and second run length distribution summary value to be reported. 

If a value between 0 and 1 (not inclusive) is entered, the corresponding distribution percentile is 
reported. 

For example, if 0.40 is entered, the run length such that 40% of simulated run lengths are shorter 
is reported. 
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Percentile or Average 
When solving for N, the value entered for "Percentile or Average" indicates whether the search is 
based on the average run length or some percentile, such as the median. 

If a value between 0 and 1 (not inclusive) is entered, the corresponding distribution percentile is 
used in the search for N. 

For example, if ARL (Average Run Length) is entered, and "Run Length" is 10, the program will 
search for the smallest N for which the average run length is 10.if 0.40 is entered, and "Run 
Length" is 10, the program will search for the smallest N for which 40% of simulated run lengths 
are shorter than 10. 

Run Length 
When solving for N, this is run length that is searched for based on the specified "Percentile or 
Average". 

For example, if ARL (Average Run Length) is entered, and "Run Length" is 10, the program will 
search for the smallest N for which the average run length is 10.if 0.40 is entered, and "Run 
Length" is 10, the program will search for the smallest N for which 40% of simulated run lengths 
are shorter than 10. 

Sample Size 

N (Sample Size) 
Enter a value for the sample size, N. This is the number of observations in each sample. This 
sample size is also used when preliminary samples are used. 

When a sample size of one is used, the preliminary sample standard deviation is estimated with 
all the preliminary data jointly. 

You may enter a range such as 2 to 10 by 2 or a list of values separated by commas or blanks. 

You might try entering the same number two or three times to get an idea of the variability in 
your results. For example, you could enter "10 10 10". 

Simulations 

Simulations 
Specify the number of Monte Carlo iterations. Each simulation consists of the full process 
required to obtain a run length. That is, the number of simulations here is the number of run 
lengths that are used to form the run length distribution. 

A 2007 article in Communication in Statistics-Simulation and Computation suggests that 5000 to 
10000 simulations is usually sufficient. For estimating percentiles near 0 or 1, more simulations 
may be needed. 

For searches for N, you may wish to use fewer simulations to determine the ballpark for N and 
then larger numbers of simulations for fine-tuning. 
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Maximum Run Length 
For each simulation, if the run length reaches the maximum run length, the maximum run length 
is used for that simulation. This keeps simulations from going on indefinitely when run lengths 
are extremely long. 

For example, if the average run length is close to the maximum run length, the maximum run 
length should be increased. 

Distributions, Tests Tab 

In-Control and Out-of-Control 
Distributions 

In-Control Distributions Specified By 
Specify whether a standard known standard deviation will be used for the standard deviation for 
control limits, or if the standard deviation for control limits will be based on simulated 
preliminary samples. 

In-Control and Out-of-Control 
Distributions - Known 

In-Control Standard Deviation 
This is an assumed known standard deviation from which the boundaries are calculated. 

In-Control and Out-of-Control 
Distributions – Preliminary Samples 

In-Control Distribution Standard Deviation 
This is the standard deviation of the normal distribution that is used to simulate preliminary 
samples. 

You can enter a single value or a list of values using the syntax 1 2 3 or 1 to 5 by 1. 

Number of Preliminary Samples 
For each run length simulation, this is the number of samples that are simulated to determine the 
range or standard deviation for calculating the limits of the control chart. 

For example, if a control chart uses 50 samples with N = 5 to establish the in-control standard 
deviation, 50 should be entered here. The program will generate 50 samples of size 5 each, obtain 
standard deviations (or ranges) for each sample and use those to produce a standard deviation (or 
range) estimate as a basis for the simulated control chart. 

Commonly recommended numbers of in-control preliminary samples are 30, 50, and 60. 

Varying this number allows one to see the effect on the distribution of run lengths. 
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In-Control and Out-of-Control 
Distributions – Out-of-Control 

Out-of-Control Standard Deviation 
This is the standard deviation of the out-of-control distribution. Out-of-control samples are 
simulated based on a normal distribution with this standard deviation. 

You can enter a single value or a list of values using the syntax 1 2 3 or 1 to 5 by 1. 

Tests 

Include Tests 
Specify whether to include this test in the Reports and Plots. The specific options for each test are 
specified below. 

Tests – Z or Probability Options 

Specify Probability Using 
For R and S charts, specify whether the Z-multiplier will be input directly or calculated based on 
the probability. 

The Z-multiplier is the value of Z in the chart formula for the limits: 

Rbar +/- Z * SD_Rbar for two-sided R charts, and 

Sbar +/- Z * SD_Sbar for two-sided S charts. 

For S with Probability Limits, if a Z-multiplier is specified, the probability corresponding to the 
Z-multiplier is used to create the limits. 

Z-Multiplier 
The Z-multiplier is the value of Z in the chart formula for the limits: 

Rbar +/- Z * SD_Rbar for two-sided R charts, and 

Sbar +/- Z * SD_Sbar for two-sided S charts. 

For S with Probability Limits, the probability corresponding to the Z-multiplier is used to create 
the limits. 

You can enter a list of values using the syntax 2 3 4 or 2 to 5 by 0.5. 

Probability 
For R and S charts, the probability is used to determine the Z-multiplier for the limits: 

Rbar +/- Z * SD_Rbar for two-sided R charts, and 

Sbar +/- Z * SD_Sbar for two-sided S charts. 

For S with Probability Limits, the probability is used directly to create the limits using the chi-
square distribution. 

For two-sided tests, the probability is divided by two (for each side). 

You can enter a list of values using the syntax 0.001 0.002 0.003 or 0.001 to 0.005 by 0.001. 
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Example 1 – Run Length Distribution 
A researcher wishes to examine the run length distribution for a process monitored by an R chart. 
Ten observations are to make up the sample examined at each hour. The in-control standard 
deviation is known to be 3.8. The researcher would like see the run length distribution if the out-
of-control standard deviation is 4.6. A probability of 0.00135 is to be used in the control chart for 
the boundaries.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Control Charts for Variability (Simulation) procedure 
window by clicking on Quality Control, and then clicking on Control Charts for Variability 
(Simulation). You may then make the appropriate entries as listed below, or open Example 1 by 
going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Run Length Distribution 
Run Length Summary 1 .......................... ARL (Average Run Length) 
Run Length Summary 2 .......................... MRL (Median Run Length) 
Percentile or Average .............................. Ignored since this is the Find setting 
Run Length .............................................. Ignored since this is the Find setting 
N (Sample Size) ...................................... 10 
Simulations .............................................. 5000 
Maximum Run Length ............................. 5000 

Distributions, Tests Tab 
In-Control Distributions Specified By ...... Standard Deviation Directly 
In-Control Standard Deviation ................. 3.8 
Out-of-Control Standard Deviation .......... 4.6 
R .............................................................. Checked 
All Other Tests ........................................ Unchecked 
Two-Sided or Upper Limit Only ............... Upper Limit Only 
Specify Probability Using ........................ Probability 
Probability................................................ 0.00135 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Control Charts for Process Variability 
Control limits were determined by specifying a standard in-control standard deviation directly. 
Out-of-Control Distribution: Normal with Out-of-Control SD 
  
 Average Median  In- One-    Out-of- 
Chart Run Run  Control Sided    Control 
Type Length Length N SD Prob Z LCL UCL SD 
R 22.0 15.0 10 3.8000 0.00135 3.205 0.0000 20.7821 4.6000 
 
Notes 
Simulations: 5000. Run Time: 6.65 seconds. 
 
References 
Ryan, T.P. 1989. Statistical Methods for Quality Improvement. Wiley. New York. 
Montgomery, D.C. 1991. Introduction to Statistical Quality Control. Wiley. New York. 
 
Report Definitions 
Average Run Length is the mean of the run lengths across all simulations. 
Median Run Length is the median of the run lengths across all simulations. 
N is the number of units measured in each sample. 
In-control SD is the assumed known standard value of the standard deviation. 
One-Sided Prob is the probability of a sample range or standard deviation outside the control limits. 
Z is the Z-multiplier which corresponds to the One-sided probability of a single sample range or standard 
   deviation outside the control limits. 
In-control SD is the assumed known standard deviation that is used in the calculation of limits. 
LCL and UCL are the lower and upper control chart limits, respectively. 
Out-of-Control SD is the standard deviation of the normal distribution from which out-of-control samples are 
   drawn. 
 
Summary Statements 
For an R control chart with lower and upper control limits of 0.0000 and 20.7821, respectively, 
samples of size 10 from a normal distribution with standard deviation 4.6000 have an average 
run length of 22.0 and a median run length of 15.0. These results are based on 5000 Monte Carlo 
samples. 
 
Individual Summaries 
Control limits were determined by specifying a standard in-control standard deviation directly. 
Out-of-Control Distribution: Normal with Out-of-Control SD 
 
 Average Median  In- One-    Out-of- 
Chart Run Run  Control Sided    Control 
Type Length Length N SD Prob Z LCL UCL SD 
R 22.0 15.0 10 3.8000 0.00135 3.205 0.0000 20.7821 4.6000 
 
Average Run Length 95% CI: (21.4, 22.6) 
Median Run Length 95% CI: (15.0, 16.0) 
 
Average Run Length and Percentiles 
Avg 1% 5% 10% 25% 50% 75% 90% 95% 99% 
22.0 1.0 2.0 3.0 7.0 15.0 30.0 50.0 66.0 103.0 
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Plots Section 
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This plot shows the distribution of run lengths of 5000 simulated runs.  

Example 2 – Comparing Tests 
Continuing with the Example 1 parameters, the researchers would like to compare the various 
control chart tests available. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Control Charts for Means (Simulation) procedure window 
by clicking on Quality Control, and then clicking on Control Charts for Means (Simulation). 
You may then make the appropriate entries as listed below, or open Example 2 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Run Length Distribution 
Run Length Summary 1 .......................... ARL (Average Run Length) 
Run Length Summary 2 .......................... MRL (Median Run Length) 
Percentile or Average .............................. Ignored since this is the Find setting 
Run Length .............................................. Ignored since this is the Find setting 
N (Sample Size) ...................................... 10 
Simulations .............................................. 5000 
Maximum Run Length ............................. 5000 
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Distributions, Tests Tab 
In-Control Distributions Specified By ...... Standard Deviation Directly 
In-Control Standard Deviation ................. 3.8 
Out-of-Control Standard Deviation .......... 4.6 
All Tests .................................................. Checked 
Two-Sided or Upper Limit Only ............... Upper Limit Only 
Specify Probability Using ........................ Probability 
Probability ............................................... 0.00135 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Control Charts for Process Variability 
Control limits were determined by specifying a standard in-control standard deviation directly. 
Out-of-Control Distribution: Normal with Out-of-Control SD 
 
 Average Median  In- One-    Out-of- 
Chart Run Run  Control Sided    Control 
Type Length Length N SD Prob Z LCL UCL SD 
R 22.2 16.0 10 3.8000 0.00135 3.205 0.0000 20.7821 4.6000 
S 21.5 15.0 10 3.8000 0.00135 3.205 0.0000 6.3436 4.6000 
S Prob 33.7 24.0 10 3.8000 0.00135  0.0000 6.5931 4.6000 
 
Notes 
Simulations: 5000. Run Time: 28.30 seconds. 

 

The R and S control chart tests show the process is out-of-control a bit sooner than the S test with 
probability limits.  

Example 3 – Validation Using Ryan 
Ryan (1989), page 93, indicates that in-control processes with a sample size of 4 at each look will 
have a false signal on average after 222 samples for the S test, while the S with Probability Limits 
test will only give a false positive after 741 (1/0.00135) samples.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Control Charts for Means (Simulation) procedure window 
by clicking on Quality Control, and then clicking on Control Charts for Means (Simulation). 
You may then make the appropriate entries as listed below, or open Example 3 by going to the 
File menu and choosing Open Example Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... Run Length Distribution 
Run Length Summary 1 .......................... ARL (Average Run Length) 
Run Length Summary 2 .......................... MRL (Median Run Length) 
Percentile or Average .............................. Ignored since this is the Find setting 
Run Length .............................................. Ignored since this is the Find setting 
N (Sample Size) ...................................... 4 
Simulations .............................................. 10000 
Maximum Run Length ............................. 5000 

Distributions, Tests Tab 
In-Control Distributions Specified By ...... Standard Deviation Directly 
In-Control Standard Deviation ................. 3.8 
Out-of-Control Standard Deviation .......... 3.8 
R .............................................................. Unchecked 
S and S with Probability Limits ................ Checked 
Two-Sided or Upper Limit Only ............... Upper Limit Only 
Specify Probability Using ........................ Probability 
Probability................................................ 0.00135 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Control Charts for Process Variability 
Control limits were determined by specifying a standard in-control standard deviation directly. 
Out-of-Control Distribution: Normal with Out-of-Control SD 
 

 Average Median  In- One-    Out-of- 
Chart Run Run  Control Sided    Control 
Type Length Length N SD Prob Z LCL UCL SD 
S 221.7 152.0 4 3.8000 0.00135 3.205 0.0000 7.9334 3.8000 
S Prob 737.3 501.0 4 3.8000 0.00135  0.0000 8.6738 3.8000 
  
Notes 
Simulations: 10000. Run Time: 3.65 minutes. 
 

The average run lengths are very close to those presented in Ryan (1989).  
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Chapter 400 

Inequality Tests 
for One Mean  
Introduction 
The one-sample t-test is used to test whether the mean of a population is greater than, less than, or 
not equal to a specific value. Because the t distribution is used to calculate critical values for the 
test, this test is often called the one-sample t-test. If the standard deviation is known, the normal 
distribution is used instead of the t distribution and the test is officially known as the z test. 

When the data are differences between paired values, this test is known as the paired t-test. 

This module also calculates the power of the nonparametric analog of the t-test, the Wilcoxon test.  

Test Procedure 
1.  Find the critical value. Assume that the true mean is M0. Choose a value Ta  so that the 

probability of rejecting H0  when H0  is true is equal to a specified value called α . Using 
the t distribution, select Ta  so that ( )Pr t Ta> = α . This value is found using a t 
probability table or a computer program (like PASS).  

2. Select a sample of n items from the population and compute the t statistic. Call this 
value T. If T  reject the null hypothesis that the mean equals M0 in favor of an 
alternative hypothesis that the mean equals M1 where M1 > M0.  

Ta>

Following is a specific example. Suppose we want to test the hypothesis that a variable, X, has a 
mean of 100 versus the alternative hypothesis that the mean is greater than 100. Suppose that 
previous studies have shown that the standard deviation, σ , is 40. A random sample of 100 
individuals is used.  

We first compute the critical value, T . The value of  that yields a Ta α  = 0.05 is 106.6. If the mean 
computed from a sample is greater than 106.6, reject the hypothesis that the mean is 100. 
Otherwise, do not reject the hypothesis. We call the region greater than 106.6 the Rejection Region 
and values less than or equal to 106.6 the Acceptance Region of the significance test. 
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Now suppose that you want to compute the power of this testing procedure. In order to compute 
the power, we must specify an alternative 
value for the mean. We decide to compute 
the power if the true mean were 110. Figure 
2 shows how to compute the power in this 
case. 

Figure 1 - Finding Alpha 

 

The power is the probability of rejecting  
when the true mean is 110. Since we reject 

 when the calculated mean is greater than 
106.6, the probability of a Type-II error 
(called 

H0

H0

β ) is given by the dark, shaded area 
of the second graph. This value is 0.196. The 
power is equal to 1 - β  or 0.804. 

 

 

 

 

Note that there are six parameters that may 
be varied in this situation: two means, 
standard deviation, alpha, beta, and the 
sample size. 

Figure 2 - Finding Beta 

 



Inequality Tests for One Mean  400-3 

Assumptions 
This section describes the assumptions that are made when you use one of these tests. The key 
assumption relates to normality or non-normality of the data. One of the reasons for the 
popularity of the t-test is its robustness in the face of assumption violation. However, if an 
assumption is not met even approximately, the significance levels and the power of the t-test are 
invalidated. Unfortunately, in practice it often happens that several assumptions are not met. This 
makes matters even worse! Hence, take the steps to check the assumptions before you make 
important decisions based on these tests. 

One-Sample T-Test Assumptions 
The assumptions of the one-sample t-test are: 

1. The data are continuous (not discrete). 

2. The data follow the normal probability distribution. 

3. The sample is a simple random sample from its population. Each individual in the 
population has an equal probability of being selected in the sample.  

Paired T-Test Assumptions 
The assumptions of the paired t-test are:  

1. The data are continuous (not discrete). 

2. The data, i.e., the differences for the matched-pairs, follow a normal probability 
distribution. 

3. The sample of pairs is a simple random sample from its population. Each individual in 
the population has an equal probability of being selected in the sample.  

Wilcoxon Signed-Rank Test Assumptions 
The assumptions of the Wilcoxon signed-rank test are as follows (note that the difference is 
between a data value and the hypothesized median or between the two data values of a pair):  

1. The differences are continuous (not discrete). 

2. The distribution of each difference is symmetric. 

3. The differences are mutually independent. 

4. The differences all have the same median. 

5. The measurement scale is at least interval. 

Limitations 
There are few limitations when using these tests. Sample sizes may range from a few to several 
hundred. If your data are discrete with at least five unique values, you can often ignore the 
continuous variable assumption. Perhaps the greatest restriction is that your data come from a 
random sample of the population. If you do not have a random sample, your significance levels 
will probably be incorrect. 
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Technical Details 

Standard Deviation Known 
When the standard deviation is known, the power is calculated as follows for a directional 
alternative (one-tailed test) in which M1 > M0.  

1. Find zα  such that , where ( )1− =Φ zα α ( )Φ x  is the area under the standardized normal 
curve to the left of x. 

2. Calculate: aX = M0 z
n

+ α
σ

. 

3. Calculate: a
az = X - M1

n
σ . 

4. Power = . ( )1− Φ za

Standard Deviation Unknown 
When the standard deviation is unknown, the power is calculated as follows for a directional 
alternative (one-tailed test) in which M1 > M0.  

1. Find tα  such that , where ( )1− =T tdf α α ( )T tdf α  is the area under a central-t curve to 
the left of x and df = n - 1. 

2. Calculate: x = M0 + t
n

.a α
σ

 

3. Calculate the noncentrality parameter: λ σ= M1 M0

n

.−
 

4. Calculate: a
at = x - M1

n

+σ λ . 

5. Calculate: Power = , where ( )1− ′T tdf a,λ ( )′T xdf ,λ  is the area under a noncentral-t curve 
with degrees of freedom df and noncentrality parameter λ  to the left of x. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Power and Beta or N. 

Select N when you want to determine the sample size needed to achieve a given power and alpha 
error level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  
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Sample Size 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study. This value must be an integer greater than one. Note that you may enter a list of values 
using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Effect Size – Means 

Mean0 (Null or Baseline) 
This option specifies one or more values of the mean corresponding to the null hypothesis. If you 
are analyzing a paired t-test, this value should be zero.  

Only the difference between Mean0 and Mean1 is used in the calculations. 

Means1 (Alternative) 
This option specifies one or more values of the mean corresponding to the alternative hypothesis. 
If you are analyzing a paired t-test, this value represents the mean difference that you are 
interested in. 

Only the difference between Mean0 and Mean1 is used in the calculations. 

Effect Size – Standard Deviation 

Standard Deviation 
This option specifies one or more values of the standard deviation. This must be a positive value. 
Be sure to use the standard deviation of X and not the standard deviation of the mean (the 
standard error). 

When this value is not known, you must supply an estimate of it. PASS includes a special module 
for estimating the standard deviation. This module may be loaded by pressing the SD button. 
Refer to the Standard Deviation Estimator chapter for further details. 

Known Standard Deviation 
This option specifies whether the standard deviation (sigma) is known or unknown. In almost all 
experimental situations, the standard deviation is not known. However, great calculation 
efficiencies are obtained if the standard deviation is assumed to be known.  

When this box is checked, the program performs its calculations assuming that the standard 
deviation is known. This results in the use of the normal distribution in all probability 
calculations. Calculations using this option will be much faster than for the unknown standard 
deviation case. The results for either case will be close when the sample size is over 30. 

When this box is not checked, the program assumes that the standard deviation is not known and 
will be estimated from the data when the t-test is run. This results in probability calculations 
using the noncentral-t distribution. This distribution requires a lot more calculations than does the 
normal distribution. 

The calculation speed comes into play whenever the Find option is set to something besides Beta. 
In these cases, the program uses a special searching algorithm which requires numerous 
iterations. You will note a real difference in calculation speed depending on whether this option is 
checked. 
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A reasonable strategy would be to leave this option checked while you are experimenting with the 
parameters and then turn it off when you are ready for your final results. 

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always : Mean0 = Mean1. H0

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical.  

Possible selections are: 

• Ha: Mean0 <> Mean1 
This is the most common selection. It yields the two-tailed t-test. Use this option when you 
are testing whether the means are different but you do not want to specify beforehand which 
mean is larger. Many scientific journals require two-tailed tests. 

• Ha: Mean0 < Mean1 
This option yields a one-tailed t-test. Use it when you are only interested in the case in which 
Mean1 is greater than Mean0. 

• Ha: Mean0 > Mean1 
This options yields a one-tailed t-test. Use it when you are only interested in the case in 
which Mean1 is less than Mean0. 

Nonparametric Adjustment 
This option makes appropriate sample size adjustments for the Wilcoxon test. Results by Al-
Sunduqchi and Guenther (1990) indicate that power calculations for the Wilcoxon test may be 
made using the standard t-test formulations with a simple adjustment to the sample size. The size 
of the adjustment depends upon the actual distribution of the data. They give sample size 
adjustment factors for four distributions. These are 1 for the uniform distribution, 2/3 for the 
double exponential distribution, 9  for the logistic distribution, and 2/ π π / 3  for the normal 
distribution.  

The options are as follows: 

• Ignore 
Do not make a Wilcoxon adjustment. This indicates that you want to analyze a t-test, not the 
Wilcoxon test. 

• Uniform 
Make the Wilcoxon sample size adjustment assuming the uniform distribution. Since the 
factor is one, this option performs the same as Ignore. It is included for completeness. 

• Double Exponential 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the double 
exponential distribution. 
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• Logistic 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the logistic 
distribution. 

• Normal 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the normal 
distribution. 

Population Size 
This is the number of subjects in the population. Usually, you assume that samples are drawn 
from a very large (infinite) population. Occasionally, however, situations arise in which the 
population of interest is of limited size. In these cases, appropriate adjustments must be made. 

When a finite population size is specified, the standard deviation is reduced according to the 
formula:  

σ σ1
2 21= n

N
−⎛

⎝⎜
⎞
⎠⎟

 

where n is the sample size, N is the population size, σ  is the original standard deviation, and σ1  
is the new standard deviation.  

The quantity n/N is often called the sampling fraction. The quantity 1−⎛
⎝⎜

⎞
⎠⎟

n
N

 is called the finite 

population correction factor. 

Example 1 – Power after a Study 
This example will cover the situation in which you are calculating the power of a t-test on data 
that have already been collected and analyzed. For example, you might be playing the role of a 
reviewer, looking at the power of t-test from a study you are reviewing. In this case, you would 
not vary the means, standard deviation, or sample size since they are given by the experiment. 
Instead, you investigate the power of the significance tests. You might look at the impact of 
different alpha values on the power.   

Suppose an experiment involving 100 individuals yields the following summary statistics: 

Hypothesized mean (M0) 100.0 
Sample mean (M1) 110.0 
Sample standard deviation 40.0 
Sample size 100 

Given the above data, analyze the power of a t-test which tests the hypothesis that the population 
mean is 100 versus the alternative hypothesis that the population mean is 110. Consider the power 
at significance levels 0.01, 0.05, 0.10 and sample sizes 20 to 120 by 20. 

Note that we have set M1 equal to the sample mean. In this case, we are studying the power of the 
t-test for a mean difference the size of that found in the experimental data. 



Inequality Tests for One Mean  400-9 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean procedure window by expanding Means, 
then One Mean, then clicking on Test (Inequality), and then clicking on Tests for One Mean. 
You may then make the appropriate entries as listed below, or open Example 1 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.01 0.05 0.10 
N (Sample Size) ...................................... 20 to 120 by 20 
Mean0 (Null or Baseline)......................... 100 
Mean1 (Alternative) ................................. 110 
S (Standard Deviation) ............................ 40 
Known Standard Deviation ..................... Not checked 
Alternative Hypothesis ............................ Ha: Mean0 ≠ Mean1 
Nonparametric Adjustment ..................... Ignore 
Population Size ....................................... Infinite 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample T-Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
Unknown standard deviation. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.06051 20 0.01000 0.93949 100.0 110.0 40.0 0.250 
0.14435 40 0.01000 0.85565 100.0 110.0 40.0 0.250 
0.24401 60 0.01000 0.75599 100.0 110.0 40.0 0.250 
0.34953 80 0.01000 0.65047 100.0 110.0 40.0 0.250 
0.45316 100 0.01000 0.54684 100.0 110.0 40.0 0.250 
0.54958 120 0.01000 0.45042 100.0 110.0 40.0 0.250 
0.18590 20 0.05000 0.81410 100.0 110.0 40.0 0.250 
0.33831 40 0.05000 0.66169 100.0 110.0 40.0 0.250 
0.47811 60 0.05000 0.52189 100.0 110.0 40.0 0.250 
0.59828 80 0.05000 0.40172 100.0 110.0 40.0 0.250 
0.69698 100 0.05000 0.30302 100.0 110.0 40.0 0.250 
0.77532 120 0.05000 0.22468 100.0 110.0 40.0 0.250 
0.28873 20 0.10000 0.71127 100.0 110.0 40.0 0.250 
0.46435 40 0.10000 0.53565 100.0 110.0 40.0 0.250 
0.60636 60 0.10000 0.39364 100.0 110.0 40.0 0.250 
0.71639 80 0.10000 0.28361 100.0 110.0 40.0 0.250 
0.79900 100 0.10000 0.20100 100.0 110.0 40.0 0.250 
0.85952 120 0.10000 0.14048 100.0 110.0 40.0 0.250 
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Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the size of the sample drawn from the population. To conserve resources, it should be small. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
Mean0 is the value of the population mean under the null hypothesis. It is arbitrary. 
Mean1 is the value of the population mean under the alternative hypothesis. It is relative to Mean0. 
Sigma is the standard deviation of the population. It measures the variability in the population. 
Effect Size, |Mean0-Mean1|/Sigma, is the relative magnitude of the effect under the alternative. 
 
Summary Statements 
A sample size of 20 achieves 6% power to detect a difference of -10.0 between the null 
hypothesis mean of 100.0 and the alternative hypothesis mean of 110.0 with an estimated 
standard deviation of 40.0 and with a significance level (alpha) of 0.01000 using a two-sided 
one-sample t-test. 

 

This report shows the values of each of the parameters, one scenario per row. The values of 
power and beta were calculated from the other parameters. 
The definitions of each column are given in the Report Definitions section. 

Plots Section 
 

                
   

This plot shows the relationship between sample size and power for various values of alpha.  
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Example 2 – Finding the Sample Size 
This example will consider the situation in which you are planning a study that will use the one-
sample t-test and want to determine an appropriate sample size. This example is more subjective 
than the first because you now have to obtain estimates of all the parameters. In the first example, 
these estimates were provided by the data.  

In studying deaths from SIDS (Sudden Infant Death Syndrome), one hypothesis put forward is 
that infants dying of SIDS weigh less than normal at birth. Suppose the average birth weight of 
infants is 3300 grams with a standard deviation of 663 grams. Use an alpha of 0.05 and power of 
both 0.80 and 0.90. How large a sample of SIDS infants will be needed to detect a drop in 
average weight of 25%? Of 10%? Of 5%? Note that applying these percentages to the average 
weight of 3300 yields 2475, 2970, and 3135. 

Although a one-sided hypothesis is being considered, sample size estimates will assume a two-
sided alternative to keep the research design in line with other studies. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean procedure window by expanding Means, 
then One Mean, then clicking on Test (Inequality), and then clicking on Tests for One Mean. 
You may then make the appropriate entries as listed below, or open Example 2 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.80 0.90 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... Ignored since this is the Find setting 
Mean0 (Null or Baseline)......................... 3300 
Mean1 (Alternative) ................................. 2475 2970 3135 
S (Standard Deviation) ............................ 663 
Known Standard Deviation ..................... Not checked 
Alternative Hypothesis ............................ Ha: Mean0 ≠ Mean1 
Nonparametric Adjustment ..................... Ignore 
Population Size ....................................... Infinite 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample T-Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
Unknown standard deviation. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.90307 9 0.05000 0.09693 3300.0 2475.0 663.0 1.244 
0.85339 8 0.05000 0.14661 3300.0 2475.0 663.0 1.244 
0.90409 45 0.05000 0.09591 3300.0 2970.0 663.0 0.498 
0.80426 34 0.05000 0.19574 3300.0 2970.0 663.0 0.498 
0.90070 172 0.05000 0.09930 3300.0 3135.0 663.0 0.249 
0.80105 129 0.05000 0.19895 3300.0 3135.0 663.0 0.249 

 

This report shows the values of each of the parameters, one scenario per row. Since there were 
three values of Mean1 and two values of beta, there are a total of six rows in the report.  
We were solving for the sample size, N. Notice that the increase in sample size seems to be most 
directly related to the difference between the two means. The difference in beta values does not 
seem to be as influential, especially at the smaller sample sizes. 

Note that even though we set the beta values at 0.1 and 0.2, these are not the beta values that were 
achieved. This happens because N can only take on integer values. The program selects the first 
value of N that gives at least the values of alpha and beta that were desired. 

Example 3 – Finding the Minimum Detectable Difference 
This example will consider the situation in which you want to determine how small of a 
difference between the two means can be detected by the t-test with specified values of the other 
parameters.  

Continuing with the previous example, suppose about 50 SIDS deaths occur in a particular area 
per year. Using 50 as the sample size, 0.05 as alpha, and 0.20 as beta, how large of a difference 
between the means is detectable? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean procedure window by expanding Means, 
then One Mean, then clicking on Test (Inequality), and then clicking on Tests for One Mean. 
You may then make the appropriate entries as listed below, or open Example 3 by going to the 
File menu and choosing Open Example Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... Mean1 (Search<Mean0) 
Power ...................................................... 0.80 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... 50 
Mean0 (Null or Baseline)......................... 3300 
Mean1 (Alternative) ................................. Ignored since this is the Find setting 
S (Standard Deviation) ............................ 663 
Known Standard Deviation ..................... Not checked 
Alternative Hypothesis ............................ Ha: Mean0 ≠ Mean1 
Nonparametric Adjustment ..................... Ignore 
Population Size ....................................... Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample T-Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
Unknown standard deviation. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.80000 50 0.05000 0.20000 3300.0 3032.0 663.0 0.404 

 

With a sample of 50, a difference of 3300 - 3032 = 268 would be detectable. This difference 
represents about an 8% decrease in weight.  

Example 4 – Paired T-Test 
Usually, a researcher designs a study to compare two or more groups of subjects, so the one 
sample case described in this chapter occurs infrequently. However, there is a popular research 
design that does lead to the single mean test: paired observations.  

For example, suppose researchers want to study the impact of an exercise program on the 
individual’s weight. To do so they randomly select N individuals, weigh them, put them through 
the exercise program, and weigh them again. The variable of interest is not their actual weight, 
but how much their weight changed.  

In this design, the data are analyzed using a one-sample t-test on the differences between the 
paired observations. The null hypothesis is that the average difference is zero. The alternative 
hypothesis is that the average difference is some nonzero value. 

To study the impact of an exercise program on weight loss, the researchers decide to conduct a 
study that will be analyzed using the paired t-test. A sample of individuals will be weighed before 
and after a specified exercise program that will last three months. The difference in their weights 
will be analyzed. 
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Past experiments of this type have had standard deviations in the range of 10 to 15 pounds. The 
researcher wants to detect a difference of 5 pounds or more. Alpha values of 0.01 and 0.05 will be 
tried. Beta is set to 0.20 so that the power is 80%. How large of a sample must the researchers 
take? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean procedure window by expanding Means, 
then One Mean, then clicking on Test (Inequality), and then clicking on Tests for One Mean. 
You may then make the appropriate entries as listed below, or open Example 4 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.80 
Alpha ....................................................... 0.01 0.05 
N (Sample Size) ...................................... Ignored since this is the Find setting. 
Mean0 (Null or Baseline) ......................... 0 
Mean1 (Alternative) ................................. -5 
S (Standard Deviation) ............................ 10 12.5 15 
Known Standard Deviation ...................... Not checked 
Alternative Hypothesis ............................ Ha: Mean0 ≠ Mean1 
Nonparametric Adjustment ...................... Ignore 
Population Size ....................................... Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results for One-Sample T-Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
Unknown standard deviation. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.80939 51 0.01000 0.19061 0.0 -5.0 10.0 0.500 
0.80778 34 0.05000 0.19222 0.0 -5.0 10.0 0.500 
0.80434 77 0.01000 0.19566 0.0 -5.0 12.5 0.400 
0.80779 52 0.05000 0.19221 0.0 -5.0 12.5 0.400 
0.80252 109 0.01000 0.19748 0.0 -5.0 15.0 0.333 
0.80230 73 0.05000 0.19770 0.0 -5.0 15.0 0.333 
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N vs S by Alpha
Mean0=0.0 Mean1=-5.0 Power=0.80 T Test

S

N

10 11 12 13 14 15
30

50

70

90

110

Alpha
0.01
0.05

 
 

The report shows the values of each of the parameters, one scenario per row. We were solving for 
the sample size, N.  
Note that depending on our choice of assumptions, the sample size ranges from 34 to 109. Hence, 
the researchers have to make a careful determination of which standard deviation and significance 
level should be used. 

Example 5 – Wilcoxon Test 
The Wilcoxon test, a nonparametric analog of the paired comparison t-test, is recommended when 
the distribution of the data is symmetrical, but not normal. A study by Al-Sunduqchi (1990) 
showed that sample size and power calculations for the Wilcoxon test can be made using the 
standard t-test results with a simple adjustment to the sample size.  

Suppose the researchers in Example 4 want to compare sample size requirements of the t-test 
with those of the Wilcoxon test. They would use the same values, only this time the 
Nonparametric Adjustment would be set to double exponential. The double exponential was 
selected because it requires the largest adjustment of the distributions available in PASS and they 
wanted to know what the largest adjustment was. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean procedure window by expanding Means, 
then One Mean, then clicking on Test (Inequality), and then clicking on Tests for One Mean. 
You may then make the appropriate entries as listed below, or open Example 5 by going to the 
File menu and choosing Open Example Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.80 
Alpha ....................................................... 0.01 0.05 
N (Sample Size) ...................................... Ignored since this is the Find setting. 
Mean0 (Null or Baseline) ......................... 0 
Mean1 (Alternative) ................................. -5 
S (Standard Deviation) ............................ 10 12.5 15 
Known Standard Deviation ...................... Not checked 
Alternative Hypothesis ............................ Ha: Mean0 ≠ Mean1 
Nonparametric Adjustment ...................... Double Exponential 
Population Size ....................................... Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results for Wilcoxon Test (Double Exponential Distribution) 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
Unknown standard deviation. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.80939 34 0.01000 0.19061 0.0 -5.0 10.0 0.500 
0.80778 23 0.05000 0.19222 0.0 -5.0 10.0 0.500 
0.81069 52 0.01000 0.18931 0.0 -5.0 12.5 0.400 
0.80779 35 0.05000 0.19221 0.0 -5.0 12.5 0.400 
0.80252 73 0.01000 0.19748 0.0 -5.0 15.0 0.333 
0.80230 49 0.05000 0.19770 0.0 -5.0 15.0 0.333 
 
 

N vs S by Alpha
Mean0=0.0 Mean1=-5.0 Power=0.80 WC (DE)

S

N

10 11 12 13 14 15
20

31

42

53

64

75

Alpha
0.01
0.05

 
 

If you compare these sample size values with those of Example 4, you will find that these are 
about two-thirds of those required for the t-test. This is the value of the adjustment factor for the 
Wilcoxon test when the underlying distribution is the double exponential.  
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Example 6 – Validation using Zar 
Zar (1984) pages 111-112 presents an example in which Mean0 = 0.0, Mean1 = 1.0, S = 1.25, 
alpha = 0.05, and N = 12. Zar obtains an approximate power of 0.72.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean procedure window by expanding Means, 
then One Mean, then clicking on Test (Inequality), and then clicking on Tests for One Mean. 
You may then make the appropriate entries as listed below, or open Example 6 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting. 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... 12 
Mean0 (Null or Baseline)......................... 0 
Mean1 (Alternative) ................................. 1 
S (Standard Deviation) ............................ 1.25 
Known Standard Deviation ..................... Not checked 
Alternative Hypothesis ............................ Ha: Mean0 ≠ Mean1 
Nonparametric Adjustment ..................... Ignore 
Population Size ....................................... Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample T-Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
Unknown standard deviation. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.71366 12 0.05000 0.28634 0.0 1.0 1.3 0.800 

 

The difference between the power computed by PASS of 0.71366 and the 0.72 computed by Zar 
is mostly due to Zar’s use of an approximation to the noncentral t distribution. 
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Example 7 – Validation using Machin 
Machin, Campbell, Fayers, and Pinol (1997) page 37 presents an example in which Mean0 = 0.0, 
Mean1 = 0.2, S = 1.0, alpha = 0.05, and beta = 0.20. They obtain a sample size of 199. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean procedure window by expanding Means, 
then One Mean, then clicking on Test (Inequality), and then clicking on Tests for One Mean. 
You may then make the appropriate entries as listed below, or open Example 7 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.80 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... Ignored since this is the Find setting 
Mean0 (Null or Baseline) ......................... 0 
Mean1 (Alternative) ................................. 0.2 
S (Standard Deviation) ............................ 1.0 
Known Standard Deviation ...................... Not checked 
Alternative Hypothesis ............................ Ha: Mean0 ≠ Mean1 
Nonparametric Adjustment ...................... Ignore 
Population Size ....................................... Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample T-Test 
Null Hypothesis: Mean0=Mean1     Alternative Hypothesis: Mean0<>Mean1 
Unknown standard deviation. 
       Effect 
Power N Alpha Beta Mean0 Mean1 S Size 
0.80169 199 0.05000 0.19831 0.0 0.2 1.0 0.200 

 

The sample size of 199 matches Machin’s result. 
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Chapter 405 

Inequality Tests 
for One 
Exponential Mean 
Introduction 
This program module designs studies for testing hypotheses about the mean of the exponential 
distribution. Such tests are often used in reliability acceptance testing, also called reliability 
demonstration testing.  

Results are calculated for plans that are time censored or failure censored, as well as for plans 
that use with replacement or without replacement sampling. We adopt the basic methodology 
outlined in Epstein (1960), Juran (1979), Bain and Engelhardt (1991), and Schilling (1982). 

Technical Details 
The test procedures described here make the assumption that lifetimes follow the exponential 
distribution. The density of the exponential distribution is written as 

f t t( ) exp= −⎛
⎝⎜

⎞
⎠⎟

1
θ θ

 

The parameter θ  is interpreted as average failure time, mean time to failure (MTTF), or mean 
time between failures (MTBF). Its reciprocal is the failure rate.  

The reliability, or probability that a unit continues running beyond time t, is 

R t e
t

( ) =
−
θ  

Hypothesis Test 
The relevant statistical hypothesis is H0 0 1:θ θ=  versus the one-sided alternative H1 0 1:θ θ> . Here, 
θ0  represents an acceptable (high) mean life usually set from the point of view of the producer and 
θ1  represents some unacceptable (low) mean life usually set from the point of view of the 
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consumer. The test procedure is to reject the null hypothesis if the observed mean life  is larger 
than a critical value selected to meet the error rate criterion. 

$θ

The error rates are often interpreted in reliability testing as risks. The consumer runs the risk that the 
study will fail to reject products that have a reliability less than they have specified. This consumer 
risk is β . Similarly, the producer runs the risk that the study will reject products that actually meet 
the consumer’s requirements. This producer risk is α .  

Fixed-Failure Sampling Plans 
Fixed failure plans are those in which a specified number of items, n, are observed until a specified 
number of items, , fail. The length of the study  is random. Failed items may, or may not, be 
immediately replaced (with replacement versus without replacement). 

r0 t0

The test statistic is the observed mean life  which is computed using $θ

$θ = =
∑ t

r

i
i all test items

0
 

where  is the elapsed time that the ith item is tested, whether measured until failure or until the 
study is completed. 

ti

For both with-replacement and without-replacement sampling,  follows the two-parameter 
gamma distribution with density 

$θ
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This may be converted to a standard, one-parameter gamma using the transformation  

x r y= 0 /θ  

However, because chi-square tables were more accessible, and because the gamma distribution 
may be transformed to the chi-square distribution, most results in the statistical literature are 
based on the chi-square distribution. That is, 2  is distributed as a chi-square random 
variable with 2  degrees of freedom.  

0r $ /θ θ

0r

Assuming that the testing of all n items begins at the same instant, the expected length of time 
needed to observe the first  failures is r0
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If you choose to solve the without replacement equation for n, you can make use of the 
approximation 

1
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Using the above results, sampling plans that meet the specified producer and consumer risk values 
may be found using the result (see Epstein (1960) page 437) that  is the smallest integer such that r0

χ
χ

θ
θ

α

β

,

,

2
2

1 2
2

1

0

0

0

r

r−

≥  for testing H1 0 1:θ θ>  

and 

χ
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θ
θ

β

α

,

,

2
2

1 2
2

0

1

0

0

r

r−

≥  for testing H1 0 1:θ θ<  

Note that the above formulation depends on  but not n. An appropriate value of n can be found 
by considering . Two options are available. 

r0

( )E t0

1.  The value of n is set (perhaps on economic grounds) and the value of ( )E t0  is calculated. 

2.  The value of ( )E t0  is set and the value of n is calculated. 

Fixed-Time Sampling Plans 
Fixed Time plans refer to those in which a specified number of items n are observed for a fixed 
length of time . The number of items failing r is recorded. Sampling can be with or without 
replacement. The accept/reject decision can be based on r or the observed mean life  which is 
computed using 

t0

$θ

$θ = =
∑ t

r

i
i all test items  

where  is the time that the ith item is being tested, whether measured until failure or until the 
study is completed. 

ti

With Replacement Sampling 
If failed items are immediately replaced with additional items, the distribution of r (and , since 

) follows the Poisson distribution. The probability distribution of r is given by the 
Poisson probability formula 

$θ
$ /θ = nt r0
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Thus, values of n and t  can be found which meet the 0 α  and β  requirements. 

Without Replacement Sampling 
If failed items are not replaced, the distributions of r and  are different and thus the power and 
sample size calculations depend on which statistic will be used. The probability distribution of r is 
given by the binomial formula 

$θ
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where 

p e t= − −1 0 /θ  

Thus, values of n and t  can be found which meet the 0 α  and β  requirements. Note that this 
formulation ignores the actual failure times. 

If  will be used as the test statistic, power calculations must be based on it. Bartholomew (1963) 
gave the following results for the case r > 0. 
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where g(x) is the chi-square density function with 2k degrees of freedom and 
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The above equation is numerically unstable for large values of N, so we use the following 
approximation also given by Bartholomew (1961). This approximation is used when N > 30 or 
when the exact equation cannot be calculated. Bain and Engelhardt (1991)  page 140 suggest that 
this normal approximation can be used when p > 0.5 
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where 

u = −$θ θ
θ

 

p e t= − −1 0 /θ  
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Select Power and Beta when you want to calculate the power of an experiment or test. 

Error Rates 

Power or Beta (Beta is Consumer’s Risk) 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
(consumer’s risk) is the probability of a type-II error, which occurs when a false null hypothesis 
is not rejected. In this procedure, a type-II error occurs when you fail to reject the null hypothesis 
of equal probabilities of the event of interest when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Producer’s Risk) 
This option specifies one or more values for the probability of a type-I error (alpha), also called 
the producer’s risk. A type-I error occurs when you reject the null hypothesis of equal 
probabilities when in fact they are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation. 

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N (Sample Size) 
Enter one or more values for the sample size N, the number of items in the study. Note that the 
sample size is arbitrary for sampling plans that are terminated after a fixed number of failures are 
observed. 

You may enter a range such as 10 to 100 by 10 or a list of values separated by commas or blanks. 

Test 

Alternative Hypothesis 
Specify the alternative hypothesis of the test. Since the null hypothesis is equality (a difference 
between theta0 and theta1 of zero), the alternative is all that needs to be specified. Usually, a one-
tailed option is selected for these designs. In fact, the two-tailed options are only available for 
time terminated experiments. 

Effect Size 

Theta0 (Baseline Mean Life) 
Enter one or more values for the mean life under the null hypothesis. This is sometimes called the 
producer’s mean life. This value is usually scaled in terms of elapsed time such as hours, days, or 
years. Of course, all time values must be on the same time scale. 

Note that the value of theta may be calculated from the estimated probability of failure using the 
relationship 

( )P Failure = − −1 0e t /θ  

so that 

( )( )θ =
−

−
t

P
0

1ln Failure
 

Only positive values are valid. You may enter a range of values such as ‘10 20 30’ or ‘100 to 
1000 by 100.’ 

Because the exponential function is used in the calculations, try to scale the numbers so they are 
less than 100. For example, instead of 720 days, use 7.2 hundreds of days. This will help to avoid 
numerical problems during the calculations. 

Theta1 (Alternative Mean Life) 
Enter one or more values for the mean life under the alternative hypothesis. This is sometimes 
called the consumer’s mean life. This value is usually scaled in terms of elapsed time such as 
hours, days, or years. Of course, all time values must be on the same time scale. 

Note that the value of theta may be calculated from the estimated probability of failure using the 
relationship 

( )P Failure = − −1 0e t /θ  
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so that 

( )( )θ =
−

−
t

P
0

1ln Failure
 

Any positive values are valid. You may enter a range of values such as ‘10 20 30’ or ‘100 to 1000 
by 100.’ 

Because the exponential function is used in the calculations, try to scale the numbers so they are 
less than 100. For example, instead of 720 days, use 7.2 hundreds of days. This will help to avoid 
numerical problems during the calculations. 

Sampling Plan 

Replacement Method 
When failures occur, they may be immediately replaced (With Replacement) with new items or 
not (Without Replacement). One of the assumptions of the exponential distribution is that the 
probability of failure does not depend on the previous running time. That is, it is assumed that 
there is no wear-out. Adopting ‘with replacement’ sampling will shorten the elapsed time of an 
experiment that is failure terminated. 

Termination Criterion 
This option specifies the method used to terminate the study or experiment. There are two basic 
choices: 

• Fixed failures (r) 
Terminate after r failures occur. This is also called failure terminated or Type-II Censoring. 

• Fixed time (t0) 
Terminate after an elapsed time of t0. This is also called time terminated or Type-I Censoring. 
This is the most common. 

In fixed failure sampling, N may be fixed while t0 varies or t0 may be fixed while N varies. All 
that matters is the product of these two quantities. 

In fixed time sampling, two test statistics are available: r and theta-hat. When sampling is without 
replacement, tests based on theta-hat are more powerful (require smaller sample size).  

r (Number of Failures) 
Enter one or more values for the rejection number of the test. If r or more items fail, the null 
hypothesis that Theta0 = Theta1 is rejected in favor of the alternative the Theta0 > Theta1.  

Note that this value is ignored for time terminated experiments, because the appropriate value is 
calculated. This value is also ignored in some situations in failure terminated experiments. 

t0 (Test Duration Time) 
Enter one or more values for the duration of the test. This value may be interpreted as the exact 
duration time, t0, or the expected duration time, E(t0), depending on the Termination Criterion 
and Replacement Method selected. 

These values must be positive and in the same time units as Theta0 and Theta1. 
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E(t0) based on Theta1 
When the experiment is failure terminated, the expected waiting time until r failures are observed, 
E(t0), is calculated. This value depends on the value of theta, the mean life. When checked, E(t0) 
calculations are based on Theta1. When unchecked, E(t0) calculations are based on Theta0. Either 
choice may be reasonable in a given situation. 

Example 1 – Power for Several Sample Sizes 
This example will calculate power for a time terminated, without replacement study in which the 
results will be analyzed using theta-hat. The study will be used to test the alternative hypothesis 
that Theta0 > Theta1, where Theta0 = 2.0 days and Theta1 = 1.0 days. The test duration is 1.0 
days. Funding for the study will allow for a sample size of up to 40 test items. The researchers 
decide to look at sample sizes of 10, 20, 30, and 40. Significance levels of 0.01 and 0.05 will be 
considered.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Exponential Mean procedure window by 
expanding Means, then One Mean, then clicking on Test (Inequality), and then clicking on 
Tests for One Exponential Mean. You may then make the appropriate entries as listed below, or 
open Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.01 0.05 
N (Sample Size) ...................................... 10 to 40 by 10 
Theta0 (Baseline Mean Life) ................... 2 
Theta1 (Alternative Mean Life) ................ 1 
Replacement Method .............................. Without Replacement 
Termination Criterion ............................... Fixed Time using Theta-hat 
t0 (Test Duration Time) ........................... 1 
Alternative Hypothesis ............................ Ha: Theta0 > Theta1 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results 
Test Based on Theta-hat with Fixed Running Time t0 and Without Replacement Sampling.  
H0: Theta = Theta0. Ha: Theta = Theta1 < Theta0. Reject H0 if Theta-hat <= ThetaC. 
  Time   Target Actual Target Actual Theta 
Power N t0 Theta0 Theta1 Alpha Alpha Beta Beta C  
0.21695 10 1.000 2.0 1.0 0.01000 0.01000  0.78305 0.7  
0.45485 20 1.000 2.0 1.0 0.01000 0.01000  0.54515 1.0  
0.67159 30 1.000 2.0 1.0 0.01000 0.01000  0.32841 1.1  
0.80628 40 1.000 2.0 1.0 0.01000 0.01000  0.19372 1.2  
0.46940 10 1.000 2.0 1.0 0.05000 0.05000  0.53060 1.0  
0.71828 20 1.000 2.0 1.0 0.05000 0.05000  0.28172 1.2  
0.86665 30 1.000 2.0 1.0 0.05000 0.05000  0.13335 1.3  
0.93730 40 1.000 2.0 1.0 0.05000 0.05000  0.06270 1.4 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the size of the sample drawn from the population. 
Alpha is the probability of rejecting a true null hypothesis.  
Beta is the probability of accepting a false null hypothesis.  
Theta0 is the Mean Life under the null hypothesis. 
Theta1 is the Mean Life under the alternative hypothesis. 
t0 is the test duration time. It provides the scale for Theta0 and Theta1. 
r is the number of failures. 
 
Summary Statements 
A sample size of 10 achieves 22% power to detect the difference between the null hypothesis 
mean lifetime of 2.0 and the alternative hypothesis mean lifetime of 1.0 at a 0.01000 
significance level (alpha) using a one-sided test based on the elapsed time. Failing items are 
not replaced with new items. The study is terminated when it has run for 1.000 time units. 
 

This report shows the power for each of the scenarios. The critical value, Theta C, is also 
provided. 

Plots Section 
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Example 2 – Validation using Epstein 
Epstein (1960), page 438, presents a table giving values of r necessary to meet risk criteria for 
various values of alpha, beta, theta0, and theta1 for the fixed failures case. Specifically, when 
theta0 = 5, theta1 = 2, beta = 0.05, and alpha = 0.01, 0.05, and 0.10, he finds r = 21, 14, and 11. 
We will now duplicate these results.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Exponential Mean procedure window by 
expanding Means, then One Mean, then clicking on Test (Inequality), and then clicking on 
Tests for One Exponential Mean. You may then make the appropriate entries as listed below, or 
open Example 2 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... r 
Power ...................................................... 0.95 
Alpha ....................................................... 0.01 0.05 0.10 
N (Sample Size) ...................................... Ignored since this is the Find setting 
Theta0 (Baseline Mean Life) ................... 5 
Theta1 (Alternative Mean Life) ................ 2 
Replacement Method .............................. Without Replacement 
Termination Criterion ............................... Fixed Failures, Fixed E(t0) 
t0 (Test Duration Time) ........................... 1 
E(t0) based on Theta1 ............................ Unchecked 
Alternative Hypothesis ............................ Ha: Theta0 > Theta1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results 
Test Based on Fixed Failures r, Fixed Expected Time E(t0), and Without Replacement Sampling.  
H0: Theta = Theta0. Ha: Theta = Theta1 < Theta0. Reject H0 if r >= r0. 
  Time   Target Actual Target Actual 
Power r0 / N E(t0) Theta0 Theta1 Alpha Alpha Beta Beta 
0.95841 21/115 1.000 5.0 2.0 0.01000 0.01000 0.05000 0.04159 
0.95956 14/77 1.000 5.0 2.0 0.05000 0.05000 0.05000 0.04044 
0.96221 11/60 1.000 5.0 2.0 0.10000 0.10000 0.05000 0.03779 
 

PASS has calculated 21, 14, and 11 for r as in Epstein. 

We should note that occasionally our results differ from those of Epstein. We have checked a few 
of these carefully by hand, and, in every case, we have found our results to be correct. 
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Chapter 410 

Inequality Tests 
for One Mean 
(Simulation) 
Introduction 
This procedure allows you to study the power and sample size of several statistical tests of the 
hypothesis that the population mean is equal to a specific value versus the alternative that it is 
greater than, less than, or not equal to that value. The one-sample t-test is commonly used in this 
situation, but other tests have been developed for situations where the data are not normally 
distributed. These additional tests include the Wilcoxon signed-rank test, the sign test, and the 
computer-intensive bootstrap test. When the population follows the exponential distribution, a test 
based on this distribution should be used.  

The t-test assumes that the data are normally distributed. When this assumption does not hold, the t-
test is still used hoping that its robustness will produce accurate results. This procedure allows you 
to study the accuracy of various tests using simulation techniques. A wide variety of distributions 
can be simulated to allow you to assess the impact of various forms of non-normality on each test’s 
accuracy.  

The details of the power analysis of the t-test using analytic techniques are presented in the PASS 
chapter entitled “Inequality Tests for One Mean” and will not be duplicated here. This chapter will 
be confined to power analysis using computer simulation. 

Technical Details 
Computer simulation allows one to estimate the power and significance level that is actually 
achieved by a test procedure in situations that are not mathematically tractable. Computer 
simulation was once limited to mainframe computers. Currently, due to increased computer speeds, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are as follows. 

1. Specify the method by which the test is to be carried out. This includes specifying how the 
test statistic is calculated and how the significance level is specified. 
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2. Generate a random sample, , from the distribution specified by the X X Xn1 2, , ,K
alternative hypothesis. Calculate the test statistic from the simulated data and determine if 
the null hypothesis is accepted or rejected. Each of these samples is used to calculate the 
power of the test. 

3. Generate a random sample, Y Y , from the distribution specified by the Yn1 2, , ,K null 
hypothesis. Calculate the test statistic from the simulated data and determine if the null 
hypothesis is accepted or rejected. Each of these samples is used to calculate the 
significance level of the test. 

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated 
data lead to a rejection of the null hypothesis. The power is the proportion of simulation 
samples in step 2 that lead to rejection. The significance level is the proportion of simulated 
samples in step 3 that lead to rejection. 

Data Distributions 
A wide variety of distributions may be studied. These distributions can vary in skewness, 
elongation, or other features such as bimodality. A detailed discussion of the distributions that may 
be used in the simulation is provided in the chapter ‘Data Simulator’.  

Test Statistics 
This section describes the test statistics that are available in this procedure. 

One-Sample t-Test 
The one-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t-test 
proceeds as follows. 
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and M0 is the value of the mean hypothesized by the null hypothesis. 

The significance of the test statistic is determined by computing the p-value. If this p-value is less 
than a specified level (often 0.05), the null hypothesis is rejected. Otherwise, no conclusion can 
be reached. 
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Wilcoxon Signed-Rank Test 
The Wilcoxon signed-rank test is a popular, nonparametric substitute for the t-test. This test 
assumes that the data follow a symmetric distribution. The test is computed using the following 
steps.  

1. Subtract the hypothesized mean, M0, from each data value. Rank the values according to 
their absolute values. 

2. Compute the sum of the positive ranks, Sp, and the sum of the negative ranks, Sn. The 
test statistic, W, is the minimum of Sp and Sn. 

3. Compute the mean and standard deviation of W using the formulas 

W
i is  =  n(n+ )( n+ )  -  

t t1 2 1
24 48

3∑ ∑-
W  =  n(n+ )

μ
1

4
  and 

respectively, where ti represents the number of times the ith value occurs. 

4. Compute the z value using 

W

W
W s

Wz − μ
=  

For cases when n is less than 38, the significance level is found from a table of exact probabilities 
for the Wilcoxon test. When n is greater than or equal to 38, the significance of the test statistic is 
determined by comparing the z value to a normal probability table. If this p-value is less than a 
specified level (often 0.05), the null hypothesis is rejected. Otherwise, no conclusion can be 
reached. 

Sign Test  
The sign test is popular because it is simple to compute. This test assumes that the data all follow 
the same distribution. The test is computed using the following steps.  

1. Count the number of values strictly greater than M0. Call this value X. 

2. Count the number of values strictly less than M0. Call this value Y. 

3. Set m = X + Y. 

4. Under the null hypothesis, X is distributed as a binomial random variable with a 
proportion of 0.5 and sample size of m.  

The significance of X is calculated using binomial probabilities. 

Bootstrap Test  
The one-sample bootstrap procedure for testing whether the mean is equal to a specific value is 
given in Efron & Tibshirani (1993), pages 224-227. The bootstrap procedure is as follows.  

X1. Compute the mean of the sample. Call it . 

2. Compute the t-value using the standard t-test. The formula for this computation is 

t X M
sX

X

=
− 0
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where M0 is the hypothesized mean. 

3. Draw a random, with-replacement sample of size n from the original X values. Call this 
sample Y Y .  Yn1 2, , ,L

4. Compute the t-value of this bootstrap sample using the formula 

t Y X
sY

Y

=
−

 

5. For a two-tailed test, if t tY x>  then add one to a counter variable, A. 

6. Repeat steps 3 – 5 B times. B may be anywhere from 100 to 10,000. 

7. Compute the p-value of the bootstrap test as (A + 1) / (B + 1) 

8. Steps 1 – 7 complete one simulation iteration. Repeat these steps M times, where M is the 
number of simulations. The power and significance level are equal to the percent of the 
time the p-value is less than the nominal alpha of the test in their respective simulations. 

Note that the bootstrap test is a time-consuming test to analyze, especially if you set B to a value 
much larger than 100.  

Exponential Test 
The exponential distribution is a highly skewed distribution, so it is very different from the 
normal distribution. Thus, the t-test does not work well with exponential data.  

There is an exact test for the mean of a sample drawn from the exponential distribution. It is well 
known that a simple function of the mean of exponential data follows the chi-square distribution. 
This relationship is given in Epstein (1960) as 

2
0 2

2nX
M n~ χ  

This expression can be used to test hypotheses about the value of the mean, M0.  

Standard Deviations 
Care must be used when either the null or alternative distribution is not normal. In these cases, the 
standard deviation is usually not specified directly. For example, you might use a gamma 
distribution with a shape parameter of 1.5 and a mean of 4 as the null distribution and a gamma 
distribution with the same shape parameter and a mean of 5 as the alternative distribution. This 
allows you to compare the two means. However, note that although the shape parameters are 
constant, the standard deviations are not. In cases such as this, the null and alternatives not only 
have different means, but different standard deviations! 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated using the values of the other parameters. 
Under most conditions, you would select either Power or N. 

Select Power when you want to estimate the power for a specific scenario.  

Select N when you want to determine the sample size needed to achieve a given power and alpha 
error level. This option can be very computationally intensive, and may take considerable time to 
complete. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  



410-6  Inequality Tests for One Mean (Simulation) 

Sample Size 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study. This value must be an integer greater than one. Note that you may enter a list of values 
using the syntax 50 100 150 200 250 or 50 to 250 by 50.  

Test 

Test Type 
Specify which test statistic (t-test, Wilcoxon test, sign test, bootstrap test, or exponential test) is to 
be simulated. Although the t-test is the most commonly used test statistic, it is based on 
assumptions that may not be viable in many situations. For your data, you may find that one of 
the other tests is more accurate (actual alpha = target alpha) and more precise (higher power). 

Note that the bootstrap test is computationally intensive, so it can be very slow to evaluate. 

Alternative Hypothesis 
This option specifies the alternative hypothesis, H1. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always H0: Mean = M0. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical.  

Possible selections are: 

• Mean <> M0 
This is the most common selection. It yields a two-tailed test. Use this option when you are 
testing whether the mean is different from a specified value, M0, but you do not want to 
specify beforehand whether it is smaller or larger. Most scientific journals require two-tailed 
tests. 

• Mean < M0 
This option yields a one-tailed test. Use it when you want to test whether the true mean is less 
than M0. 

• Mean > M0 
This option yields a one-tailed test. Use it when you want to test whether the true mean is 
greater than M0. 

Simulations 

Simulations 
This option specifies the number of iterations, M, used in the simulation. Larger numbers of 
iterations result in longer running time and more accurate results. 

The precision of the simulated power estimates can be determined by recognizing that they follow 
the binomial distribution. Thus, confidence intervals may be constructed for power estimates. The 
following table gives an estimate of the precision that is achieved for various simulation sizes 
when the power is either 0.50 or 0.95. The table values are interpreted as follows: a 95% 
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confidence interval of the true power is given by the power reported by the simulation plus and 
minus the ‘Precision’ amount given in the table. 
  

 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
  

Notice that a simulation size of 1000 gives a precision of plus or minus 0.014 when the true 
power is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a 
small amount of additional precision achieved.  

Effect Size 

Distribution Assuming H0 (Null Hypothesis) 
This option specifies the mean and distribution under the null hypothesis, H0. Usually, the mean 
is specified by entering ‘M0’ for the mean parameter in the distribution expression and then 
entering values for the M0 parameter described below. All of the distributions are parameterized 
so that the mean is entered first. For example, if you wanted to test whether the mean of a normal 
distributed variable is five, you could enter N(5, S) or N(M0, S) here. 

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value ‘M0’ is reserved for the value of the mean 
under the null hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,P3,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 
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Finding the Value of the Mean under H0 
The distributions have been parameterized in terms of their means, since this is the parameter 
being tested. The mean of a distribution created as a linear combination of other distributions is 
found by applying the linear combination to the individual means. However, the mean of a 
distribution created by multiplying or dividing other distributions is not necessarily equal to 
applying the same function to the individual means. For example, the mean of 4N(4, 5) + 2N(5, 
6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 4*4*2*5 = 160 (although 
it is close). 

Specifying the Mean for Paired (Matched) Data 
Depending on the formula that is entered, the mean is not necessarily the value of M0. For 
example, a common use of the one-group t-test is to test whether the mean of a set of differences 
is zero. Differences may be specified (ignoring the correlation between paired observations) as 
the difference between two normal distributions. This would be specified as N(M0, S) - N(M0, 
S). The mean of the resulting distribution is M0 – M0 = 0 (not M0). 

Distribution Assuming H1 (Alternative Hypothesis) 
This option specifies the mean and distribution under the alternative hypothesis, H1. That is, this 
is the actual (true) value of the mean at which the power is computed. Usually, the mean is 
specified by entering ‘M1’ for the mean parameter in the distribution expression and then 
entering values for the M1 parameter below. All of the distributions are parameterized so that the 
mean is entered first.  

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value ‘M1’ is reserved for the value of the mean 
under the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,P3,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Finding the Value of the Mean under H1 
The distributions have been parameterized in terms of their means, since this is the parameter 
being tested. The mean of a distribution created as a linear combination of other distributions is 
found by applying the linear combination to the individual means. However, the mean of a 
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distribution created by multiplying or dividing other distributions is not necessarily equal to 
applying the same function to the individual means. For example, the mean of 4N(4, 5) + 2N(5, 
6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 4*4*2*5 = 160 (although 
it is close). 

Specifying the Mean for Paired (Matched) Data 
Depending on the formula that is entered, the mean is not necessarily the value of M1. For 
example, a common use of the one-group t-test is to test whether the mean of a set of differences 
is zero. Differences may be specified (ignoring the correlation between paired observations) as 
the difference between two normal distributions. This would be specified as N(M1, S) - N(M0, 
S). The mean of the resulting distribution is M1 – M0. 

Effect Size – Distribution Parameters 

M0 (Mean|H0) 
These values are substituted for the M0 in the distribution specifications given above. M0 is 
intended to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using syntax such as 0 1 2 3 or 0 to 3 by 1. 

Note that whether M0 is the mean of the simulated distribution depends on the formula you have 
entered. For example, N(M0, S) has a mean of M0, but N(M0, S)-N(M0, S) has a mean of zero. 

M1 (Mean|H1) 
These values are substituted for the M1 in the distribution specifications given above. M1 is 
intended to be the value of the mean hypothesized by the alternative hypothesis, H1. 

You can enter a list of values using syntax such as 0 1 2 3 or 0 to 3 by 1. 

Note that whether M1 is the mean of the simulated distribution depends on the formula you have 
entered. For example, N(M1, S) has a mean of M1, but N(M1, S)-N(M0, S) has a mean of M1 -
M0. 

Parameter Values (S, A, B, C) 
Enter the numeric value(s) of parameter listed above. These values are substituted for the 
corresponding letter in the distribution specifications for H0 and H1. 

You can enter a list of values using syntax such as 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter. 

Iterations Tab 
The Iterations tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the sample size, N, is aborted. 
When the maximum number of iterations is reached without convergence, the sample size is not 
reported. We recommend a value of at least 500. 



410-10  Inequality Tests for One Mean (Simulation) 

Bootstrap Iterations  

Bootstrap Iterations 
Specify the number of iterations used in the bootstrap hypothesis test. This value is only used if 
the bootstrap test is displayed on the reports. The running time of the procedure depends heavily 
on the number of iterations specified here.  

Recommendations by authors of books discussing the bootstrap range from 100 to 10,000. If you 
enter a large (greater than 500) value, the procedure may take several hours to run. 

Example 1 – Power at Various Sample Sizes 
A researcher is planning an experiment to test whether the mean response level to a certain drug 
is significantly different from zero. The researcher wants to use a t-test with an alpha level of 
0.05. He wants to compute the power at various sample sizes from 5 to 40, assuming the true 
mean is one. He assumes that the data are normally distributed with a standard deviation of 2. 
Since this is an exploratory analysis, he sets the number of simulation iterations to 1000.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean (Simulation) procedure window by 
expanding Means, then One Mean, then clicking on Test (Inequality), and then clicking on 
Tests for One Mean (Simulation). You may then make the appropriate entries as listed below, 
or open Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... 5 to 40 by 5 
Distribution|H0 (Null Hypothesis) ............ N(M0 S) 
Distribution|H1 (Alt Hypothesis) .............. N(M1 S) 
M0 (Mean|H0) ......................................... 0 
M1 (Mean|H1) ......................................... 1 
S .............................................................. 2 
Alternative Hypothesis ............................ Mean ≠ M0 
Test Type ................................................ T-Test 
Simulations .............................................. 1000 

Reports Tab 
Show Numeric Report ............................. Checked 
Show Inc’s & 95% C.I.’s .......................... Checked 
Show Definitions ..................................... Checked 
Show Plots .............................................. Checked 
Show Summary Statements.................... 1 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
Test Statistic: T-Test 
 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.138 5 0.0 1.0 0.050 0.050 0.862 0.0 1.0 2.0    
(0.021) [0.117 0.159]   (0.014) [0.036 0.064]      
 
0.293 10 0.0 1.0 0.050 0.061 0.707 0.0 1.0 2.0    
(0.028) [0.265 0.321]   (0.015) [0.046 0.076]      
 
0.437 15 0.0 1.0 0.050 0.058 0.563 0.0 1.0 2.0    
(0.031) [0.406 0.468]   (0.014) [0.044 0.072]      
 
0.582 20 0.0 1.0 0.050 0.058 0.418 0.0 1.0 2.0    
(0.031) [0.551 0.613]   (0.014) [0.044 0.072]      
 
0.643 25 0.0 1.0 0.050 0.048 0.357 0.0 1.0 2.0    
(0.030) [0.613 0.673]   (0.013) [0.035 0.061]      
 
0.772 30 0.0 1.0 0.050 0.042 0.228 0.0 1.0 2.0    
(0.026) [0.746 0.798]   (0.012) [0.030 0.054]      
 
0.806 35 0.0 1.0 0.050 0.054 0.194 0.0 1.0 2.0    
(0.025) [0.781 0.831]   (0.014) [0.040 0.068]      
 
0.872 40 0.0 1.0 0.050 0.044 0.128 0.0 1.0 2.0    
(0.021) [0.851 0.893]   (0.013) [0.031 0.057]      
 
Notes: 
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
Number of Monte Carlo Samples: 1000.   Simulation Run Time: 17.81 seconds. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the size of the sample drawn from the population. 
Mean0 is the value of the mean assuming the null hypothesis. This is the value being tested. 
Mean1 is the actual value of the mean. The procedure tests whether Mean0 = Mean1. 
Target Alpha is the probability of rejecting a true null hypothesis. It is set by the user. 
Actual Alpha is the alpha level that was actually achieved by the experiment.  
Beta is the probability of accepting a false null hypothesis.  

 

This report shows the estimated power for each scenario. The first row shows the parameter 
settings and the estimated power and significance level (Actual Alpha). Note that because these 
are results of a simulation study, the computed power and alpha will vary from run to run.  Thus, 
another report obtained using the same input parameters will be slightly different than the one 
above. 
The second row shows two 95% confidence intervals in brackets: the first for the power and the 
second for the significance level. Half the width of each confidence interval is given in 
parentheses as a fundamental measure of the accuracy of the simulation. As the number of 
simulations is increased, the width of the confidence interval will decrease. 
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Plots Section 
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This plot shows the relationship between sample size and power.  

Example 2 – Finding the Sample Size for Skewed Data 
In studying deaths from SIDS (Sudden Infant Death Syndrome), one hypothesis put forward is 
that infants dying of SIDS weigh less than normal at birth. Suppose the average birth weight of 
infants is 3300 grams with a standard deviation of 663 grams. The researchers decide to examine 
the effect of a skewed distribution on the test used by adding skewness to the simulated data 
using Tukey’s Lambda distribution with a skewness factor of 0.5.  

Using the Data Simulator program, the researchers found that the actual standard deviation using 
the above parameters was almost 800. This occurs because adding skewness changes the standard 
deviation. They found that setting the standard deviation in Tukey’s Lambda distribution to 563 
resulted in a standard deviation in the data of about 663.  

A histogram of 10,000 pseudo-random values from this distribution appears as follows. 
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The researchers want to determine how large a sample of SIDS infants will be needed to detect a 
drop in average weight of 25%? Note that applying this percentage to the average weight of 3300 
yields 2475.Use an alpha of 0.05 and 80% power.  

Although a one-sided hypothesis might be considered, sample size estimates will assume a two-
sided alternative to keep the research design in line with other studies. To decrease the running 
time of this example, the number of simulation iterations is set to 1000. In practice, you would 
probably use a value of about 5000. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean (Simulation) procedure window by 
expanding Means, then One Mean, then clicking on Test (Inequality), and then clicking on 
Tests for One Mean (Simulation). You may then make the appropriate entries as listed below, 
or open Example 2 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.80 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... Ignored since this is the Find setting 
Distribution|H0 (Null Hypothesis) ............ L(M0 S G 0) 
Distribution|H1 (Alt Hypothesis) .............. L(M1 S G 0) 
M0 (Mean|H0) ......................................... 2475 
M1 (Mean|H1) ......................................... 3300 
S .............................................................. 563 
G .............................................................. 0.5 (Note that parameter A was changed to G.) 
Alternative Hypothesis ............................ Mean ≠ M0 
Test Type ................................................ T-Test 
Simulations .............................................. 1000 

Reports Tab 
Show Numeric Report ............................. Checked 
Show Inc’s & 95% C.I.’s .......................... Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results of Search for N 
 

  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.817 6 2475.0 3300.0 0.050 0.073 0.183 2475.0 3300.0 563.0 0.5   
(0.024) [0.793 0.841]   (0.016) [0.057 0.089]      

 
The required sample size was 6. Notice how wide the confidence interval of power is. We re-ran 
this simulation several times and obtained sample sizes of 5, 6, and 7. Note that the actual alpha 
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value is between 0.057 and 0.089, which is definitely greater than 0.05. This shows one of the 
problems of using the t-test with a skewed distribution. 

To be more accurate and yet avoid the long running time of the search for N, a reasonable 
strategy would be to run simulations to obtain the powers using N’s from 4 to 10. The result of 
this study is displayed next. 

Numeric Results of Power Search for Various N 
 

  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.414 4 2475.0 3300.0 0.050 0.093 0.586 2475.0 3300.0 563.0 0.5   
(0.014) [0.400 0.428]   (0.008) [0.085 0.101]      
 
0.645 5 2475.0 3300.0 0.050 0.084 0.355 2475.0 3300.0 563.0 0.5   
(0.013) [0.632 0.658]   (0.008) [0.076 0.091]      
 
0.811 6 2475.0 3300.0 0.050 0.088 0.189 2475.0 3300.0 563.0 0.5   
(0.011) [0.800 0.822]   (0.008) [0.081 0.096]      
 
0.912 7 2475.0 3300.0 0.050 0.089 0.088 2475.0 3300.0 563.0 0.5   
(0.008) [0.905 0.920]   (0.008) [0.081 0.097]      
 
0.960 8 2475.0 3300.0 0.050 0.077 0.040 2475.0 3300.0 563.0 0.5   
(0.005) [0.955 0.966]   (0.007) [0.069 0.084]      
 
0.983 9 2475.0 3300.0 0.050 0.082 0.017 2475.0 3300.0 563.0 0.5   
(0.004) [0.979 0.987]   (0.008) [0.074 0.089]      
 
0.994 10 2475.0 3300.0 0.050 0.079 0.006 2475.0 3300.0 563.0 0.5   
(0.002) [0.992 0.996]   (0.007) [0.071 0.086]      

 
The sample size of 6 appears to meet the design parameters the best. The actual significance level 
still appears to be greater than 0.05. The researchers decide that they must use a smaller value of 
Alpha so that the actual alpha is about 0.05. After some experimentation, they find that setting 
Alpha to 0.025 results in the desired power and significance level. 

Numeric Results with Alpha = 0.025 
 

  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.593 6 2475.0 3300.0 0.025 0.057 0.407 2475.0 3300.0 563.0 0.5   
(0.014) [0.579 0.606]   (0.006) [0.051 0.064]      
 
0.754 7 2475.0 3300.0 0.025 0.058 0.246 2475.0 3300.0 563.0 0.5   
(0.012) [0.742 0.766]   (0.006) [0.051 0.064]      
 
0.862 8 2475.0 3300.0 0.025 0.049 0.138 2475.0 3300.0 563.0 0.5   
(0.010) [0.853 0.872]   (0.006) [0.043 0.055]      
 
0.929 9 2475.0 3300.0 0.025 0.044 0.071 2475.0 3300.0 563.0 0.5   
(0.007) [0.921 0.936]   (0.006) [0.039 0.050]      
 

It appears that a sample size of 8 with a Target Alpha of 0.025 will result in an experimental 
design with the characteristics the researchers wanted. 

Notice that when working with non-normal distributions, you must change both N and the Target 
Alpha to achieve the design you want! 
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Example 3 – Comparative results with Skewed Data 
Continuing with Example2, the researchers want to study the characteristics of various test 
statistics as the amount of skewness is increased. To do this, they let the skewness parameter of 
Tukey’s Lambda distribution vary between 0 and 1. The researchers realize that the standard 
deviation will change as the skewness parameter is increased, but they decide to ignore this 
complication. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean (Simulation) procedure window by 
expanding Means, then One Mean, then clicking on Test (Inequality), and then clicking on 
Tests for One Mean (Simulation). You may then make the appropriate entries as listed below, 
or open Example 3 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... 6 
Distribution|H0 (Null Hypothesis) ............ L(M0 S G 0) 
Distribution|H1 (Alt Hypothesis) .............. L(M1 S G 0) 
M0 (Mean|H0) ......................................... 2475 
M1 (Mean|H1) ......................................... 3300 
S .............................................................. 563 
G .............................................................. 0.0 0.2 0.4 0.6 0.8 1.0 
Alternative Hypothesis ............................ Mean ≠ M0 
Test Type ................................................ T-Test 
Simulations .............................................. 1000 

Report Tab 
Show Comparative Reports .................... Checked 
Show Comparative Plots ......................... Checked 
Include T-Test Results ............................ Checked 
Include Wilcoxon & Sign Test ................. Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Power Comparison for Testing One Mean = Mean0.   Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Tukey(M0 S G 0) 
H1 Distribution: Tukey(M1 S G 0) 
 H0 H1      
 Mean Mean Target T-Test Wilcxn Sign   
N (Mean0) (Mean1) Alpha Power Power Power M0 M1 S G   
6 2475.0 3300.0 0.050 0.822 0.656 0.656 2475.0 3300.0 563.0 0.0   
6 2475.0 3300.0 0.050 0.862 0.744 0.744 2475.0 3300.0 563.0 0.2   
6 2475.0 3300.0 0.050 0.929 0.920 0.920 2475.0 3300.0 563.0 0.4   
6 2475.0 3300.0 0.050 0.957 1.000 1.000 2475.0 3300.0 563.0 0.6   
6 2475.0 3300.0 0.050 0.947 1.000 1.000 2475.0 3300.0 563.0 0.8   
6 2475.0 3300.0 0.050 0.955 1.000 1.000 2475.0 3300.0 563.0 1.0   
 

 
Alpha Comparison for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
 H0 H1      
 Mean Mean Target T-Test Wilcxn Sign   
N (Mean0) (Mean1) Alpha Alpha Alpha Alpha M0 M1 S G   
6 2475.0 3300.0 0.050 0.049 0.031 0.031 2475.0 3300.0 563.0 0.0   
6 2475.0 3300.0 0.050 0.073 0.044 0.044 2475.0 3300.0 563.0 0.2   
6 2475.0 3300.0 0.050 0.075 0.042 0.042 2475.0 3300.0 563.0 0.4   
6 2475.0 3300.0 0.050 0.108 0.065 0.065 2475.0 3300.0 563.0 0.6   
6 2475.0 3300.0 0.050 0.123 0.078 0.078 2475.0 3300.0 563.0 0.8   
6 2475.0 3300.0 0.050 0.176 0.128 0.128 2475.0 3300.0 563.0 1.0   
 
Simulations: 1000. Run Time: 13.20 seconds. 

 
Several interesting trends become apparent from this study. First, for a sample size of 6, the 
power of the Wilcoxon test and the sign test are the same (this is not the case for larger sample 
sizes). The alpha of the t-test decreases as the amount of skewness increases. The alpha of the 
Wilcoxon and sign tests does not increase as rapidly for the non-parametric tests. 

Example 4 – Validation using Zar 
Zar (1984), pages 111-112, presents an example in which Mean0 = 0.0, Mean1 = 1.0, S = 1.25, 
alpha = 0.05, and N = 12. Zar obtains an approximate power of 0.72. We will validate this 
procedure by running this example. To make certain that the results are very accurate, the number 
of simulations will be set to 10,000.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean (Simulation) procedure window by 
expanding Means, then One Mean, then clicking on Test (Inequality), and then clicking on 
Tests for One Mean (Simulation). You may then make the appropriate entries as listed below, 
or open Example 4 by going to the File menu and choosing Open Example Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... 12 
Distribution|H0 (Null Hypothesis) ............ N(M0 S) 
Distribution|H1 (Alt Hypothesis) .............. N(M1 S) 
M0 (Mean|H0) ......................................... 0 
M1 (Mean|H1) ......................................... 1 
S .............................................................. 1.25 
Alternative Hypothesis ............................ Mean ≠ M0 
Test Type ................................................ T-Test 
Simulations .............................................. 10000 

Reports Tab 
Show Numeric Report ............................. Checked 
Show Inc’s & 95% C.I.’s .......................... Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
Test Statistic: T-Test 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.717 12 0.0 1.0 0.050 0.056 0.283 0.0 1.0 1.3    
(0.009) [0.708 0.726]   (0.004) [0.051 0.060]      

 

This simulation obtained a power of 0.717 which rounds to the 0.72 computed by Zar. Note that 
another repetition of this same analysis will probably be slightly different since a different set of 
random numbers will be used. 
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Example 5 – Validation using Machin 
Machin, et. al. (1997), page 37, present an example in which Mean0 = 0.0, Mean1 = 0.2, S = 1.0, 
alpha = 0.05, and beta = 0.20. They obtain a sample size of 199. Because of the long running 
time, we will set the number of simulations at only 200. In practice you would usually set this to a 
value greater than 1000.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean (Simulation) procedure window by 
expanding Means, then One Mean, then clicking on Test (Inequality), and then clicking on 
Tests for One Mean (Simulation). You may then make the appropriate entries as listed below, 
or open Example 5 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.80 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... Ignored since this is the Find setting 
Distribution|H0 (Null Hypothesis) ............ N(M0 S) 
Distribution|H1 (Alt Hypothesis) .............. N(M1 S) 
M0 (Mean|H0) ......................................... 0 
M1 (Mean|H1) ......................................... 0.20 
S .............................................................. 1 
Alternative Hypothesis ............................ Mean ≠ M0 
Test Type ................................................ T-Test 
Simulations .............................................. 200 

Reports Tab 
Show Numeric Report ............................. Checked 
Show Inc’s & 95% C.I.’s .......................... Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
Test Statistic: T-Test 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.785 211 0.0 0.2 0.050 0.045 0.215 0.0 0.2 1.0    
(0.057) [0.728 0.842]   (0.029) [0.016 0.074]      
 
Notes: 
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
Number of Monte Carlo Samples: 200.   Simulation Run Time: 39.83 seconds. 
 

Note that using a simulation size of only 200, the estimated sample size of 211 is still close to the 
exact value of 199. We ran this simulation with 10000 simulations and obtained a sample size of 
199. 

Example 6 – Power of the Wilcoxon Test 
The Wilcoxon nonparametric test was designed for data that do not follow the normal distribution 
but are symmetric. This type of data often occurs when differences between two non-normal 
variables are taken, as in a study that analyzes differences in pre- and post-test scores.  

For this example, suppose the pre-test and the post-test scores are exponentially distributed. Here 
are examples of exponentially-distributed data with means of 4 and 2, respectively. 
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It has been shown that the differences between two identically-distributed variables are 
symmetric. The histogram below on the left shows differences in the null case in which the 
difference is between two exponential variables both with a mean of 4. The histogram below on 
the right shows differences in the alternative case in which the difference is between an 
exponential variable with a mean of 4 and an exponential variable with a mean of 2. Careful 
inspection shows that the second histogram is skewed to the right and the mean difference is 
about 2, not 0. 
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E(4)-E(4) E(4)-E(2)
1500

   
The researchers want to study the power of the two-sided Wilcoxon test when sample sizes of 10, 
20, 30, and 40 are used, and testing is done at the 5% significance level. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean (Simulation) procedure window by 
expanding Means, then One Mean, then clicking on Test (Inequality), and then clicking on 
Tests for One Mean (Simulation). You may then make the appropriate entries as listed below, 
or open Example 6 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... 10 20 30 40 50 
Distribution|H0 (Null Hypothesis) ............ E(M0)-E(M0) 
Distribution|H1 (Alt Hypothesis) .............. E(M0)-E(M1) 
M0 (Mean|H0) ......................................... 4 
M1 (Mean|H1) ......................................... 2 
Alternative Hypothesis ............................ Mean ≠ M0 
Test Type ................................................ Wilcoxon 
Simulations .............................................. 5000 

Reports Tab 
Show Numeric Report ............................. Checked 
Show Inc’s & 95% C.I.’s .......................... Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Expo(M0)-Expo(M0) 
H1 Distribution: Expo(M0)-Expo(M1) 
Test Statistic: Wilcoxon Signed-Rank Test 
 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1     
0.204 10 0.0 2.0 0.050 0.038 0.796 4.0 2.0     
(0.011) [0.193 0.216]   (0.005) [0.032 0.043]      
 
0.480 20 0.0 2.0 0.050 0.051 0.520 4.0 2.0     
(0.014) [0.466 0.494]   (0.006) [0.045 0.057]      
 
0.647 30 0.0 2.0 0.050 0.050 0.353 4.0 2.0     
(0.013) [0.634 0.660]   (0.006) [0.044 0.056]      
 
0.789 40 0.0 2.0 0.050 0.047 0.211 4.0 2.0     
(0.011) [0.778 0.800]   (0.006) [0.041 0.053] 
  
0.863 50 0.0 2.0 0.050 0.049 0.137 4.0 2.0     
(0.010) [0.853 0.872]   (0.006) [0.043 0.055]      
 
Notes: 
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
Number of Monte Carlo Samples: 5000.   Simulation Run Time: 79.70 seconds. 
 

Reasonable power is achieved for N = 50. 

Example 7 – Likert-Scale Data 
Likert-scale data occurs commonly in survey research. A Likert Scale is discrete, ordinal data. It 
usually occurs when a survey poses a question and the respondent must pick among strongly 
agree, agree, undecided, disagree, or strongly disagree. The responses are usually coded as 1, 2, 3, 
4, and 5.  

Likert data can be analyzed in a number of ways. Perhaps the most common is to use a t-test or a 
Wilcoxon test. (Using the Wilcoxon test is invalid in this case because the data are seldom 
distributed symmetrically.) 

In this example, a questionnaire is planned on which Likert-scale questions will be asked. The 
researchers want to study the power and actual significance levels of various sample sizes. They 
decide to look at what happens as the proportion of strongly agree responses is increased beyond 
a perfectly uniform response pattern. They want to compute the power when the strongly agree 
response is twice as likely, four times as likely, and eight times as likely. The sample size is 20, 
alpha is 0.05, and the test is two-sided. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean (Simulation) procedure window by 
expanding Means, then One Mean, then clicking on Test (Inequality), and then clicking on 
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Tests for One Mean (Simulation). You may then make the appropriate entries as listed below, 
or open Example 7 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... 20 
Distribution|H0 (Null Hypothesis) ............ M(M0 1 1 1 1) 
Distribution|H1 (Alt Hypothesis) .............. M(M1 1 1 1 1) 
M0 (Mean|H0) ......................................... 1 
M1 (Mean|H1) ......................................... 2 4 8 
Alternative Hypothesis ............................ Mean ≠ M0 
Test Type ................................................ T-Test 
Simulations .............................................. 5000 

Reports Tab 
Show Numeric Report ............................. Checked 
Show Inc’s & 95% C.I.’s .......................... Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: M(M0 1 1 1 1) 
H1 Distribution: M(M1 1 1 1 1) 
Test Statistic: T-Test 
 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1     
0.167 20 3.0 2.7 0.050 0.050 0.833 1.0 2.0     
(0.010) [0.156 0.177]   (0.006) [0.044 0.056]      
 
0.558 20 3.0 2.3 0.050 0.052 0.442 1.0 4.0     
(0.014) [0.544 0.572]   (0.006) [0.046 0.058]      
 
0.910 20 3.0 1.8 0.050 0.055 0.090 1.0 8.0     
(0.008) [0.902 0.918]   (0.006) [0.048 0.061]      
 
Notes: 
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
Number of Monte Carlo Samples: 5000.   Simulation Run Time: 12.53 seconds. 
 

Note that M0 and M1 are no longer the H0 and H1 means. Now, they represent the relative 
weighting given to the strongly agree response. Under H0, the mean is 3.0. As M1 is increased, 
the mean under H1 changes from 2.7 to 2.3 to 1.8. We note that the actual significance level, 
alpha, remains close to the target value of 0.05. 
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Example 8 – Computing the Power after Completing an 
Experiment 
A group of researchers has completed an experiment designed to determine if a particular 
hormone increases weight gain in rats. The researchers inject 20 rats of the same age with the 
hormone and measure their weight gain after 1 month.  The investigators uses the two-sided 
bootstrap test with alpha = 0.05 and 100 bootstrap samples to determine if the average weight 
gained by these rats (171 grams) is significantly greater than the known average weight gained by 
rats of the same age over the same period of time (155 grams).  Unfortunately, the results indicate 
that there is no significant difference between the two means.  Therefore, the researchers decide 
to compute the power achieved by this test for alternative means ranging from 160 to 190 grams.  
They decide to use 1000 simulations for the study.  For comparative purposes, they also decide to 
look at the power achieved by the bootstrap test in comparison to various other applicable tests.  
Suppose that they know that the standard deviation for weight gain is 33 grams. 

Note that the researchers compute the power for a range of practically significant alternatives.  
The range chosen should represent likely values based on historical evidence. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean (Simulation) procedure window by 
expanding Means, then One Mean, then clicking on Test (Inequality), and then clicking on 
Tests for One Mean (Simulation). You may then make the appropriate entries as listed below, 
or open Example 8 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... 20 
Distribution|H0 (Null Hypothesis) ............ N(M0 S) 
Distribution|H1 (Alt Hypothesis) .............. N(M1 S) 
M0 (Mean|H0) ......................................... 155 
M1 (Mean|H1) ......................................... 160 to 190 by 10 
S .............................................................. 33 
Alternative Hypothesis ............................ Mean ≠ M0 
Test Type ................................................ Bootstrap 
Simulations .............................................. 1000 

Reports Tab 
Show Numeric Report ............................. Checked 
Show Inc’s & 95% C.I.’s .......................... Checked 
Show Comparative Reports .................... Checked 
Show Plots .............................................. Checked 
Show Comparative Plots ......................... Checked 
Include T-Test Results ............................ Checked 
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Reports Tab (continued) 
Include Wilcoxon & Sign Test ................. Checked 
Include Bootstrap Test Results ............... Checked 

Iterations Tab 
Bootstrap Iterations ................................. 100 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results for Power of Bootstrap 
 

Numeric Results for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
Test Statistic: Bootstrap Test (100) 
 
  H0 H1 Target Actual   
Power N Mean0 Mean1 Alpha Alpha Beta M0 M1 S    
0.108 20 155.0 160.0 0.050 0.045 0.892 155.0 160.0 33.0    
(0.019) [0.089 0.127]   (0.013) [0.032 0.058]      
 
0.453 20 155.0 170.0 0.050 0.044 0.547 155.0 170.0 33.0    
(0.031) [0.422 0.484]   (0.013) [0.031 0.057]      
 
0.872 20 155.0 180.0 0.050 0.044 0.128 155.0 180.0 33.0    
(0.021) [0.851 0.893]   (0.013) [0.031 0.057]      
 
0.994 20 155.0 190.0 0.050 0.042 0.006 155.0 190.0 33.0    
(0.005) [0.989 0.999]   (0.012) [0.030 0.054]      
 
Notes: 
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
Number of Monte Carlo Samples: 1000.   Simulation Run Time: 2.99 minutes. 
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Reasonable power is achieved by this test for alternative means larger than 180.  The accuracy of 
these results, of course, depends on the assumption that the data are normally distributed. 
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Comparative Results for Power of Various Tests 
 

Power Comparison for Testing One Mean = Mean0.   Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
 
 H0 H1      
 Mean Mean Target T-Test Wilcoxon Sign Bootstrap  
N (Mean0) (Mean1) Alpha Power Power Power Power  
20 155.0 160.0 0.050 0.105 0.097 0.078 0.108  
20 155.0 170.0 0.050 0.472 0.439 0.312 0.453  
20 155.0 180.0 0.050 0.903 0.882 0.697 0.872  
20 155.0 190.0 0.050 0.997 0.991 0.935 0.994  
Number of Monte Carlo Iterations: 1000.   Simulation Run Time: 2.99 minutes. 
 
 
Alpha Comparison for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Normal(M0 S) 
H1 Distribution: Normal(M1 S) 
 
 H0 H1      
 Mean Mean Target T-Test Wilcoxon Sign Bootstrap  
N (Mean0) (Mean1) Alpha Alpha Alpha Alpha Alpha  
20 155.0 160.0 0.050 0.041 0.045 0.038 0.045  
20 155.0 170.0 0.050 0.045 0.049 0.037 0.044  
20 155.0 180.0 0.050 0.045 0.040 0.033 0.044  
20 155.0 190.0 0.050 0.053 0.058 0.037 0.042  
Number of Monte Carlo Iterations: 1000.   Simulation Run Time: 2.99 minutes. 
 
 

 
 

It is apparent from these results that the bootstrap performs about as well as the t-test and 
nonparametric tests for this design.   
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Example 9 – Comparison of Tests for Exponential Data 
A researcher is designing an experiment.  She believes that the data will follow an exponential 
distribution.  Consequently, she does not believe that the t-test will be useful for her situation.  
She would like to compare several possible tests to determine which would be best for analyzing 
exponential data.  She is interested in determining the power when the alternative mean is twice 
the null mean, which is 10. She wants to find the power achieved for sample sizes ranging from 
20 to 60 with alpha = 0.05.   

The number of simulations will be set at 1000 to expedite the analysis.  Greater accuracy could be 
achieved by setting this number higher.  This example will still take a few minutes to run because 
the bootstrap is included in the report. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean (Simulation) procedure window by 
expanding Means, then One Mean, then clicking on Test (Inequality), and then clicking on 
Tests for One Mean (Simulation). You may then make the appropriate entries as listed below, 
or open Example 9 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... 20 to 60 by 20 
Distribution|H0 (Null Hypothesis) ............ E(M0) 
Distribution|H1 (Alt Hypothesis) .............. E(M1) 
M0 (Mean|H0) ......................................... 10 
M1 (Mean|H1) ......................................... 20 
Alternative Hypothesis ............................ Mean ≠ M0 
Test Type ................................................ T-Test 
Simulations .............................................. 1000 

Reports Tab 
Show Comparative Reports .................... Checked 
Show Comparative Plots ......................... Checked 
Include T-Test Results ............................ Checked 
Include Wilcoxon & Sign Test ................. Checked 
Include Bootstrap Test Results ............... Checked 
Include Exponential Test Results ............ Checked 

Iterations Tab 
Bootstrap Iterations ................................. 100 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Power Comparison for Testing One Mean = Mean0.   Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Expo(M0) 
H1 Distribution: Expo(M1) 
 
 H0 H1      
 Mean Mean Target T-Test Wilcoxon Sign Bootstrap Expo 
N (Mean0) (Mean1) Alpha Power Power Power Power Power 
20 10.0 20.0 0.050 0.626 0.445 0.125 0.427 0.886 
40 10.0 20.0 0.050 0.964 0.790 0.254 0.875 0.989 
60 10.0 20.0 0.050 0.996 0.898 0.271 0.983 0.999 
Number of Monte Carlo Iterations: 1000.   Simulation Run Time: 2.43 minutes. 
 
Alpha Comparison for Testing One Mean = Mean0.    Hypotheses: H0: Mean1=Mean0; H1: Mean1<>Mean0 
H0 Distribution: Expo(M0) 
H1 Distribution: Expo(M1) 
 
 H0 H1      
 Mean Mean Target T-Test Wilcoxon Sign Bootstrap Expo 
N (Mean0) (Mean1) Alpha Alpha Alpha Alpha Alpha Alpha 
20 10.0 20.0 0.050 0.094 0.130 0.202 0.074 0.048 
40 10.0 20.0 0.050 0.057 0.172 0.342 0.046 0.044 
60 10.0 20.0 0.050 0.060 0.268 0.489 0.049 0.049 
Number of Monte Carlo Iterations: 1000.   Simulation Run Time: 2.43 minutes. 
 
 

Power vs N by Test
M0=10.0 M1=20.0 Alpha=0.05 2-Sided T-Test

N

20 30 40 50 60
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As would be expected for exponential data, the exponential test performs the best.  The bootstrap 
test performs nearly as well for larger sample sizes.  The other tests fail to achieve the target 
alpha level.  Note that these simulation results will vary from run to run because the samples 
generated are random.  The researcher must now decide which test to use based on her level of 
confidence in the data being truly exponentially distributed and the size of a sample she can 
afford to take. 
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Chapter 412 

Inequality Tests 
for One Poisson 
Mean 
Introduction 
The Poisson probability law gives the probability distribution of the number of events occurring in a 
specified interval of time or space. The Poisson distribution is often used to fit count data, such as 
the number of defects on an item, the number of accidents at an intersection during a year, the 
number of calls to a call center during an hour, or the number of meteors seen in the evening sky 
during an hour.  

The Poisson distribution is characterized by a single parameter, λ, which is the mean number of 
occurrences during the interval. This procedure calculates the power or sample size for testing 
whether λ is less than or greater than a specified value. This test is usually called the test of the 
Poisson mean.  

The test is described in Ostle (1988) and the power calculation is given in Guenther (1977). 

Test Procedure 
Assume that the mean is 0λ . To test 00 : λλ ≤H  vs. 0: λλ >aH , you would take the following 
steps. 

1.  Find the critical value. Choose the critical value *X  so that the probability of rejecting 

0H  when it is true is equal to α . This is done by solving the following inequality for *X . 
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Note that because X is an integer, equality will seldom occur. Therefore, the minimum 
value of *X  is found for which the inequality holds. 
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reject 0H in favor of aH .  
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The test in the other direction ( 00 : λλ ≥H  vs. 0: λλ <aH ) is computed similarly. 

Assumptions 
The assumptions of the one-sample Poisson test are: 

1. The data are counts (discrete) that follow the Poisson distribution. 

2. The sample is a simple random sample from its population. Each individual in the 
population has an equal probability of being selected in the sample.  

Limitations 
There are few limitations when using these tests. As long as the assumption that the mean 
occurrence rate is constant is met, the test is valid. 

Technical Details 

Computing Power 
The power is computing for a specific alternative value 1λ using the following formula.  
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Computing Sample Size 
Following Guenther (1977), the sample size, n, is found by increasing the value of d in the 
following expression until the left-hand end-point is less than the right-hand end-point and the 
interval contains at least one integer.  
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Here is a percentage point of the chi-square distribution with v  degrees of freedom. 2
;PvΧ

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 
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Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Power and Beta or n. 

Select n when you want to determine the sample size needed to achieve a given power and alpha 
error level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (beta = 0.20) was used for 
power. Now, 0.90 (beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. For one-sided tests such as this, the value of 0.025 is 
recommended for alpha. You may enter a range of values such as 0.025 0.05 0.10 or 0.025 to 0.05 
by 0.005.  

Sample Size 

n (Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study. This value must be an integer greater than one. Note that you may enter a list of values 
using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Effect Size – Means 

λ0 (Null or Baseline Mean) 
This option specifies one or more values of the mean occurrence rate corresponding to the null 
hypothesis. This value must be greater than zero.  

λ1 (Alternative Mean) 
This option specifies one or more values of the mean occurrence rate corresponding to the 
alternative hypothesis. This value must be greater than zero. 
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Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always 010 : λλ =H . 

Possible selections for the alternative hypothesis are: 

1. 01: λλ ≤ . This option yields a one-tailed t test.  aH

2. 01: λλ ≥ . This option yields a one-tailed t test.  aH

Example 1 – Power after a Study 
This example demonstrates how to calculate the power for specific values of the other 
parameters. Suppose that accidents have occurred at an intersection at an average rate of 1 per 
month for the last several years. Recently, a distraction has been constructed near the intersection 
that appears to have increased the accident rate. Suppose the sample sizes are 12 and 24 months 
and alpha is 0.025. What is the power to detect alternatives of 1.1, 1.5, 2.0, and 2.5?  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Poisson Mean procedure window by 
expanding Means, then One Mean, then clicking on Test (Inequality), and then clicking on 
Tests for One Poisson Mean. You may then make the appropriate entries as listed below, or 
open Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.025 
n (Sample Size) ....................................... 12 24 
λ0 (Null or Baseline) ................................ 1.0 
λ1 (Alternative) ........................................ 1.1 1.4 1.8 2.2 2.5 
Ha (Alternative Hypothesis) .................... Ha: λ0 < λ1 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample Poisson Test 
Null Hypothesis: λ0 = λ1     Alternative Hypothesis: λ0 < λ1 
 
  Target Actual   Diff Effect 
Power n Alpha Alpha λ0 λ1 (λ0-λ1) Size Beta 
0.0484 12 0.0250 0.0213 1.00 1.10 -0.10 0.0953 0.9516 
0.0623 24 0.0250 0.0206 1.00 1.10 -0.10 0.0953 0.9377 
0.2476 12 0.0250 0.0213 1.00 1.40 -0.40 0.3381 0.7524 
0.4273 24 0.0250 0.0206 1.00 1.40 -0.40 0.3381 0.5727 
0.6638 12 0.0250 0.0213 1.00 1.80 -0.80 0.5963 0.3362 
0.9108 24 0.0250 0.0206 1.00 1.80 -0.80 0.5963 0.0892 
0.9154 12 0.0250 0.0213 1.00 2.20 -1.20 0.8090 0.0846 
0.9962 24 0.0250 0.0206 1.00 2.20 -1.20 0.8090 0.0038 
0.9781 12 0.0250 0.0213 1.00 2.50 -1.50 0.9487 0.0219 
0.9998 24 0.0250 0.0206 1.00 2.50 -1.50 0.9487 0.0002 
 
References 
Guenther, William C. 1977. Sampling Inspection in Statistical Quality Control. Griffin's Statistical 
   Monographs. Macmillan, NY. Pages 25-29. 
Ostle, B. and Malone, L. 1988. Statistics in Research, 4th Edition. Iowa State University Press. Iowa. Pages 
   116-118. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
n is the size of the sample drawn from the population. To conserve resources, it should be small. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Diff is the value of λ0 - λ1, the difference being tested. 
λ0 is the value of the population mean under the null hypothesis. 
λ1 is the value of the population mean under the alternative hypothesis. 
Effect Size is the value of (λ0 - λ1) / √(λ1). 
Beta is the probability of accepting a false null hypothesis. It should be small. 
 
Summary Statements 
A sample size of 12 achieves 5% power to detect a difference of -0.10 between the null 
hypothesis mean of 1.00 and the alternative hypothesis mean of 1.10 and with a significance 
level (alpha) of 0.0250 using a one-sided one-sample Poisson test. 

 

This report shows the values of each of the parameters, one scenario per row. The values of 
power and beta were calculated from the other parameters. 
Note that the actual power achieved is greater than the target power. Similarly, the actual alpha is 
less than the target alpha. These differences occur because only integer values of the count 
variable occur. 
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Plots Section 
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This plot shows the relationship between sample size and power for various values of the 
alternative mean and the sample size.  
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Example 2 – Finding the Sample Size 
This example will extend Example 1 to the case in which we want to find the necessary sample 
size to achieve at least 90% power. This is done as follows. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Poisson Mean procedure window by 
expanding Means, then One Mean, then clicking on Test (Inequality), and then clicking on 
Tests for One Poisson Mean. You may then make the appropriate entries as listed below, or 
open Example 2 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... n (sample size) 
Power ...................................................... 0.90 
Alpha ....................................................... 0.025 
n (Sample Size) ....................................... Ignored since this is the Find setting 
λ0 (Null or Baseline) ................................ 1.0 
λ1 (Alternative) ........................................ 1.1 1.4 1.8 2.2 2.5 
Ha (Alternative Hypothesis) .................... Ha: λ0 < λ1 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample Poisson Test 
Null Hypothesis: λ0 = λ1     Alternative Hypothesis: λ0 < λ1 
 
  Target Actual   Diff Effect 
Power n Alpha Alpha λ0 λ1 (λ0-λ1) Size Beta 
0.9002 1100 0.0250 0.0250 1.00 1.10 -0.10 0.0953 0.0998 
0.9009 80 0.0250 0.0220 1.00 1.40 -0.40 0.3381 0.0991 
0.9108 24 0.0250 0.0206 1.00 1.80 -0.80 0.5963 0.0892 
0.9154 12 0.0250 0.0213 1.00 2.20 -1.20 0.8090 0.0846 
0.9366 9 0.0250 0.0220 1.00 2.50 -1.50 0.9487 0.0634 

 

This report shows the sample sizes that are necessary to achieve the required power. 
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Example 3 – Finding the Minimum Detectable Difference 
Continuing with the previous example, suppose only 10 months of data are available. What is the 
minimum detectable difference that can be detected by this design? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Poisson Mean procedure window by 
expanding Means, then One Mean, then clicking on Test (Inequality), and then clicking on 
Tests for One Poisson Mean. You may then make the appropriate entries as listed below, or 
open Example 3 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... λ1 
Power ...................................................... 0.90 
Alpha ....................................................... 0.025 
n (Sample Size) ....................................... 10 
λ0 (Null or Baseline) ................................ 1.0 
λ1 (Alternative) ........................................ Ignored since this is the Find setting 
Ha (Alternative Hypothesis) .................... Ha: λ0 < λ1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample Poisson Test 
Null Hypothesis: λ0 = λ1     Alternative Hypothesis: λ0 < λ1 
 
  Target Actual   Diff Effect 
Power n Alpha Alpha λ0 λ1 (λ0-λ1) Size Beta 
0.9000 10 0.0250 0.0143 1.00 2.36 -1.36 0.8856 0.1000 

  

This report shows that the minimum detectable difference is 2.36 – 1.00 = 1.36. 
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Example 4 – Validation using Guenther 
Guenter (1977) page 27 gives an example in which λ0 = 0.05, λ1 = .2, α = 0.05, β = 0.10, and n = 
47. We will now run this example.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Poisson Mean procedure window by 
expanding Means, then One Mean, then clicking on Test (Inequality), and then clicking on 
Tests for One Poisson Mean. You may then make the appropriate entries as listed below, or 
open Example 4 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... n (sample size) 
Power ...................................................... 0.90 
Alpha ....................................................... 0.025 
n (Sample Size) ....................................... Ignored since this is the Find setting 
λ0 (Null or Baseline) ................................ 0.05 
λ1 (Alternative) ........................................ 0.20 
Ha (Alternative Hypothesis) .................... Ha: λ0 < λ1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for One-Sample Poisson Test 
Null Hypothesis: λ0 = λ1     Alternative Hypothesis: λ0 < λ1 
 
  Target Actual   Diff Effect 
Power n Alpha Alpha λ0 λ1 (λ0-λ1) Size Beta 
0.9065 47 0.0500 0.0327 0.05 0.20 -0.15 0.3354 0.0935 

  

Note that the value of n is indeed 47. 



412-10  Inequality Tests for One Poisson Mean 

 



  413-1 

Chapter 413 

Tests for One 
Mean with Non-
Zero Null 
Hypothesis 
Introduction 
This module computes power and sample size for tests in one-sample designs with a superiority 
margin in which the outcome is distributed as a normal random variable. This includes the 
analysis of the differences between paired values.  

The details of sample size calculation for the one-sample design are presented in the Inequality 
Tests for One Mean chapter and they will not be duplicated here. This chapter only discusses 
those changes necessary for non-zero null tests. Sample size formulas for non-inferiority and non-
zero null hypothesis tests of a single mean are presented in Chow et al. (2003) page 50.  

The one-sample t-test is used to test whether a population mean is different from a specific value. 
When the data are differences between paired values, this test is known as the paired t-test. This 
module also calculates the power of the non-parametric analog of the t-test, the Wilcoxon test.  

Paired Designs 
Paired data may occur because two measurements are made on the same subject or because 
measurements are made on two subjects that have been matched according to other variables. 
Hypothesis tests on paired data can be analyzed by considering the difference between the paired 
items as the response. The distribution of differences is usually symmetric. In fact, the distribution 
must be symmetric if the individual distributions of the two items are identical. Hence, the paired t-
test and the Wilcoxon signed-rank test are appropriate for paired data even when the distributions of 
the individual items are not normal.  

In paired designs, the variable of interest is the difference between two individual measurements. 
Although the non-inferiority hypothesis refers to the difference between two individual means, the 
actual values of those means are not needed. All that is needed is their difference. 
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The Statistical Hypotheses 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests and their 
power and sample size could be calculated using the One-Sample T-Test procedure. However, at 
the urging of our users, we have developed this module which provides the input and output 
options that are convenient for non-zero null hypothesis tests. This section will review the 
specifics of non-zero null testing. 

Remember that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-
sided tests are defined as  

H0:μX A≤  versus H1:μX A>  

Rejecting H0 implies that the mean is larger than the value A. This test is called an upper-tail test 
because H0 is rejected in samples in which the sample mean is larger than A. 

Following is an example of a lower-tail test. 

H0:μX A≥  versus H1:μX A<  

Non-zero null tests are special cases of the above directional tests. It will be convenient to adopt 
the following specialize notation for the discussion of these tests.  
 

Parameter PASS Input/Output Interpretation 
μ  Not used Population mean. If the data are paired differences, this 

is the mean of those differences. 
T

μR  Not used Reference value. Usually, this is the mean of a reference 
population. If the data are paired differences, this is the 
hypothesized value of the mean difference. 

sM  SM Margin of superiority. This is a tolerance value that 
defines the magnitude of difference that is required for 
practical importance. This may be thought of as the 
smallest difference from the reference value that is 
considered to be different.  

δ  D True difference. This is the value of μ μT − R , the 
difference between the mean and the reference value, at 
which the power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their difference is needed for 
power and sample size calculations. 
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Non-Zero Null Tests 
A non-zero null test tests that the mean is better than that of the baseline (reference) population 
by more than a small superiority margin. The actual direction of the hypothesis depends on the 
whether higher values of the response are good or bad. 

Case 1: High Values Good 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the mean is greater than the reference value by at least the margin of 
superiority. The value of δ  must be greater than SM . Equivalent sets of the null and alternative 
hypotheses are 

SRT M+≤ μμ:0H   versus  SRT M+> μμ:1H  

SRT M≤− μμ:0H   versus  SRT M>− μμ:1H  

SM≤δ:0H    versus  SM>δ:1H  

Case 2: High Values Bad 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the mean is less than the reference value by at least the margin of 
superiority. The value of δ  must be less than SM− . Equivalent sets of the null and alternative 
hypotheses are 

SRT M−≥ μμ:0H    versus  SRT M−< μμ:1H  

SRT M−≥− μμ:0H  versus  SRT M−<− μμ:1H  

SM−≥δ:0H      versus  SM−<δ:1H  

Example 
A non-zero null test example will set the stage for the discussion of the terminology that follows. 
Suppose that a test is to be conducted to determine if a new cancer treatment substantially 
improves the mean bone density. The adjusted mean bone density (AMBD) in the population of 
interest is 0.002300 gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that 
if the treatment increases AMBD by more than 5% (0.000115 gm/cm), it provides a significant 
health benefit.  

The hypothesis of interest is whether the AMBD in the treated group is greater than 
0.002300+0.000115 = 0.002415. The statistical test will be set up so that if the null hypothesis 
that the AMBD is greater than or equal to 0. 002415 is rejected, the conclusion will be that the 
new treatment is superior, at least in terms of AMBD. The value 0.000115 gm/cm is called the 
margin of superiority. 

Test Statistics 
This section describes the test statistics that are available in this procedure. 
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One-Sample T-Test 
The one-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t-test 
proceeds as follow 
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and D0 is the value of the mean hypothesized by the null hypothesis. 

The significance of the test statistic is determined by computing the p-value. If this p-value is less 
than a specified level (usually 0.05), the hypothesis is rejected. Otherwise, no conclusion can be 
reached. 

Wilcoxon Signed-Rank Test  
The Wilcoxon signed-rank test is a popular, nonparametric substitute for the t-test. It assumes that 
the data follow a symmetric distribution. The test is computed using the following steps. 

1. Subtract the hypothesized mean, D0, from each data value. Rank the values according to 
their absolute values. 

2. Compute the sum of the positive ranks Sp and the sum of the negative ranks Sn. The test 
statistic, W, is the minimum of Sp and Sn. 

3. Compute the mean and standard deviation of W using the formulas 
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nW

n n+
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4  and 
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where t represents the number of times the ith value occurs. 

4. Compute the z value using 

z
W

W
W

W

n

n

=
− μ
σ

 

The significance of the test statistic is determined by computing the p-value using the standard 
normal distribution. If this p-value is less than a specified level (usually 0.05), the null hypothesis 
is rejected in favor of the alternative hypothesis. Otherwise, no conclusion can be reached. 
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Computing the Power 
The power is calculated as follows for a directional alternative (one-tailed test) in which D1 > 
D0. D1 is the value of the mean at which the power is computed. 

1. Find tα  such that ( )1 1− −T tn α α= , where ( )T tn−1 α  is the area to the left of x under a 
central-t curve with n – 1 degrees of freedom. 

2. Calculate x = D0+ t
n

.a α
σ

 

3. Calculate the noncentrality parameter λ σ= D1 D0

n

.−
 

4. Calculate a
at = x - D1

n

+σ λ . 

5. Calculate the power = ( )1 1− ′−T tn ,λ a , where ( )′−T xn 1,λ  is the area to the left of x under a 
noncentral-t curve with degrees of freedom n – 1 and noncentrality parameter λ . 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that will be of interest. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Power and Beta or N. 

Select N when you want to determine the sample size needed to achieve a given power and alpha 
error level.  

Select Power and Beta when you want to calculate the power.  
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study. This value must be an integer greater than one. You may enter a list of values using the 
syntax 50 100 150 200 250 or 50 to 250 by 50.  

Effect Size – Mean Difference 

SM (Superiority Margin) 
This is the magnitude of the margin of superiority. It must be entered as a positive number. 

When higher means are better, this value is the distance above the reference value that is required 
to be considered superior. When higher means are worse, this value is the distance below the 
reference value that is required to be considered superior. 

D (True Difference) 
This is the actual difference between the mean and the reference value. 

When higher means are better, this value should be greater than SM. When higher means are 
worse, this value should be negative and greater in magnitude than SM. 

Effect Size – Standard Deviation 

Standard Deviation 
This option specifies one or more values of the standard deviation. This must be a positive value. 
PASS includes a special module for estimating the standard deviation. This module may be 
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loaded by pressing the SD button. Refer to the Standard Deviation Estimator chapter for further 
details. 

Test 

Higher Means Are 
This option defines whether higher values of the response variable are to be considered better or 
worse. The choice here determines the direction of the test. 

If Higher Means Are Better the null hypothesis is Diff <= SM and the alternative hypothesis is 
Diff > SM. If Higher Means Are Worse the null hypothesis is Diff >= -SM and the alternative 
hypothesis is Diff < -SM. 

Nonparametric Adjustment 
This option makes appropriate sample size adjustments for the Wilcoxon test. Results by Al-
Sunduqchi and Guenther (1990) indicate that power calculations for the Wilcoxon test may be 
made using the standard t test formulations with a simple adjustment to the sample size. The size 
of the adjustment depends upon the actual distribution of the data. They give sample size 
adjustment factors for four distributions. These are 1 for the uniform distribution, 2/3 for the 
double exponential distribution, 9  for the logistic distribution, and 2/ π π / 3  for the normal 
distribution.  

The options are as follows: 

• Ignore 
Do not make a Wilcoxon adjustment. This indicates that you want to analyze a t test, not the 
Wilcoxon test. 

• Uniform 
Make the Wilcoxon sample size adjustment assuming the uniform distribution. Since the 
factor is one, this option performs the same as Ignore. It is included for completeness. 

• Double Exponential 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the double 
exponential distribution. 

• Logistic 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the logistic 
distribution. 

• Normal 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the normal 
distribution. 

Population Size 
This is the number of subjects in the population. Usually, you assume that samples are drawn 
from a very large (infinite) population. Occasionally, however, situations arise in which the 
population of interest is of limited size. In these cases, appropriate adjustments must be made. 

When a finite population size is specified, the standard deviation is reduced according to the 
formula 
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where n is the sample size, N is the population size, σ  is the original standard deviation, and σ1  
is the new standard deviation.  

The quantity n/N is often called the sampling fraction. The quantity 1−⎛
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N

 is called the finite 

population correction factor. 

 

Example 1 – Power Analysis 
Suppose that a test is to be conducted to determine if a new cancer treatment improves the mean 
bone density. The adjusted mean bone density (AMBD) in the population of interest is 0.002300 
gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that if the treatment 
increases AMBD by more than 5% (0.000115 gm/cm), it generates a significant health benefit. 
They also want to consider what would happen if the margin of superiority is set to 2.5% 
(0.0000575 gm/cm).   

The analysis will be a non-zero null test using the t-test at the 0.025 significance level. Power is 
to be calculated assuming that the new treatment has 7.5% improvement on AMBD. Several 
sample sizes between 20 and 300 will be analyzed. The researchers want to achieve a power of at 
least 90%. All numbers have been multiplied by 10000 to make the reports and plots easier to 
read. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean with Non-Zero Null procedure window 
by expanding Means, then One Mean, then clicking on Test (Non-Zero Null), and then clicking 
on Tests for One Mean with Non-Zero Null. You may then make the appropriate entries as 
listed below, or open Example 1 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.025 
N (Sample Size) ...................................... 20 40 60 80 100 150 200 300 
SM (Superiority Margin) .......................... 0.575 1.15 
D (True Difference) ................................. 1.725 
S (Standard Deviation) ............................ 3 
Higher Means Are ................................... Better 
Nonparametric Adjustment ...................... Ignore 
Population Size ....................................... Infinite 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

 
Numeric Results for Superiority Test (H0: Diff <= SM; H1: Diff > SM) 
Higher Means are Better 
Test Statistic: T-Test 
 
  Superiority Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (SM) (D) (Alpha) Beta (S)  
0.36990 20 0.575 1.725 0.02500 0.63010 3.000 
0.65705 40 0.575 1.725 0.02500 0.34295 3.000 
0.83164 60 0.575 1.725 0.02500 0.16836 3.000 
0.92317 80 0.575 1.725 0.02500 0.07683 3.000 
0.96682 100 0.575 1.725 0.02500 0.03318 3.000 
0.99658 150 0.575 1.725 0.02500 0.00342 3.000 
0.99970 200 0.575 1.725 0.02500 0.00030 3.000 
1.00000 300 0.575 1.725 0.02500 0.00000 3.000 
0.12601 20 1.150 1.725 0.02500 0.87399 3.000 
0.21844 40 1.150 1.725 0.02500 0.78156 3.000 
0.30873 60 1.150 1.725 0.02500 0.69127 3.000 
0.39493 80 1.150 1.725 0.02500 0.60507 3.000 
0.47532 100 1.150 1.725 0.02500 0.52468 3.000 
0.64517 150 1.150 1.725 0.02500 0.35483 3.000 
0.76959 200 1.150 1.725 0.02500 0.23041 3.000 
0.91135 300 1.150 1.725 0.02500 0.08865 3.000 
 
Report Definitions 
H0 (null hypothesis) is Diff <= SM, where Diff = Mean - Reference Value for the one-sample case, and Diff = 
   Mean of Differences - Reference Value for the paired case. 
H1 (alternative hypothesis) is Diff > SM. 
Power is the probability of rejecting H0 when it is false. 
N is the sample size, the number of subjects in the study. 
SM is the magnitude of the margin of superiority. Since higher means are better, this value is positive and is 
   the distance above the reference value that is required to be considered superior. 
D is the mean difference (treatment - reference value) at which the power is computed. 
Alpha is the probability of rejecting H0 when it is true, which is the probability of a false positive. 
Beta is the probability of accepting H0 when it is false, which is the probability of a false negative. 
S is the standard deviation of the response. It measures the variability in the population. 
 
Summary Statements 
A sample size of 20 achieves 37% power to detect superiority using a one-sided t-test when the 
margin of superiority is 0.575 and the true difference between the mean and the reference value 
is 1.725. The data are drawn from a single population with a standard deviation of 3.000. The 
significance level (alpha) of the test is 0.02500. 
 
 

 
 
The above report shows that for SM = 1.15, the sample size necessary to obtain 90% power is just 
under 300. However, if SM = 0.575, the required sample size is only about 75. 
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Example 2 – Finding the Sample Size 
Continuing with Example1, the researchers want to know the exact sample size for each value of 
SM to achieve 90% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean with Non-Zero Null procedure window 
by expanding Means, then One Mean, then clicking on Test (Non-Zero Null), and then clicking 
on Tests for One Mean with Non-Zero Null. You may then make the appropriate entries as 
listed below, or open Example 2 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Sample Size) 
Power ...................................................... 0.90 
Alpha ....................................................... 0.025 
N (Sample Size) ...................................... Ignored since this is the Find setting 
SM (Superiority Margin) .......................... 0.575 1.15 
D (True Difference) ................................. 1.725 
S (Standard Deviation) ............................ 3 
Higher Means Are ................................... Better 
Nonparametric Adjustment ...................... Ignore 
Population Size ....................................... Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Superiority Test (H0: Diff <= SM; H1: Diff > SM) 
Higher Means are Better 
Test Statistic: T-Test 
 
  Superiority Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (SM) (D) (Alpha) Beta (S)  
0.90215 74 0.575 1.725 0.02500 0.09785 3.000 
0.90005 288 1.150 1.725 0.02500 0.09995 3.000 

 
This report shows the exact sample size requirement for each value of SM. 

 

Example 3 – Validation 
This procedure uses the same mechanics as the Non-Inferiority Tests for One Mean procedure. 
We refer the user to Example 3 of Chapter 415 for the validation.  
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Chapter 415 

Non-Inferiority 
Tests for One 
Mean 
Introduction 
This module computes power and sample size for non-inferiority tests in one-sample designs in 
which the outcome is distributed as a normal random variable. This includes the analysis of the 
differences between paired values.  

The details of sample size calculation for the one-sample design are presented in the Inequality 
Tests for One Mean chapter and they will not be duplicated here. This chapter only discusses 
those changes necessary for non-inferiority tests. Sample size formulas for non-inferiority tests of 
a single mean are presented in Chow et al. (2003) page 50.  

The one-sample t-test is used to test whether a population mean is different from a specific value. 
When the data are differences between paired values, this test is known as the paired t-test. This 
module also calculates the power of the nonparametric analog of the t-test, the Wilcoxon test.  

Paired Designs 
Paired data may occur because two measurements are made on the same subject or because 
measurements are made on two subjects that have been matched according to other variables. 
Hypothesis tests on paired data can be analyzed by considering the difference between the paired 
items as the response. The distribution of differences is usually symmetric. In fact, the distribution 
must be symmetric if the individual distributions of the two items are identical. Hence, the paired t-
test and the Wilcoxon signed-rank test are appropriate for paired data even when the distributions of 
the individual items are not normal.  

In paired designs, the variable of interest is the difference between two individual measurements. 
Although the non-inferiority hypothesis refers to the difference between two individual means, the 
actual values of those means are not needed. All that is needed is their difference. 
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The Statistical Hypotheses 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests and their 
power and sample size could be calculated using the One-Sample T-Test procedure. However, at 
the urging of our users, we have developed this module which provides the input and output 
options that are convenient for non-inferiority tests. This section will review the specifics of non-
inferiority and superiority testing. 

Remember that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-
sided tests are defined as  

H0:μX A≤  versus H1:μX A>  

Rejecting H0 implies that the mean is larger than the value A. This test is called an upper-tail test 
because H0 is rejected in samples in which the sample mean is larger than A. 

Following is an example of a lower-tail test. 

H0:μX A≥  versus H1:μX A<  

Non-inferiority tests are special cases of the above directional tests. It will be convenient to adopt 
the following specialize notation for the discussion of these tests.  
 

Parameter PASS Input/Output Interpretation 
μ  Not used Population mean. If the data are paired differences, this 

is the mean of those differences. 
T

μR  Not used Reference value. Usually, this is the mean of a reference 
population. If the data are paired differences, this is the 
hypothesized value of the mean difference. 

NIM  NIM Margin of non-inferiority. This is a tolerance value that 
defines the magnitude of difference that is not of 
practical importance. This may be thought of as the 
largest difference from the reference value that is 
considered to be trivial. The absolute value symbols are 
used to emphasize that this is a magnitude. The sign is 
determined by the specific design. 

δ  D True difference. This is the value of μ μT − R , the 
difference between the mean and the reference value, at 
which the power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their difference is needed for 
power and sample size calculations. 
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Non-Inferiority Tests 
A non-inferiority test tests that the mean is not worse than that of the baseline (reference) 
population by more than a small non-inferiority margin. The actual direction of the hypothesis 
depends on the whether higher values of the response are good or bad.  

Case 1: High Values Good 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the mean of the treatment group is no less than a small amount below the 
reference value. The value of δ  is often set to zero. Equivalent sets of the null and alternative 
hypotheses are 

NIRT M−≤ μμ:0H  versus  NIRT M−> μμ:1H  

NIRT M−≤− μμ:0H   versus  NIRT M−>− μμ:1H  

NIM−≤δ:0H    versus  NIM−>δ:1H  

Case 2: High Values Bad 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the mean of the treatment group is no more than a small amount above the 
reference value. The value of δ  is often set to zero. Equivalent sets of the null and alternative 
hypotheses are 

NIRT M+≥ μμ:0H  versus  NIRT M+< μμ:1H  

NIRT M≥− μμ:0H   versus  NIRT M<− μμ:1H  

NIM≥δ:0H    versus  NIM<δ:1H  

Example 
A non-inferiority test example will set the stage for the discussion of the terminology that 
follows. Suppose that a test is to be conducted to determine if a new cancer treatment adversely 
affects the mean bone density. The adjusted mean bone density (AMBD) in the population of 
interest is 0.002300 gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that 
if the treatment reduces AMBD by more than 5% (0.000115 gm/cm), it poses a significant health 
threat.  

The hypothesis of interest is whether the AMBD in the treated group is greater than 0.002300-
0.000115 = 0.002185. The statistical test will be set up so that if the null hypothesis that the 
AMBD is less than or equal to 0.002185 is rejected, the conclusion will be that the new treatment 
is non-inferior, at least in terms of AMBD. The value 0.000115 gm/cm is called the margin of 
non-inferiority. 

Test Statistics 
This section describes the test statistics that are available in this procedure. 
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One-Sample T-Test 
The one-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t-test 
proceeds as follow 

t X D
sn

X
− =

−
1

0
 

where 

X
X

n

i
i

n

= =
∑

1 ’ 

( )
s

X X

nX

i
i

n

=
−

−
=
∑ 2

1

1
’ 

and D0 is the value of the mean hypothesized by the null hypothesis. 

The significance of the test statistic is determined by computing the p-value. If this p-value is less 
than a specified level (usually 0.05), the hypothesis is rejected. Otherwise, no conclusion can be 
reached. 

Wilcoxon Signed-Rank Test  
The Wilcoxon signed-rank test is a popular, nonparametric substitute for the t-test. It assumes that 
the data follow a symmetric distribution. The test is computed using the following steps. 

1. Subtract the hypothesized mean, D0, from each data value. Rank the values according to 
their absolute values. 

2. Compute the sum of the positive ranks Sp and the sum of the negative ranks Sn. The test 
statistic, W, is the minimum of Sp and Sn. 

3. Compute the mean and standard deviation of W using the formulas 
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where t represents the number of times the ith value occurs. 

4. Compute the z value using 
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The significance of the test statistic is determined by computing the p-value using the standard 
normal distribution. If this p-value is less than a specified level (usually 0.05), the null hypothesis 
is rejected in favor of the alternative hypothesis. Otherwise, no conclusion can be reached. 
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Computing the Power 
The power is calculated as follows for a directional alternative (one-tailed test) in which D1 > 
D0. D1 is the value of the mean at which the power is computed. 

1. Find tα  such that ( )1 1− −T tn α α= , where ( )T tn−1 α  is the area to the left of x under a 
central-t curve with n – 1 degrees of freedom. 

2. Calculate x = D0+ t
n

.a α
σ

 

3. Calculate the noncentrality parameter λ σ= D1 D0

n

.−
 

4. Calculate a
at = x - D1

n

+σ λ . 

5. Calculate the power = ( )1 1− ′−T tn ,λ a , where ( )′−T xn 1,λ  is the area to the left of x under a 
noncentral-t curve with degrees of freedom n – 1 and noncentrality parameter λ . 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that will be of interest. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Power and Beta or N. 

Select N when you want to determine the sample size needed to achieve a given power and alpha 
error level.  

Select Power and Beta when you want to calculate the power.  
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study. This value must be an integer greater than one. You may enter a list of values using the 
syntax 50 100 150 200 250 or 50 to 250 by 50.  

Effect Size – Mean Difference 

NIM (Non-Inferiority Margin) 
This is the magnitude of the margin of non-inferiority. It must be entered as a positive number. 

When higher means are better, this value is the distance below the reference value that is still 
considered non-inferior. When higher means are worse, this value is the distance above the 
reference value that is still considered non-inferior. 

D (True Value) 
This is the actual difference between the mean and the reference value. 

For non-inferiority tests, this value is often set to zero. When this value is non-zero, care should 
be taken that this value is consistent with whether higher means are better or worse. 

Effect Size – Standard Deviation 

Standard Deviation 
This option specifies one or more values of the standard deviation. This must be a positive value. 
PASS includes a special module for estimating the standard deviation. This module may be 
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loaded by pressing the SD button. Refer to the Standard Deviation Estimator chapter for further 
details. 

Test 

Higher Means Are 
This option defines whether higher values of the response variable are to be considered better or 
worse. 

The choice here determines the direction of the non-inferiority test. 

If Higher Means Are Better the null hypothesis is Diff <= -NIM and the alternative hypothesis is 
Diff > -NIM. If Higher Means Are Worse the null hypothesis is Diff >= NIM and the alternative 
hypothesis is Diff < NIM. 

Nonparametric Adjustment 
This option makes appropriate sample size adjustments for the Wilcoxon test. Results by Al-
Sunduqchi and Guenther (1990) indicate that power calculations for the Wilcoxon test may be 
made using the standard t test formulations with a simple adjustment to the sample size. The size 
of the adjustment depends upon the actual distribution of the data. They give sample size 
adjustment factors for four distributions. These are 1 for the uniform distribution, 2/3 for the 
double exponential distribution, 9  for the logistic distribution, and 2/ π π / 3  for the normal 
distribution.  

The options are as follows: 

• Ignore 
Do not make a Wilcoxon adjustment. This indicates that you want to analyze a t test, not the 
Wilcoxon test. 

• Uniform 
Make the Wilcoxon sample size adjustment assuming the uniform distribution. Since the 
factor is one, this option performs the same as Ignore. It is included for completeness. 

• Double Exponential 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the double 
exponential distribution. 

• Logistic 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the logistic 
distribution. 

• Normal 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the normal 
distribution. 

Population Size 
This is the number of subjects in the population. Usually, you assume that samples are drawn 
from a very large (infinite) population. Occasionally, however, situations arise in which the 
population of interest is of limited size. In these cases, appropriate adjustments must be made. 
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When a finite population size is specified, the standard deviation is reduced according to the 
formula 
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where n is the sample size, N is the population size, σ  is the original standard deviation, and σ1  
is the new standard deviation.  

The quantity n/N is often called the sampling fraction. The quantity 1−⎛
⎝⎜

⎞
⎠⎟

n
N

 is called the finite 

population correction factor. 

 

Example 1 – Power Analysis 
Suppose that a test is to be conducted to determine if a new cancer treatment adversely affects the 
mean bone density. The adjusted mean bone density (AMBD) in the population of interest is 
0.002300 gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that if the 
treatment reduces AMBD by more than 5% (0.000115 gm/cm), it poses a significant health 
threat. They also want to consider what would happen if the margin of non-inferiority is set to 
2.5% (0.0000575 gm/cm).   

Following accepted procedure, the analysis will be a non-inferiority test using the t-test at the 
0.025 significance level. Power is to be calculated assuming that the new treatment has no effect 
on AMBD. Several sample sizes between 20 and 300 will be analyzed. The researchers want to 
achieve a power of at least 90%. All numbers have been multiplied by 10000 to make the reports 
and plots easier to read. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for One Mean procedure window by 
expanding Means, then One Mean, then clicking on Non-Inferiority, and then clicking on Non-
Inferiority Tests for One Mean. You may then make the appropriate entries as listed below, or 
open Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.025 
N (Sample Size) ...................................... 20 40 60 80 100 150 200 300 
NIM (Non-Inferiority Margin) .................... 0.575 1.15 
D (True Difference) ................................. 0 
S (Standard Deviation) ............................ 3 
Higher Means Are ................................... Better 
Nonparametric Adjustment ...................... Ignore 
Population Size ....................................... Infinite 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

 
Numeric Results for Non-Inferiority Test (H0: Diff <= -NIM; H1: Diff > -NIM) 
Higher Means are Better 
Test Statistic: T-Test 
 
 Non-Inferiority Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (-NIM) (D) (Alpha) Beta (S)  
0.12601 20 -0.575 0.000 0.02500 0.87399 3.000 
0.21844 40 -0.575 0.000 0.02500 0.78156 3.000 
0.30873 60 -0.575 0.000 0.02500 0.69127 3.000 
0.39493 80 -0.575 0.000 0.02500 0.60507 3.000 
0.47532 100 -0.575 0.000 0.02500 0.52468 3.000 
0.64517 150 -0.575 0.000 0.02500 0.35483 3.000 
0.76959 200 -0.575 0.000 0.02500 0.23041 3.000 
0.91262 300 -0.575 0.000 0.02500 0.08738 3.000 
0.36990 20 -1.150 0.000 0.02500 0.63010 3.000 
0.65705 40 -1.150 0.000 0.02500 0.34295 3.000 
0.83164 60 -1.150 0.000 0.02500 0.16836 3.000 
0.92317 80 -1.150 0.000 0.02500 0.07683 3.000 
0.96682 100 -1.150 0.000 0.02500 0.03318 3.000 
0.99658 150 -1.150 0.000 0.02500 0.00342 3.000 
0.99970 200 -1.150 0.000 0.02500 0.00030 3.000 
1.00000 300 -1.150 0.000 0.02500 0.00000 3.000 
 
Report Definitions 
Power is the probability of rejecting H0 when it is false. 
N is the sample size, the number of subjects (or pairs) in the study. 
-NIM is the magnitude and direction of the margin of non-inferiority. Since higher means are better, this 
   value is negative and is the distance below the reference value that is still considered non-inferior. 
D is the mean difference (treatment - reference value) at which the power is computed. 
Alpha is the probability of rejecting H0 when it is true, which is the probability of a false positive. 
Beta is the probability of accepting H0 when it is false, which is the probability of a false negative. 
S is the standard deviation of the response. It measures the variability in the population. 
 
Summary Statements 
A sample size of 20 achieves 13% power to detect non-inferiority using a one-sided t-test when 
the margin of equivalence is -0.575 and the true difference between the mean and the reference 
value is 0.000. The data are drawn from a single population with a standard deviation of 3.000. 
The significance level (alpha) of the test is 0.02500. 
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The above report shows that for NIM = 1.15, the sample size necessary to obtain 90% power is 
just under 80. However, if NIM = 0.575, the required sample size is about 300. 
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Example 2 – Finding the Sample Size 
Continuing with Example1, the researchers want to know the exact sample size for each value of 
NIM. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for One Mean procedure window by 
expanding Means, then One Mean, then clicking on Non-Inferiority, and then clicking on Non-
Inferiority Tests for One Mean. You may then make the appropriate entries as listed below, or 
open Example 2 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.90 
Alpha ....................................................... 0.025 
N (Sample Size) ...................................... Ignored since this is the Find setting 
NIM (Non-Inferiority Margin) .................... 0.575 1.15 
D (True Difference) ................................. 0 
S (Standard Deviation) ............................ 3 
Higher Means Are ................................... Better 
Nonparametric Adjustment ...................... Ignore 
Population Size ....................................... Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Test (H0: Diff <= -NIM; H1: Diff > -NIM) 
Higher Means are Better 
Test Statistic: T-Test 
 
 Non-Inferiority Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (-NIM) (D) (Alpha) Beta (S)  
0.90005 288 -0.575 0.000 0.02500 0.09995 3.000 
0.90215 74 -1.150 0.000 0.02500 0.09785 3.000 

 
This report shows the exact sample size requirement for each value of NIM. 
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Example 3 – Validation using Chow 
Chow, Shao, Wang (2003) pages 54-55 has an example of a sample size calculation for a non-
inferiority trial. Their example obtains a sample size of 8 when D = 0.5, NIM = 0.5, S = 1, Alpha 
= 0.05, and Beta = 0.20.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for One Mean procedure window by 
expanding Means, then One Mean, then clicking on Non-Inferiority, and then clicking on Non-
Inferiority Tests for One Mean. You may then make the appropriate entries as listed below, or 
open Example 3 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.80 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... Ignored since this is the Find setting 
NIM (Non-Inferiority Margin) ................... 0.5 
D (True Difference) ................................. 0.5 
S (Standard Deviation) ............................ 1 
Higher Means Are ................................... Better 
Nonparametric Adjustment ..................... Ignore 
Population Size ....................................... Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Non-Inferiority Test (H0: Diff <= -NIM; H1: Diff > -NIM) 
Higher Means are Better 
Test Statistic: T-Test 
 
 Non-Inferiority Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (-NIM) (D) (Alpha) Beta (S)  
0.81502 8 -0.500 0.500 0.05000 0.18498 1.000 

 
PASS has also obtained a sample size of 8. 
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Example 4 – Validation of a Cross-Over Design given in 
Julious 
Julious (2004) page 1953 gives an example of a sample size calculation for a cross-over design. 
His example obtains a sample size of 87 when D = 0, NIM = 10, S = 28.28427, Alpha = 0.025, 
and Beta = 0.10. When D is changed to 2, the resulting sample size is 61. 

Note that in Julius’s example, the population standard deviation is given as 20. Assuming that the 
correlation between items in a pair is 0, the standard deviation of the difference is calculated to be 

( )( )( )S = + − =20 20 0 20 20 28 2842712 2 . . Actually, the value of S probably should be less 
because the correlation is usually greater than 0 (at least 0.2). 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for One Mean procedure window by 
expanding Means, then One Mean, then clicking on Non-Inferiority, and then clicking on Non-
Inferiority Tests for One Mean. You may then make the appropriate entries as listed below, or 
open Example 4 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.90 
Alpha ....................................................... 0.025 
N (Sample Size) ...................................... Ignored since this is the Find setting 
NIM (Non-Inferiority Margin) .................... 10 
D (True Difference) ................................. 0 2 
S (Standard Deviation) ............................ 28.284271 
Higher Means Are ................................... Better 
Nonparametric Adjustment ...................... Ignore 
Population Size ....................................... Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Non-Inferiority Test (H0: Diff <= -NIM; H1: Diff > -NIM) 
Higher Means are Better 
Test Statistic: T-Test 
 
 Non-Inferiority Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (-NIM) (D) (Alpha) Beta (S)  
0.90332 87 -10.000 0.000 0.02500 0.09668 28.284 
0.90323 61 -10.000 2.000 0.02500 0.09677 28.284 

 
PASS has also obtained sample sizes of 87 and 61. 
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Example 5 – Validation of a Cross-Over Design given in 
Chow, Shao, and Wang 
Chow, Shao, and Wang (2004) page 67 give an example of a sample size calculation for a cross-
over design. Their example calculates sample sizes of 13 and 14 (13 by formula and 14 from their 
table) in each sequence (26 or 28 total) when D = -0.1, NIM = 0.2, S = 0.2, Alpha = 0.05, and 
Beta = 0.20. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for One Mean procedure window by 
expanding Means, then One Mean, then clicking on Non-Inferiority, and then clicking on Non-
Inferiority Tests for One Mean. You may then make the appropriate entries as listed below, or 
open Example 5 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.80 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... Ignored since this is the Find setting 
NIM (Non-Inferiority Margin) ................... 0.2 
D (True Difference) ................................. -.1 
S (Standard Deviation) ............................ .2 
Higher Means Are ................................... Better 
Nonparametric Adjustment ..................... Ignore 
Population Size ....................................... Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for Non-Inferiority Test (H0: Diff <= -NIM; H1: Diff > -NIM) 
Higher Means are Better 
Test Statistic: T-Test 
 
 Non-Inferiority Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (-NIM) (D) (Alpha) Beta (S)  
0.81183 27 -0.200 -0.100 0.05000 0.18817 0.200 

 
PASS obtained a sample size of 27 which is between the values of 26 and 28 that were obtained 
by Chow et al. 
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Chapter 420 

Confidence 
Intervals for One 
Mean 
Introduction 
This routine calculates the sample size necessary to achieve a specified distance from the mean to 
the confidence limit(s) at a stated confidence level for a confidence interval about the mean when 
the underlying data distribution is normal.  

Caution: This procedure assumes that the standard deviation of the future sample will be the same 
as the standard deviation that is specified. If the standard deviation to be used in the procedure is 
estimated from a previous sample or represents the population standard deviation, the Confidence 
Intervals for One Mean with Tolerance Probability procedure should be considered. That 
procedure controls the probability that the distance from the mean to the confidence limits will be 
less than or equal to the value specified.  

Technical Details 
For a single mean from a normal distribution with known variance, a two-sided, 100(1 – α)% 
confidence interval is calculated by  

n
zX σα 2/1−±  

A one-sided 100(1 – α)% upper confidence limit is calculated by 

n
zX σα−+ 1  

Similarly, the one-sided 100(1 – α)% lower confidence limit is 

n
zX σα−− 1  
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For a single mean from a normal distribution with unknown variance, a two-sided, 100(1 – α)% 
confidence interval is calculated by  

n
t

X n σα ˆ1,2/1 −−±  

A one-sided 100(1 – α)% upper confidence limit is calculated by 

n
t

X n σα ˆ1,1 −−+  

Similarly, the one-sided 100(1 – α)% lower confidence limit is 

n
t

X n σα ˆ1,1 −−−  

Each confidence interval is calculated using an estimate of the mean plus and/or minus a quantity 
that represents the distance from the mean to the edge of the interval. For two-sided confidence 
intervals, this distance is sometimes called the precision, margin of error, or half-width. We will 
label this distance, D.  

The basic equation for determining sample size when D has been specified is 

D z
n

= −1 2α σ/  

when the standard deviation is known, and 

D
t

n
n= − −1 2 1α σ/ , $

 

when the standard deviation is unknown. These equations can be solved for any of the unknown 
quantities in terms of the others. The value α / 2 is replaced by α when a one-sided interval is used. 

Finite Population Size 
The above calculations assume that samples are being drawn from a large (infinite) population. 
When the population is of finite size (N), an adjustment must be made. The adjustment reduces the 
standard deviation as follows:  

σ σfinite
n
N

= −⎛
⎝⎜

⎞
⎠⎟

1  

This new standard deviation replaces the regular standard deviation in the above formulas. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of  n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population mean is 1 - α. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population mean is 1 – α.  

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 

Sample Size 

N (Sample Size) 
Enter one or more values for the sample size. This is the number of individuals selected at 
random from the population to be in the study. 

You can enter a single value or a range of values. 

Precision 

Distance from Mean to Limit(s) 
This is the distance from the confidence limit(s) to the mean. For two-sided intervals, it is also 
known as the precision, half-width, or margin of error. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Standard Deviation 

S (Standard Deviation) 
Enter a value (or range of values) for the standard deviation. Roughly speaking, this value 
estimates the average absolute difference between each individual and every other individual. 
You can use the results of a pilot study, a previous study, or a ball park estimate based on the 
range (e.g., Range/4) to estimate this parameter. 
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Know Standard Deviation 
Check this box when you want to base your results on the normal distribution. When the box is 
not checked, calculations are based on the t-distribution. The difference between the two 
distributions is negligible when the sample sizes are large (>50).  

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a one-sided or a two-sided confidence interval. 

Population 

Population Size 
This is the number of individuals in the population. Usually, you assume that samples are drawn 
from a very large (infinite) population. Occasionally, however, situations arise in which the 
population of interest is of limited size. In these cases, appropriate adjustments must be made. 
This option sets the population size. 

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example 1 – Calculating Sample Size 
Suppose a study is planned in which the researcher wishes to construct a two-sided 95% 
confidence interval for the mean such that the width of the interval is no wider than 14 units. The 
confidence level is set at 0.95, but 0.99 is included for comparative purposes. The standard 
deviation estimate, based on the range of data values, is 28. Instead of examining only the interval 
half-width of 7, a series of half-widths from 5 to 9 will also be considered.  
The goal is to determine the necessary sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Mean procedure window by 
expanding Means, then One Mean, then clicking on Confidence Interval, and then clicking on 
Confidence Intervals for One Mean. You may then make the appropriate entries as listed 
below, or open Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Sample Size) 
Confidence Level .................................... 0.95 0.99 
N (Sample Size) ...................................... Ignored since this is the Find setting 
Distance from Mean to Limit(s) ............... 5 to 9 by 1 
S (Standard Deviation) ............................ 28 
Interval Type ........................................... Two-Sided 
Population Size ....................................... Infinite 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals with Unknown Standard Deviation 
 
  Target Actual  
 Sample Distance Distance Standard 
Confidence Size from Mean from Mean Deviation 
Level (N) to Limits to Limits (S) 
0.95 123 5.000 4.998 28.000 
0.99 212 5.000 4.999 28.000 
0.95 87 6.000 5.968 28.000 
0.99 149 6.000 5.986 28.000 
0.95 64 7.000 6.994 28.000 
0.99 110 7.000 6.999 28.000 
0.95 50 8.000 7.958 28.000 
0.99 86 8.000 7.956 28.000 
0.95 40 9.000 8.955 28.000 
0.99 69 9.000 8.933 28.000 
 
References 
Hahn, G. J. and Meeker, W.Q. 1991. Statistical Intervals. John Wiley & Sons. New York. 
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Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the population mean. 
N is the size of the sample drawn from the population. 
Distance from Mean to Limit is the distance from the confidence limit(s) to the mean. For two-sided intervals, 
     it is also know as the precision, half-width, or margin of error. 
Target Distance from Mean to Limit is the value of the distance that is entered into the procedure. 
Actual Distance from Mean to Limit is the value of the distance that is obtained from the procedure. 
The standard deviation of the population measures the variability in the population. 
 
Summary Statements 
A sample size of 123 produces a two-sided 95% confidence interval with a distance from the mean 
to the limits that is equal to 4.998 when the estimated standard deviation is 28.000. 
 

This report shows the calculated sample size for each of the scenarios.  

Plots Section 
 

  
 

This plot shows the sample size versus the distance from the mean to the limits (precision) for the 
two confidence levels. 
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Example 2 – Validation using Moore and McCabe 
Moore and McCabe (1999) page 443 give an example of a sample size calculation for a 
confidence interval on the mean when the confidence coefficient is 95%, the standard deviation is 
known to be 3, and the margin of error is 2. The necessary sample size is 9.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Mean procedure window by 
expanding Means, then One Mean, then clicking on Confidence Interval, and then clicking on 
Confidence Intervals for One Mean. You may then make the appropriate entries as listed 
below, or open Example 2 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Sample Size) 
Confidence Level .................................... 0.95 
N (Sample Size) ...................................... Ignored since this is the Find setting 
Distance from Mean to Limit(s) ............... 2 
S (Standard Deviation) ............................ 3 
Known Standard Deviation ..................... Checked 
Interval Type ........................................... Two-Sided 
Population Size ....................................... Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

  Target Actual  
 Sample Distance Distance Standard 
Confidence Size from Mean from Mean Deviation 
Level (N) to Limits to Limits (S) 
0.95 9 2.000 1.960 3.000 
 

PASS also calculated the necessary sample size to be 9.  
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Example 3 – Validation using Ostle and Malone 
Ostle and Malone (1988) page 536 give an example of a sample size calculation for a confidence 
interval on the mean when the confidence coefficient is 95%, the standard deviation is known to 
be 7, and the margin of error is 5. The necessary sample size is 8. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Mean procedure window by 
expanding Means, then One Mean, then clicking on Confidence Interval, and then clicking on 
Confidence Intervals for One Mean. You may then make the appropriate entries as listed 
below, or open Example 3 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Sample Size) 
Confidence Level .................................... 0.95 
N (Sample Size) ...................................... Ignored since this is the Find setting 
Distance from Mean to Limit(s) ............... 5 
S (Standard Deviation) ............................ 7 
Known Standard Deviation ...................... Checked 
Interval Type ........................................... Two-Sided 
Population Size ....................................... Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

  Target Actual  
 Sample Distance Distance Standard 
Confidence Size from Mean from Mean Deviation 
Level (N) to Limits to Limits (S) 
0.95 8 5.000 4.851 7.000 
 

PASS also calculated the necessary sample size to be 8.  
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Chapter 421 

Confidence 
Intervals for One 
Mean with Tolerance 
Probability 
Introduction 
This procedure calculates the sample size necessary to achieve a specified distance from the mean 
to the confidence limit(s) with a given tolerance probability at a stated confidence level for a 
confidence interval about a single mean when the underlying data distribution is normal.  

Technical Details 
For a single mean from a normal distribution with unknown variance, a two-sided, 100(1 – α)% 
confidence interval is calculated by  

n
t

X n σα ˆ,/ 121 −−±  

A one-sided 100(1 – α)% upper confidence limit is calculated by 

n
t

X n σα ˆ, 11 −−+  

Similarly, the one-sided 100(1 – α)% lower confidence limit is 

n
t

X n σα ˆ, 11 −−−  

Each confidence interval is calculated using an estimate of the mean plus and/or minus a quantity 
that represents the distance from the mean to the edge of the interval. For two-sided confidence 
intervals, this distance is sometimes called the precision, margin of error, or half-width. We will 
label this distance, D.  
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The basic equation for determining sample size when D has been specified is 

D
t

n
n= − −1 2 1α σ/ , $

 

Solving for n, we obtain 
2

121
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −−

D
t

n n σα ˆ,/  

This equation can be solved for any of the unknown quantities in terms of the others. The value α/2 
is replaced by α when a one-sided interval is used. 

There is an additional subtlety that arises when the standard deviation is to be chosen for estimating 
sample size. The sample sizes determined from the formula above produce confidence intervals 
with the specified widths only when the future sample has a sample standard deviation that is no 
greater than the value specified. 

As an example, suppose that 15 individuals are sampled in a pilot study, and a standard deviation 
estimate of 3.5 is obtained from the sample. The purpose of a later study is to estimate the mean 
within 10 units. Suppose further that the sample size needed is calculated to be 57 using the formula 
above with 3.5 as the estimate for the standard deviation. The sample of size 57 is then obtained 
from the population, but the standard deviation of the 57 individuals turns out to be 3.9 rather than 
3.5. The confidence interval is computed and the distance from the mean to the confidence limits is 
greater than 10 units. 

This example illustrates the need for an adjustment to adjust the sample size such that the distance 
from the mean to the confidence limits will be below the specified value with known probability. 

Such an adjustment for situations where a previous sample is used to estimate the standard 
deviation is derived by Harris, Horvitz, and Mood (1948) and discussed in Zar (1984) and Hahn and 
Meeker (1991). The adjustment is 
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where 1 – γ  is the probability that the distance from the mean to the confidence limit(s) will be 
below the specified value, and m is the sample size in the previous sample that was used to estimate 
the standard deviation. 

The corresponding adjustment when no previous sample is available is discussed in Kupper and 
Hafner (1989) and Hahn and Meeker (1991). The adjustment in this case is 
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where, again, 1 – γ  is the probability that the distance from the mean to the confidence limit(s) will 
be below the specified value. 

Each of these adjustments accounts for the variability in a future estimate of the standard deviation. 
In the first adjustment formula (Harris, Horvitz, and Mood, 1948), the distribution of the standard 
deviation is based on the estimate from a previous sample. In the second adjustment formula, the 
distribution of the standard deviation is based on a specified value that is assumed to be the 
population standard deviation.  
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Finite Population Size 
The above calculations assume that samples are being drawn from a large (infinite) population. 
When the population is of finite size (N), an adjustment must be made. The adjustment reduces the 
standard deviation as follows: 

σ σfinite
n
N

= −⎛
⎝⎜

⎞
⎠⎟

1  

This new standard deviation replaces the regular standard deviation in the above formulas. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of  n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population mean is 1 – α. 

 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence and Tolerance 

Confidence Level (1 – Alpha) 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population mean is 1 – α.  

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 

Tolerance Probability 
This is the probability that a future interval with sample size N and the specified confidence level 
will have a distance from the mean to the limit(s) that is less than or equal to the distance specified. 

If a tolerance probability is not used, as in the 'Confidence Intervals for One Mean' procedure, the 
sample size is calculated for the expected distance from the mean to the limit(s), which assumes that 
the future standard deviation will also be the one specified. 
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Using a tolerance probability implies that the standard deviation of the future sample will not be 
known in advance, and therefore, an adjustment is made to the sample size formula to account for 
the variability in the standard deviation. Use of a tolerance probability is similar to using an upper 
bound for the standard deviation in the 'Confidence Intervals for One Mean' procedure. 

Values between 0 and 1 can be entered. The choice of the tolerance probability depends upon how 
important it is that the distance from the interval limit(s) to the mean is at most the value specified. 

You can enter a range of values such as 0.70 0.80 0.90 or 0.70 to 0.95 by 0.05. 

Sample Size 

N (Sample Size) 
Enter one or more values for the sample size. This is the number of individuals selected at 
random from the population to be in the study. 

You can enter a single value or a range of values. 

Precision 

Distance from Mean to Limit(s) 
This is the distance from the confidence limit(s) to the mean. For two-sided intervals, it is also 
known as the precision, half-width, or margin of error. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Standard Deviation 

Standard Deviation Source 
This procedure permits two sources for estimates of the standard deviation: 

• S is a Population Standard Deviation 
This option should be selected if there is no previous sample that can be used to obtain an 
estimate of the standard deviation. In this case, the algorithm assumes that future sample 
obtained will be from a population with standard deviation S. 

• S from a Previous Sample 
This option should be selected if the estimate of the standard deviation is obtained from a 
previous random sample from the same distribution as the one to be sampled. The sample 
size of the previous sample must also be entered under 'Sample Size of Previous Sample'. 

Standard Deviation – S is a 
Population Standard Deviation 

S (Standard Deviation) 
Enter an estimate of the standard deviation (must be positive). In this case, the algorithm assumes 
that future samples obtained will be from a population with standard deviation S. 

One common method for estimating the standard deviation is the range divided by 4, 5, or 6. 

You can enter a range of values such as 1 2 3 or 1 to 10 by 1. 
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Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  

Standard Deviation – S from a 
Previous Sample 

S (SD Estimated from a Previous Sample) 
Enter an estimate of the standard deviation from a previous (or pilot) study. This value must be 
positive. 

A range of values may be entered. 

Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  

Sample Size of Previous Sample 
Enter the sample size that was used to estimate the standard deviation entered in S (SD Estimated 
from a Previous Sample). 

This value is entered only when 'Standard Deviation Source:' is set to 'S from a Previous Sample'.  

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a one-sided or a two-sided confidence interval. 

Population 

Population Size 
This is the number of individuals in the population. Usually, you assume that samples are drawn 
from a very large (infinite) population. Occasionally, however, situations arise in which the 
population of interest is of limited size. In these cases, appropriate adjustments must be made. 
This option sets the population size. 

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example 1 – Calculating Sample Size 
A researcher would like to estimate the mean weight of a population with 95% confidence. It is 
very important that the mean weight is estimated within 15 grams.  Data available from a 
previous study are used to provide an estimate of the standard deviation. The estimate of the 
standard deviation is 45.1 grams, from a sample of size 14.  
The goal is to determine the sample size necessary to obtain a two-sided confidence interval such 
that the mean weight is estimated within 15 grams. Tolerance probabilities of 0.70 to 0.95 will be 
examined. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Mean with Tolerance 
Probability procedure window by expanding Means, then One Mean, then clicking on 
Confidence Interval, and then clicking on Confidence Intervals for One Mean with Tolerance 
Probability. You may then make the appropriate entries as listed below, or open Example 1 by 
going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Sample Size) 
Confidence Level .................................... 0.95 
Tolerance Probability .............................. 0.70 to 0.95 by 0.05 
N (Sample Size) ...................................... Ignored since this is the Find setting 
Distance from Mean to Limit(s) ............... 15 
Standard Deviation Source ..................... S from a Previous Sample 
S .............................................................. 45.1 
Sample Size of Previous Sample ............ 14 
Interval Type ........................................... Two-Sided 
Population Size ....................................... Infinite 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals 
 
  Target Actual   
 Sample Distance Distance Standard  
Confidence Size from Mean from Mean Deviation Tolerance 
Level (N) to Limits to Limits (S) Probability 
0.950 49 15.000 14.899 45.100 0.700 
0.950 52 15.000 14.959 45.100 0.750 
0.950 56 15.000 14.969 45.100 0.800 
0.950 61 15.000 14.997 45.100 0.850 
0.950 69 15.000 14.925 45.100 0.900 
0.950 82 15.000 14.943 45.100 0.950 
 
Sample size for estimate of S from previous sample = 14.  
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Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the population mean. 
N is the size of the sample drawn from the population. 
Distance from Mean to Limit is the distance from the confidence limit(s) to the mean. For two-sided intervals, 
     it is also know as the precision, half-width, or margin of error. 
Target Distance from Mean to Limit is the value of the distance that is entered into the procedure. 
Actual Distance from Mean to Limit is the value of the distance that is obtained from the procedure. 
The standard deviation of the population measures the variability in the population. 
Tolerance Probability is the probability that a future interval with sample size N and corresponding 
     confidence level will have a distance from the mean to the limit(s) that is less than or equal to the 
     specified distance. 
 
Summary Statements 
The probability is 0.700 that a sample size of 49 will produce a two-sided 95% confidence 
interval with a distance from the mean to the limits that is less than or equal to 14.899 if 
the population standard deviation is estimated to be 45.100 by a previous sample of size 14. 
 

This report shows the calculated sample size for each of the scenarios.  

Plots Section 
 

 

N vs Tol. Prob.
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This plot shows the sample size versus the tolerance probability. 
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Example 2 – Validation using Hahn and Meeker 
Hahn and Meeker (1991) page 139 give an example of a sample size calculation for a two-sided 
confidence interval on the mean when the confidence level is 95%, the population standard 
deviation is assumed to be 2500, the distance from the mean to the limit is 1500, and the tolerance 
probability is 0.90. The necessary sample size is 19.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Mean with Tolerance 
Probability procedure window by expanding Means, then One Mean, then clicking on 
Confidence Interval, and then clicking on Confidence Intervals for One Mean with Tolerance 
Probability. You may then make the appropriate entries as listed below, or open Example 2 by 
going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Sample Size) 
Confidence Level .................................... 0.95 
Tolerance Probability .............................. 0.90 
N (Sample Size) ...................................... Ignored since this is the Find setting 
Distance from Mean to Limit(s) ............... 1500 
Standard Deviation Source ..................... S is a Population Standard Deviation 
S .............................................................. 2500 
Interval Type ........................................... Two-Sided 
Population Size ....................................... Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals 
 
  Target Actual   
 Sample Distance Distance Standard  
Confidence Size from Mean from Mean Deviation Tolerance 
Level (N) to Limits to Limits (S) Probability 
0.95 19 1500.000 1447.889 2500.000 0.90 
 

PASS also calculated the necessary sample size to be 19.  
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Example 3 – Validation using Zar 
Zar (1984) pages 109-110 give an example of a sample size calculation for a two-sided 
confidence interval on the mean when the confidence level is 95%, the standard deviation is 
estimated to be 4.247211 by a previous sample of size 25, the distance from the mean to the limit 
is 1.5, and the tolerance probability is 0.90. The necessary sample size is 53. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Mean with Tolerance 
Probability procedure window by expanding Means, then One Mean, then clicking on 
Confidence Interval, and then clicking on Confidence Intervals for One Mean with Tolerance 
Probability. You may then make the appropriate entries as listed below, or open Example 3 by 
going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Sample Size) 
Confidence Level .................................... 0.95 
Tolerance Probability .............................. 0.90 
N (Sample Size) ...................................... Ignored since this is the Find setting 
Distance from Mean to Limit(s) ............... 1.5 
Standard Deviation Source ..................... S from a Previous Sample 
S .............................................................. 4.247211 
Sample Size of Previous Sample ............ 25 
Interval Type ........................................... Two-Sided 
Population Size ....................................... Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals 
 
  Target Actual   
 Sample Distance Distance Standard  
Confidence Size from Mean from Mean Deviation Tolerance 
Level (N) to Limits to Limits (S) Probability 
0.95 53 1.500 1.489 4.247 0.90 
 

PASS also calculated the necessary sample size to be 53.  
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Example 4 – Validation using Harris, Horvitz, and Mood 
Harris, Horvitz, and Mood (1948) pages 392-393 give an example of a sample size calculation for 
a two-sided confidence interval on the mean when the confidence level is 99%, the standard 
deviation is estimated to be 3 by a previous sample of size 9, the distance from the mean to the 
limit is 2, and the tolerance probability is 0.95. The necessary sample size is 49. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Mean with Tolerance 
Probability procedure window by expanding Means, then One Mean, then clicking on 
Confidence Interval, and then clicking on Confidence Intervals for One Mean with Tolerance 
Probability. You may then make the appropriate entries as listed below, or open Example 4 by 
going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Sample Size) 
Confidence Level .................................... 0.99 
Tolerance Probability .............................. 0.95 
N (Sample Size) ...................................... Ignored since this is the Find setting 
Distance from Mean to Limit(s) ............... 2 
Standard Deviation Source ..................... S from a Previous Sample 
S .............................................................. 3 
Sample Size of Previous Sample ............ 9 
Interval Type ........................................... Two-Sided 
Population Size ....................................... Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals 
 
  Target Actual   
 Sample Distance Distance Standard  
Confidence Size from Mean from Mean Deviation Tolerance 
Level (N) to Limits to Limits (S) Probability 
0.99 49 2.000 1.999 3.000 0.95 
 

PASS also calculated the necessary sample size to be 49.  
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Chapter 430 

Inequality Tests 
for Two Means 
using Differences 
(Two-Sample  
T-Test) 
Introduction 
A common research task is to compare the means of two populations (groups) by taking 
independent samples from each. This is sometimes referred to as a parallel-groups design. This 
design is used in situations such as the comparison of the income level of two regions, the 
nitrogen content of two lakes, or the effectiveness of two drugs.  

The mean represents the center of the population. If the means are different, then the populations 
are different. Other parameters of the two populations (such as the variance) can also be 
considered, but the mean is usually the starting point. 

If assumptions about the other features of the two populations are met (such as that they are 
normally distributed and their variances are equal), the two-sample t test can be used to compare 
the means of random samples drawn from these two populations. If the normality assumption is 
violated but the distributions are still symmetric, the nonparametric Mann-Whitney U test may be 
used instead.   

Test Procedure 
Let the means of populations one and two be μ1  and μ2

H :
. Let , the null hypothesis, represent 

the hypothesis that the two means are equal. That is, 
H0

20 1 0μ μ− = .  

The formal steps in conducting a two-sample t test and analyzing its power are as follows:  
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1.  Find the critical value. Assume that the true difference between the means (μ μ1 2− ) is 
zero. Choose a value Tα  so that the probability of rejecting H0  when H0  is true is equal 

to a specified value, α . Using the t distribution, select Tα  so that ( ) .  Pr >T T =α α

Again, select elect  so that if the means of the two populations are equal, t statistics 
calculated from two samples drawn from those populations will only exceed T  exactly 

Tα
α

100α%  of the time. 

 
Figure 1 - Find the Critical Value 

 
 

2.  Conduct the experiment. Select two samples of N1  and N2  items from the populations 
and compute the t value. Call this number TS .  

3.  Look for statistical significance. If T TS > α  reject the null hypothesis that μ μ1 2 0− =  
in favor of an alternative hypothesis that μ μ1 2 0− = >d , where μ μ1 2> . 

4.  Compute the power. Now suppose that you want to compute the power of this test. First, 
you must specify an alternative value, d, for the difference between the two means so that 
μ μ1 2= + d . You now consider a new probability distribution centered at d which is 
called the noncentral-t distribution. It appears as a bell-shaped curve as shown below. 

The power is the probability of rejecting  when the true difference is d. Since we 
reject  when our computed  value is greater that , the power is the area under 
the noncentral-t curve to the right of T . The area to the left of T  represents the 
probability of a type-II error, or beta, since when the computed T  value is less than T , 
we do not reject the false . 

H0

H0 TS Tα
α α

S α

H0
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Figure 2 - Computing the Power 

 
Notice that in order to compute the power of the test, we must specify the true values of the 
means. Since we do not know these values, we compute the power at several possible values of d. 
This lets us understand what the power might have been. 

Note that we can set the value of alpha (probability of a type-I error). However, we cannot set the 
value of beta (probability of a type-II error). Beta is computed based on a hypothesized value of 
d. We do not know what the value d really is. So we can compute beta for a variety of d values, 
but unless we know the true values of the population means, we do not know the true value of d, 
and hence, we do not know the true value of beta. This is why so much attention is paid to alpha, 
but so little attention is paid to beta. 

Assumptions 
The following assumptions are made when using the two-sample t test or the Mann-Whitney U 
test. One of the reasons for the popularity of the t test is its robustness in the face of assumption 
violation. However, if an assumption is not met even approximately, the significance levels and 
the power of the t test are unknown. Unfortunately, in practice it often happens that several 
assumptions are not met. This makes matters even worse! Hence, you should take the appropriate 
steps to check the assumptions before you make important decisions based on these tests.  

Two-Sample T Test Assumptions 
The assumptions of the two-sample t test are:  

1. The data are continuous (not discrete). 

2. The data follow the normal probability distribution. 

3. The variances of the two populations are equal. (If not, the Aspin-Welch Unequal-
Variance test is used.) 

4. The two samples are independent. There is no relationship between the individuals in one 
sample as compared to the other (as there is in the paired t test).  

5. Both samples are simple random samples from their respective populations. Each 
individual in the population has an equal probability of being selected in the sample.  
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Mann-Whitney U Test Assumptions 
The assumptions of the Mann-Whitney U test for difference in means are:  

1. The variable of interest is continuous (not discrete). The measurement scale is at least 
ordinal.  

2. The probability distributions of the two populations are identical, except for location. 
That is, the variances are equal.  

3. The two samples are independent. 

4. Both samples are simple random samples from their respective populations. Each 
individual in the population has an equal probability of being selected in the sample.  

Limitations 
There are few limitations when using these tests. Sample sizes may range from a few to several 
hundred. If your data are discrete with at least five unique values, you can often ignore the 
continuous variable assumption. Perhaps the greatest restriction is that your data come from a 
random sample of the population. If you do not have a random sample, your significance levels 
will probably be incorrect. 

Technical Details 
There are four separate situations each requiring different formulas. Let the means of the two 
populations be represented by μ1  and μ2 . The difference between these means will be 
represented by d. Let the standard deviations of the two populations be represented as σ1  and 
σ2 . 

Case 1 – Standard Deviations Known and Equal 
When σ σ σ1 2= =  and are known, the power of the t test is calculated as follows for a 
directional alternative (one-tailed test) in which d > 0. 

1. Find zα   such that , where ( )1− =Φ zα α ( )Φ x  is the area under the standardized 
normal curve to the left of x. 

2. Calculate: σ σx
1 2

= 1
N

+ 1
N

. 

3. Calculate: p
x

x
z = z -α dσ

σ
. 

4. Calculate:   Power = . ( )1− Φ zp
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Case 2 – Standard Deviations Known and Unequal 
When σ σ1 ≠ 2 and are known, the power is calculated as follows for a directional alternative 
(one-tailed test) in which d > 0.  

1. Find zα   such that ( )1− =Φ zα α , where ( )Φ x  is the area under the standardized 
normal curve to the left of x. 

2. Calculate: σ
σ σ

x
1
2

1

2
2

2
=

N
+

N
. 

3. Calculate: p
x

x
z =

z -α dσ
σ

. 

4. Calculate:   Power = ( )1− Φ zp . 

Case 3 – Standard Deviations Unknown and Equal 
When σ σ σ1 2= =  and are unknown, the power of the t test is calculated as follows for a 
directional alternative (one-tailed test) in which d > 0.  

1.  Find tα  such that ( )1 , where − =T tdf α α ( )T tdf α  is the area under a central-t curve to 
the left of x and df N N= + −1 2 2 . 

2. Calculate: σ σx
1 2

= 1
N

+ 1
N

. 

3. Calculate the noncentrality parameter: λ
σ

=
d

x
. 

4. Calculate: p
x

x
t =

t - d
+ασ

σ
λ . 

5. Calculate: Power = ( )1− ′T tdf p,λ , where ( )′T xdf ,λ  is the area under a noncentral-t curve 

with degrees of freedom df and noncentrality parameter λ  to the left of x. 



430-6  Inequality Tests for Two Means using Differences (Two-Sample T-Test) 

Case 4 – Standard Deviations Unknown and Unequal 
When σ σ1 ≠ 2  and are unknown, the power is calculated as follows for a directional alternative 
(one-tailed test) in which d > 0. Note that in this case, an approximate t test is used.  

1. Calculate: σ σ σ
x

1
2

1

2
2

2
=

N
+

N
. 

2. Calculate: f =

N ( N +1)
+

N ( N +1)

- 2x

1
4

1
2

1

2
4

2
2

2

σ
σ σ

4

. 

which is the adjusted degrees of freedom. Often, this is rounded to the next highest 
integer. 

3.  Find tα  such that ( )1 , where − =T tf α α ( )T tf α  is the area to the left of x under a 
central-t curve with f degrees of freedom. 

4. Calculate: λ
σ

=
d

,
x

1 the noncentrality parameter. 

5. Calculate: p
x

x
t =

t - d
+ασ

σ
λ . 

6. Calculate: Power = , where ( )1− ′T tf p,λ ( )′T xf ,λ  is the area to the left of x under a 

noncentral-t curve with degrees of freedom f and noncentrality parameter λ . 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Mean1, Mean2, Sigma1, Sigma2, Alpha, Power and Beta, N1, and N2. In 
most situations, you will select either Power and Beta or N1. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment.  
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Alpha Approximate Odds of Rejecting a true null hypothesis 
0.01 1 in 100 
0.02 1 in 50 
0.03 1 in 33 
0.04 1 in 25 
0.05 1 in 20 
0.06 1 in 17 
0.07 1 in 14 
0.08 1 in 12 
0.09 1 in 11 
0.10 1 in 10 
0.15 1 in 7 
0.20 1 in 5 
0.25 1 in 4 
0.33 1 in 3 
0.50 1 in 2 

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 
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• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size – Means 

Mean1 (Mean of Group 1) 
This option specifies the mean of the first group. Under the null hypothesis of no difference 
between groups, the means of both groups are assumed to be equal. Hence, under the null 
hypothesis, this is also the mean of the second group.  

Mean2 (Mean of Group 2) 
This option specifies the mean of the second group in the alternative hypothesis. The difference 
between this value and the value of Mean1 represents the amount that is tested by the t test. 

Effect Size – Standard Deviations 

S1 and S2 (Standard Deviations) 
These options specify the values of the standard deviations for each group. When the S2 is set to 
S1, only S1 needs to be specified. The value of S1 will be copied into S2. 

When these values are not known, you must supply estimates of them. Press the SD button to 
display the Standard Deviation Estimator window. This procedure will help you find appropriate 
values for the standard deviation. 

Known Standard Deviation 
This option specifies whether the standard deviations (sigmas) are known or unknown. In almost 
all experimental situations, sigma is not known. However, since great calculation efficiencies are 
obtained if we can assume that sigma is known, and since this option has only a small impact on 
the final result, we usually leave it checked until we are ready for the final results. 

When this box is checked, the program makes its calculations assuming that the standard 
deviations are known. This results in the use of the normal distribution in all probability 
calculations. Calculations using this option will be much faster than for the unknown sigma case. 
The results for either case will be close when the sample size is over 30. 

When this box is not checked, the program assumes that sigma is not known and will be 
estimated from the data. This results in probability calculations using the noncentral-t 
distribution. This distribution requires a lot more calculations than does the normal distribution. 
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The calculation speed comes into play whenever the Find option is set to something besides Beta. 
In these cases, the program uses a special searching algorithm which requires many iterations. 
You will note a real difference in calculation speed depending on whether this option is checked. 

A reasonable strategy would be to leave this option checked while you are experimenting with the 
parameters and then leave it unchecked when you are ready for your final results. 

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always  Mean1 = Mean2. H0:

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 

Possible selections are: 

• Ha: Mean1 <> Mean2 
This is the most common selection. It yields the two-tailed t test. Use this option when you 
are testing whether the means are different, but you do not want to specify beforehand which 
mean is larger. 

• Ha: Mean1 < Mean2 
This option yields a one-tailed t test. Use it when you are only interested in the case in which 
Mean2 is greater than Mean1. 

• Ha: Mean1 > Mean2 
This option yields a one-tailed t test. Use it when you are only interested in the case in which 
Mean2 is less than Mean1. 

Nonparametric Adjustment (Mann-Whitney Test) 
This option lets you make sample size adjustments appropriate for when you are using the Mann-
Whitney test rather than the t test. Results by Al-Sunduqchi and Guenther (1990) indicate that 
power calculations for the Mann-Whitney test may be made using the standard t test formulations 
with a simple adjustment to the sample sizes, N1 and N2. The size of the adjustment depends on 
the actual distribution of the data. They give sample size adjustment factors for four distributions. 
These are 1 for uniform, 2/3 for double exponential,  for logistic, and 9 2/ π π / 3  for normal.  

The options are as follows: 

• Ignore 
Do not make a Mann-Whitney adjustment. This indicates that you want to analyze a t test, not 
the Mann-Whitney test. 

• Uniform 
Make the Mann-Whitney sample size adjustment assuming the uniform distribution. Since 
the factor is one, this option performs the same as Ignore. It is included for completeness. 
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• Double Exponential 
Make the Mann-Whitney sample size adjustment assuming the double exponential 
distribution. 

• Logistic 
Make the Mann-Whitney sample size adjustment assuming the logistic distribution. 

• Normal 
Make the Mann-Whitney sample size adjustment assuming the normal distribution.  

Example 1 – Power after a Study 
This example will cover the situation in which you are calculating the power of a t test after the 
data have been collected.   

A clinical trial was run to compare the effectiveness of two drugs. The ten responses in each 
group are shown below. 
 

Drug A Drug B 
21 15 
20 17 
25 17 
20 19 
23 22 
20 12 
13 16 
18 21 
25 20 
24 19 

 

These data were run through the NCSS statistical program with the following results. 
 
 Descriptive Statistics Section 
    Standard Standard 95% LCL 95% UCL 
 Variable Count Mean Deviation Error of Mean of Mean 
 Drug A 10 20.9 3.665151 1.159023 18.27811 23.52189 
 Drug B 10 17.8 3.011091 0.9521905 15.646 19.954 
 
 Alternative  Prob Decision  
 Hypothesis T Value Level (5%)  
 (Drug A)-(Drug B)<>0 2.0667 0.053460 Accept Ho  
 

Notice that the probability level of 0.05346 is not significant. When a test is not significant, its 
power should be evaluated. The researchers decide to calculate the power using the sample values 
as estimates for the population values for various sample sizes and for alphas of 0.01 and 0.05. 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means (Two-Sample T-Test) [Differences] 
procedure window by expanding Means, then Two Independent Means, then clicking on Test 
(Inequality), and then clicking on Tests for Two Means (Two-Sample T-Test) [Differences]. 
You may then make the appropriate entries as listed below, or open Example 1 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.01 0.05  
N1 (Sample Size Group 1) ...................... 5 10 15 20 25 30 50 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Mean1 (Mean of Group 1) ....................... 20.9 
Mean2 (Mean of Group 2) ....................... 17.8 
S1 (Standard Deviation Group 1) ............ 3.67 
S2 (Standard Deviation Group 2) ............ 3.01 
Known Standard Deviation ..................... Not checked 
Alternative Hypothesis ............................ Ha: Mean1 ≠ Mean2 
Nonparametric Adjustment ..................... Ignore 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.08825 5 5 1.00 0.01000 0.91175 20.900 17.800 3.670 3.010 
0.24642 10 10 1.00 0.01000 0.75358 20.900 17.800 3.670 3.010 
0.42417 15 15 1.00 0.01000 0.57583 20.900 17.800 3.670 3.010 
0.58661 20 20 1.00 0.01000 0.41339 20.900 17.800 3.670 3.010 
0.71790 25 25 1.00 0.01000 0.28210 20.900 17.800 3.670 3.010 
0.81541 30 30 1.00 0.01000 0.18459 20.900 17.800 3.670 3.010 
0.97513 50 50 1.00 0.01000 0.02487 20.900 17.800 3.670 3.010 
0.26033 5 5 1.00 0.05000 0.73967 20.900 17.800 3.670 3.010 
0.50069 10 10 1.00 0.05000 0.49931 20.900 17.800 3.670 3.010 
0.68601 15 15 1.00 0.05000 0.31399 20.900 17.800 3.670 3.010 
0.81252 20 20 1.00 0.05000 0.18748 20.900 17.800 3.670 3.010 
0.89246 25 25 1.00 0.05000 0.10754 20.900 17.800 3.670 3.010 
0.94028 30 30 1.00 0.05000 0.05972 20.900 17.800 3.670 3.010 
0.99550 50 50 1.00 0.05000 0.00450 20.900 17.800 3.670 3.010 
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Report Definitions 
Power is the probability of rejecting a false null hypothesis. Power should be close to one. 
N1 and N2 are the number of items sampled from each population. To conserve resources, they should be small. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
Mean1 is the mean of populations 1 and 2 under the null hypothesis of equality. 
Mean2 is the mean of population 2 under the alternative hypothesis. The mean of population 1 is unchanged. 
S1 and S2 are the population standard deviations. They represent the variability in the populations. 
 
Summary Statements 
Group sample sizes of 5 and 5 achieve 9% power to detect a difference of 3.1 between the null 
hypothesis that both group means are 20.9 and the alternative hypothesis that the mean of group 
2 is 17.8 with estimated group standard deviations of 3.7 and 3.0 and with a significance level 
(alpha) of 0.01000 using a two-sided two-sample t-test. 
 

This report shows the values of each of the parameters, one scenario per row. At alpha = 0.05 and 
N1 = 10, the power was only 0.50. The researchers only had a 50-50 chance of rejecting the null 
hypothesis in this case.  

Plots Section 
 

 

Power vs N1 by Alpha
M1=20.9 M2=17.8 S1=3.7 S2=3.0 N2=N1 2-Sided T Test

N1

5 20 35 50
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This plot shows the relationship between alpha and power in this example. Notice that the range 
of power values over the range of alpha values. Clearly, the sample size should have been 
doubled to twenty per group in order to achieve a power greater than 0.80. 



Inequality Tests for Two Means using Differences (Two-Sample T-Test) 430-13 

Example 2 – Finding the Sample Size Necessary to 
Reject 
Continuing with the last example, determine the sample size that the researchers would have 
needed for the null hypothesis to be rejected at the alpha = 0.01 and 0.05 levels, all other 
parameters remaining unchanged. They decided to use a beta error level of 0.20. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means (Two-Sample T-Test) [Differences] 
procedure window by expanding Means, then Two Independent Means, then clicking on Test 
(Inequality), and then clicking on Tests for Two Means (Two-Sample T-Test) [Differences]. 
You may then make the appropriate entries as listed below, or open Example 2 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Power ...................................................... 0.80 
Alpha ....................................................... 0.01 0.05  
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Mean1 (Mean of Group 1) ....................... 20.9 
Mean2 (Mean of Group 2) ....................... 17.8 
S1 (Standard Deviation Group 1) ............ 3.67 
S2 (Standard Deviation Group 2) ............ 3.01 
Known Standard Deviation ..................... Not checked 
Alternative Hypothesis ............................ Ha: Mean1 ≠ Mean2 
Nonparametric Adjustment ..................... Ignore 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.81541 30 30 1.00 0.01000 0.18459 20.900 17.800 3.670 3.010 
0.81252 20 20 1.00 0.05000 0.18748 20.900 17.800 3.670 3.010 

 

We note that the required sample size is 20 when alpha is 0.05 and 30 when alpha is 0.01. Note 
that although the power was set at 0.80, the actual power achieved was 0.81. This is due to the 
fact that sample sizes must be integers, so specified power levels are not met exactly. 
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Example 3 – Minimum Detectable Difference 
The minimum detectable difference is the difference between the two means that would be 
significant if all other parameters are kept at their experimental values. The minimum detectable 
difference is found by setting Mean1 to zero and solving for Mean2.  

Continuing with the previous example, what is the minimum detectable difference when N1 = N2 
= 10, alpha = 0.05, beta = 0.20, S1 = 3.67, and S2 = 3.01. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means (Two-Sample T-Test) [Differences] 
procedure window by expanding Means, then Two Independent Means, then clicking on Test 
(Inequality), and then clicking on Tests for Two Means (Two-Sample T-Test) [Differences]. 
You may then make the appropriate entries as listed below, or open Example 3 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Mean2 (Search>Mean1) 
Power ...................................................... 0.80 
Alpha ....................................................... 0.05  
N1 (Sample Size Group 1) ...................... 10 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Mean1 (Mean of Group 1) ....................... 0 
Mean2 (Mean of Group 2) ....................... Ignored since this is the Find setting 
S1 (Standard Deviation Group 1) ............ 3.67 
S2 (Standard Deviation Group 2) ............ 3.01 
Known Standard Deviation ...................... Not checked 
Alternative Hypothesis ............................ Ha: Mean1 ≠ Mean2 
Nonparametric Adjustment ...................... Ignore 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.80000 10 10 1.00 0.05000 0.20000 0.000 4.431 3.670 3.010 
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The minimum detectable difference for this experiment is 4.431 minutes. If the true population 
means were this far apart, at a significance level of 0.05 and the power would be 0.80. Hence, the 
researchers should not have proceeded with the experiment if they thought the true difference was 
less than 4.431. 

Example 4 – Finding the Sample Size 
This example will show how the sample size for a new study is determined. A researcher decides 
to use a parallel-group design to study the impact of a new exercise program on body weight. 
Participants will be divided into two groups: those using and those not using the exercise 
program. Each participant’s weight loss (or gain) will be measured after three months. How many 
participants are needed to achieve 90% power at significance levels of 0.01 and 0.05? 

Past experiments of this type have had standard deviations in the range of 10 to 15 pounds. The 
researcher wants to detect a difference of 15 pounds or more.  

Although a drop in the mean is hypothesized, two-sided testing will be used because this is the 
standard method used and the researcher plans on publishing the results. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means (Two-Sample T-Test) [Differences] 
procedure window by expanding Means, then Two Independent Means, then clicking on Test 
(Inequality), and then clicking on Tests for Two Means (Two-Sample T-Test) [Differences]. 
You may then make the appropriate entries as listed below, or open Example 4 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Power ...................................................... 0.90 
Alpha ....................................................... 0.01 0.05  
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Mean1 (Mean of Group 1) ....................... 0 
Mean2 (Mean of Group 2) ....................... 15 
S1 (Standard Deviation Group 1) ............ 10 12.5 15 
S2 (Standard Deviation Group 2) ............ S1 
Known Standard Deviation ..................... Not checked 
Alternative Hypothesis ............................ Ha: Mean1 ≠ Mean2 
Nonparametric Adjustment ..................... Ignore 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.90052 15 15 1.00 0.01000 0.09948 0.000 15.000 10.000 10.000 
0.91690 11 11 1.00 0.05000 0.08310 0.000 15.000 10.000 10.000 
0.90961 23 23 1.00 0.01000 0.09039 0.000 15.000 12.500 12.500 
0.90719 16 16 1.00 0.05000 0.09281 0.000 15.000 12.500 12.500 
0.90596 32 32 1.00 0.01000 0.09404 0.000 15.000 15.000 15.000 
0.91250 23 23 1.00 0.05000 0.08750 0.000 15.000 15.000 15.000 
 
 

N
1

 
 

After looking at these reports, the researcher decides to enroll 20 subjects per group and test the 
hypothesis at the 0.05 significance level. He chooses 20 because it is a little larger than the 16 that 
are required when the standard deviation is 12.5. 

Example 5 – Mann-Whitney Test 
The Mann-Whitney test is a popular nonparametric analog of the two-sample t test. It is 
recommended when the distribution of the data is not normal. A study by Al-Sunduqchi (1990) 
showed that sample size and power calculations for the Mann-Whitney test can be made using the 
standard t test results with an adjustment to the sample size.  

Suppose that the researcher in Example 4 wants to compare sample size requirements of the t test 
with those of the Mann-Whitney test. To do this, he would use the same values, only this time the 
Nonparametric Adjustment would be set to a specific distribution. In this example, the double 
exponential is selected since it requires the largest adjustment of the distributions listed and the 
actual distribution is not known.   
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means (Two-Sample T-Test) [Differences] 
procedure window by expanding Means, then Two Independent Means, then clicking on Test 
(Inequality), and then clicking on Tests for Two Means (Two-Sample T-Test) [Differences]. 
You may then make the appropriate entries as listed below, or open Example 5 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Power ...................................................... 0.90 
Alpha ....................................................... 0.01 0.05  
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Mean1 (Mean of Group 1) ....................... 0 
Mean2 (Mean of Group 2) ....................... 15 
S1 (Standard Deviation Group 1) ............ 10 12.5 15 
S2 (Standard Deviation Group 2) ............ S1 
Known Standard Deviation ..................... Not checked 
Alternative Hypothesis ............................ Ha: Mean1 ≠ Mean2 
Nonparametric Adjustment ..................... Double Exponential 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Mann-Whitney Test (Double Exponention Distribution) 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and equal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.90052 10 10 1.000 0.01000 0.09948 0.000 15.000 10.000 10.000 
0.91690 8 8 1.000 0.05000 0.08310 0.000 15.000 10.000 10.000 
0.90961 16 16 1.000 0.01000 0.09039 0.000 15.000 12.500 12.500 
0.90719 11 11 1.000 0.05000 0.09281 0.000 15.000 12.500 12.500 
0.90596 22 22 1.000 0.01000 0.09404 0.000 15.000 15.000 15.000 
0.91250 16 16 1.000 0.05000 0.08750 0.000 15.000 15.000 15.000 

 

Comparing the sample sizes found here with those of the corresponding t test found in the last 
example at the 0.05 significance level, note that there is a reduction in the maximum sample size 
from 23 to 16. That is, if the Mann-Whitney test is used instead of the t test when the actual 
distribution follows the double exponential distribution, the sample size necessary to achieve 90% 
power at the 0.05 significance level is reduced from 23 to 16 per group. 
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Example 6 – Validation of Sample Size using Machin et 
al. 
Machin et al. (1997) page 35 present an example in which the mean difference is 5, the common 
standard deviation is 10, the power is 90%, and the significance level is 0.05. They calculate the 
per group sample size as 86.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means (Two-Sample T-Test) [Differences] 
procedure window by expanding Means, then Two Independent Means, then clicking on Test 
(Inequality), and then clicking on Tests for Two Means (Two-Sample T-Test) [Differences]. 
You may then make the appropriate entries as listed below, or open Example 6 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Power ...................................................... 0.90 
Alpha ....................................................... 0.05  
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Mean1 (Mean of Group 1) ....................... 0 
Mean2 (Mean of Group 2) ....................... 5 
S1 (Standard Deviation Group 1) ............ 10 
S2 (Standard Deviation Group 2) ............ S1 
Known Standard Deviation ...................... Not checked 
Alternative Hypothesis ............................ Ha: Mean1 ≠ Mean2 
Nonparametric Adjustment ...................... Ignore 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.90323 86 86 1.00 0.05000 0.09677 0.000 5.000 10.000 10.000 

 

Note that the sample size of 86 per group matches Machin’s result exactly. 
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Example 7 – Validation using Zar 
Zar (1984) page 136 give an example in which the mean difference is 1, the common standard 
deviation is 0.7206, the sample sizes are 15 in each group, and the significance level is 0.05. They 
calculate the power as 0.96. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means (Two-Sample T-Test) [Differences] 
procedure window by expanding Means, then Two Independent Means, then clicking on Test 
(Inequality), and then clicking on Tests for Two Means (Two-Sample T-Test) [Differences]. 
You may then make the appropriate entries as listed below, or open Example 7 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05  
N1 (Sample Size Group 1) ...................... 15 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Mean1 (Mean of Group 1) ....................... 0 
Mean2 (Mean of Group 2) ....................... 1 
S1 (Standard Deviation Group 1) ............ 0.7206 
S2 (Standard Deviation Group 2) ............ S1 
Known Standard Deviation ..................... Not checked 
Alternative Hypothesis ............................ Ha: Mean1 ≠ Mean2 
Nonparametric Adjustment ..................... Ignore 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<>Mean2 
The standard deviations were assumed to be unknown and unequal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.95611 15 15 1.00 0.05000 0.04389 0.000 1.000 0.721 0.721 

 

Note that the power of 0.95611 matches Zar’s result of 0.96 to the two decimal places given. 
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Chapter 431 

Inequality Tests 
for Two Means in a 
Repeated 
Measures Design 
Introduction 
This module calculates the power for testing the time-averaged difference (TAD) between two 
means in a repeated measures design. A repeated measures design is one in which subjects are 
observed repeatedly over time. Measurements may be taken at pre-determined intervals (e.g. 
weekly or at specified time points following the administration of a particular treatment), or at 
random times so there are variable intervals between repeated measurements.   

Time-averaged difference analysis is often used when the outcome to be measured varies with 
time. For example, suppose that you want to compare two treatment groups based on the means 
of a certain outcome such as blood pressure. It is known that a person's blood pressure depends 
on several instantaneous factors such as amount of sleep, excitement level, mood, exercise, etc. If 
only a single measurement is taken from each patient then the comparison of mean values from 
the two groups may be invalid because of the large degree of variation in blood pressure levels 
among patients. The precision of the experiment is increased by taking multiple measurements 
from each individual and comparing the time-averaged difference between the two groups. Care 
must be taken in the analysis because of the correlation that is introduced when several 
measurements are taken from the same individual. The covariance structure may take on several 
forms depending on the nature of the experiment and the subjects involved. This procedure 
allows you to calculate sample sizes using four different covariance patterns: Compound 
Symmetry, AR(1), Banded(1), and Simple.   

This procedure can be used to calculate sample size and power for tests of pairwise contrasts in a 
mixed models analysis of repeated measures data. Mixed models analysis of repeated measures 
data is also employed to provide more flexibility in covariance specification and a greater degree 
of robustness in the presence of missing data, provided that the data can be assumed to be missing 
at random. 
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Technical Details 

Theory and Notation 
For a study with n1 subjects in group 1 and n2 subjects in group 2 (for a total of N subjects), each 
measured m times, the time-averaged difference (d) of a continuous response between two groups 
can be estimated using the following model: 

mjNixy ijiij ,,1 ;,,1,10 LL ==++= εββ , 

where 

ijy  is the jth response from subject i, 

0β  is the model intercept, 

1β  is the treatment effect or the time-averaged difference between groups 1 and 2 (i.e. 
d=1β ), 

ix  is a binary group assignment variable, which is equal to 1 if the ith subject is in group 1 
and equal to 0 if the ith subject is in group 2, and 

ijε  is the normal, random error associated with the observation . ijy

Accounting for the relationship between repeated measurements, the model presented above can 
be written in matrix form as 

iii εβXy += ' , 

where 

( '21 imiii yyy L=y ) 1×m is an  vector of responses from subject i, 

211

11
11

×
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

m

i
MM

X if the ith subject is in group 1, 

201

01
01

×
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

m

i
MM

X if the ith subject is in group 2, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

0

β
β

β  is the vector of model parameters, and 

),(~ 2
ii N R0ε σ  is the vector of correlated random errors for the observations from subject i,  
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where  
2)var( σ=ijy  is the residual variance for a single observation, and Ri is the m × m 

common correlation matrix for all subjects. The contents of Ri depend on the assumed 
within-subject correlation structure. 

We can stack the data in a single vector and matrix form as follows: 
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and the model for the N equations can be compressed into one as 

εβXy += ' , 

with 
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as the covariance (or variance - covariance) matrix.  

Covariance Pattern 
In a repeated measures design with N subjects, each measured m times, observations from a 
single subject may be correlated, and a pattern for their covariance must be specified. In this case, 
V will have a block-diagonal form: 
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where Vi are  covariance matrices corresponding to the ith subject. The 0's represent 
matrices of zeros giving zero covariances for observations on different subjects. This 

routine allows the specification of four different covariance matrix types: Compound Symmetry, 
AR(1), Banded(1), and Simple. 

mm×
mm×
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Compound Symmetry 
A compound symmetry covariance model assumes that all covariances are equal, and all 
variances on the diagonal are equal. That is 
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where  is the residual variance and 2σ ρ  is the correlation between observations on the same 
subject.  

AR(1) 
An AR(1) (autoregressive order 1) covariance model assumes that all variances on the diagonal 
are equal and that covariances t time periods apart are equal to . That is tρσ 2
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where  is the residual variance and 2σ ρ  is the correlation between observations on the same 
subject.  

Banded(1) 
A Banded(1) (banded order 1) covariance model assumes that all variances on the diagonal are 
equal, covariances for observations one time period apart are equal to , and covariances for 
measurements greater than one time period apart are equal to zero. That is 
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where  is the residual variance and 2σ ρ  is the correlation between observations on the same 
subject.  
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Simple 
A simple covariance model assumes that all variances on the diagonal are equal and that all 
covariances are equal to zero. That is 
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where  is the residual variance. 2σ

Model Estimation 
With , then estimates of the regression coefficients from the above regression model are 
given as 
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which is estimated by substituting  for V. V̂

Hypothesis Test 
A two-sided test that the time-averaged difference between the two groups is equal to zero is 
equivalent to the test of 0: 10 =βH  vs. 0: 11 ≠βH . Similarly, the upper and lower one-sided 
tests are 0: 10 ≤βH  vs. 0: 11 >βH  and 0: 10 ≥βH  vs. 0: 11 <βH , respectively. The test can be 
carried out using the test statistic 

)1,0(
)ˆvar(

ˆ

1

1 Nz →=
β

β . 

If the standard deviation is unknown and estimated, a t test should be used. In practice, this test is 
often carried out by calculating the average response for each individual and then using a two-
sample t test. If the data are balanced, the test can also be carried out in NCSS using Repeated 
Measures GLM and specifying a comparison such as "Each with First". In the case where the data  
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are not balanced, the test could be carried out using SAS® PROC MIXED or SAS® PROC GLM. 
In both cases a REPEATED statement should be used, along with a statement such as 

ESTIMATE 'A-B' treat 1 -1;  or  LSMEANS treat/ PDIFF; 

Power Calculations 
Sample sizes for repeated measures studies are often calculated as if a simple trial with no 
repeated measures was planned, which results in a higher calculated sample size than would be 
found if the correlation between repeated measures were taken into consideration. With an idea of 
the correct covariance structure, and an estimate of the within-patient correlation, you can get a 
better estimate of the power and sample size necessary to achieve your objectives. If you have no 
indication of the correct covariance structure for the experiment, then the compound symmetry 
(program default) is likely to be adequate. If you have no previous estimate of the within-patient 
correlation, then Brown and Prescott (2006) suggest using a conservative prediction of the 
correlation, i.e. a higher correlation than anticipated. 

For a two-sided test where it is assumed that d > 0 (without loss of generality), 

,
)ˆvar(

1

|
)ˆvar()ˆvar(

ˆ
Pr

0 that assumed isit  since  |
)ˆvar(

ˆ
Pr

|
)ˆvar(

ˆ
Pr

)| rejectingPr(1Power

1

2/1

1

1

2/1

1

1

12/1

1

1

12/1

1

1

10

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−Φ−=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−>

−
=

>
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
>≈

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
>=

=−=

−

−

−

−

β

ββ

β

β

β

β

β

β

α

α

α

α

dz

Hdzd

dHz

Hz

HH

 
where Φ() is the standard normal density function, and α and β are the probabilities of type I and 
type II error, respectively. For a one-sided test, α is used in place of α/2. 

Since a t test is usually used to test for a group difference in a case such as this, we should note 
here that the power calculation using the standard normal distribution represents an 
approximation to the actual power achieved by the t test. We feel that it might be more 
appropriate to use the non-central t distribution; however, since the calculation is based on 
numerous assumptions about the covariance structure that influence the results, it seems 
unnecessary to worry about the small gain in precision that may occur by using the non-central t 
distribution. For this reason, along with the fact that this is the published method, we have elected 
to follow the methods of Brown and Prescott (2006), Liu and Wu (2005), Diggle et al. (1994) and 
use the standard normal distribution in power and sample size calculations. 
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Calculating Power for Testing Pairwise Contrasts of Fixed 
Effects in Mixed Models 

Mixed Model Theory and Notation 
A linear mixed model incorporates both fixed and random effects. Fixed effects are those effects 
in the model whose values are assumed constant, or unchanging. Random effects are those effects 
in the model that are assumed to have arisen from a distribution, resulting in another source of 
random variation other than residual variation. Brown and Prescott (2006) demonstrates how this 
methodology may be used to calculate the sample size and power for testing pairwise contrasts of 
fixed effects in a mixed models analysis of repeated measures data. For an experiment with N 
subjects, p fixed effect parameters, and q random effect parameters, the general mixed model can 
be expressed using matrix notation as 

Niiiiii ,,1, L=++= εuZβXy  

where 

iy  is an  vector of responses for subject i, 1×in

iX  is an , full-rank design matrix of fixed effects for subject i, pni ×

β  is an  vector of fixed effects parameters, 1×p

iZ  is an  design matrix of the random effects for subject i, qni ×

iu  is a  vector of random effects for subject i which has means of zero and scaled 
covariance matrix G, 

1×q

iε  is an  vector of errors for subject i with zero mean and scaled covariance . 1×in iΣ

The covariance of , , can be written as iy ii Vy =)var(
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We can stack the data in a single vector and matrix form as follows: 
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and the mixed model for the N equations can be compressed into one as 

εZuXβy ++= , 
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with 
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is the covariance (or variance-covariance) matrix.  

Mixed Model Estimation 
Estimates of the variance components G and  are found using maximum likelihood (ML) or 
restricted/residual maximum likelihood (REML) methods. From these estimates, G  and , an 
estimate of V is obtained as . The fixed effects are then estimated as 

Σ
ˆ Σ̂

ΣZGZV ˆ'ˆˆ +=

yVXXVXβ 111 ˆ')ˆ'(ˆ −−−=  

with the variance of β  estimated as ˆ

11 )ˆ'()ˆvar( −−= XVXβ . 

If  and , then these estimation equations are identical to the TAD estimation 
equations presented earlier, except for the fact that β  may contain more than two parameters, i.e. 
a parameter for each fixed effect being modeled. In the TAD model presented above, 

0ZGZ =' RΣ 2σ=

1β  
represents the difference between two treatment means, d. In the mixed model formulation 
presented here, 1β , 2β , etc. represent individual treatment effects.  If there are no random effects, 
then we can use this routine for TAD to calculate the approximate power for testing pairwise 
contrasts of fixed effects in mixed models designs.  

Brown and Prescott (2006) presents an example on page 228 of an experiment for which the 
power for testing pairwise contrasts can be calculated using this procedure. To determine the 
relative efficacy of three treatments in controlling hypertension, patients are assigned to one of 
the three treatments and blood pressure is measured at four follow-up visits. The study aims to 
determine the differences in average blood pressure among the three treatments. 

Testing Fixed Effects 
Significance tests for fixed effects can be done using tests based on the t distribution. We can 
define tests of fixed and random effects as contrasts  

0βLC == ˆ' , 

respectively. For example, in a trial containing three treatments A, B, and C, a pairwise 
comparison of treatments A and C is given by the contrast 

CAAC ββ ˆˆˆ)1010(ˆ' −=−== ββLC , 
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where the first term in β is the intercept term, and the other three terms are the treatment effects.  

For a single comparison, the test statistic is given by  

,
)ˆˆ(SE

ˆˆ
)ˆ'(SE
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−
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where df is the degrees of freedom, usually determined using the Satterthwaite approximation, 
and  and  ( ) are estimated treatment effects.   jβ̂ hβ̂ hj ≠

Contrasts such as this can be tested in SAS® using the ESTIMATE statement or by including the 
PDIFF option in an LSMEANS statement. For example, if the variable designating three 
treatments, A, B, and C, were called "treat", then I could use the following statements in PROC 
MIXED to test for a difference between A and C 

ESTIMATE 'A-C' treat 1 0 -1; 

or 
LSMEANS treat/ PDIFF; 

The latter statement would produce tests of all pairwise comparisons of the levels of the treatment 
variable. The former would only test the difference between groups A and C. Of course, these 
comparison statements must be used in conjunction with appropriate model and class statements 
(see pages 233-237 of Brown and Prescott (2006) for an example analyzed using SAS® PROC 
MIXED). 

Estimates of the correlation ( ρ ) and the standard deviation (σ ) for use in power calculations can 
be found using SAS® PROC MIXED. For a model fit using compound symmetry, and 2σ ρ  can 
be estimated as the sum of the variance parameters, and the compound symmetry variance 
parameter divided by the sum of the variance parameters, respectively. For AR(1), Banded(1), 
and Simple covariance models, and 2σ ρ  can be estimated as the residual variance, and the 
correlation between adjacent measurements, respectively. Alternatively, the R and RCORR 
options may be used within the REPEATED statement to display the covariance and correlation 
matrices, from which the parameter estimates can be determined. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for. When you choose to solve for n, the program 
searches for the lowest sample size that meets the alpha and beta criterion you have specified for 
each of the terms. The "solve for" parameter is displayed on the vertical axis of the plot. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 
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N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size – Difference to Detect 

D1 (Difference|H1) 
Enter a value for the treatment difference to be detected. This difference represents a contrast of 
interest between two treatments in the study. You may enter a single value or a range of values 
such as 5 10 20 or 5 to 25 by 5. The items in the list may be separated with commas or blanks. 

Effect Size – Repeated Measurements 

M (Number of Time Points) 
Enter a value for the number of time points (repeated measurements) at which each subject will 
be observed. You may enter a single value or a range of values such as 3 5 7 or 2 to 8 by 1. The 
items in the list may be separated with commas or blanks. 

Effect Size – Covariance Structure 

Covariance Type 
Select the within-subject covariance structure that will be used in the mixed models analysis. The 
options are: 

• Compound Symmetry 
All variances on the diagonal of the within-subject variance-covariance matrix are equal to 

, and all covariances are equal to . 2σ 2ρσ

• AR(1) 
All variances on the diagonal of the within-subject variance-covariance matrix are equal to 

, and the covariance between observations t time periods apart is . 2σ 2σρ t
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• Banded(1) 
All variances on the diagonal of the within-subject variance-covariance matrix are equal 
to , and the covariance between observations one time period apart is . Covariances 
between observations more than one time period apart are equal to zero. 

2σ 2ρσ

• Simple 

All variances are equal to , and all covariances are equal to zero. 2σ

Sigma (Std Dev of a Single Observation) 
Enter a value for the standard deviation (the square root of the residual variance). This standard 
deviation is assumed to be equal for the two groups. This parameter is equal to the square root of 
the sum of the variance parameters when compound symmetry is fit in a mixed models analysis 
of repeated measures data. This is equal to the square root of the residual variance parameter 
when an AR(1), Banded(1), or Simple model is fit in a mixed models analysis. You may enter a 
single value or a range of values such as 5 10 20 or 5 to 25 by 5. The items in the list may be 
separated with commas or blanks. 

Rho (Autocorrelation) 
Enter a value for the correlation between observations on the same subject. When no previous 
estimate of the within-patient correlation is available, you should use a conservative prediction of 
the correlation, i.e. a correlation that is higher than anticipated. You may enter a single value or a 
range of values such as 0.5 0.6 0.7 or 0.4 to 0.9 by 0.1. The items in the list may be separated with 
commas or blanks. 

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always 0:0 =dH . 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 

Possible selections are: 

• One-Sided 
This option yields a one-tailed test. Use it for testing the alternative hypotheses  or 

. 
0:1 >dH

0:1 <dH

• Two-Sided 
This is the most common selection. It yields the two-tailed test. Use this option when you are 
testing whether the means are different, but you do not want to specify beforehand which 
mean is larger. 
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Example 1 – Determining Power 
Researchers are planning a study of the impact of a new drug on heart rate. They want to evaluate 
the time-averaged difference in heart rate between subjects who take the new drug, and subjects 
who take the standard drug. Their experimental protocol calls for a baseline heart rate 
measurement, followed by administration of a certain level of the drug, followed by three 
additional measurements 30 minutes apart. They want to be able to detect a 10% difference in 
heart rate between the two treatments.   

Similar studies have found an average heart rate of 93 for individuals taking the standard drug, a 
standard deviation of 9, and an autocorrelation between adjacent measurements on the same 
individual of 0.7. The researchers assume that first-order autocorrelation adequately represents 
the autocorrelation pattern.  From a heart rate of 93, a 10% reduction gives 83.7, for a difference 
of 9.3. The test will be conducted at the 0.05 significance level. 

What power does the study achieve over a range of possible sample sizes? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a Repeated Measures Design 
procedure window by expanding Means, then Two Independent Means, then clicking on 
Repeated Measures, and then clicking on Tests for Two Means in a Repeated Measures 
Design. You may then make the appropriate entries as listed below, or open Example 1 by going 
to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find ......................................................... Power and Beta  
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1  ........................................................... 4 to 20 by 2 
N2  ........................................................... Use R 
R  ............................................................. 1.0 
D1 ............................................................ 9.3 
M ............................................................. 4 
Covariance Type ..................................... AR(1) 
Sigma ...................................................... 9 
Rho .......................................................... 0.7 
Alternative Hypothesis ............................ Two-Sided 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
 Numeric Results 
 Two-Sided Test. Null Hypothesis: D = 0. Alternative Hypothesis: D <> 0. 
 Covariance Type = AR(1) 
 
  Group 1 Group 2 Sample  Difference     
  Sample Sample Allocation Time to be Standard Auto-   
  Size Size Ratio Points Detected Deviation corr.   
 Power (N1) (N2) (R) (M) (D1) (Sigma) (Rho) Alpha Beta 
 0.42660 4 4 1.000 4 9.300 9.000 0.700 0.050 0.57340 
 0.58468 6 6 1.000 4 9.300 9.000 0.700 0.050 0.41532 
 0.70890 8 8 1.000 4 9.300 9.000 0.700 0.050 0.29110 
 0.80135 10 10 1.000 4 9.300 9.000 0.700 0.050 0.19865 
 0.86742 12 12 1.000 4 9.300 9.000 0.700 0.050 0.13258 
 0.91318 14 14 1.000 4 9.300 9.000 0.700 0.050 0.08682 
 0.94407 16 16 1.000 4 9.300 9.000 0.700 0.050 0.05593 
 0.96448 18 18 1.000 4 9.300 9.000 0.700 0.050 0.03552 
 0.97773 20 20 1.000 4 9.300 9.000 0.700 0.050 0.02227 
 
 References 
 Brown, H. and Prescott, R., 2006. Applied Mixed Models in Medicine. 2nd ed. John Wiley & Sons Ltd. Chichester, 
 West Sussex, England. Chapter 6. 
 Liu, H. and Wu, T., 2005. 'Sample Size Calculation and Power Analysis of Time-Averaged Difference.' Journal of 
 Modern Applied Statistical Methods, Vol. 4, No. 2, pages 434-445. 
 Diggle, P.J., Liang, K.Y., and Zeger, S.L., 1994. Analysis of Longitudinal Data. Oxford University Press. New 
 York, New York. Chapter 2. 
 
 Report Definitions 
 Power is the probability of rejecting a false null hypothesis. It should be close to one. 
 N1 & N2 are the number of subjects in groups 1 and 2, respectively. 
 R is the ratio of the number of subjects in group 2 to the number in group 1 (R = N2/N1). 
 M is the number of time points (repeated measurements) at which each subject is observed. 
 D1 is the difference between the means of groups 1 and 2 under the alternative hypothesis. 
 Sigma is the standard deviation of a single observation. It is the same for both groups. 
 Rho is the correlation between observations on the same subject. 
 Alpha is the probability of rejecting a true null hypothesis. It should be small. 
 Beta is the probability of accepting a false null hypothesis. It should be small. 
 
 Summary Statements 
 Group sample sizes of 4 and 4 achieve 43% power to detect a difference of 9.300 in a design 
 with 4 repeated measurements having a AR(1) covariance structure when the standard deviation is 
 9.000, the correlation between observations on the same subject is 0.700, and the alpha level 
 is 0.050. 
 

This report gives the power for each value of the other parameters. 

Power 
This is the computed power for detecting the time-averaged difference between the two group 
means. 

Group 1 Sample Size (N1) 
The value of N1 is the number of subjects in group 1. 

Group 2 Sample Size (N2) 
The value of N2 is the number of subjects in group 2. 
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Sample Allocation Ratio (R) 
This is the ratio of the number of subjects in group 2 to the number in group 1 (R = N2/N1). 

Time Points (M) 
This is the number of repeated measurements taken. 

Difference to be Detected (D1) 
This is the treatment difference that is to be detected. 

Standard Deviation (Sigma) 
This is the value of σ , the standard deviation or the square root of the residual variance.  

Autocorr. (Rho) 
This is the correlation between observations from the same subject. 

Alpha 
Alpha is the significance level of the test. 

Beta 
Beta is the probability of failing to reject the null hypothesis when the alternative hypothesis is 
true. 

Plots Section 
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The chart shows the relationship between power and N1 when the other parameters in the design 
are held constant.  
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Example 2 – Finding the Sample Size 
Continuing with Example 1, the researchers want to determine the exact sample size necessary to 
achieve at least 80% power.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a Repeated Measures Design 
procedure window by expanding Means, then Two Independent Means, then clicking on 
Repeated Measures, and then clicking on Tests for Two Means in a Repeated Measures 
Design. You may then make the appropriate entries as listed below, or open Example 2 by going 
to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find ......................................................... N1 (Group 1 Sample Size)  
Power ...................................................... 0.8 
Alpha ....................................................... 0.05 
N1  ........................................................... Ignored since this is the Find setting 
N2  ........................................................... Use R 
R  ............................................................. 1.0 
D1 ............................................................ 9.3 
M ............................................................. 4 
Covariance Type ..................................... AR(1) 
Sigma ...................................................... 9 
Rho .......................................................... 0.7 
Alternative Hypothesis ............................ Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

  Group 1 Group 2 Sample  Difference     
  Sample Sample Allocation Time to be Standard Auto-   
  Size Size Ratio Points Detected Deviation corr.   
 Power (N1) (N2) (R) (M) (D1) (Sigma) (Rho) Alpha Beta 
 0.80135 10 10 1.000 4 9.300 9.000 0.700 0.050 0.19865 
 

A group sample size of 10 is required to achieve at least 80% power. 
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Example 3 – Varying the Difference between the Means 
Continuing with Examples 1 and 2, the researchers want to evaluate the impact on power of 
varying the size of the difference between the means for a range of sample sizes from 2 to 8 per 
group. In the output to follow, we only display the plots. You may want to display the numeric 
reports as well, but we do not here in order to save space.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a Repeated Measures Design 
procedure window by expanding Means, then Two Independent Means, then clicking on 
Repeated Measures, and then clicking on Tests for Two Means in a Repeated Measures 
Design. You may then make the appropriate entries as listed below, or open Example 3 by going 
to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find ......................................................... Power and Beta  
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1  ........................................................... 4 to 8 by 1 
N2  ........................................................... Use R 
R  ............................................................. 1.0 
D1 ............................................................ 4 to 11 by 1 
M ............................................................. 4 
Covariance Type ..................................... AR(1) 
Sigma ...................................................... 9 
Rho .......................................................... 0.7 
Alternative Hypothesis ............................ Two-Sided 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Plots Section 
 

 
 

This chart shows how the power depends on the difference to be detected, d, as well as the group 
sample size, n1. 

Example 4 – Impact of the Number of Repeated 
Measurements 
Continuing with Examples 1 - 3, the researchers want to study the impact on the sample size if 
they changing the number of measurements made on each individual. Their experimental protocol 
calls for four measurements that are 30 minutes apart. They want to see the impact of taking twice 
that many measurements. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a Repeated Measures Design 
procedure window by expanding Means, then Two Independent Means, then clicking on 
Repeated Measures, and then clicking on Tests for Two Means in a Repeated Measures 
Design. You may then make the appropriate entries as listed below, or open Example 4 by going 
to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find ......................................................... N1 (Group 1 Sample Size)  
Power ...................................................... 0.8 
Alpha ....................................................... 0.05 
N1  ........................................................... Ignored since this is the Find setting 
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Data Tab (continued) 
N2  ........................................................... Use R 
R  ............................................................. 1.0 
D1 ............................................................ 9.3 
M ............................................................. 4 8 
Covariance Type ..................................... AR(1) 
Sigma ...................................................... 9 
Rho .......................................................... 0.7 
Alternative Hypothesis ............................ Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
  Group 1 Group 2 Sample  Difference     
  Sample Sample Allocation Time to be Standard Auto-   
  Size Size Ratio Points Detected Deviation corr.   
 Power (N1) (N2) (R) (M) (D1) (Sigma) (Rho) Alpha Beta 
 0.80135 10 10 1.000 4 9.300 9.000 0.700 0.050 0.19865 
 0.84737 8 8 1.000 8 9.300 9.000 0.700 0.050 0.15263 
 

Doubling the number of repeated measurements per individual decreases the group sample size 
by 2. This reduction in sample size may not justify the additional four measurements on each 
subject. 

Example 5 – Validation using Diggle et al. 
Diggle et al. (1994) page 31 presents an example of calculating the sample size for a TAD study. 
They calculate the group sample sizes for the cases where d/σ ranges from 0.2 to 0.5, ρ ranges 
from 0.2 to 0.8, alpha = 0.05, M = 3, and power = 0.8. Note that Diggle et al. (1994) uses a one-
sided test.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a Repeated Measures Design 
procedure window by expanding Means, then Two Independent Means, then clicking on 
Repeated Measures, and then clicking on Tests for Two Means in a Repeated Measures 
Design. You may then make the appropriate entries as listed below, or open Example 5 by going 
to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find ......................................................... N1 (Group 1 Sample Size)  
Power ...................................................... 0.8 
Alpha ....................................................... 0.05 
N1  ........................................................... Ignored since this is the Find setting 
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Data Tab (continued) 
N2  ........................................................... Use R 
R  ............................................................. 1.0 
D1 ............................................................ 0.2 to 0.5 by 0.1 
M ............................................................. 3 
Covariance Type ..................................... Compound Symmetry 
Sigma ...................................................... 1 
Rho .......................................................... 0.2 0.5 0.8 
Alternative Hypothesis ............................ One-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
  Group 1 Group 2 Sample  Difference     
  Sample Sample Allocation Time to be Standard Auto-   
  Size Size Ratio Points Detected Deviation corr.   
 Power (N1) (N2) (R) (M) (D1) (Sigma) (Rho) Alpha Beta 
 0.80178 145 145 1.000 3 0.200 1.000 0.200 0.050 0.19822 
 0.80154 207 207 1.000 3 0.200 1.000 0.500 0.050 0.19846 
 0.80012 268 268 1.000 3 0.200 1.000 0.800 0.050 0.19988 
 0.80475 65 65 1.000 3 0.300 1.000 0.200 0.050 0.19525 
 0.80154 92 92 1.000 3 0.300 1.000 0.500 0.050 0.19846 
 0.80270 120 120 1.000 3 0.300 1.000 0.800 0.050 0.19730 
 0.80885 37 37 1.000 3 0.400 1.000 0.200 0.050 0.19115 
 0.80321 52 52 1.000 3 0.400 1.000 0.500 0.050 0.19679 
 0.80012 67 67 1.000 3 0.400 1.000 0.800 0.050 0.19988 
 0.81343 24 24 1.000 3 0.500 1.000 0.200 0.050 0.18657 
 0.80028 33 33 1.000 3 0.500 1.000 0.500 0.050 0.19972 
 0.80109 43 43 1.000 3 0.500 1.000 0.800 0.050 0.19891 
 

The sample sizes calculated by PASS match the results of Diggle et al. (1994) very closely, with 
slight differences due to rounding. If you calculate the sample sizes by hand, using the formula 
given in Diggle et al. (1994), page 31, your answers will match those of PASS. 

Example 6 – Validation of Sample Size Calculation for 
Mixed Models Analysis using Brown and Prescott (2006) 
Brown and Prescott (2006) pages 268 and 269 presents an example of calculating the sample size 
for pairwise contrasts in a hypertension trial to by analyzed using mixed models. The analysis of 
repeated DBP measurements from four post-treatment visits using a compound symmetry 
covariance pattern resulted in the following covariance matrix for each subject: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

153.053.053.0
53.0153.053.0
53.053.0153.0
53.053.053.01

76iV  

From this matrix they determine that 53.0=ρ and . )718.8(  762 == σσ
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The trial followed several hundred patients given one of three treatments. Brown and Prescott 
calculate the group sample size to be 31 for a future study involving four post-treatment visits to 
detect a difference in DBP of 5 mmHg at the 5% significance level with 80% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a Repeated Measures Design 
procedure window by expanding Means, then Two Independent Means, then clicking on 
Repeated Measures, and then clicking on Tests for Two Means in a Repeated Measures 
Design. You may then make the appropriate entries as listed below, or open Example 6 by going 
to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find ......................................................... N1 (Group 1 Sample Size)  
Power ...................................................... 0.8 
Alpha ....................................................... 0.05 
N1  ........................................................... Ignored since this is the Find setting 
N2  ........................................................... Use R 
R  ............................................................. 1.0 
D1 ............................................................ 5 
M ............................................................. 4 
Covariance Type ..................................... Compound Symmetry 
Sigma ...................................................... 8.718 
Rho .......................................................... 0.53 
Alternative Hypothesis ............................ Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results for M = 4 
 
  Group 1 Group 2 Sample  Difference     
  Sample Sample Allocation Time to be Standard Auto-   
  Size Size Ratio Points Detected Deviation corr.   
 Power (N1) (N2) (R) (M) (D1) (Sigma) (Rho) Alpha Beta 
 0.80125 31 31 1.000 4 5.000 8.718 0.530 0.050 0.19875 
 

The sample size of 31 calculated by PASS matches the results of Brown and Prescott (2006) 
exactly. 

Brown and Prescott further calculate the sample size for the case where no account is taken of 
repeated measurements and the case of 10 repeated measurements. If we change the number of 
repeated measurements to 1 and 10, we get the following output (Example6b template): 



431-22  Inequality Tests for Two Means in a Repeated Measures Design 

Numeric Results for M = 1, 10 
 
  Group 1 Group 2 Sample  Difference     
  Sample Sample Allocation Time to be Standard Auto-   
  Size Size Ratio Points Detected Deviation corr.   
 Power (N1) (N2) (R) (M) (D1) (Sigma) (Rho) Alpha Beta 
 0.80226 48 48 1.000 1 5.000 8.718 0.530 0.050 0.19774 
 0.80651 28 28 1.000 10 5.000 8.718 0.530 0.050 0.19349 
 

In both cases, the results of PASS match those of Brown and Prescott (2006) exactly. 
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Chapter 435 

Inequality Tests 
for Two 
Exponential 
Means 
Introduction 
This program module designs studies for testing hypotheses about the means of two exponential 
distributions. Such a test is used when you want to make a comparison between two groups that 
both follow the exponential distribution. The responses from the samples are assumed to be 
continuous, positive numbers such as lifetime.  

We adopt the basic methodology outlined in the books by Bain and Engelhardt (1991) and Desu 
and Raghavarao (1990). 

Technical Details 
The test procedure described here makes the assumption that lifetimes in each group follow an 
exponential distribution. The densities of the two exponential distributions are written as  

f t t ii
i i

( ) exp , ,= −
⎛
⎝
⎜

⎞
⎠
⎟ =

1 1 2
θ θ

 

The parameters θi  are interpreted as the average failure times, the mean time to failure (MTTF), 
or the mean time between failures (MTBF) of the two groups. The reliability, or the probability 
that a unit continues running beyond time t, is 

R t ei

t

i( ) =
−
θ  
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Hypothesis Test 
The relevant statistical hypothesis is H0 1 2 1: /θ θ =  versus one of the following alternatives: 
H A: /θ θ ρ1 2 1= > , H A: /θ θ ρ1 2 = 1< H A: /, or θ θ ρ1 2 1= ≠ . The test procedure is to reject the 
null hypothesis if the ratio of the observed mean lifetimes   is too large or too small. 
The samples of size  are assumed to be drawn without replacement. The experiment is run until 
all items fail. 

H0 $ $ / $ρ θ θ= 1 2

ni

If the experiment is curtailed before all n n1 2+  items fail, the sample size results are based on the 
number of failures r , not the total number of samples n nr1 2+ 1 2+ . 

The mean lifetimes are estimated as follows 

$ , ,θi

ij
j

i

t

r
i= =

∑
over 1 2  

where  is the time that the jth item in the ith group is tested, whether measured until failure or 
until the study is completed. 

tij

Power and sample size calculations are based on the fact that the estimated lifetime ratio is 
proportional to the F distribution. That is, 
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which, under the null hypothesis of equality, becomes 
$

$
~ ,

θ
θ

1

2
1 2

Fr r  

Note that only the actual numbers of failures are used in these distributions. Hence, we assume that 
the experiment is run until all items fail so that r ni i=  . That is, the sample sizes are the number of 
failures, not the number of items. Enough units must be sampled to ensure that the stated number of 
failures occur. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Select Power and Beta when you want to calculate the power of an experiment. 

Error Rates 

Power or Beta (Beta is Consumer’s Risk) 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
(consumer’s risk) is the probability of a type-II error, which occurs when a false null hypothesis 
is not rejected. In this procedure, a type-II error occurs when you fail to reject the null hypothesis 
of equal thetas when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal thetas when in fact they are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10.  

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size 

Theta1 (Group 1 Mean Life) 
Enter one or more values for the mean life of group 1 under the alternative hypothesis. This value 
is usually scaled in terms of elapsed time such as hours, days, or years. Of course, all time values 
must be on the same time scale. 

Note that the value of theta may be calculated from the estimated probability of failure using the 
relationship 

( )P Failure e time= − −1 /θ  

so that 

( )( )θ =
−

−
time

P Failureln 1
 

Any positive values are valid. You may enter a range of values such as ‘10 20 30’ or ‘100 to 1000 
by 100.’ 

Note that only the ratio of theta1 and theta2 is used in the calculations. 
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Theta2 (Group 2 Mean Life) 
Enter one or more values for the mean life of group 2 under the alternative hypothesis. This value 
is usually scaled in terms of elapsed time such as hours, days, or years. Of course, all time values 
must be on the same time scale. 

Note that the value of theta may be calculated from the estimated probability of failure using the 
relationship 

( )P Failure e time= − −1 /θ  

so that 

( )( )θ =
−

−
time

P Failureln 1
 

Any positive values are valid. You may enter a range of values such as ‘10 20 30’ or ‘100 to 1000 
by 100.’ 

Note that only the ratio of theta1 and theta2 is used in the calculations. 

Test 

Alternative Hypothesis 
Specify the alternative hypothesis of the test. Since the null hypothesis is equality (a difference 
between theta1 and theta2 of zero), the alternative is all that needs to be specified.  

Note that the alternative hypothesis should match the values of Theta1 and Theta2. That is, if you 
select Ha: Theta1 > Theta, then the value of Theta1 should be greater than the value of Theta2. 

Example 1 – Power for Several Sample Sizes 
This example will calculate power for several sample sizes of a study designed to compare the 
average failure time of (supposedly) identical components manufactured by two companies. 
Management wants the study to be large enough to detect a ratio of mean lifetimes of 1.3 at the 
0.05 significance level. The analysts decide to look at sample sizes between 5 and 500.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Exponential Means procedure window by 
expanding Means, then Two Independent Means, then clicking on Test (Inequality), and then 
clicking on Tests for Two Exponential Means. You may then make the appropriate entries as 
listed below, or open Example 1 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 5 20 50 100 200 300 400 500 
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Data Tab (continued) 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Theta1 (Group 1 Mean Life) .................... 1.3 
Theta2 (Group 2 Mean Life) .................... 1.0 
Alternative Hypothesis ............................ Ha: Theta1 ≠ Theta2 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results 
H0: Theta1 = Theta2. Ha: Theta1 <> Theta2.  
   Allocation     Theta1/ 
Power N1 N2 Ratio Alpha Beta Theta1 Theta2 Theta2 
0.06652 5 5 1.00000 0.05000 0.93348 1.3 1.0 1.30000 
0.12839 20 20 1.00000 0.05000 0.87161 1.3 1.0 1.30000 
0.25602 50 50 1.00000 0.05000 0.74398 1.3 1.0 1.30000 
0.45619 100 100 1.00000 0.05000 0.54381 1.3 1.0 1.30000 
0.74551 200 200 1.00000 0.05000 0.25449 1.3 1.0 1.30000 
0.89447 300 300 1.00000 0.05000 0.10553 1.3 1.0 1.30000 
0.95976 400 400 1.00000 0.05000 0.04024 1.3 1.0 1.30000 
0.98559 500 500 1.00000 0.05000 0.01441 1.3 1.0 1.30000 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N1 is the number of failures needed in Group 1. 
N2 is the number of failures needed in Group 2. 
Alpha is the probability of rejecting a true null hypothesis.  
Beta is the probability of accepting a false null hypothesis.  
Theta1 is the Mean Life in Group 1 
Theta2 is the Mean Life in Group 2. 
 
Summary Statements 
Samples of size 5 and 5 achieve 7% power to detect a difference between the mean lifetime in 
group 1 of 1.3 and the mean lifetime in group 2 of 1.0 at a 0.05000 significance level (alpha) 
using a two-sided hypothesis based on the F distribution. 
 

This report shows the power for each of the scenarios.  

Plots Section 
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Example 2 – Validation using Manual Calculations 
We could not find published results that could be used to validate this procedure. Instead, we will 
compare the results to those computed using our probability distribution calculator.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Exponential Means procedure window by 
expanding Means, then Two Independent Means, then clicking on Test (Inequality), and then 
clicking on Tests for Two Exponential Means. You may then make the appropriate entries as 
listed below, or open Example 2 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 20 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Theta1 (Group 1 Mean Life) .................... 1.3 
Theta2 (Group 2 Mean Life) .................... 1.0 
Alternative Hypothesis ............................ Ha: Theta1 > Theta2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results 
H0: Theta1 = Theta2. Ha: Theta1 > Theta2.  
   Allocation     Theta1/ 
Power N1 N2 Ratio Alpha Beta Theta1 Theta2 Theta2 
0.20369 20 20 1.00000 0.05000 0.79631 1.3 1.0 1.30000 
 

We will now check these results using manual calculations. First, we find critical value 

F0.95,40 40, = 1.6927972097  

using the probability calculator. Now, to calculate the power, we find the inverse F of 
1.6927972097/1.3 = 1.302152 to be 0.79631, which matches the reported value of Beta.  
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Chapter 437 

Inequality Tests 
for Two Poisson 
Means 
Introduction 
The Poisson probability law gives the probability distribution of the number of events occurring in a 
specified interval of time or space. The Poisson distribution is often used to fit count data, such as 
the number of defects on an item, the number of accidents at an intersection during a year, the 
number of calls to a call center during an hour, or the number of meteors seen in the evening sky 
during an hour.  

The Poisson distribution is characterized by a single parameter which is the mean number of 
occurrences during the specified interval.  

The procedure documented in this chapter calculates the power or sample size for testing whether 
the ratio of two Poisson means is different from a specified value (usually one). The test procedure 
is described in Gu et al. (2008). 

Test Procedure 
Assume that all subjects in each group are observed for a fixed time period and the number of 
events (outcomes or defects) is recorded. The following table presents the various terms that are 
used. 

Group 1 2 

Fixed time interval   1t 2t

Sample Size   1N 2N

Number of events   1X 2X

Individual event rates 1λ  12 ρλλ =  

Distribution of X Poisson ( )11tλ  Poisson ( )22tλ  
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Gu (2008) considered several test statistics t e used to test on ided hypotheses about the 
ratio. 

hat can b e-s

ρλλ =120 /:H  versus ρλλ >12 /:aH . 

Two test statistics are available in this case. The first is based on unconstrained maximum 
likelihood estimates 
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After extensive simulation, they recommend the following extension of the variance-stabilized 
test proposed by Huffman (1984) for the case when 1/ >dρ . 
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ately distributed as a standard 
is of significance testing and power 

ana s

Assu

where 2211 / NtNtd =

Gu et al. (2008) show that all of these test statistics are approxim
normal and thus use the normal distribution as the bas

lysi . 

mptions 
The ass

1. e) that follow the Poisson distribution. 

2. ke most designs, in this 
design the sample size involves a fixed time parameter. That is, instead of specifying the 

tudy, the number of man-hours is specified. Hence, a sample size 
hieved by ten people being observed for one hour or two people 

being observed for five hours.  

ntinuous, the sample size can be fractional. 

Technical Details 

umptions of the two-sample Poisson test are: 

The data in each group are counts (discret

Each sample is a simple random sample from its population. Unli

number of people in a s
of 10 hours could be ac

Also, since time is co

Computing Power 
The power analysis for testing the hypothesis 

0120 /: ρλλ =H  versus 012 /: ρρλλ >= aaH  

using the test statistics defined above is completed as follows. 

1.  Find the critical value. Choose the critical value  using the standard normal 
distribution so that the probability of rejecting en it is true is 

α−1z

0  whH α .  
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2.  Compute the power. Compute the power for each test as follows. 

For , , and , the power is given by 1W 3W 4W

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
Φ−= −

i

ii
i

zWPower
σ

μσα11)(  

where 

( ) ( )∫
∞−

=Φ
z

Normalz 1,0  

111
0

1 λρρμ Nt
dd

a ⎟
⎠
⎞

⎜
⎝
⎛ −= , 1112

2
02

1 λρρσ Nt
d

d a
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
3 ln

ρ
ρμ a , 

a

a

Nt
d

ρλ
ρσ
111

2
3

+
=  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
4 ln

ρ
ρμ a , 

⎟
⎠
⎞

⎜
⎝
⎛ +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=

d
Nt

d
d

aρλ

ρ
ρ

σ
1

2

111

0

02
4  

For the power is computed using 2W

⎟
⎠
⎞

⎜
⎝
⎛ −

Φ−= −

G
FEzWPower α1

2 1)(  

where 

 
d

E
aa ρ
ρ

ρ
ρ 2

0

2

0 +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= , 

d
NtF

a

011101 ρλ
ρ
ρ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= , 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

aa d
G

ρ
ρ

ρ
ρ 2

00 1  

 

For the power is computed using 2W

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
Φ−= −

D
CzBA

WPower α1
5 1)(  

where 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

a

A
ρ
ρ012 , kNtB += 111λ , 



Inequality Tests for Two Poisson Means  437-5 

 
a

dC
ρ

ρ +
= 0 , 

a

a dD
ρ

ρ +
=  

  

 

Computing Sample Size 
The sample size is found using the formula 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Power and Beta or N1. 

Select N1 when you want to determine the sample size needed to achieve a given power and 
alpha error level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (beta = 0.20) was used for 
power. Now, 0.90 (beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  
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Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. For one-sided tests such as this, the value of 0.025 is 
recommended for alpha. You may enter a range of values such as 0.025 0.05 0.10 or 0.025 to 0.05 
by 0.005.  

Sample Size 

t1 (Observation Time Group 1) 
This is the fixed observation time for group 1. Each subject is observed for this amount of time. If 
the observation times are variable, this is the average observed time per subject.  

t2 (Observation Time Group 2) 
This is the fixed observation time for group 2. Each subject is observed for this amount of time. If 
the observation times are variable, this is the average observed time per subject.  

N1 (Sample Size 1) 
This option specifies one or more values of the sample size in group 1. This value must be 
positive and greater than zero. Note that you may enter a list of values using the syntax 
50,100,150,200,250 or 50 to 250 by 50. 

Note that the effective sample size for group 1 is t1(N1). For example, the sample size might be 
1400 man hours. 

N2 (Sample Size 2) 
 

Enter a value (or range of values) for the sample size of group 2. Enter Use R if you want N2 to 
be calculated using the formula: N2 = R(N1) where R is the Sample Allocation Ratio. 

For example, if you want N1 = N2, select Use R here and set R = 1. 

R (Sample Allocation Ratio) 
 

Enter a value (or range of values) for R, the allocation ratio between samples. That is, R = N2/N1. 
This value is only used when N2 is set to Use R. When used, N2 is calculated from N1 using the 
formula: N2 = R(N1). Note that setting R = 1.0 forces N2 = N1. 

 

Effect Size – Means 

λ1 (Group 1 Event Rate) 
This option specifies one or more values of the mean occurrence rate in group 1 assuming the null 
hypothesis. This value must be greater than zero. This mean is compared to λ2 by the statistical test. 
 

The difference in the ratios of λ2 and λ1 under the null and alternative hypotheses is the amount 
that this design can detect. You can enter a range of values such as “1 1.2 1.4” or “1 to 5 by 1.” 
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ρ0 ( 12 /λλ Assuming H0) 
This is the value of the ratio of the two mean event rates assumed by the null hypothesis, H0. 
Usually, ρ0 = 1.0 which implies that the two rates are equal. However, you may test other values 
of ρ0 as well. 

Strictly speaking, any positive number is valid. However, usually 1.0 is used.  

Warning: you cannot use the same value for both ρ0 and ρa. 

ρa ( 12 /λλ Assuming Ha) 
This is the value of the ratio of the two mean event rates assumed by the alternative hypothesis, 
Ha. The magnitude of the difference between this value and ρ0 is the amount that the design can 
detect.  

Warning: you cannot use the same value for both ρ0 and ρa. 

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is 00 : ρρ =aH . Possible selections for the alternative 
hypothesis are: 

1. aaH ρρ <0: . This option yields a one-tailed t test.  

2. aaH ρρ >0: . This option yields a one-tailed t test.  

Example 1 – Finding the Sample Size 
We will use the example of Gu (2008) in which epidemiologist wish to examine the relationship 
of post-menopausal hormone use and coronary heart disease (CHD). The incidence rate for those 
not using the hormone is 0.0005 ( 1λ = 0.0005). How large of a sample is needed to detect a 
change in the incidence ratio from 0ρ = 1 to aρ = 2, 3, 4, 5, or 6. Assume that 90% power is 
required and α = 0.05. Assume that each subject will be observed for two years and that the 
design calls for an equal number of subjects in both groups.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Poisson Means [Ratios] procedure window by 
expanding Means, then Two Independent Means, then clicking on Test (Inequality), and then 
clicking on Tests for Two Poisson Means [Ratios]. You may then make the appropriate entries 
as listed below, or open Example 1 by going to the File menu and choosing Open Example 
Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Power ...................................................... 0.90 
Alpha ....................................................... 0.05 
t1 (Observation Time Group 1) ............... 2 
t2 (Observation Time Group 2) ............... 2 
N1 (Sample Size 1) ................................. Ignored since this is the search parameter. 
N2 (Sample Size 2) ................................. Use R 
R (Sample Allocation Ratio) .................... 1 
λ1 (Group 1 Event Rate) ......................... 0.0005 
ρ0 (λ2 / λ1 Assuming H0) ........................ 1 
ρa (λ2 / λ1 Assuming Ha) ........................ 2 3 4 5 6 
Ha (Alternative Hypothesis) .................... Ha: ρ0 < ρa 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample Poisson Test 
Null Hypothesis: λ2 / λ1 = ρ0     Alternative Hypothesis: λ2 / λ1 = ρa > ρ0 
Fixed Observation Time Length: Group 1 = 2, Group 2 = 2 
 
   Mean Mean H0 Ha 
   Rate 1 Rate 2 Ratio Ratio 
Power N1 N2 λ1 λ2 | ρa ρ0 ρa Alpha Beta 
0.9000 29736.2 29736.2 0.0005 0.0010 1.0000 2.0000 0.0500 0.1000 
0.9000 10776.9 10776.9 0.0005 0.0015 1.0000 3.0000 0.0500 0.1000 
0.9000 6363.7 6363.7 0.0005 0.0020 1.0000 4.0000 0.0500 0.1000 
0.9000 4512.5 4512.5 0.0005 0.0025 1.0000 5.0000 0.0500 0.1000 
0.9000 3513.9 3513.9 0.0005 0.0030 1.0000 6.0000 0.0500 0.1000 
 
References 
Gu, K., Ng, H.K.T., Tang, M.L., and Schucany, W. 2008. 'Testing the Ratio of Two Poisson Rates.' Biometrical 
   Journal, 50, 2, 283-298. 
Huffman, Michael. 1984. 'An Improved Approximate Two-Sample Poisson Test.' Applied Statistics, 33, 2, 224-226. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N1 is the number of subjects in the first group. 
N2 is the number of subjects in the second group. 
λ1 is the mean response rate for a group 1 subject during the fixed observation time. 
λ2 | ρa is the mean response rate for a group 2 subject during the fixed observation time assuming ρa. 
ρ0 is the ratio λ2 / λ1 assuming the null hypothesis. 
ρa is the ratio λ2 / λ1 assuming the alternative hypothesis. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
 
Summary Statements 
Samples of 29736.2 subjects in group 1 observed for 2 time periods and 29736.2 subjects in 
group 2 observed for 2 time periods achieve 90% power to detect a change in the mean response 
ratio (λ2 / λ1) from 1.0000 to 2.0000 when λ1 = 0.0005 and the significance level (alpha) 
is 0.0500 using a one-sided test. 

 

This report shows the values of each of the parameters, one scenario per row. The values of 
power and beta were calculated from the other parameters. 
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Power 
Power is the probability of rejecting a false null hypothesis. 

N1 
N1 is the number of subjects in the first group. In the case of Poisson random variables, N1 does 
not have to be a whole number. A fractional subject simple refers to a subject that is observed for 
a fraction of the time period. Also, the effective sample size is the number of subjects multiplied 
by the fixed time period. For example, the sample size in the first row is 29736.2 x 2 = 59472.4 
person-years. 

N2 
N2 is the number of subjects in the second group. 

λ1 
λ1 is the mean response rate for a group 1 subject during the fixed observation time. 

λ2 | ρa 
λ2 | ρa is the mean response rate for a group 2 subject during the fixed observation time assuming 
ρa. 

ρ0 
ρ0 is the ratio λ2 / λ1 assuming the null hypothesis. 

ρa 
ρa is the ratio λ2 / λ1 assuming the alternative hypothesis. 

Alpha 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
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Plots Section 
 

                
   

This plot shows the relationship between sample size and ρa.  

Example 2 – Validation using Gu 
Gu et al. (2008) present an example that we will use to validate this procedure. Using the scenario 
cited in Example 1 above, they give a sample size calculation on page 295. In this example, 1λ = 
0.0005,  0ρ = 1, aρ = 4, = 2, 21 tt = α = 0.05, R = 0.5, and power = 0.9. In their Table 6, they list 

the sample size for in this scenario as 8627. However, this number is inaccurate because of 
the two-decimal place rounding that was done during their calculation. In a private 
communication, they agreed that the more accurate number is 8589.   

)(
5

Ap

 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Poisson Means [Ratios] procedure window by 
expanding Means, then Two Independent Means, then clicking on Test (Inequality), and then 
clicking on Tests for Two Poisson Means [Ratios]. You may then make the appropriate entries 
as listed below, or open Example 2 by going to the File menu and choosing Open Example 
Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Power ...................................................... 0.90 
Alpha ....................................................... 0.05 
t1 (Observation Time Group 1) ............... 2 
t2 (Observation Time Group 2) ............... 2 
N1 (Sample Size 1) ................................. Ignored since this is the search parameter. 
N2 (Sample Size 2) ................................. Use R 
R (Sample Allocation Ratio) .................... 0.5 
λ1 (Group 1 Event Rate) ......................... 0.0005 
ρ0 (λ2 / λ1 Assuming H0) ........................ 1 
ρa (λ2 / λ1 Assuming Ha) ........................ 4 
Ha (Alternative Hypothesis) .................... Ha: ρ0 < ρa 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample Poisson Test 
Null Hypothesis: λ2 / λ1 = ρ0     Alternative Hypothesis: λ2 / λ1 = ρa > ρ0 
Fixed Observation Time Length: Group 1 = 2, Group 2 = 2 
 
   Mean Mean H0 Ha 
   Rate 1 Rate 2 Ratio Ratio 
Power N1 N2 λ1 λ2 | ρa ρ0 ρa Alpha Beta 
0.9000 8589.4 4294.7 0.0005 0.0020 1.0000 4.0000 0.0500 0.1000 
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Chapter 440 

Inequality Tests 
for Two Means 
(Simulation) 
Introduction 
This procedure allows you to study the power and sample size of several statistical tests of the null 
hypothesis that the difference between two means is equal to a specific value versus the alternative 
hypothesis that it is greater than, less than, or not-equal to that value. Because the mean represents 
the center of the population, if the means are different, the populations are different. Other 
attributes of the two populations (such as the shape and spread) might also be compared, but this 
module focuses on comparisons of the means only.  

Measurements are made on individuals that have been randomly assigned to, or randomly chosen 
from, one of two groups. This is sometimes referred to as a parallel-groups design. This design is 
used in situations such as the comparison of the income level of two regions, the nitrogen content 
of two lakes, or the effectiveness of two drugs.  

The two-sample t-test is commonly used in this situation. When the variances of the two groups are 
unequal, Welch’s t-test is often used. When the data are not normally distributed, the Mann-
Whitney (Wilcoxon signed-ranks) U test may be used. 

The details of the power analysis of the two-sample t-test using analytic techniques are presented in 
another PASS chapter and they won’t be duplicated here. This chapter will only consider power 
analysis using computer simulation. 

Technical Details 
Computer simulation allows us to estimate the power and significance level that is actually achieved 
by a test procedure in situations that are not mathematically tractable. Computer simulation was 
once limited to mainframe computers. But, in recent years, as computer speeds have increased, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are  

1. Specify how the test is carried out. This includes indicating how the test statistic is 
calculated and how the significance level is specified. 
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2. Generate random samples from the distributions specified by the alternative hypothesis. 
Calculate the test statistics from the simulated data and determine if the null hypothesis is 
accepted or rejected. Tabulate the number of rejections and use this to calculate the test’s 
power.  

3. Generate random samples from the distributions specified by the null hypothesis. Calculate 
each test statistic from the simulated data and determine if the null hypothesis is accepted or 
rejected. Tabulate the number of rejections and use this to calculate the test’s significance 
level.  

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated 
data leads to a rejection of the null hypothesis. The power is the proportion of simulated 
samples in step 2 that lead to rejection. The significance level is the proportion of simulated 
samples in step 3 that lead to rejection. 

Generating Random Distributions 
Two methods are available in PASS to simulate random samples. The first method generates the 
random variates directly, one value at a time. The second method generates a large pool (over 
10,000) of random values and then draw the random numbers from this pool. This second method 
can cut the running time of the simulation by 70%. 

As mentioned above, the second method begins by generating a large pool of random numbers from 
the specified distributions. Each of these pools is evaluated to determine if its mean is within a small 
relative tolerance (0.0001) of the target mean. If the actual mean is not within the tolerance of the 
target mean, individual members of the population are replaced with new random numbers if the 
new random number moves the mean towards its target. Only a few hundred such swaps are 
required to bring the actual mean to within tolerance of the target mean. This population is then 
sampled with replacement using the uniform distribution. We have found that this method works 
well as long as the size of the pool is the maximum of twice the number of simulated samples 
desired and 10,000.  

Test Statistics 
This section describes the test statistics that are available in this procedure.  

Two-Sample T-Test 
The two-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t statistic is 
as follows 
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The significance of the test statistic is determined by computing the p-value based on the t 
distribution with degrees of freedom df. If this p-value is less than a specified level (often 0.05), 
the null hypothesis is rejected. Otherwise, no conclusion can be reached. 

Welch’s T-Test 
Welch (1938) proposed the following test for use when the two variances cannot be assumed 
equal.  
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Trimmed T-Test assuming Equal Variances 
The notion of trimming off a small proportion of possibly outlying observations and using the 
remaining data to form a t-test was first proposed for one sample by Tukey and McLaughlin 
(1963). Dixon and Tukey (1968) consider a slight modification of this one sample test, called 
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Winsorization, which replaces the trimmed data with the nearest remaining value. The two-
sample trimmed t-test was proposed by Yuen and Dixon (1973).  

Assume that the data values have been sorted from lowest to highest. The trimmed mean is 
defined as 

X
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htg
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where h = N – 2g and g = [N(G/100)]. Here we use [Z] to mean the largest integer smaller than Z 
with the modification that if G is non-zero, the value of  [N(G/100)] is at least one. G is the 
percent trimming and should usually be less than 25%, often between 5% and 10%. Thus, the g 
smallest and g largest observation are omitted in the calculation. 

To calculate the modified t-test, calculate the Winsorized mean and the Winsorized sum of 
squared deviations as follows. 
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Using the above definitions, the two-sample trimmed t-test is given by 
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The distribution of this t statistic is approximately that of a t distribution with degrees of freedom 
equal to . This approximation is often reasonably accurate if both sample sizes are 
greater than 6. 

h h1 2 2+ −

Trimmed T-Test assuming Unequal Variances 
Yuen (1974) combines trimming (see above) with Welch’s (1938) test. The resulting trimmed 
Welch test is resistant to outliers and seems to alleviate some of the problems that occur because 
of skewness in the underlying distributions. Extending the results from above, the trimmed 
version of Welch’s t-test is given by 
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with degrees of freedom f given by 
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Mann-Whitney U Test  
This test is the nonparametric substitute for the equal-variance t-test. Two key assumptions for 
this test are that the distributions are at least ordinal and that they are identical under H0. This 
implies that ties (repeated values) are not acceptable. When ties are present, the approximation 
provided can be used, but know that the theoretic results no longer hold.  

The Mann-Whitney test statistic is defined as follows in Gibbons (1985).  
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The ranks are determined after combining the two samples. The standard deviation is calculated 
as 
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where  is the number of observations tied at value one, t2 is the number of observations tied at 
some value two, and so forth. 

ti

The correction factor, C, is 0.5 if the rest of the numerator of z is negative or -0.5 otherwise. The 
value of z is then compared to the standard normal distribution. 

Standard Deviations 
Care must be used when either the null or alternative distribution is not normal. In these cases, the 
standard deviation is usually not specified directly. For example, you might use a gamma 
distribution with a shape parameter of 1.5 and a mean of 4 as the null distribution and a gamma 
distribution with the same shape parameter and a mean of 5 as the alternative distribution. This 
allows you to compare the two means. However, although the shape parameters are constant, the 
standard deviations, which are based on both the shape parameter and the mean, are not. Thus the 
distributions not only have different means, but different standard deviations! 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies whether you want to find Power or N1 from the simulation. Select Power 
when you want to estimate the power of a certain scenario. Select N1 when you want to determine 
the sample size needed to achieve a given power and alpha error level. Finding N1 is very 
computationally intensive, and so it may take a long time to complete. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of group 1. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10.  
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N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Test 

Test Type 
Specify which test statistic is to be used in the simulation. Although the t-test is the most 
commonly used test statistic, it is based on assumptions that may not be viable in many situations. 
For your data, you may find that one of the other tests is more accurate (actual alpha = target 
alpha) and more precise (better power). 

Alternative Hypothesis 
This option specifies the alternative hypothesis, H1. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always H0: Diff = Diff0. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical.  

Possible selections are: 

• Difference <> Diff0 
This is the most common selection. It yields a two-tailed test. Use this option when you are 
testing whether the mean is different from a specified value Diff0, but you do not want to 
specify beforehand whether it is smaller or larger. Most scientific journals require two-tailed 
tests. 

• Difference < Diff0 
This option yields a one-tailed test. Use it when you want to test whether the true mean is less 
than Diff0. 

• Difference > Diff0 
This option yields a one-tailed test. Use it when you want to test whether the true mean is 
greater than Diff0. Note that this option could be used for a non-inferiority test. 
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Simulations 

Simulations 
This option specifies the number of iterations, M, used in the simulation. As the number of 
iterations is increased, the accuracy and running time of the simulation will be increased also. 

The precision of the simulated power estimates are calculated from the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
  

 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
   

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  

Effect Size 

Group 1 (and 2) Distribution|H0 
These options specify the distributions of the two groups under the null hypothesis, H0. The 
difference between the means of these two distributions is the difference that is tested, Diff0.  

Usually, these two distributions will be identical and Diff0 = 0. However, if you are planning a 
non-inferiority test, the means will be different. 

All of the distributions are parameterized so that the mean is entered first. For example, if you 
wanted to specify that the mean of a normally-distributed variable is to be five, you could enter 
N(5, S) or N(M0, S) here and M0 = 5 later. 

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M0 is reserved for the value of the mean under 
the null hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean is entered 
first. 

Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
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Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and are not repeated here. 

Finding the Value of the Mean of a Specified Distribution 
Except for the multinomial distribution, the distributions have been parameterized in terms of 
their means, since this is the parameter being tested. The mean of a distribution created as a linear 
combination of other distributions is found by applying the linear combination to the individual 
means. However, the mean of a distribution created by multiplying or dividing other distributions 
is not necessarily equal to applying the same function to the individual means. For example, the 
mean of 4N(4, 5) + 2N(5, 6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 
4*4*2*5 = 160 (although it is close). 

Group 1 (and 2) Distribution|H1 
These options specify the distributions of the two groups under the alternative hypothesis, H1. 
The difference between the means of these two distributions is the difference that is assumed to 
be the true value of the difference. That is, this is the difference at which the power is computed. 

Usually, the mean difference is specified by entering M0 for the mean parameter in the 
distribution expression for group 1 and M1 for the mean parameter in the distribution expression 
for group 2. The mean difference under H1 then becomes the value of M0– M1.  

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M1 is reserved for the value of the mean of 
group 2 under the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean, M1, is 
entered first. 

Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
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Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Effect Size – Distribution Parameters 

M0 (Mean|H0) 
These values are substituted for M0 in the distribution specifications given above. M0 is intended 
to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

M1 (Mean|H1) 
These values are substituted for M1 in the distribution specifications given above. Although it can 
be used wherever you want, M1 is intended to be the value of the mean hypothesized by the 
alternative hypothesis, H1. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

Parameter Values (S, A, B) 
Enter the numeric value(s) of the parameters listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values for each letter using the syntax 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter using the pull-down 
menu to the side. 

Reports Tab 
The Reports tab contains settings about the format of the output. 

Select Output – Numeric Reports 

Show Numeric Reports & Plots 
These options let you specify whether you want to generate the standard reports and plots. 

Show Inc’s & 95% C.I. 
Checking this option causes an additional line to be printed showing a 95% confidence interval 
for both the power and actual alpha and half the width of the confidence interval (the increment). 

Select Output – Plots 

Show Comparative Reports & Plots 
These options let you specify whether you want to generate reports and plots that compare the test 
statistics that are available. 
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Comparative Report/Plot Options 

Include T-Test Results – Include Mann-Whitney-Test Results 
These options let you specify whether to include each test statistic in the comparative reports. 
These options are only used if comparative reports and/or plots are generated. 

Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the sample size, N1, is aborted. 
When the maximum number of iterations is reached without convergence, the sample size is left 
blank. We recommend a value of at least 500. 

Random Numbers 

Random Number Pool Size 
This is the size of the pool of random values from which the random samples will be drawn. 
Pools should be at least the maximum of 10,000 and twice the number of simulations. You can 
enter Automatic and an appropriate value will be calculated. 

If you do not want to draw numbers from a pool, enter 0 here. 

Trimmed T-Test 

Percent Trimmed at Each End 
Specify the percent of each end of the sorted data that is to be trimmed (constant G above) when 
using the trimmed means procedures. This percentage is applied to the sample size to determine 
how many of the lowest and highest data values are to be trimmed by the procedure. For example, 
if the sample size (N1) is 27 and you specify 10 here, then [27*10/100] = 2 observations will be 
trimmed at the bottom and the top. For any percentage, at least one observation is trimmed from 
each end of the sorted dataset. 

The range of possible values is 0 to 25.  
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Example 1 – Power at Various Sample Sizes 
Researchers are planning a parallel-group experiment to test whether the difference in response to 
a certain drug is zero. The researchers will use a two-sided t-test with an alpha level of 0.05. They 
want to compare the power at sample sizes of 50, 100, and 200 when the shift in the means is 0.6 
from drug 1 to drug 2. They assume that the data are normally distributed with a standard 
deviation of 2. Since this is an exploratory analysis, they set the number of simulation iterations 
to 2000.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means (Simulation) procedure window by 
expanding Means, then Two Independent Means, then clicking on Test (Inequality), and then 
clicking on Tests for Two Means (Simulation). You may then make the appropriate entries as 
listed below, or open Example 1 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 50 100 200 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Group 1 Dist’n | H0 .................................. N(M0 S) 
Group 2 Dist’n | H0 .................................. N(M0 S) 
Group 1 Dist’n | H1 .................................. N(M0 S) 
Group 2 Dist’n | H1 .................................. N(M1 S) 
M0 (Mean|H0) ......................................... 0 
M1 (Mean|H1) ......................................... 0.6 
S .............................................................. 2 
Alternative Hypothesis ............................ Diff≠Diff0 
Simulations .............................................. 2000 
Test Type ................................................ T-Test 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Normal(M0 S) & Normal(M0 S) 
H1 Dist's: Normal(M0 S) & Normal(M1 S) 
Test Statistic: T-Test 
 
  H0 H1 Target Actual   
Power N1/N2 Diff0 Diff1 Alpha Alpha Beta M0 M1 S    
0.324 50/50 0.0 -0.6 0.050 0.056 0.676 0.0 0.6 2.0    
(0.021) [0.303 0.345]   (0.010) [0.045 0.066]  
 
0.563 100/100 0.0 -0.6 0.050 0.047 0.437 0.0 0.6 2.0    
(0.022) [0.541 0.585]   (0.009) [0.038 0.056]  
 
0.855 200/200 0.0 -0.6 0.050 0.045 0.145 0.0 0.6 2.0    
(0.015) [0.840 0.870]   (0.009) [0.035 0.054]      

 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 34.78 seconds. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N1 is the size of the sample drawn from population 1. 
N2 is the size of the sample drawn from population 2. 
Diff0 is the mean difference between (Grp1 - Grp2) assuming the null hypothesis, H0.  
Diff1 is the mean difference between (Grp1 - Grp2) assuming the alternative hypothesis, H1.  
Target Alpha is the probability of rejecting a true null hypothesis. It is set by the user. 
Actual Alpha is the alpha level that was actually achieved by the experiment.  
Beta is the probability of accepting a false null hypothesis.  
Second Row: (Power Prec.) [95% LCL and UCL Power]    (Alpha Prec.) [95% LCL and UCL Alpha] 
 
Summary Statements 
Group sample sizes of 50 and 50 achieve 32% power to detect a difference of -0.6 between the 
null hypothesis mean difference of 0.0 and the actual mean difference of -0.6 at the 0.050 
significance level (alpha) using a two-sided T-Test. These results are based on 2000 Monte 
Carlo samples from the null distributions: Normal(M0 S) and Normal(M0 S), and the alternative 
distributions: Normal(M0 S) and Normal(M1 S). 
 
Chart Section 
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This report shows the estimated power for each scenario. The first row shows the parameter 
settings and the estimated power and significance level (Actual Alpha).  
The second row shows two 95% confidence intervals in brackets: the first for the power and the 
second for the significance level. Half the width of each confidence interval is given in 
parentheses as a fundamental measure of the accuracy of the simulation. As the number of 
simulations is increased, the width of the confidence intervals will decrease. 

Example 2 – Finding the Sample Size 
Continuing with Example1, the researchers want to determine how large a sample is needed to 
obtain a power of 0.90. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means (Simulation) procedure window by 
expanding Means, then Two Independent Means, then clicking on Test (Inequality), and then 
clicking on Tests for Two Means (Simulation). You may then make the appropriate entries as 
listed below, or open Example 2 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.90 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting  
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Group 1 Dist’n | H0 .................................. N(M0 S) 
Group 2 Dist’n | H0 .................................. N(M0 S) 
Group 1 Dist’n | H1 .................................. N(M0 S) 
Group 2 Dist’n | H1 .................................. N(M1 S) 
M0 (Mean|H0) ......................................... 0 
M1 (Mean|H1) ......................................... 0.6 
S .............................................................. 2 
Alternative Hypothesis ............................ Diff≠Diff0 
Simulations .............................................. 2000 
Test Type ................................................ T-Test 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results of Search for N 
 

  H0 H1 Target Actual   
Power N1/N2 Diff0 Diff1 Alpha Alpha Beta M0 M1 S    
0.904 231/231 0.0 -0.6 0.050 0.053 0.097 0.0 0.6 2.0    
(0.013) [0.891 0.916]   (0.010) [0.043 0.063] 
     
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 3.00 minutes. 
   

The required sample size was 231 which achieved a power of 0.904. To check the accuracy of 
this simulation, we ran this scenario through the analytic procedure in PASS which gave the 
sample size as 234 per group. The simulation answer of 231 was reasonably close. 

Example 3 – Comparative Results  
Continuing with Example 2, the researchers want to study the characteristics of alternative test 
statistics. They want to compare the results of all test statistics for N1 = 50, 100, and 200. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means (Simulation) procedure window by 
expanding Means, then Two Independent Means, then clicking on Test (Inequality), and then 
clicking on Tests for Two Means (Simulation). You may then make the appropriate entries as 
listed below, or open Example 3 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 50 100 200 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Group 1 Dist’n | H0 .................................. N(M0 S) 
Group 2 Dist’n | H0 .................................. N(M0 S) 
Group 1 Dist’n | H1 .................................. N(M0 S) 
Group 2 Dist’n | H1 .................................. N(M1 S) 
M0 (Mean|H0) ......................................... 0 
M1 (Mean|H1) ......................................... 0.6 
S .............................................................. 2 
Alternative Hypothesis ............................ Diff≠Diff0 
Simulations .............................................. 2000 
Test Type ................................................ T-Test 
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Reports Tab 
Show Comparative Reports .................... Checked 
Show Comparative Plots ......................... Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Power Comparison for Testing Mean Difference = Diff0.   Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Normal(M0 S) & Normal(M0 S) 
H1 Dist's: Normal(M0 S) & Normal(M1 S) 
 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Power Power Power Power Power M0 M1 S  
50/50 0.0 -0.6 0.050 0.304 0.303 0.283 0.283 0.288 0.0 0.6 2.0  
100/100 0.0 -0.6 0.050 0.577 0.577 0.538 0.538 0.544 0.0 0.6 2.0  
200/200 0.0 -0.6 0.050 0.859 0.859 0.848 0.848 0.850 0.0 0.6 2.0  
Pool Size: 10000. Simulations: 2000. Run Time: 3.66 minutes. Percent Trimmed at each end: 10. 
 
Alpha Comparison for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Normal(M0 S) & Normal(M0 S) 
H1 Dist's: Normal(M0 S) & Normal(M1 S) 
 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Alpha Alpha Alpha Alpha Alpha M0 M1 S  
50/50 0.0 -0.6 0.050 0.048 0.047 0.048 0.048 0.045 0.0 0.6 2.0  
100/100 0.0 -0.6 0.050 0.048 0.048 0.049 0.049 0.048 0.0 0.6 2.0  
200/200 0.0 -0.6 0.050 0.054 0.054 0.054 0.054 0.053 0.0 0.6 2.0  
Pool Size: 10000. Simulations: 2000. Run Time: 3.66 minutes. Percent Trimmed at each end: 10. 

   
These results show that for data that fit the assumptions of the t-test, all five test statistics have 
accurate alpha values and reasonably close power values. It is interesting to note that the powers 
of the trimmed procedures, when N1 = 50, are only 7% less than that of the t-test, even though 
about 20% of the data were trimmed. 

Example 4 – Validation using Zar 
Zar (1984) page 136 give an example in which the mean difference is 1, the common standard 
deviation is 0.7206, the sample sizes are 15 in each group, and the significance level is 0.05. They 
calculate the power to be 0.96.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means (Simulation) procedure window by 
expanding Means, then Two Independent Means, then clicking on Test (Inequality), and then 
clicking on Tests for Two Means (Simulation). You may then make the appropriate entries as 
listed below, or open Example 4 by going to the File menu and choosing Open Example 
Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 15 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Group 1 Dist’n | H0 .................................. N(M0 S) 
Group 2 Dist’n | H0 .................................. N(M0 S) 
Group 1 Dist’n | H1 .................................. N(M0 S) 
Group 2 Dist’n | H1 .................................. N(M1 S) 
M0 (Mean|H0) ......................................... 0 
M1 (Mean|H1) ......................................... 1 
S .............................................................. 0.7206 
Alternative Hypothesis ............................ Diff≠Diff0 
Simulations .............................................. 10000 
Test Type ................................................ T-Test 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Normal(M0 S) & Normal(M0 S) 
H1 Dist's: Normal(M0 S) & Normal(M1 S) 
Test Statistic: T-Test 
 
  H0 H1 Target Actual   
Power N1/N2 Diff0 Diff1 Alpha Alpha Beta M0 M1 S    
0.956 15/15 0.0 -1.0 0.050 0.045 0.044 0.0 1.0 0.7    
(0.004) [0.952 0.960]   (0.004) [0.041 0.049]   
 
Notes: 
Pool Size: 20000. Simulations: 10000. Run Time: 10.14 seconds. 

 

The power matches the exact value of 0.96. 

Example 5 – Non-Inferiority Test 
A non-inferiority test is used to show that a new treatment is not significantly worse than the 
standard (or reference) treatment. The maximum deviation that is ‘not significantly worse’ is 
called the margin of equivalence.  

Suppose that the mean diastolic BP of subjects on a certain drug is 96mmHg. If the mean 
diastolic BP of a new drug is not more than 100mmHg, the drug will be considered non-inferior 
to the standard drug. The standard deviation among these subjects is 6 mmHg. 

The developers of this new drug must design an experiment to test the hypothesis that the mean 
difference between the two mean BP’s is less than 4. The statistical hypothesis to be tested is 
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H N S0 4:μ μ− ≥  versus H N S1 4:μ μ− <  

Notice that when the null hypothesis is rejected, the conclusion is that the average difference is 
less than 4. Following proper procedure, they use a significance level of 0.025 for this one-sided 
test to keep it comparable to the usual value of 0.05 for a two-sided test. They decide to find the 
sample size at which the power is 0.90 when the two means are actually equal. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means (Simulation) procedure window by 
expanding Means, then Two Independent Means, then clicking on Test (Inequality), and then 
clicking on Tests for Two Means (Simulation). You may then make the appropriate entries as 
listed below, or open Example 5 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Power ...................................................... 0.90 
Alpha ....................................................... 0.025 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Group 1 Dist’n | H0 .................................. N(M1 S) 
Group 2 Dist’n | H0 .................................. N(M0 S) 
Group 1 Dist’n | H1 .................................. N(M0 S) 
Group 2 Dist’n | H1 .................................. N(M0 S) 
M0 (Mean|H0) ......................................... 96 
M1 (Mean|H1) ......................................... 100 
S .............................................................. 6 
Alternative Hypothesis ............................ Diff<Diff0 
Simulations .............................................. 2000 
Test Type ................................................ T-Test 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
  H0 H1 Target Actual   
Power N1/N2 Diff0 Diff1 Alpha Alpha Beta M0 M1 S 
0.918 49/49 4.0 0.0 0.025 0.024 0.083 96.0 100.0 6.0 
    

We see that 49 subjects are required to achieve the desired experimental design. 
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Example 6 – Selecting a Test Statistic when the Data 
Contain Outliers  
The two-sample t-test is known to be robust to the violation of some assumptions, but it is 
susceptible to inaccuracy because the data contain outliers. This example will investigate the 
impact of outliers on the power and precision of the five test statistics available in PASS. 

A mixture of two normal distributions will be used to randomly generate outliers. The mixture 
will draw 95% of the data from a normal distribution with a mean of 0 and a standard deviation of 
1. The other 5% of the data will come from a normal distribution with a mean of 0 and a standard 
deviation that ranges from 1 to 10.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means (Simulation) procedure window by 
expanding Means, then Two Independent Means, then clicking on Test (Inequality), and then 
clicking on Tests for Two Means (Simulation). You may then make the appropriate entries as 
listed below, or open Example 6 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 20 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Group 1 Dist’n | H0 .................................. N(M0 S)[95];N(M0 A)[5]  
Group 2 Dist’n | H0 .................................. N(M0 S)[95];N(M0 A)[5] 
Group 1 Dist’n | H1 .................................. N(M0 S)[95];N(M0 A)[5] 
Group 2 Dist’n | H1 .................................. N(M1 S)[95];N(M1 A)[5] 
M0 (Mean|H0) ......................................... 0 
M1 (Mean|H1) ......................................... 1 
S .............................................................. 1 
A .............................................................. 1 5 10 
Alternative Hypothesis ............................ Diff≠Diff0 
Simulations .............................................. 2000 
Test Type ................................................ T-Test 

Reports Tab 
Show Comparative Reports .................... Checked 
Show Comparative Plots ......................... Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 
Power Comparison for Testing Mean Difference = Diff0.   Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M0 S)[95];Normal(M0 A)[5] 
H1 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M1 S)[95];Normal(M1 A)[5] 
 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Power Power Power Power Power M0 M1 S A 
20/20 0.0 -1.0 0.050 0.865 0.864 0.835 0.835 0.841 0.0 1.0 1.0 1.0 
20/20 0.0 -1.0 0.050 0.638 0.637 0.789 0.787 0.781 0.0 1.0 1.0 5.0 
20/20 0.0 -1.0 0.050 0.469 0.463 0.778 0.775 0.776 0.0 1.0 1.0 10.0 
Pool Size: 10000. Simulations: 2000. Run Time: 1.77 minutes. Percent Trimmed: 10. 
 
 
Alpha Comparison for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Alpha Alpha Alpha Alpha Alpha M0 M1 S A 
20/20 0.0 -1.0 0.050 0.046 0.046 0.045 0.044 0.047 0.0 1.0 1.0 1.0 
20/20 0.0 -1.0 0.050 0.040 0.039 0.045 0.044 0.048 0.0 1.0 1.0 5.0 
20/20 0.0 -1.0 0.050 0.037 0.034 0.054 0.052 0.061 0.0 1.0 1.0 10.0 
Pool Size: 10000. Simulations: 2000. Run Time: 1.77 minutes. Percent Trimmed: 10. 

  
The first line gives the results for the standard case in which the two standard deviations (S and 
A) are equal. Note that in this case, the power of the t-test is a little higher than for the other tests. 
As the amount of contamination is increased (A equal 5 and then 10), the power of the trimmed 
tests and the Mann Whitney test remain high, but the power of the t-test falls from 86% to 47%. 
Also, the value of alpha remains constant for the trimmed and nonparametric tests, but the alpha 
of the t-test becomes very conservative. 

The conclusion this simulation is that if there is a possibility of outliers, you should use either the 
nonparametric test or the trimmed test. 

Example 7 – Selecting a Test Statistic when the Data are 
Skewed  
The two-sample t-test is known to be robust to the violation of some assumptions, but it is 
susceptible to inaccuracy when the underlying distributions are skewed. This example will 
investigate the impact of skewness on the power and precision of the five test statistics available 
in PASS.  

Tukey’s lambda distribution will be used because it allows the amount of skewness to be 
gradually increased.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means (Simulation) procedure window by 
expanding Means, then Two Independent Means, then clicking on Test (Inequality), and then 
clicking on Tests for Two Means (Simulation). You may then make the appropriate entries as 
listed below, or open Example 7 by going to the File menu and choosing Open Example 
Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 20 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Group 1 Dist’n | H0 .................................. L(M0 S G 0) 
Group 2 Dist’n | H0 .................................. L(M0 S G 0) 
Group 1 Dist’n | H1 .................................. L(M0 S G 0) 
Group 2 Dist’n | H1 .................................. L(M1 S G 0) 
M0 (Mean|H0) ......................................... 0 
M1 (Mean|H1) ......................................... 1 
S .............................................................. 1 
G .............................................................. 0 0.5 0.9 
Alternative Hypothesis ............................ Diff≠Diff0 
Simulations .............................................. 2000 
Test Type ................................................ T-Test 

Reports Tab 
Show Comparative Reports .................... Checked 
Show Comparative Plots ......................... Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Power Comparison for Testing Mean Difference = Diff0.   Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Tukey(M0 S G 0) & Tukey(M0 S G 0) 
H1 Dist's: Tukey(M0 S G 0) & Tukey(M1 S G 0) 

 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Power Power Power Power Power M0 M1 S G 
20/20 0.0 -1.0 0.050 0.869 0.867 0.833 0.833 0.838 0.0 1.0 1.0 0.0 
20/20 0.0 -1.0 0.050 0.880 0.879 0.923 0.922 0.948 0.0 1.0 1.0 0.5 
20/20 0.0 -1.0 0.050 0.867 0.866 0.963 0.960 0.993 0.0 1.0 1.0 0.9 
Pool Size: 10000. Simulations: 2000. Run Time: 1.85 minutes. Percent Trimmed: 10. 
 
Alpha Comparison for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
 
 H0 H1    Trim. Trim. Mann 
 Diff Diff Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff0) (Diff1) Alpha Alpha Alpha Alpha Alpha Alpha M0 M1 S G 
20/20 0.0 -1.0 0.050 0.051 0.051 0.043 0.043 0.045 0.0 1.0 1.0 0.0 
20/20 0.0 -1.0 0.050 0.039 0.038 0.043 0.041 0.044 0.0 1.0 1.0 0.5 
20/20 0.0 -1.0 0.050 0.050 0.049 0.051 0.047 0.054 0.0 1.0 1.0 0.9 
Pool Size: 10000. Simulations: 2000. Run Time: 1.85 minutes. Percent Trimmed: 10. 

  
The first line gives the results for the standard case in which there is no skewness (G = 0). Note 
that in this case, the power of the t-test is a little higher than that of the other tests. As the amount 
of skewness is increased (G equal 0.5 and then 0.9), the power of the trimmed tests and the Mann 
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Whitney test increases, but the power of the t-test remains about the same. Also, the value of 
alpha remains constant for all tests. 

The conclusion of this simulation is that if there is skewness, you will gain power by using the 
nonparametric or trimmed test. 
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Chapter 445 

Inequality Tests 
for Two Means 
using Ratios (Two-
Sample T-Test) 
Introduction 
This procedure calculates power and sample size for t-tests from a parallel-groups design in which 
the logarithm of the outcome is a continuous normal random variable. This routine deals with the 
case in which the statistical hypotheses are expressed in terms of mean ratios instead of mean 
differences.  

The details of testing two treatments using data from a two-group design are given in another 
chapter, and they will not be repeated here. If the logarithms of the responses can be assumed to 
follow a normal distribution, hypotheses stated in terms of the ratio can be transformed into 
hypotheses about the difference. The details of this analysis are given in Julious (2004). They will 
only be summarized here. 

Testing Using Ratios 
It will be convenient to adopt the following specialized notation for the discussion of these tests. 
 

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment (group 2) mean. T

μR  Not used Reference mean. This is the reference (group 1) mean.  

φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

 

Note that the actual values of μT  and μR  are not needed. Only the ratio of these values is needed 
for power and sample size calculations. 
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In the two-sided case, the null hypothesis is 

H0 0:φ φ=  

and the alternative hypothesis is  

H1 0:φ φ≠  

Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as percentages, but differences must 
be interpreted as actual amounts in their original scale. Hence, it has become a common practice 
to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of the ratio of the means. 

2. Transform this into hypotheses about a difference by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 are as follows for the null hypothesis. 
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Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 
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From this relationship, the coefficient of variation of Y can be found to be  
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Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

One final note: for parallel-group designs,   equals , the average variance used in the t-test 
of the logged data. 

σ X
2 σd

2

Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. In either case, the power and sample size calculations are 
made using the formulas for testing the difference in two means. These formulas are presented in 
another chapter and are not duplicated here. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. In most situations, 
you will select either Power and Beta for a power analysis or N1 for sample size determination. 
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N1 (Sample Size) 
Enter a value (or range of values) for the sample size of group 1 (the reference group). Note that 
these values are ignored when you are solving for N1. You may enter a range of values such as 10 
to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 (the treatment group) or enter 
Use R to base N2 on the value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 
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Effect Size – Ratios 

R0 (Ratio Under H0) 
This is the value of the ratio of the two means assumed by the null hypothesis, H0. Usually, R0 = 
1.0 which implies that the two means are equal. However, you may test other values of R0 as 
well. Strictly speaking, any positive number is valid, but values near to, or equal to, 1.0 are 
usually used. 

Warning: you cannot use the same value for both R0 and R1. 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Often, a 
range of values will be tried. For example, you might try the four values: 

1.05 1.10 1.15 1.20 

Strictly speaking, any positive number is valid. However, numbers between 0.50 and 2.00 are 
usually used. 

Warning: you cannot use the same value for both R0 and R1. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not log) scale. This value must be 
determined from past experience or from a pilot study. See the discussion above for more details 
on the definition of the coefficient of variation.  

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. Possible selections are: 

• H1: R1 <> R0 
This is the most common selection. It yields the two-tailed t-test. Use this option when you 
are testing whether the means are different, but you do not want to specify beforehand which 
mean is larger. 

• H1: R1 < R0 
This option yields a one-tailed t-test. Use it when you are only interested in the case in which 
Mean1 is greater than Mean2. 

• H1: R1 > R0 
This option yields a one-tailed t-test. Use it when you are only interested in the case in which 
Mean1 is less than Mean2. 
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Example 1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is 
better than the standard drug. From previous studies, responses for either treatment are known to 
follow a lognormal distribution. A parallel-group design will be used and the logged data will be 
analyzed with a one-sided, two-sample t-test.   

Past experience leads the researchers to set the COV to 1.20. The significance level is 0.025. The 
power will be computed for R1 equal 1.10 and 1.20. Sample sizes between 100 and 900 will be 
examined in the analysis. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means (Two-Sample T-Test) [Ratios] 
procedure window by expanding Means, then Two Independent Means, then clicking on Test 
(Inequality), and then clicking on Tests for Two Means (Two-Sample T-Test) [Ratios]. You 
may then make the appropriate entries as listed below, or open Example 1 by going to the File 
menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.025 
N1 (Sample Size Group 1) ...................... 100 to 900 by 200 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
R0 (Ratio under H0) ................................ 1.0 
R1 (True Ratio) ....................................... 1.1 1.2 
COV (Coefficient of Variation) ................. 1.2 
Alternative Hypothesis ............................ R1>R0 (One-Sided) 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test Using Ratios 
H0: R1=R0.  H1: R1>R0. 
 
 Group Mean Mean  Coefficient   
 Sample Ratio Ratio Effect of Significance  
 Sizes Under H0 Under H1 Size Variation Level  
Power (N1/N2) (R0) (R1) (ES) (COV) (Alpha) Beta 
0.1057 100/100 1.000 1.100 0.1009 1.200 0.0250 0.8943 
0.2339 300/300 1.000 1.100 0.1009 1.200 0.0250 0.7661 
0.3581 500/500 1.000 1.100 0.1009 1.200 0.0250 0.6419 
0.4715 700/700 1.000 1.100 0.1009 1.200 0.0250 0.5285 
0.5718 900/900 1.000 1.100 0.1009 1.200 0.0250 0.4282 
0.2737 100/100 1.000 1.200 0.1930 1.200 0.0250 0.7263 
0.6556 300/300 1.000 1.200 0.1930 1.200 0.0250 0.3444 
0.8625 500/500 1.000 1.200 0.1930 1.200 0.0250 0.1375 
0.9506 700/700 1.000 1.200 0.1930 1.200 0.0250 0.0494 
0.9836 900/900 1.000 1.200 0.1930 1.200 0.0250 0.0164 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. Power should be close to one. 
N1 and N2 are the number of items sampled from each population.  
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 
R0 is the ratio of the means (Mean2/Mean1) under the null hypothesis, H0. 
R1 is the ratio of the means (Mean2/Mean1) at which the power is calculated. 
COV is the coefficient of variation on the original scale. The value of sigma is calculated from this. 
ES is the effect size which is |Ln(R0)-Ln(R1)| / (sigma). 
 
Summary Statements 
A one-sided, two-sample t-test with group sample sizes of 100 and 100 achieves 11% power to 
detect a ratio of 1.100 when the ratio under the null hypothesis is 1.000. The coefficent of 
variation on the original scale is 1.200. The significance level (alpha) is 0.0250. 

 

This report shows the power for the indicated scenarios.  

Plots Section 
 

 

Power vs N1 by R1
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This plot shows the power versus the sample size. 
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Example 2 – Validation 
We will validate this procedure by showing that it gives the identical results to the regular test on 
differences—a procedure that has been validated. We will use the same settings as those given in 
Example 1. Since the output for this example is shown above, only the output from the procedure 
that uses differences is shown below.   

To run the power analysis of a t-test on differences, we need the values of Mean2 (which 
correspond to R1) and S1. The value of Mean1 will be zero. 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means (Two-Sample T-Test) [Differences] 
procedure window by expanding Means, then Two Independent Means, then clicking on Test 
(Inequality), and then clicking on Tests for Two Means (Two-Sample T-Test) [Differences]. 
You may then make the appropriate entries as listed below, or open Example 1b by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.025 
N1 (Sample Size Group 1) ...................... 100 to 900 by 200 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Mean1 (Mean of Group 1) ....................... 0 
Mean2 (Mean of Group 2) ....................... 0.095310 0.182322 
S1 (Standard Deviation Group 1) ............ 0.944456 
S1 (Standard Deviation Group 2) ............ S1 
Alternative Hypothesis ............................ Ha: Mean1<Mean2 
Nonparametric Adjustment ...................... Ignore 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sample T-Test 
Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1<Mean2 
The standard deviations were assumed to be unknown and equal. 
 
   Allocation 
Power N1 N2 Ratio Alpha Beta Mean1 Mean2 S1 S2 
0.1057 100 100 1.000 0.0250 0.8943 0.0000 0.0953 0.9445 0.9445 
0.2339 300 300 1.000 0.0250 0.7649 0.0000 0.0953 0.9445 0.9445 
0.3581 500 500 1.000 0.0250 0.6419 0.0000 0.0953 0.9445 0.9445 
0.4715 700 700 1.000 0.0250 0.5285 0.0000 0.0953 0.9445 0.9445 
0.5718 900 900 1.000 0.0250 0.4282 0.0000 0.0953 0.9445 0.9445 
0.2737 100 100 1.000 0.0250 0.7263 0.0000 0.1823 0.9445 0.9445 
0.6556 300 300 1.000 0.0250 0.3429 0.0000 0.1823 0.9445 0.9445 
0.8625 500 500 1.000 0.0250 0.1375 0.0000 0.1823 0.9445 0.9445 
0.9506 700 700 1.000 0.0250 0.0494 0.0000 0.1823 0.9445 0.9445 
0.9836 900 900 1.000 0.0250 0.0164 0.0000 0.1823 0.9445 0.9445 

 

You can compare these power values with those shown above in Example 1 to validate the 
procedure. You will find that the power values are identical.  
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Chapter 448 

Tests for Two 
Means with Non-
Zero Null using 
Differences 
Introduction 
This procedure computes power and sample size for non-zero null tests in two-sample designs in 
which the outcome is a continuous normal random variable. Measurements are made on 
individuals that have been randomly assigned to one of two groups. This is sometimes referred to 
as a parallel-groups design. This design is used in situations such as the comparison of the 
income level of two regions, the nitrogen content of two lakes, or the effectiveness of two drugs.   

The two-sample t-test is commonly used with this situation. When the variances of the two groups 
are unequal, Welch’s t-test may be used. When the data are not normally distributed, the Mann-
Whitney (Wilcoxon signed-ranks) U test may be used. 

The details of sample size calculation for the two-sample design are presented in the Two-Sample 
T-Test chapter and they will not be duplicated here. This chapter only discusses those changes 
necessary for non-inferiority and superiority tests. Sample size formulas for non-inferiority and 
superiority tests of two means are presented in Chow et al. (2003) pages 57-59.  

The Statistical Hypotheses 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests and their 
power and sample size could be calculated using the Two-Sample T-Test procedure. However, at 
the urging of our users, we have developed this module, which provides the input and output in 
formats that are convenient for these types of tests. This section will review the specifics of non-
inferiority and superiority testing. 
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Remember that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-
sided tests are defined as  

H0 1 2:μ μ− ≤ D  versus H1 1 2:μ μ− > D  

Rejecting this test implies that the mean difference is larger than the value D. This test is called 
an upper-tailed test because it is rejected in samples in which the difference between the sample 
means is larger than D. 

Following is an example of a lower-tailed test. 

H0 1 2:μ μ− ≥ D  versus H1 1 2:μ μ− < D  

Non-inferiority and non-zero null tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialized notation for the discussion of these tests.  
 

Parameter PASS Input/Output Interpretation 
μ  Not used Mean of population 1. Population 1 is assumed to consist 

of those who have received the new treatment. 
1

μ2  Not used Mean of population 2. Population 2 is assumed to consist 
of those who have received the reference treatment. 

sM  SM Margin of superiority. This is a tolerance value that 
defines the magnitude of difference that is required for 
practical importance. This may be thought of as the 
smallest difference from the reference that is considered 
to be different. 

δ  D True difference. This is the value of μ μ1 2− , the 
difference between the means. This is the value at which 
the power is calculated. 

 

Note that the actual values of μ1  and μ2  are not needed. Only their difference is needed for 
power and sample size calculations. 

Non-Zero Null Tests 
A non-zero null test tests that the treatment mean is better than the reference mean by more than 
the superiority margin. The actual direction of the hypothesis depends on the response variable 
being studied.  
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Case 1: High Values Good 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is greater than the reference mean by at least the 
margin of superiority. The value of δ  must be greater than SM . The following are equivalent 
sets of hypotheses. 

SM+≤ 210H μμ:  versus  SM+> 211H μμ:  

SM≤− 210H μμ:   versus  SM>− 211H μμ:  

SM≤δ:0H   versus  SM>δ:1H  

Case 2: High Values Bad 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is less than the reference mean by at least the margin 
of superiority. The value of δ  must be less than − ε . The following are equivalent sets of 
hypotheses. 

SM−≥ 210H μμ:    versus  SM−< 211H μμ:  

SM−≥− 210H μμ:   versus  SM−<− 211H μμ:  

SM−≥δ:0H     versus  SM−<δ:1H  

Example 
A non-zero null test example will set the stage for the discussion of the terminology that follows. 
Suppose that a test is to be conducted to determine if a new cancer treatment substantially 
improves mean bone density. The adjusted mean bone density (AMBD) in the population of 
interest is 0.002300 gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that 
if the treatment increases AMBD by more than 5% (0.000115 gm/cm), it provides a significant 
health benefit.  

The hypothesis of interest is whether the mean AMBD in the treated group is more than 0.000115 
above that of the reference group. The statistical test will be set up so that if the null hypothesis is 
rejected, the conclusion will be that the new treatment is superior. The value 0.000115 gm/cm is 
called the margin of superiority. 

Test Statistics 
This section describes the test statistics that are available in this procedure.  

Two-Sample T-Test 
Under the null hypothesis, this test assumes that the two groups of data are simple random 
samples from a single population of normally-distributed values that all have the same mean and 
variance. This assumption implies that the data are continuous and their distribution is symmetric. 
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The calculation of the test statistic for the case when higher response values are good is as 
follows. 
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The null hypothesis is rejected if the computed p-value is less than a specified level (usually 
0.05). Otherwise, no conclusion can be reached. 

Welch’s T-Test 
Welch (1938) proposed the following test when the two variances are not assumed to be equal.  
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Mann-Whitney U Test  
This test is the nonparametric substitute for the equal-variance t-test. Two key assumptions are 
that the distributions are at least ordinal and that they are identical under H0. This means that ties 
(repeated values) are not acceptable. When ties are present, you can use approximations, but the 
theoretic results no longer hold.  

The Mann-Whitney test statistic is defined as follows in Gibbons (1985).  
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where  is the number of observations tied at value one, t2 is the number of observations tied at 
some value two, and so forth. 

ti

The correction factor, C, is 0.5 if the rest of the numerator is negative or -0.5 otherwise. The 
value of z is then compared to the normal distribution. 

 

Computing the Power 

Standard Deviations Equal 
When σ σ σ1 2= = , the power of the t test is calculated as follows.  

1.  Find tα  such that ( )1 , where − =T tdf α α ( )T tdf α  is the area under a central-t curve to 

the left of x and df N N= + −1 2 2 . 

2. Calculate: σ σx
1 2

= 1
N

+ 1
N

 

3. Calculate the noncentrality parameter: λ
ε δ
σ

=
x

−
 

4. Calculate: Power = ( )1− ′T tdf ,λ α , where ( )′T xdf ,λ  is the area to the left of x under a 
noncentral-t curve with degrees of freedom df and noncentrality parameter λ . 
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Standard Deviations Unequal 
This case often recommends Welch’s test. When σ σ1 2≠ , the power is calculated as follows.  

1. Calculate: σ σ σ
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which is the adjusted degrees of freedom. Often, this is rounded to the next highest 
integer. Note that this is not the value of f used in the computation of the actual test. 
Instead, this is the expected value of f. 

3.  Find tα  such that ( )1 , where − =T tf α α ( )T tf α  is the area to the left of x under a 
central-t curve with f degrees of freedom. 

4. Calculate: λ
ε
σ

=
x

,  the noncentrality parameter. 

5. Calculate: Power = , where ( )1− ′T tf ,λ α
( )′T xf ,λ  is the area to the left of x under a 

noncentral-t curve with degrees of freedom f and noncentrality parameter λ . 

 

Nonparametric Adjustment 
When using the Mann-Whitney test rather than the t test, results by Al-Sunduqchi and Guenther 
(1990) indicate that power calculations for the Mann-Whitney test may be made using the 
standard t test formulations with a simple adjustment to the sample sizes. The size of the 
adjustment depends on the actual distribution of the data. They give sample size adjustment 
factors for four distributions. These are 1 for uniform, 2/3 for double exponential,  for 
logistic, and 

9 2/ π
π / 3  for normal distributions.  
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Power and Beta or N1. 

Select N1 when you want to determine the sample size needed to achieve a given power and 
alpha.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of inferiority 
when the null hypothesis should be rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of inferiority when in fact the mean is not non-inferior.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of group 1. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10.  

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size – Mean Difference 

SM (Superiority Margin) 
This is the magnitude of the margin of superiority. It must be entered as a positive number. 

When higher means are better, this value is the distance above the reference mean that is required 
to be considered superior. When higher means are worse, this value is the distance below the 
reference mean that is required to be considered superior. 

D (True Difference, Trt Mean – Ref Mean) 
This is the actual difference between the treatment mean and the reference mean at which the 
power is calculated. 

When higher means are better, this value should be greater than SM. When higher means are 
worse, this value should be negative and greater in magnitude than SM. 

Effect Size – Standard Deviations 

S1 and S2 (Standard Deviations) 
These options specify the values of the standard deviations for each group. When the S2 is set to 
S1, only S1 needs to be specified. The value of S1 will be copied into S2. 

When these values are not known, you must supply estimates of them. Press the SD button to 
display the Standard Deviation Estimator window. This procedure will help you find appropriate 
values for the standard deviation. 
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Test 

Higher Means Are 
This option defines whether higher values of the response variable are to be considered better or 
worse. The choice here determines the direction of the test. 

If Higher Means Are Better the null hypothesis is Diff <= SM and the alternative hypothesis is 
Diff > SM. If Higher Means Are Worse the null hypothesis is Diff >= -SM and the alternative 
hypothesis is Diff < -SM. 

Nonparametric Adjustment (Mann-Whitney Test) 
This option makes appropriate sample size adjustments for the Mann-Whitney test. Results by Al-
Sunduqchi and Guenther (1990) indicate that power calculations for the Mann-Whitney test may 
be made using the standard t test formulations with a simple adjustment to the sample size. The 
size of the adjustment depends upon the actual distribution of the data. They give sample size 
adjustment factors for four distributions. These are 1 for the uniform distribution, 2/3 for the 
double exponential distribution, 9  for the logistic distribution, and 2/ π π / 3  for the normal 
distribution.  

The options are as follows: 

• Ignore 
Do not make a Mann-Whitney adjustment. This indicates that you want to analyze a t test, not 
the Wilcoxon test. 

• Uniform 
Make the Mann-Whitney sample size adjustment assuming the uniform distribution. Since 
the factor is one, this option performs the same function as Ignore. It is included for 
completeness. 

• Double Exponential 
Make the Mann-Whitney sample size adjustment assuming that the data actually follow the 
double exponential distribution. 

• Logistic 
Make the Mann-Whitney sample size adjustment assuming that the data actually follow the 
logistic distribution. 

• Normal 
Make the Mann-Whitney sample size adjustment assuming that the data actually follow the 
normal distribution. 

Example 1 – Power Analysis 
Suppose that a test is to be conducted to determine if a new cancer treatment improves bone 
density. The adjusted mean bone density (AMBD) in the population of interest is 0.002300 
gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that if the treatment 
increases AMBD by more than 5% (0.000115 gm/cm), it generates a significant health benefit. 
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They also want to consider what would happen if the margin of superiority is set to 2.5% 
(0.0000575 gm/cm).  

The analysis will be a non- zero null test using the t-test at the 0.025 significance level. Power to 
be calculated assuming that the new treatment has 7.5% improvement on AMBD. Several sample 
sizes between 10 and 800 will be analyzed. The researchers want to achieve a power of at least 
90%. All numbers have been multiplied by 10000 to make the reports and plots easier to read. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means with Non-Zero Null (Two-Sample T-
Test) [Differences] procedure window by expanding Means, then Two Means, then clicking on 
Test (Non-Zero Null), and then clicking on Tests for Two Means with Non-Zero Null (Two-
Sample T-Test) [Differences]. You may then make the appropriate entries as listed below, or 
open Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.025 
N1 (Sample Size Group 1) ...................... 10 50 100 200 300 500 600 800 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
SM (Superiority Margin) .......................... 0.575 1.15 
D (True Difference) ................................. 1.725 
S1 (Standard Deviation Group 1) ............ 3 
S2 (Standard Deviation Group 2) ............ S1 
Higher Means Are ................................... Better 
Nonparametric Adjustment ...................... Ignore 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Numeric Results for Superiority Test (H0: Diff <= SM; H1: Diff > SM) 
Higher Means are Better 
Test Statistic: T-Test 
 
  Superiority Actual Significance  Standard Standard 
  Margin Difference Level  Deviation1 Deviation2 
Power N1/N2 (SM) (D) (Alpha) Beta (SD1) (SD2) 
0.12553 10/10 0.575 1.725 0.02500 0.87447 3.000 3.000 
0.47524 50/50 0.575 1.725 0.02500 0.52476 3.000 3.000 
0.76957 100/100 0.575 1.725 0.02500 0.23043 3.000 3.000 
0.96885 200/200 0.575 1.725 0.02500 0.03115 3.000 3.000 
0.99681 300/300 0.575 1.725 0.02500 0.00319 3.000 3.000 
0.99998 500/500 0.575 1.725 0.02500 0.00002 3.000 3.000 
1.00000 600/600 0.575 1.725 0.02500 0.00000 3.000 3.000 
1.00000 800/800 0.575 1.725 0.02500 0.00000 3.000 3.000 
0.06013 10/10 1.150 1.725 0.02500 0.93987 3.000 3.000 
0.15601 50/50 1.150 1.725 0.02500 0.84399 3.000 3.000 
0.27052 100/100 1.150 1.725 0.02500 0.72948 3.000 3.000 
0.48089 200/200 1.150 1.725 0.02500 0.51911 3.000 3.000 
0.64940 300/300 1.150 1.725 0.02500 0.35060 3.000 3.000 
0.85769 500/500 1.150 1.725 0.02500 0.14231 3.000 3.000 
0.91295 600/600 1.150 1.725 0.02500 0.08705 3.000 3.000 
0.96943 800/800 1.150 1.725 0.02500 0.03057 3.000 3.000 
 
Report Definitions 
Group 1 is the treatment group. Group 2 is the reference or standard group. 
Power is the probability of rejecting a false null hypothesis. 
N1 is the number of subjects in the first (treatment) group. 
N2 is the number of subjects in the second (reference) group. 
SM is the magnitude of the margin of superiority. Since higher means are better, this value is positive and is 
   the distance above the reference mean that is required to be considered superior. 
D is the mean difference at which the power is computed. D = Mean1 - Mean2 = treatment mean - reference mean. 
Alpha is the probability of a false-positive result. 
Beta is the probability of a false-negative result. 
SD1 and SD2 are the standard deviations of groups 1 and 2, respectively. 
 
Summary Statements 
Group sample sizes of 10 and 10 achieve 13% power to detect superiority using a one-sided, 
two-sample t-test. The margin of superiority is 0.575. The true difference between the means is 
assumed to be 1.725. The significance level (alpha) of the test is 0.02500. The data are drawn 
from populations with standard deviations of 3.000 and 3.000. 
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Chart Section 

Power vs N1 by SM
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The above report shows that for SM = 1.15, the sample size necessary to obtain 90% power is 
about 600 per group. However, if SM = 0.575, the required sample size is only about 180 per 
group. 

Example 2 – Finding the Sample Size 
Continuing with Example 1, the researchers want to know the exact sample size for each value of 
SM to achieve 90% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means with Non-Zero Null (Two-Sample T-
Test) [Differences] procedure window by expanding Means, then Two Means, then clicking on 
Test (Non-Zero Null), and then clicking on Tests for Two Means with Non-Zero Null (Two-
Sample T-Test) [Differences]. You may then make the appropriate entries as listed below, or 
open Example 2 by going to the File menu and choosing Open Example Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... 0.90 
Alpha ....................................................... 0.025 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
SM (Superiority Margin) .......................... 0.575 1.15 
D (True Difference) ................................. 1.725 
S1 (Standard Deviation Group 1) ............ 3 
S2 (Standard Deviation Group 2) ............ S1 
Higher Means Are ................................... Better 
Nonparametric Adjustment ..................... Ignore 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Superiority Test (H0: Diff <= SM; H1: Diff > SM) 
Higher Means are Better 
Test Statistic: T-Test 
 
  Superiority Actual Significance  Standard Standard 
  Margin Difference Level  Deviation1 Deviation2 
Power N1/N2 (SM) (D) (Alpha) Beta (SD1) (SD2) 
0.90004 144/144 0.575 1.725 0.02500 0.09996 3.000 3.000 
0.90036 573/573 1.150 1.725 0.02500 0.09964 3.000 3.000 

 
This report shows the exact sample size requirement for each value of SM. 

Example 3 – Validation 
This procedure uses the same mechanics as the Non-Inferiority Tests for Two Means using 
Differences procedure. We refer the user to Examples 3 and 4 of Chapter 450 for the validation 
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Chapter 450 

Non-Inferiority 
Tests for Two 
Means using 
Differences 
Introduction 
This procedure computes power and sample size for non-inferiority tests in two-sample designs in 
which the outcome is a continuous normal random variable. Measurements are made on 
individuals that have been randomly assigned to one of two groups. This is sometimes referred to 
as a parallel-groups design. This design is used in situations such as the comparison of the 
income level of two regions, the nitrogen content of two lakes, or the effectiveness of two drugs.   

The two-sample t-test is commonly used with this situation. When the variances of the two groups 
are unequal, Welch’s t-test may be used. When the data are not normally distributed, the Mann-
Whitney (Wilcoxon signed-ranks) U test may be used. 

The details of sample size calculation for the two-sample design are presented in the Two-Sample 
T-Test chapter and they will not be duplicated here. This chapter only discusses those changes 
necessary for non-inferiority and superiority tests. Sample size formulas for non-inferiority and 
superiority tests of two means are presented in Chow et al. (2003) pages 57-59.  

The Statistical Hypotheses 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests and their 
power and sample size could be calculated using the Two-Sample T-Test procedure. However, at 
the urging of our users, we have developed this module, which provides the input and output in 
formats that are convenient for these types of tests. This section will review the specifics of non-
inferiority and superiority testing. 
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Remember that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-
sided tests are defined as  

H0 1 2:μ μ− ≤ D  versus H1 1 2:μ μ− > D  

Rejecting this test implies that the mean difference is larger than the value D. This test is called 
an upper-tailed test because it is rejected in samples in which the difference between the sample 
means is larger than D. 

Following is an example of a lower-tailed test. 

H0 1 2:μ μ− ≥ D H1 1 2: D  μ − μ < versus 

Non-inferiority and superiority tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialized notation for the discussion of these tests.  
 

Parameter PASS Input/Output Interpretation 
μ1  Not used Mean of population 1. Population 1 is assumed to consist 

of those who have received the new treatment. 

μ2  Not used Mean of population 2. Population 2 is assumed to consist 
of those who have received the reference treatment. 

NIM  NIM Margin of non-inferiority. This is a tolerance value that 
defines the magnitude of the amount that is not of 
practical importance. This may be thought of as the 
largest change from the baseline that is considered to be 
trivial. The absolute value is shown to emphasize that 
this is a magnitude. The sign of the value will be 
determined by the specific design that is being used. 

μ μδ  D True difference. This is the value of 1 2− , the 
difference between the means. This is the value at which 
the power is calculated. 

 

μ μNote that the actual values of 1  and 2  are not needed. Only their difference is needed for 
power and sample size calculations. 

Non-Inferiority Tests 
A non-inferiority test tests that the treatment mean is not worse than the reference mean by more 
than the equivalence margin. The actual direction of the hypothesis depends on the response 
variable being studied.  
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Case 1: High Values Good, Non-Inferiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no less than a small amount below the reference 
mean. The value of δ  is often set to zero. The following are equivalent sets of hypotheses. 

NIM−≤ 210H μμ:     versus  NIM−> 211H μμ:  

NIM−≤− 210H μμ:   versus  NIM−>− 211H μμ:  

NIM−≤δ:0H       versus  NIM−>δ:1H  

Case 2: High Values Bad, Non-Inferiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no more than a small amount above the reference 
mean. The value of δ  is often set to zero. The following are equivalent sets of hypotheses. 

NIM+≥ 210H μμ: NIM+< 211H μμ:  versus   

NI210 M≥−H μμ: NI211 M<−H μμ:  versus   

NIM≥δ:0H NIM<δ:1H   versus   

Example 
A non-inferiority test example will set the stage for the discussion of the terminology that 
follows. Suppose that a test is to be conducted to determine if a new cancer treatment adversely 
affects mean bone density. The adjusted mean bone density (AMBD) in the population of interest 
is 0.002300 gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that if the 
treatment reduces AMBD by more than 5% (0.000115 gm/cm), it poses a significant health 
threat.  

The hypothesis of interest is whether the mean AMBD in the treated group is more than 0.000115 
below that of the reference group. The statistical test will be set up so that if the null hypothesis is 
rejected, the conclusion will be that the new treatment is non-inferior. The value 0.000115 gm/cm 
is called the margin of non-inferiority. 

Test Statistics 
This section describes the test statistics that are available in this procedure.  

Two-Sample T-Test 
Under the null hypothesis, this test assumes that the two groups of data are simple random 
samples from a single population of normally-distributed values that all have the same mean and 
variance. This assumption implies that the data are continuous and their distribution is symmetric. 
The calculation of the test statistic for the case when higher response values are good is as 
follows. 
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The null hypothesis is rejected if the computed p-value is less than a specified level (usually 
0.05). Otherwise, no conclusion can be reached. 

Welch’s T-Test 
Welch (1938) proposed the following test when the two variances are not assumed to be equal.  
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Mann-Whitney U Test  
 substitute for the equal-variance t-test. Two key assumptions are 

s 

s defined as follows in Gibbons (1985).  

This test is the nonparametric
that the distributions are at least ordinal and that they are identical under H0. This means that tie
(repeated values) are not acceptable. When ties are present, you can use approximations, but the 
theoretic results no longer hold.  

The Mann-Whitney test statistic i

z
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ber of observations tied at value one, t2 is the number of observ

some value two, and so forth. 

The correction factor, C, is 0.5
value of z is then compared to the normal distribution. 

 

Computing the Power 

Standard Deviations Equal 
When σ σ σ1 2 t is calculated as follows.  

1.  Find t  such that 
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Standard Deviations Unequal 
σ σThis case often recommends Welch’s test. When 1 2≠ , the power is calculated as follows.  

1. Calculate: σ  σ σ
x
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2
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N
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N
.

2. Calculate: f =  
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which is the adjusted degrees of freedom. Often, this is rounded to the next highest 
integer. Note that this is not the value of f used in the computation of the actual test. 
Instead, this is the expected value of f. 

3.  Find tα  such that ( )1 =α α , where ( )T tf α  is the area to the left of x under a 
central-t curve with f degrees of freedom. 

4. Calculate: λ  the noncentrality parameter. 
ε
σ

= ,
x

( )− ′T tf ,λ α
(5. Calculate: Power = 1 , where )′ xf ,λT  is the area to the left of x under a 

noncentral-t curve with degrees of freedom f and noncentrality parameter λ . 

Nonparametric Adjustment 
When using the Mann-Whitney test rather than the t test, results by Al-Sunduqchi and Guenther 
(1990) indicate that power calculations for the Mann-Whitney test may be made using the 
standard t test formulations with a simple adjustment to the sample sizes. The size of the 
adjustment depends on the actual distribution of the data. They give sample size adjustment 
factors for four distributions. These are 1 for uniform, 2/3 for double exponential,  for 
logistic, and 

9 2/ π
π / 3  for normal distributions.  
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Power and Beta or N1. 

Select N1 when you want to determine the sample size needed to achieve a given power and 
alpha.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of inferiority 
when the null hypothesis should be rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of inferiority when in fact the mean is not non-inferior.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of group 1. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10.  

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size – Mean Difference 

NIM (Non-Inferiority Margin) 
This is the magnitude of the margin of non-inferiority. It must be entered as a positive number. 

When higher means are better, this value is the distance below the reference mean that is still 
considered non-inferior. When higher means are worse, this value is the distance above the 
reference mean that is still considered non-inferior. 

D (True Difference) 
This is the actual difference between the treatment mean and the reference mean at which power 
is calculated. 

For non-inferiority tests, this value is often set to zero. When this value is non-zero, care should 
be taken that this value is consistent with whether higher means are better or worse. 

Effect Size – Standard Deviations 

S1 and S2 (Standard Deviations) 
These options specify the values of the standard deviations for each group. When the S2 is set to 
S1, only S1 needs to be specified. The value of S1 will be copied into S2. 

When these values are not known, you must supply estimates of them. Press the SD button to 
display the Standard Deviation Estimator window. This procedure will help you find appropriate 
values for the standard deviation. 
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Test 

Higher Means Are 
This option defines whether higher values of the response variable are to be considered better or 
worse. The choice here determines the direction of the non-inferiority test. 

If Higher Means Are Better the null hypothesis is Diff <= -NIM and the alternative hypothesis is 
Diff > -NIM. If Higher Means Are Worse the null hypothesis is Diff >= NIM and the alternative 
hypothesis is Diff < NIM. 

Nonparametric Adjustment (Mann-Whitney Test) 
This option makes appropriate sample size adjustments for the Mann-Whitney test. Results by Al-
Sunduqchi and Guenther (1990) indicate that power calculations for the Mann-Whitney test may 
be made using the standard t test formulations with a simple adjustment to the sample size. The 
size of the adjustment depends upon the actual distribution of the data. They give sample size 
adjustment factors for four distributions. These are 1 for the uniform distribution, 2/3 for the 
double exponential distribution, 9  for the logistic distribution, and 2/ π π / 3  for the normal 
distribution.  

The options are as follows: 

• Ignore 
Do not make a Mann-Whitney adjustment. This indicates that you want to analyze a t test, not 
the Wilcoxon test. 

• Uniform 
Make the Mann-Whitney sample size adjustment assuming the uniform distribution. Since 
the factor is one, this option performs the same function as Ignore. It is included for 
completeness. 

• Double Exponential 
Make the Mann-Whitney sample size adjustment assuming that the data actually follow the 
double exponential distribution. 

• Logistic 
Make the Mann-Whitney sample size adjustment assuming that the data actually follow the 
logistic distribution. 

• Normal 
Make the Mann-Whitney sample size adjustment assuming that the data actually follow the 
normal distribution. 
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Example 1 – Power Analysis 
Suppose that a test is to be conducted to determine if a new cancer treatment adversely affects 
bone density. The adjusted mean bone density (AMBD) in the population of interest is 0.002300 
gm/cm with a standard deviation of 0.000300 gm/cm. Clinicians decide that if the treatment 
reduces AMBD by more than 5% (0.000115 gm/cm), it poses a significant health threat. They 
also want to consider what would happen if the margin of equivalence is set to 2.5% (0.0000575 
gm/cm).  

Following accepted procedure, the analysis will be a non-inferiority test using the t-test at the 
0.025 significance level. Power to be calculated assuming that the new treatment has no effect on 
AMBD. Several sample sizes between 10 and 800 will be analyzed. The researchers want to 
achieve a power of at least 90%. All numbers have been multiplied by 10000 to make the reports 
and plots easier to read. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority for Two Means [Differences] procedure 
window by expanding Means, then Two Means, then clicking on Non-Inferiority, and then 
clicking on Non-Inferiority for Two Means [Differences]. You may then make the appropriate 
entries as listed below, or open Example 1 by going to the File menu and choosing Open 
Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.025 
N1 (Sample Size Group 1) ...................... 10 50 100 200 300 500 600 800 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
NIM (Non-Inferiority Margin) .................... 0.575 1.15 
D (True Difference) ................................. 0 
S1 (Standard Deviation Group 1) ............ 3 
S2 (Standard Deviation Group 2) ............ S1 
Higher Means Are ................................... Better 
Nonparametric Adjustment ...................... Ignore 



Non-Inferiority Tests for Two Means using Differences  450-11 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Numeric Results for Non-Inferiority Test (H0: Diff <= -NIM; H1: Diff > -NIM) 
Higher Means are Better 
Test Statistic: T-Test 
 
  Non-Inf Actual Significance  Standard Standard 
  Margin Difference Level  Deviation1 Deviation2 
Power N1/N2 (-NIM) (D) (Alpha) Beta (SD1) (SD2) 
0.06013 10/10 -0.575 0.000 0.02500 0.93987 3.000 3.000 
0.15601 50/50 -0.575 0.000 0.02500 0.84399 3.000 3.000 
0.27052 100/100 -0.575 0.000 0.02500 0.72948 3.000 3.000 
0.48089 200/200 -0.575 0.000 0.02500 0.51911 3.000 3.000 
0.64940 300/300 -0.575 0.000 0.02500 0.35060 3.000 3.000 
0.85769 500/500 -0.575 0.000 0.02500 0.14231 3.000 3.000 
0.91295 600/600 -0.575 0.000 0.02500 0.08705 3.000 3.000 
0.96943 800/800 -0.575 0.000 0.02500 0.03057 3.000 3.000 
0.12553 10/10 -1.150 0.000 0.02500 0.87447 3.000 3.000 
0.47524 50/50 -1.150 0.000 0.02500 0.52476 3.000 3.000 
0.76957 100/100 -1.150 0.000 0.02500 0.23043 3.000 3.000 
0.96885 200/200 -1.150 0.000 0.02500 0.03115 3.000 3.000 
0.99681 300/300 -1.150 0.000 0.02500 0.00319 3.000 3.000 
0.99998 500/500 -1.150 0.000 0.02500 0.00002 3.000 3.000 
1.00000 600/600 -1.150 0.000 0.02500 0.00000 3.000 3.000 
1.00000 800/800 -1.150 0.000 0.02500 0.00000 3.000 3.000 
 
Report Definitions 
Group 1 is the treatment group. Group 2 is the reference or standard group. 
Power is the probability of rejecting a false null hypothesis. 
N1 is the number of subjects in the first (treatment) group. 
N2 is the number of subjects in the second (reference) group. 
-NIM is the magnitude and direction of the margin of non-inferiority. Since higher means are better, this 
   value is negative and is the distance below the reference mean that is still considered non-inferior. 
D is the mean difference at which the power is computed. D = Mean1 - Mean2, or Treatment Mean - Reference 
   Mean. 
Alpha is the probability of a false-positive result. 
Beta is the probability of a false-negative result. 
SD1 and SD2 are the standard deviations of groups 1 and 2, respectively. 
 
Summary Statements 
Group sample sizes of 10 and 10 achieve 6% power to detect non-inferiority using a one-sided, 
two-sample t-test. The margin of equivalence is 0.575. The true difference between the means is 
assumed to be 0.000. The significance level (alpha) of the test is 0.02500. The data are drawn 
from populations with standard deviations of 3.000 and 3.000. 
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Chart Section 

 
 
The above report shows that for NIM = 1.15, the sample size necessary to obtain 90% power is 
about 150 per group. However, if NIM = 0.575, the required sample size is about 600 per group. 

Example 2 – Finding the Sample Size 
Continuing with Example 1, the researchers want to know the exact sample size for each value of 
NIM to achieve 90% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority for Two Means [Differences] procedure 
window by expanding Means, then Two Means, then clicking on Non-Inferiority, and then 
clicking on Non-Inferiority for Two Means [Differences]. You may then make the appropriate 
entries as listed below, or open Example 2 by going to the File menu and choosing Open 
Example Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Power ...................................................... 0.90 
Alpha ....................................................... 0.025 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
NIM (Non-Inferiority Margin) ................... 0.575 1.15 
D (True Difference) ................................. 0 
S1 (Standard Deviation Group 1) ............ 3 
S2 (Standard Deviation Group 2) ............ S1 
Higher Means Are ................................... Better 
Nonparametric Adjustment ..................... Ignore 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Non-Inferiority Test (H0: Diff <= -NIM; H1: Diff > -NIM) 
Higher Means are Better 
Test Statistic: T-Test 
 
  Non-Inf. Actual Significance  Standard Standard 
  Margin Difference Level  Deviation1 Deviation2 
Power N1/N2 (-NIM) (D) (Alpha) Beta (SD1) (SD2) 
0.90036 573/573 -0.575 0.000 0.02500 0.09964 3.000 3.000 
0.90004 144/144 -1.150 0.000 0.02500 0.09996 3.000 3.000 

 
This report shows the exact sample size requirement for each value of NIM. 

Example 3 – Validation using Chow 
Chow, Shao, Wang (2003) page 62 has an example of a sample size calculation for a non-
inferiority trial. Their example obtains a sample size of 51 in each group when D = 0, NIM = 
0.05, S = 0.1, Alpha = 0.05, and Beta = 0.20.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority for Two Means [Differences] procedure 
window by expanding Means, then Two Means, then clicking on Non-Inferiority, and then 
clicking on Non-Inferiority for Two Means [Differences]. You may then make the appropriate 
entries as listed below, or open Example 3 by going to the File menu and choosing Open 
Example Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Power ...................................................... 0.80 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
NIM (Non-Inferiority Margin) .................... 0.05 
D (True Difference) ................................. 0 
S1 (Standard Deviation Group 1) ............ 0.1 
S2 (Standard Deviation Group 2) ............ S1 
Higher Means Are ................................... Better 
Nonparametric Adjustment ...................... Ignore 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Test (H0: Diff <= -NIM; H1: Diff > -NIM) 
Higher Means are Better 
Test Statistic: T-Test 
 
  Non-Infer. Actual Significance  Standard Standard 
  Margin Difference Level  Deviation1 Deviation2 
Power N1/N2 (-NIM) (D) (Alpha) Beta (SD1) (SD2) 
0.80590 51/51 -0.050 0.000 0.05000 0.19410 0.100 0.100 

 
PASS has also obtained a sample size of 51 per group. 

Example 4 – Validation using Julious 
Julious (2004) page 1950 gives an example of a sample size calculation for a parallel, non-
inferiority design. His example obtains a sample size of 336 when D = 0, NIM = 10, S = 40, 
Alpha = 0.025, and Beta = 0.10. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority for Two Means [Differences] procedure 
window by expanding Means, then Two Means, then clicking on Non-Inferiority, and then 
clicking on Non-Inferiority for Two Means [Differences]. You may then make the appropriate 
entries as listed below, or open Example 4 by going to the File menu and choosing Open 
Example Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Power ...................................................... 0.90 
Alpha ....................................................... 0.025 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
NIM (Non-Inferiority Margin) ................... 10 
D (True Difference) ................................. 0 
S1 (Standard Deviation Group 1) ............ 40 
S2 (Standard Deviation Group 2) ............ S1 
Higher Means Are ................................... Better 
Nonparametric Adjustment ..................... Ignore 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Test (H0: Diff <= -NIM; H1: Diff > -NIM) 
Higher Means are Better 
Test Statistic: T-Test 
 
  Non-Infer. Actual Significance  Standard Standard 
  Margin Difference Level  Deviation1 Deviation2 
Power N1/N2 (-NIM) (D) (Alpha) Beta (SD1) (SD2) 
0.90045 337/337 -10.000 0.000 0.02500 0.09955 40.000 40.000 

 
PASS obtained sample sizes of 337 in each group. The difference between 336 that Julious 
received and 337 that PASS calculated is likely caused by rounding. 
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Chapter 453 

Tests for Two 
Means with Non-
Unity Null using 
Ratios 
Introduction 
This procedure calculates power and sample size for non-unity null t-tests from a parallel-groups 
design in which the logarithm of the outcome is a continuous normal random variable. This 
routine deals with the case in which the statistical hypotheses are expressed in terms of mean ratios 
instead of mean differences.  

The details of testing the non-unity null hypothesis of two treatments using data from a two-group 
design are given in another chapter and they will not be repeated here. If the logarithm of the 
response can be assumed to follow a normal distribution, non-unity null hypotheses stated in terms 
of the ratio can be transformed into hypotheses about the difference. The details of this analysis are 
given in Julious (2004). They will only be summarized here.   

Non-Inferiority Testing Using Ratios 
It will be convenient to adopt the following specialized notation for the discussion of these tests.  

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

sM  SM Margin of superiority. This is a tolerance value that 
defines the magnitude of difference that is required for 
practical importance. This may be thought of as the 
smallest difference from the reference that is considered 
to be different.  
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Parameter PASS Input/Output Interpretation 
φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 

power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only the ratio of these values is needed 
for power and sample size calculations. 

The null hypothesis of non-superiority is 

.: 1whereH0 >≤ LL φφφ  

and the alternative hypothesis of superiority is  

H1: φ φ> L  

Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the null hypothesis are as follows. 

( ) ( ) ( ){ }

φ φ

φ μ
μ

φ μ μ

L

L
T

R

L T

≤
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⎧
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⎩

⎫
⎬
⎭

⇒ ≤ −ln ln ln R

 

Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 

σY
2
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From this relationship, the coefficient of variation of Y can be found to be  
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Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

One final note: for parallel-group designs,   equals , the average variance used in the t-test 
of the logged data. 

σ X
2 σd

2

Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. In either case, the power and sample size calculations are 
made using the formulas for testing the difference in two means. These formulas are presented in 
another chapter and are not duplicated here. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 
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Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. In most situations, 
you will select either Power and Beta for a power analysis or N1 for sample size determination. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of non-superiority 
when in fact the treatment mean is superior. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when rejecting the 
null hypothesis of non-superiority when in fact the treatment group is not superior to the 
reference group.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N1 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 1 (the reference group). Note that 
these values are ignored when you are solving for N1. You may enter a range of values such as 10 
to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 (the treatment group) or enter 
Use R to base N2 on the value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 
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R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size – Ratios 

SM (Superiority Margin) 
This is the magnitude of the margin of superiority. It must be entered as a positive number. 

When higher means are better, this value is the distance above one that is required for the mean 
ratio (Treatment Mean / Reference Mean) to be considered superior. When higher means are 
worse, this value is the distance below one that is required for the mean ratio (Treatment Mean / 
Reference Mean) to be considered superior. 

Note that the sign of this value is ignored. Only the magnitude is used. 

Recommended values:0.20 is a common value for this parameter. 

R1 (True Ratio) 
This is the value of the ratio of the two means (Treatment Mean / Reference Mean) at which the 
power is to be calculated. 

When higher means are better, this value should be greater than 1+SM. When higher means are 
worse, this value should be less than 1-SM. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is the ratio of the standard deviation and the mean (SD/Mean). It is 
used to specify the variability (standard deviation). Note that this COV is defined on the original 
(not logarithmic) scale. This value must be determined from past experience or from a pilot study. 

To be clear, consider the following definition. Suppose data on a response variable Y are 
collected. This procedure assumes that the values of X = Ln(Y) are analyzed using a two-sample 
t-test. Thus, there are two sets of means and standard deviations: those of X labelled MX and SX 
and those of Y labelled MY and SY. The COV entered here is the COV of Y = SY/MY. For log-
normal data, the following relationship exists: COV(Y) = SQR(Exp(SX*SX)-1) where SX is the 
standard deviation of the log-transformed values. 

Test 

Higher Means Are 
This option defines whether higher values of the response variable are to be considered better or 
worse. The choice here determines the direction of the test. 

If Higher Means Are Better the null hypothesis is R <= 1+SM and the alternative hypothesis is R 
> 1+SM. If Higher Means Are Worse the null hypothesis is R >= 1-SM and the alternative 
hypothesis is R < 1-SM. 
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Example 1 – Finding Power 
A company has developed a drug for treating rheumatism and wants to show that it is superior to 
the standard drug by a certain amount. Responses following either treatment are known to follow 
a log normal distribution. A parallel-group design will be used and the logged data will be 
analyzed with a two-sample t-test.  

Researchers have decided to set the margin of superiority at 0.20. Past experience leads the 
researchers to set the COV to 1.50. The significance level is 0.025. The power will be computed 
assuming that the true ratio is either 1.30 or 1.40. Sample sizes between 100 and 1000 will be 
included in the analysis. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means with Non-Unity Null (Two-Sample T-
Test) [Ratios] procedure window by expanding Means, then Two Means, then clicking on Test 
(Non-Zero Null), and then clicking on Tests for Two Means with Non-Unity Null (Two-
Sample T-Test) [Ratios]. You may then make the appropriate entries as listed below, or open 
Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.025 
N1 (Sample Size Group 1) ...................... 100 to 1000 by 100 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
SM (Superiority Margin) .......................... 0.20 
R1 (True Ratio) ....................................... 1.30 1.40 
COV (Coefficient of Variation) ................. 1.50 
Higher Means Are ................................... Better 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Superiority Test (H0: R <= 1+SM; H1: R > 1+SM) 
Higher Means are Better 
Test Statistic: T-Test 
 
  Superiority Superiority True Significance Coefficient  
  Margin Bound Ratio Level of Variation  
Power N1/N2 (SM) (SB) (R1) (Alpha) (COV) Beta 
0.07477 100/100 0.20 1.20 1.30 0.02500 1.50 0.92523 
0.11039 200/200 0.20 1.20 1.30 0.02500 1.50 0.88961 
0.14493 300/300 0.20 1.20 1.30 0.02500 1.50 0.85507 
0.17994 400/400 0.20 1.20 1.30 0.02500 1.50 0.82006 
0.21389 500/500 0.20 1.20 1.30 0.02500 1.50 0.78611 
0.24762 600/600 0.20 1.20 1.30 0.02500 1.50 0.75238 
0.28099 700/700 0.20 1.20 1.30 0.02500 1.50 0.71901 
0.31390 800/800 0.20 1.20 1.30 0.02500 1.50 0.68610 
0.34624 900/900 0.20 1.20 1.30 0.02500 1.50 0.65376 
0.37791 1000/1000 0.20 1.20 1.30 0.02500 1.50 0.62209 
0.16832 100/100 0.20 1.20 1.40 0.02500 1.50 0.83168 
0.29339 200/200 0.20 1.20 1.40 0.02500 1.50 0.70661 
0.41147 300/300 0.20 1.20 1.40 0.02500 1.50 0.58853 
0.51938 400/400 0.20 1.20 1.40 0.02500 1.50 0.48062 
0.61229 500/500 0.20 1.20 1.40 0.02500 1.50 0.38771 
0.69123 600/600 0.20 1.20 1.40 0.02500 1.50 0.30877 
0.75687 700/700 0.20 1.20 1.40 0.02500 1.50 0.24313 
0.81046 800/800 0.20 1.20 1.40 0.02500 1.50 0.18954 
0.85355 900/900 0.20 1.20 1.40 0.02500 1.50 0.14645 
0.88775 1000/1000 0.20 1.20 1.40 0.02500 1.50 0.11225 
 
Report Definitions 
H0 (null hypothesis) is that R <= 1+SM, where R = Treatment Mean / Reference Mean. 
H1 (alternative hypothesis) is that R > 1+SM. 
Power is the probability of rejecting H0 when it is false. 
N1 is the number of subjects in the first (treatment) group. 
N2 is the number of subjects in the second (reference) group. 
SM is the magnitude of the margin of superiority. Since higher means are better, this value is positive and is 
   the distance above one that is required to be considered superior. 
SB is the corresponding bound to the superiority margin, and equals 1 + SM. 
R1 is the mean ratio (treatment/reference) at which the power is computed. 
Alpha is the probability of falsely rejecting H0. 
COV is the coefficient of variation on the original scale. 
Beta is the probability of not rejecting H0 when it is false. 
 
Summary Statements 
Group sample sizes of 100 in the first group and 100 in the second group achieve 7% power to 
detect superiority using a one-sided, two-sample t-test. The margin of superiority is 0.20. The 
true ratio of the means at which the power is evaluated is 1.30. The significance level (alpha) 
of the test is 0.02500. The coefficients of variation of both groups are assumed to be 1.50. 

 

This report shows the power for the indicated scenarios.  
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Plots Section 
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This plot shows the power versus the sample size. 

Example 2 – Validation 
We could not find a validation example for this procedure in the statistical literature. Therefore, 
we will show that this procedure gives the same results as the non-zero null test on differences—a 
procedure that has been validated. We will use the same settings as those given in Example 1. 
Since the output for this example is shown above, all that we need is the output from the 
procedure that uses differences.  

To run the non-zero null test on differences, we need the values of SM and S1. 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means with Non-Zero Null (Two-Sample T-
Test) [Differences] procedure window by expanding Means, then Two Means, then clicking on 
Test (Non-Zero Null), and then clicking on Tests for Two Means with Non-Zero Null (Two-
Sample T-Test) [Differences]. You may then make the appropriate entries as listed below, or 
open Example 1b by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.025 
N1 (Sample Size Group 1) ...................... 100 to 1000 by 100 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
SM (Superiority Margin) .......................... 0.182322 
D (True Difference) ................................. 0.262364 
S1 (Standard Deviation Group 1) ............ 1.085659 
S2 (Standard Deviation Group 2) ............ S1 
Higher Means Are ................................... Better 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Superiority Test (H0: Diff <= SM; H1: Diff > SM) 
Higher Means are Better 
Test Statistic: T-Test 
 
  Superiority Actual Significance  Standard Standard 
  Margin Difference Level  Deviation1 Deviation2 
Power N1/N2 (SM) (D) (Alpha) Beta (SD1) (SD2) 
0.07477 100/100 0.182 0.262 0.02500 0.92523 1.086 1.086 
0.11039 200/200 0.182 0.262 0.02500 0.88961 1.086 1.086 
0.14493 300/300 0.182 0.262 0.02500 0.85507 1.086 1.086 
0.17994 400/400 0.182 0.262 0.02500 0.82006 1.086 1.086 
0.21389 500/500 0.182 0.262 0.02500 0.78611 1.086 1.086 
0.24761 600/600 0.182 0.262 0.02500 0.75239 1.086 1.086 
0.28099 700/700 0.182 0.262 0.02500 0.71901 1.086 1.086 
0.31390 800/800 0.182 0.262 0.02500 0.68610 1.086 1.086 
0.34624 900/900 0.182 0.262 0.02500 0.65376 1.086 1.086 
0.37790 1000/1000 0.182 0.262 0.02500 0.62210 1.086 1.086 
 

 

You can compare these power values with those shown above in Example 1 to validate the 
procedure. You will find that the power values are identical.  
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Chapter 455 

Non-Inferiority 
Tests for Two 
Means using 
Ratios 
Introduction 
This procedure calculates power and sample size for non-inferiority t-tests from a parallel-groups 
design in which the logarithm of the outcome is a continuous normal random variable. This 
routine deals with the case in which the statistical hypotheses are expressed in terms of mean ratios 
instead of mean differences.  

The details of testing the non-inferiority of two treatments using data from a two-group design are 
given in another chapter and they will not be repeated here. If the logarithm of the response can be 
assumed to follow a normal distribution, hypotheses about non-inferiority stated in terms of the 
ratio can be transformed into hypotheses about the difference. The details of this analysis are given 
in Julious (2004). They will only be summarized here.  

Non-Inferiority Testing Using Ratios 
It will be convenient to adopt the following specialized notation for the discussion of these tests.  

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

NIM  NIM Margin of non-inferiority. This is a tolerance value that 
defines the maximum amount that is not of practical 
importance. This is the largest change in the mean ratio 
from the baseline value (usually one) that is still 
considered to be trivial.  
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Parameter PASS Input/Output Interpretation 
φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 

power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only the ratio of these values is needed 
for power and sample size calculations. 

The null hypothesis of inferiority is 

H where0 1: .φ φ φ≤ <L L  

and the alternative hypothesis of non-inferiority is  

H1: φ φ> L  

Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the null hypothesis are as follows. 
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Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 

σY
2
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From this relationship, the coefficient of variation of Y can be found to be  
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Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

One final note: for parallel-group designs,   equals , the average variance used in the t-test 
of the logged data. 

σ X
2 σd

2

Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. In either case, the power and sample size calculations are 
made using the formulas for testing the difference in two means. These formulas are presented in 
another chapter and are not duplicated here. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 
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Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. In most situations, 
you will select either Power and Beta for a power analysis or N1 for sample size determination. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of inferiority 
when in fact the treatment mean is non-inferior. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when rejecting the 
null hypothesis of inferiority when in fact the treatment group is not inferior to the reference 
group.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N1 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 1 (the reference group). Note that 
these values are ignored when you are solving for N1. You may enter a range of values such as 10 
to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 (the treatment group) or enter 
Use R to base N2 on the value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 
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R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size – Ratios 

NIM (Non-Inferiority Margin) 
This is the magnitude of the margin of non-inferiority. It must be entered as a positive number. 

When higher means are better, this value is the distance below one for which the mean ratio 
(Treatment Mean / Reference Mean)  still indicates non-inferiority of the treatment mean. E.g., a 
value of 0.2 here specifies that mean ratios greater than 0.8 indicate non-inferiority of the 
treatment mean. 

When higher means are worse, this value is the distance above one for which the mean ratio 
(Treatment Mean / Reference Mean) still indicates non-inferiority of the treatment mean. E.g., a 
value of 0.2 here specifies that mean ratios less than 1.2 indicate non-inferiority of the treatment 
mean. 

Note that the sign of this value is ignored. Only the magnitude is used. 

Recommended values: 

0.20 is a common value for this parameter. 

R1 (True Ratio) 
This is the value of the ratio of the two means (Treatment Mean / Reference Mean) at which the 
power is to be calculated. 

Often, the ratio will be set to one. However, some authors recommend using a ratio slightly 
different than one, such as 0.95 (when higher means are "better") or 1.05 (when higher means are 
"worse"), since this will require a larger sample size. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not logged) scale. This value must be 
determined from past experience or from a pilot study. See the discussion above for more details 
on the definition of the coefficient of variation.  

Test 

Higher Means Are 
This option defines whether higher values of the response variable are to be considered better or 
worse. The choice here determines the direction of the non-inferiority test. 

If Higher Means Are Better the null hypothesis is R <= 1-NIM and the alternative hypothesis is R 
> 1-NIM. If Higher Means Are Worse the null hypothesis is R >= 1+NIM and the alternative 
hypothesis is R < 1+NIM. 
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Example 1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is not 
inferior to the standard drug. Responses following either treatment are known to follow a log 
normal distribution. A parallel-group design will be used and the logged data will be analyzed 
with a two-sample t-test.  

Researchers have decided to set the margin of equivalence at 0.20. Past experience leads the 
researchers to set the COV to 1.50. The significance level is 0.025. The power will be computed 
assuming that the true ratio is either 0.95 or 1.00. Sample sizes between 100 and 1000 will be 
included in the analysis. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority for Two Means [Ratios] procedure window 
by expanding Means, then Two Means, then clicking on Non-Inferiority, and then clicking on 
Non-Inferiority for Two Means [Ratios]. You may then make the appropriate entries as listed 
below, or open Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.025 
N1 (Sample Size Group 1) ...................... 100 to 1000 by 100 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
E (Equivalence Margin) ........................... 0.20 
R1 (True Ratio) ....................................... 0.95 1.0 
COV (Coefficient of Variation) ................. 1.50 
Test Type ................................................ Non-Inferiority 
Higher Is .................................................. Good 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Ratio Test (H0: R <= 1-NIM; H1: R > 1-NIM) 
 
  Non-Inferiority Non-Inferiority True Significance Coefficient  
  Margin Bound Ratio Level of Variation  
Power N1/N2 (-NIM) (NIB) (R1) (Alpha) (COV) Beta 
0.1987 100/100 0.20 0.80 0.95 0.0250 1.50 0.8013 
0.3539 200/200 0.20 0.80 0.95 0.0250 1.50 0.6461 
0.4918 300/300 0.20 0.80 0.95 0.0250 1.50 0.5082 
0.6098 400/400 0.20 0.80 0.95 0.0250 1.50 0.3902 
0.7064 500/500 0.20 0.80 0.95 0.0250 1.50 0.2936 
0.7827 600/600 0.20 0.80 0.95 0.0250 1.50 0.2173 
0.8416 700/700 0.20 0.80 0.95 0.0250 1.50 0.1584 
0.8860 800/800 0.20 0.80 0.95 0.0250 1.50 0.1140 
0.9189 900/900 0.20 0.80 0.95 0.0250 1.50 0.0811 
0.9428 1000/1000 0.20 0.80 0.95 0.0250 1.50 0.0572 
0.3038 100/100 0.20 0.80 1.00 0.0250 1.50 0.6962 
0.5384 200/200 0.20 0.80 1.00 0.0250 1.50 0.4616 
0.7113 300/300 0.20 0.80 1.00 0.0250 1.50 0.2887 
0.8280 400/400 0.20 0.80 1.00 0.0250 1.50 0.1720 
0.9013 500/500 0.20 0.80 1.00 0.0250 1.50 0.0987 
0.9451 600/600 0.20 0.80 1.00 0.0250 1.50 0.0549 
0.9702 700/700 0.20 0.80 1.00 0.0250 1.50 0.0298 
0.9842 800/800 0.20 0.80 1.00 0.0250 1.50 0.0158 
0.9918 900/900 0.20 0.80 1.00 0.0250 1.50 0.0082 
0.9958 1000/1000 0.20 0.80 1.00 0.0250 1.50 0.0042 
 
Report Definitions 
H0 (null hypothesis) is that R <= 1-NIM, where R = Treatment Mean / Reference Mean. 
H1 (alternative hypothesis) is that R > 1-NIM. 
Power is the probability of rejecting H0 when it is false. 
N1 is the number of subjects in the first (treatment) group. 
N2 is the number of subjects in the second (reference) group. 
-NIM is the magnitude and direction of the margin of non-inferiority. Since higher means are better, this 
   value is negative and is the distance below one that is still considered non-inferior. 
NIB is the corresponding bound to the non-inferiority margin, and equals 1 - NIM. 
R1 is the mean ratio (treatment/reference) at which the power is computed. 
Alpha is the probability of falsely rejecting H0. 
COV is the coefficient of variation on the original scale. 
Beta is the probability of not rejecting H0 when it is false. 
 
Summary Statements 
Group sample sizes of 100 in the first group and 100 in the second group achieve 20% power to 
detect non-inferiority using a one-sided, two-sample t-test. The margin of non-inferiority is 0.20. 
The true ratio of the means at which the power is evaluated is 0.95. The significance level 
(alpha) of the test is 0.0250. The coefficients of variation of both groups are assumed to be 

 

This report shows the power for the indicated scenarios.  
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Plots Section 
 

 

Po
w

er

 
 

This plot shows the power versus the sample size. 

Example 2 – Validation 
We could not find a validation example for this procedure in the statistical literature. Therefore, 
we will show that this procedure gives the same results as the non-inferiority test on 
differences—a procedure that has been validated. We will use the same settings as those given in 
Example1. Since the output for this example is shown above, all that we need is the output from 
the procedure that uses differences.  

To run the inferiority test on differences, we need the values of NIM and S1. 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, fr
the PASS Home window, load the Non-Inferiority for Two Means [Differences] procedure 
window by expanding Means, then Two Means, then clicking on Non-Inferiority, and then
clicking on Non-Infer

om 

 
iority for Two Means [Differences]. You may then make the appropriate 

open Example 1b oing to the File menu and choosing Open 
 Template. 

entries as listed below, or  by g
Example

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 

he Find setting 

to 1000 by 100 

51293  0.0 
 

S2 (Standard Deviation Group 2) ............ S1 
Higher Means Are ................................... Better 

Power ...................................................... Ignored since this is t
Alpha ....................................................... 0.025 
N1 (Sample Size Group 1) ...................... 100 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
|E| (Equivalence Margin) ......................... 0.223144 
D (True Difference) ................................. -0.0
S1 (Standard Deviation Group 1) ............ 1.085659

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Test (H0: Diff <= -NIM; H1: Diff > -NIM) 
Higher Means are Better 
Test Statistic: T-Test 
 
  Non-Infer. Actual Sign icance  Sta dard S dard if n tan
  Margin Difference Level  Deviation1 Dev ation2 i
Power N1/N2 (-NIM) (D) (Alpha) Beta (SD1) (SD2) 
0.1987 100/100 -0.223 -0.051 0.0250 0.8013 1.086 1.086 
0.3539 200/200 -0.223 -0.051 0.0250 0.6461 1.086 1.086 
0.4918 300/300 -0.223 -0.051 0.0250 0.5082 1.086 1.086 
0.6098 400/400 -0.223 -0.051 0.0250 0.3902 1.086 1.086 
0.7064 500/500 -0.223 -0.051 0.0250 0.2936 1.086 1.086 
0.7828 600/600 -0.223 -0.051 0.0250 0.2172 1.086 1.086 
0.8416 700/700 -0.223 -0.051 0.0250 0.1584 1.086 1.086 
0.8860 800/800 -0.223 -0.051 0.0250 0.1140 1.086 1.086 
0.9189 900/900 -0.223 -0.051 0.0250 0.0811 1.086 1.086 
0.9428 1000/1000 -0.223 -0.051 0.0250 0.0572 1.086 1.086 
0.3038 100/100 -0.223 0.000 0.0250 0.6962 1.086 1.086 
0.5384 200/200 -0.223 0.000 0.0250 0.4616 1.086 1.086 
0.7113 300/300 -0.223 0.000 0.0250 0.2887 1.086 1.086 
0.8280 400/400 -0.223 0.000 0.0250 0.1720 1.086 1.086 
0.9013 500/500 -0.223 0.000 0.0250 0.0987 1.086 1.086 
0.9451 600/600 -0.223 0.000 0.0250 0.0549 1.086 1.086 
0.9702 700/700 -0.223 0.000 0.0250 0.0298 1.086 1.086 
0.9842 800/800 -0.223 0.000 0.0250 0.0158 1.086 1.086 
0.9918 900/900 -0.223 0.000 0.0250 0.0082 1.086 1.086 
0.9958 1000/1000 -0.223 0.000 0.0250 0.0042 1.086 1.086 
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You can compare these power values with those shown above in Example 1 to validate the 
procedure. You will find that the power values are identical.  
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Chapter 460 

Equivalence Tests 
for Two Means 
using Differences 
Introduction 
This procedure allows you to study the power and sample size of equivalence tests of the means of 
two independent groups using the two-sample t-test. Schuirmann’s (1987) two one-sided tests 
(TOST) approach is used to test equivalence. Only a brief introduction to the subject will be 
given here. For a comprehensive discussion, refer to Chow and Liu (1999).  

Measurements are made on individuals that have been randomly assigned to one of two groups. 
This parallel-groups design may be analyzed by a TOST equivalence test to show that the means 
of the two groups do not differ by more than a small amount, called the margin of equivalence. 

The definition of equivalence has been refined in recent years using the concepts of 
prescribability and switchability. Prescribability refers to ability of a physician to prescribe either 
of two drugs at the beginning of the treatment. However, once prescribed, no other drug can be 
substituted for it. Switchability refers to the ability of a patient to switch from one drug to another 
during treatment without adverse effects. Prescribability is associated with equivalence of 
location and variability. Switchability is associated with the concept of individual equivalence. 
This procedure analyzes average equivalence. Thus, it partially analyzes prescribability. It does 
not address equivalence of variability or switchability. 

Parallel-Group Design 
In a parallel-group design, subjects are assigned at random to either of two groups. Group 1 is the 
treatment group and group 2 is the reference group.  

Outline of an Equivalence Test 
PASS follows the two one-sided tests approach described by Schuirmann (1987) and Phillips 
(1990). Let μ μ2 = T  be the test group mean, μ μ1 = R  the reference group mean, and εL  and εU  
the lower and upper bounds on D T R= − = −μ μ μ μ2 1 that define the region of equivalence. The 
null hypothesis of non-equivalence is 
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H D or H DL U0 0: :≤ ≥ε ε  

and the alternative hypothesis of equivalence is  

H DL U1: ε ε< < . 

Two-Sample T-Test 
This test assumes that the two groups of normally-distributed values have the same variance. The 
calculation of the two one-sided test statistics uses the following equations. 
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The null hypothesis is rejected if  and TL − TU  are greater than or equal to t .  N N1 21 2− + −α ,

The power of this test is given by 
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where  and T   are distributed as the bivariate, noncentral t distribution with noncentrality 
parameters  and  given by 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N1 for sample size 
determination. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of nonequivalent 
means when in fact the means are equivalent. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of non-equivalent means when in fact the means are nonequivalent.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N1 (Sample Size Reference Group) 
Specify the number of subjects in the reference group. The total number of subjects in the 
experiment is equal to N1 + N2. 

You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Treatment Group) 
Specify one or more values for the number of subjects in the treatment group. Alternatively, enter 
Use R to base N2 on the value of N1. You may also enter a range of values such as 10 to 100 by 
10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and [Y] means take the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2= [R(N1)] where [Y] means take the 
next integer greater than or equal to Y. Note that setting R = 1.0 forces N1 = N2. 

Effect Size – Equivalence Limits 

|EU| Upper Equivalence Limit 
This value gives upper limit on equivalence. Differences outside EL and EU are not considered 
equivalent. Differences between them are considered equivalent. 

Note that EL<0 and EU>0. Also, you must have EL<D<EU. 

-|EL| Lower Equivalence Limit 
This value gives lower limit on equivalence. Differences outside EL and EU are not considered 
equivalent. Differences between them are. 

If you want symmetric limits, enter -UPPER LIMIT for EL to force EL = -|EU|.  

Note that EL<0 and EU>0. Also, you must have EL<D<EU. Finally, the scale of these numbers 
must match the scale of S. 

Effect Size – True Mean Difference 

D (True Difference) 
This is the true difference between the two means at which the power is to be computed. Often 
this value is set to zero, but it can be non-zero as long as it is between the equivalence limits EL 
and EU. 
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Effect Size – Standard Deviation 

S (Standard Deviation) 
Specify the within-group standard deviation, σ . The standard deviation is assumed to be the 
same for both groups. 

Example 1 – Parallel-Group Design 
A parallel-group is to be used to compare influence of two drugs on diastolic blood pressure. The 
diastolic blood pressure is known to be close to 96 mmHg with the reference drug and is thought 
to be 92 mmHg with the experimental drug. Based on similar studies, the within-group standard 
deviation is set to 18mmHg. Following FDA guidelines, the researchers want to show that the 
diastolic blood pressure with the experimental drug is within 20% of the diastolic blood pressure 
with the reference drug. Note that 20% of 96 is 19.2. They decide to calculate the power for a 
range of sample sizes between 3 and 60. The significance level is 0.05.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means [Differences] procedure 
window by expanding Means, then Two Independent Means, then clicking on Equivalence, 
and then clicking on Equivalence Tests for Two Means [Differences]. You may then make the 
appropriate entries as listed below, or open Example 1 by going to the File menu and choosing 
Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 3 5 8 10 15 20 30 40 50 60 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
|EU| Upper Equivalence Limit ................. 19.2 
-|EL| Lower Equivalence Limit ................. -Upper Limit 
D (True Difference) ................................. -4 
S (Standard Deviation) ............................ 18 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Parallel-Group Design 
 
 Reference Treatment      
 Group Group      
 Sample Sample Lower Upper    
 Size Size Equiv. Equiv. True Standard   
Power (N1) (N2) Limit Limit Difference Deviation Alpha Beta 
0.0386 3 3 -19.20 19.20 -4.00 18.00 0.0500 0.9614 
0.0928 5 5 -19.20 19.20 -4.00 18.00 0.0500 0.9072 
0.2887 8 8 -19.20 19.20 -4.00 18.00 0.0500 0.7113 
0.4391 10 10 -19.20 19.20 -4.00 18.00 0.0500 0.5609 
0.6934 15 15 -19.20 19.20 -4.00 18.00 0.0500 0.3066 
0.8266 20 20 -19.20 19.20 -4.00 18.00 0.0500 0.1734 
0.9433 30 30 -19.20 19.20 -4.00 18.00 0.0500 0.0567 
0.9820 40 40 -19.20 19.20 -4.00 18.00 0.0500 0.0180 
0.9946 50 50 -19.20 19.20 -4.00 18.00 0.0500 0.0054 
0.9984 60 60 -19.20 19.20 -4.00 18.00 0.0500 0.0016 
 
Report Definitions 
Power is the probability of rejecting non-equivalence when they are equivalent. 
N1 is the number of subjects in the reference group. 
N2 is the number of subjects in the treatment group. 
The Upper & Lower Limits are the maximum allowable differences that result in equivalence. 
True Difference is the anticipated actual difference between the means. 
The Standard Deviation is the average S.D. within the two groups. 
Alpha is the probability of rejecting non-equivalence when they are non-equivalent. 
Beta is the probability of accepting non-equivalence when they are equivalent. 
 
Summary Statements 
An equivalence test of means using two one-sided tests on data from a parallel-group design 
with sample sizes of 3 in the reference group and 3 in the treatment group achieves 4% power at 
a 5% significance level when the true difference between the means is -4.00, the standard 
deviation is 18.00, and the equivalence limits are -19.20 and 19.20. 
 

This report shows the power for the indicated parameter configurations. Note that when the 
parameters are specified as percentages, they are displayed in the output with percent signs. Note 
that the desired 80% power occurs for a per group sample size between 15 and 20. 

Plot Section 
 

  
 

This plot shows the power versus the sample size. 
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Example 2 – Parallel-Group Validation using Machin 
Machin et al. (1997) page 107 present an example of determining the sample size for a parallel-
group design in which the reference mean is 96, the treatment mean is 94, the standard deviation 
is 8, the limits are plus or minus 5, the power is 80%, and the significance level is 0.05. They 
calculate the sample size to be 88. It is important to note that Machin et al. use an approximation, 
so their results should not be expected to exactly match the results obtained using PASS. 

We will now set up this example in PASS.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means [Differences] procedure 
window by expanding Means, then Two Independent Means, then clicking on Equivalence, 
and then clicking on Equivalence Tests for Two Means [Differences]. You may then make the 
appropriate entries as listed below, or open Example 2 by going to the File menu and choosing 
Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Power ...................................................... 0.80 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... Ignored 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
|EU| Upper Equivalence Limit ................. 5 
-|EL| Lower Equivalence Limit ................. -Upper Limit 
D (True Difference) ................................. -2 
S (Standard Deviation) ............................ 8 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

 Reference Treatment      
 Group Group      
 Sample Sample Lower Upper    
 Size Size Equiv. Equiv. True Standard   
Power (N1) (N2) Limit Limit Difference Deviation Alpha Beta 
0.8015 89 89 -5.00 5.00 -2.00 8.00 0.0500 0.1985 

 

Note that PASS has obtained a sample size of 89 which is very close to the approximate value of 
88 that Machin calculated. 
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Chapter 465 

Equivalence Tests 
for Two Means 
(Simulation) 
Introduction 
This procedure allows you to study the power and sample size of an equivalence test comparing two 
means from independent groups. Schuirmann’s (1987) two one-sided tests (TOST) approach is 
used to test equivalence. The t-test is commonly used in this situation, but other tests have been 
developed for use when the t-test assumptions are not met. These additional tests include the Mann-
Whitney U test, Welch’s unequal variance test, and trimmed versions of the t-test and the Welch 
test.  

Measurements are made on individuals that have been randomly assigned to, or randomly chosen 
from, one of two groups. This parallel-groups design may be analyzed by a TOST equivalence 
test to show that the means of the two groups do not differ by more than a small amount, called 
the margin of equivalence. 

The two-sample t-test is commonly used in this situation. When the variances of the two groups are 
unequal, Welch’s t-test is often used. When the data are not normally distributed, the Mann-
Whitney (Wilcoxon signed-ranks) U test and, less frequently, the trimmed t-test may be used. 

The details of the power analysis of equivalence test using analytic techniques are presented in 
another PASS chapter and they won’t be duplicated here. This chapter will only consider power 
analysis using computer simulation. 

Technical Details 
Computer simulation allows us to estimate the power and significance level that is actually achieved 
by a test procedure in situations that are not mathematically tractable. Computer simulation was 
once limited to mainframe computers. But, in recent years, as computer speeds have increased, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are as follows. 

1. Specify how the test is carried out. This includes indicating how the test statistic is 
calculated and how the significance level is specified. 
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2. Generate random samples from the distributions specified by the alternative hypothesis. 
Calculate the test statistics from the simulated data and determine if the null hypothesis is 
accepted or rejected. Tabulate the number of rejections and use this to calculate the test’s 
power.  

3. Generate random samples from the distributions specified by the null hypothesis. Calculate 
each test statistic from the simulated data and determine if the null hypothesis is accepted or 
rejected. Tabulate the number of rejections and use this to calculate the test’s significance 
level.  

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated 
data leads to a rejection of the null hypothesis. The power is the proportion of simulated 
samples in step 2 that lead to rejection. The significance level is the proportion of simulated 
samples in step 3 that lead to rejection. 

Generating Random Distributions 
Two methods are available in PASS to simulate random samples. The first method generates the 
random variates directly, one value at a time. The second method generates a large pool (over 
10,000) of random values and then draw the random numbers from this pool. This second method 
can cut the running time of the simulation by 70%. 

As mentioned above, the second method begins by generating a large pool of random numbers from 
the specified distributions. Each of these pools is evaluated to determine if its mean is within a small 
relative tolerance (0.0001) of the target mean. If the actual mean is not within the tolerance of the 
target mean, individual members of the population are replaced with new random numbers if the 
new random number moves the mean towards its target. Only a few hundred such swaps are 
required to bring the actual mean to within tolerance of the target mean. This population is then 
sampled with replacement using the uniform distribution. We have found that this method works 
well as long as the size of the pool is the maximum of twice the number of simulated samples 
desired and 10,000.  

Simulating Data for an Equivalence Test 
Simulating equivalence data is more complex than simulating data for a regular two-sided test. An 
equivalence test essentially reverses the roles of the null and alternative hypothesis. The null 
hypothesis becomes 

( ) ( )H D or D0 1 2 1 2: μ μ μ μ− ≤ − − ≥  

where D is the margin of equivalence. Thus the null hypothesis is made up of two simple 
hypotheses:  

( )H D01 1 2: μ μ− ≤ −  

( )H D02 1 2: μ μ− ≥  

The additional complexity comes in deciding which of the two null hypotheses are used to 
simulate data for the null hypothesis situation. The choice becomes more problematic when 
asymmetric equivalence limits are chosen. In this case, you may want to try simulating using each 
simple null hypothesis in turn. 
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To generate data for the null hypotheses, generate data for each group. The difference in the 
means of these two groups will become one of the equivalence limits. The other equivalence limit 
will be determined by symmetry and will always have a sign that is the opposite of the first 
equivalence limit.  

Test Statistics 
This section describes the test statistics that are available in this procedure. Note that these test 
statistics are computed on the differences. Thus, when the equation refers to an X value, this X 
value is assumed to be a difference between two individual variates. 

Two-Sample T-Test 
The t-test assumes that the data are simple random samples from populations of normally-
distributed values that have the same mean and variance. This assumption implies that the data 
are continuous and their distribution is symmetric. The calculation of the t statistic is as follows.  
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The significance of the test statistic is determined by computing a p-value which is based on the t 
distribution with appropriate degrees of freedom. If this p-value is less than a specified level 
(often 0.05), the null hypothesis is rejected. Otherwise, no conclusion can be reached. 

Welch’s T-Test 
Welch (1938) proposed the following test for use when the two variances are not assumed to be 
equal. 
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Trimmed T-Test assuming Equal Variances 
The notion of trimming off a small proportion of possibly outlying observations and using the 
remaining data to form a t-test was first proposed for one sample by Tukey and McLaughlin 
(1963). Tukey and Dixon (1968) consider a slight modification of this test, called Winsorization, 
which replaces the trimmed data with the nearest remaining value. The two-sample trimmed t-test 
was proposed by Yuen and Dixon (1973).  

Assume that the data values have been sorted from lowest to highest. The trimmed mean is 
defined as 

X
X

htg

k
k g

N g

= = +

−

∑
1  

where h = N – 2g and g = [N(G/100)]. Here we use [Z] to mean the largest integer smaller than Z 
with the modification that if G is non-zero, the value of  [N(G/100)] is at least one. G is the 
percent trimming and should usually be less than 25%, often between 5% and 10%. Thus, the g 
smallest and g largest observation are omitted in the calculation.  

To calculate the modified t-test, calculate the Winsorized mean and the Winsorized sum of 
squared deviations as follows. 
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Using the above definitions, the two-sample trimmed t-test is given by 
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The distribution of this t statistic is approximately that of a t distribution with degrees of freedom 
equal to . This approximation is often reasonably accurate if both sample sizes are 
greater than 6. 

h h1 2 2+ −

Trimmed T-Test assuming Unequal Variances 
Yuen (1974) combines trimming (see above) with Welch’s (1938) test. The resulting trimmed 
Welch test is resistant to outliers and seems to alleviate some of the problems that occur because 
of skewness in the underlying distributions. Extending the results from above, the trimmed 
version of Welch’s t-test is given by 
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Mann-Whitney U Test  
This test is the nonparametric substitute for the equal-variance t-test. Two key assumptions for 
this test are that the distributions are at least ordinal and that they are identical under H0. This 
means that ties (repeated values) are not acceptable. When ties are present, an approximation can 
be used, but the theoretic results no longer hold.  

The Mann-Whitney test statistic is defined as follows in Gibbons (1985).  
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where 
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The ranks are determined after combining the two samples. The standard deviation is calculated 
as 

s N N N N
N N t t

N N N NW

i i
i=

+ +
−

−

+ +
=
∑

1 2 1 2
1 2

3

1

1 2 1 2

1
12 12 1

( )
( )

( )( − )
 

where  is the number of observations tied at value one, t2 is the number of observations tied at 
some value two, and so forth. 

ti

The correction factor, C, is 0.5 if the rest of the numerator of z is negative or -0.5 otherwise. The 
value of z is then compared to the standard normal distribution. 

Standard Deviations 
Care must be used when either the null or alternative distribution is not normal. In these cases, the 
standard deviation is usually not specified directly. For example, you might use a gamma 
distribution with a shape parameter of 1.5 and a mean of 4 as the null distribution and a gamma 
distribution with the same shape parameter and a mean of 5 as the alternative distribution. This 
allows you to compare the two means. However, although the shape parameters are constant, the 
standard deviations, which are based on both the shape parameter and the mean, are not. Thus the 
distributions not only have different means, but different standard deviations! 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated using the values of the other parameters. 
Under most conditions, you would select either Power or N1. 

Select Power when you want to estimate the power for a specific scenario.  

Select N1 when you want to determine the sample size needed to achieve a given power and 
alpha level. This option is computationally intensive and may take a long time to complete. 
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of nonequivalent 
means when in fact the means are equivalent. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of non-equivalent means when in fact the means are nonequivalent.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of group 1. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10.  

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 
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Effect Size 

Group 1 (and 2) Distribution | H0 
These options specify the distributions of the two groups under the null hypothesis, H0. The 
difference between the means of these two distributions is the value of one of the equivalence 
limits.  

Group 1 is often called the reference (or standard) distribution. Group 2 is often called the 
treatment distribution. These options specify these two distributions under the null hypothesis, 
H0. The difference between the means of these two distributions is, by definition, one of the 
equivalence limits. Thus, you set the equivalence limit by specifying the two means. 

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The characters M0 and M1 are to be used for the means 
of the distributions of groups 1 and 2 under H0, respectively. An equivalence limit is then M0 - 
M1, which must be non-zero.  

For example, suppose you entered N(M0 S) for group 1 and N(M1 S) for group 2. Also, you set 
M0 equal to 5 and M1 equal to 4. The upper (positive) equivalence limit would be 5 – 4 = 1.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean is entered 
first. 

Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Finding the Value of the Mean of a Specified Distribution 
The distributions have been parameterized in terms of their means, since this is the parameter 
being tested. The mean of a distribution created as a linear combination of other distributions is 
found by applying the linear combination to the individual means. However, the mean of a 
distribution created by multiplying or dividing other distributions is not necessarily equal to 
applying the same function to the individual means. For example, the mean of 4N(4, 5) + 2N(5, 
6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 4*4*2*5 = 160 (although 
it is close). 
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Group 1 (and 2) Distribution|H1 
These options specify the distributions of the two groups under the alternative hypothesis, H1. 
The difference between the means of these two distributions is the difference that is assumed to 
be the true value of the difference.  

Usually, the mean difference is specified by entering M0 for the mean parameter in the 
distribution expression for group 1 and M1 for the mean parameter in the distribution expression 
for group 2. The mean difference under H1 then becomes the value of M0– M0 = 0. If you want a 
non-zero value, you specify it by specifying unequal values for the two distribution means. For 
example, you could enter A for the mean of group 2. The mean difference will then be M0 – A.  

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M1 is reserved for the value of the mean of 
group 2 under the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean, M1, is 
entered first. 

Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Effect Size – Distribution Parameters 

M0 (Mean|H0) 
These values are substituted for M0 in the distribution specifications given above. M0 is intended 
to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

M1 (Mean|H1) 
These values are substituted for M1 in the distribution specifications given above. Although it can 
be used wherever you want, M1 is intended to be the value of the mean hypothesized by the 
alternative hypothesis, H1. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 
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Parameter Values (S, A, B) 
Enter the numeric value(s) of parameter listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values using the syntax ‘0 2 3’ or ‘0 to 3 by 1.’ 

You can also change the letter than is used as the name of this parameter. 

Test and Simulations 

Equivalence Limit 
Equivalence limits are defined as the positive and negative limits around zero that define a zone 
of equivalence. This zone of equivalence is a set of difference values that define a region in which 
the two means are ‘close enough’ so that they are considered to be the same for practical 
purposes. 

Rather than define these limits explicitly, they are set implicitly. This is done as follows. One 
limit is found by subtracting the Group 2 Dist’n|H0 mean from the Group 1 Dist’n|H0 mean. If 
the limits are symmetric, the other limit is this difference times -1. To obtain symmetric limits, 
enter ‘Symmetric’ here. 

If asymmetric limits are desired, a numerical value is specified here. It is given the sign (+ or -) 
that is opposite the difference of the means discussed above. 

For example, if the mean of group 1 under H0 is 5, the mean of group 2 under H0 is 4, and 
Symmetric is entered here, the equivalence limits will be 5 - 4 = 1 and -1. However, if the value 
1.25 is entered here, the equivalence limits are 1 and -1.25. 

If you do not have a specific value in mind for the equivalence limit, a common value for an 
equivalence limit is 20% or 25% of the group 1 (reference) mean. 

Test Type 
Specify which test statistic is to be used in the simulation. Although the t-test is the most 
commonly used test statistic, it is based on assumptions that may not be viable in many situations. 
For your data, you may find that one of the other tests are more accurate (actual alpha = target 
alpha) and more precise (better power). 

Simulations 
This option specifies the number of iterations, M, used in the simulation. The larger the number 
of iterations, the longer the running time, and, the more accurate the results. 

The precision of the simulated power estimates are calculated from the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
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 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
  

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  

Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the sample size, N1, is aborted. 
When the maximum number of iterations is reached without convergence, the sample size is left 
blank. We recommend a value of at least 500. 

Random Numbers 

Random Number Pool Size 
This is the size of the pool of values from which the random samples will be drawn. Pools should 
be at least the maximum of 10,000 and twice the number of simulations. You can enter Automatic 
and an appropriate value will be calculated. 

If you do not want to draw numbers from a pool, enter 0 here. 

Trimmed T-Test 

Percent Trimmed at Each End 
Specify the percent of each end of the sorted data that is to be trimmed (constant G above) when 
using the trimmed means procedures. This percentage is applied to the sample size to determine 
how many of the lowest and highest data values are to be trimmed by the procedure. For example, 
if the sample size (N1) is 27 and you specify 10 here, then [27*10/100] = 2 observations will be 
trimmed at the bottom and the top. For any percentage, at least one observation is trimmed from 
each end of the sorted dataset. 

The range of possible values is 0 to 25.  
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Example 1 – Power at Various Sample Sizes 
Researchers are planning an experiment to determine if the response to a new drug is equivalent 
to the response to the standard drug. The average response level to the standard drug is known to 
be 63 with a standard deviation of 5.  The researchers decide that if the average response level to 
the new drug is between 60 and 66, they will consider it to be equivalent to the standard drug.  

The researchers decide to use a parallel-group design. The response level for the standard drug 
will be measured for each subject. They will analyze the data using an equivalence test based on 
the t-test with an alpha level of 0.05. They want to compare the power at sample sizes of 10, 30, 
50, and 70. They assume that the data are normally distributed and that the true difference 
between the mean response of the two drugs is zero. Since this is an exploratory analysis, the 
number of simulation iterations is set to 2000. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means (Simulation) procedure 
window by expanding Means, then Two Independent Means, then clicking on Equivalence, 
and then clicking on Equivalence Tests for Two Means (Simulation). You may then make the 
appropriate entries as listed below, or open Example 1 by going to the File menu and choosing 
Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 10 30 50 70 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Group 1 Distribution | H0 ......................... N(M0 S) 
Group 2 Distribution | H0 ......................... N(M1 S) 
Group 1 Distribution | H1 ......................... N(M0 S) 
Group 2 Distribution | H1 ......................... N(M0 S) 
M0 (Mean|H0) ......................................... 63 
M1 (Mean|H1) ......................................... 66 
S .............................................................. 5 
Equivalence Limit .................................... Symmetric 
Simulations .............................................. 2000 
Test Type ................................................ T-Test 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Numeric Results for Testing Mean Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist's: Normal(M0 S) & Normal(M1 S) 
H1 Dist's: Normal(M0 S) & Normal(M0 S) 
Test Statistic: T-Test 
   Lower Upper 
  H1 Equiv. Equiv. Target Actual   
Power N1/N2 Diff1 Limit Limit Alpha Alpha Beta M0 M1 S 
0.009 10/10 0.0 -3.0 3.0 0.050 0.005 0.991 63.0 66.0 5.0 
(0.004) [0.005 0.013]    (0.003) [0.002 0.008]   
 
0.477 30/30 0.0 -3.0 3.0 0.050 0.053 0.524 63.0 66.0 5.0 
(0.022) [0.455 0.498]    (0.010) [0.043 0.062]   
 
0.816 50/50 0.0 -3.0 3.0 0.050 0.061 0.184 63.0 66.0 5.0 
(0.017) [0.799 0.833]    (0.010) [0.050 0.071]   
 
0.944 70/70 0.0 -3.0 3.0 0.050 0.050 0.056 63.0 66.0 5.0 
(0.010) [0.934 0.954]    (0.010) [0.040 0.060]   
 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 21.61 seconds. 
 
 
Summary Statements 
Group sample sizes of 10 and 10 achieve 1% power to detect equivalence when the margin of 
equivalence is from -3.0 to 3.0 and the actual mean difference is 0.0. The significance level 
(alpha) is 0.050 using two one-sided T-Tests. These results are based on 2000 Monte Carlo 
samples from the null distributions: Normal(M0 S) and Normal(M1 S), and the alternative 
distributions: Normal(M0 S) and Normal(M0 S). 
 
 
Chart Section 
 

 
 

This report shows the estimated power for each scenario. The first row shows the parameter 
settings and the estimated power and significance level (Actual Alpha). The second row shows 
two 95% confidence intervals in brackets: the first for the power and the second for the 
significance level. Half the width of each confidence interval is given in parentheses as a 
fundamental measure of the accuracy of the simulation. As the number of simulations is 
increased, the width of the confidence intervals will decrease. 
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Example 2 – Finding the Sample Size 
Continuing with Example1, the researchers want to determine how large a sample is needed to 
obtain a power of 0.90. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means (Simulation) procedure 
window by expanding Means, then Two Independent Means, then clicking on Equivalence, 
and then clicking on Equivalence Tests for Two Means (Simulation). You may then make the 
appropriate entries as listed below, or open Example 2 by going to the File menu and choosing 
Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Power ...................................................... 0.90 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Group 1 Distribution | H0 ......................... N(M0 S) 
Group 2 Distribution | H0 ......................... N(M1 S) 
Group 1 Distribution | H1 ......................... N(M0 S) 
Group 2 Distribution | H1 ......................... N(M0 S) 
M0 (Mean|H0) ......................................... 63 
M1 (Mean|H1) ......................................... 66 
S .............................................................. 5 
Equivalence Limit .................................... Symmetric 
Simulations .............................................. 2000 
Test Type ................................................ T-Test 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Mean Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist's: Normal(M0 S) & Normal(M1 S) 
H1 Dist's: Normal(M0 S) & Normal(M0 S) 
Test Statistic: T-Test 
   Lower Upper 
  H1 Equiv. Equiv. Target Actual   
Power N1/N2 Diff1 Limit Limit Alpha Alpha Beta M0 M1 S 
0.911 61/61 0.0 -3.0 3.0 0.050 0.044 0.089 63.0 66.0 5.0 
(0.012) [0.899 0.923]    (0.009) [0.035 0.053]   
   

The required sample size is 61 per group. 
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Example 3 – Comparative Results when the Data 
Contain Outliers  
Continuing Example1, this example will investigate the impact of outliers on the characteristics 
of the various test statistics. The two-sample t-test is known to be robust to the violation of some 
assumptions, but it is susceptible to inaccuracy when the data contains outliers. This example will 
investigate the impact of outliers on the power and precision of the five test statistics available in 
PASS. 

A mixture of two normal distributions will be used to randomly generate outliers. The mixture 
will draw 95% of the data from a standard distribution. The other 5% of the data will come from a 
normal distribution with the same mean but with a standard deviation that is one, five, and ten 
times larger than that of the standard. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means (Simulation) procedure 
window by expanding Means, then Two Independent Means, then clicking on Equivalence, 
and then clicking on Equivalence Tests for Two Means (Simulation). You may then make the 
appropriate entries as listed below, or open Example 3 by going to the File menu and choosing 
Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 40 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Group 1 Distribution | H0 ......................... N(M0 S)[95];N(M0 A)[5] 
Group 2 Distribution | H0 ......................... N(M1 S)[95];N(M1 A)[5] 
Group 1 Distribution | H1 ......................... N(M0 S)[95];N(M0 A)[5] 
Group 2 Distribution | H1 ......................... N(M0 S)[95];N(M0 A)[5] 
M0 (Mean|H0) ......................................... 63 
M1 (Mean|H1) ......................................... 66 
S .............................................................. 5 
A .............................................................. 5 25 50 
Equivalence Limit .................................... Symmetric 
Simulations .............................................. 2000 
Test Type ................................................ T-Test 

Reports Tab 
Show Comparative Reports .................... Checked 
Show Comparative Plots ......................... Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

 
Power Comparison for Testing Equivalence.   Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M1 S)[95];Normal(M1 A)[5] 
H1 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M0 S)[95];Normal(M0 A)[5] 
 
 H1 Lower Upper    Trim. Trim. Mann 
 Diff Equiv. Equiv. Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff1) Limit Limit Alpha Power Power Power Power Power M0 M1 S A 
40/40 0.0 -3.0 3.0 0.050 0.708 0.708 0.657 0.656 0.672 63.0 66.0 5.0 5.0 
40/40 0.0 -3.0 3.0 0.050 0.247 0.247 0.543 0.543 0.539 63.0 66.0 5.0 25.0 
40/40 0.0 -3.0 3.0 0.050 0.073 0.072 0.509 0.508 0.510 63.0 66.0 5.0 50.0 
 
Alpha Comparison for Testing Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
 
 H1 Lower Upper    Trim. Trim. Mann 
 Diff Equiv. Equiv. Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff1) Limit Limit Alpha Alpha Alpha Alpha Alpha Alpha M0 M1 S A 
40/40 0.0 -3.0 3.0 0.050 0.050 0.050 0.058 0.058 0.056 63.0 66.0 5.0 5.0 
40/40 0.0 -3.0 3.0 0.050 0.030 0.030 0.041 0.041 0.044 63.0 66.0 5.0 25.0 
40/40 0.0 -3.0 3.0 0.050 0.008 0.008 0.042 0.042 0.044 63.0 66.0 5.0 50.0 
Pool Size: 10000. Simulations: 2000. Run Time: 2.90 minutes. Percent Trimmed: 10. 
 
 

Power vs A by Test
M0=63.0 M1=66.0 S=5.0 Alpha=0.05 N1=40 R=1.00 2-Sided

A

P
ow

er

5 20 35 50
0.05

0.18

0.31

0.44

0.57

0.70

Test
T-Test
Welch
Trim-T
Trim-W
MW Test

 
 
When A = 5, there are no outliers and the power of the nonparametric test and the trimmed tests 
are a little less than that of the t-test. When A = 25, the distortion of the t-test caused by the 
outliers becomes apparent. In this case, the powers of the standard t-test and Welch’s t-test are 
0.247, but the powers of the nonparametric Mann-Whitney test and the trimmed tests are about 
0.54. When A = 50, the standard t-test only achieves a power of 0.073, but the trimmed and 
nonparametric tests achieve powers of about 0.51!  

Looking at the second table, we see that the true significance level of the t-test is distorted by the 
outliers, while the significance levels of the other tests remain close to the target value. 
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Example 4 – Selecting a Test Statistic when the Data Are 
Skewed  
Continuing Example3, this example will investigate the impact of skewness in the underlying 
distribution on the characteristics of the various test statistics.  

Tukey’s lambda distribution will be used because it allows the amount of skewness to be 
gradually increased. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means (Simulation) procedure 
window by expanding Means, then Two Independent Means, then clicking on Equivalence, 
and then clicking on Equivalence Tests for Two Means (Simulation). You may then make the 
appropriate entries as listed below, or open Example 4 by going to the File menu and choosing 
Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 40 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Group 1 Distribution | H0 ......................... L(M0 S G 0) 
Group 2 Distribution | H0 ......................... L(M1 S G 0) 
Group 1 Distribution | H1 ......................... L(M0 S G 0) 
Group 2 Distribution | H1 ......................... L(M0 S G 0) 
M0 (Mean|H0) ......................................... 63 
M1 (Mean|H1) ......................................... 66 
S .............................................................. 5 
G .............................................................. 0 0.5 0.9 
Equivalence Limit .................................... Symmetric 
Simulations .............................................. 2000 
Test Type ................................................ T-Test 

Reports Tab 
Show Comparative Reports .................... Checked 
Show Comparative Plots ......................... Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

 
Power Comparison for Testing Equivalence.   Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M1 S)[95];Normal(M1 A)[5] 
H1 Dist's: Normal(M0 S)[95];Normal(M0 A)[5] & Normal(M0 S)[95];Normal(M0 A)[5] 
 
 H1 Lower Upper    Trim. Trim. Mann 
 Diff Equiv. Equiv. Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff1) Limit Limit Alpha Power Power Power Power Power M0 M1 S G 
40/40 0.0 -3.0 3.0 0.050 0.685 0.685 0.626 0.625 0.635 63.0 66.0 5.0 0.0 
40/40 0.0 -3.0 3.0 0.050 0.708 0.708 0.773 0.772 0.893 63.0 66.0 5.0 0.5 
40/40 0.0 -3.0 3.0 0.050 0.747 0.746 0.940 0.939 0.996 63.0 66.0 5.0 0.9 

 
Alpha Comparison for Testing Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
 
 H1 Lower Upper    Trim. Trim. Mann 
 Diff Equiv. Equiv. Target T-Test Welch T-Test Welch Whit'y 
N1/N2 (Diff1) Limit Limit Alpha Alpha Alpha Alpha Alpha Alpha M0 M1 S G 
40/40 0.0 -3.0 3.0 0.050 0.048 0.048 0.049 0.049 0.051 63.0 66.0 5.0 0.0 
40/40 0.0 -3.0 3.0 0.050 0.043 0.043 0.043 0.042 0.047 63.0 66.0 5.0 0.5 
40/40 0.0 -3.0 3.0 0.050 0.055 0.055 0.058 0.057 0.056 63.0 66.0 5.0 0.9 
 
Pool Size: 10000. Simulations: 2000. Run Time: 3.01 minutes. Percent Trimmed: 10. 
 
 

 
 
We see that as the degree of skewness is increased, the power of the t-test increases slightly, but 
the powers of the trimmed and nonparametric tests improve dramatically. The significance levels 
do not appear to be adversely impacted. 
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Example 5 – Validation using Machin 
Machin et al. (1997) page 107 present an example of determining the sample size for a parallel-
group design in which the reference mean is 96, the treatment mean is 94, the standard deviation 
is 8, the limits are plus or minus 5, the power is 80%, and the significance level is 0.05. They 
calculate the sample size to be 88. It is important to note that Machin et al. use an approximation, 
so their results cannot be expected to exactly match those of PASS.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means (Simulation) procedure 
window by expanding Means, then Two Independent Means, then clicking on Equivalence, 
and then clicking on Equivalence Tests for Two Means (Simulation). You may then make the 
appropriate entries as listed below, or open Example 5 by going to the File menu and choosing 
Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Power ...................................................... 0.80 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Group 1 Distribution | H0 ......................... N(M0 S) 
Group 2 Distribution | H0 ......................... N(91 S) 
Group 1 Distribution | H1 ......................... N(M0 S) 
Group 2 Distribution | H1 ......................... N(94 S) 
M0 (Mean|H0) ......................................... 96 
M1 (Mean|H1) ......................................... 1 
S .............................................................. 8 
Equivalence Limit .................................... Symmetric 
Simulations .............................................. 2000 
Test Type ................................................ T-Test 
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Output 
Click the Run button to perform the calculations and generate the following output. 

 
H0 Dist's: Normal(M0 S) & Normal(91 S) 
H1 Dist's: Normal(M0 S) & Normal(94 S) 
Test Statistic: T-Test 
 
   Lower Upper 
  H1 Equiv. Equiv. Target Actual   
Power N1/N2 Diff1 Limit Limit Alpha Alpha Beta M0 S   
0.807 87/87 2.0 -5.0 5.0 0.050 0.049 0.193 96.0 8.0  
(0.017) [0.790 0.824]    (0.009) [0.039 0.058]    

 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 60.05 seconds. 

 

The sample size of 87 per group is reasonably close to the analytic answer of 88. 
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Chapter 470 

Equivalence Tests 
for Two Means 
using Ratios 
Introduction 
This procedure calculates power and sample size of statistical tests for equivalence tests from 
parallel-group design with two groups. This routine deals with the case in which the statistical 
hypotheses are expressed in terms of mean ratios rather than mean differences.  

The details of testing the equivalence of two treatments using a parallel-group design are given in 
the chapter entitled “Equivalence Tests for Two Means using Differences” and will not be repeated 
here. If the logarithms of the responses can be assumed to follow a normal distribution, hypotheses 
about equivalence in terms of the ratio can be transformed into hypotheses about the difference. The 
details of this analysis are given in Julious (2004).  

Equivalence Testing Using Ratios 
It will be convenient to adopt the following specialize notation for the discussion of these tests. 

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

φ φL U,  RL, RU Margin of equivalence. These limits define an interval of 
the ratio of the means in which their difference is so 
small that it may be ignored.  

φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their ratio is needed for power 
and sample size calculations. 
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The null hypothesis of non-equivalence is 

H or0 1 1: , .φ φ φ φ φ φ≤ ≥ < >L U L Uwhere  

and the alternative hypothesis of equivalence is  

H1:φ φ φL U< <  

Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the null hypothesis are as follows. 
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Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

When performing an equivalence test on the difference between means, the usual procedure is to 
set the equivalence limits symmetrically above and below zero. Thus the equivalence limits will 
be plus or minus an appropriate amount. The common practice is to do the same when the data 
are being analyzed on the log scale. However, when symmetric limits are set on the log scale, 
they do not translate to symmetric limits on the original scale. Instead, they translate to limits that 
are the inverses of each other. 

Perhaps these concepts can best be understood by considering an example. Suppose the 
researchers have determined that the lower equivalence limit should be 80% on the original scale. 
Since they are planning to use a log scale for their analysis, they transform this limit to the log 
scale by taking the logarithm of 0.80. The result is -0.223144. Wanting symmetric limits, they set 
the upper equivalence limit to 0.223144. Exponentiating this value, they find that exp(0.223144) 
= 1.25. Note that 1/(0.80) = 1.25. Thus, the limits on the original scale are 80% and 125%, not 
80% and 120%.  

Using this procedure, appropriate equivalence limits for the ratio of two means can be easily 
determined. Here are a few sets of equivalence limits. 
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 Lower Upper Lower Upper 
Specified Limit Limit  Limit Limit 
Percent Original Original  Log Log 
Change Scale Scale Scale Scale 
-25% 75.0% 133.3% -0.287682 0.287682 
+25% 80.0% 125.0% -0.223144 0.223144 
-20% 80.0% 125.0% -0.223144 0.223144 
+20% 83.3% 120.0% -0.182322 0.182322 
-10% 90.0% 111.1% -0.105361 0.105361 
+10% 90.9% 110.0% -0.095310 0.095310 
 

Note that negative percent-change values specify the lower limit first, while positive percent-
change values specify the upper limit first. After the first limit is found, the other limit is 
calculated as its inverse. 

Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 
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From this relationship, the coefficient of variation of Y can be expressed as  
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Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
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One final note: for parallel-group designs,   equals , the average variance used in the t-test 
of the logged data. 

σ X
2 σd

2

Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. Either way, the power and sample size calculations are made 
using the formulas for testing the equivalence of the difference in two means. These formulas are 
presented another chapter and are not duplicated here. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Beta for a power analysis or N1 for sample size determination. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of nonequivalent 
means when in fact the means are equivalent. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  
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Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of non-equivalent means when in fact the means are nonequivalent.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

You can enter a range of values such as 0.05, 0.10, 0.15 or 0.05 to 0.15 by 0.01.  

Sample Size 

N1 (Sample Size Reference Group) 
Enter a value (or range of values) for the sample size of group 1(the reference group). Note that 
these values are ignored when you are solving for N1. You may enter a range of values such as 10 
to 100 by 10. 

N2 (Sample Size Treatment Group) 
Enter a value (or range of values) for the sample size of group 2 (the treatment group) or enter 
Use R to base N2 on the value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and [Y] means take the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size – Equivalence Limits 

RU (Upper Equivalence Limit) 
Enter the upper equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RL, the two means are said to be equivalent. The value must be greater 
than one. A popular choice is 1.25. Note that this value is not a percentage. 

If you enter 1/RL, then 1/RL will be calculated and used here. This choice is commonly used 
because RL and 1/RL give limits that are of equal magnitude on the log scale. 
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RL (Lower Equivalence Limit) 
Enter the lower equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RU, the two means are said to be equivalent. The value must be less than 
one. A popular choice is 0.80. Note that this value is not a percentage. 

If you enter 1/RU, then 1/RU will be calculated and used here. This choice is commonly used 
because RU and 1/RU give limits that are of equal magnitude on the log scale. 

Effect Size – True Ratio 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Usually, the 
ratio will be assumed to be one. However, some authors recommend calculating the power using 
a ratio of 1.05 since this will require a larger sample size. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not logged) scale. This value must be 
determined from past experience or from a pilot study. It is most easily calculated from the within 
mean-square error of the analysis of variance of the logged data using the relationship  

COV eY
w= −σ 2

1 . 

If prior studies used a t-test to analyze the logged data, you will not have a direct estimate of . 
However, the two variances,  and , are functionally related. The relationship between these 
quantities is . 

$σw
2

σd
2 σw

2

σ σd w
2 22=
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Example 1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is 
equivalent to the standard drug. A parallel-group design will be used to test the equivalence of the 
two drugs.   

Researchers have decided to set the lower limit of equivalence at 0.80. Past experience leads the 
researchers to set the COV to 1.50. The significance level is 0.05. The power will be computed 
assuming that the true ratio is either 1.00 or 1.05. Sample sizes between 50 and 550 will be 
included in the analysis. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means [Ratios] procedure 
window by expanding Means, then Two Independent Means, then clicking on Equivalence, 
and then clicking on Equivalence Tests for Two Means [Ratios]. You may then make the 
appropriate entries as listed below, or open Example 1 by going to the File menu and choosing 
Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 50 to 550 by 100 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1 
RU (Upper Equivalence Limit) ................ 1/RL 
RL (Lower Equivalence Limit) ................. 0.80 
R1 (True Ratio) ....................................... 1.0 1.05 
COV (Coefficient of Variation) ................. 1.50 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

 
Numeric Results for Testing Equivalence Using a Parallel-Group Design 
 
 Reference Treatment      
 Group Group Lower Upper  Coefficient  
 Sample Sample Equiv. Equiv. True of  
 Size Size Limit Limit Ratio Variation   
Power (N1) (N2) (RL) (RU) (R1) (COV) Alpha Beta 
0.0000 50 50 0.80 1.25 1.00 1.50 0.0500 1.0000 
0.1049 150 150 0.80 1.25 1.00 1.50 0.0500 0.8951 
0.4843 250 250 0.80 1.25 1.00 1.50 0.0500 0.5157 
0.7170 350 350 0.80 1.25 1.00 1.50 0.0500 0.2830 
0.8494 450 450 0.80 1.25 1.00 1.50 0.0500 0.1506 
0.9221 550 550 0.80 1.25 1.00 1.50 0.0500 0.0779 
0.0000 50 50 0.80 1.25 1.05 1.50 0.0500 1.0000 
0.1010 150 150 0.80 1.25 1.05 1.50 0.0500 0.8990 
0.4360 250 250 0.80 1.25 1.05 1.50 0.0500 0.5640 
0.6366 350 350 0.80 1.25 1.05 1.50 0.0500 0.3634 
0.7602 450 450 0.80 1.25 1.05 1.50 0.0500 0.2398 
0.8396 550 550 0.80 1.25 1.05 1.50 0.0500 0.1604 
 
Report Definitions 
Power is the probability of rejecting non-equivalence when they are equivalent. 
N1 is the number of subjects in the first group. 
N2 is the number of subjects in the second group. 
RU & RL are the maximum allowable ratios that result in equivalence. 
R1 is the ratio of the means at which the power is computed. 
COV is the coefficient of variation on the original scale.  
Alpha is the probability of rejecting non-equivalence when the means are non-equivalent. 
Beta is the probability of accepting non-equivalence when the means are equivalent. 
 
Summary Statements 
An equivalence test of means using two one-sided tests on data from a parallel-group design 
with sample sizes of 50 in the reference group and 50 in the treatment group achieves 0% power 
at a 5% significance level when the true ratio of the means is 1.00, the coefficient of 
variation on the original, unlogged scale is 1.50, and the equivalence limits of the mean ratio 
are 0.80 and 1.25. 

 

This report shows the power for the indicated scenarios.  

Plot Section 
 

 

Power vs N1 by R1
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This plot shows the power versus the sample size. 
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Example 2 – Validation using Julious 
Julious (2004) page 1971 presents an example of determining the sample size for a parallel-group 
design in which the actual ratio is 1.0, the coefficient of variation is 0.80, the equivalence limits 
are 0.80 and 1.25, the power is 90%, and the significance level is 0.05. He calculates the per 
group sample size to be 216.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means [Ratios] procedure 
window by expanding Means, then Two Independent Means, then clicking on Equivalence, 
and then clicking on Equivalence Tests for Two Means [Ratios]. You may then make the 
appropriate entries as listed below, or open Example 2 by going to the File menu and choosing 
Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Power ...................................................... 0.90 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1 
RU (Upper Equivalence Limit) ................ 1/RL 
RL (Lower Equivalence Limit) ................. 0.80 
R1 (True Ratio) ....................................... 1.0  
COV (Coefficient of Variation) ................. 0.80 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Parallel-Group Design 
 
 Reference Treatment      
 Group Group Lower Upper  Coefficient  
 Sample Sample Equiv. Equiv. True of  
 Size Size Limit Limit Ratio Variation   
Power (N1) (N2) (RL) (RU) (R1) (COV) Alpha Beta 
0.9004 216 216 0.80 1.25 1.00 0.80 0.0500 0.0996 

 

PASS has also calculated the per group sample size to be 216, which matches Julious’s result.  
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Chapter 471 

Confidence 
Intervals for the 
Difference 
Between Two 
Means 
Introduction 
This procedure calculates the sample size necessary to achieve a specified distance from the 
difference in sample means to the confidence limit(s) at a stated confidence level for a confidence 
interval about the difference in means when the underlying data distribution is normal.  

Caution: This procedure assumes that the standard deviations of the future samples will be the 
same as the standard deviations that are specified. If the standard deviation to be used in the 
procedure is estimated from a previous sample or represents the population standard deviation, 
the Confidence Intervals for the Difference between Two Means with Tolerance Probability 
procedure should be considered. That procedure controls the probability that the distance from the 
difference in means to the confidence limits will be less than or equal to the value specified.  

Technical Details 
There are two formulas for calculating a confidence interval for the difference between two 
population means. The different formulas are based on whether the standard deviations are 
assumed to be equal or unequal. 

For each of the cases below, let the means of the two populations be represented by μ1  and μ2 , 
and let the standard deviations of the two populations be represented as σ1  and σ2 . 
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Case 1 – Standard Deviations Assumed Equal 
When σ σ σ1 2= =  are unknown, the appropriate two-sided confidence interval for μ1  - μ2 is 
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Upper and lower one-sided confidence intervals can be obtained by replacing α/2 with α. 

The required sample size for a given precision, D, can be found by solving the following equation 
iteratively 
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This equation can be used to solve for D or n1 or n2 based on the values of the remaining 
parameters. 

 

Case 2 – Standard Deviations Assumed Unequal 
When σ σ1 ≠ 2  are unknown, the appropriate two-sided confidence interval for μ1  – μ2 is 
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In this case t is an approximate t and the method is known as the Welch-Satterthwaite method. 
Upper and lower one-sided confidence intervals can be obtained by replacing α/2 with α. 

The required sample size for a given precision, D, can be found by solving the following equation 
iteratively 
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This equation can be used to solve for D or n1 or n2 based on the values of the remaining 
parameters. 
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Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n1 and n2 
items are drawn from populations using simple random sampling and a confidence interval is 
calculated for each sample, the proportion of those intervals that will include the true population 
mean difference is 1 – α. 

Notice that is a long term statement about many, many samples.  

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence 

Confidence Level (1 – Alpha) 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n1 and n2 
items are drawn from populations using simple random sampling and a confidence interval is 
calculated for each sample, the proportion of those intervals that will include the true population 
mean difference is 1 – α.  

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 
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where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a one-sided or a two-sided confidence interval. 

Precision 

Distance from Mean Difference to Limit(s) 
This is the distance from the confidence limit(s) to the difference in means. For two-sided 
intervals, it is also known as the precision, half-width, or margin of error. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Standard Deviations 

S1 and S2 (Standard Deviations) 
Enter an estimate of the standard deviation of group 1 or 2. The standard deviation must be a 
positive number.  

Caution: The sample size estimates for this procedure assume that the standard deviation that is 
achieved when the confidence interval is produced is the same as the standard deviation entered 
here. 

Press the 'Standard Deviation Estimator' button to obtain help on estimating the standard 
deviation. 

You can enter a range of values such as 1, 2, 3 or 1 to 10 by 1.  

Standard Deviation Equality Assumption 
Specify whether the standard deviations are assumed to be the same or different. The choice will 
determine which of the two common confidence interval formulas for estimating the difference in 
population means will be used.  

• Assume S1 and S2 are Unequal 
When the standard deviations are assumed to be unequal, the variances are not pooled and an 
approximate method is used for the confidence interval formula. This approximate method is 
sometimes called the Welch-Satterthwaite method. 

• Assume S1 and S2 are Equal 
When the standard deviations are assumed to be equal, the pooled variance formula is used in 
the calculation of the confidence interval. The degrees of freedom are N1 + N2 – 2. 
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Recommendation: Because the standard deviations of two populations are rarely equal, it is 
recommended that the standard deviations are assumed to be unequal. The Welch-
Satterthwaite confidence interval calculation is generally accepted and commonly used.  

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Calculating Sample Size 
Suppose a study is planned in which the researcher wishes to construct a two-sided 95% 
confidence interval for the difference between two population means such that the width of the 
interval is no wider than 20 units. The confidence level is set at 0.95, but 0.99 is included for 
comparative purposes. The standard deviation estimates, based on the range of data values, are 32 
for Population 1 and 38 for Population 2. Instead of examining only the interval half-width of 10, 
a series of half-widths from 5 to 15 will also be considered.  
The goal is to determine the necessary sample size for each group. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for the Difference Between Two 
Means procedure window by expanding Means, then Two Independent Means, then clicking 
on Confidence Interval, and then clicking on Confidence Intervals for the Difference Between 
Two Means. You may then make the appropriate entries as listed below, or open Example 1 by 
going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Confidence Level .................................... 0.95 0.99 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Distance from Mean Diff to Limit(s) ......... 5 to 15 by 1 
S1 (Standard Deviation Group 1) ............ 32 
S2 (Standard Deviation Group 2) ............ 38 
SD Equality Assumption.......................... Assume S1 and S2 are Unequal 
Interval Type ........................................... Two-Sided 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for the Difference in Means 
The standard deviations are assumed to be Unknown and Unequal. 
 
    Target Actual   
    Dist from Dist from   
Confidence   Allocation Mean Diff Mean Diff   
Level N1 N2 Ratio to Limits to Limits S1 S2 
0.95 380 380 1.000 5.000 4.995 32.00 38.00 
0.95 265 265 1.000 6.000 5.995 32.00 38.00 
0.95 195 195 1.000 7.000 6.995 32.00 38.00 
0.95 150 150 1.000 8.000 7.984 32.00 38.00 
0.95 119 119 1.000 9.000 8.973 32.00 38.00 
0.95 97 97 1.000 10.000 9.951 32.00 38.00 
0.95 80 80 1.000 11.000 10.973 32.00 38.00 
0.95 68 68 1.000 12.000 11.918 32.00 38.00 
0.95 58 58 1.000 13.000 12.926 32.00 38.00 
0.95 50 50 1.000 14.000 13.947 32.00 38.00 
0.95 44 44 1.000 15.000 14.895 32.00 38.00 
0.99 655 655 1.000 5.000 5.000 32.00 38.00 
0.99 455 455 1.000 6.000 5.999 32.00 38.00 
0.99 335 335 1.000 7.000 6.991 32.00 38.00 
0.99 258 258 1.000 8.000 7.997 32.00 38.00 
0.99 205 205 1.000 9.000 8.981 32.00 38.00 
0.99 166 166 1.000 10.000 9.991 32.00 38.00 
0.99 138 138 1.000 11.000 10.972 32.00 38.00 
0.99 116 116 1.000 12.000 11.983 32.00 38.00 
0.99 99 99 1.000 13.000 12.991 32.00 38.00 
0.99 86 86 1.000 14.000 13.960 32.00 38.00 
0.99 75 75 1.000 15.000 14.975 32.00 38.00 
 
References 
Ostle, B. and Malone, L.C. 1988. Statistics in Research. Iowa State University Press. Ames, Iowa. 
Zar, Jerrold H. 1984. Biostatistical Analysis (Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey. 
 
Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the true difference in population means. 
N1 and N2 are the sample sizes drawn from the two populations. 
Allocation Ratio is the ratio of the sample sizes, N2/N1. 
Dist from Mean Diff to Limit is the distance from the confidence limit(s) to the difference in sample means. 
     For two-sided intervals, it is also know as the precision, half-width, or margin of error. 
Target Dist from Mean Diff to Limit is the value of the distance that is entered into the procedure. 
Actual Dist from Mean Diff to Limit is the value of the distance that is obtained from the procedure. 
S1 and S2 are the standard deviations upon which the distance from mean difference to limit calculations are 
     based. 
 
Summary Statements 
Group sample sizes of 380 and 380 produce a two-sided 95% confidence interval with a distance 
from the difference in means to the limits that is equal to 4.995 when the estimated standard 
deviations are 32.00 and 38.00. 
 

This report shows the calculated sample size for each of the scenarios.  
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Plots Section 
 

  
 

This plot shows the sample size of each group versus the precision for the two confidence levels. 

Example 2 – Validation using Ostle and Malone 
Ostle and Malone (1988) page 150 give an example of a precision calculation for a confidence 
interval for the difference between two means when the confidence level is 95%, the two standard 
deviations are 6.2185 and 16.06767, and the sample sizes are 7 and 6. The precision is 13.433 
(when df = 6.257, not 6).  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for the Difference Between Two 
Means procedure window by expanding Means, then Two Independent Means, then clicking 
on Confidence Interval, and then clicking on Confidence Intervals for the Difference Between 
Two Means. You may then make the appropriate entries as listed below, or open Example 2 by 
going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Confidence Level .................................... 0.90 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... 6 
R (Sample Allocation Ratio) .................... Ignored 
Distance from Mean Diff to Limit(s) ......... 13.433 
S1 (Standard Deviation Group 1) ............ 6.2185 
S2 (Standard Deviation Group 2) ............ 16.06767 
SD Equality Assumption.......................... Assume S1 and S2 are Unequal 
Interval Type ........................................... Two-Sided 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for the Difference in Means 
The standard deviations are assumed to be Unknown and Unequal. 
 
    Target Actual   
    Dist from Dist from   
Confidence   Allocation Mean Diff Mean Diff   
Level N1 N2 Ratio to Limits to Limits S1 S2 
0.90 7 6 0.857 13.433 13.433 6.22 16.07 
 

PASS also calculated the sample size in Group 1 to be 7.  

Example 3 – Validation using Zar 
Zar (1984) page 132 gives an example of a precision calculation for a confidence interval for the 
difference between two means when the confidence level is 95%, the pooled standard deviation 
estimate is 0.7206, and the sample sizes are 6 and 7. The precision is 0.88. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for the Difference Between Two 
Means procedure window by expanding Means, then Two Independent Means, then clicking 
on Confidence Interval, and then clicking on Confidence Intervals for the Difference Between 
Two Means. You may then make the appropriate entries as listed below, or open Example 3 by 
going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Distance from Mean Difference to Limit 
Confidence Level .................................... 0.95 
N1 (Sample Size Group 1) ...................... 6 
N2 (Sample Size Group 2) ...................... 7 
R (Sample Allocation Ratio) .................... Ignored 
Distance from Mean Diff to Limit(s) ......... Ignored since this is the Find setting 
S1 (Standard Deviation Group 1) ............ 0.7206 
S2 (Standard Deviation Group 2) ............ S1 
SD Equality Assumption .......................... Assume S1 and S2 are Equal 
Interval Type ........................................... Two-Sided 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for the Difference in Means 
The standard deviations are assumed to be Unknown and Equal. 
 
    Target Actual   
    Dist from Dist from   
Confidence   Allocation Mean Diff Mean Diff   
Level N1 N2 Ratio to Limits to Limits S1 S2 
0.95 6 7 1.167  0.882 0.72 0.72 
 

PASS also calculated the precision to be 0.88.  
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Chapter 472 

Confidence 
Intervals for the 
Difference Between 
Two Means with 
Tolerance 
Probability 
Introduction 
This procedure calculates the sample size necessary to achieve a specified distance from the 
difference in sample means to the confidence limit(s) with a given tolerance probability at a 
stated confidence level for a confidence interval about the difference in means when the 
underlying data distribution is normal.  

Sample sizes are calculated only for the case where the standard deviations are assumed to be 
equal, wherein the pooled standard deviation formula is used. 

Technical Details 
Let the means of the two populations be represented by μ1  and μ2 , and let the standard 
deviations of the two populations be represented as σ1  and σ2 . 

When σ σ σ1 2= =  are unknown, the appropriate two-sided confidence interval for μ1  - μ2 is 
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Upper and lower one-sided confidence intervals can be obtained by replacing α / 2 with α. 

The required sample size for a given precision, D, can be found by solving the following equation 
iteratively 
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This equation can be used to solve for D or n1 or n2 based on the values of the remaining 
parameters. 

There is an additional subtlety that arises when the standard deviation is to be chosen for 
estimating sample size. The sample sizes determined from the formula above produce confidence 
intervals with the specified widths only when the future samples have a pooled standard deviation 
that is no greater than the value specified. 

As an example, suppose that 15 individuals are sampled from each population in a pilot study, 
and a pooled standard deviation estimate of 5.4 is obtained from the sample. The purpose of a 
later study is to estimate the difference in means within 10 units. Suppose further that the sample 
size needed is calculated to be 62 per group using the formula above with 5.4 as the estimate for 
the pooled standard deviation. The samples of size 62 are then obtained from each population, but 
the pooled standard deviation turns out to be 6.3 rather than 5.4. The confidence interval is 
computed and the distance from the difference in means to the confidence limits is greater than 10 
units. 

This example illustrates the need for an adjustment to adjust the sample size such that the distance 
from the difference in means to the confidence limits will be below the specified value with 
known probability. 

Such an adjustment for situations where a previous sample is used to estimate the standard 
deviation is derived by Harris, Horvitz, and Mood (1948) and discussed in Zar (1984). The 
adjustment is 

221
21

221 212121

11
−+−+−−+− += mmnnpnn F

nn
stD ,;,/ γα  

 

where 1 – γ  is the probability that the distance from the difference in means to the confidence 
limit(s) will be below the specified value, and m1 and m2  are the sample sizes in the previous 
samples that were used to estimate the pooled standard deviation. 

The corresponding adjustment when no previous sample is available is discussed in Kupper and 
Hafner (1989). The adjustment in this case is 
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where, again, 1 – γ  is the probability that the distance from the difference in means to the 
confidence limit(s) will be below the specified value. 

Each of these adjustments accounts for the variability in a future estimate of the pooled standard 
deviation. In the first adjustment formula (Harris, Horvitz, and Mood, 1948), the distribution of 
the pooled standard deviation is based on the estimate from previous samples. In the second 
adjustment formula, the distribution of the pooled standard deviation is based on a specified value 
that is assumed to be the population pooled standard deviation.  

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n1 and n2 
items are drawn from populations using simple random sampling and a confidence interval is 
calculated for each sample, the proportion of those intervals that will include the true population 
mean difference is 1 – α. 

Notice that is a long term statement about many, many samples.  

 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence and Tolerance 

Confidence Level (1 – Alpha) 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n1 and n2 
items are drawn from populations using simple random sampling and a confidence interval is 
calculated for each sample, the proportion of those intervals that will include the true population 
mean difference is 1 – α. 

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90 ,0.95 or 0.90 to 0.99 by 0.01. 

Tolerance Probability 
This is the probability that a future interval with sample sizes N1 and N2 and the specified 
confidence level will have a distance from the difference in means to the limit(s) that is less than or 
equal to the distance specified. 
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If a tolerance probability is not used, as in the 'Confidence Intervals for the Difference between Two 
Means' procedure, the sample size is calculated for the expected distance from the difference in 
means to the limit(s), which assumes that the future standard deviation will also be the one 
specified. 

Using a tolerance probability implies that the standard deviation of the future sample will not be 
known in advance, and therefore, an adjustment is made to the sample size formula to account for 
the variability in the standard deviation. Use of a tolerance probability is similar to using an upper 
bound for the standard deviation in the 'Confidence Intervals for the Difference between Two 
Means' procedure. 

The range of values that can be entered here is values between 0 and 1. 

You can enter a range of values such as .70 .80 .90 or .70 to .95 by .05. 

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a one-sided or a two-sided confidence interval. 

Precision 

Distance from Mean Difference to Limit(s) 
This is the distance from the confidence limit(s) to the difference in means. For two-sided 
intervals, it is also known as the precision, half-width, or margin of error. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  
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Pooled Standard Deviation 

Standard Deviation Source 
This procedure permits two sources for estimates of the pooled standard deviation: 

• S is a Population Standard Deviation 
This option should be selected if there are no previous samples that can be used to obtain an 
estimate of the pooled standard deviation. In this case, the algorithm assumes that the future 
sample obtained will be from a population with standard deviation S. 

• S from a Previous Sample 
This option should be selected if the estimate of the pooled standard deviation is obtained 
from previous random samples from the same distributions as those to be sampled. The total 
sample size of the previous samples must also be entered under 'Total Sample Size of 
Previous Sample'. 

Pooled Standard Deviation – S is a 
Population Standard Deviation 

S (Standard Deviation) 
Enter an estimate of the pooled standard deviation (must be positive). In this case, the algorithm 
assumes that future samples obtained will be from a population with pooled standard deviation S. 

One common method for estimating the standard deviation is the range divided by 4, 5, or 6. 

You can enter a range of values such as 1 2 3 or 1 to 10 by 1. 

Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  

Pooled Standard Deviation – S from a 
Previous Sample 

S (Standard Deviation) 
Enter an estimate of the pooled standard deviation from a previous (or pilot) study. This value 
must be positive. 

A range of values may be entered. 

Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  

Total Sample Size of Previous Sample 
Enter the total sample size that was used to estimate the pooled standard deviation entered in S 
(SD Estimated from a Previous Sample). The total sample size should be the total of the two 
sample sizes (m1 + m2) that were used to estimate the pooled standard deviation.  

If the previous sample used for the estimate of the pooled standard deviation is a single sample 
rather than two samples, enter the sample size of the previous sample plus one. 

This value is entered only when 'Standard Deviation Source:' is set to 'S from a Previous Sample'.  
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Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Calculating Sample Size 
Suppose a study is planned in which the researcher wishes to construct a two-sided 95% 
confidence interval for the difference between two population means. It is very important that the 
mean weight is estimated within 10 units. The pooled standard deviation estimate, based on the 
range of data values, is 25.6. Instead of examining only the interval half-width of 10, a series of 
half-widths from 5 to 15 will also be considered.  
The goal is to determine the sample size necessary to obtain a two-sided confidence interval such 
that the difference in means is estimated within 10 units. Tolerance probabilities of 0.70 to 0.95 
will be examined. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for the Difference between Two 
Means with Tolerance Probability procedure window by expanding Means, then Two 
Independent Means, then clicking on Confidence Interval, and then clicking on Confidence 
Intervals for the Difference between Two Means with Tolerance Probability. You may then 
make the appropriate entries as listed below, or open Example 1 by going to the File menu and 
choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Confidence Level .................................... 0.95 
Tolerance Probability .............................. 0.70 to 0.95 by 0.05 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Distance from Mean Diff to Limit(s) ......... 10 
Standard Deviation Source ..................... S is a Population Standard Deviation 
S .............................................................. 25.6 
Interval Type ........................................... Two-Sided 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for the Difference in Means 
 
    Target Actual   
    Dist from Dist from Pooled  
Confidence   Allocation Mean Diff Mean Diff Standard Tolerance 
Level N1 N2 Ratio to Limits to Limits Deviation Probability 
0.95 55 55 1.000 10.000 9.994 25.60 0.70 
0.95 56 56 1.000 10.000 9.998 25.60 0.75 
0.95 58 58 1.000 10.000 9.919 25.60 0.80 
0.95 59 59 1.000 10.000 9.951 25.60 0.85 
0.95 61 61 1.000 10.000 9.921 25.60 0.90 
0.95 63 63 1.000 10.000 9.962 25.60 0.95 
 
References 
Kupper, L. L. and Hafner, K. B. 1989. 'How Appropriate are Popular Sample Size Formulas?', The American 
     Statistician, Volume 43, No. 2, pp. 101-105. 
 
Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the true difference in population means. 
N1 and N2 are the sample sizes drawn from the two populations. 
Allocation Ratio is the ratio of the sample sizes, N2/N1. 
Dist from Mean Diff to Limit(s) is the distance from the confidence limit(s) to the difference in sample 
     means. For two-sided intervals, it is also know as the precision, half-width, or margin of error. 
Target Dist from Mean Diff to Limit(s) is the value of the distance that is entered into the procedure. 
Actual Dist from Mean Diff to Limit(s) is the value of the distance that is obtained from the procedure. 
Pooled Standard Deviation is the standard deviation upon which the distance from mean difference to limit 
     calculations are based. 
Tolerance Probability is the probability that a future interval with sample size N and corresponding 
     confidence level will have a distance from the mean to the limit(s) that is less than or equal to the 
     specified distance. 
 
Summary Statements 
The probability is 0.70 that group sample sizes of 55 and 55 will produce a two-sided 95% 
confidence interval with a distance from the difference in means to the limits that is less 
than or equal to 9.994 if the pooled standard deviation is 25.60. 
 

This report shows the calculated sample size for each of the scenarios.  

Plots Section 
 

 

N1 vs Tol. Prob.
Sp=25.60 C.L.=0.950 Dist. to Limit=9.962 N2=N1 2-Sided C.I.

Tol. Prob.

0.70 0.75 0.80 0.85 0.90 0.95
55

57

59

61

63

 
 

This plot shows the sample size of each group versus the precision for the two confidence levels. 
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Example 2 – Validation using Zar 
Zar (1984) pages 133-134 gives an example of a precision calculation for a confidence interval 
for the difference between two means when the confidence level is 95%, the pooled standard 
deviation is 0.720625 from a total sample size of 13, the precision is 0.5, and the tolerance 
probability is 0.90. The sample size for each group is determined to be 34.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for the Difference between Two 
Means with Tolerance Probability procedure window by expanding Means, then Two 
Independent Means, then clicking on Confidence Interval, and then clicking on Confidence 
Intervals for the Difference between Two Means with Tolerance Probability. You may then 
make the appropriate entries as listed below, or open Example 2 by going to the File menu and 
choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Confidence Level .................................... 0.95 
Tolerance Probability .............................. 0.90 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Distance from Mean Diff to Limit(s) ......... 0.5 
Standard Deviation Source ..................... S from a Previous Sample 
S .............................................................. 0.720625 
Total Sample Size of Previous Sample ... 13 
Interval Type ........................................... Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for the Difference in Means 
 
    Target Actual   
    Dist from Dist from Pooled  
Confidence   Allocation Mean Diff Mean Diff Standard Tolerance 
Level N1 N2 Ratio to Limits to Limits Deviation Probability 
0.95 34 34 1.000 0.500 0.496 0.72 0.90 
 
Total sample size for estimate of pooled standard deviation from previous samples = 13.  
 

PASS also calculated the sample size in each group to be 34.  
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Chapter 475 

Group-Sequential 
Tests for Two 
Means 
Introduction 
Clinical trials are longitudinal. They accumulate data sequentially through time. The participants 
cannot be enrolled and randomized on the same day. Instead, they are enrolled as they enter the 
study. It may take several years to enroll enough patients to meet sample size requirements. 
Because clinical trials are long term studies, it is in the interest of both the participants and the 
researchers to monitor the accumulating information for early convincing evidence of either harm 
or benefit. This permits early termination of the trial.  

Group sequential methods allow statistical tests to be performed on accumulating data while a 
phase III clinical trial is ongoing. Statistical theory and practical experience with these designs 
have shown that making four or five interim analyses is almost as effective in detecting large 
differences between treatment groups as performing a new analysis after each new data value. 
Besides saving time and resources, such a strategy can reduce the experimental subject’s 
exposure to an inferior treatment and make superior treatments available sooner.  

When repeated significance testing occurs on the same data, adjustments have to be made to the 
hypothesis testing procedure to maintain overall significance and power levels. The landmark 
paper of Lan & DeMets (1983) provided the theory behind the alpha spending function approach 
to group sequential testing. This paper built upon the earlier work of Armitage, McPherson, & 
Rowe (1969), Pocock (1977), and O’Brien & Fleming (1979). PASS implements the methods 
given in Reboussin, DeMets, Kim, & Lan (1992) to calculate the power and sample sizes of 
various group sequential designs. 

This module calculates sample size and power for group sequential designs used to compare two 
treatment means. Other modules perform similar analyses for the comparison of proportions and 
survival functions. The program allows you to vary the number and times of interim tests, the 
type of alpha spending function, and the test boundaries. It also gives you complete flexibility in 
solving for power, significance level, sample size, or effect size. The results are displayed in both 
numeric reports and informative graphics.  
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Technical Details 
Suppose the means of two samples of N1 and N2 individuals will be compared at various stages 
of a trial using the  statistic: zk
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The subscript k indicates that the computations use all data that are available at the time of the kth 
interim analysis or kth look (k goes from 1 to K). This formula computes the standard z test that is 
appropriate when the variances of the two groups are different. The statistic, , is assumed to be 
normally distributed.  

zk

Spending Functions 
Lan and DeMets (1983) introduced alpha spending functions, ( )α τ , that determine a set of 
boundaries for the sequence of test statistics . These boundaries are the 
critical values of the sequential hypothesis tests. That is, after each interim test, the trial is 
continued as long as 

b b bK1 2, , ,L z z1 2 zK, , ,L

z bk < k . When z bk ≥ k , the hypothesis of equal means is rejected and the 
trial is stopped early.  

The time argumentτ either represents the proportion of elapsed time to the maximum duration of 
the trial or the proportion of the sample that has been collected. When elapsed time is being used 
it is referred to as calendar time. When time is measured in terms of the sample, it is referred to 
as information time. Since it is a proportion,τ can only vary between zero and one. 

Alpha spending functions have the characteristics: 

( )
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α α
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The last characteristic guarantees a fixed α  level when the trial is complete. That is,  

( ) ( )Pr z b or z b or or z bk k1 1 2 2≥ ≥ ≥ =L α τ  

This methodology is very flexible since neither the times nor the number of analyses must be 
specified in advance. Only the functional form of ( )α τ  must be specified.  

PASS provides five popular spending functions plus the ability to enter and analyze your own 
boundaries. These are calculated as follows: 
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2.  Pocock     ( )  ( )α τln 1 1+ −e
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3.  Alpha * time     ατ  
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4.  Alpha * time^1.5     ατ 3 2/  
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5.  Alpha * time^2      ατ 2
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6.  User Supplied 

A custom set of boundaries may be entered. 

The O’Brien-Fleming boundaries are commonly used because they do not significantly increase 
the overall sample size and because they are conservative early in the trial. Conservative in the 
sense that the means must be extremely different before statistical significance is indicated. The 
Pocock boundaries are nearly equal for all times. The Alpha*t boundaries use equal amounts of 
alpha when the looks are equally spaced. You can enter your own set of boundaries using the 
User Supplied option. 

Theory 
A detailed account of the methodology is contained in Lan & DeMets (1983), DeMets & Lan 
(1984), Lan & Zucker (1993), and DeMets & Lan (1994). The theoretical basis of the method will 
be presented here.  

Group sequential procedures for interim analysis are based on their equivalence to discrete 
boundary crossing of a Brownian motion process with drift parameter θ . The test statistics  

follow the multivariate normal distribution with means 

zk

θ τ k  and, for j k≤ , covariances 

τ τk / j . The drift parameter is related to the parameters of the z-test through the equation 
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Hence, the algorithm is as follows: 

1.  Compute boundary values based on a specified spending function and alpha value. 

2.  Calculate the drift parameter based on those boundary values and a specified power 
value. 

3.  Use the drift parameter and estimates of the other parameters in the above equation to 
calculate the appropriate sample size. 

Procedure Tabs 
This section describes the options that are specific to this procedure. These are located on the 
Data and Options tabs. For more information about the options of other tabs, go to the Procedure 
Window chapter. 

Data Tab 
The Data tab contains the parameters associated with the z test such as the means, variances, 
sample sizes, alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Mean1, Mean2, Alpha, Power and Beta, N1 or N2. Under most 
situations, you will select either Power and Beta or N1. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run since power is equal to one minus beta.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 
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A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. For this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact they are equal. 

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R N1] 

where R is the Sample Allocation Ratio and [Y] is the first integer greater than or equal to Y. 
For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2=[R N1] where [Y] is the next integer 
greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size 

Mean1 
Enter value(s) for the mean of the first group under both hypotheses and the mean of the second 
group under the null hypothesis of equal means. Note that only the difference between the two 
means is used in the calculations. You may enter a range of values such as 10,20,30 or 0 to 100 
by 25. 

If you want to use a single difference rather than the two means, enter the value of the difference 
as Mean2 and zero for Mean1 (or vice versa). 
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Mean2 
Enter value(s) for the mean of the second group under the alternative hypothesis. Note that only 
the difference between the two means is used in the calculations. You may enter a range of values 
such as 10,20,30 or 0 to 100 by 25. 

If you want to use a single difference rather than the two means, enter the value of the difference 
as Mean2 and zero for Mean1 (or vice versa). 

S1 (SD, Group 1) 
Enter an estimate of the standard deviation of group 1. The standard deviation must be a positive 
number. Refer to the chapter on Estimating the Standard Deviation for more information on 
estimating the standard deviation. Press the SD button to obtain a special window designed to 
help you obtain a realistic value for the standard deviation. 

Above all else, remember that the experience of consulting statisticians is that researchers tend to 
underestimate the standard deviation! 

S2 (SD, Group 2) 
Enter an estimate of the standard deviation of group 2. The standard deviation must be a positive 
number. Refer to the chapter on Estimating the Standard Deviation for more information on 
estimating the standard deviation. Press the SD button to obtain a special window designed to 
help you obtain a realistic value for the standard deviation.  

You can enter S1 here if you want to assume that the standard deviations are equal and use the 
value entered for S1. 

Look Details 
This box contains the parameters associated with Group Sequential Design such as the type of 
spending function, the times, and so on. 

Number of Looks 
This is the number of interim analyses (including the final analysis). For example, a five here 
means that four interim analyses will be run in addition to the final analysis. 

Boundary Truncation 
You can truncate the boundary values at a specified value. For example, you might decide that no 
boundaries should be larger than 4.0. If you want to implement a boundary limit, enter the value 
here. 

If you do not want a boundary limit, enter None here. 

Spending Function 
Specify which alpha spending function to use. The most popular is the O'Brien-Fleming boundary 
that makes early tests very conservative. Select User Specified if you want to enter your own set 
of boundaries. 

Max Time 
This is the total running time of the trial. It is used to convert the values in the Times box to 
fractions. The units (months or years) do not matter, as long as they are consistent with those 
entered in the Times box. 

For example, suppose Max Time = 3 and Times = 1, 2, 3. Interim analyses would be assumed to 
have occurred at 0.33, 0.67, and 1.00. 
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Times 
Enter a list of time values here at which the interim analyses will occur. These values are scaled 
according to the value of the Max Time option. 

For example, suppose a 48-month trial calls for interim analyses at 12, 24, 36, and 48 months. 
You could set Max Time to 48 and enter 12,24,36,48 here or you could set Max Time to 1.0 and 
enter 0.25,0.50,0.75,1.00 here.  

The number of times entered here must match the value of the Number of Looks. 

• Equally Spaced 
If you are planning to conduct the interim analyses at equally spaced points in time, you can 
enter Equally Spaced and the program will generate the appropriate time values for you. 

Informations 
You can weight the interim analyses on the amount of information obtained at each time point 
rather than on actual calendar time. If you would like to do this, enter the information amounts 
here. Usually, these values are the sample sizes obtained up to the time of the analysis. 

For example, you might enter 50, 76, 103, 150 to indicate that 50 individuals where included in 
the first interim analysis, 76 in the second, and so on. 

Upper and Lower Boundaries (Spending = User) 
If the Spending Function is set to User Supplied you can enter a set of lower test boundaries, one 
for each interim analysis. The lower boundaries should be negative and the upper boundaries 
should be positive. Typical entries are 4,3,3,3,2 and 4,3,2,2,2. 

• Symmetric 
If you only want to enter the upper boundaries and have them copied with a change in sign to 
the lower boundaries, enter Symmetric for the lower boundaries. 

Test 

Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. When a two-sided hypothesis is selected, the 
value of alpha is halved. Everything else remains the same. 

Note that the accepted procedure is to use Two Sided option unless you can justify using a one-
sided test.  

Options Tab 
The Options tab controls the convergence of the various iterative algorithms used in the 
calculations. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations to be run before the search for the criterion of interest 
(Alpha, Beta, etc.) is aborted. When the maximum number of iterations is reached without 
convergence, the criterion is left blank. 
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Recommended: 500 (or more). 

Maximum Iterations (Lan-Demets algorithm) 
This is the maximum number of iterations used in the Lan-DeMets algorithm during its search 
routine. We recommend a value of at least 200. 

Tolerance 

Probability Tolerance 
During the calculation of the probabilities associated with a set of boundary values, probabilities 
less than this are assumed to be zero. 

We suggest a value of 0.00000000001. 

Power Tolerance 
This is the convergence level for the search for the spending function values that achieve a certain 
power. Once the iteration changes are less than this amount, convergence is assumed. We suggest 
a value of 0.0000001. 

If the search is too time consuming, you might try increasing this value. 

Alpha Tolerance 
This is the convergence level for the search for a given alpha value. Once the changes in the 
computed alpha value are less than this amount, convergence is assumed and iterations stop. We 
suggest a value of 0.0001. 

This option is only used when you are searching for alpha. 

If the search is too time consuming, you can try increasing this value. 
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Example 1 – Finding the Sample Size 
A clinical trial is to be conducted over a two-year period to compare the mean response of a new 
treatment with the current treatment. The current mean is 127 with a standard deviation of 55.88. 
The health community will be interested in the new treatment if the mean response rate is 
increased by 20%. So that the sample size requirements for different effect sizes can be 
compared, it is also of interest to compute the sample size at 10%, 30%, 40%, 50%, 60%, and 
70% increases in the response rates.  

Testing will be done at the 0.05 significance level and the power should be set to 0.10. A total of 
four tests are going to be performed on the data as they are obtained. The O’Brien-Fleming 
boundaries will be used.  

Find the necessary sample sizes and test boundaries assuming equal sample sizes per arm and 
two-sided hypothesis tests. 

We could enter these amounts directly into the Group Sequential Means window. Since the base 
mean is 127, a 20% increase would translate to a new mean response of 127(120/100) = 152.4. 
The other mean response rates could be computed similarly. However, to make the results more 
meaningful, we will scale the input by dividing by the current mean. The scaled standard 
deviation will be 100(55.88)/127 = 44.00. We set Mean1 to zero since we are only interested in 
the changes in Mean2. The values of Mean2 will then be 10, 20, 30, 40, 50, 60, and 70. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means procedure window 
by expanding Means, then Two Independent Means, then clicking on Group-Sequential, and 
then clicking on Group-Sequential Tests for Two Means. You may then make the appropriate 
entries as listed below, or open Example 1 by going to the File menu and choosing Open 
Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Power ...................................................... 0.90 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... Ignored 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Mean1 (Mean of Group 1) ....................... 0 
Mean2 (Mean of Group 2) ....................... 10 to 70 by 10 
S1 (Standard Deviation Group 1) ............ 44 
S2 (Standard Deviation Group 2) ............ S1 
Number of Looks ..................................... 4 
Spending Function .................................. O’Brien-Fleming 
Max Time ................................................. 2 
Times ....................................................... Equally Spaced 
Alternative Hypothesis ............................ Two-Sided 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 
0.9005 415 415 0.0500 0.0995 0.00 10.00 44.00 44.00 
0.9012 104 104 0.0500 0.0988 0.00 20.00 44.00 44.00 
0.9058 47 47 0.0500 0.0942 0.00 30.00 44.00 44.00 
0.9012 26 26 0.0500 0.0988 0.00 40.00 44.00 44.00 
0.9071 17 17 0.0500 0.0929 0.00 50.00 44.00 44.00 
0.9116 12 12 0.0500 0.0884 0.00 60.00 44.00 44.00 
0.9170 9 9 0.0500 0.0830 0.00 70.00 44.00 44.00 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. Power should be close to one. 
N1 and N2 are the number of items sampled from groups 1 and 2. 
Alpha is the probability of rejecting a true null hypothesis in at least one of the sequential tests. 
Beta is the probability of accepting a false null hypothesis at the conclusion of all tests. 
Mean1 is the mean of populations 1 and 2 under the null hypothesis of equality. 
Mean2 is the mean of population 2 under the alternative hypothesis. The mean of population 1 is unchanged. 
S1 and S2 are the population standard deviations of groups 1 and 2. 
 
Summary Statements 
Sample sizes of 415 and 415 achieve 90% power to detect a difference of 10.00 between the group 
means with standard deviations of 44.00 and 44.00 at a significance level (alpha) of 0.0500 
using a two-sided z-test. These results assume that 4 sequential tests are made using the 
O'Brien-Fleming spending function to determine the test boundaries. 
 

This report shows the values of each of the parameters, one scenario per row. Note that 104 
participants in each arm of the study are required to meet the 90% power requirement when the 
mean increase is 20%. 
The values from this table are in the chart below. Note that this plot actually occurs further down 
in the report. 

Plots Section 
  

 

N
1

               
   

This plot shows that a large increase in sample size is necessary to test mean differences below 
20%. 
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Details Section 
 
Details when Spending = O'Brien-Fleming, N1 = 415, N2 =415, S1 = 44.00, S2 = 44.00, Diff = -10.00 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.50 -4.33263 4.33263 0.000015 0.000015 0.000015 0.003512 0.003512  
2 1.00 -2.96311 2.96311 0.003045 0.003036 0.003051 0.254998 0.258510  
3 1.50 -2.35902 2.35902 0.018323 0.016248 0.019299 0.427601 0.686111 
4 2.00 -2.01406 2.01406 0.044003 0.030701 0.050000 0.214371 0.900483  
Drift 3.27383 
 

This report shows information about the individual interim tests. One report is generated for each 
scenario. 

Look 
These are the sequence numbers of the interim tests. 

Time 
These are the time points at which the interim tests are conducted. Since the Max Time was set to 
2 (for two years), these time values are in years. Hence, the first interim test is at half a year, the 
second at one year, and so on. 

We could have set Max Time to 24 so that the time scale was in months. 

Lower and Upper Boundary 
These are the test boundaries. If the computed value of the test statistic z is between these values, 
the trial should continue. Otherwise, the trial can be stopped.  

Nominal Alpha 
This is the value of alpha for these boundaries if they were used for a single, standalone, test. 
Hence, this is the significance level that must be found for this look in a standard statistical 
package that does not adjust for multiple looks. 

Inc Alpha 
This is the amount of alpha that is spent by this interim test. It is close to, but not equal to, the 
value of alpha that would be achieved if only a single test was conducted. For example, if we 
lookup the third value, 2.35902, in normal probability tables, we find that this corresponds to a 
(two-sided) alpha of 0.0183. However, the entry is 0.0162. The difference is due to the correction 
that must be made for multiple tests. 

Total Alpha 
This is the total amount of alpha that is used up to and including the current test.  

Inc Power 
These are the amounts that are added to the total power at each interim test. They are often called 
the exit probabilities because they give the probability that significance is found and the trial is 
stopped, given the alternative hypothesis.  

Total Power 
These are the cumulative power values. They are also the cumulative exit probabilities. That is, 
they are the probability that the trial is stopped at or before the corresponding time. 

Drift 
This is the value of the Brownian motion drift parameter. 
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Boundary Plots 
 

 
 

This plot shows the interim boundaries for each look. This plot shows very dramatically that the 
results must be extremely significant at early looks, but that they are near the single test boundary 
(1.96 and -1.96) at the last look. 

Example 2 – Finding the Power 
A clinical trial is to be conducted over a two-year period to compare the mean response of a new 
treatment with the current treatment. The current mean is 127 with a standard deviation of 55.88. 
The health community will be interested in the new treatment if the mean response rate is 
increased by 20%. The researcher wishes to calculate the power of the design at sample sizes 20, 
60, 100, 140, 180, and 220. Testing will be done at the 0.01, 0.05, 0.10 significance levels and the 
overall power will be set to 0.10. A total of four tests are going to be performed on the data as 
they are obtained. The O’Brien-Fleming boundaries will be used. Find the power of these sample 
sizes and test boundaries assuming equal sample sizes per arm and two-sided hypothesis tests. 

Proceeding as in Example1, we decide to translate the mean and standard deviation into a percent 
of mean scale. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means procedure window 
by expanding Means, then Two Independent Means, then clicking on Group-Sequential, and 
then clicking on Group-Sequential Tests for Two Means. You may then make the appropriate 
entries as listed below, or open Example 2 by going to the File menu and choosing Open 
Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.01 0.05 0.10 
N1 (Sample Size Group 1) ...................... 20 to 220 by 40 
N2 (Sample Size Group 2) ...................... Use R 
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Data Tab (continued) 
R (Sample Allocation Ratio) .................... 1.0 
Mean1 (Mean of Group 1) ....................... 0 
Mean2 (Mean of Group 2) ....................... 20 
S1 (Standard Deviation Group 1) ............ 44 
S2 (Standard Deviation Group 2) ............ S1 
Number of Looks ..................................... 4 
Spending Function .................................. O’Brien-Fleming 
Max Time ................................................. 2 
Times ....................................................... Equally Spaced 
Alternative Hypothesis ............................ Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 
0.1256 20 20 0.0100 0.8744 0.00 20.00 44.00 44.00 
0.4605 60 60 0.0100 0.5395 0.00 20.00 44.00 44.00 
0.7335 100 100 0.0100 0.2665 0.00 20.00 44.00 44.00 
0.8871 140 140 0.0100 0.1129 0.00 20.00 44.00 44.00 
0.9572 180 180 0.0100 0.0428 0.00 20.00 44.00 44.00 
0.9851 220 220 0.0100 0.0149 0.00 20.00 44.00 44.00 
0.2948 20 20 0.0500 0.7052 0.00 20.00 44.00 44.00 
0.6929 60 60 0.0500 0.3071 0.00 20.00 44.00 44.00 
0.8897 100 100 0.0500 0.1103 0.00 20.00 44.00 44.00 
0.9650 140 140 0.0500 0.0350 0.00 20.00 44.00 44.00 
0.9898 180 180 0.0500 0.0102 0.00 20.00 44.00 44.00 
0.9972 220 220 0.0500 0.0028 0.00 20.00 44.00 44.00 
0.4094 20 20 0.1000 0.5906 0.00 20.00 44.00 44.00 
0.7909 60 60 0.1000 0.2091 0.00 20.00 44.00 44.00 
0.9368 100 100 0.1000 0.0632 0.00 20.00 44.00 44.00 
0.9827 140 140 0.1000 0.0173 0.00 20.00 44.00 44.00 
0.9956 180 180 0.1000 0.0044 0.00 20.00 44.00 44.00 
0.9989 220 220 0.1000 0.0011 0.00 20.00 44.00 44.00 
 

 
 

These data show the power for various sample sizes and alphas. It is interesting to note that once 
the sample size is greater than 150, the value of alpha makes little difference on the value of 
power. 
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Example 3 – Effect of Number of Looks 
Continuing with examples one and two, it is interesting to determine the impact of the number of 
looks on power. PASS allows only one value for the Number of Looks parameter per run, so it 
will be necessary to run several analyses. To conduct this study, set alpha to 0.05, N1 to 100, and 
leave the other parameters as before. Run the analysis with Number of Looks equal to 1, 2, 3, 4, 
6, 8, 10, and 20. Record the power for each run. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means procedure window 
by expanding Means, then Two Independent Means, then clicking on Group-Sequential, and 
then clicking on Group-Sequential Tests for Two Means. You may then make the appropriate 
entries as listed below, or open Example 3 by going to the File menu and choosing Open 
Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 100 
N2 (Sample Size Group 2) ......................  Use R 
R (Sample Allocation Ratio) .................... 1.0 
Mean1 (Mean of Group 1) ....................... 0 
Mean2 (Mean of Group 2) ....................... 20 
S1 (Standard Deviation Group 1) ............ 44 
S2 (Standard Deviation Group 2) ............ S1 
Number of Looks ..................................... 1 (Also run with 2, 3, 4, 6, 8, 10, and 20) 
Spending Function .................................. O’Brien-Fleming 
Max Time ................................................ 2 
Times....................................................... Equally Spaced 
Alternative Hypothesis ............................ Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 Looks 
0.8951 100 100 0.0500 0.1049 0.00 20.00 44.00 44.00 1 
0.8941 100 100 0.0500 0.1059 0.00 20.00 44.00 44.00 2 
0.8916 100 100 0.0500 0.1084 0.00 20.00 44.00 44.00 3 
0.8897 100 100 0.0500 0.1103 0.00 20.00 44.00 44.00 4 
0.8871 100 100 0.0500 0.1129 0.00 20.00 44.00 44.00 6 
0.8856 100 100 0.0500 0.1144 0.00 20.00 44.00 44.00 8 
0.8845 100 100 0.0500 0.1155 0.00 20.00 44.00 44.00 10 
0.8820 100 100 0.0500 0.1180 0.00 20.00 44.00 44.00 20 
 

This analysis shows how little the number of looks impacts the power of the design. The power of 
a study with no interim looks is 0.8951. When twenty interim looks are made, the power falls just 
0.0131, to 0.8820—a very small change. 

Example 4 – Studying a Boundary Set 
Continuing with the previous examples, suppose that you are presented with a set of boundaries 
and want to find the quality of the design (as measured by alpha and power). This is easy to do 
with PASS. Suppose that the analysis is to be run with five interim looks at equally spaced time 
points. The upper boundaries to be studied are 3.5, 3.5, 3.0, 2.5, 2.0. The lower boundaries are 
symmetric. The analysis would be run as follows. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means procedure window 
by expanding Means, then Two Independent Means, then clicking on Group-Sequential, and 
then clicking on Group-Sequential Tests for Two Means. You may then make the appropriate 
entries as listed below, or open Example 4 by going to the File menu and choosing Open 
Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 (will be calculated from boundaries) 
N1 (Sample Size Group 1) ...................... 100 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Mean1 (Mean of Group 1) ....................... 0 
Mean2 (Mean of Group 2) ....................... 20 
S1 (Standard Deviation Group 1) ............ 44 
S2 (Standard Deviation Group 2) ............ S1 
Number of Looks ..................................... 5 
Spending Function .................................. User Supplied 
Max Time ................................................. 2 
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Data Tab (continued) 
Times....................................................... Equally Spaced 
Upper Boundaries ................................... 3.5 3.5 3.0 2.5 2.0 
Lower Boundaries ................................... Symmetric 
Alternative Hypothesis ............................ Two-Sided 
 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 
0.8898  100 100 0.0482 0.1102 0.00 20.00 44.00 44.00 

 
Details when Spending = User Supplied, N1 = 100, N2 =100, S1 = 44.00, S2 = 44.00, Diff = -20.00 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.40 -3.50000 3.50000 0.000465 0.000465 0.000465 0.019576 0.019576  
2 0.80 -3.50000 3.50000 0.000465 0.000408 0.000874 0.058835 0.078411  
3 1.20 -3.00000 3.00000 0.002700 0.002410 0.003284 0.232486 0.310897  
4 1.60 -2.50000 2.50000 0.012419 0.010331 0.013615 0.339966 0.650863  
5 2.00 -2.00000 2.00000 0.045500 0.034542 0.048157 0.238928 0.889791  
Drift 3.21412 
 

The power for this design is about 0.89. This value depends on both the boundaries and the 
sample size. The alpha level is 0.048157. This value only depends on the boundaries. 

Example 5 – Validation using O’Brien-Fleming 
Boundaries 
Reboussin (1992) presents an example for normally distributed data for a design with two-sided 
O’Brien-Fleming boundaries, looks = 5, alpha = 0.05, beta = 0.10, Mean1 = 220, Mean2 = 200, 
standard deviation = 30. They compute a drift of 3.28 and a sample size of 48.41 per group. The 
upper boundaries are: 4.8769, 3.3569, 2.6803, 2.2898, 2.0310.  

To test that PASS provides the same result, enter the following. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means procedure window 
by expanding Means, then Two Independent Means, then clicking on Group-Sequential, and 
then clicking on Group-Sequential Tests for Two Means. You may then make the appropriate 
entries as listed below, or open Example 5 by going to the File menu and choosing Open 
Example Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Power ...................................................... 0.90 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Mean1 (Mean of Group 1) ....................... 220 
Mean2 (Mean of Group 2) ....................... 200 
S1 (Standard Deviation Group 1) ............ 30 
S2 (Standard Deviation Group 2) ............ S1 
Number of Looks ..................................... 5 
Spending Function .................................. O’Brien-Fleming 
Max Time ................................................. 1 
Times ....................................................... Equally Spaced 
Upper Boundaries ................................... Ignored 
Lower Boundaries ................................... Ignored 
Alternative Hypothesis ............................ Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 
0.903623 49 49 0.050000 0.096377 220.00 200.00 30.00 30.00 
 
Details when Spending = O'Brien-Fleming, N1 = 49, N2 =49, S1 = 30.00, S2 = 30.00, Diff = 20.00 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.20 -4.87688 4.87688 0.000001 0.000001 0.000001 0.000336 0.000336  
2 0.40 -3.35695 3.35695 0.000788 0.000787 0.000788 0.101727 0.102062  
3 0.60 -2.68026 2.68026 0.007357 0.006828 0.007616 0.350673 0.452735  
4 0.80 -2.28979 2.28979 0.022034 0.016807 0.024424 0.299186 0.751921  
5 1.00 -2.03100 2.03100 0.042255 0.025576 0.050000 0.151702 0.903623  
Drift 3.29983 
 

The slight difference in the power and the drift parameter is attributable to the rounding of the 
sample size from 48.41 to 49. 

Example 6 – Validation with Pocock Boundaries 
Reboussin (1992) presents an example for normally distributed data for a design with two-sided 
Pocock boundaries, looks = 5, alpha = 0.05, beta = 0.10, Mean1 = 220, Mean2 = 200, standard 
deviation = 30. They compute a drift of 3.55 and a sample size of 56.71 per group. The upper 
boundaries are: 2.4380, 2.4268, 2.4101, 2.3966, and 2.3859. 

To test that PASS provides the same result, enter the following. 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means procedure window 
by expanding Means, then Two Independent Means, then clicking on Group-Sequential, and 
then clicking on Group-Sequential Tests for Two Means. You may then make the appropriate 
entries as listed below, or open Example 6 by going to the File menu and choosing Open 
Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N1 
Power ...................................................... 0.90 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ...................... Use R 
R (Sample Allocation Ratio) .................... 1.0 
Mean1 (Mean of Group 1) ....................... 220 
Mean2 (Mean of Group 2) ....................... 200 
S1 (Standard Deviation Group 1) ............ 30 
S2 (Standard Deviation Group 2) ............ S1 
Number of Looks ..................................... 5 
Spending Function .................................. Pocock 
Max Time ................................................ 1 
Times....................................................... Equally Spaced 
Upper Boundaries ................................... Ignored 
Lower Boundaries ................................... Ignored 
Alternative Hypothesis ............................ Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Means 
 
Power N1 N2 Alpha Beta Mean1 Mean2 S1 S2 
0.903263 57 57 0.050000 0.096737 220.00 200.00 30.00 30.00 
 
Details when Spending = O'Brien-Fleming, N1 = 49, N2 =49, S1 = 30.00, S2 = 30.00, Diff = 20.00 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.20 -2.43798 2.43798 0.014770 0.014770 0.014770 0.198712 0.198712  
2 0.40 -2.42677 2.42677 0.015234 0.011387 0.026157 0.260597 0.459308  
3 0.60 -2.41014 2.41014 0.015946 0.009269 0.035426 0.214118 0.673426  
4 0.80 -2.39658 2.39658 0.016549 0.007816 0.043242 0.143792 0.817218  
5 1.00 -2.38591 2.38591 0.017037 0.006758 0.050000 0.086045 0.903263  
Drift 3.55903 
 

The slight difference in the power and the drift parameter is attributable to the rounding of the 
sample size from 56.71 to 57. 
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Chapter 476 

Group-Sequential 
Tests for Two 
Means 
(Simulation) 
Introduction 
This procedure can be used to determine power, sample size and/or boundaries for group sequential 
tests comparing the means of two groups. The common two-sample T-Test and the Mann-Whitney 
U test can be simulated in this procedure. For two-sided tests, significance (efficacy) boundaries can 
be generated. For one-sided tests, significance and futility boundaries can be produced. The spacing 
of the looks can be equal or custom specified. Boundaries can be computed based on popular alpha- 
and beta-spending functions (O’Brien-Fleming, Pocock, Hwang-Shih-DeCani Gamma family, 
linear) or custom spending functions. Boundaries can also be input directly to verify alpha- and/or 
beta-spending properties. Futility boundaries can be binding or non-binding. Maximum and average 
(expected) sample sizes are reported as well as the alpha and/or beta spent and incremental power at 
each look. Corresponding P-Value boundaries are also given for each boundary statistic. Plots of 
boundaries are also produced. 

The distributions of each of the groups under the null and alternative hypotheses can be specified 
directly using over ten distributions including normal, exponential, Gamma, Uniform, Beta, and 
Cauchy. 

Technical Details 
This section outlines many of the technical details of the techniques used in this procedure including 
the simulation summary, the test statistic details, and the use of spending functions.  

An excellent text for the background and details of many group-sequential methods is Jennison and 
Turnbull (2000). 
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Simulation Procedure 
In this procedure, a large number of simulations are used to calculate boundaries and power using 
the following steps  

1. Based on the specified distributions, random samples of size N1 and N2 are generated 
under the null distribution and under the alternative distribution. These are simulated 
samples as though the final look is reached. 

2. For each sample, test statistics for each look are produced. For example, if N1 and N2 are 
100 and there are 5 equally spaced looks, test statistics are generated from the random 
samples at N1 = N2 = 20, N1 = N2 = 40, N1 = N2 = 60, N1 = N2 = 80, and N1 = N2 = 100 
for both null and alternative samples.  

3. To generate the first significance boundary, the null distribution statistics of the first look 
(e.g., at N1 = N2 = 20) are ordered and the percent of alpha to be spent at the first look is 
determined (using either the alpha-spending function or the input value). The statistic for 
which the percent of statistics above (or below, as the case may be) that value is equal to 
the percent of alpha to be spent at the first look is the boundary statistic. It is seen here how 
important a large number of simulations is to the precision of the boundary estimates. 

4. All null distribution samples that are outside the first significance boundary at the first look 
are removed from consideration for the second look. If binding futility boundaries are also 
being computed, all null distribution samples with statistics that are outside the first futility 
boundary are also removed from consideration for the second look. If non-binding futility 
boundaries are being computed, null distribution samples with statistics outside the first 
futility boundary are not removed. 

5. To generate the second significance boundary, the remaining null distribution statistics of 
the second look (e.g., at N1 = N2 = 40) are ordered and the percent of alpha to be spent at 
the second look is determined (again, using either the alpha-spending function or the input 
value). The percent of alpha to be spent at the second look is multiplied by the total number 
of simulations to determine the number of the statistic that is to be the second boundary 
statistic. The statistic for which that number of statistics is above it (or below, as the case 
may be) is the second boundary statistic. For example, suppose there are initially 1000 
simulated samples, with 10 removed at the first look (from, say, alpha spent at Look 1 
equal to 0.01), leaving 990 samples considered for the second look. Suppose further that the 
alpha to be spent at the second look is 0.02. This is multiplied by 1000 to give 20. The 990 
still-considered statistics are ordered and the 970th (20 in from 990) statistic is the second 
boundary. 

6. All null distribution samples that are outside the second significance boundary and the 
second futility boundary, if binding, at the second look are removed from consideration for 
the third look (e.g., leaving 970 statistics computed at N1 = N2 = 60 to be considered at the 
third look). Steps 4 and 5 are repeated until the final look is reached. 

Futility boundaries are computed in a similar manner using the desired beta-spending function 
or custom beta-spending values and the alternative hypothesis simulated statistics at each look. 
For both binding and non-binding futility boundaries, samples for which alternative hypothesis 
statistics are outside either the significance or futility boundaries of the previous look are 
excluded from current and future looks. 

Because the final futility and significance boundaries are required to be the same, futility 
boundaries are computed beginning at a small value of beta (e.g., 0.0001) and incrementing 
beta by that amount until the futility and significance boundaries meet. 
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When boundaries are entered directly, this procedure uses the null hypothesis and alternative 
hypothesis simulations to determine the number of test statistics that are outside the boundaries 
at each look. The cumulative proportion of alternative hypothesis statistics that are outside the 
significance boundaries is the overall power of the study.  

Generating Random Distributions 
Two methods are available in PASS to simulate random samples. The first method generates the 
random variates directly, one value at a time. The second method generates a large pool (over 
10,000) of random values and then draws the random numbers from this pool. This second method 
can cut the running time of the simulation by 70%. 

As mentioned above, the second method begins by generating a large pool of random numbers from 
the specified distributions. Each of these pools is evaluated to determine if its mean is within a small 
relative tolerance (0.0001) of the target mean. If the actual mean is not within the tolerance of the 
target mean, individual members of the population are replaced with new random numbers if the 
new random number moves the mean towards its target. Only a few hundred such swaps are 
required to bring the actual mean to within tolerance of the target mean. This population is then 
sampled with replacement using the uniform distribution. We have found that this method works 
well as long as the size of the pool is the maximum of twice the number of simulated samples 
desired and 10,000.  

Test Statistics 
This section describes the test statistics that are available in this procedure.  

Two-Sample T-Test 
The two-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t statistic is 
as follows 

( ) ( )
t

X X
sdf

X X

=
− − −

−

1 2 1 2

1 2

μ μ
 

where 

X
X

Nk

ki
i

N

k

k

= =
∑

1  

( ) ( )
s

X X X X

N N N NX X

i i
i

N

i

N

1 2

21

1 1
2

2 2
2

11

1 2 1 22
1 1

−
===

− + −

+ −
+

⎛
⎝
⎜

⎞
⎠
⎟

∑∑
 

df N N= + −1 2 2  



476-4  Group-Sequential Tests for Two Means (Simulation) 

The significance of the test statistic is determined by computing the p-value based on the t 
distribution with degrees of freedom df. If this p-value is less than a specified level (often 0.05), 
the null hypothesis is rejected. Otherwise, no conclusion can be reached. 

Mann-Whitney U Test  
This test is the nonparametric substitute for the equal-variance t-test. Two key assumptions for 
this test are that the distributions are at least ordinal and that they are identical under H0. This 
implies that ties (repeated values) are not acceptable. When ties are present, the approximation 
provided can be used, but know that the theoretic results no longer hold.  

The Mann-Whitney test statistic is defined as follows in Gibbons (1985).  
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where  is the number of observations tied at value one, t2 is the number of observations tied at 
some value two, and so forth. 

ti

The correction factor, C, is 0.5 if the rest of the numerator of z is negative or -0.5 otherwise. The 
value of z is then compared to the standard normal distribution. 

Standard Deviations 
Care must be used when either the null or alternative distribution is not normal. In these cases, the 
standard deviation is usually not specified directly. For example, you might use a gamma 
distribution with a shape parameter of 1.5 and a mean of 4 as the null distribution and a gamma 
distribution with the same shape parameter and a mean of 5 as the alternative distribution. This 
allows you to compare the two means. However, although the shape parameters are constant, the 
standard deviations, which are based on both the shape parameter and the mean, are not. Thus the 
distributions not only have different means, but also different standard deviations. 
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Spending Functions 
Spending functions can be used in this procedure to specify the proportion of alpha or beta that is 
spent at each look without having to specify the proportion directly.  

Spending functions have the characteristics that they are increasing and that 
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The last characteristic guarantees a fixed α  level when the trial is complete. This methodology is 
very flexible since neither the times nor the number of analyses must be specified in advance. 
Only the functional form of ( )α τ  must be specified.  

PASS provides several popular spending functions plus the ability to enter and analyze your own 
percents of alpha or beta spent. These are calculated as follows (beta may be substituted for alpha 
for beta-spending functions): 
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3.  Pocock Analog     ( )( )te 11ln −+⋅α  
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6.  Alpha * time^2      2t⋅α
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8.  User Supplied Percents 

A custom set of percents of alpha to be spent at each look may be input directly. 

The O'Brien-Fleming Analog spends very little alpha or beta at the beginning and much more at 
the final looks. The Pocock Analog and (Alpha or Beta)(Time) spending functions spend alpha or 
beta more evenly across the looks. The Hwang-Shih-DeCani (C) (gamma family) spending 
functions and (Alpha or Beta)(Time^C) spending functions are flexible spending functions that 
can be used to spend more alpha or beta early or late or evenly, depending on the choice of C. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data, Looks & Boundaries, Enter Boundaries, and Options tabs. For more information about the 
options of other tabs, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options for the general setup of the procedure. 
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Solve For 

Find (Solve For) 
Solve for either power, sample size, or enter the boundaries directly and solve for power and 
alpha. When solving for power or sample size, the look and boundary details are specified on the 
"Looks & Boundaries" tab and the "Enter Boundaries" tab is ignored. When entering the 
boundaries directly and solving for power and alpha, the boundaries are input on the "Enter 
Boundaries" tab and the "Looks & Boundaries" tab is ignored. 

When solving for power or N1, the early-stopping boundaries are also calculated. High accuracy 
for early-stopping boundaries requires a very large number of simulations (Recommended 
100,000 to 10,000,000). 

The parameter selected here is the parameter displayed on the vertical axis of the plot. 

Because this is a simulation based procedure, the search for the sample size may take several 
minutes or hours to complete. You may find it quicker and more informative to solve for Power 
for a range of sample sizes. 

Error Rates 

Power or Beta 
Power is the probability of rejecting the null hypothesis when it is false. Power is equal to 1-Beta, 
so specifying power implicitly specifies beta. 

Beta is the probability obtaining a false negative on the statistical test. That is, it is the probability 
of accepting a false null hypothesis. 

In the context of simulated group sequential trials, the power is the proportion of the alternative 
hypothesis simulations that cross any one of the significance (efficacy) boundaries. 

The valid range is between 0 to 1. 

Different disciplines and protocols have different standards for setting power. A common choice 
is 0.90, but 0.80 is also popular. 

You can enter a range of values such as 0.70 0.80 0.90 or 0.70 to 0.90 by 0.1. 

Alpha (Significance Level) 
Alpha is the probability of obtaining a false positive on the statistical test. That is, it is the 
probability of rejecting a true null hypothesis. 

The null hypothesis is usually that the parameters (the means, proportions, etc.) are all equal. 

In the context of simulated group sequential trials, alpha is the proportion of the null hypothesis 
simulations that cross any one of the significance (efficacy) boundaries. 

Since Alpha is a probability, it is bounded by 0 and 1. Commonly, it is between 0.001 and 0.250. 

Alpha is often set to 0.05 for two-sided tests and to 0.025 for one-sided tests. 

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  
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Sample Size 

N1 (Sample Size Group 1) 
Enter a value for the sample size, N1. This is the number of subjects in the first group of the study 
at the final look. 

You may enter a range such as 10 to 100 by 10 or a list of values separated by commas or blanks. 

You might try entering the same number two or three times to get an idea of the variability in 
your results. For example, you could enter "10 10 10". 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2. This is the number of subjects in 
the second group of the study at the final look. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

R = N2/N1 

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size 

Group 1 (and 2) Distribution|H0 
These options specify the distributions of the two groups under the null hypothesis, H0. The 
difference between the means of these two distributions is the difference that is tested, Diff0.  

Usually, these two distributions will be identical and Diff0 = 0. However, if you are planning a 
non-inferiority test, the means will be different. 

All of the distributions are parameterized so that the mean is entered first. For example, if you 
wanted to specify that the mean of a normally-distributed variable is to be five, you could enter 
N(5, S) or N(M0, S) here and M0 = 5 later. 

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M0 is reserved for the value of the mean under 
the null hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean is entered 
first. 

Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
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Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and are not repeated here. 

Finding the Value of the Mean of a Specified Distribution 
Except for the multinomial distribution, the distributions have been parameterized in terms of 
their means, since this is the parameter being tested. The mean of a distribution created as a linear 
combination of other distributions is found by applying the linear combination to the individual 
means. However, the mean of a distribution created by multiplying or dividing other distributions 
is not necessarily equal to applying the same function to the individual means. For example, the 
mean of 4N(4, 5) + 2N(5, 6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 
4*4*2*5 = 160 (although it is close). 

Group 1 (and 2) Distribution|H1 
These options specify the distributions of the two groups under the alternative hypothesis, H1. 
The difference between the means of these two distributions is the difference that is assumed to 
be the true value of the difference. That is, this is the difference at which the power is computed. 

Usually, the mean difference is specified by entering M0 for the mean parameter in the 
distribution expression for group 1 and M1 for the mean parameter in the distribution expression 
for group 2. The mean difference under H1 then becomes the value of M0– M1.  

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M1 is reserved for the value of the mean of 
group 2 under the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean, M1, is 
entered first. 

Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
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Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Effect Size – Distribution Parameters 

M0 (Mean|H0) 
These values are substituted for M0 in the distribution specifications given above. M0 is intended 
to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

M1 (Mean|H1) 
These values are substituted for M1 in the distribution specifications given above. Although it can 
be used wherever you want, M1 is intended to be the value of the mean hypothesized by the 
alternative hypothesis, H1. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

Parameter Values (S, A, B) 
Enter the numeric value(s) of the parameters listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values for each letter using the syntax 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter using the pull-down 
menu to the side. 

Test and Simulations 

Alternative Hypothesis 
Specify the alternative hypothesis of the test. Since the null hypothesis is the opposite, specifing 
the alternative is the only hypothesis needed. 

When a two-sided alternative is selected, futility boundaries are not permitted. If you wish to do a 
two-sided test with futility boundaries you may consider two one-sided tests. 

In each case, Mean1 - Mean2 is the true difference between population means. Diff0 is the 
difference in population means under the null hypothesis, and is usually 0 for a 
superiority/significance/efficacy test. 

Care need be taken in the choice of direction of the test relative to the choice of M0 and M1. For 
example, for a one-sided test to show that the true mean for group 1 (control) is less than the true 
mean for group 2 (treatment), M1 should be larger than M0 and the alternative hypothesis chosen 
should be Mean1 - Mean2 < Diff0. 

Test Type 
Specify which test statistic is to be reported on. 

The T-Test is the standard T-test based on the pooled variance and SS1 + SS2 - 2 degrees of 
freedom, where SS1 and SS2 are the sample sizes of groups 1 and 2 at the corresponding look. 
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The Mann-Whitney Test is the common non-parametric alternative and is based on the ranks of 
the observations. It is sometimes called the Mann-Whitney U, Mann-Whitney-Wilcoxon, 
Wilcoxon Rank-Sum, or Wilcoxon-Mann-Whitney test. 

Simulations 
This option specifies the number of iterations, M, used in the simulation. As the number of 
iterations is increased, the accuracy and running time of the simulation will be increased also. 

The precision of the simulated power estimates are calculated from the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
  

 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
   

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  

However, when solving for Power or N1, the simulations are also used to calculate the look 
boundaries. To obtain precise boundary estimates, the number of simulations needs to be high. 
This consideration competes with the length of time to complete the simulation. When solving for 
power, a large number of simulations (100,000 or 1,000,000) will finish in several minutes. When 
solving for N1, perhaps 10,000 simulations can be run for each iteration. Then, a final run with 
the resulting N1 solving for power can be run with more simulations. 

Looks & Boundaries Tab 
The Data tab contains most of the parameters and options for the general setup of the procedure. 

Looks and Boundaries 

Specification of Looks and Boundaries 
Choose whether spending functions will be used to divide alpha and beta for each look (Simple 
Specification), or whether the percents of alpha and beta to be spent at each look will be specified 
directly (Custom Specification). 

Under Simple Specification, the looks are automatically considered to be equally spaced. Under 
Custom Specification, the looks may be equally spaced or custom defined based on the percent of 
accumulated information. 
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Looks and Boundaries – Simple 
Specification 

Number of Equally Spaced Looks 
Select the total number of looks that will be used if the study is not stopped early for the crossing 
of a boundary.  

Alpha Spending Function 
Specify the type of alpha spending function to use. 

The O'Brien-Fleming Analog spends very little alpha at the beginning and much more at the final 
looks. The Pocock Analog and (Alpha)(Time) spending functions spend alpha more evenly across 
the looks. The Hwang-Shih-DeCani (C) (sometimes called the gamma family) spending functions 
and (Alpha)(Time^C) spending functions are flexible spending functions that can be used to 
spend more alpha early or late or evenly, depending on the choice of C.  

C (Alpha Spending) 
C is used to define the Hwang-Shih-DeCani (C) or (Alpha)(Time^C) spending functions. 

For the Hwang-Shih-DeCani (C) spending function, negative values of C spend more of alpha at 
later looks, values near 0 spend alpha evenly, and positive values of C spend more of alpha at 
earlier looks. 

For the (Alpha)(Time^C) spending function, only positive values for C are permitted. Values of C 
near zero spend more of alpha at earlier looks, values near 1 spend alpha evenly, and larger 
values of C spend more of alpha at later looks.  

Type of Futility Boundary 
This option determines whether or not futility boundaries will be created, and if so, whether they 
are binding or non-binding. 

Futility boundaries are boundaries such that, if crossed at a given look, stop the study in favor of 
H0. 

Binding futility boundaries are computed in concert with significance boundaries. They are called 
binding because they require the stopping of a trial if they are crossed. If the trial is not stopped, 
the probability of a false positive will exceed alpha. 
When Non-binding futility boundaries are computed, the significance boundaries are first 
computed, ignoring the futility boundaries. The futility boundaries are then computed. These 
futility boundaries are non-binding because continuing the trial after they are crossed will not 
affect the overall probability of a false positive declaration.  

Number of Skipped Futility Looks 
In some trials it may be desirable to wait a number of looks before examining the trial for futility. 
This option allows the beta to begin being spent after a specified number of looks. 

The Number of Skipped Futility Looks should be less than the number of looks.  

Beta Spending Function 
Specify the type of beta spending function to use. 

The O'Brien-Fleming Analog spends very little beta at the beginning and much more at the final 
looks. The Pocock Analog and (Beta)(Time) spending functions spend beta more evenly across 
the looks. The Hwang-Shih-DeCani (C) (sometimes called the gamma family) spending functions 
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and (Beta)(Time^C) spending functions are flexible spending functions that can be used to spend 
more beta early or late or evenly, depending on the choice of C.  

C (Beta Spending) 
C is used to define the Hwang-Shih-DeCani (C) or (Beta)(Time^C) spending functions. 

For the Hwang-Shih-DeCani (C) spending function, negative values of C spend more of beta at 
later looks, values near 0 spend beta evenly, and positive values of C spend more of beta at earlier 
looks. 

For the (Beta)(Time^C) spending function, only positive values for C are permitted. Values of C 
near zero spend more of beta at earlier looks, values near 1 spend beta evenly, and larger values 
of C spend more of beta at later looks.  

Looks and Boundaries – Custom 
Specification 

Number of Looks 
This is the total number of looks of either type (significance or futility or both).  

Equally Spaced 
If this box is checked, the Accumulated Information boxes are ignored and the accumulated 
information is evenly spaced.  

Type of Futility Boundary 
This option determines whether or not futility boundaries will be created, and if so, whether they 
are binding or non-binding. 

Futility boundaries are boundaries such that, if crossed at a given look, stop the study in favor of 
H0. 

Binding futility boundaries are computed in concert with significance boundaries. They are called 
binding because they require the stopping of a trial if they are crossed. If the trial is not stopped, 
the probability of a false positive will exceed alpha. 
 

When Non-binding futility boundaries are computed, the significance boundaries are first 
computed, ignoring the futility boundaries. The futility boundaries are then computed. These 
futility boundaries are non-binding because continuing the trial after they are crossed will not 
affect the overall probability of a false positive declaration.  

Accumulated Information 
The accumulated information at each look defines the proportion or percent of the sample size 
that is used at that look. 

These values are accumulated information values so they must be increasing. 

Proportions, percents, or sample sizes may be entered. All proportions, percents, or sample sizes 
will be divided by the value at the final look to create an accumulated information proportion for 
each look.  

Percent of Alpha Spent 
This is the percent of the total alpha that is spent at the corresponding look. It is not the 
cumulative value. 
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Percents, proportions, or alphas may be entered here. Each of the values is divided by the sum of 
the values to obtain the proportion of alpha that is used at the corresponding look.  

Percent of Beta Spent 
This is the percent of the total beta (1-power) that is spent at the corresponding look. It is not the 
cumulative value. 

Percents, proportions, or betas may be entered here. Each of the values is divided by the sum of 
the values to obtain the proportion of beta that is used at the corresponding look.  

Enter Boundaries Tab 
The Data tab contains most of the parameters and options for the general setup of the procedure. 

Looks and Boundaries 

Number of Looks 
This is the total number of looks of either type (significance or futility or both).  

Equally Spaced 
If this box is checked, the Accumulated Information boxes are ignored and the accumulated 
information is evenly spaced.  

Types of Boundaries 
This option determines whether or not futility boundaries will be entered. 

Futility boundaries are boundaries such that, if crossed at a given look, stop the study in favor of 
H0.  

Accumulated Information 
The accumulated information at each look defines the proportion or percent of the sample size 
that is used at that look. 

These values are accumulated information values so they must be increasing. 

Proportions, percents, or sample sizes may be entered. All proportions, percents, or sample sizes 
will be divided by the value at the final look to create an accumulated information proportion for 
each look.  

Significance Boundary 
Enter the value of the significance boundary corresponding to the chosen test statistic. These are 
sometimes called efficacy boundaries.  

Futility Boundary 
Enter the value of the futility boundary corresponding to the chosen test statistic.  
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Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum N1 before the search for N1 is aborted. 

Since simulations for large sample sizes are very computationally intensive and hence time-
consuming, this value can be used to stop searches when N1 is larger than reasonable sample 
sizes for the study. 

This applies only when "Find (Solve For)" is set to N1. 

The procedure uses a binary search when searching for N1. If a value for N1 is tried that exceeds 
this value, and the power is not reached, a warning message will be shown on the output 
indicating the desired power was not reached. 

We recommend a value of at least 20000. 

Random Numbers 

Random Number Pool Size 
This is the size of the pool of random values from which the random samples will be drawn. 
Pools should be at least the maximum of 10,000 and twice the number of simulations. You can 
enter Automatic and an appropriate value will be calculated. 

If you do not want to draw numbers from a pool, enter 0 here. 

Matching Boundaries at Final Look 

Beta Search Increment 
For each simulation, when futility bounds are computed, the appropriate beta is found by 
searching from 0 to 1 by this increment. Smaller increments are more refined, but the search takes 
longer. 

We recommend 0.001 or 0.0001. 
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Example 1 – Power and Output 
A clinical trial is to be conducted over a two-year period to compare the mean response of a new 
treatment to that of the current treatment. The current response mean is 108. Although the 
researchers do not know the true mean of the new treatment, they would like to examine the 
power that is achieved if the mean of the new treatment is 113. The standard deviation for both 
groups is assumed to be 25. The sample size at the final look is to be 500 per group. Testing will 
be done at the 0.05 significance level. A total of five tests are going to be performed on the data 
as they are obtained. The O’Brien-Fleming (Analog) boundaries will be used. 

Find the power and test boundaries assuming equal sample sizes per arm and two-sided 
hypothesis tests. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means (Simulation) 
procedure window by expanding Means, then Two Independent Means, then clicking on 
Group-Sequential, and then clicking on Group-Sequential Tests for Two Means 
(Simulation). You may then make the appropriate entries as listed below, or open Example 1 by 
going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 500 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Group 1 Dist’n | H0 .................................. N(M0 S) 
Group 2 Dist’n | H0 .................................. N(M0 S) 
Group 1 Dist’n | H1 .................................. N(M0 S) 
Group 2 Dist’n | H1 .................................. N(M1 S) 
M0 (Mean|H0) ......................................... 108 
M1 (Mean|H1) ......................................... 113 
S .............................................................. 25 
Alternative Hypothesis ............................ Mean1 - Mean2 ≠ Diff0 
Simulations .............................................. 20000 
Test Type ................................................ T-Test 

Looks and Boundaries Tab 
Specification of Looks and Boundaries ... Simple 
Number of Equally Spaced Looks ........... 5 
Alpha Spending Function ........................ O’Brien-Fleming Analog 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Scenario 1 Numeric Results for Group Sequential Testing Mean Difference = Diff0.  
Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Normal(M0 S) & Normal(M0 S) 
H1 Dist's: Normal(M0 S) & Normal(M1 S) 
Test Statistic: T-Test 
Alpha-Spending Function: O'Brien-Fleming Analog 
Beta-Spending Function: None 
Futility Boundary Type: None 
Number of Looks: 5 
Simulations: 20000 
Pool Size: 40000 
 
 
Numeric Summary for Scenario 1 
 
------------------ Power -------------------      -------------------------- Alpha ---------------------------- 
Value 95% LCL 95% UCL Target Actual 95% LCL 95% UCL Beta 
0.8770 0.8724 0.8816 0.0500 0.0482 0.0452 0.0512 0.1230 
 
                           ----- Average Sample Size ---- 
                           -- Given H0 --    -- Given H1 -- 
N1 N2 Grp1 Grp2 Grp1 Grp2 Diff0 Diff1 M0 M1     S 
500 500 497 497 380 380 0.0 -5.0 108.0 113.0 25.0    
 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis at one of the looks. It is the total proportion 
   of alternative hypothesis simulations that are outside the significance boundaries. 
Power 95% LCL and UCL are the lower and upper confidence limits for the power estimate. The width of the 
   interval is based on the number of simulations. 
Target Alpha is the user-specified probability of rejecting a true null hypothesis. It is the total alpha 
   spent. 
Alpha or Actual Alpha is the alpha level that was actually achieved by the experiment. It is the total 
   proportion of the null hypothesis simulations that are outside the significance boundaries. 
Alpha 95% LCL and UCL are the lower and upper confidence limits for the actual alpha estimate. The width of 
   the interval is based on the number of simulations. 
Beta is the probability of accepting a false null hypothesis. It is the total proportion of alternative 
   hypothesis simulations that do not cross the significance boundaries. 
N1 and N2 are the sample sizes of each group if the study reaches the final look. 
Average Sample Size Given H0 Grp1 and Grp2 are the average or expected sample sizes of each group if H0 is 
   true. These are based on the proportion of null hypothesis simulations that cross the significance or 
   futility boundaries at each look. 
Average Sample Size Given H1 Grp1 and Grp2 are the average or expected sample sizes of each group if H1 is 
   true. These are based on the proportion of alternative hypothesis simulations that cross the significance 
   or futility boundaries at each look. 
H0 Diff0 is the mean difference between groups (Grp1 - Grp2) assuming the null hypothesis, H0. 
H1 Diff1 is the mean difference between groups (Grp1 - Grp2) assuming the alternative hypothesis, H1. 
The parameters to the right of H1 Diff1 are the parameters that were set by the user to define the null and 
   alternative simulation distributions. 
 
Summary Statements 
Group sequential trials with sample sizes of 500 and 500 at the final look achieve 88% power to 
detect a difference of 5.0 between the null hypothesis mean difference of 0.0 and the actual 
mean difference of -5.0 at the 0.0496 significance level (alpha) using a two-sided T-Test. 
These results are based on 10000 Monte Carlo samples from the null distributions: Normal(M0 S) 
and Normal(M0 S), and the alternative distributions: Normal(M0 S) and Normal(M1 S). 
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Accumulated Information Details for Scenario 1 
 
 Accumulated    
                    Information            -------- Accumulated Sample Size -------- 
Look Percent Group 1 Group 2 Total 
1 20.0 100 100 200 
2 40.0 200 200 400 
3 60.0 300 300 600 
4 80.0 400 400 800 
5 100.0 500 500 1000 
 
Accumulated Information Details Definitions 
Look is the number of the look. 
Accumulated Information Percent is the percent of the sample size accumulated up to the corresponding look. 
Accumulated Sample Size Group 1 is total number of individuals in group 1 at the corresponding look. 
Accumulated Sample Size Group 2 is total number of individuals in group 2 at the corresponding look. 
Accumulated Sample Size Total is total number of individuals in the study (group 1 + group 2) at the 
   corresponding look. 
 
 
Boundaries for Scenario 1 
 
               -- Significance Boundary -- 
 T-Value P-Value 
Look Scale Scale 
1 +/- 4.0302 0.0001 
2 +/- 3.3336 0.0009 
3 +/- 2.7016 0.0071 
4 +/- 2.2941 0.0220 
5 +/- 2.0350 0.0421 
 
 
Boundaries Definitions 
Look is the number of the look. 
Significance Boundary T-Value Scale is the value such that statistics outside this boundary at the 
   corresponding look indicate termination of the study and rejection of the null hypothesis. They are 
   sometimes called efficacy boundaries. 
Significance Boundary P-Value Scale is the value such that P-Values outside this boundary at the corresponding 
   look indicate termination of the study and rejection of the null hypothesis. This P-Value corresponds to 
   the T-Value Boundary and is sometimes called the nominal alpha. 
 
 
Boundary Plot 
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Boundary Plot - P-Value 
 

 
 
 
Significance Boundaries with 95% Simulation Confidence Intervals for Scenario 1 
 
                  --------- T-Value Boundary ---------    --------- P-Value Boundary --------- 
Look Value 95% LCL 95% UCL Value 95% LCL 95% UCL 
1 +/- 4.0302   0.0001   
2 +/- 3.3336 -3.5614 -3.1578 0.0009 0.0004 0.0017 
3 +/- 2.7016 -2.8012 -2.6176 0.0071 0.0053 0.0091 
4 +/- 2.2941 -2.3677 -2.2288 0.0220 0.0181 0.0261 
5 +/- 2.0350 -2.0937 -1.9996 0.0421 0.0365 0.0458 
 
Significance Boundary Confidence Limit Definitions 
Look is the number of the look. 
Look is the number of the look. 
T-Value Boundary Value is the value such that statistics outside this boundary at the corresponding look 
   indicate termination of the study and rejection of the null hypothesis. They are sometimes called efficacy 
   boundaries. 
P-Value Boundary Value is the value such that P-Values outside this boundary at the corresponding look 
   indicate termination of the study and rejection of the null hypothesis. This P-Value corresponds to the 
   T-Value Boundary and is sometimes called the nominal alpha. 
95% LCL and UCL are the lower and upper confidence limits for the boundary at the given look. The width of the 
   interval is based on the number of simulations. 
 
Alpha-Spending and Null Hypothesis Simulation Details for Scenario 1 
 
                                                         --------- Target ---------   --------- Actual ----------  Proportion          Cum. 
    Cum.   H1 Sims H1 Sims 
 --- Signif. Boundary--- Spending Spending  Cum. Outside Outside 
 T-Value P-Value Function Function Alpha Alpha Signif. Signif. 
Look Scale Scale Alpha Alpha Spent Spent Boundary Boundary 
1 +/- 4.0302 0.0001 0.0000 0.0000 0.0000 0.0000 0.0043 0.0043 
2 +/- 3.3336 0.0009 0.0008 0.0008 0.0009 0.0009 0.0880 0.0922 
3 +/- 2.7016 0.0071 0.0068 0.0076 0.0061 0.0070 0.3075 0.3997 
4 +/- 2.2941 0.0220 0.0168 0.0244 0.0167 0.0237 0.3080 0.7077 
5 +/- 2.0350 0.0421 0.0256 0.0500 0.0246 0.0482 0.1694 0.8770 
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Alpha-Spending Details Definitions 
Look is the number of the look. 
Significance Boundary T-Value Scale is the value such that statistics outside this boundary at the 
   corresponding look indicate termination of the study and rejection of the null hypothesis. They are 
   sometimes called efficacy boundaries. 
Significance Boundary P-Value Scale is the value such that P-Values outside this boundary at the corresponding 
   look indicate termination of the study and rejection of the null hypothesis. This P-Value corresponds to 
   the Significance T-Value Boundary and is sometimes called the nominal alpha. 
Spending Function Alpha is the intended portion of alpha allocated to the particular look based on the 
   alpha-spending function. 
Cumulative Spending Function Alpha is the intended accumulated alpha allocated to the particular look. It is 
   the sum of the Spending Function Alpha up to the corresponding look. 
Alpha Spent is the proportion of the null hypothesis simulations resulting in statistics outside the 
   Significance Boundary at this look. 
Cumulative Alpha Spent is the proportion of the null hypothesis simulations resulting in Significance Boundary 
   termination up to and including this look. It is the sum of the Alpha Spent up to the corresponding look. 
Proportion H1 Sims Outside Significance Boundary is the proportion of the alternative hypothesis simulations 
   resulting in statistics outside the Significance Boundary at this look. It may be thought of as the 
   incremental power. 
Cumulative H1 Sims Outside Significance Boundary is the proportion of the alternative hypothesis simulations 
   resulting in Significance Boundary termination up to and including this look. It is the sum of the 
   Proportion H1 Sims Outside Significance Boundary up to the corresponding look. 
 
Run Time: 69.77 seconds. 
 

The values obtained from any given run of this example will vary slightly due to the variation in 
simulations. 

Example 2 – Power for One-Sided Test with Futility 
Boundaries 
Suppose researchers would like to compare two treatments with a one-sided test at each look. 
Further, suppose they would like to terminate the study early when it can be deemed highly 
unlikely that the new treatment is better than the standard. Suppose the control group mean is 
108. The researchers wish to know the power of the test if the treatment group mean is 113. The 
sample size at the final look is to be 500 per group. Testing will be done at the 0.05 significance 
level. A total of five tests are going to be performed on the data as they are obtained. The 
O’Brien-Fleming (Analog) boundaries will be used for both significance and futility boundaries.  

Find the power and test boundaries assuming equal sample sizes per arm and one-sided 
hypothesis tests. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means (Simulation) 
procedure window by expanding Means, then Two Independent Means, then clicking on 
Group-Sequential, and then clicking on Group-Sequential Tests for Two Means 
(Simulation). You may then make the appropriate entries as listed below, or open Example 2 by 
going to the File menu and choosing Open Example Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 500 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Group 1 Dist’n | H0 .................................. N(M0 S) 
Group 2 Dist’n | H0 .................................. N(M0 S) 
Group 1 Dist’n | H1 .................................. N(M0 S) 
Group 2 Dist’n | H1 .................................. N(M1 S) 
M0 (Mean|H0) ......................................... 108 
M1 (Mean|H1) ......................................... 113 
S .............................................................. 25 
Alternative Hypothesis ............................ Mean1 - Mean2 < Diff0 
Simulations .............................................. 20000 
Test Type ................................................ T-Test 

Looks and Boundaries Tab 
Specification of Looks and Boundaries ... Simple 
Number of Equally Spaced Looks ........... 5 
Alpha Spending Function ........................ O’Brien-Fleming Analog 
Type of Futility Boundary ........................ Non-Binding 
Number of Skipped Futility Looks ........... 0 
Beta Spending Function .......................... O’Brien-Fleming Analog 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Scenario 1 Numeric Results for Group Sequential Testing Mean Difference = Diff0. 
Hypotheses: H0: Diff1=Diff0; H1: Diff1<Diff0 
H0 Dist's: Normal(M0 S) & Normal(M0 S) 
H1 Dist's: Normal(M0 S) & Normal(M1 S) 
Test Statistic: T-Test 
Alpha-Spending Function: O'Brien-Fleming Analog 
Beta-Spending Function: O'Brien-Fleming Analog 
Futility Boundary Type: Non-binding 
Number of Looks: 5 
Simulations: 20000 
Pool Size: 40000 
 
Numeric Summary for Scenario 1 
 
------------------ Power -------------------      -------------------------- Alpha ---------------------------- 
Value 95% LCL 95% UCL Target Actual 95% LCL 95% UCL Beta 
0.9143 0.9104 0.9182 0.0500 0.0455 0.0426 0.0483 0.0857 
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                           ----- Average Sample Size ---- 
                           -- Given H0 --    -- Given H1 -- 
N1 N2 Grp1 Grp2 Grp1 Grp2 Diff0 Diff1 M0 M1     S 
500 500 302 302 335 335 0.0 -5.0 108.0 113.0 25.0    
 
Accumulated Information Details for Scenario 1 
 
 Accumulated    
                    Information            -------- Accumulated Sample Size -------- 
Look Percent Group 1 Group 2 Total 
1 20.0 100 100 200 
2 40.0 200 200 400 
3 60.0 300 300 600 
4 80.0 400 400 800 
5 100.0 500 500 1000 
 
 
Boundaries for Scenario 1 
 
               -- Significance Boundary --       ----- Futility Boundary ----- 

 T-Value P-Value T-Value P-Value 
Look Scale Scale Scale Scale 
1 -4.5851 0.0000 2.1482 0.9835 
2 -2.8811 0.0021 0.4558 0.6756 
3 -2.3230 0.0103 -0.5014 0.3081 
4 -1.9357 0.0266 -1.1580 0.1236 
5 -1.7361 0.0414 -1.7361 0.0414 
 

 
Boundary Plot 
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Boundary Plot - P-Value 
 

 
 
 
Significance Boundaries with 95% Simulation Confidence Intervals for Scenario 1 
 
                  --------- T-Value Boundary ---------    --------- P-Value Boundary --------- 
Look Value 95% LCL 95% UCL Value 95% LCL 95% UCL 
1 -4.5851   0.0000   
2 -2.8811 -3.0006 -2.8011 0.0021 0.0014 0.0027 
3 -2.3230 -2.3697 -2.2690 0.0103 0.0091 0.0118 
4 -1.9357 -1.9775 -1.9122 0.0266 0.0242 0.0281 
5 -1.7361 -1.7632 -1.7013 0.0414 0.0391 0.0446 
 
 
Futility Boundaries with 95% Simulation Confidence Intervals for Scenario 1 
 
                  --------- T-Value Boundary ---------    --------- P-Value Boundary --------- 
Look Value 95% LCL 95% UCL Value 95% LCL 95% UCL 
1 2.1482   0.9835   
2 0.4558 0.4177 0.5322 0.6756 0.6618 0.7026 
3 -0.5014 -0.5346 -0.4577 0.3081 0.2966 0.3237 
4 -1.1580 -1.1864 -1.1286 0.1236 0.1179 0.1297 
5 -1.7361 -1.7688 -1.7055 0.0414 0.0386 0.0442 
 
 
Alpha-Spending and Null Hypothesis Simulation Details for Scenario 1 
 
                                                         --------- Target ---------   --------- Actual ----------  Proportion          Cum. 
    Cum.   H0 Sims H0 Sims 
 --- Signif. Boundary--- Spending Spending  Cum. Outside Outside 
 T-Value P-Value Function Function Alpha Alpha Futility Futility 
Look Scale Scale Alpha Alpha Spent Spent Boundary Boundary 
1 -4.5851 0.0000 0.0000 0.0000 0.0000 0.0000 0.0169 0.0169 
2 -2.8811 0.0021 0.0019 0.0019 0.0020 0.0020 0.3119 0.3287 
3 -2.3230 0.0103 0.0095 0.0114 0.0095 0.0114 0.3731 0.7018 
4 -1.9357 0.0266 0.0170 0.0284 0.0169 0.0283 0.1851 0.8869 
5 -1.7361 0.0414 0.0216 0.0500 0.0172 0.0455 0.0676 0.9545 
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Beta-Spending and Alternative Hypothesis Simulation Details for Scenario 1 
 
                                                         --------- Target ---------   --------- Actual ----------  Proportion          Cum. 
    Cum.   H1 Sims H1 Sims 
 -- Futility  Boundary-- Spending Spending  Cum. Outside Outside 
 T-Value P-Value Function Function Beta Beta Signif. Signif. 
Look Scale Scale Beta Beta Spent Spent Boundary Boundary 
1 2.1482 0.9835 0.0001 0.0001 0.0001 0.0001 0.0009 0.0009 
2 0.4558 0.6756 0.0065 0.0066 0.0065 0.0066 0.1872 0.1881 
3 -0.5014 0.3081 0.0200 0.0267 0.0200 0.0266 0.3640 0.5521 
4 -1.1580 0.1236 0.0283 0.0549 0.0283 0.0549 0.2671 0.8192 
5 -1.7361 0.0414 0.0311 0.0860 0.0309 0.0857 0.0952 0.9143 
 
Run Time: 1.99 minutes. 
 

The values obtained from any given run of this example will vary slightly due to the variation in 
simulations. 

Example 3 – Enter Boundaries 
With a set-up similar to Example 2, suppose we wish to investigate the properties of a set of 
significance (-3, -3, -3, -2, -1) and futility (2, 1, 0, 0, -1) boundaries. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means (Simulation) 
procedure window by expanding Means, then Two Independent Means, then clicking on 
Group-Sequential, and then clicking on Group-Sequential Tests for Two Means 
(Simulation). You may then make the appropriate entries as listed below, or open Example 3 by 
going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Alpha and Power (Enter Boundaries) 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... Ignored since this is the Find setting 
N1 (Sample Size Group 1) ...................... 500 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Group 1 Dist’n | H0 .................................. N(M0 S) 
Group 2 Dist’n | H0 .................................. N(M0 S) 
Group 1 Dist’n | H1 .................................. N(M0 S) 
Group 2 Dist’n | H1 .................................. N(M1 S) 
M0 (Mean|H0) ......................................... 108 
M1 (Mean|H1) ......................................... 113 
S .............................................................. 25 
Alternative Hypothesis ............................ Mean1 - Mean2 < Diff0 
Simulations .............................................. 20000 
Test Type ................................................ T-Test 
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Enter Boundaries Tab 
Number of Looks ..................................... 5 
Types of Boundaries ............................... Significance and Futility Boundaries 
Significance Boundary ............................ -3 -3 -3 -2 -1 (for looks 1 through 5) 
Futility Boundary ..................................... 2 1 0 0 -1 (for looks 1 through 5) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Scenario 1 Numeric Results for Group Sequential Testing Mean Difference = Diff0. 
Hypotheses: H0: Diff1=Diff0; H1: Diff1<Diff0 
H0 Dist's: Normal(M0 S) & Normal(M0 S) 
H1 Dist's: Normal(M0 S) & Normal(M1 S) 
Test Statistic: T-Test 
Type of Boundaries: Significance and Futility Boundaries 
Number of Looks: 5 
Simulations: 20000 
Pool Size: 40000 
 
 
Numeric Summary for Scenario 1 
 
------------------ Power -------------------      -------------------------- Alpha ---------------------------- 
Value 95% LCL 95% UCL Value 95% LCL 95% UCL Beta 
0.9801 0.9781 0.9820 0.1529 0.1479 0.1578 0.0199 
 
                           ----- Average Sample Size ---- 
                           -- Given H0 --    -- Given H1 -- 
N1 N2 Grp1 Grp2 Grp1 Grp2 Diff0 Diff1 M0 M1     S 
500 500 370 370 364 364 0.0 -5.0 108.0 113.0 25.0    
 

 
Accumulated Information Details for Scenario 1 
 
 Accumulated    
                    Information            -------- Accumulated Sample Size -------- 
Look Percent Group 1 Group 2 Total 
1 20.0 100 100 200 
2 40.0 200 200 400 
3 60.0 300 300 600 
4 80.0 400 400 800 
5 100.0 500 500 1000 
 
 
Boundaries for Scenario 1 
 
               -- Significance Boundary --       ----- Futility Boundary ----- 

 T-Value P-Value T-Value P-Value 
Look Scale Scale Scale Scale 
1 -3.0000 0.0015 2.0000 0.9766 
2 -3.0000 0.0014 1.0000 0.8410 
3 -3.0000 0.0014 0.0000 0.5000 
4 -2.0000 0.0229 0.0000 0.5000 
5 -1.0000 0.1588 -1.0000 0.1588 
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Boundary Plot 
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Boundary Plot - P-Value 
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Alpha-Spending and Null Hypothesis Simulation Details for Scenario 1 
 
     Proportion Cum. 
     H0 Sims H0 Sims 
 --- Signif. Boundary---  Cum. Outside Outside 
 T-Value P-Value Alpha Alpha Futility Futility 
Look Scale Scale Spent Spent Boundary Boundary 
1 -3.0000 0.0015 0.0013 0.0013 0.0260 0.0260 
2 -3.0000 0.0014 0.0010 0.0023 0.1406 0.1666 
3 -3.0000 0.0014 0.0007 0.0030 0.3340 0.5006 
4 -2.0000 0.0229 0.0204 0.0234 0.0795 0.5800 
5 -1.0000 0.1588 0.1295 0.1529 0.2672 0.8472 
 
 
Beta-Spending and Alternative Hypothesis Simulation Details for Scenario 1 
 
     Proportion Cum. 
     H1 Sims H1 Sims 
 -- Futility  Boundary--  Cum. Outside Outside 
 T-Value P-Value Beta Beta Signif. Signif. 
Look Scale Scale Spent Spent Boundary Boundary 
1 2.0000 0.9766 0.0002 0.0002 0.0572 0.0572 
2 1.0000 0.8410 0.0015 0.0017 0.1182 0.1753 
3 0.0000 0.5000 0.0062 0.0079 0.1446 0.3199 
4 0.0000 0.5000 0.0008 0.0086 0.4720 0.7919 
5 -1.0000 0.1588 0.0114 0.0200 0.1882 0.9801 
 
Run Time: 1.91 minutes. 
 

The values obtained from any given run of this example will vary slightly due to the variation in 
simulations. 

Example 4 – Validation Using Simulation 
With a set-up similar to Example 1, we examine the power and alpha generated by the set of two-
sided significance boundaries (+/- 4.0302, +/- 3.3336, +/- 2.7016, +/- 2.2941, +/- 2.0350). . 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means (Simulation) 
procedure window by expanding Means, then Two Independent Means, then clicking on 
Group-Sequential, and then clicking on Group-Sequential Tests for Two Means 
(Simulation). You may then make the appropriate entries as listed below, or open Example 4 by 
going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Alpha and Power (Enter Boundaries) 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... Ignored since this is the Find setting 
N1 (Sample Size Group 1) ...................... 500 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Group 1 Dist’n | H0 .................................. N(M0 S) 
Group 2 Dist’n | H0 .................................. N(M0 S) 
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Data Tab (continued) 
Group 1 Dist’n | H1 .................................. N(M0 S) 
Group 2 Dist’n | H1 .................................. N(M1 S) 
M0 (Mean|H0) ......................................... 108 
M1 (Mean|H1) ......................................... 113 
S .............................................................. 25 
Alternative Hypothesis ............................ Mean1 - Mean2 ≠ Diff0 
Simulations .............................................. 20000 
Test Type ................................................ T-Test 

Enter Boundaries Tab 
Number of Looks ..................................... 5 
Types of Boundaries ............................... Significance Boundaries 
Significance Boundary ............................  4.0302, 3.3336, 2.7016, 2.2941, 2.0350 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Scenario 1 Numeric Results for Group Sequential Testing Mean Difference = Diff0. 
Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist's: Normal(M0 S) & Normal(M0 S) 
H1 Dist's: Normal(M0 S) & Normal(M1 S) 
Test Statistic: T-Test 
Type of Boundaries: Significance Boundaries Only 
Number of Looks: 5 
Simulations: 20000 
Pool Size: 40000 
 
 
Numeric Summary for Scenario 1 
 
------------------ Power -------------------      -------------------------- Alpha ---------------------------- 
Value 95% LCL 95% UCL Value 95% LCL 95% UCL Beta 
0.8827 0.8782 0.8872 0.0530 0.0498 0.0561 0.1173 
 
                           ----- Average Sample Size ---- 
                           -- Given H0 --    -- Given H1 -- 
N1 N2 Grp1 Grp2 Grp1 Grp2 Diff0 Diff1 M0 M1     S 
500 500 496 496 378 378 0.0 -5.0 108.0 113.0 25.0    
 
Run Time: 1.90 minutes. 
 

The values obtained from any given run of this example will vary slightly due to the variation in 
simulations. The power and alpha generated with these boundaries are very close to the values of 
Example 1. 
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Chapter 477 

Group-Sequential 
Tests for Two 
Means Assuming 
Normality 
(Simulation) 
Introduction 
This procedure can be used to determine power, sample size and/or boundaries for group sequential 
tests comparing the means of two groups. The common two-sample T-Test and the Mann-Whitney 
U test can be simulated in this procedure. For two-sided tests, significance (efficacy) boundaries can 
be generated. For one-sided tests, significance and futility boundaries can be produced. The spacing 
of the looks can be equal or custom specified. Boundaries can be computed based on popular alpha- 
and beta-spending functions (O’Brien-Fleming, Pocock, Hwang-Shih-DeCani Gamma family, 
linear) or custom spending functions. Boundaries can also be input directly to verify alpha- and/or 
beta-spending properties. Futility boundaries can be binding or non-binding. Maximum and average 
(expected) sample sizes are reported as well as the alpha and/or beta spent and incremental power at 
each look. Corresponding P-Value boundaries are also given for each boundary statistic. Plots of 
boundaries are also produced. 

Technical Details 
This section outlines many of the technical details of the techniques used in this procedure including 
the simulation summary, the test statistic details, and the use of spending functions.  

An excellent text for the background and details of many group-sequential methods is Jennison and 
Turnbull (2000). 
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Simulation Procedure 
In this procedure, a large number of simulations are used to calculate boundaries and power using 
the following steps  

1. Based on the specified distributions, random samples of size N1 and N2 are generated 
under the null distribution and under the alternative distribution. These are simulated 
samples as though the final look is reached. 

2. For each sample, test statistics for each look are produced. For example, if N1 and N2 are 
100 and there are 5 equally spaced looks, test statistics are generated from the random 
samples at N1 = N2 = 20, N1 = N2 = 40, N1 = N2 = 60, N1 = N2 = 80, and N1 = N2 = 100 
for both null and alternative samples.  

3. To generate the first significance boundary, the null distribution statistics of the first look 
(e.g., at N1 = N2 = 20) are ordered and the percent of alpha to be spent at the first look is 
determined (using either the alpha-spending function or the input value). The statistic for 
which the percent of statistics above (or below, as the case may be) that value is equal to 
the percent of alpha to be spent at the first look is the boundary statistic. It is seen here how 
important a large number of simulations is to the precision of the boundary estimates. 

4. All null distribution samples that are outside the first significance boundary at the first look 
are removed from consideration for the second look. If binding futility boundaries are also 
being computed, all null distribution samples with statistics that are outside the first futility 
boundary are also removed from consideration for the second look. If non-binding futility 
boundaries are being computed, null distribution samples with statistics outside the first 
futility boundary are not removed. 

5. To generate the second significance boundary, the remaining null distribution statistics of 
the second look (e.g., at N1 = N2 = 40) are ordered and the percent of alpha to be spent at 
the second look is determined (again, using either the alpha-spending function or the input 
value). The percent of alpha to be spent at the second look is multiplied by the total number 
of simulations to determine the number of the statistic that is to be the second boundary 
statistic. The statistic for which that number of statistics is above it (or below, as the case 
may be) is the second boundary statistic. For example, suppose there are initially 1000 
simulated samples, with 10 removed at the first look (from, say, alpha spent at Look 1 
equal to 0.01), leaving 990 samples considered for the second look. Suppose further that the 
alpha to be spent at the second look is 0.02. This is multiplied by 1000 to give 20. The 990 
still-considered statistics are ordered and the 970th (20 in from 990) statistic is the second 
boundary. 

6. All null distribution samples that are outside the second significance boundary and the 
second futility boundary, if binding, at the second look are removed from consideration for 
the third look (e.g., leaving 970 statistics computed at N1 = N2 = 60 to be considered at the 
third look). Steps 4 and 5 are repeated until the final look is reached. 

Futility boundaries are computed in a similar manner using the desired beta-spending function 
or custom beta-spending values and the alternative hypothesis simulated statistics at each look. 
For both binding and non-binding futility boundaries, samples for which alternative hypothesis 
statistics are outside either the significance or futility boundaries of the previous look are 
excluded from current and future looks. 

Because the final futility and significance boundaries are required to be the same, futility 
boundaries are computed beginning at a small value of beta (e.g., 0.0001) and incrementing 
beta by that amount until the futility and significance boundaries meet. 
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When boundaries are entered directly, this procedure uses the null hypothesis and alternative 
hypothesis simulations to determine the number of test statistics that are outside the boundaries 
at each look. The cumulative proportion of alternative hypothesis statistics that are outside the 
significance boundaries is the overall power of the study.  

Generating Random Distributions 
Two methods are available in PASS to simulate random samples. The first method generates the 
random variates directly, one value at a time. The second method generates a large pool (over 
10,000) of random values and then draws the random numbers from this pool. This second method 
can cut the running time of the simulation by 70%. 

As mentioned above, the second method begins by generating a large pool of random numbers from 
the specified distributions. Each of these pools is evaluated to determine if its mean is within a small 
relative tolerance (0.0001) of the target mean. If the actual mean is not within the tolerance of the 
target mean, individual members of the population are replaced with new random numbers if the 
new random number moves the mean towards its target. Only a few hundred such swaps are 
required to bring the actual mean to within tolerance of the target mean. This population is then 
sampled with replacement using the uniform distribution. We have found that this method works 
well as long as the size of the pool is the maximum of twice the number of simulated samples 
desired and 10,000.  

Test Statistics 
This section describes the test statistics that are available in this procedure.  

Two-Sample T-Test 
The two-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t statistic is 
as follows 
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The significance of the test statistic is determined by computing the p-value based on the t 
distribution with degrees of freedom df. If this p-value is less than a specified level (often 0.05), 
the null hypothesis is rejected. Otherwise, no conclusion can be reached. 

Mann-Whitney U Test  
This test is the nonparametric substitute for the equal-variance t-test. Two key assumptions for 
this test are that the distributions are at least ordinal and that they are identical under H0. This 
implies that ties (repeated values) are not acceptable. When ties are present, the approximation 
provided can be used, but know that the theoretic results no longer hold.  

The Mann-Whitney test statistic is defined as follows in Gibbons (1985).  
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where  is the number of observations tied at value one, t2 is the number of observations tied at 
some value two, and so forth. 

ti

The correction factor, C, is 0.5 if the rest of the numerator of z is negative or -0.5 otherwise. The 
value of z is then compared to the standard normal distribution. 

Spending Functions 
Spending functions can be used in this procedure to specify the proportion of alpha or beta that is 
spent at each look without having to specify the proportion directly.  

Spending functions have the characteristics that they are increasing and that 
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The last characteristic guarantees a fixed α  level when the trial is complete. This methodology is 
very flexible since neither the times nor the number of analyses must be specified in advance. 
Only the functional form of ( )α τ  must be specified.  

PASS provides several popular spending functions plus the ability to enter and analyze your own 
percents of alpha or beta spent. These are calculated as follows (beta may be substituted for alpha 
for beta-spending functions): 
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4.  Alpha * time     t⋅α  
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6.  Alpha * time^2      2t⋅α
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7.  Alpha * time^C     Ct⋅α  

 

(Alpha)(Time^2.0) Boundaries with Alpha = 0.05

Upper

Lower

Z 
V

al
ue

Look

-1.7

-3.3

-5.0

0.0

1.7

3.3

5.0

1 2 3 4 5

 
8.  User Supplied Percents 

A custom set of percents of alpha to be spent at each look may be input directly. 

The O'Brien-Fleming Analog spends very little alpha or beta at the beginning and much more at 
the final looks. The Pocock Analog and (Alpha or Beta)(Time) spending functions spend alpha or 
beta more evenly across the looks. The Hwang-Shih-DeCani (C) (gamma family) spending 
functions and (Alpha or Beta)(Time^C) spending functions are flexible spending functions that 
can be used to spend more alpha or beta early or late or evenly, depending on the choice of C. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data, Looks & Boundaries, Enter Boundaries, and Options tabs. For more information about the 
options of other tabs, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options for the general setup of the procedure. 

Solve For 

Find (Solve For) 
Solve for either power, sample size, or enter the boundaries directly and solve for power and 
alpha. When solving for power or sample size, the look and boundary details are specified on the 
"Looks & Boundaries" tab and the "Enter Boundaries" tab is ignored. When entering the 
boundaries directly and solving for power and alpha, the boundaries are input on the "Enter 
Boundaries" tab and the "Looks & Boundaries" tab is ignored. 

When solving for power or N1, the early-stopping boundaries are also calculated. High accuracy 
for early-stopping boundaries requires a very large number of simulations (Recommended 
100,000 to 10,000,000). 

The parameter selected here is the parameter displayed on the vertical axis of the plot. 

Because this is a simulation based procedure, the search for the sample size may take several 
minutes or hours to complete. You may find it quicker and more informative to solve for Power 
for a range of sample sizes. 
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Error Rates 

Power or Beta 
Power is the probability of rejecting the null hypothesis when it is false. Power is equal to 1-Beta, 
so specifying power implicitly specifies beta. 

Beta is the probability obtaining a false negative on the statistical test. That is, it is the probability 
of accepting a false null hypothesis. 

In the context of simulated group sequential trials, the power is the proportion of the alternative 
hypothesis simulations that cross any one of the significance (efficacy) boundaries. 

The valid range is between 0 to 1. 

Different disciplines and protocols have different standards for setting power. A common choice 
is 0.90, but 0.80 is also popular. 

You can enter a range of values such as 0.70 0.80 0.90 or 0.70 to 0.90 by 0.1. 

Alpha (Significance Level) 
Alpha is the probability of obtaining a false positive on the statistical test. That is, it is the 
probability of rejecting a true null hypothesis. 

The null hypothesis is usually that the parameters (the means, proportions, etc.) are all equal. 

In the context of simulated group sequential trials, alpha is the proportion of the null hypothesis 
simulations that cross any one of the significance (efficacy) boundaries. 

Since Alpha is a probability, it is bounded by 0 and 1. Commonly, it is between 0.001 and 0.250. 

Alpha is often set to 0.05 for two-sided tests and to 0.025 for one-sided tests. 

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N1 (Sample Size Group 1) 
Enter a value for the sample size, N1. This is the number of subjects in the first group of the study 
at the final look. 

You may enter a range such as 10 to 100 by 10 or a list of values separated by commas or blanks. 

You might try entering the same number two or three times to get an idea of the variability in 
your results. For example, you could enter "10 10 10". 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2. This is the number of subjects in 
the second group of the study at the final look. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 
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R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

R = N2/N1 

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size 

Mean1 (Mean of Group 1, Control) 
Enter a value for the hypothesized mean of this group. The difference between the two means and 
the direction of the difference relative to the alternative hypothesis is of primary importance here. 

For the simulations under the null and alternative hypothesis, the test statistics are calculated as 
mean of group 1 minus mean of group 2. For the purposes of simulation, if a two-sided 
alternative is selected, Mean1 should be larger than Mean2. 

If you want to analyze the difference, enter the value of the difference for one of the means and 
zero for the other. 

You may enter a range of values such as 10 20 30 or 0 to 100 by 25. 

Mean2 (Mean of Group 2, Treatment | H1) 
Enter a value for the hypothesized mean of this group. The difference between the two means and 
the direction of the difference relative to the alternative hypothesis is of primary importance here. 

For the simulations under the null and alternative hypothesis, the test statistics are calculated as 
mean of group 1 minus mean of group 2. For the purposes of simulation, if a two-sided 
alternative is selected, Mean1 should be larger than Mean2. 

If you want to analyze the difference, enter the value of the difference for one of the means and 
zero for the other. 

You may enter a range of values such as 10 20 30 or 0 to 100 by 25. 

Standard Deviation 
Enter the desired value for the standard deviation of the population from which simulations will 
be generated. The standard deviation must be a positive number. 

This standard deviation is the standard deviation of each group. 

Press the "SD" button to obtain help on estimating the standard deviation. 

You can enter a range of values such as 1 2 3 or 1 to 10 by 1. 
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Test and Simulations 

Alternative Hypothesis 
Specify the alternative hypothesis of the test. Since the null hypothesis is the opposite, specifing 
the alternative is the only hypothesis needed. When a two-sided alternative is selected, futility 
boundaries are not permitted. If you wish to do a two-sided test with futility boundaries you may 
consider two one-sided tests. 

Care need be taken in the choice of direction of the test relative to the choice of Mean1 and 
Mean2. For example, for a one-sided test to show that the true mean for group 1 (control) is less 
than the true mean for group 2 (treatment), Mean2 should be larger than Mean1 and the 
alternative hypothesis chosen should be Mean1 < Mean2. 

Test Type 
Specify which test statistic is to be reported on. 

The T-Test is the standard T-test based on the pooled variance and SS1 + SS2 - 2 degrees of 
freedom, where SS1 and SS2 are the sample sizes of groups 1 and 2 at the corresponding look. 

The Mann-Whitney Test is the common non-parametric alternative and is based on the ranks of 
the observations. It is sometimes called the Mann-Whitney U, Mann-Whitney-Wilcoxon, 
Wilcoxon Rank-Sum, or Wilcoxon-Mann-Whitney test. 

Simulations 
This option specifies the number of iterations, M, used in the simulation. As the number of 
iterations is increased, the accuracy and running time of the simulation will be increased also. 

The precision of the simulated power estimates are calculated from the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
  

 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
   

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  

However, when solving for Power or N1, the simulations are also used to calculate the look 
boundaries. To obtain precise boundary estimates, the number of simulations needs to be high. 
This consideration competes with the length of time to complete the simulation. When solving for 
power, a large number of simulations (100,000 or 1,000,000) will finish in several minutes. When 
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solving for N1, perhaps 10,000 simulations can be run for each iteration. Then, a final run with 
the resulting N1 solving for power can be run with more simulations. 

Looks & Boundaries Tab 
The Data tab contains most of the parameters and options for the general setup of the procedure. 

Looks and Boundaries 

Specification of Looks and Boundaries 
Choose whether spending functions will be used to divide alpha and beta for each look (Simple 
Specification), or whether the percents of alpha and beta to be spent at each look will be specified 
directly (Custom Specification). 

Under Simple Specification, the looks are automatically considered to be equally spaced. Under 
Custom Specification, the looks may be equally spaced or custom defined based on the percent of 
accumulated information. 

Looks and Boundaries – Simple 
Specification 

Number of Equally Spaced Looks 
Select the total number of looks that will be used if the study is not stopped early for the crossing 
of a boundary.  

Alpha Spending Function 
Specify the type of alpha spending function to use. 

The O'Brien-Fleming Analog spends very little alpha at the beginning and much more at the final 
looks. The Pocock Analog and (Alpha)(Time) spending functions spend alpha more evenly across 
the looks. The Hwang-Shih-DeCani (C) (sometimes called the gamma family) spending functions 
and (Alpha)(Time^C) spending functions are flexible spending functions that can be used to 
spend more alpha early or late or evenly, depending on the choice of C.  

C (Alpha Spending) 
C is used to define the Hwang-Shih-DeCani (C) or (Alpha)(Time^C) spending functions. 

For the Hwang-Shih-DeCani (C) spending function, negative values of C spend more of alpha at 
later looks, values near 0 spend alpha evenly, and positive values of C spend more of alpha at 
earlier looks. 

For the (Alpha)(Time^C) spending function, only positive values for C are permitted. Values of C 
near zero spend more of alpha at earlier looks, values near 1 spend alpha evenly, and larger 
values of C spend more of alpha at later looks.  

Type of Futility Boundary 
This option determines whether or not futility boundaries will be created, and if so, whether they 
are binding or non-binding. 

Futility boundaries are boundaries such that, if crossed at a given look, stop the study in favor of 
H0. 
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Binding futility boundaries are computed in concert with significance boundaries. They are called 
binding because they require the stopping of a trial if they are crossed. If the trial is not stopped, 
the probability of a false positive will exceed alpha. 
When Non-binding futility boundaries are computed, the significance boundaries are first 
computed, ignoring the futility boundaries. The futility boundaries are then computed. These 
futility boundaries are non-binding because continuing the trial after they are crossed will not 
affect the overall probability of a false positive declaration.  

Number of Skipped Futility Looks 
In some trials it may be desirable to wait a number of looks before examining the trial for futility. 
This option allows the beta to begin being spent after a specified number of looks. 

The Number of Skipped Futility Looks should be less than the number of looks.  

Beta Spending Function 
Specify the type of beta spending function to use. 

The O'Brien-Fleming Analog spends very little beta at the beginning and much more at the final 
looks. The Pocock Analog and (Beta)(Time) spending functions spend beta more evenly across 
the looks. The Hwang-Shih-DeCani (C) (sometimes called the gamma family) spending functions 
and (Beta)(Time^C) spending functions are flexible spending functions that can be used to spend 
more beta early or late or evenly, depending on the choice of C.  

C (Beta Spending) 
C is used to define the Hwang-Shih-DeCani (C) or (Beta)(Time^C) spending functions. 

For the Hwang-Shih-DeCani (C) spending function, negative values of C spend more of beta at 
later looks, values near 0 spend beta evenly, and positive values of C spend more of beta at earlier 
looks. 

For the (Beta)(Time^C) spending function, only positive values for C are permitted. Values of C 
near zero spend more of beta at earlier looks, values near 1 spend beta evenly, and larger values 
of C spend more of beta at later looks.  

Looks and Boundaries – Custom 
Specification 

Number of Looks 
This is the total number of looks of either type (significance or futility or both).  

Equally Spaced 
If this box is checked, the Accumulated Information boxes are ignored and the accumulated 
information is evenly spaced.  

Type of Futility Boundary 
This option determines whether or not futility boundaries will be created, and if so, whether they 
are binding or non-binding. 

Futility boundaries are boundaries such that, if crossed at a given look, stop the study in favor of 
H0. 

Binding futility boundaries are computed in concert with significance boundaries. They are called 
binding because they require the stopping of a trial if they are crossed. If the trial is not stopped, 



Group-Sequential Tests for Two Means Assuming Normality (Simulation)  477-13 

the probability of a false positive will exceed alpha. 
 

When Non-binding futility boundaries are computed, the significance boundaries are first 
computed, ignoring the futility boundaries. The futility boundaries are then computed. These 
futility boundaries are non-binding because continuing the trial after they are crossed will not 
affect the overall probability of a false positive declaration.  

Accumulated Information 
The accumulated information at each look defines the proportion or percent of the sample size 
that is used at that look. 

These values are accumulated information values so they must be increasing. 

Proportions, percents, or sample sizes may be entered. All proportions, percents, or sample sizes 
will be divided by the value at the final look to create an accumulated information proportion for 
each look.  

Percent of Alpha Spent 
This is the percent of the total alpha that is spent at the corresponding look. It is not the 
cumulative value. 

Percents, proportions, or alphas may be entered here. Each of the values is divided by the sum of 
the values to obtain the proportion of alpha that is used at the corresponding look.  

Percent of Beta Spent 
This is the percent of the total beta (1-power) that is spent at the corresponding look. It is not the 
cumulative value. 

Percents, proportions, or betas may be entered here. Each of the values is divided by the sum of 
the values to obtain the proportion of beta that is used at the corresponding look.  

Enter Boundaries Tab 
The Data tab contains most of the parameters and options for the general setup of the procedure. 

Looks and Boundaries 

Number of Looks 
This is the total number of looks of either type (significance or futility or both).  

Equally Spaced 
If this box is checked, the Accumulated Information boxes are ignored and the accumulated 
information is evenly spaced.  

Types of Boundaries 
This option determines whether or not futility boundaries will be entered. 

Futility boundaries are boundaries such that, if crossed at a given look, stop the study in favor of 
H0.  
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Accumulated Information 
The accumulated information at each look defines the proportion or percent of the sample size 
that is used at that look. 

These values are accumulated information values so they must be increasing. 

Proportions, percents, or sample sizes may be entered. All proportions, percents, or sample sizes 
will be divided by the value at the final look to create an accumulated information proportion for 
each look.  

Significance Boundary 
Enter the value of the significance boundary corresponding to the chosen test statistic. These are 
sometimes called efficacy boundaries.  

Futility Boundary 
Enter the value of the futility boundary corresponding to the chosen test statistic.  

Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum N1 before the search for N1 is aborted. 

Since simulations for large sample sizes are very computationally intensive and hence time-
consuming, this value can be used to stop searches when N1 is larger than reasonable sample 
sizes for the study. 

This applies only when "Find (Solve For)" is set to N1. 

The procedure uses a binary search when searching for N1. If a value for N1 is tried that exceeds 
this value, and the power is not reached, a warning message will be shown on the output 
indicating the desired power was not reached. 

We recommend a value of at least 20000. 

Random Numbers 

Random Number Pool Size 
This is the size of the pool of random values from which the random samples will be drawn. 
Pools should be at least the maximum of 10,000 and twice the number of simulations. You can 
enter Automatic and an appropriate value will be calculated. 

If you do not want to draw numbers from a pool, enter 0 here. 
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Matching Boundaries at Final Look 

Beta Search Increment 
For each simulation, when futility bounds are computed, the appropriate beta is found by 
searching from 0 to 1 by this increment. Smaller increments are more refined, but the search takes 
longer. 

We recommend 0.001 or 0.0001. 

 

Example 1 – Power and Output 
A clinical trial is to be conducted over a two-year period to compare the mean response of a new 
treatment to that of the current treatment. The current response mean is 108. Although the 
researchers do not know the true mean of the new treatment, they would like to examine the 
power that is achieved if the mean of the new treatment is 113. The standard deviation for both 
groups is assumed to be 25. The sample size at the final look is to be 500 per group. Testing will 
be done at the 0.05 significance level. A total of five tests are going to be performed on the data 
as they are obtained. The O’Brien-Fleming (Analog) boundaries will be used. 

Find the power and test boundaries assuming equal sample sizes per arm and two-sided 
hypothesis tests. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means Assuming 
Normality (Simulation) procedure window by expanding Means, then Two Independent 
Means, then clicking on Group-Sequential, and then clicking on Group-Sequential Tests for 
Two Means Assuming Normality (Simulation). You may then make the entries as listed below, 
or open Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 500 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Mean1 (Control) ...................................... 108 
Mean2 (Treatment | H1) .......................... 113 
S .............................................................. 25 
Alternative Hypothesis ............................ Mean1 ≠ Mean2 
Test Type ................................................ T-Test 
Simulations .............................................. 20000 

Looks and Boundaries Tab 
Specification of Looks and Boundaries ... Simple 
Number of Equally Spaced Looks ........... 5 
Alpha Spending Function ........................ O’Brien-Fleming Analog 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Scenario 1 Numeric Results for Group Sequential Testing Mean Difference = 0. 
Hypotheses: H0: Mean1=Mean2; H1: Mean1≠Mean2 
Test Statistic: T-Test 
Alpha-Spending Function: O'Brien-Fleming Analog 
Beta-Spending Function: None 
Futility Boundary Type: None 
Number of Looks: 5 
Simulations: 20000 
Pool Size: 40000 
 
 
Numeric Summary for Scenario 1 
 
------------------ Power -------------------      -------------------------- Alpha ---------------------------- 
Value 95% LCL 95% UCL Target Actual 95% LCL 95% UCL Beta 
0.887 0.883 0.892 0.050 0.052 0.049 0.055 0.113 
 
                           ----- Average Sample Size ---- 
                           -- Given H0 --    -- Given H1 -- 
N1 N2 Grp1 Grp2 Grp1 Grp2 Diff0 Diff1 P1|H1 P2 
500 500 496 496 379 379 -5.0 108.0 113.0 25.0    
 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis at one of the looks. It is the total proportion 
   of alternative hypothesis simulations that are outside the significance boundaries. 
Power 95% LCL and UCL are the lower and upper confidence limits for the power estimate. The width of the 
   interval is based on the number of simulations. 
Target Alpha is the user-specified probability of rejecting a true null hypothesis. It is the total alpha 
   spent. 
Actual Alpha is the alpha level that was actually achieved by the experiment. It is the total proportion of 
   the null hypothesis simulations that are outside the significance boundaries. 
Alpha 95% LCL and UCL are the lower and upper confidence limits for the actual alpha estimate. The width of 
   the interval is based on the number of simulations. 
Beta is the probability of accepting a false null hypothesis. It is the total proportion of alternative 
   hypothesis simulations that do not cross the significance boundaries. 
N1 and N2 are the sample sizes of each group if the study reaches the final look. 
Average Sample Size Given H0 Grp1 and Grp2 are the average or expected sample sizes of each group if H0 is 
   true. These are based on the proportion of null hypothesis simulations that cross the significance or 
   futility boundaries at each look. 
Average Sample Size Given H1 Grp1 and Grp2 are the average or expected sample sizes of each group if H1 is 
   true. These are based on the proportion of alternative hypothesis simulations that cross the significance 
   or futility boundaries at each look. 
Diff is the mean difference between groups (Grp1 - Grp2) assuming the alternative hypothesis, H1. 
Mean1, Mean2, and Std Dev are the parameters that were set by the user to define the null and alternative 
   simulation distributions. 
 
Summary Statements 
Group sequential trials with group sample sizes of 500 and 500 at the final look achieve 89% 
power to detect a difference of -5.0 at the 0.052 significance level (alpha) using a two-sided 
T-Test. 
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Accumulated Information Details for Scenario 1 
 
 Accumulated    
                    Information            -------- Accumulated Sample Size -------- 
Look Percent Group 1 Group 2 Total 
1 20.0 100 100 200 
2 40.0 200 200 400 
3 60.0 300 300 600 
4 80.0 400 400 800 
5 100.0 500 500 1000 
 
Accumulated Information Details Definitions 
Look is the number of the look. 
Accumulated Information Percent is the percent of the sample size accumulated up to the corresponding look. 
Accumulated Sample Size Group 1 is total number of individuals in group 1 at the corresponding look. 
Accumulated Sample Size Group 2 is total number of individuals in group 2 at the corresponding look. 
Accumulated Sample Size Total is total number of individuals in the study (group 1 + group 2) at the 
   corresponding look. 
 
 
Boundaries for Scenario 1 
 
               -- Significance Boundary -- 
 T-Value P-Value 
Look Scale Scale 
1 +/- 4.026 0.000 
2 +/- 3.396 0.001 
3 +/- 2.682 0.008 
4 +/- 2.302 0.022 
5 +/- 1.990 0.047 
 
 
Boundaries Definitions 
Look is the number of the look. 
Significance Boundary T-Value Scale is the value such that statistics outside this boundary at the 
   corresponding look indicate termination of the study and rejection of the null hypothesis. They are 
   sometimes called efficacy boundaries. 
Significance Boundary P-Value Scale is the value such that P-Values outside this boundary at the corresponding 
   look indicate termination of the study and rejection of the null hypothesis. This P-Value corresponds to 
   the T-Value Boundary and is sometimes called the nominal alpha. 
 
 
Boundary Plot 
 

Boundary Plot

Look

0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

Boundary Type
Upper
Lower

 



477-18  Group-Sequential Tests for Two Means Assuming Normality (Simulation) 
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Significance Boundaries with 95% Simulation Confidence Intervals for Scenario 1 
 
                  --------- T-Value Boundary ---------    --------- P-Value Boundary --------- 
Look Value 95% LCL 95% UCL Value 95% LCL 95% UCL 
1 +/- 4.026   0.000   
2 +/- 3.396 -3.560 -3.264 0.001 0.000 0.001 
3 +/- 2.682 -2.738 -2.645 0.008 0.006 0.008 
4 +/- 2.302 -2.332 -2.240 0.022 0.020 0.025 
5 +/- 1.990 -2.036 -1.960 0.047 0.042 0.050 
 
 
Significance Boundary Confidence Limit Definitions 
Look is the number of the look. 
Look is the number of the look. 
T-Value Boundary Value is the value such that statistics outside this boundary at the corresponding look 
   indicate termination of the study and rejection of the null hypothesis. They are sometimes called efficacy 
   boundaries. 
P-Value Boundary Value is the value such that P-Values outside this boundary at the corresponding look 
   indicate termination of the study and rejection of the null hypothesis. This P-Value corresponds to the 
   T-Value Boundary and is sometimes called the nominal alpha. 
95% LCL and UCL are the lower and upper confidence limits for the boundary at the given look. The width of the 
   interval is based on the number of simulations. 
 
Alpha-Spending and Null Hypothesis Simulation Details for Scenario 1 
 
                                                         --------- Target ---------   --------- Actual ----------  Proportion          Cum. 
    Cum.   H1 Sims H1 Sims 
 --- Signif. Boundary--- Spending Spending  Cum. Outside Outside 
 T-Value P-Value Function Function Alpha Alpha Signif. Signif. 
Look Scale Scale Alpha Alpha Spent Spent Boundary Boundary 
1 +/- 4.026 0.000 0.000 0.000 0.000 0.000 0.006 0.006 
2 +/- 3.396 0.001 0.001 0.001 0.001 0.001 0.077 0.083 
3 +/- 2.682 0.008 0.007 0.008 0.008 0.009 0.328 0.411 
4 +/- 2.302 0.022 0.017 0.024 0.017 0.026 0.300 0.711 
5 +/- 1.990 0.047 0.026 0.050 0.026 0.052 0.176 0.887 
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Alpha-Spending Details Definitions 
Look is the number of the look. 
Significance Boundary T-Value Scale is the value such that statistics outside this boundary at the 
   corresponding look indicate termination of the study and rejection of the null hypothesis. They are 
   sometimes called efficacy boundaries. 
Significance Boundary P-Value Scale is the value such that P-Values outside this boundary at the corresponding 
   look indicate termination of the study and rejection of the null hypothesis. This P-Value corresponds to 
   the Significance T-Value Boundary and is sometimes called the nominal alpha. 
Spending Function Alpha is the intended portion of alpha allocated to the particular look based on the 
   alpha-spending function. 
Cumulative Spending Function Alpha is the intended accumulated alpha allocated to the particular look. It is 
   the sum of the Spending Function Alpha up to the corresponding look. 
Alpha Spent is the proportion of the null hypothesis simulations resulting in statistics outside the 
   Significance Boundary at this look. 
Cumulative Alpha Spent is the proportion of the null hypothesis simulations resulting in Significance Boundary 
   termination up to and including this look. It is the sum of the Alpha Spent up to the corresponding look. 
Proportion H1 Sims Outside Significance Boundary is the proportion of the alternative hypothesis simulations 
   resulting in statistics outside the Significance Boundary at this look. It may be thought of as the 
   incremental power. 
Cumulative H1 Sims Outside Significance Boundary is the proportion of the alternative hypothesis simulations 
   resulting in Significance Boundary termination up to and including this look. It is the sum of the 
   Proportion H1 Sims Outside Significance Boundary up to the corresponding look. 
 
Run Time: 2.37 minutes. 
 

The values obtained from any given run of this example will vary slightly due to the variation in 
simulations. 

Example 2 – Power for One-Sided Test with Futility 
Boundaries 
Suppose researchers would like to compare two treatments with a one-sided test at each look. 
Further, suppose they would like to terminate the study early when it can be deemed highly 
unlikely that the new treatment is better than the standard. Suppose the control group mean is 
108. The researchers wish to know the power of the test if the treatment group mean is 113. The 
sample size at the final look is to be 500 per group. Testing will be done at the 0.05 significance 
level. A total of five tests are going to be performed on the data as they are obtained. The 
O’Brien-Fleming (Analog) boundaries will be used for both significance and futility boundaries.  

Find the power and test boundaries assuming equal sample sizes per arm and one-sided 
hypothesis tests. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means Assuming 
Normality (Simulation) procedure window by expanding Means, then Two Independent 
Means, then clicking on Group-Sequential, and then clicking on Group-Sequential Tests for 
Two Means Assuming Normality (Simulation). You may then make the appropriate entries as 
listed below, or open Example 2 by going to the File menu and choosing Open Example 
Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 500 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Mean1 (Control) ...................................... 108 
Mean2 (Treatment | H1) .......................... 113 
S .............................................................. 25 
Alternative Hypothesis ............................ Mean1 < Mean2 
Test Type ................................................ T-Test 
Simulations .............................................. 20000 

Looks and Boundaries Tab 
Specification of Looks and Boundaries ... Simple 
Number of Equally Spaced Looks ........... 5 
Alpha Spending Function ........................ O’Brien-Fleming Analog 
Type of Futility Boundary ........................ Non-Binding 
Number of Skipped Futility Looks ........... 0 
Beta Spending Function .......................... O’Brien-Fleming Analog 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Scenario 1 Numeric Results for Group Sequential Testing Mean Difference = 0. 
Hypotheses: H0: Mean1=Mean2; H1: Mean1<Mean2 
Test Statistic: T-Test 
Alpha-Spending Function: O'Brien-Fleming Analog 
Beta-Spending Function: O'Brien-Fleming Analog 
Futility Boundary Type: Non-binding 
Number of Looks: 5 
Simulations: 20000 
Pool Size: 40000 
 
 
Numeric Summary for Scenario 1 
 
------------------ Power -------------------      -------------------------- Alpha ---------------------------- 
Value 95% LCL 95% UCL Target Actual 95% LCL 95% UCL Beta 
0.910 0.906 0.914 0.050 0.045 0.042 0.048 0.090 
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                           ----- Average Sample Size ---- 
                           -- Given H0 --    -- Given H1 -- 
N1 N2 Grp1 Grp2 Grp1 Grp2 Diff0 Diff1 P1|H1 P2 
500 500 303 303 335 335 -5.0 108.0 113.0 25.0    
 
Accumulated Information Details for Scenario 1 
 
 Accumulated    
                    Information            -------- Accumulated Sample Size -------- 
Look Percent Group 1 Group 2 Total 
1 20.0 100 100 200 
2 40.0 200 200 400 
3 60.0 300 300 600 
4 80.0 400 400 800 
5 100.0 500 500 1000 
 
 
Boundaries for Scenario 1 
 
               -- Significance Boundary --       ----- Futility Boundary ----- 

 T-Value P-Value T-Value P-Value 
Look Scale Scale Scale Scale 
1 -3.850 0.000 2.368 0.991 
2 -2.906 0.002 0.445 0.672 
3 -2.335 0.010 -0.517 0.303 
4 -1.939 0.026 -1.175 0.120 
5 -1.754 0.040 -1.754 0.040 
 

 
Boundary Plot 
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Boundary Plot - P-Value 
 

 
 
 
Significance Boundaries with 95% Simulation Confidence Intervals for Scenario 1 
 
                  --------- T-Value Boundary ---------    --------- P-Value Boundary --------- 
Look Value 95% LCL 95% UCL Value 95% LCL 95% UCL 
1 -3.850   0.000   
2 -2.906 -2.990 -2.835 0.002 0.001 0.002 
3 -2.335 -2.368 -2.279 0.010 0.009 0.012 
4 -1.939 -1.974 -1.899 0.026 0.024 0.029 
5 -1.754 -1.782 -1.729 0.040 0.038 0.042 
 
 
Futility Boundaries with 95% Simulation Confidence Intervals for Scenario 1 
 
                  --------- T-Value Boundary ---------    --------- P-Value Boundary --------- 
Look Value 95% LCL 95% UCL Value 95% LCL 95% UCL 
1 2.368 1.911 2.798 0.991   
2 0.445 0.383 0.532 0.672 0.649 0.702 
3 -0.517 -0.548 -0.480 0.303 0.292 0.316 
4 -1.175 -1.203 -1.145 0.120 0.115 0.126 
5 -1.754 -1.780 -1.725 0.040 0.038 0.042 
 
 
Alpha-Spending and Null Hypothesis Simulation Details for Scenario 1 
 
                                                         --------- Target ---------   --------- Actual ----------  Proportion          Cum. 
    Cum.   H0 Sims H0 Sims 
 --- Signif. Boundary--- Spending Spending  Cum. Outside Outside 
 T-Value P-Value Function Function Alpha Alpha Futility Futility 
Look Scale Scale Alpha Alpha Spent Spent Boundary Boundary 
1 -3.850 0.000 0.000 0.000 0.000 0.000 0.009 0.009 
2 -2.906 0.002 0.002 0.002 0.002 0.002 0.315 0.324 
3 -2.335 0.010 0.009 0.011 0.009 0.011 0.377 0.701 
4 -1.939 0.026 0.017 0.028 0.017 0.028 0.189 0.890 
5 -1.754 0.040 0.022 0.050 0.017 0.045 0.065 0.955 
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Beta-Spending and Alternative Hypothesis Simulation Details for Scenario 1 
 
                                                         --------- Target ---------   --------- Actual ----------  Proportion          Cum. 
    Cum.   H1 Sims H1 Sims 
 -- Futility  Boundary-- Spending Spending  Cum. Outside Outside 
 T-Value P-Value Function Function Beta Beta Signif. Signif. 
Look Scale Scale Beta Beta Spent Spent Boundary Boundary 
1 2.368 0.991 0.000 0.000 0.000 0.000 0.008 0.008 
2 0.445 0.672 0.007 0.007 0.007 0.007 0.176 0.184 
3 -0.517 0.303 0.021 0.029 0.021 0.029 0.366 0.550 
4 -1.175 0.120 0.029 0.058 0.029 0.058 0.267 0.817 
5 -1.754 0.040 0.032 0.090 0.032 0.090 0.093 0.910 
 
Run Time: 2.22 minutes. 
 

The values obtained from any given run of this example will vary slightly due to the variation in 
simulations. 

Example 3 – Enter Boundaries 
With a set-up similar to Example 2, suppose we wish to investigate the properties of a set of 
significance (-3, -3, -3, -2, -1) and futility (2, 1, 0, 0, -1) boundaries. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means Assuming 
Normality (Simulation) procedure window by expanding Means, then Two Independent 
Means, then clicking on Group-Sequential, and then clicking on Group-Sequential Tests for 
Two Means Assuming Normality (Simulation). You may then make the entries as listed below, 
or open Example 3 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Alpha and Power (Enter Boundaries) 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... Ignored since this is the Find setting 
N1 (Sample Size Group 1) ...................... 500 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Mean1 (Control) ...................................... 108 
Mean2 (Treatment | H1) .......................... 113 
S .............................................................. 25 
Alternative Hypothesis ............................ Mean1 < Mean2 
Test Type ................................................ T-Test 
Simulations .............................................. 20000 

Enter Boundaries Tab 
Number of Looks ..................................... 5 
Types of Boundaries ............................... Significance and Futility Boundaries 
Significance Boundary ............................ -3 -3 -3 -2 -1 (for looks 1 through 5) 
Futility Boundary ..................................... 2 1 0 0 -1 (for looks 1 through 5) 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Scenario 1 Numeric Results for Group Sequential Testing Mean Difference = 0. 
Hypotheses: H0: Mean1=Mean2; H1: Mean1<Mean2 
Test Statistic: T-Test 
Type of Boundaries: Significance and Futility Boundaries 
Number of Looks: 5 
Simulations: 20000 
Pool Size: 40000 
 
 
Numeric Summary for Scenario 1 
 
------------------ Power -------------------      -------------------------- Alpha ---------------------------- 
Value 95% LCL 95% UCL Value 95% LCL 95% UCL Beta 
0.980 0.978 0.982 0.150 0.145 0.155 0.020 
 
 
                           ----- Average Sample Size ---- 
                           -- Given H0 --    -- Given H1 -- 
N1 N2 Grp1 Grp2 Grp1 Grp2 Diff0 Diff1 P1|H1 P2 
500 500 368 368 364 364 -5.0 108.0 113.0 25.0    
 

 
Accumulated Information Details for Scenario 1 
 
 Accumulated    
                    Information            -------- Accumulated Sample Size -------- 
Look Percent Group 1 Group 2 Total 
1 20.0 100 100 200 
2 40.0 200 200 400 
3 60.0 300 300 600 
4 80.0 400 400 800 
5 100.0 500 500 1000 
 
 
Boundaries for Scenario 1 
 
               -- Significance Boundary --       ----- Futility Boundary ----- 

 T-Value P-Value T-Value P-Value 
Look Scale Scale Scale Scale 
1 -3.000 0.002 2.000 0.977 
2 -3.000 0.001 1.000 0.841 
3 -3.000 0.001 0.000 0.500 
4 -2.000 0.023 0.000 0.500 
5 -1.000 0.159 -1.000 0.159 
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Boundary Plot 
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Boundary Plot - P-Value 
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Alpha-Spending and Null Hypothesis Simulation Details for Scenario 1 
 
     Proportion Cum. 
     H0 Sims H0 Sims 
 --- Signif. Boundary---  Cum. Outside Outside 
 T-Value P-Value Alpha Alpha Futility Futility 
Look Scale Scale Spent Spent Boundary Boundary 
1 -3.000 0.002 0.002 0.002 0.024 0.024 
2 -3.000 0.001 0.001 0.003 0.142 0.166 
3 -3.000 0.001 0.001 0.004 0.343 0.509 
4 -2.000 0.023 0.019 0.022 0.081 0.590 
5 -1.000 0.159 0.128 0.150 0.260 0.850 
 
 
Beta-Spending and Alternative Hypothesis Simulation Details for Scenario 1 
 
     Proportion Cum. 
     H1 Sims H1 Sims 
 -- Futility  Boundary--  Cum. Outside Outside 
 T-Value P-Value Beta Beta Signif. Signif. 
Look Scale Scale Spent Spent Boundary Boundary 
1 2.000 0.977 0.000 0.000 0.055 0.055 
2 1.000 0.841 0.001 0.002 0.115 0.171 
3 0.000 0.500 0.008 0.009 0.150 0.321 
4 0.000 0.500 0.001 0.010 0.470 0.791 
5 -1.000 0.159 0.010 0.020 0.189 0.980 
 
Run Time: 2.15 minutes. 
 

The values obtained from any given run of this example will vary slightly due to the variation in 
simulations. 

Example 4 – Validation Using Simulation 
With a set-up similar to Example 1, we examine the power and alpha generated by the set of two-
sided significance boundaries (+/- 4.026, +/- 3.396, +/- 2.682, +/- 2.302, +/- 1.990). . 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Tests for Two Means Assuming 
Normality (Simulation) procedure window by expanding Means, then Two Independent 
Means, then clicking on Group-Sequential, and then clicking on Group-Sequential Tests for 
Two Means Assuming Normality (Simulation). You may then make the entries as listed below, 
or open Example 4 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Alpha and Power (Enter Boundaries) 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... Ignored since this is the Find setting 
N1 (Sample Size Group 1) ...................... 500 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Mean1 (Control) ...................................... 108 
Mean2 (Treatment | H1) .......................... 113 
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S .............................................................. 25 
Alternative Hypothesis ............................ Mean1 ≠ Mean2 
Test Type ................................................ T-Test 
Simulations .............................................. 20000 

Enter Boundaries Tab 
Number of Looks ..................................... 5 
Types of Boundaries ............................... Significance Boundaries 
Significance Boundary ............................  4.026, 3.396, 2.682, 2.302, 1.990 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Scenario 1 Numeric Results for Group Sequential Testing Mean Difference = 0. 
Hypotheses: H0: Mean1=Mean2; H1: Mean1≠Mean2 
Test Statistic: T-Test 
Type of Boundaries: Significance Boundaries Only 
Number of Looks: 5 
Simulations: 20000 
Pool Size: 40000 
 
 
Numeric Summary for Scenario 1 
 
------------------ Power -------------------      -------------------------- Alpha ---------------------------- 
Value 95% LCL 95% UCL Value 95% LCL 95% UCL Beta 
0.889 0.884 0.893 0.054 0.051 0.057 0.111 
 
                           ----- Average Sample Size ---- 
                           -- Given H0 --    -- Given H1 -- 
N1 N2 Grp1 Grp2 Grp1 Grp2 Diff0 Diff1 P1|H1 P2 
500 500 497 497 379 379 -5.0 108.0 113.0 25.0    
 
Run Time: 2.16 minutes. 
 

The values obtained from any given run of this example will vary slightly due to the variation in 
simulations. The power and alpha generated with these boundaries are very close to the values of 
Example 1. 
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Chapter 478 

Group-Sequential 
Non-Inferiority 
Tests for Two 
Means 
(Simulation) 
Introduction 
This procedure can be used to determine power, sample size and/or boundaries for group sequential 
non-inferiority tests comparing the means of two groups. The common two-sample T-Test and the 
Mann-Whitney U test can be simulated in this procedure. Significance and futility boundaries can 
be produced. The spacing of the looks can be equal or custom specified. Boundaries can be 
computed based on popular alpha- and beta-spending functions (O’Brien-Fleming, Pocock, Hwang-
Shih-DeCani Gamma family, linear) or custom spending functions. Boundaries can also be input 
directly to verify alpha- and/or beta-spending properties. Futility boundaries can be binding or non-
binding. Maximum and average (expected) sample sizes are reported as well as the alpha and/or 
beta spent and incremental power at each look. Corresponding P-Value boundaries are also given 
for each boundary statistic. Plots of boundaries are also produced. 

Technical Details 
This section outlines many of the technical details of the techniques used in this procedure including 
the simulation summary, the test statistic details, and the use of spending functions.  

An excellent text for the background and details of many group-sequential methods is Jennison and 
Turnbull (2000). 
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Simulation Procedure 
In this procedure, a large number of simulations are used to calculate boundaries and power using 
the following steps  

1. Based on the specified distributions, random samples of size N1 and N2 are generated 
under the null distribution and under the alternative distribution. These are simulated 
samples as though the final look is reached. 

2. For each sample, test statistics for each look are produced. For example, if N1 and N2 are 
100 and there are 5 equally spaced looks, test statistics are generated from the random 
samples at N1 = N2 = 20, N1 = N2 = 40, N1 = N2 = 60, N1 = N2 = 80, and N1 = N2 = 100 
for both null and alternative samples.  

3. To generate the first significance boundary, the null distribution statistics of the first look 
(e.g., at N1 = N2 = 20) are ordered and the percent of alpha to be spent at the first look is 
determined (using either the alpha-spending function or the input value). The statistic for 
which the percent of statistics above (or below, as the case may be) that value is equal to 
the percent of alpha to be spent at the first look is the boundary statistic. It is seen here how 
important a large number of simulations is to the precision of the boundary estimates. 

4. All null distribution samples that are outside the first significance boundary at the first look 
are removed from consideration for the second look. If binding futility boundaries are also 
being computed, all null distribution samples with statistics that are outside the first futility 
boundary are also removed from consideration for the second look. If non-binding futility 
boundaries are being computed, null distribution samples with statistics outside the first 
futility boundary are not removed. 

5. To generate the second significance boundary, the remaining null distribution statistics of 
the second look (e.g., at N1 = N2 = 40) are ordered and the percent of alpha to be spent at 
the second look is determined (again, using either the alpha-spending function or the input 
value). The percent of alpha to be spent at the second look is multiplied by the total number 
of simulations to determine the number of the statistic that is to be the second boundary 
statistic. The statistic for which that number of statistics is above it (or below, as the case 
may be) is the second boundary statistic. For example, suppose there are initially 1000 
simulated samples, with 10 removed at the first look (from, say, alpha spent at Look 1 
equal to 0.01), leaving 990 samples considered for the second look. Suppose further that the 
alpha to be spent at the second look is 0.02. This is multiplied by 1000 to give 20. The 990 
still-considered statistics are ordered and the 970th (20 in from 990) statistic is the second 
boundary. 

6. All null distribution samples that are outside the second significance boundary and the 
second futility boundary, if binding, at the second look are removed from consideration for 
the third look (e.g., leaving 970 statistics computed at N1 = N2 = 60 to be considered at the 
third look). Steps 4 and 5 are repeated until the final look is reached. 

Futility boundaries are computed in a similar manner using the desired beta-spending function 
or custom beta-spending values and the alternative hypothesis simulated statistics at each look. 
For both binding and non-binding futility boundaries, samples for which alternative hypothesis 
statistics are outside either the significance or futility boundaries of the previous look are 
excluded from current and future looks. 

Because the final futility and significance boundaries are required to be the same, futility 
boundaries are computed beginning at a small value of beta (e.g., 0.0001) and incrementing 
beta by that amount until the futility and significance boundaries meet. 
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When boundaries are entered directly, this procedure uses the null hypothesis and alternative 
hypothesis simulations to determine the number of test statistics that are outside the boundaries 
at each look. The cumulative proportion of alternative hypothesis statistics that are outside the 
significance boundaries is the overall power of the study.  

Generating Random Distributions 
Two methods are available in PASS to simulate random samples. The first method generates the 
random variates directly, one value at a time. The second method generates a large pool (over 
10,000) of random values and then draws the random numbers from this pool. This second method 
can cut the running time of the simulation by 70%. 

As mentioned above, the second method begins by generating a large pool of random numbers from 
the specified distributions. Each of these pools is evaluated to determine if its mean is within a small 
relative tolerance (0.0001) of the target mean. If the actual mean is not within the tolerance of the 
target mean, individual members of the population are replaced with new random numbers if the 
new random number moves the mean towards its target. Only a few hundred such swaps are 
required to bring the actual mean to within tolerance of the target mean. This population is then 
sampled with replacement using the uniform distribution. We have found that this method works 
well as long as the size of the pool is the maximum of twice the number of simulated samples 
desired and 10,000.  

The Statistical Hypotheses 
This section will review the specifics of non-inferiority testing. 

Remember that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-
sided tests are defined as  

H0 1 2:μ μ− ≤ D  versus H1 1 2:μ μ− > D  

Rejecting this test implies that the mean difference is larger than the value D. This test is called 
an upper-tailed test because it is rejected in samples in which the difference between the sample 
means is larger than D. 

Following is an example of a lower-tailed test. 

H0 1 2:μ μ− ≥ D  versus H1 1 2:μ μ− < D  

Non-inferiority tests are special cases of the above directional tests. It will be convenient to adopt 
the following specialized notation for the discussion of these tests.  
 

Parameter PASS Input/Output Interpretation 
μ  Mean1 Mean of population 1. Population 1 is assumed to consist 

of those who have received the new treatment. 
1

μ2  Mean2 Mean of population 2. Population 2 is assumed to consist 
of those who have received the reference treatment. 
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NIM  NIM Margin of non-inferiority. This is a tolerance value that 
defines the magnitude of the amount that is not of 
practical importance. This may be thought of as the 
largest change from the baseline that is considered to be 
trivial. The absolute value is shown to emphasize that 
this is a magnitude. The sign of the value will be 
determined by the specific design that is being used. 

δ  D True difference. This is the value of μ μ1 2− , the 
difference between the means. This is the value at which 
the power is calculated. 

 

Note that the actual values of μ1  and μ2  are not needed. Only their difference is needed for 
power and sample size calculations. 

Non-Inferiority Tests 
A non-inferiority test tests that the treatment mean is not worse than the reference mean by more 
than the equivalence margin. The actual direction of the hypothesis depends on the response 
variable being studied.  

Case 1: High Values Good, Non-Inferiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no less than a small amount below the reference 
mean. The value of δ  is often set to zero. The following are equivalent sets of hypotheses. 

NIM+≥ 210H μμ:   versus  NIM+< 211H μμ:  

NIM≥− 210H μμ:   versus  NIM<− 211H μμ:  

NIM≥δ:0H    versus  NIM<δ:1H  

Case 2: High Values Bad, Non-Inferiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no more than a small amount above the reference 
mean. The value of δ  is often set to zero. The following are equivalent sets of hypotheses. 

NIM−≤ 210H μμ:     versus  NIM−> 211H μμ:  

NIM−≤− 210H μμ:   versus  NIM−>− 211H μμ:  

NIM−≤δ:0H       versus  NIM−>δ:1H  
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Test Statistics 
This section describes the test statistics that are available in this procedure.  

Two-Sample T-Test 
The two-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t statistic is 
as follows 
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The significance of the test statistic is determined by computing the p-value based on the t 
distribution with degrees of freedom df. If this p-value is less than a specified level (often 0.05), 
the null hypothesis is rejected. Otherwise, no conclusion can be reached. 

Mann-Whitney U Test  
This test is the nonparametric substitute for the equal-variance t-test. Two key assumptions for 
this test are that the distributions are at least ordinal and that they are identical under H0. This 
implies that ties (repeated values) are not acceptable. When ties are present, the approximation 
provided can be used, but know that the theoretic results no longer hold.  

The Mann-Whitney test statistic is defined as follows in Gibbons (1985).  
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The ranks are determined after combining the two samples. The standard deviation is calculated 
as 
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where  is the number of observations tied at value one, t2 is the number of observations tied at 
some value two, and so forth. 

ti

The correction factor, C, is 0.5 if the rest of the numerator of z is negative or -0.5 otherwise. The 
value of z is then compared to the standard normal distribution. 

Spending Functions 
Spending functions can be used in this procedure to specify the proportion of alpha or beta that is 
spent at each look without having to specify the proportion directly.  

Spending functions have the characteristics that they are increasing and that 
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The last characteristic guarantees a fixed α  level when the trial is complete. This methodology is 
very flexible since neither the times nor the number of analyses must be specified in advance. 
Only the functional form of ( )α τ  must be specified.  

PASS provides several popular spending functions plus the ability to enter and analyze your own 
percents of alpha or beta spent. These are calculated as follows (beta may be substituted for alpha 
for beta-spending functions): 
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4.  Alpha * time     t⋅α  
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5.  Alpha * time^1.5     23/t⋅α  
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6.  Alpha * time^2      2t⋅α
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7.  Alpha * time^C     Ct⋅α  
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8.  User Supplied Percents 

A custom set of percents of alpha to be spent at each look may be input directly. 

The O'Brien-Fleming Analog spends very little alpha or beta at the beginning and much more at 
the final looks. The Pocock Analog and (Alpha or Beta)(Time) spending functions spend alpha or 
beta more evenly across the looks. The Hwang-Shih-DeCani (C) (gamma family) spending 
functions and (Alpha or Beta)(Time^C) spending functions are flexible spending functions that 
can be used to spend more alpha or beta early or late or evenly, depending on the choice of C. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data, Looks & Boundaries, Enter Boundaries, and Options tabs. For more information about the 
options of other tabs, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options for the general setup of the procedure. 

Solve For 

Find (Solve For) 
Solve for either power, sample size, or enter the boundaries directly and solve for power and 
alpha. When solving for power or sample size, the look and boundary details are specified on the 
"Looks & Boundaries" tab and the "Enter Boundaries" tab is ignored. When entering the 
boundaries directly and solving for power and alpha, the boundaries are input on the "Enter 
Boundaries" tab and the "Looks & Boundaries" tab is ignored. 

When solving for power or N1, the early-stopping boundaries are also calculated. High accuracy 
for early-stopping boundaries requires a very large number of simulations (Recommended 
100,000 to 10,000,000). 

The parameter selected here is the parameter displayed on the vertical axis of the plot. 

Because this is a simulation based procedure, the search for the sample size may take several 
minutes or hours to complete. You may find it quicker and more informative to solve for Power 
for a range of sample sizes. 

Error Rates 

Power or Beta 
Power is the probability of rejecting the null hypothesis when it is false. Power is equal to 1-Beta, 
so specifying power implicitly specifies beta. 

Beta is the probability obtaining a false negative on the statistical test. That is, it is the probability 
of accepting a false null hypothesis. 

In the context of simulated group sequential trials, the power is the proportion of the alternative 
hypothesis simulations that cross any one of the significance (efficacy) boundaries. 

The valid range is between 0 to 1. 

Different disciplines and protocols have different standards for setting power. A common choice 
is 0.90, but 0.80 is also popular. 

You can enter a range of values such as 0.70 0.80 0.90 or 0.70 to 0.90 by 0.1. 

Alpha (Significance Level) 
Alpha is the probability of obtaining a false positive on the statistical test. That is, it is the 
probability of rejecting a true null hypothesis. 

The null hypothesis is usually that the parameters (the means, proportions, etc.) are all equal. 
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In the context of simulated group sequential trials, alpha is the proportion of the null hypothesis 
simulations that cross any one of the significance (efficacy) boundaries. 

Since Alpha is a probability, it is bounded by 0 and 1. Commonly, it is between 0.001 and 0.250. 

Alpha is often set to 0.05 for two-sided tests and to 0.025 for one-sided tests. 

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N1 (Sample Size Group 1) 
Enter a value for the sample size, N1. This is the number of subjects in the first group of the study 
at the final look. 

You may enter a range such as 10 to 100 by 10 or a list of values separated by commas or blanks. 

You might try entering the same number two or three times to get an idea of the variability in 
your results. For example, you could enter "10 10 10". 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2. This is the number of subjects in 
the second group of the study at the final look. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

R = N2/N1 

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size 

Mean1 (Mean of Group 1, Control) 
Enter a value for the hypothesized mean of this group. The difference between the two means and 
the direction of the difference relative to the alternative hypothesis is of primary importance here. 

For the simulations under the null and alternative hypothesis, the test statistics are calculated as 
mean of group 1 minus mean of group 2. For the purposes of simulation, if a two-sided 
alternative is selected, Mean1 should be larger than Mean2. 

If you want to analyze the difference, enter the value of the difference for one of the means and 
zero for the other. 

You may enter a range of values such as 10 20 30 or 0 to 100 by 25. 
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NIM (Non-Inferiority Margin) 
This is the magnitude of the margin of non-inferiority. It must be entered as a positive number. 

When higher means are better, this value is the distance below the reference mean that is still 
considered non-inferior. 

When higher means are worse, this value is the distance above the reference mean that is still 
considered non-inferior. 

The % box may be checked to specify NIM as a percentage of Mean1. 

% (NIM as a Percent of Mean1) 
If this box is checked, the non-inferiority margin will be generated as a percent of Mean1. 

Mean2 (Mean of Group 2, Treatment | H1) 
Enter a value for the hypothesized mean of this group. The difference between the two means and 
the direction of the difference relative to the alternative hypothesis is of primary importance here. 

For the simulations under the null and alternative hypothesis, the test statistics are calculated as 
mean of group 1 minus mean of group 2. For the purposes of simulation, if a two-sided 
alternative is selected, Mean1 should be larger than Mean2. 

If you want to analyze the difference, enter the value of the difference for one of the means and 
zero for the other. 

You may enter a range of values such as 10 20 30 or 0 to 100 by 25. 

Standard Deviation 
Enter the desired value for the standard deviation of the population from which simulations will 
be generated. The standard deviation must be a positive number. 

This standard deviation is the standard deviation of each group. 

Press the "SD" button to obtain help on estimating the standard deviation. 

You can enter a range of values such as 1 2 3 or 1 to 10 by 1. 

Test and Simulations 

Higher Means Are 
This option defines whether higher values of the response variable are to be considered better or 
worse. 

The choice here determines the direction of the non-inferiority test. 

If Higher Means Are Better the null hypothesis is Mean1 - Mean2 >= NIM and the alternative 
hypothesis is Mean1 - Mean2 < NIM. 

If Higher Means Are Worse the null hypothesis is Mean1 - Mean2 <= -NIM and the alternative 
hypothesis is Mean1 - Mean2 > -NIM. 

Test Type 
Specify which test statistic is to be reported on. 

The T-Test is the standard T-test based on the pooled variance and SS1 + SS2 - 2 degrees of 
freedom, where SS1 and SS2 are the sample sizes of groups 1 and 2 at the corresponding look. 



478-12  Group-Sequential Non-Inferiority Tests for Two Means (Simulation) 

The Mann-Whitney Test is the common non-parametric alternative and is based on the ranks of 
the observations. It is sometimes called the Mann-Whitney U, Mann-Whitney-Wilcoxon, 
Wilcoxon Rank-Sum, or Wilcoxon-Mann-Whitney test. 

Simulations 
This option specifies the number of iterations, M, used in the simulation. As the number of 
iterations is increased, the accuracy and running time of the simulation will be increased also. 

The precision of the simulated power estimates are calculated from the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
  

 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
   

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  

However, when solving for Power or N1, the simulations are also used to calculate the look 
boundaries. To obtain precise boundary estimates, the number of simulations needs to be high. 
This consideration competes with the length of time to complete the simulation. When solving for 
power, a large number of simulations (100,000 or 1,000,000) will finish in several minutes. When 
solving for N1, perhaps 10,000 simulations can be run for each iteration. Then, a final run with 
the resulting N1 solving for power can be run with more simulations. 

Looks & Boundaries Tab 
The Data tab contains most of the parameters and options for the general setup of the procedure. 

Looks and Boundaries 

Specification of Looks and Boundaries 
Choose whether spending functions will be used to divide alpha and beta for each look (Simple 
Specification), or whether the percents of alpha and beta to be spent at each look will be specified 
directly (Custom Specification). 

Under Simple Specification, the looks are automatically considered to be equally spaced. Under 
Custom Specification, the looks may be equally spaced or custom defined based on the percent of 
accumulated information. 
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Looks and Boundaries – Simple 
Specification 

Number of Equally Spaced Looks 
Select the total number of looks that will be used if the study is not stopped early for the crossing 
of a boundary.  

Alpha Spending Function 
Specify the type of alpha spending function to use. 

The O'Brien-Fleming Analog spends very little alpha at the beginning and much more at the final 
looks. The Pocock Analog and (Alpha)(Time) spending functions spend alpha more evenly across 
the looks. The Hwang-Shih-DeCani (C) (sometimes called the gamma family) spending functions 
and (Alpha)(Time^C) spending functions are flexible spending functions that can be used to 
spend more alpha early or late or evenly, depending on the choice of C.  

C (Alpha Spending) 
C is used to define the Hwang-Shih-DeCani (C) or (Alpha)(Time^C) spending functions. 

For the Hwang-Shih-DeCani (C) spending function, negative values of C spend more of alpha at 
later looks, values near 0 spend alpha evenly, and positive values of C spend more of alpha at 
earlier looks. 

For the (Alpha)(Time^C) spending function, only positive values for C are permitted. Values of C 
near zero spend more of alpha at earlier looks, values near 1 spend alpha evenly, and larger 
values of C spend more of alpha at later looks.  

Type of Futility Boundary 
This option determines whether or not futility boundaries will be created, and if so, whether they 
are binding or non-binding. 

Futility boundaries are boundaries such that, if crossed at a given look, stop the study in favor of 
H0. 

Binding futility boundaries are computed in concert with significance boundaries. They are called 
binding because they require the stopping of a trial if they are crossed. If the trial is not stopped, 
the probability of a false positive will exceed alpha. 
When Non-binding futility boundaries are computed, the significance boundaries are first 
computed, ignoring the futility boundaries. The futility boundaries are then computed. These 
futility boundaries are non-binding because continuing the trial after they are crossed will not 
affect the overall probability of a false positive declaration.  

Number of Skipped Futility Looks 
In some trials it may be desirable to wait a number of looks before examining the trial for futility. 
This option allows the beta to begin being spent after a specified number of looks. 

The Number of Skipped Futility Looks should be less than the number of looks.  

Beta Spending Function 
Specify the type of beta spending function to use. 

The O'Brien-Fleming Analog spends very little beta at the beginning and much more at the final 
looks. The Pocock Analog and (Beta)(Time) spending functions spend beta more evenly across 
the looks. The Hwang-Shih-DeCani (C) (sometimes called the gamma family) spending functions 
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and (Beta)(Time^C) spending functions are flexible spending functions that can be used to spend 
more beta early or late or evenly, depending on the choice of C.  

C (Beta Spending) 
C is used to define the Hwang-Shih-DeCani (C) or (Beta)(Time^C) spending functions. 

For the Hwang-Shih-DeCani (C) spending function, negative values of C spend more of beta at 
later looks, values near 0 spend beta evenly, and positive values of C spend more of beta at earlier 
looks. 

For the (Beta)(Time^C) spending function, only positive values for C are permitted. Values of C 
near zero spend more of beta at earlier looks, values near 1 spend beta evenly, and larger values 
of C spend more of beta at later looks.  

Looks and Boundaries – Custom 
Specification 

Number of Looks 
This is the total number of looks of either type (significance or futility or both).  

Equally Spaced 
If this box is checked, the Accumulated Information boxes are ignored and the accumulated 
information is evenly spaced.  

Type of Futility Boundary 
This option determines whether or not futility boundaries will be created, and if so, whether they 
are binding or non-binding. 

Futility boundaries are boundaries such that, if crossed at a given look, stop the study in favor of 
H0. 

Binding futility boundaries are computed in concert with significance boundaries. They are called 
binding because they require the stopping of a trial if they are crossed. If the trial is not stopped, 
the probability of a false positive will exceed alpha. 
 

When Non-binding futility boundaries are computed, the significance boundaries are first 
computed, ignoring the futility boundaries. The futility boundaries are then computed. These 
futility boundaries are non-binding because continuing the trial after they are crossed will not 
affect the overall probability of a false positive declaration.  

Accumulated Information 
The accumulated information at each look defines the proportion or percent of the sample size 
that is used at that look. 

These values are accumulated information values so they must be increasing. 

Proportions, percents, or sample sizes may be entered. All proportions, percents, or sample sizes 
will be divided by the value at the final look to create an accumulated information proportion for 
each look.  

Percent of Alpha Spent 
This is the percent of the total alpha that is spent at the corresponding look. It is not the 
cumulative value. 
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Percents, proportions, or alphas may be entered here. Each of the values is divided by the sum of 
the values to obtain the proportion of alpha that is used at the corresponding look.  

Percent of Beta Spent 
This is the percent of the total beta (1-power) that is spent at the corresponding look. It is not the 
cumulative value. 

Percents, proportions, or betas may be entered here. Each of the values is divided by the sum of 
the values to obtain the proportion of beta that is used at the corresponding look.  

Enter Boundaries Tab 
The Data tab contains most of the parameters and options for the general setup of the procedure. 

Looks and Boundaries 

Number of Looks 
This is the total number of looks of either type (significance or futility or both).  

Equally Spaced 
If this box is checked, the Accumulated Information boxes are ignored and the accumulated 
information is evenly spaced.  

Types of Boundaries 
This option determines whether or not futility boundaries will be entered. 

Futility boundaries are boundaries such that, if crossed at a given look, stop the study in favor of 
H0.  

Accumulated Information 
The accumulated information at each look defines the proportion or percent of the sample size 
that is used at that look. 

These values are accumulated information values so they must be increasing. 

Proportions, percents, or sample sizes may be entered. All proportions, percents, or sample sizes 
will be divided by the value at the final look to create an accumulated information proportion for 
each look.  

Significance Boundary 
Enter the value of the significance boundary corresponding to the chosen test statistic. These are 
sometimes called efficacy boundaries.  

Futility Boundary 
Enter the value of the futility boundary corresponding to the chosen test statistic.  
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Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum N1 before the search for N1 is aborted. 

Since simulations for large sample sizes are very computationally intensive and hence time-
consuming, this value can be used to stop searches when N1 is larger than reasonable sample 
sizes for the study. 

This applies only when "Find (Solve For)" is set to N1. 

The procedure uses a binary search when searching for N1. If a value for N1 is tried that exceeds 
this value, and the power is not reached, a warning message will be shown on the output 
indicating the desired power was not reached. 

We recommend a value of at least 20000. 

Random Numbers 

Random Number Pool Size 
This is the size of the pool of random values from which the random samples will be drawn. 
Pools should be at least the maximum of 10,000 and twice the number of simulations. You can 
enter Automatic and an appropriate value will be calculated. 

If you do not want to draw numbers from a pool, enter 0 here. 

Matching Boundaries at Final Look 

Beta Search Increment 
For each simulation, when futility bounds are computed, the appropriate beta is found by 
searching from 0 to 1 by this increment. Smaller increments are more refined, but the search takes 
longer. 

We recommend 0.001 or 0.0001. 
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Example 1 – Power and Output 
A clinical trial is to be conducted over a two-year period to compare the mean response of a new 
treatment to that of the current treatment. The current response mean is 108. The researchers 
would like to determine if the new treatment is not inferior to the current treatment, as it has 
fewer side effects and is less expensive. The new treatment is considered non-inferior if it has a 
mean greater than 103. Although the researchers do not know the true mean of the new treatment, 
they would like to examine the power that is achieved if the mean of the new treatment is also 
108. The standard deviation for both groups is assumed to be 20. The sample size at the final look 
is to be 200 per group. Testing will be done at the 0.05 significance level. A total of five tests are 
going to be performed on the data as they are obtained. The O’Brien-Fleming (Analog) 
boundaries will be used 

Find the power and test boundaries assuming equal sample sizes per arm. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Non-Inferiority Tests for Two Means 
(Simulation) procedure window by expanding Means, then Two Independent Means, then 
clicking on Group-Sequential, and then clicking on Group-Sequential Non-Inferiority Tests 
for Two Means (Simulation). You may then make the appropriate entries as listed below, or 
open Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 200 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Mean1 (Control) ...................................... 108 
NIM .......................................................... 5 
Mean2 (Treatment | H1) .......................... 108 
S .............................................................. 20 
Higher Means Are ................................... Better 
Test Type ................................................ T-Test 
Simulations .............................................. 20000 

Looks and Boundaries Tab 
Specification of Looks and Boundaries ... Simple 
Number of Equally Spaced Looks ........... 5 
Alpha Spending Function ........................ O’Brien-Fleming Analog 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Scenario 1 Numeric Results for Group Sequential Test of Non-Inferiority 
Higher Means are Better 
Hypotheses: H0: Mean1 - Mean2 = NIM; H1: Mean1 - Mean2 < NIM 
Test Statistic: T-Test 
Alpha-Spending Function: O'Brien-Fleming Analog 
Beta-Spending Function: None 
Futility Boundary Type: None 
Number of Looks: 5 
Simulations: 20000 
Pool Size: 40000 
 
 
Numeric Summary for Scenario 1 
 
------------------ Power -------------------      -------------------------- Alpha ---------------------------- 
Value 95% LCL 95% UCL Target Actual 95% LCL 95% UCL Beta 
0.7938 0.7882 0.7994 0.0500 0.0500 0.0470 0.0530 0.2062 
 
                           ----- Average Sample Size ---- 
                           -- Given H0 --    -- Given H1 --     Non-Inf.                              Std 
N1 N2 Grp1 Grp2 Grp1 Grp2 Margin Mean1 Mean2 Dev    
200 200 198 198 158 158 5.0 108.0 108.0 20.0    
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis at one of the looks. It is the total proportion 
   of alternative hypothesis simulations that are outside the significance boundaries. 
Power 95% LCL and UCL are the lower and upper confidence limits for the power estimate. The width of the 
   interval is based on the number of simulations. 
Target Alpha is the user-specified probability of rejecting a true null hypothesis. It is the total alpha 
   spent. 
Actual Alpha is the alpha level that was actually achieved by the experiment. It is the total proportion of 
   the null hypothesis simulations that are outside the significance boundaries. 
Alpha 95% LCL and UCL are the lower and upper confidence limits for the actual alpha estimate. The width of 
   the interval is based on the number of simulations. 
Beta is the probability of accepting a false null hypothesis. It is the total proportion of alternative 
   hypothesis simulations that do not cross the significance boundaries. 
N1 and N2 are the sample sizes of each group if the study reaches the final look. 
Average Sample Size Given H0 Grp1 and Grp2 are the average or expected sample sizes of each group if H0 is 
   true. These are based on the proportion of null hypothesis simulations that cross the significance or 
   futility boundaries at each look. 
Average Sample Size Given H1 Grp1 and Grp2 are the average or expected sample sizes of each group if H1 is 
   true. These are based on the proportion of alternative hypothesis simulations that cross the significance 
   or futility boundaries at each look. 
Non-inferiority margin is the distance from the control mean that is still considered non-inferior. 
Mean1, Mean2, and Std Dev are the parameters that were set by the user to define the null and alternative 
   simulation distributions. 
 
Summary Statements 
Group sequential trials with group sample sizes of 200 and 200 at the final look achieve 78% 
power to detect a difference of 5.0 at the 0.0500 significance level (alpha) using a one-sided 
T-Test. 
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Accumulated Information Details for Scenario 1 
 
 Accumulated    
                    Information            -------- Accumulated Sample Size -------- 
Look Percent Group 1 Group 2 Total 
1 20.0 40 40 80 
2 40.0 80 80 160 
3 60.0 120 120 240 
4 80.0 160 160 320 
5 100.0 200 200 400 
 
Accumulated Information Details Definitions 
Look is the number of the look. 
Accumulated Information Percent is the percent of the sample size accumulated up to the corresponding look. 
Accumulated Sample Size Group 1 is total number of individuals in group 1 at the corresponding look. 
Accumulated Sample Size Group 2 is total number of individuals in group 2 at the corresponding look. 
Accumulated Sample Size Total is total number of individuals in the study (group 1 + group 2) at the 
   corresponding look. 
 
 
Boundaries for Scenario 1 
 
               -- Significance Boundary -- 
 T-Value P-Value 
Look Scale Scale 
1 -4.6117 0.0000 
2 -2.9561 0.0018 
3 -2.3362 0.0102 
4 -1.9639 0.0252 
5 -1.7773 0.0381 
 
 
Boundaries Definitions 
Look is the number of the look. 
Significance Boundary T-Value Scale is the value such that statistics outside this boundary at the 
   corresponding look indicate termination of the study and rejection of the null hypothesis. They are 
   sometimes called efficacy boundaries. 
Significance Boundary P-Value Scale is the value such that P-Values outside this boundary at the corresponding 
   look indicate termination of the study and rejection of the null hypothesis. This P-Value corresponds to 
   the T-Value Boundary and is sometimes called the nominal alpha. 
 
 
Boundary Plot 
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Boundary Plot - P-Value 
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Significance Boundaries with 95% Simulation Confidence Intervals for Scenario 1 
 
                  --------- T-Value Boundary ---------    --------- P-Value Boundary --------- 
Look Value 95% LCL 95% UCL Value 95% LCL 95% UCL 
1 -4.6117   0.0000   
2 -2.9561 -3.1336 -2.8627 0.0018 0.0010 0.0024 
3 -2.3362 -2.4246 -2.2891 0.0102 0.0080 0.0115 
4 -1.9639 -1.9969 -1.9248 0.0252 0.0233 0.0276 
5 -1.7773 -1.8062 -1.7478 0.0381 0.0358 0.0406 
 
 
Significance Boundary Confidence Limit Definitions 
Look is the number of the look. 
Look is the number of the look. 
T-Value Boundary Value is the value such that statistics outside this boundary at the corresponding look 
   indicate termination of the study and rejection of the null hypothesis. They are sometimes called efficacy 
   boundaries. 
P-Value Boundary Value is the value such that P-Values outside this boundary at the corresponding look 
   indicate termination of the study and rejection of the null hypothesis. This P-Value corresponds to the 
   T-Value Boundary and is sometimes called the nominal alpha. 
95% LCL and UCL are the lower and upper confidence limits for the boundary at the given look. The width of the 
   interval is based on the number of simulations. 
 
Alpha-Spending and Null Hypothesis Simulation Details for Scenario 1 
 
                                                         --------- Target ---------   --------- Actual ----------  Proportion          Cum. 
    Cum.   H1 Sims H1 Sims 
 --- Signif. Boundary--- Spending Spending  Cum. Outside Outside 
 T-Value P-Value Function Function Alpha Alpha Signif. Signif. 
Look Scale Scale Alpha Alpha Spent Spent Boundary Boundary 
1 -4.6117 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0007 
2 -2.9561 0.0018 0.0019 0.0019 0.0020 0.0020 0.0856 0.0862 
3 -2.3362 0.0102 0.0095 0.0114 0.0095 0.0114 0.2593 0.3455 
4 -1.9639 0.0252 0.0170 0.0284 0.0171 0.0285 0.2699 0.6154 
5 -1.7773 0.0381 0.0216 0.0500 0.0216 0.0500 0.1630 0.7783 
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Alpha-Spending Details Definitions 
Look is the number of the look. 
Significance Boundary T-Value Scale is the value such that statistics outside this boundary at the 
   corresponding look indicate termination of the study and rejection of the null hypothesis. They are 
   sometimes called efficacy boundaries. 
Significance Boundary P-Value Scale is the value such that P-Values outside this boundary at the corresponding 
   look indicate termination of the study and rejection of the null hypothesis. This P-Value corresponds to 
   the Significance T-Value Boundary and is sometimes called the nominal alpha. 
Spending Function Alpha is the intended portion of alpha allocated to the particular look based on the 
   alpha-spending function. 
Cumulative Spending Function Alpha is the intended accumulated alpha allocated to the particular look. It is 
   the sum of the Spending Function Alpha up to the corresponding look. 
Alpha Spent is the proportion of the null hypothesis simulations resulting in statistics outside the 
   Significance Boundary at this look. 
Cumulative Alpha Spent is the proportion of the null hypothesis simulations resulting in Significance Boundary 
   termination up to and including this look. It is the sum of the Alpha Spent up to the corresponding look. 
Proportion H1 Sims Outside Significance Boundary is the proportion of the alternative hypothesis simulations 
   resulting in statistics outside the Significance Boundary at this look. It may be thought of as the 
   incremental power. 
Cumulative H1 Sims Outside Significance Boundary is the proportion of the alternative hypothesis simulations 
   resulting in Significance Boundary termination up to and including this look. It is the sum of the 
   Proportion H1 Sims Outside Significance Boundary up to the corresponding look. 
 
Run Time: 48.00 seconds. 
 

The values obtained from any given run of this example will vary slightly due to the variation in 
simulations. 

Example 2 – Power for One-Sided Test with Futility 
Boundaries 
Suppose researchers would like to compare two treatments with a non-inferiority test at each 
look. Further, suppose they would like to terminate the study early when it can be deemed highly 
unlikely that the new treatment is non-inferior to the standard. Suppose the control group mean is 
108. The researchers wish to know the power of the test if the treatment group mean is also 108. 
The sample size at the final look is to be 200 per group. Testing will be done at the 0.05 
significance level. A total of five tests are going to be performed on the data as they are obtained. 
The O’Brien-Fleming (Analog) boundaries will be used for both significance and futility 
boundaries.  

Find the power and test boundaries assuming equal sample sizes per arm. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Non-Inferiority Tests for Two Means 
(Simulation) procedure window by expanding Means, then Two Independent Means, then 
clicking on Group-Sequential, and then clicking on Group-Sequential Non-Inferiority Tests 
for Two Means (Simulation). You may then make the appropriate entries as listed below, or 
open Example 2 by going to the File menu and choosing Open Example Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N1 (Sample Size Group 1) ...................... 200 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Mean1 (Control) ...................................... 108 
NIM .......................................................... 5 
Mean2 (Treatment | H1) .......................... 108 
S .............................................................. 20 
Higher Means Are ................................... Better 
Test Type ................................................ T-Test 
Simulations .............................................. 20000 

Looks and Boundaries Tab 
Specification of Looks and Boundaries ... Simple 
Number of Equally Spaced Looks ........... 5 
Alpha Spending Function ........................ O’Brien-Fleming Analog 
Type of Futility Boundary ........................ Non-Binding 
Number of Skipped Futility Looks ........... 0 
Beta Spending Function .......................... O’Brien-Fleming Analog 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Scenario 1 Numeric Results for Group Sequential Test of Non-Inferiority  
Higher Means are Better 
Hypotheses: H0: Mean1 - Mean2 = NIM; H1: Mean1 - Mean2 < NIM 
Test Statistic: T-Test 
Alpha-Spending Function: O'Brien-Fleming Analog 
Beta-Spending Function: O'Brien-Fleming Analog 
Futility Boundary Type: Non-binding 
Number of Looks: 5 
Simulations: 20000 
Pool Size: 40000 
 
 
Numeric Summary for Scenario 1 
 
------------------ Power -------------------      -------------------------- Alpha ---------------------------- 
Value 95% LCL 95% UCL Target Actual 95% LCL 95% UCL Beta 
0.7305 0.7244 0.7366 0.0500 0.0406 0.0379 0.0433 0.2695 
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                           ----- Average Sample Size ---- 
                           -- Given H0 --    -- Given H1 --     Non-Inf.                              Std 
N1 N2 Grp1 Grp2 Grp1 Grp2 Margin Mean1 Mean2 Dev    
200 200 101 101 139 139 5.0 108.0 108.0 20.0    
 
Accumulated Information Details for Scenario 1 
 
 Accumulated    
                    Information            -------- Accumulated Sample Size -------- 
Look Percent Group 1 Group 2 Total 
1 20.0 40 40 80 
2 40.0 80 80 160 
3 60.0 120 120 240 
4 80.0 160 160 320 
5 100.0 200 200 400 
 
 
Boundaries for Scenario 1 
 
               -- Significance Boundary --       ----- Futility Boundary ----- 

 T-Value P-Value T-Value P-Value 
Look Scale Scale Scale Scale 
1 -3.7891 0.0001 1.0859 0.8596 
2 -2.9619 0.0018 -0.1501 0.4404 
3 -2.3396 0.0101 -0.8176 0.2072 
4 -1.9647 0.0252 -1.2866 0.0996 
5 -1.7319 0.0420 -1.7319 0.0420 
 

 
Boundary Plot 
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Boundary Plot - P-Value 
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Significance Boundaries with 95% Simulation Confidence Intervals for Scenario 1 
 
                  --------- T-Value Boundary ---------    --------- P-Value Boundary --------- 
Look Value 95% LCL 95% UCL Value 95% LCL 95% UCL 
1 -3.7891   0.0001   
2 -2.9619 -3.1283 -2.8905 0.0018 0.0010 0.0022 
3 -2.3396 -2.3970 -2.2897 0.0101 0.0087 0.0115 
4 -1.9647 -2.0082 -1.9309 0.0252 0.0227 0.0272 
5 -1.7319 -1.7635 -1.7055 0.0420 0.0393 0.0444 
 
 
Futility Boundaries with 95% Simulation Confidence Intervals for Scenario 1 
 
                  --------- T-Value Boundary ---------    --------- P-Value Boundary --------- 
Look Value 95% LCL 95% UCL Value 95% LCL 95% UCL 
1 1.0859 1.0468 1.1278 0.8596   
2 -0.1501 -0.1696 -0.1269 0.4404 0.4328 0.4496 
3 -0.8176 -0.8403 -0.7962 0.2072 0.2008 0.2134 
4 -1.2866 -1.3064 -1.2633 0.0996 0.0962 0.1037 
5 -1.7319 -1.7582 -1.7175 0.0420 0.0397 0.0433 
 
 
Alpha-Spending and Null Hypothesis Simulation Details for Scenario 1 
 
                                                         --------- Target ---------   --------- Actual ----------  Proportion          Cum. 
    Cum.   H0 Sims H0 Sims 
 --- Signif. Boundary--- Spending Spending  Cum. Outside Outside 
 T-Value P-Value Function Function Alpha Alpha Futility Futility 
Look Scale Scale Alpha Alpha Spent Spent Boundary Boundary 
1 -3.7891 0.0001 0.0000 0.0000 0.0000 0.0000 0.1432 0.1432 
2 -2.9619 0.0018 0.0019 0.0019 0.0020 0.0020 0.4281 0.5713 
3 -2.3396 0.0101 0.0095 0.0114 0.0095 0.0114 0.2424 0.8137 
4 -1.9647 0.0252 0.0170 0.0284 0.0165 0.0279 0.1016 0.9153 
5 -1.7319 0.0420 0.0216 0.0500 0.0128 0.0406 0.0442 0.9594 



Group-Sequential Non-Inferiority Tests for Two Means (Simulation)  478-25 

 
Beta-Spending and Alternative Hypothesis Simulation Details for Scenario 1 
 
                                                         --------- Target ---------   --------- Actual ----------  Proportion          Cum. 
    Cum.   H1 Sims H1 Sims 
 -- Futility  Boundary-- Spending Spending  Cum. Outside Outside 
 T-Value P-Value Function Function Beta Beta Signif. Signif. 
Look Scale Scale Beta Beta Spent Spent Boundary Boundary 
1 1.0859 0.8596 0.0136 0.0136 0.0137 0.0137 0.0052 0.0052 
2 -0.1501 0.4404 0.0675 0.0811 0.0675 0.0812 0.0821 0.0873 
3 -0.8176 0.2072 0.0733 0.1544 0.0733 0.1545 0.2567 0.3439 
4 -1.2866 0.0996 0.0630 0.2175 0.0631 0.2175 0.2674 0.6113 
5 -1.7319 0.0420 0.0525 0.2700 0.0520 0.2695 0.1193 0.7305 
 
Run Time: 54.05 seconds. 
 

The values obtained from any given run of this example will vary slightly due to the variation in 
simulations. 

Example 3 – Enter Boundaries 
With a set-up similar to Example 2, suppose we wish to investigate the properties of a set of 
significance (-3, -3, -3, -2, -1) and futility (2, 1, 0, 0, -1) boundaries. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Non-Inferiority Tests for Two Means 
(Simulation) procedure window by expanding Means, then Two Independent Means, then 
clicking on Group-Sequential, and then clicking on Group-Sequential Non-Inferiority Tests 
for Two Means (Simulation). You may then make the appropriate entries as listed below, or 
open Example 3 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Alpha and Power (Enter Boundaries) 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... Ignored since this is the Find setting 
N1 (Sample Size Group 1) ...................... 200 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Mean1 (Control) ...................................... 108 
NIM .......................................................... 5 
Mean2 (Treatment | H1) .......................... 108 
S .............................................................. 20 
Higher Means Are ................................... Better 
Test Type ................................................ T-Test 
Simulations .............................................. 20000 
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Enter Boundaries Tab 
Number of Looks ..................................... 5 
Types of Boundaries ............................... Significance and Futility Boundaries 
Significance Boundary ............................ -3 -3 -3 -2 -1 (for looks 1 through 5) 
Futility Boundary ..................................... 2 1 0 0 -1 (for looks 1 through 5) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Scenario 1 Numeric Results for Group Sequential Test of Non-Inferiority 
Higher Means are Better 
Hypotheses: H0: Mean1 - Mean2 = NIM; H1: Mean1 - Mean2 < NIM 
Test Statistic: T-Test 
Type of Boundaries: Significance and Futility Boundaries 
Number of Looks: 5 
Simulations: 20000 
Pool Size: 40000 
 
 
Numeric Summary for Scenario 1 
 
------------------ Power -------------------      -------------------------- Alpha ---------------------------- 
Value 95% LCL 95% UCL Value 95% LCL 95% UCL Beta 
0.9244 0.9207 0.9281 0.1544 0.1493 0.1594 0.0756 
 
 
                           ----- Average Sample Size ---- 
                           -- Given H0 --    -- Given H1 --     Non-Inf.                              Std 
N1 N2 Grp1 Grp2 Grp1 Grp2 Margin Mean1 Mean2 Dev    
200 200 147 147 162 162 5.0 108.0 108.0 20.0    
 

 
Accumulated Information Details for Scenario 1 
 
 Accumulated    
                    Information            -------- Accumulated Sample Size -------- 
Look Percent Group 1 Group 2 Total 
1 20.0 40 40 80 
2 40.0 80 80 160 
3 60.0 120 120 240 
4 80.0 160 160 320 
5 100.0 200 200 400 
 
 
Boundaries for Scenario 1 
 
               -- Significance Boundary --       ----- Futility Boundary ----- 

 T-Value P-Value T-Value P-Value 
Look Scale Scale Scale Scale 
1 -3.0000 0.0018 2.0000 0.9755 
2 -3.0000 0.0016 1.0000 0.8406 
3 -3.0000 0.0015 0.0000 0.5000 
4 -2.0000 0.0232 0.0000 0.5000 
5 -1.0000 0.1590 -1.0000 0.1590 
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Boundary Plot 
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Boundary Plot - P-Value 
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Alpha-Spending and Null Hypothesis Simulation Details for Scenario 1 
 
     Proportion Cum. 
     H0 Sims H0 Sims 
 --- Signif. Boundary---  Cum. Outside Outside 
 T-Value P-Value Alpha Alpha Futility Futility 
Look Scale Scale Spent Spent Boundary Boundary 
1 -3.0000 0.0018 0.0020 0.0020 0.0226 0.0226 
2 -3.0000 0.0016 0.0011 0.0030 0.1412 0.1638 
3 -3.0000 0.0015 0.0008 0.0038 0.3429 0.5067 
4 -2.0000 0.0232 0.0241 0.0279 0.0796 0.5862 
5 -1.0000 0.1590 0.1265 0.1544 0.2595 0.8457 
 
 
Beta-Spending and Alternative Hypothesis Simulation Details for Scenario 1 
 
     Proportion Cum. 
     H1 Sims H1 Sims 
 -- Futility  Boundary--  Cum. Outside Outside 
 T-Value P-Value Beta Beta Signif. Signif. 
Look Scale Scale Spent Spent Boundary Boundary 
1 2.0000 0.9755 0.0011 0.0011 0.0334 0.0334 
2 1.0000 0.8406 0.0040 0.0051 0.0618 0.0951 
3 0.0000 0.5000 0.0226 0.0277 0.0779 0.1730 
4 0.0000 0.5000 0.0033 0.0310 0.4180 0.5910 
5 -1.0000 0.1590 0.0446 0.0756 0.3334 0.9244 
 
Run Time: 46.81 seconds. 
 

The values obtained from any given run of this example will vary slightly due to the variation in 
simulations. 

Example 4 – Validation Using Simulation 
With a set-up similar to Example 1, we examine the power and alpha generated by the set of two-
sided significance boundaries (-4.6117, -2.9561, -2.3362, -1.9639, -1.7773).  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group-Sequential Non-Inferiority Tests for Two Means 
(Simulation) procedure window by expanding Means, then Two Independent Means, then 
clicking on Group-Sequential, and then clicking on Group-Sequential Non-Inferiority Tests 
for Two Means (Simulation). You may then make the appropriate entries as listed below, or 
open Example 4 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Alpha and Power (Enter Boundaries) 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... Ignored since this is the Find setting 
N1 (Sample Size Group 1) ...................... 200 
N2 (Sample Size Group 2) ...................... Use R 
R (Allocation Ratio) ................................. 1.0 
Mean1 (Control) ...................................... 108 
NIM .......................................................... 5 
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Mean2 (Treatment | H1) .......................... 108 
S .............................................................. 20 
Higher Means Are ................................... Better 
Test Type ................................................ T-Test 
Simulations .............................................. 20000 

Enter Boundaries Tab 
Number of Looks ..................................... 5 
Types of Boundaries ............................... Significance Boundaries 
Significance Boundary ............................  -4.6117, -2.9561, -2.3362, -1.9639, -1.7773 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Scenario 1 Numeric Results for Group Sequential Test of Non-Inferiority 
Higher Means are Better 
Hypotheses: H0: Mean1 - Mean2 = NIM; H1: Mean1 - Mean2 < NIM 
Test Statistic: T-Test 
Type of Boundaries: Significance Boundaries Only 
Number of Looks: 5 
Simulations: 20000 
Pool Size: 40000 
 
 
Numeric Summary for Scenario 1 
 
------------------ Power -------------------      -------------------------- Alpha ---------------------------- 
Value 95% LCL 95% UCL Value 95% LCL 95% UCL Beta 
0.7851 0.7794 0.7907 0.0458 0.0429 0.0487 0.2150 
 
                           ----- Average Sample Size ---- 
                           -- Given H0 --    -- Given H1 --     Non-Inf.                              Std 
N1 N2 Grp1 Grp2 Grp1 Grp2 Margin Mean1 Mean2 Dev    
200 200 198 198 157 157 5.0 108.0 108.0 20.0    
 
Run Time: 44.14 seconds. 
 

The values obtained from any given run of this example will vary slightly due to the variation in 
simulations. The power and alpha generated with these boundaries are very close to the values of 
Example 1. 
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Chapter 480 

Inequality Tests 
for Two Means in a 
Cluster-
Randomized 
Design 
Introduction 
Cluster Randomization refers to the situation in which the means of two groups, made up of M 
clusters of N individuals each, are to be tested using a modified t test. In this case, the basic 
experimental unit is a cluster instead of an individual.  

Technical Details 
Our formulation comes from Donner and Klar (1996). Denote an observation by where i = 
1,2 is the group, j = 1,2,…,M is a cluster in group i, and k = 1,2,…N is an individual in cluster j of 
group i. Each cluster mean,

Xijk

Xij , has a population mean ofμi  and variance  

( ) ( )[ ]Var X
N

Ni =
⎛
⎝
⎜

⎞
⎠
⎟ + −

σ ρ
2

1 1  

where  is the variance of  and σ 2 Xijk ρ  is the intracluster correlation coefficient. This correlation 
made be thought of as the simple correlation between any two observations on the same individual. 
It may also be thought of as the proportion of total variance in the observations that can be 
attributed to difference between clusters. 
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The power for the two-sided, two-sample t test using the above formulation is calculated by 

Power P t t df P t t df= − ≤ + ≤ −1 2 2( , , ) ( , ,/ /α α )λ λ  

where  

df = 2(M-1) 

( )( )[ ]
λ

ρ
=

+ −

d

N MN2 1 1
1 2

/ ( )
/  

d =
−μ μ
σ

1 2  

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are D, S, M, N, Alpha, and Power and Beta.  

Under most situations, you will select either Power and Beta to calculate power or N to calculate 
sample size. 

Note that the value selected here always appears as the vertical axis on the charts. 

The program is set up to evaluate power directly. For the other parameters, a search is made using 
an iterative procedure until an appropriate value is found.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 
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If your only interest is in determining the appropriate sample size for a confidence interval, set 
beta to 0.5. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

M (Number of Clusters) 
Enter a value (or range of values) for the number of clusters, M, per group. 

You may enter a range of values such as 2,4,6 or 2 to 12 by 2. 

N (Individuals Per Cluster) 
Enter a value (or range of values) for the number of individuals, N, per cluster. 

You may enter a range of values such as 100,200,300 or 100 to 300 by 50. 

Effect Size – Mean Difference 

D (Difference Between Means) 
This is the absolute value of the difference between the two group means. This value, divided by 
the standard deviation, becomes the effect size. 

Effect Size – Standard Deviation 

S (Standard Deviation) 
Enter a value (or range of values) for the standard deviation. This value is only used as the divisor 
of the effect size. Hence, if you do not know the standard deviation, you can enter a one here and 
use effect size units for D, the difference.  

Remember, this is the standard deviation that occurs when the same individual is measured over 
and over. 

Effect Size – Intracluster Correlation 

R (Intracluster Correlation) 
Enter a value (or range of values) for the intracluster correlation. This correlation made be thought 
of as the simple correlation between any two observations on the same individual. It may also be 
thought of as the proportion of total variance in the observations that can be attributed to difference 
between clusters.  

Although the actual range for this value is from zero to one, typical values range from 0.002 to 
0.010. 
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Test 

Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. A two-sided hypothesis states that the values 
are not equal without specifying which is greater. If you do not have any special reason to do 
otherwise, you should use the two-sided option.  

When a two-sided hypothesis is selected, the value of alpha is split in half. Everything else 
remains the same.  

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Calculating Power 
Suppose that a study is to be conducted in which D = 0.2; S = 1.0; R = 0.01; M = 6; Alpha = 0.01, 
0.05; and N = 50 to 300 by 50 and beta is to be calculated.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a Cluster-Randomized Design 
procedure window by expanding Means, then Two Independent Means, then clicking on Test 
(Inequality), and then clicking on Tests for Two Means in a Cluster-Randomized Design. You 
may then make the appropriate entries as listed below, or open Example 1 by going to the File 
menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find parameter 
Alpha ....................................................... 0.01 0.05 
M (Number of Clusters) ........................... 6 
N (Individuals Per Cluster) ...................... 50 to 300 by 50 
D (Difference Between Means) ............... 0.2 
S (Standard Deviation) ............................ 1.0 
R (Intracluster Correlation) ...................... 0.01 
Alternative Hypothesis ............................ Two-Sided 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Test 
 M N  R S 
 Number of Individuals D Intracluster Standard 
Power Clusters Per Clusters Difference Correlation  Deviation Alpha Beta 
0.18754 6 50 0.200 0.01000 1.000 0.01000 0.81246  
0.44200 6 50 0.200 0.01000 1.000 0.05000 0.55800  
0.30320 6 100 0.200 0.01000 1.000 0.01000 0.69680  
0.60128 6 100 0.200 0.01000 1.000 0.05000 0.39872  
0.37332 6 150 0.200 0.01000 1.000 0.01000 0.62668  
0.67912 6 150 0.200 0.01000 1.000 0.05000 0.32088  
0.41910 6 200 0.200 0.01000 1.000 0.01000 0.58090  
0.72389 6 200 0.200 0.01000 1.000 0.05000 0.27611  
0.45101 6 250 0.200 0.01000 1.000 0.01000 0.54899  
0.75259 6 250 0.200 0.01000 1.000 0.05000 0.24741  
0.47443 6 300 0.200 0.01000 1.000 0.01000 0.52557  
0.77242 6 300 0.200 0.01000 1.000 0.05000 0.22758 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
M is the number of clusters per group. There are two groups. 
N is the number of individuals per cluster. 
D is difference between the group means. 
R is intracluster correlation. 
S is standard deviation within an individual. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
 
Summary Statements 
A sample size of 6 clusters per group with 50 individuals per cluster achieves 19% power to 
detect a difference of 0.200 between the group means when the standard deviation is 1.000 and 
the intracluster correlation is 0.01000 using a two-sided T-test with a significance level of 
0.01000. 
 

This report shows the power for each of the scenarios.  

Plots Section 
 

  
 

This plot shows the power versus the cluster size for the two alpha values. 



480-6  Inequality Tests for Two Means in a Cluster-Randomized Design 

Example 2 – Validation using Donner and Klar 
Donner and Klar (1996) page 436 provide a table in which several power values are calculated. 
When alpha is 0.05, D is 0.2, R is 0.001, S is 1.0, and M is 3, they calculate a power of 0.43 for an 
N of 100, 0.79 for an N of 300, and 0.91 for an N of 500.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a Cluster-Randomized Design 
procedure window by expanding Means, then Two Independent Means, then clicking on Test 
(Inequality), and then clicking on Tests for Two Means in a Cluster-Randomized Design. You 
may then make the appropriate entries as listed below, or open Example 2 by going to the File 
menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find parameter 
Alpha ....................................................... 0.05 
M (Number of Clusters) ........................... 3 
N (Individuals Per Cluster) ...................... 100 300 500 
D (Difference Between Means) ............... 0.2 
S (Standard Deviation) ............................ 1.0 
R (Intracluster Correlation) ...................... 0.001 
Alternative Hypothesis ............................ Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Test 
 M N  R S 
 Number of Individuals D Intracluster Standard 
Power Clusters Per Clusters Difference Correlation  Deviation Alpha Beta 
0.43008 3 100 0.200 0.00100 1.000 0.05000 0.56992  
0.79236 3 300 0.200 0.00100 1.000 0.05000 0.20764  
0.90905 3 500 0.200 0.00100 1.000 0.05000 0.09095 
 

As you can see, PASS has calculated the same power values as Donner and Klar (1996).  
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Chapter 485 

Inequality Tests 
for Paired Means  
Introduction 
The one-sample paired t-test may be used to test whether the mean difference of two populations is 
greater than, less than, or not equal to a specific value. Because the t distribution is used to calculate 
critical values for the test, this test is often called the paired t-test. If the standard deviation of the 
differences is known, the normal distribution is used instead of the t distribution and the test is 
officially known as the z test. 

This module also calculates the power of the nonparametric analog of the t-test, the Wilcoxon test.  

Test Procedure 
1.  Find the critical value. Assume that the true mean difference is D0. Choose a value Ta  so 

that the probability of rejecting H0  when H0  is true is equal to a specified value called α . 
Using the t distribution, select Ta  so that ( )Pr t Ta> = α . This value is found using a t 
probability table or a computer program (like PASS).  

2. Select a sample of n items from the population and compute the t statistic. Call this 
value T. If T  reject the null hypothesis that the mean equals D0 in favor of an 
alternative hypothesis that the mean equals D1 where D1 > D0.  

Ta>

Following is a specific example. Suppose we want to test the hypothesis that a variable, X, which is 
made up of paired differences, has a mean of 0 versus the alternative hypothesis that the mean is 
greater than 0. Suppose that previous studies have shown that the standard deviation of the paired 
differences, σ , is 40. A random sample of 100 pairs is used.  

We first compute the critical value, T . The value of  that yields a Ta α  = 0.05 is 6.6. If the paired 
difference mean computed from a sample is greater than 6.6, reject the hypothesis that the mean is 
0. Otherwise, do not reject the hypothesis. We call the region greater than 6.6 the Rejection Region 
and values less than or equal to 6.6 the Acceptance Region of the significance test. 
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Now suppose that you want to compute the power of this testing procedure. In order to compute 
the power, we must specify an alternative 
value for the mean. We decide to compute 
the power if the true mean difference were 
10. Figure 2 shows how to compute the 
power in this case. 

Figure 1 - Finding Alpha 

 

The power is the probability of rejecting  
when the true mean is 10. Since we reject 

 when the calculated mean is greater than 
6.6, the probability of a Type-II error (called 

H0

H0

β ) is given by the dark, shaded area of the 
second graph. This value is 0.196. The 
power is equal to 1 - β  or 0.804. 

 

 

 

 

Note that there are six parameters that may 
be varied in this situation: two means, 
standard deviation, alpha, beta, and the 
sample size. 

Figure 2 - Finding Beta 
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Assumptions 
This section describes the assumptions that are made when you use one of these tests. The key 
assumption relates to normality or non-normality of the data. One of the reasons for the 
popularity of the t-test is its robustness in the face of assumption violation. However, if the 
assumptions are not met, the significance levels and the power of the t-test may be invalidated. 
Unfortunately, in practice it often happens that several assumptions are not met. Take the steps to 
check the assumptions before you make important decisions based on these tests. 

Paired T-Test Assumptions 
The assumptions of the paired t-test are:  

1. The data are continuous (not discrete). 

2. The data, i.e., the differences for the matched-pairs, follow a normal probability 
distribution. 

3. The sample of pairs is a simple random sample from its population. Each individual in 
the population has an equal probability of being selected in the sample.  

Wilcoxon Signed-Rank Test Assumptions 
The assumptions of the Wilcoxon signed-rank test are as follows (note that the difference is 
between a data value and the hypothesized median or between the two data values of a pair):  

1. The differences are continuous (not discrete). 

2. The distribution of each difference is symmetric. 

3. The differences are mutually independent. 

4. The differences all have the same median. 

5. The measurement scale is at least interval. 

Limitations 
There are few limitations when using these tests. Sample sizes may range from a few to several 
hundred. If your data are discrete with at least five unique values, you can often ignore the 
continuous variable assumption. Perhaps the greatest restriction is that your data come from a 
random sample of the population. If you do not have a random sample, your significance levels 
will probably be incorrect. 
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Technical Details 

Standard Deviation Known 
When the standard deviation is known, the power is calculated as follows for a directional 
alternative (one-tailed test) in which D1 > D0.  

1. Find zα  such that , where ( )1− =Φ zα α ( )Φ x  is the area under the standardized normal 
curve to the left of x. 

2. Calculate: 
n

z+D=x 0a
σ

α . 

3. Calculate: 

n

M-x=z a
a σ

1
. 

4. Power = . ( )1− Φ za

Standard Deviation Unknown 
When the standard deviation is unknown, the power is calculated as follows for a directional 
alternative (one-tailed test) in which D1 > D0.  

1. Find tα  such that , where ( )1− =T tdf α α ( )T tdf α  is the area under a central-t curve to 
the left of x and df = n - 1. 

2. Calculate: .
n

t+D=x 0a
σ

α  

3. Calculate the noncentrality parameter: .

n

D-D=a σλ
01

 

4. Calculate: .+

n

D-x=t a
a

a λσ
1

 

5. Calculate: Power = , where ( )1− ′T tdf a,λ ( )′T xdf ,λ  is the area under a noncentral-t curve 
with degrees of freedom df and noncentrality parameter λ  to the left of x. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Power and Beta or N. 

Select N when you want to determine the sample size needed to achieve a given power and alpha 
error level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  
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Sample Size 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of pairs in the study. This 
value must be an integer greater than one. Note that you may enter a list of values using the 
syntax 50 100 150 200 250 or 50 to 250 by 50.  

Effect Size – Means 

Mean of Paired Differences (Alternative) 
Enter a value (or range of values) for the mean of paired differences under the alternative 
hypothesis. This value indicates the minimum detectible difference for the corresponding power 
and sample size. 

Effect Size – Standard Deviation 

S (Standard Deviation of Paired Differences) 
Enter an estimate of the standard deviation of paired differences (must be positive). 

Use results from a previous (or pilot) study or the range divided by 5. 

You can enter a range of values such as 1 2 3 or 1 to 10 by 1. 

Press the Estimator button to load the Standard Deviation Estimator window. 

Known Standard Deviation 
This option specifies whether the standard deviation (sigma) is known or unknown. In almost all 
experimental situations, the standard deviation is not known. However, great calculation 
efficiencies are obtained if the standard deviation is assumed to be known.  

When this box is checked, the program performs its calculations assuming that the standard 
deviation is known. This results in the use of the normal distribution in all probability 
calculations. Calculations using this option will be much faster than for the unknown standard 
deviation case. The results for either case will be close when the sample size is over 30. 

When this box is not checked, the program assumes that the standard deviation is not known and 
will be estimated from the data when the t-test is run. This results in probability calculations 
using the noncentral-t distribution. This distribution requires a lot more calculations than does the 
normal distribution. 

The calculation speed comes into play whenever the Find option is set to something besides Beta. 
In these cases, the program uses a special searching algorithm which requires numerous 
iterations. You will note a real difference in calculation speed depending on whether this option is 
checked. 

A reasonable strategy would be to leave this option checked while you are experimenting with the 
parameters and then turn it off when you are ready for your final results. 
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Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always : Mean of Paired Differences = 0. H0

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical.  

Possible selections are: 

• Ha: Mean of Paired Diffs <> 0 
This is the most common selection. It yields the two-tailed t-test. Use this option when you 
are testing whether the means are different but you do not want to specify beforehand which 
mean is larger. Many scientific journals require two-tailed tests. 

• Ha: Mean of Paired Diffs < 0 
This option yields a one-tailed t-test.  

• Ha: Mean of Paired Diffs > 0 
This options yields a one-tailed t-test.  

Nonparametric Adjustment 
This option makes appropriate sample size adjustments for the Wilcoxon test. Results by Al-
Sunduqchi and Guenther (1990) indicate that power calculations for the Wilcoxon test may be 
made using the standard t-test formulations with a simple adjustment to the sample size. The size 
of the adjustment depends upon the actual distribution of the data. They give sample size 
adjustment factors for four distributions. These are 1 for the uniform distribution, 2/3 for the 
double exponential distribution, 9  for the logistic distribution, and 2/ π π / 3  for the normal 
distribution.  

The options are as follows: 

• Ignore 
Do not make a Wilcoxon adjustment. This indicates that you want to analyze a t-test, not the 
Wilcoxon test. 

• Uniform 
Make the Wilcoxon sample size adjustment assuming the uniform distribution. Since the 
factor is one, this option performs the same as Ignore. It is included for completeness. 

• Double Exponential 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the double 
exponential distribution. 

• Logistic 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the logistic 
distribution. 
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• Normal 
Make the Wilcoxon sample size adjustment assuming that the data actually follow the normal 
distribution. 

Population Size 
This is the number of subjects in the population. Usually, you assume that samples are drawn 
from a very large (infinite) population. Occasionally, however, situations arise in which the 
population of interest is of limited size. In these cases, appropriate adjustments must be made. 

When a finite population size is specified, the standard deviation is reduced according to the 
formula:  

σ σ1
2 21= n

N
−⎛

⎝⎜
⎞
⎠⎟

 

where n is the sample size, N is the population size, σ  is the original standard deviation, and σ1  
is the new standard deviation.  

The quantity n/N is often called the sampling fraction. The quantity 1−⎛
⎝⎜

⎞
⎠⎟

n
N

 is called the finite 

population correction factor. 

Example 1 – Paired T-Test 
Usually, a researcher designs a study to compare two or more groups of subjects, so the one 
sample case described in this chapter occurs infrequently. However, there is a popular research 
design that does lead to the single mean test: paired observations.  

For example, suppose researchers want to study the impact of an exercise program on the 
individual’s weight. To do so they randomly select N individuals, weigh them, put them through 
the exercise program, and weigh them again. The variable of interest is not their actual weight, 
but how much their weight changed.  

In this design, the data are analyzed using a one-sample t-test on the differences between the 
paired observations. The null hypothesis is that the average difference is zero. The alternative 
hypothesis is that the average difference is some nonzero value. 

To study the impact of an exercise program on weight loss, the researchers decide to conduct a 
study that will be analyzed using the paired t-test. A sample of individuals will be weighed before 
and after a specified exercise program that will last three months. The difference in their weights 
will be analyzed. 

Past experiments of this type have had standard deviations in the range of 10 to 15 pounds. The 
researcher wants to detect a difference of 5 pounds or more. Alpha values of 0.01 and 0.05 will be 
tried. Beta is set to 0.20 so that the power is 80%. How large of a sample must the researchers 
take? 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for One Mean procedure window by expanding Means, 
then One Mean, then clicking on Test (Inequality), and then clicking on Tests for One Mean. 
You may then make the appropriate entries as listed below, or open Example 4 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.80 
Alpha ....................................................... 0.01 0.05 
N (Sample Size) ...................................... Ignored since this is the Find setting. 
Mean of Paired Diffs (Alternative) ........... -5 
S (SD of Paired Differences) ................... 10 12.5 15 
Known Standard Deviation ..................... Not checked 
Alternative Hypothesis ............................ Ha: Mean of Paired Diffs ≠ 0 
Nonparametric Adjustment ..................... Ignore 
Population Size ....................................... Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results for Paired T-Test 
Null Hypothesis: Mean of Paired Differences = 0, Alternative Hypothesis: Mean of Paired Differences ≠ 0 
Unknown standard deviation. 
 
    Mean of Paired  Effect 
Power N Alpha Beta Differences S Size 
0.80939 51 0.01000 0.19061 -5.0 10.0 0.500 
0.80778 34 0.05000 0.19222 -5.0 10.0 0.500 
0.80434 77 0.01000 0.19566 -5.0 12.5 0.400 
0.80779 52 0.05000 0.19221 -5.0 12.5 0.400 
0.80252 109 0.01000 0.19748 -5.0 15.0 0.333 
0.80230 73 0.05000 0.19770 -5.0 15.0 0.333 
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The report shows the values of each of the parameters, one scenario per row. We were solving for 
the sample size, N.  
Note that depending on our choice of assumptions, the sample size ranges from 34 to 109. Hence, 
the researchers have to make a careful determination of which standard deviation and significance 
level should be used. 

Example 2 – Validation using Zar 
This procedure uses the same mechanics as the Tests for One Mean procedure. The validation for 
this procedure is obtained through Examples 6 and 7 of Chapter 400.  
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Chapter 490 

Inequality Tests 
for Paired Means 
(Simulation) 
Introduction 
This procedure allows you to study the power and sample size of several statistical tests of the null 
hypothesis that the difference between two correlated means is equal to a specific value versus the 
alternative that it is greater than, less than, or not-equal to that value. The paired t-test is commonly 
used in this situation. Other tests have been developed for the case when the data are not normally 
distributed. These additional tests include the Wilcoxon signed-ranks test, the sign test, and the 
computer-intensive bootstrap test.  

Paired data may occur because two measurements are made on the same subject or because 
measurements are made on two subjects that have been matched according to other, often 
demographic, variables. Hypothesis tests on paired data can be analyzed by considering the 
differences between the paired items. The distribution of differences is usually symmetric. In fact, 
the distribution must be symmetric if the individual distributions of the two items are identical. 
Hence, the paired t-test and the Wilcoxon signed-rank test are appropriate for paired data even when 
the distributions of the individual items are not normal. 

The details of the power analysis of the paired t-test using analytic techniques are presented in 
another PASS chapter and they won’t be duplicated here. This chapter will only consider power 
analysis using computer simulation. 

Technical Details 
Computer simulation allows us to estimate the power and significance level that is actually achieved 
by a test procedure in situations that are not mathematically tractable. Computer simulation was 
once limited to mainframe computers. But, in recent years, as computer speeds have increased, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are  

1. Specify the test procedure and the test statistic. This includes the significance level, sample 
size, and underlying data distributions. 



490-2  Inequality Tests for Paired Means (Simulation) 

2. Generate a random sample  from the distribution specified by the X X Xn1 2, , ,K
alternative hypothesis. Calculate the test statistic from the simulated data and determine if 
the null hypothesis is accepted or rejected. These samples are used to calculate the power of 
the test. In the case of paired data, the individual values are simulated as the difference 
between two other random variables. These samples are constructed so that they exhibit a 
certain amount of correlation. 

3. Generate a random sample  from the distribution specified by the Y Y Yn1 2, , ,K null 
hypothesis. Calculate the test statistic from the simulated data and determine if the null 
hypothesis is accepted or rejected. These samples are used to calculate the significance-
level of the test. In the case of paired data, the individual values are simulated as the 
difference between two other random variables. These samples are constructed so that they 
exhibit a certain amount of correlation. 

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated 
data leads to a rejection of the null hypothesis. The power is the proportion of simulated 
samples in step 2 that lead to rejection. The significance level is the proportion of simulated 
samples in step 3 that lead to rejection. 

Simulating Paired Distributions 
Paired data occur when two observations are correlated. Examples of paired designs are pre – post 
designs, cross-over designs, and matched pair designs.  

In order to simulate paired data, the simulation should mimic the actual data generation process as 
closely as possible. Since paired data are analyzed by creating the individual difference between 
each pair, the simulation should also create data as the difference between two variates. Paired data 
exhibit a correlation between the two variates. As this correlation between the variates increases, the 
variance of the difference decreases. Thus it is important not only to specify the distributions of the 
two variates that will be differenced, but to also specify their correlation. 

Obtaining paired samples from arbitrary distributions with a set correlation is difficult because the 
joint, bivariate distribution must be specified and simulated. Rather than specify the bivariate 
distribution, PASS requires the specification of the two marginal distributions and the correlation 
between them. 

Monte Carlo samples with given marginal distributions and correlation are generated using the 
method suggested by Gentle (1998). The method begins by generating a large population of random 
numbers from the two distributions. Each of these populations is evaluated to determine if their 
means are within a small relative tolerance (0.0001) of the target mean. If the actual mean is not 
within the tolerance of the target mean, individual members of the population are replaced with new 
random numbers if the new random number moves the mean towards its target. Only a few hundred 
such swaps are required to bring the actual mean to within tolerance of the target mean.  

The next step is to obtain the target correlation. This is accomplished by permuting one of the 
populations until they have the desired correlation.  

The above steps provide a large pool of random numbers that exhibit the desired characteristics. 
This pool is then sampled at random using the uniform distribution to obtain the random numbers 
used in the simulation.  
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This algorithm may be stated as follows. 

1. Draw individual samples of size M from the two distributions where M is a large number, 
usually over 10,000. Adjust these samples so that they have the specified mean and 
standard deviation. Label these samples A and B. Create an index of the values of A and B 
according to the order in which they are generated. Thus, the first value of A and the first 
value of B are indexed as one, the second values of A and B are indexed as two, and so on 
up to the final set which is indexed as M. 

2. Compute the correlation between the two generated variates. 

3. If the computed correlation is within a small tolerance (usually less than 0.001) of the 
specified correlation, go to step 7. 

4. Select two indices (I and J) at random using uniform random numbers.  

5. Determine what will happen to the correlation if  is swapped with . If the swap will 
result in a correlation that is closer to the target value, swap the indices and proceed to 
step 6. Otherwise, go to step 4. 

BI BJ

6. If the computed correlation is within the desired tolerance of the target correlation, go to 
step 7. Otherwise, go to step 4. 

7. End with a population with the required marginal distributions and correlation.  

Now, to complete the simulation, random samples of the designated size are drawn from this 
population.  

Test Statistics 
This section describes the test statistics that are available in this procedure. Note that these test 
statistics are computed on the differences. Thus, when the equation refers to an X value, this X 
value is assumed to be a difference between two individual variates. 

One-Sample t-Test 
The one-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t-test 
proceeds as follow 
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and M0 is the value of the difference hypothesized by the null hypothesis. 

The significance of the test statistic is determined by computing the p-value. If this p-value is less 
than a specified level (usually 0.05), the hypothesis is rejected. Otherwise, no conclusion can be 
reached. 

Wilcoxon Signed-Rank Test  
The Wilcoxon signed-rank test is a popular, nonparametric substitute for the t-test. It assumes that 
the data follow a symmetric distribution. The test is computed using the following steps. 

1. Subtract the hypothesized mean, D0, from each data value. Rank the values according to 
their absolute values.  

2. Compute the sum of the positive ranks Sp and the sum of the negative ranks Sn. The test 
statistic, W, is the minimum of Sp and Sn. 

3. Compute the mean and standard deviation of W using the formulas 
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where ti represents the number of times the ith value occurs. 

4. Compute the z value using 
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For cases when n is less than 38, the significance level is found from a table of exact probabilities 
for the Wilcoxon test. When n is greater than or equal to 38, the significance of the test statistic is 
determined by computing the p-value using the standard normal distribution. If this p-value is less 
than a specified level (usually 0.05), the null hypothesis is rejected in favor of the alternative 
hypothesis. Otherwise, no conclusion can be reached. 

Sign Test  
The sign test is popular because it is simple to compute. It assumes that the data follow the same 
distribution. The test is computed using the following steps.  

1. Count the number of values strictly greater than M0. Call this value X. 

2. Count the number of values strictly less than M0. Call this value Y. 

3. Set m = X + Y. 

4. Under the null hypothesis, X is distributed as a binomial random variable with a 
proportion of 0.5 and sample size of m.  

The significance of X is calculated using binomial probabilities. 

Bootstrap Test  
The one-sample bootstrap procedure for testing whether the mean is equal to a specific value is 
given in Efron & Tibshirani (1993) pages 224-227. The bootstrap procedure is as follows.  

1. Compute the mean of the sample. Call it X . 
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2. Compute the t-value using the standard t-test. The formula for this computation is 

t X M
sX

X

=
− 0

 

3. Draw a random, with-replacement sample of size n from the original X values. Call this 
sample .  Y Y Yn1 2, , ,L

4. Compute the t-value of this bootstrap sample using the formula 

t Y X
sY

Y

=
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5. For a two-tailed test, if t tY > x  then add one to a counter variable A. 

6. Repeat steps 3 – 5 B times. B may be anywhere from 100 to 10,000. 

7. Compute the p-value of the bootstrap test as (A + 1) / (B + 1) 

8. Steps 1 – 7 complete one simulation iteration. Repeat these steps M times, where M is the 
number of simulations. The power and significance level is equal to the percent of the 
time the p-value is less than the nominal alpha of the test. 

Note that the bootstrap test is a time-consuming test to run, especially if you set B to a value 
larger than 100.  

The Problem of Differing Standard Deviations 
Care must be used when either the null or alternative distribution is not normal. In these cases, the 
standard deviation is usually not specified directly. For example, you might use a gamma 
distribution with a shape parameter of 1.5 and a mean of 4 as the null distribution and a gamma 
distribution with the same shape parameter and a mean of 5 as the alternative distribution. This 
allows you to compare the two means. However, note that although the shape parameters are 
constant, the standard deviations are not. Thus the null and alternatives not only have different 
means, but different standard deviations! 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data and Options tabs. For more information about the options of other tabs, go to the Procedure 
Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that will be of interest. 

Solve For 

Find (Solve For) 
This option specifies whether you want to find Power or N from the simulation. Select Power 
when you want to estimate the power of a certain scenario. Select N when you want to determine 
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the sample size needed to achieve a given power and alpha error level. Finding N is very 
computationally intensive, and so it may take a long time to complete. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.   

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of subjects in the study. 
The paired design assumes that a pair of observations will be obtained from each subject. Thus 
there will be 2N observations simulated, resulting in N differences.  

This value must be an integer greater than one. You may enter a list of values using the syntax 50 
100 150 200 250 or 50 to 250 by 50.  

Effect Size 

Item A (and B) Distribution|H0 
These options specify the distributions of the two items making up the pair under the null 
hypothesis, H0. The difference between the means of these two distributions is the difference that 
is tested, Diff0.  

Usually, you will want Diff0 = 0. This zero difference is specified by entering M0 for the mean 
parameter in each of the distributions and then entering an appropriate value for the M0 
parameter below.  

All of the distributions are parameterized so that the mean is entered first. For example, if you 
wanted to test whether the mean of a normal distributed variable is five, you could enter N(5, S) 
or N(M0, S) here. 
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The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M0 is reserved for the value of the mean under 
the null hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and are not repeated here. 

Finding the Value of the Mean of a Specified Distribution 
Except for the multinomial distribution, the distributions have been parameterized in terms of 
their means, since this is the parameter being tested. The mean of a distribution created as a linear 
combination of other distributions is found by applying the linear combination to the individual 
means. However, the mean of a distribution created by multiplying or dividing other distributions 
is not necessarily equal to applying the same function to the individual means. For example, the 
mean of 4N(4, 5) + 2N(5, 6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 
4*4*2*5 = 160 (although it is close). 

Item A (and B) Distribution|H1 
These options specify the distributions of the two items making up the pair under the alternative 
hypothesis, H1. The difference between the means of these two distributions is the difference that 
is assumed to be the true value of the difference. That is, this is the difference at which the power 
is computed. 

Usually, the mean difference is specified by entering M1 for the mean parameter in the 
distribution expression for item A and M0 for the mean parameter in the distribution expression 
for item B. The mean difference under H1 then becomes the value of M1 – M0.  

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M1 is reserved for the value of the mean under 
the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 



490-8  Inequality Tests for Paired Means (Simulation) 

Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Effect Size – Distribution Parameters 

M0 (Mean|H0) 
These values are substituted for the M0 in the four distribution specifications given above. M0 is 
intended to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

M1 (Mean|H1) 
These values are substituted for the M1 in the four distribution specifications given above. M1 is 
intended to be the value of the mean hypothesized by the alternative hypothesis, H1. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

Parameter Values (S, A, B) 
Enter the numeric value(s) of the parameters listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter using the pull-down 
menu to the side. 

Effect Size – Distribution Parameters 

R (Correlation of Items A & B) 
Specify the value of the correlation between items (variates) A and B of the pair.  

Since this is a correlation, it must be between -1 and 1. However, some distributions (such as the 
multinomial distribution) have a maximum possible correlation that is far less than one. 

Typical values are between 0 and 0.4. 

Test and Simulations 

Alternative Hypothesis 
This option specifies the alternative hypothesis, H1. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always H0: Diff = Diff0. 
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Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical.  

Possible selections are: 

• Difference <> Diff0 
This is the most common selection. It yields a two-tailed test. Use this option when you are 
testing whether the mean is different from a specified value Diff0, but you do not want to 
specify beforehand whether it is smaller or larger. Most scientific journals require two-tailed 
tests. 

• Difference < Diff0 
This option yields a one-tailed test. Use it when you want to test whether the true mean is less 
than Diff0. 

• Difference > Diff0 
This option yields a one-tailed test. Use it when you want to test whether the true mean is 
greater than Diff0. Note that this option could be used for a non-inferiority test.  

Simulations 
This option specifies the number of iterations, M, used in the simulation. As the number of 
iterations is increased, the accuracy and running time of the simulation will be increased also. 

The precision of the simulated power estimates are calculated from the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
  

 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
   

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  

Test Type 
Specify which test statistic (t-test, Wilcoxon test, sign test, or bootstrap test) is to be simulated. 
Although the t-test is the most commonly used test statistic, it is based on assumptions that may 
not be viable in many situations. For your data, you may find that one of the other tests is more 
accurate (actual alpha = target alpha) and more precise (better power). 

Note that the bootstrap test is computationally intensive, so it can be very slow to calculate. 
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Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the sample size, N, is aborted. 
When the maximum number of iterations is reached without convergence, the sample size is left 
blank. We recommend a value of at least 500. 

Bootstrap Iterations  

Bootstrap Iterations 
Specify the number of iterations used in the bootstrap hypothesis test. This value is only used if 
the bootstrap test is displayed on the reports. The running time of the procedure depends heavily 
on the number of iterations specified here.  

Recommendations by authors of books discussing the bootstrap are from 100 to 10,000. If you 
enter a large (greater than 500) value, the simulation may take several hours to run. 

Random Numbers 

Random Number Pool Size 
This is the size of the pool of random values from which the random samples will be drawn. 
Populations of at least 10,000 should be used. Also, the value should be about twice the number 
of simulations. You can enter Automatic and an appropriate value will be calculated. 

Note that values over 50,000 may take a long time to permute to achieve the target means and 
correlation. 

Correlation 

Maximum Switches 
This option specifies the maximum number of index switches that can be made while searching 
for a permutation of item B that yields a correlation within the specified range. A value near 
5,000,000 may be necessary when the correlation is near one.  

Correlation Tolerance 
Specify the amount above and below the target correlation that will still let a particular index-
permutation to be selected for the population. For example, if you have selected a correlation of 
0.3 and you set this tolerance to 0.001, then only populations with a correlation between 0.299 
and 0.301 will be used. The recommended is 0.001 or smaller. Valid values are between 0 and 
0.999. 
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Example 1 – Power at Various Sample Sizes 
Researchers are planning a pre-post experiment to test whether the difference in response to a 
certain drug is different from zero. The researchers will use a paired t-test with an alpha level of 
0.05. They want to compare the power at sample sizes of 50, 100, and 150 when the shift in the 
means is 0.6 from pre-test to post-test. They assume that the data are normally distributed with a 
standard deviation of 2 and that the correlation between the pre-test and post-test values is 0.20. 
Since this is an exploratory analysis, they set the number of simulation iterations to 2000.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Paired Means (Simulation) procedure window by 
expanding Means, then clicking on Paired Means, and then clicking on Tests for Paired Means 
(Simulation). You may then make the appropriate entries as listed below, or open Example 1 by 
going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... 50 100 150 
Item A Distribution|H0 ............................. N(M0 S) 
Item B Distribution|H0 ............................. N(M0 S) 
Item A Distribution|H1 ............................. N(M0 S) 
Item B Distribution|H1 ............................. N(M1 S) 
M0 (Mean|H0) ......................................... 0 
M1 (Mean|H1) ......................................... 0.6 
S .............................................................. 2 
R (Correlation of Items A & B) ................ 0.2 
Alternative Hypothesis ............................ Diff ≠ Diff0 
Simulations .............................................. 2000 
Test Type ................................................ T-Test 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist'n: Normal(M0 S) - Normal(M0 S) 
H1 Dist'n: Normal(M0 S) - Normal(M1 S) 
Test Statistic: Paired T-Test 
 
  H0 H1 Corr Target Actual   
Power N Diff0 Diff1 R Alpha Alpha Beta M0 M1 S   
0.388 50 0.0 -0.6 0.200 0.050 0.040 0.612 0.0 0.6 2.0   
(0.021) [0.367 0.409]    (0.009) [0.031 0.048]     
 
0.642 100 0.0 -0.6 0.200 0.050 0.041 0.359 0.0 0.6 2.0  
(0.021) [0.620 0.663]    (0.009) [0.032 0.049]    

  
0.830 150 0.0 -0.6 0.200 0.050 0.042 0.170 0.0 0.6 2.0   
(0.016) [0.814 0.846]    (0.009) [0.033 0.050]     
 
 
Notes: 
Number of Monte Carlo Samples: 2000.   Simulation Run Time: 19.33 seconds. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the size of the sample drawn from the population. 
Diff0 is the paired-difference mean (A-B) assuming the null hypothesis, H0. This is the value being tested. 
Diff1 is the paired-difference mean (A-B) assuming the alternative hypothesis, H1. This is the true value. 
R is the correlation between the paired items. 
Target Alpha is the probability of rejecting a true null hypothesis. It is set by the user. 
Actual Alpha is the alpha level that was actually achieved by the experiment.  
Beta is the probability of accepting a false null hypothesis.  
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
 
Summary Statements 
A sample size of 50 achieves 39% power to detect a difference of -0.6 between the null 
hypothesis mean difference of 0.0 and the actual mean difference of -0.6 at the 0.050 
significance level (alpha) using a two-sided Paired T-Test. These results are based on 2000 
Monte Carlo samples from the null distribution: Normal(M0 S) - Normal(M0 S) and the alternative 
distribution: Normal(M0 S) - Normal(M1 S). 
 
Plots Section 

P
ow
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This report shows the estimated power for each scenario. The first row shows the parameter 
settings and the estimated power and significance level (Actual Alpha).  
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The second row shows two 95% confidence intervals in brackets: the first for the power and the 
second for the significance level. Half the width of each confidence interval is given in 
parentheses as a fundamental measure of the accuracy of the simulation. As the number of 
simulations is increased, the width of the confidence intervals will decrease. 

Example 2 – Finding the Sample Size 
Continuing with Example 1, the researchers want to determine how large a sample is needed to 
obtain a power of 0.90? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Paired Means (Simulation) procedure window by 
expanding Means, then clicking on Paired Means, and then clicking on Tests for Paired Means 
(Simulation). You may then make the appropriate entries as listed below, or open Example 2 by 
going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.90 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... Ignored since this is the Find setting 
Item A Distribution|H0 ............................. N(M0 S) 
Item B Distribution|H0 ............................. N(M0 S) 
Item A Distribution|H1 ............................. N(M0 S) 
Item B Distribution|H1 ............................. N(M1 S) 
M0 (Mean|H0) ......................................... 0 
M1 (Mean|H1) ......................................... 0.6 
S .............................................................. 2 
R (Correlation of Items A & B) ................ 0.2 
Alternative Hypothesis ............................ Diff ≠ Diff0 
Simulations .............................................. 2000 
Test Type ................................................ T-Test 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results of Search for N 
 

  H0 H1 Corr Target Actual   
Power N Diff0 Diff1 R Alpha Alpha Beta M0 M1 S   
0.897 187 0.0 -0.6 0.200 0.050 0.053 0.104 0.0 0.6 2.0   
(0.013) [0.883 0.910]    (0.010) [0.043 0.062]     
 
Notes: 
Number of Monte Carlo Samples: 2000.   Simulation Run Time: 95.53 seconds. 

   
The required sample size of 187 achieved a power of 0.897. The power of 0.897 is less than the 
target value of 0.900 because the sample size search algorithm re-simulates the power for the 
final sample size. Thus it is possible for the search algorithm to converge to a sample size which 
exhibits the desired power, but then on a succeeding simulation to achieve a power that is slightly 
less than the target. To achieve more accuracy, a reasonable strategy would be to run simulations 
to obtain the powers using N’s from 180 to 200 using a simulation size of 5000 or greater. 

Example 3 – Comparative Results  
Continuing with Example 2, the researchers want to study the characteristics of alternative test 
statistics. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Paired Means (Simulation) procedure window by 
expanding Means, then clicking on Paired Means, and then clicking on Tests for Paired Means 
(Simulation). You may then make the appropriate entries as listed below, or open Example 3 by 
going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... 50 100 150 200 
Item A Distribution|H0 ............................. N(M0 S) 
Item B Distribution|H0 ............................. N(M0 S) 
Item A Distribution|H1 ............................. N(M0 S) 
Item B Distribution |H1 ............................ N(M1 S) 
M0 (Mean|H0) ......................................... 0 
M1 (Mean|H1) ......................................... 0.6 
S .............................................................. 2 
R (Correlation of Items A & B) ................ 0.2 
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Data Tab (continued) 
Alternative Hypothesis ............................ Diff ≠ Diff0 
Simulations .............................................. 2000 
Test Type ................................................ T-Test 

Reports Tab 
Show Comparative Reports .................... Checked 
Show Comparative Plots ......................... Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Power Comparison for Testing Mean Difference = Diff0.   Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist'n: Normal(M0 S) - Normal(M0 S) 
H1 Dist'n: Normal(M0 S) - Normal(M1 S) 
 
 H0 H1       
 Diff Diff Corr Target T-Test Wilcxn Sign   
N (Diff0) (Diff1) (R) Alpha Power Power Power M0 M1 S 
50 0.0 -0.6 0.200 0.050 0.355 0.335 0.187 0.0 0.6 2.0   
100 0.0 -0.6 0.200 0.050 0.644 0.610 0.385 0.0 0.6 2.0   
150 0.0 -0.6 0.200 0.050 0.843 0.818 0.617 0.0 0.6 2.0   
200 0.0 -0.6 0.200 0.050 0.921 0.905 0.734 0.0 0.6 2.0   
 
Number of Monte Carlo Iterations: 2000.   Simulation Run Time: 10.50 seconds. 
 
Alpha Comparison for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1<>Diff0 
H0 Dist'n: Normal(M0 S) - Normal(M0 S) 
H1 Dist'n: Normal(M0 S) - Normal(M1 S) 
 
 H0 H1       
 Diff Diff Corr Target T-Test Wilcxn Sign   
N (Diff0) (Diff1) (R) Alpha Alpha Alpha Alpha M0 M1 S 
50 0.0 -0.6 0.200 0.050 0.059 0.060 0.034 0.0 0.6 2.0   
100 0.0 -0.6 0.200 0.050 0.050 0.052 0.033 0.0 0.6 2.0   
150 0.0 -0.6 0.200 0.050 0.055 0.050 0.041 0.0 0.6 2.0   
200 0.0 -0.6 0.200 0.050 0.058 0.058 0.050 0.0 0.6 2.0   
 
Number of Monte Carlo Iterations: 2000.   Simulation Run Time: 10.50 seconds. 

   
These results show that for paired data, the t-test and Wilcoxon test have very similar power and 
alpha values. The sign test is less accurate and less powerful. 
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Example 4 – Validation 
We will validate this procedure by comparing its results to those of the regular one-sample t-test, 
a procedure that has already by validated. For this run, we will use the settings of Example 1: M0 
= 0, M1 = 0.6, alpha = 0.05, N = 50, R = 0.2, and S = 2.   

Note that to run this example using the regular one-sample t-test procedure, the variance will have 
to be altered to account for the correlation of 0.20. The adjusted standard deviation is equal to S 
times the square root of 2(1 – R), which, in this case, is 2.530. Running this through the regular 
One Mean procedure yields a power of 0.376. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Paired Means (Simulation) procedure window by 
expanding Means, then clicking on Paired Means, and then clicking on Tests for Paired Means 
(Simulation). You may then make the appropriate entries as listed below, or open Example 4 by 
going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... 50 
Item A Distribution|H0 ............................. N(M0 S) 
Item B Distribution|H0 ............................. N(M0 S) 
Item A Distribution|H1 ............................. N(M0 S) 
Item B Distribution|H1 ............................. N(M1 S) 
M0 (Mean|H0) ......................................... 0 
M1 (Mean|H1) ......................................... 0.6 
S .............................................................. 2 
R (Correlation of Items A & B) ................ 0.2 
Alternative Hypothesis ............................ Diff ≠ Diff0 
Simulations .............................................. 10000 
Test Type ................................................ T-Test 

Options Tab 
Random Number Pool Size ..................... 50000 (Increase to 5 times Simulations) 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

  H0 H1 Corr Target Actual   
Power N Diff0 Diff1 R Alpha Alpha Beta M0 M1 S   
0.373 50 0.0 -0.6 0.200 0.050 0.049 0.627 0.0 0.6 2.0  
(0.009) [0.363 0.382]    (0.004) [0.045 0.053]     
 
Notes: 
Number of Monte Carlo Samples: 10000.   Simulation Run Time: 30.97 seconds. 

 

The power matches the exact value of 0.376 quite well. We re-ran the procedure several times 
and obtained power values from 0.370 to 0.396. 

Example 5 – Non-Inferiority Test 
A non-inferiority test is appropriate when you want to show that a new treatment is no worse than 
the standard. For example, suppose that a standard diagnostic test has an average score of 70. 
Unfortunately, this diagnostic test is expensive. A promising new diagnostic test must be 
compared to the standard. Researchers want to show that it is no worse than the standard.  

Because of many benefits from the new test, clinicians are willing to adopt it even if it is slightly 
less accurate than the current test. How much less can the score of the new treatment be and still 
be adopted? Should it be adopted if the difference is -1? -2? -5? -10? There is an amount below 0 
at which the difference between the two treatments is no longer considered ignorable. After 
thoughtful discussion with several clinicians, the margin of equivalence is set to -5.  

The developers decided to use a paired t-test. They must design an experiment to test the 
hypothesis that the average difference between the two tests is greater than -5. The statistical 
hypothesis to be tested is 

H A B0 5: − ≤ −  versus H A B1 5: − > −  

where A represents the mean of the new test and B represents the mean of the standard test. 
Notice that when the null hypothesis is rejected, the conclusion is that the average difference is 
greater than -5.  

Past experience has shown that the standard deviation is 5.0 and the correlation is 0.2. Following 
proper procedure, the researchers decide to use a significance level of 0.025 for this one-sided test 
to keep it comparable to the usual value of 0.05 for a two-sided test. They decide to look at the 
power for sample sizes of 5, 10, 15, 20, and 25 subjects. They decide to compute the power for 
the case when the two tests are actually equal. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Paired Means (Simulation) procedure window by 
expanding Means, then clicking on Paired Means, and then clicking on Tests for Paired Means 
(Simulation). You may then make the appropriate entries as listed below, or open Example 5 by 
going to the File menu and choosing Open Example Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.025 
N (Sample Size) ...................................... 5 10 15 20 25 
Item A Distribution|H0 ............................. N(M0 S) 
Item B Distribution|H0 ............................. N(M1 S) 
Item A Distribution|H1 ............................. N(M0 S) 
Item B Distribution|H1 ............................. N(M0 S) 
M0 (Mean|H0) ......................................... 0 
M1 (Mean|H1) ......................................... 5 
S .............................................................. 5 
R (Correlation of Items A & B) ................ 0.2 
Alternative Hypothesis ............................ Diff > Diff0 
Simulations .............................................. 2000 
Test Type ................................................ T-Test 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing Mean Difference = Diff0.    Hypotheses: H0: Diff1=Diff0; H1: Diff1>Diff0 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
Test Statistic: Paired T-Test 
 
  H0 H1 Corr Target Actual 
Power N Diff0 Diff1 R Alpha Alpha Beta M0 M1 S 
0.308 5 -5.0 0.0 0.200 0.025 0.023 0.692 0.0 5.0 5.0 
(0.020) [0.288 0.328]    (0.007) [0.016 0.030] 
 
0.617 10 -5.0 0.0 0.200 0.025 0.024 0.383 0.0 5.0 5.0 
(0.021) [0.596 0.638]    (0.007) [0.017 0.030] 
 
0.816 15 -5.0 0.0 0.200 0.025 0.027 0.184 0.0 5.0 5.0 
(0.017) [0.799 0.833]    (0.007) [0.019 0.034] 
 
0.916 20 -5.0 0.0 0.200 0.025 0.022 0.085 0.0 5.0 5.0 
(0.012) [0.903 0.928]    (0.006) [0.016 0.028] 
 
0.968 25 -5.0 0.0 0.200 0.025 0.025 0.032 0.0 5.0 5.0 
(0.008) [0.960 0.976]    (0.007) [0.018 0.031] 
 
Notes: 
Number of Monte Carlo Samples: 2000.   Simulation Run Time: 13.34 seconds. 

 
We see that a power of 0.8 is achieved at about 15 subjects, while a power of 0.9 requires about 
20 subjects. 
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Chapter 495 

Equivalence Tests 
for Paired Means 
(Simulation) 
Introduction 
This procedure allows you to study the power and sample size of tests of equivalence of means of 
two correlated variables. Schuirmann’s (1987) two one-sided tests (TOST) approach is used to test 
equivalence. The paired t-test is commonly used in this situation. Other tests have been developed 
for the case when the data are not normally distributed. These additional tests include the Wilcoxon 
signed-ranks test, the sign test, and the computer-intensive bootstrap test.  

Paired data may occur because two measurements are made on the same subject or because 
measurements are made on two subjects that have been matched according to other, often 
demographic, variables. Hypothesis tests on paired data can be analyzed by considering the 
differences between the paired items. The distribution of differences is usually symmetric. In fact, 
the distribution must be symmetric if the individual distributions of the two items are identical. 
Hence, the paired t-test and the Wilcoxon signed-rank test are appropriate for paired data even when 
the distributions of the individual items are not normal. 

The details of the power analysis of the paired t-test using analytic techniques are presented in 
another PASS chapter and they won’t be duplicated here. This chapter will only consider power 
analysis using computer simulation. 

Technical Details 
Computer simulation allows us to estimate the power and significance-level that is actually 
achieved by a test procedure in situations that are not mathematically tractable. Computer 
simulation was once limited to mainframe computers. But, in recent years, as computer speeds have 
increased, simulation studies can be completed on desktop and laptop computers in a reasonable 
period of time.  

The steps to a simulation study are as follows. 

1. Specify the test procedure and the test statistic. This includes the significance level, sample 
size, and underlying data distributions. 
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2. Generate a random sample  from the distribution specified by the X X Xn1 2, , ,K
alternative hypothesis. Calculate the test statistic from the simulated data and determine if 
the null hypothesis is accepted or rejected. These samples are used to calculate the power of 
the test. In the case of paired data, the individual values are simulated as the difference 
between two other random variables. These samples are constructed so that they exhibit a 
certain amount of correlation. 

3. Generate a random sample  from the distribution specified by the Y Y Yn1 2, , ,K null 
hypothesis. Calculate the test statistic from the simulated data and determine if the null 
hypothesis is accepted or rejected. These samples are used to calculate the significance-
level of the test. In the case of paired data, the individual values are simulated as the 
difference between two other random variables. These samples are constructed so that they 
exhibit a certain amount of correlation. 

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated 
data leads to a rejection of the null hypothesis. The power is the proportion of simulation 
samples in step 2 that lead to rejection. The significance-level is the proportion of simulated 
samples in step 3 that lead to rejection. 

Simulating Paired Distributions 
Paired data occur when two observations are correlated. Examples of paired designs are pre – post 
designs, cross-over designs, and matched pair designs. 

In order to simulate paired data, the simulation should mimic the actual data generation process as 
closely as possible. Since paired data are analyzed by creating the individual difference between 
each pair, the simulation should also create data as the difference between two variates. Paired data 
exhibit a correlation between the two variates. As this correlation between the variates increases, the 
variance of the difference decreases. Thus it is important not only to specify the distributions of the 
two variates that will be differenced, but to also specify their correlation. 

Obtaining paired samples from arbitrary distributions with a set correlation is difficult because the 
joint, bivariate distribution must be specified and simulated. Rather than specify the bivariate 
distribution, PASS requires the specification of the two marginal distributions and the correlation 
between them. 

Monte Carlo samples with given marginal distributions and correlation are generated using the 
method suggested by Gentle (1998). The method begins by generating a large population of random 
numbers from the two distributions. Each of these populations is evaluated to determine if their 
means are within a small relative tolerance (0.0001) of the target mean. If the actual mean is not 
within the tolerance of the target mean, individual members of the population are replaced with new 
random numbers if the new random number moves the mean towards its target. Only a few hundred 
such swaps are required to bring the actual mean to within tolerance of the target mean.  

The next step is to obtain the target correlation. This is accomplished by permuting one of the 
populations until they have the desired correlation.  

The above steps provide a large pool of random numbers that exhibit the desired characteristics. 
This pool is then sampled at random using the uniform distribution to obtain the random numbers 
used in the simulation.  
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This algorithm may be stated as follows. 

1. Draw individual samples of size M from the two distributions where M is a large number, 
usually over 10,000. Adjust these samples so that they have the specified mean and 
standard deviation. Label these samples A and B. Create an index of the values of A and B 
according to the order in which they are generated. Thus, the first value of A and the first 
value of B are indexed as one, the second values of A and B are indexed as two, and so on 
up to the final set which is indexed as M. 

2. Compute the correlation between the two generated variates. 

3. If the computed correlation is within a small tolerance (usually less than 0.001) of the 
specified correlation, go to step 7. 

4. Select two indices (I and J) at random using uniform random numbers.  

5. Determine what will happen to the correlation if  is swapped with . If the swap will 
result in a correlation that is closer to the target value, swap the indices and proceed to 
step 6. Otherwise, go to step 4. 

BI BJ

6. If the computed correlation is within the desired tolerance of the target correlation, go to 
step 7. Otherwise, go to step 4. 

7. End with a population with the required marginal distributions and correlation.  

Now, to complete the simulation, random samples of the designated size are drawn from this 
population. 

Simulating Data for an Equivalence Test 
Simulating equivalence data is more complex than simulating data for a regular two-sided test. An 
equivalence test essentially reverses the roles of the null and alternative hypothesis. In so doing, the 
null hypothesis becomes 

( ) ( )H D or D0 1 2 1 2: μ μ μ μ− ≤ − − ≥  

where D is the margin of equivalence. Thus the null hypothesis is made up of two simple 
hypotheses:  

( )H D01 1 2: μ μ− ≤ −  

( )H D02 1 2: μ μ− ≥  

The additional complexity comes in deciding which of the two simple null hypotheses are used to 
simulate data for the null hypothesis situation. The choice becomes more problematic when 
asymmetric equivalence limits are chosen. In that case, you may want to try simulating using 
each simple null hypothesis in turn. 

To generate data for the null hypotheses, you generate data for each group. The difference in the 
means of these two groups will become one of the equivalence limits. The other equivalence limit 
will be determined by symmetry and will always have a sign that is the negative of the first 
equivalence limit.  



495-4  Equivalence Tests for Paired Means (Simulation) 

Test Statistics 
This section describes the test statistics that are available in this procedure. Note that these test 
statistics are computed on the differences. Thus, when the equation refers to an X value, this X 
value is assumed to be a difference between two individual variates. 

One-Sample t-Test 
The one-sample t-test assumes that the data are a simple random sample from a population of 
normally-distributed values that all have the same mean and variance. This assumption implies 
that the data are continuous and their distribution is symmetric. The calculation of the t-test 
proceeds as follow 
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and M0 is the value of the difference hypothesized by the null hypothesis. 

The significance of the test statistic is determined by computing the p-value. If this p-value is less 
than a specified level (usually 0.05), the hypothesis is rejected. Otherwise, no conclusion can be 
reached. 

Wilcoxon Signed-Rank Test  
The Wilcoxon signed-rank test is a popular, nonparametric substitute for the t-test. It assumes that 
the data follow a symmetric distribution. The test is computed using the following steps.  

1. Subtract the hypothesized mean, D0, from each data value. Rank the values according to 
their absolute values. 

2. Compute the sum of the positive ranks Sp and the sum of the negative ranks Sn. The test 
statistic, W, is the minimum of Sp and Sn. 

3. Compute the mean and standard deviation of W using the formulas 
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4. Compute the z value using 

z
W

W
W

W

n

n

=
− μ
σ

 



Equivalence Tests for Paired Means (Simulation)  495-5 

For cases when n is less than 38, the significance level is found from a table of exact probabilities 
for the Wilcoxon test. When n is greater than or equal to 38, the significance of the test statistic is 
determined by computing the p-value using the standard normal distribution. If this p-value is less 
than a specified level (usually 0.05), the null hypothesis is rejected in favor of the alternative 
hypothesis. Otherwise, no conclusion can be reached. 

Sign Test  
The sign test is popular because it is simple to compute. It assumes that the data follow the same 
distribution. The test is computed using the following steps.  

1. Count the number of values strictly greater than M0. Call this value X. 

2. Count the number of values strictly less than M0. Call this value Y. 

3. Set m = X + Y. 

4. Under the null hypothesis, X is distributed as a binomial random variable with a 
proportion of 0.5 and sample size of m.  

The significance of X is calculated using binomial probabilities. 

Bootstrap Test  
The one-sample bootstrap procedure for testing whether the mean is equal to a specific value is 
given in Efron & Tibshirani (1993) pages 224-227. The bootstrap procedure is as follows.  

1. Compute the mean of the sample. Call it X . 

2. Compute the t-value using the standard t-test. The formula for this computation is 

t X M
sX

X

=
− 0

 

3. Draw a random, with-replacement sample of size n from the original X values. Call this 
sample .  Y Y Yn1 2, , ,L

4. Compute the t-value of this bootstrap sample using the formula 

t Y X
sY

Y

=
−

 

5. For a two-tailed test, if t tY > x  then add one to a counter variable A. 

6. Repeat steps 3 – 5 B times. B may be anywhere from 100 to 10,000. 

7. Compute the p-value of the bootstrap test as (A + 1) / (B + 1) 

8. Steps 1 – 7 complete one simulation iteration. Repeat these steps M times, where M is the 
number of simulations. The power and significance level is equal to the percent of the 
time the p-value is less than the nominal alpha of the test. 

Note that the bootstrap test is a time-consuming test to run, especially if you set B to a value 
larger than 100.  
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The Problem of Differing Standard Deviations 
Care must be used when either the null or alternative distribution is not normal. In these cases, the 
standard deviation is usually not specified directly. For example, you might use a gamma 
distribution with a shape parameter of 1.5 and a mean of 4 as the null distribution and a gamma 
distribution with the same shape parameter and a mean of 5 as the alternative distribution. This 
allows you to compare the two means. However, note that although the shape parameters are 
constant, the standard deviations are not. Thus the null and alternatives not only have different 
means, but different standard deviations! 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data and Options tabs. For more information about the options of other tabs, go to the Procedure 
Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies whether you want to find Power or N from the simulation. Select Power 
when you want to estimate the power of a certain scenario. Select N when you want to determine 
the sample size needed to achieve a given power and alpha error level. Finding N is very 
computationally intensive, and so it may take a long time to complete. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  
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You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N (Sample Size) 
This option specifies one or more values of the sample size, the number of subjects in the study. 
The paired design assumes that a pair of observations will be obtained from each subject. Thus 
there will be 2N observations simulated, resulting in N differences.  

This value must be an integer greater than one. You may enter a list of values using the syntax 50 
100 150 200 250 or 50 to 250 by 50.  

Effect Size 

Item A (and B) Distribution|H0 
These options specify the distributions of the two items making up the pair under the null 
hypothesis, H0. The difference between the means of these two distributions is the difference that 
is tested, Diff0.  

Usually, you will want Diff0 = 0. This zero difference is specified by entering M0 for the mean 
parameter in each of the distributions and then entering an appropriate value for the M0 
parameter below.  

All of the distributions are parameterized so that the mean is entered first. For example, if you 
wanted to test whether the mean of a normal distributed variable is five, you could enter N(5, S) 
or N(M0, S) here. 

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M0 is reserved for the value of the mean under 
the null hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
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Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and are not repeated here. 

Finding the Value of the Mean of a Specified Distribution 
Except for the multinomial distribution, the distributions have been parameterized in terms of 
their means, since this is the parameter being tested. The mean of a distribution created as a linear 
combination of other distributions is found by applying the linear combination to the individual 
means. However, the mean of a distribution created by multiplying or dividing other distributions 
is not necessarily equal to applying the same function to the individual means. For example, the 
mean of 4N(4, 5) + 2N(5, 6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 
4*4*2*5 = 160 (although it is close). 

Item A (and B) Distribution|H1 
These options specify the distributions of the two items making up the pair under the alternative 
hypothesis, H1. The difference between the means of these two distributions is the difference that 
is assumed to be the true value of the difference. That is, this is the difference at which the power 
is computed. 

Usually, the mean difference is specified by entering M1 for the mean parameter in the 
distribution expression for item A and M0 for the mean parameter in the distribution expression 
for item B. The mean difference under H1 then becomes the value of M1 – M0.  

The parameters of each distribution are specified using numbers or letters. If letters are used, their 
values are specified in the boxes below. The value M1 is reserved for the value of the mean under 
the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them: 
Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 
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Effect Size – Distribution Parameters 

M0 (Mean|H0) 
These values are substituted for the M0 in the four distribution specifications given above. M0 is 
intended to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

M1 (Mean|H1) 
These values are substituted for the M1 in the four distribution specifications given above. M1 is 
intended to be the value of the mean hypothesized by the alternative hypothesis, H1. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

R (Correlation of Items A & B) 
Specify the value of the correlation between items (variates) A and B of the pair.  

Since this is a correlation, it must be between -1 and 1. However, some distributions (such as the 
multinomial distribution) have a maximum possible correlation that is far less than one. 

Typical values are between 0 and 0.4. 

Parameter Values (S, A, B) 
Enter the numeric value(s) of the parameters listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter using the pull-down 
menu to the side. 

Test and Simulations 

Equivalence Limit 
Equivalence limits are defined as the positive and negative limits around zero that define a zone 
of equivalence. This zone of equivalence is a set of difference values that define a region in which 
the two means are ‘close enough’ so that they are considered to be the same for practical 
purposes.  

Rather than define these limits explicitly, they are set implicitly. This is done as follows. One 
limit is found by subtracting the Item B mean | H0 from the Item A mean | H0. If the limits are 
symmetric, the other limit is this difference times -1. To obtain symmetric limits, enter 
‘Symmetric’ here. 

If asymmetric limits are desired, a numerical value is specified here. It will be given the sign (+ 
or -) that is opposite the difference in the means discussed above. 

For example, if the mean of A under H0 is 5, the mean of B under H0 is 4, and ‘Symmetric’ is 
entered here, the equivalence limits will be 5 - 4 = 1 and -1. However, if the value ‘1.25’ is 
entered here, the equivalence limits are 1 and -1.25. 

If you do not have a specific value in mind for the equivalence limit, a common value for an 
equivalence limit is 20% or 25% of the Item A (reference) mean. 
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Test Type 
Specify which test statistic (t-test, Wilcoxon test, sign test, or bootstrap test) is to be simulated. 
Although the t-test is the most commonly used test statistic, it is based on assumptions that may 
not be viable in many situations. For your data, you may find that one of the other tests is more 
accurate (actual alpha = target alpha) and more precise (better power). 

Note that the bootstrap test is computationally intensive, so it can be very slow to calculate. 

Simulations 
This option specifies the number of iterations, M, used in the simulation. As the number of 
iterations is increased, the accuracy and running time of the simulation will be increased also. 

The precision of the simulated power estimates are calculated from the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
  

 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
   

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  

Options Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the sample size, N, is aborted. 
When the maximum number of iterations is reached without convergence, the sample size is left 
blank. We recommend a value of at least 500. 
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Bootstrap Iterations  

Bootstrap Iterations 
Specify the number of iterations used in the bootstrap hypothesis test. This value is only used if 
the bootstrap test is displayed on the reports. The running time of the procedure depends heavily 
on the number of iterations specified here.  

Recommendations by authors of books discussing the bootstrap are from 100 to 10,000. If you 
enter a large (greater than 500) value, the simulation may take several hours to run. 

Random Numbers 

Random Number Pool Size 
This is the size of the pool of random values from which the random samples will be drawn. 
Populations of at least 10,000 should be used. Also, the value should be about twice the number 
of simulations. You can enter Automatic and an appropriate value will be calculated. 

Note that values over 50,000 may take a long time to permute to achieve the target means and 
correlation. 

Correlation 

Maximum Switches 
This option specifies the maximum number of index switches that can be made while searching 
for a permutation of item B that yields a correlation within the specified range. A value near 
5,000,000 may be necessary when the correlation is near one.  

Correlation Tolerance 
Specify the amount above and below the target correlation that will still let a particular 
permutation to be selected for the population. For example, if you have selected a correlation of 
0.3 and you set this tolerance to 0.001, then only populations with a correlation between 0.299 
and 0.301 will be used. The recommended is 0.001 or smaller. Valid values are between 0 and 
0.999. 

Example 1 – Power at Various Sample Sizes 
Researchers are planning an experiment to determine if the response to a new drug is equivalent 
to the response to the standard drug. The average response level to the standard drug is 63 with a 
standard deviation of 5.  The researchers decide that if the average response level to the new drug 
is between 60 and 66, they will consider it to be equivalent to the standard drug.   

The researchers decide to use a paired design so that each subject can serve as their own control. 
The response level for the standard drug will be measured for each subject. Then, followed by an 
appropriate wash-out period of two days, the response level to the new drug will be measured. 
From previous studies, they know that the correlation between the two response levels will be 
between 0.1 and 0.20. 

The researchers will analyze the data using an equivalence test based on the paired t-test with an 
alpha level of 0.05. They want to compare the power at sample sizes of 10, 30, 50, and 70. They 
assume that the data are normally distributed and that the true difference between the response 



495-12  Equivalence Tests for Paired Means (Simulation) 

level of the two drugs is zero. Since this is an exploratory analysis, they set the number of 
simulation iterations to 2000. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Paired Means (Simulation) procedure 
window by expanding Means, then clicking on Paired Means, and then clicking on Equivalence 
Tests for Paired Means (Simulation). You may then make the appropriate entries as listed 
below, or open Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... 10 30 50 70 
Item A (Reference) Dist’n|H0 .................. N(M0 S) 
Item B (Treatment) Dist’n|H0 .................. N(M1 S) 
Item A (Reference) Dist’n|H1 .................. N(M0 S) 
Item B (Treatment) Dist’n|H1 .................. N(M0 S) 
M0 (Mean|H0) ......................................... 63 
M1 (Mean|H1) ......................................... 66 
S .............................................................. 5 
R (Correlation of Items A & B) ................ 0.1 0.2 
Equivalence Limit .................................... Symmetric 
Test Type ................................................ T-Test 
Simulations .............................................. 2000 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Mean Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
Test Statistic: Paired T-Test 
 
   Lower Upper 
  H1 Equiv. Equiv. Corr Target Actual  
Power N Diff1 Limit Limit R Alpha Alpha M0 M1 S 
0.030 10 0.0 -3.0 3.0 0.100 0.050 0.009 63.0 66.0 5.0 
(0.007) [0.022 0.037]     (0.004) [0.005 0.013] 
 
0.055 10 0.0 -3.0 3.0 0.200 0.050 0.019 63.0 66.0 5.0 
(0.010) [0.045 0.065]     (0.006) [0.013 0.025] 
 
0.560 30 0.0 -3.0 3.0 0.100 0.050 0.050 63.0 66.0 5.0 
(0.022) [0.538 0.581]     (0.010) [0.040 0.060] 
 
Population Size: 10000. Number of Monte Carlo Samples: 2000.   Simulation Run Time: 30.02 seconds. 
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Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the size of the sample drawn from the population. 
Diff1 is the paired-difference mean (A-B) assuming the alternative hypothesis, H1. This is the true value. 
Lower Equiv Limit is the lower limit on a difference (A-B) that is considered as equivalent. 
Upper Equiv Limit is the upper limit on a difference (A-B) that is considered as equivalent. 
Diff0 is the paired-difference mean (A-B) assuming the null hypothesis, H0. This is one of the equivalence limits. 
R is the correlation between the paired items. 
Target Alpha is the probability of rejecting a true null hypothesis. It is set by the user. 
Actual Alpha is the alpha level that was actually achieved by the experiment.  
Beta is the probability of accepting a false null hypothesis.  
Second Row: (Power Inc.) [95% LCL and UCL Power]    (Alpha Inc.) [95% LCL and UCL Alpha] 
 
Summary Statements 
A sample size of 10 pairs with a correlation of 0.100 achieves 3% power to detect equivalence 
when the margin of equivalence is from -3.0 to 3.0 and the actual mean difference is 0.0. The 
significance level (alpha) is 0.050 using two one-sided Paired T-Tests. These results are based 
on 2000 Monte Carlo samples from the null distribution: Normal(M0 S) - Normal(M1 S) and the 
alternative distribution: Normal(M0 S) - Normal(M0 S). 
 
 
Chart Section 
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This report shows the estimated power for each scenario. The first row shows the parameter 
settings and the estimated power and significance level (Actual Alpha).  
The second row shows two 95% confidence intervals in brackets: the first for the power and the 
second for the significance level. Half the width of each confidence interval is given in 
parentheses as a fundamental measure of the accuracy of the simulation. As the number of 
simulations is increased, the width of the confidence intervals will decrease. 
We see that a sample size of about 50 is needed to obtain a reasonable power level. 
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Example 2 – Finding the Sample Size 
Continuing with Example 1, the researchers want to determine how large a sample is needed to 
obtain a power of 0.90? They decide to use a correlation of 0.10, since that will result in a larger, 
more conservative, sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Paired Means (Simulation) procedure 
window by expanding Means, then clicking on Paired Means, and then clicking on Equivalence 
Tests for Paired Means (Simulation). You may then make the appropriate entries as listed 
below, or open Example 2 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.9  
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... Ignored since this is the Find setting 
Item A (Reference) Dist’n|H0 .................. N(M0 S) 
Item B (Treatment) Dist’n|H0 .................. N(M1 S) 
Item A (Reference) Dist’n|H1 .................. N(M0 S) 
Item B (Treatment) Dist’n|H1 .................. N(M0 S) 
M0 (Mean|H0) ......................................... 63 
M1 (Mean|H1) ......................................... 66 
S .............................................................. 5 
R (Correlation of Items A & B) ................ 0.1 
Equivalence Limit .................................... Symmetric 
Test Type ................................................ T-Test 
Simulations .............................................. 2000 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing Mean Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
Test Statistic: Paired T-Test 
 
   Lower Upper 
  H1 Equiv. Equiv. Corr Target Actual  
Power N Diff1 Limit Limit R Alpha Alpha M0 M1 S 
0.899 54 0.0 -3.0 3.0 0.100 0.050 0.044 63.0 66.0 5.0 
(0.013) [0.885 0.912]     (0.009) [0.035 0.052] 
 

The required sample size was 54 which achieved a power of 0.899.  
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The power of 0.899 is slightly less than the target value of 0.900 because the sample size search 
algorithm re-simulates the power for the final sample size. Thus it is possible for the search 
algorithm to converge to a sample size which exhibits the desired power, but then on the second 
simulation, achieves a power that is slightly less than the target. To obtain more accuracy, a 
reasonable strategy would be to run simulations to obtain the powers using N’s from 50 to 60 
using a simulation size of 5000. 

Example 3 – Comparing Test Statistics  
Continuing with Example 2, the researchers want to study the characteristics of alternative test 
statistics. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Paired Means (Simulation) procedure 
window by expanding Means, then clicking on Paired Means, and then clicking on Equivalence 
Tests for Paired Means (Simulation). You may then make the appropriate entries as listed 
below, or open Example 3 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... 10 30 50 70 
Item A (Reference) Dist’n|H0 .................. N(M0 S) 
Item B (Treatment) Dist’n|H0 .................. N(M1 S) 
Item A (Reference) Dist’n|H1 .................. N(M0 S) 
Item B (Treatment) Dist’n|H1 .................. N(M0 S) 
M0 (Mean|H0) ......................................... 63 
M1 (Mean|H1) ......................................... 66 
S .............................................................. 5 
R (Correlation of Items A & B) ................ 0.1 
Equivalence Limit .................................... Symmetric 
Test Type ................................................ T-Test 
Simulations .............................................. 2000 

Reports Tab 
Show Comparative Reports .................... Checked 
Show Comparative Plots ......................... Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Power Comparison for Testing Equivalence.   Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
 
 H1 Lower Upper      
 Diff Equiv. Equiv. Corr Target T-Test Wilcxn Sign   
N (Diff1) Limit Limit (R) Alpha Power Power Power M0 M1 S 
10 0.0 -3.0 3.0 0.100 0.050 0.034 0.024 0.002 63.0 66.0 5.0 
30 0.0 -3.0 3.0 0.100 0.050 0.537 0.494 0.275 63.0 66.0 5.0 
50 0.0 -3.0 3.0 0.100 0.050 0.870 0.855 0.500 63.0 66.0 5.0 
70 0.0 -3.0 3.0 0.100 0.050 0.966 0.953 0.768 63.0 66.0 5.0 
 
Alpha Comparison for Testing Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
 
 H1 Lower Upper      
 Diff Equiv. Equiv. Corr Target T-Test Wilcxn Sign   
N (Diff1) Limit Limit (R) Alpha Alpha Alpha Alpha M0 M1 S 
10 0.0 -3.0 3.0 0.100 0.050 0.010 0.009 0.001 63.0 66.0 5.0 
30 0.0 -3.0 3.0 0.100 0.050 0.057 0.056 0.052 63.0 66.0 5.0 
50 0.0 -3.0 3.0 0.100 0.050 0.052 0.049 0.024 63.0 66.0 5.0 
70 0.0 -3.0 3.0 0.100 0.050 0.044 0.045 0.041 63.0 66.0 5.0 
 

 
 

These results show that for paired data, the t-test and Wilcoxon test have very similar power and 
alpha values. The sign test is less accurate and less powerful. 
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Example 4 – Validation using Chow et al. 
We will validate this procedure by comparing its results to those of Chow et al. (2003) page 55 in 
which the parameter values are: M0 = 0, M1 = 0.05, alpha = 0.05, N = 35, R = 0.0, and S = 
0.070711. For these parameters, the power is given as 0.800.   

Note that they give the standard deviation of the differences as 0.1. Since the correlation is 0.0, 
the standard deviation of the individual data values is given by 0.1/Sqrt(2) = 0.070711. 

In order to understand the accuracy of the simulation, we will re-run the analysis five times. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Paired Means (Simulation) procedure 
window by expanding Means, then clicking on Paired Means, and then clicking on Equivalence 
Tests for Paired Means (Simulation). You may then make the appropriate entries as listed 
below, or open Example 4 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Sample Size) ...................................... 35 35 35 35 35 
Item A (Reference) Dist’n|H0 .................. N(M0 S) 
Item B (Treatment) Dist’n|H0 .................. N(M1 S) 
Item A (Reference) Dist’n|H1 .................. N(M0 S) 
Item B (Treatment) Dist’n|H1 .................. N(M0 S) 
M0 (Mean|H0) ......................................... 0 
M1 (Mean|H1) ......................................... 0.05 
S .............................................................. 0.070711 
R (Correlation of Items A & B) ................ 0.0 
Equivalence Limit .................................... Symmetric 
Test Type ................................................ T-Test 
Simulations .............................................. 2000 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing Mean Equivalence.    Hypotheses: H0: Diff>=|Diff0|; H1: Diff<|Diff0| 
H0 Dist'n: Normal(M0 S) - Normal(M1 S) 
H1 Dist'n: Normal(M0 S) - Normal(M0 S) 
Test Statistic: Paired T-Test 

 
   Lower Upper 
  H1 Equiv. Equiv. Corr Target Actual  
Power N Diff1 Limit Limit R Alpha Alpha M0 M1 S 
0.813 35 0.0 -0.1 0.1 0.000 0.050 0.050 0.0 0.1 0.1 
(0.017) [0.795 0.830]     (0.010) [0.040 0.059] 
 
0.813 35 0.0 -0.1 0.1 0.000 0.050 0.045 0.0 0.1 0.1 
(0.017) [0.796 0.830]     (0.009) [0.036 0.054] 
 
0.803 35 0.0 -0.1 0.1 0.000 0.050 0.051 0.0 0.1 0.1 
(0.017) [0.785 0.820]     (0.010) [0.041 0.061] 
 
0.799 35 0.0 -0.1 0.1 0.000 0.050 0.045 0.0 0.1 0.1 
(0.018) [0.781 0.816]     (0.009) [0.035 0.054] 
 
0.826 35 0.0 -0.1 0.1 0.000 0.050 0.051 0.0 0.1 0.1 
(0.017) [0.809 0.843]     (0.010) [0.041 0.060] 
 
Notes: 
Population Size: 10000. Number of Monte Carlo Samples: 2000.   Simulation Run Time: 16.80 seconds. 
 

The powers match the analytic value of 0.800 quite well. Note how informative the confidence 
intervals are. 
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Chapter 496 

Confidence 
Intervals for 
Paired Means 
Introduction 
This routine calculates the sample size necessary to achieve a specified distance from the paired 
sample mean difference to the confidence limit(s) at a stated confidence level for a confidence 
interval about the mean difference when the underlying data distribution is normal.  

Caution: This procedure assumes that the standard deviation of the future sample will be the same 
as the standard deviation that is specified. If the standard deviation to be used in the procedure is 
estimated from a previous paired sample or represents the population standard deviation, the 
Confidence Intervals for Paired Means with Tolerance Probability procedure should be 
considered. That procedure controls the probability that the distance from the mean paired 
difference to the confidence limits will be less than or equal to the value specified.  

Technical Details 
For a paired sample mean difference from a normal distribution with known variance, a two-
sided, 100(1 – α)% confidence interval is calculated by  

n
z

X diff
Diff

σα 21 /−±  

where DiffX  is the mean of the paired differences of the sample, and diffσ is the known standard 
deviation of paired sample differences. 

A one-sided 100(1 – α)% upper confidence limit is calculated by 

n
z

X diff
Diff

σα−+ 1  
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Similarly, the one-sided 100(1 – α)% lower confidence limit is 

n
z

X diff
Diff

σα−− 1  

For a paired sample mean difference from a normal distribution with unknown variance, a two-
sided, 100(1 – α)% confidence interval is calculated by  

n
t

X diffn
Diff

σα ˆ,/ 121 −−±  

where DiffX  is the mean of the paired differences of the sample, and diffσ̂  is the estimated 
standard deviation of paired sample differences. 

A one-sided 100(1 – α)% upper confidence limit is calculated by 

n
t

X diffn
Diff

σα ˆ, 11 −−+  

Similarly, the one-sided 100(1 – α)% lower confidence limit is 

n
t

X diffn
Diff

σα ˆ, 11 −−−  

Each confidence interval is calculated using an estimate of the mean difference plus and/or minus a 
quantity that represents the distance from the mean difference to the edge of the interval. For two-
sided confidence intervals, this distance is sometimes called the precision, margin of error, or half-
width. We will label this distance, D.  

The basic equation for determining sample size when D has been specified is 

n
z

D diffσα 21 /−=  

when the standard deviation is known, and 

n
t

D diffn σα ˆ,/ 121 −−=  

when the standard deviation is unknown. These equations can be solved for any of the unknown 
quantities in terms of the others. The value α / 2 is replaced by α when a one-sided interval is used. 

Finite Population Size 
The above calculations assume that samples are being drawn from a large (infinite) population. 
When the population is of finite size (N), an adjustment must be made. The adjustment reduces the 
standard deviation as follows: 

σ σfinite
n
N

= −⎛
⎝⎜

⎞
⎠⎟

1  

This new standard deviation replaces the regular standard deviation in the above formulas. 
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Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of  n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population mean difference 
is 1 – α. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population mean difference 
is 1 – α.  

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 

Sample Size (Number of Pairs) 

N (Sample Size) 
Enter one or more values for the sample size. This is the number of pairs selected at random from 
the population to be in the study. 

You can enter a single value or a range of values. 

Precision 

Distance from Mean Difference to Limit(s) 
This is the distance from the confidence limit(s) to the mean paired difference. For two-sided 
intervals, it is also known as the precision, half-width, or margin of error. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  
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Standard Deviation of Paired 
Differences 

S (Standard Deviation) 
Enter a value (or range of values) for the standard deviation. You can use the results of a pilot 
study, a previous study, or a ball park estimate based on the range (e.g., Range/4) to estimate this 
parameter. 

Know Standard Deviation 
Check this box when you want to base your results on the normal distribution. When the box is 
not checked, calculations are based on the t-distribution. The difference between the two 
distributions is negligible when the sample sizes are large (>50).  

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a one-sided or a two-sided confidence interval. 

Population 

Population Size 
This is the number of pairs in the population. Usually, you assume that samples are drawn from a 
very large (infinite) population. Occasionally, however, situations arise in which the population 
of interest is of limited size. In these cases, appropriate adjustments must be made. This option 
sets the population size. 

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example 1 – Calculating Sample Size 
A researcher would like to estimate the mean difference in weight following a specific diet using 
a two-sided 95% confidence interval.  The confidence level is set at 0.95, but 0.99 is included for 
comparative purposes. The standard deviation estimate, based on the range of paired differences, 
is 9.6 lbs. The researcher would like the interval to be no wider than 10 lbs. (half-width = 5 lbs.), 
but will examine half-widths of 3, 4, 5, 6, and 7 lbs.  
The goal is to determine the necessary sample size.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for Paired Means procedure window 
by expanding Means, then clicking on Paired Means, and then clicking on Confidence 
Intervals for Paired Means. You may then make the appropriate entries as listed below, or open 
Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Sample Size) 
Confidence Level .................................... 0.95 0.99 
N (Sample Size) ...................................... Ignored since this is the Find setting 
Distance from Mean to Limit(s) ............... 3 to 7 by 1 
S (Standard Deviation) ............................ 9.6 
Interval Type ........................................... Two-Sided 
Population Size ....................................... Infinite 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals with Unknown Standard Deviation 
 
  Target Actual  
 Sample Dist from Dist from Standard 
Confidence Size Mean Diff Mean Diff Deviation 
Level (N) to Limits to Limits (S) 
0.95000 42 3.000 2.992 9.600 
0.99000 72 3.000 2.995 9.600 
0.95000 25 4.000 3.963 9.600 
0.99000 43 4.000 3.950 9.600 
0.95000 17 5.000 4.936 9.600 
0.99000 29 5.000 4.926 9.600 
0.95000 13 6.000 5.801 9.600 
0.99000 21 6.000 5.961 9.600 
0.95000 10 7.000 6.867 9.600 
0.99000 17 7.000 6.801 9.600 
 
References 
Hahn, G. J. and Meeker, W.Q. 1991. Statistical Intervals. John Wiley & Sons. New York. 
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Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the population mean difference. 
N is the size of the sample (or number of pairs) drawn from the population. 
Dist from Mean Diff to Limit is the distance from the confidence limit(s) to the mean paired difference. For 
     two-sided intervals, it is also know as the precision, half-width, or margin of error. 
Target Dist from Mean Diff to Limit is the value of the distance that is entered into the procedure. 
Actual Dist from Mean Diff to Limit is the value of the distance that is obtained from the procedure. 
The standard deviation (S) is the standard deviation of the paired differences. 
 
Summary Statements 
A sample size of 42 produces a two-sided 95% confidence interval with a distance from the mean 
paired difference to the limits that is equal to 2.992 when the estimated standard deviation of 
the paired differences is 9.600. 
 

This report shows the calculated sample size for each of the scenarios.  

Plots Section 
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This plot shows the sample size versus the precision for the two confidence limits. 

Example 2 – Validation 
This procedure uses the same mechanics as the Confidence Intervals for One Mean procedure. 
The validation of this procedure is given in Examples 2 and 3 of the Confidence Intervals for One 
Mean procedure.  
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Chapter 497 

Confidence Intervals 
for Paired Means 
with Tolerance 
Probability 
Introduction 
This routine calculates the sample size necessary to achieve a specified distance from the paired 
sample mean difference to the confidence limit(s) with a given tolerance probability at a stated 
confidence level for a confidence interval about a single mean difference when the underlying 
data distribution is normal.  

Technical Details 
For a paired sample mean difference from a normal distribution with unknown variance, a two-
sided, 100(1 – α)% confidence interval is calculated by  

n
t

X Diffn
Diff

σα ˆ,/ 121 −−±
 

where DiffX  is the mean of the paired differences of the sample, and diffσ is the known standard 
deviation of paired sample differences. 

A one-sided 100(1 – α)% upper confidence limit is calculated by 

n
t

X Diffn
Diff

σα ˆ, 11 −−+
 

Similarly, the one-sided 100(1 – α)% lower confidence limit is 

n
t

X Diffn
Diff

σα ˆ, 11 −−−
 

Each confidence interval is calculated using an estimate of the mean difference plus and/or minus 
a quantity that represents the distance from the mean difference to the edge of the interval. For 
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two-sided confidence intervals, this distance is sometimes called the precision, margin of error, or 
half-width. We will label this distance, D.  

The basic equation for determining sample size when D has been specified is 

n
t

D Diffn σα ˆ,/ 121 −−=
 

Solving for n, we obtain 
2

121
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −−

D
t

n Diffn σα ˆ,/

 
This equation can be solved for any of the unknown quantities in terms of the others. The value 
α/2 is replaced by α when a one-sided interval is used. 

There is an additional subtlety that arises when the standard deviation is to be chosen for 
estimating sample size. The sample sizes determined from the formula above produce confidence 
intervals with the specified widths only when the future sample has a sample standard deviation 
of differences that is no greater than the value specified. 

As an example, suppose that 15 pairs of individuals are sampled in a pilot study, and a standard 
deviation estimate of 3.5 is obtained from the sample. The purpose of a later study is to estimate 
the mean difference within 10 units. Suppose further that the sample size needed is calculated to 
be 57 pairs using the formula above with 3.5 as the estimate for the standard deviation. The 
sample of size 57 pairs is then obtained from the population, but the standard deviation of the 57 
paired differences turns out to be 3.9 rather than 3.5. The confidence interval is computed and the 
distance from the mean difference to the confidence limits is greater than 10 units. 

This example illustrates the need for an adjustment to adjust the sample size such that the distance 
from the mean difference to the confidence limits will be below the specified value with known 
probability. 

Such an adjustment for situations where a previous sample is used to estimate the standard 
deviation is derived by Harris, Horvitz, and Mood (1948) and discussed in Zar (1984) and Hahn 
and Meeker (1991). The adjustment is 
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where 1 – γ  is the probability that the distance from the mean difference to the confidence 
limit(s) will be below the specified value, and m is the sample size in the previous paired sample 
that was used to estimate the standard deviation. 

The corresponding adjustment when no previous sample is available is discussed in Kupper and 
Hafner (1989) and Hahn and Meeker (1991). The adjustment in this case is 
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where, again, 1 – γ  is the probability that the distance from the mean difference to the confidence 
limit(s) will be below the specified value. 
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Each of these adjustments accounts for the variability in a future estimate of the standard 
deviation. In the first adjustment formula (Harris, Horvitz, and Mood, 1948), the distribution of 
the standard deviation is based on the estimate from a previous paired sample. In the second 
adjustment formula, the distribution of the standard deviation is based on a specified value that is 
assumed to be the population standard deviation of differences.  

Finite Population Size 
The above calculations assume that samples are being drawn from a large (infinite) population. 
When the population is of finite size (N), an adjustment must be made. The adjustment reduces 
the standard deviation as follows: 

σ σfinite
n
N

= −⎛
⎝⎜

⎞
⎠⎟

1  

This new standard deviation replaces the regular standard deviation in the above formulas. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of  n items 
are drawn from a population using simple random sampling and a confidence interval is 
calculated for each sample, the proportion of those intervals that will include the true population 
mean difference is 1 – α. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence and Tolerance 

Confidence Level (1 – Alpha) 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population mean difference 
is 1 – α.  
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Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90 0.95 0.99 or 0.90 to 0.99 by 0.01. 

Tolerance Probability 
This is the probability that a future interval with sample size N and the specified confidence level 
will have a distance from the mean paired difference to the limit(s) that is less than or equal to the 
distance specified. 

If a tolerance probability is not used, as in the 'Confidence Intervals for Paired Means' procedure, 
the sample size is calculated for the expected distance from the mean paired difference to the 
limit(s), which assumes that the future standard deviation will also be the one specified. 

Using a tolerance probability implies that the standard deviation of the future sample will not be 
known in advance, and therefore, an adjustment is made to the sample size formula to account for 
the variability in the standard deviation. Use of a tolerance probability is similar to using an upper 
bound for the standard deviation in the 'Confidence Intervals for Paired Means' procedure. 

Values between 0 and 1 can be entered. The choice of the tolerance probability depends upon how 
important it is that the distance from the interval limit(s) to the mean difference is at most the value 
specified. 

You can enter a range of values such as 0.70 0.80 0.90 or 0.70 to 0.95 by 0.05. 

Sample Size (Number of Pairs) 

N (Sample Size or Number of Pairs) 
Enter one or more values for the sample size. This is the number of pairs selected at random from 
the population to be in the study. 

You can enter a single value or a range of values. 

Precision 

Distance from Mean Difference to Limit(s) 
This is the distance from the confidence limit(s) to the mean paired difference. For two-sided 
intervals, it is also known as the precision, half-width, or margin of error. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  
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Standard Deviation of Paired 
Differences 

Standard Deviation Source 
This procedure permits two sources for estimates of the standard deviation of paired differences: 

• S is a Population Standard Deviation 
This option should be selected if there is no previous sample that can be used to obtain an 
estimate of the standard deviation of the paired differences. In this case, the algorithm 
assumes that future sample obtained will be from a population with standard deviation S. 

• S from a Previous Sample 
This option should be selected if the estimate of the standard deviation of the paired 
differences is obtained from a previous random sample from the same distribution as the one 
to be sampled. The sample size of the previous sample must also be entered under 'Sample 
Size of Previous Sample'. 

Standard Deviation of Paired 
Differences– S is a Population 
Standard Deviation 

S (Standard Deviation) 
Enter an estimate of the standard deviation of paired differences (must be positive). In this case, 
the algorithm assumes that future samples obtained will be from a population with standard 
deviation S. 

One common method for estimating the standard deviation is the range divided by 4, 5, or 6. 

You can enter a range of values such as 1 2 3 or 1 to 10 by 1. 

Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  

Standard Deviation of Paired 
Differences – S from a Previous 
Sample 

S (SD Estimated from a Previous Sample) 
Enter an estimate of the standard deviation of paired differences from a previous (or pilot) study. 
This value must be positive. 

A range of values may be entered. 

Press the Standard Deviation Estimator button to load the Standard Deviation Estimator window.  

Sample Size (# of Pairs) of Previous Sample 
Enter the sample size (number of pairs) that was used to estimate the standard deviation entered 
in S (SD Estimated from a Previous Sample). 

This value is entered only when 'Standard Deviation Source:' is set to 'S from a Previous Sample'.  
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One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a one-sided or a two-sided confidence interval. 

Population 

Population Size 
This is the number of pairs in the population. Usually, you assume that samples are drawn from a 
very large (infinite) population. Occasionally, however, situations arise in which the population 
of interest is of limited size. In these cases, appropriate adjustments must be made. This option 
sets the population size. 

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Example 1 – Calculating Sample Size 
A researcher would like to estimate the mean difference in weight following a specific diet with 
95% confidence. It is very important that the mean difference is estimated within 5 lbs.  Data 
available from a previous study are used to provide an estimate of the standard deviation. The 
estimate of the standard deviation of before/after differences is 16.7 lbs, from a sample of size 17 
individuals.  
The goal is to determine the sample size necessary to obtain a two-sided confidence interval such 
that the mean weight is estimated within 5 lbs. Tolerance probabilities of 0.70 to 0.95 will be 
examined. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for Paired Means with Tolerance 
Probability procedure window by expanding Means, then clicking on Paired Means, and then 
clicking on Confidence Intervals for Paired Means with Tolerance Probability. You may then 
make the appropriate entries as listed below, or open Example 1 by going to the File menu and 
choosing Open Example Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... N (Sample Size) 
Confidence Level .................................... 0.95 
Tolerance Probability .............................. 0.70 to 0.95 by 0.05 
N (Sample Size or Number of Pairs) ....... Ignored since this is the Find setting 
Distance from Mean Diff to Limit(s) ......... 5 
Standard Deviation Source ..................... S from a Previous Sample 
S .............................................................. 16.7 
Sample Size of Previous Sample ............ 17 
Interval Type ........................................... Two-Sided 
Population Size ....................................... Infinite 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals 
 
  Target Actual   
 Sample Dist from Dist from Standard  
Confidence Size Mean Diff Mean Diff Deviation Tolerance 
Level (N) to Limits to Limits (S) Probability 
0.95 58 5.000 4.970 16.700 0.70 
0.95 61 5.000 4.996 16.700 0.75 
0.95 66 5.000 4.967 16.700 0.80 
0.95 71 5.000 4.985 16.700 0.85 
0.95 79 5.000 4.973 16.700 0.90 
0.95 92 5.000 4.981 16.700 0.95 
 
Sample size for estimate of S from previous paired sample = 17.  
 
References 
Hahn, G. J. and Meeker, W.Q. 1991. Statistical Intervals. John Wiley & Sons. New York. 
Zar, J. H. 1984. Biostatistical Analysis. Second Edition. Prentice-Hall. Englewood Cliffs, New Jersey. 
Harris, M., Horvitz, D. J., and Mood, A. M. 1948. 'On the Determination of Sample Sizes in Designing 
     Experiments', Journal of the American Statistical Association, Volume 43, No. 243, pp. 391-402. 
 
Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the population mean difference. 
N is the size of the sample (or number of pairs) drawn from the population. 
Dist from Mean Diff to Limit is the distance from the confidence limit(s) to the mean paired difference. For 
     two-sided intervals, it is also know as the precision, half-width, or margin of error. 
Target Dist from Mean Diff to Limit is the value of the distance that is entered into the procedure. 
Actual Dist from Mean Diff to Limit is the value of the distance that is obtained from the procedure. 
The standard deviation (S) is the standard deviation of the paired differences. 
Tolerance Probability is the probability that a future interval with sample size N and corresponding 
     confidence level will have a distance from the mean difference to the limit(s) that is less than or equal to 
     the specified distance. 
 
Summary Statements 
The probability is 0.70 that a sample size of 58 will produce a two-sided 95% confidence 
interval with a distance from the mean paired difference to the limits that is less than or 
equal to 4.970 if the population standard deviation is estimated to be 16.700 by a previous 
paired sample of size 17. 
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This report shows the calculated sample size for each of the scenarios.  

Plots Section 
 

 

N

 
 

This plot shows the sample size versus the tolerance probability. 

Example 2 – Validation 
This procedure uses the same mechanics as the Confidence Intervals for One Mean with 
Tolerance Probability procedure. The validation of this procedure is given in Examples 2, 3, and 
4 of the Confidence Intervals for One Mean with Tolerance Probability procedure.  
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Chapter 500 

Inequality Tests 
for Two Means in a 
2x2 Cross-Over 
Design using 
Differences 
Introduction 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments and 
the objective is to study differences among the treatments. The name cross-over comes from the 
most common case in which there are only two treatments. In this case, each subject crosses over 
from one treatment to the other. It is assumed that there is a washout period between treatments 
during which the response returns back to its baseline value. If this does not occur, there is said to 
be a carry-over effect.  

A 2x2 cross-over design contains to two sequences (treatment orderings) and two time periods 
(occasions). One sequence receives treatment A followed by treatment B. The other sequence 
receives B and then A. The design includes a washout period between responses to make certain 
that the effects of the first drug do no carry over to the second. Thus, the groups in this design are 
defined by the sequence in which the drugs are administered, not by the treatments they receive. 
Indeed, higher-order cross-over designs have been used in which the same treatment is used at 
both occasions. 

Cross-over designs are employed because, if the no-carryover assumption is met, treatment 
differences are measured within a subject rather than between subjects—making a more precise 
measurement. Examples of the situations that might use a cross-over design are the comparison of 
anti-inflammatory drugs in arthritis and the comparison of hypotensive agents in essential 
hypertension. In both of these cases, symptoms are expected to return to their usual baseline level 
shortly after the treatment is stopped. 
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Advantages of Cross-Over Designs 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment into the study may 
be easier because each patient will receive both treatments. Finally, it is often more difficult to 
obtain a subject than to obtain a measurement. 

Disadvantages of Cross-Over Designs 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. It may be difficult to separate the treatment 
effect from the period effect, the carry-over effect of the previous treatment, and the interaction 
between period and treatment. 

The design cannot be used when the treatment (or the measurement of the response) alters the 
subject permanently. Hence, it should not be used to compare treatments that are intended to 
provide a cure. 

Because subjects must be measured at least twice, it is often more difficult to keep patients 
enrolled in the study. It is arguably simpler to measure a subject once than to obtain their 
measurement twice. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 

Technical Details 
The 2x2 crossover design may be described as follows. Randomly assign the subjects to one of 
two sequence groups so that there are  subjects in sequence one and  subjects in sequence 
two. In order to achieve design balance, the sample sizes  and  are assumed to be equal so 
that . 

N1 N2

N1 N2

N N N1 2 2= = /

Sequence one is given treatment A followed by treatment B. Sequence two is given treatment B 
followed by treatment A. The sequence is replicated m times. So, if m = 3, the sequences are 
ABABAB and BABABA. 

The usual method of analysis is the analysis of variance. However, the power and sample size 
formulas that follow are based on the t-test, not the F-test. This is done because, in the balanced 
case, the t-test and the analysis of variance F-test are equivalent. Also, the F-test is limited to a 
two-sided hypothesis, while the t-test allows both one-sided and two-sided hypotheses. This is 
important because one-sided hypotheses are used for non-inferiority and equivalence testing. 

Cross-Over Analysis 
The following discussion summarizes the presentation of Chow and Liu (1999). The general 
linear model for the standard 2x2 cross-over design is 

( ) ( )Y S P Cijkl ik j j k j k ijkl= + e+ + + +−μ μ , ,1  

where i represents a subject (1 to ), j represents the period (1 or 2), k represents the sequence 
(1 or 2), and l represents the replicate. The  represent the random effects of the subjects. The 

Nk

Sik
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Pj  represent the effects of the two periods. The ( )μ j k,  represent the means of the two treatments. 

In the case of the 2x2 cross-over design 
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where the subscripts 1 and 2 represent treatments A and B, respectively. 

The  represent the carry-over effects. In the case of the 2x2 cross-over design (C j k−1, )
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where the subscripts 1 and 2 represent treatments A and B, respectively.  

Assuming that the average effect of the subjects is zero, the four means from the 2x2 cross-over 
design can be summarized using the following table. 

Sequence Period Period
AB P P C
BA P P C

1 2
1
2

11 1 1

2

μ
μ

+
+

21 2 2 1

12 1 22 2 1 2

( )
( )

μ μ μ μ μ
μ μ μ μ μ

= + = + + +
= + = + + +

 

where  and C CP P1 2 0+ = 1 2 0+ = . 

Test Statistic  
The presence of a treatment effect can be studied by testing whether μ μ δ1 2− =  using a t-test or 
an F-test. If the F-test is used, only a two-sided test is possible. The t statistic is calculated as 
follows 

( )

N

x

w

R

2σ̂

xt T
d

−− δ
=  

where  is the within mean square error from the appropriate ANOVA table.  $σw
2

The two-sided null hypothesis is rejected at the α  significance level if t td > −α / ,2 N 2

σ d
2

. Similar 
results are available for a one-sided hypothesis test. 

The F-test is calculated using a standard repeated-measures analysis of variance table in which 
the between factor is the sequence and the within factor is the treatment. The within mean square 
error provides an estimate of the within-subject variance . If prior studies used a t-test rather 
than an ANOVA to analyze the data, you may not have a direct estimate of . Instead, you will 
have an estimate of the variance of the period differences from the t-test, .The two variances, 

 and , are functionally related by . Either variance can be entered. 

σw
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σw
2

2
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2 σw
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Computing the Power 
The power is calculated as follows for a directional alternative (one-sided test). 

1. Find tα  such that , where ( )1− =T tdf α α ( )T xdf  is the area left of x under a central-t 
curve and df = N - 2. 

2. Calculate the noncentrality parameter: 
2w

N
σ
δλ = . 

3. Calculate: Power = , where ( )1− ′T tdf ,λ α ( )′T xdf ,λ  is the area to the left of x under a 
noncentral-t curve with degrees of freedom df and noncentrality parameter λ . 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Power and Beta or N. 

Select N when you want to determine the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  
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Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in both sequences). This value must be an integer greater than one.  

Note that you may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Effect Size – Mean Differences 

Diff0 (Mean Difference|H0) 
Enter the difference between the treatment means under the null (H0) hypothesis. This is the 
value that is to be rejected when the t-test is significant. This value is commonly set to zero. 

You may enter a range of values such as 10 20 30 or 0 to 100 by 25. 

Diff1 (Mean Difference|H1) 
Enter the difference between the population means under the alternative (H1) hypothesis. This is 
the value of the difference at which the power is calculated. 

You may enter a range of values such as 10 20 30 or 0 to 100 by 25. 

Effect Size – Standard Deviation 

Specify S as Sw, SdPeriod, or SdPaired 
Specify the form of the standard deviation that is entered in the box below.  

• Sw 
Specify S as the square root of the within mean square error from a repeated measures 
ANOVA. This is the most common method since cross-over designs are usually analyzed 
using ANOVA. 

• SdPeriod 
Specify the standard deviation S as the the standard deviation of the period differences for 
each subject within each sequence. Note SdPeriod^2 = var((Yi2k - Yi1k)/2) = Sw^2 / 2. 

• SdPaired 
Specify the standard deviation S as the the standard deviation of the paired differences. Note 
SdPaired^2  = var(Yi2k - Yi1k) = 2 * Sw^2. 
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S (Value of Sw, SdPeriod, or SdPaired) 
Specify the value(s) of the standard deviation S. The interpretation of this value depends on the 
entry in "Specify S as Sw, SdPeriod or SdPaired" above. 

If S=Sw is selected, this is the value of Sw which is sqrt(WMSE), where WMSE is the within 
mean square error from the ANOVA table used to analyze the Cross-Over design. Note Sw^2 = 
var(Yijk). 

IF S=SdPeriod is selected, this is the value of SdPeriod, which is the standard deviation of the 
period differences for each subject within each sequence. Note SdPeriod^2 = var((Yi2k - Yi1k)/2) 
= Sw^2 / 2. 

IF S=SdPaired is selected, this is the value of Sd which is the standard deviation of the paired 
differences. Note SdPaired^2  = var(Yi2k - Yi1k) = 2 * Sw^2. 

These values must be positive. A list of values may be entered. 

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always : Diff0 = Diff1. H0

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical.  

Possible selections are: 

• H1: DIFF0 <> DIFF1 
This is the most common selection. It yields the two-sided t-test. Use this option when you 
are testing whether the means are different but you do not want to specify beforehand which 
mean is larger. Many scientific journals require two-sided tests. 

• H1: DIFF0 > DIFF1 
This option yields a one-sided t-test. Use it when you are only interested in the case in which 
the actual difference is less than Diff0. 

• H1: DIFF0 < DIFF1 
This option yields a one-sided t-test. Use it when you are only interested in the case in which 
actual difference is greater than Diff0. 
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Example 1 – Power Analysis 
Suppose you want to consider the power of a balanced cross-over design that will be analyzed 
using the two-sided t-test approach. The difference between the treatment means under H0 is 0. 
Similar experiments have had a standard deviation of the differences (Sd) of 10. Compute the 
power when the true differences are 5 and 10 at sample sizes between 5 and 50. The significance 
level is 0.05.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a 2x2 Cross-Over Design 
[Differences] procedure window by expanding Means, then 2x2 Cross-Over Design, then 
clicking on Test (Inequality), and then clicking on Tests for Two Means in a 2x2 Cross-Over 
Design [Differences]. You may then make the appropriate entries as listed below, or open 
Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. 5 10 15 20 30 40 50 
Diff0 (Mean Difference|H0) ..................... 0 
Diff1 (Mean Difference|H1) ..................... 5 10 
Specify S as ............................................ SdPeriod 
S .............................................................. 10 
Alternative Hypothesis ............................ H1: Diff0 ≠ Diff1 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Cross-Over Design 
Null Hypothesis: Diff0=Diff1     Alternative Hypothesis: Diff0<>Diff1 
       Effect 
Power N Diff0 Diff1 Alpha Beta Sd Size 
0.0691 5 0.000 5.000 0.0500 0.9309 10.000 0.500 
0.1077 10 0.000 5.000 0.0500 0.8923 10.000 0.500 
0.1463 15 0.000 5.000 0.0500 0.8537 10.000 0.500 
0.1851 20 0.000 5.000 0.0500 0.8149 10.000 0.500 
0.2624 30 0.000 5.000 0.0500 0.7376 10.000 0.500 
0.3379 40 0.000 5.000 0.0500 0.6621 10.000 0.500 
0.4101 50 0.000 5.000 0.0500 0.5899 10.000 0.500 
0.1266 5 0.000 10.000 0.0500 0.8734 10.000 1.000 
0.2863 10 0.000 10.000 0.0500 0.7137 10.000 1.000 
0.4339 15 0.000 10.000 0.0500 0.5661 10.000 1.000 
0.5620 20 0.000 10.000 0.0500 0.4380 10.000 1.000 
0.7529 30 0.000 10.000 0.0500 0.2471 10.000 1.000 
0.8690 40 0.000 10.000 0.0500 0.1310 10.000 1.000 
0.9337 50 0.000 10.000 0.0500 0.0663 10.000 1.000 
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Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the total sample size drawn from all sequences. The sample is divided equally among sequences. 
Alpha is the probability of a false positive. 
Beta is the probability of a false negative. 
Diff0 is the mean difference under the null hypothesis, H0. 
Diff1 is the mean difference under the alternative hypothesis, H1. 
Sd is the standard deviation of the difference. 
Effect Size, |Diff0-Diff1|/Sd, is the relative magnitude of the effect under the alternative. 
 
Summary Statements 
A two-sided t-test achieves 7% power to infer that the mean difference is not 0.000 when the 
total sample size of a 2x2 cross-over design is 5, the actual mean difference is 5.000, the 
standard deviation of the differences is 10.000, and the significance level is 0.0500. 
 

Plots Sections 
 

Power vs N by D1
D0=0.000 SdPeriod=10.000 Alpha=0.05 T Test

N

5 20 35 50
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10.000

 
 

This report shows the values of each of the parameters, one scenario per row. This plot shows the 
relationship between sample size and power. We see that a sample size of about 46 is needed 
when Diff1 = 10 for 90% power, while Diff1 = 5 never reaches 90% power in this range of 
sample sizes. 
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Example 2 – Finding the Sample Size 
Continuing with Example 1, suppose the researchers want to find the exact sample size necessary 
to achieve 90% power for both values of Diff1.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a 2x2 Cross-Over Design 
[Differences] procedure window by expanding Means, then 2x2 Cross-Over Design, then 
clicking on Test (Inequality), and then clicking on Tests for Two Means in a 2x2 Cross-Over 
Design [Differences]. You may then make the appropriate entries as listed below, or open 
Example 2 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Sample Size) 
Power ...................................................... 0.90 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting  
Diff0 (Mean Difference|H0) ..................... 0 
Diff1 (Mean Difference|H1) ..................... 5 10 
Specify S as ............................................ SdPeriod 
S .............................................................. 10 
Alternative Hypothesis ............................ H1: Diff0 ≠ Diff1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Cross-Over Design 
Null Hypothesis: Diff0=Diff1     Alternative Hypothesis: Diff0<>Diff1 
 
       Effect 
Power N Diff0 Diff1 Alpha Beta Sd Size 
0.9032 172 0.000 5.000 0.0500 0.0968 10.000 0.500 
0.9125 46 0.000 10.000 0.0500 0.0875 10.000 1.000 
 

This report shows the exact sample size necessary for each scenario.  

Note that the search for N is conducted across only even values of N since the design is assumed 
to be balanced. 
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Example 3 – Validation using Julious 
Julious (2004) page 1933 presents an example in which Diff0 = 0.0, Diff1 = 10, Sw = 20, alpha = 
0.05, and beta = 0.10. Julious obtains a sample size of 86.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a 2x2 Cross-Over Design 
[Differences] procedure window by expanding Means, then 2x2 Cross-Over Design, then 
clicking on Test (Inequality), and then clicking on Tests for Two Means in a 2x2 Cross-Over 
Design [Differences]. You may then make the appropriate entries as listed below, or open 
Example 3 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Sample Size) 
Power ...................................................... 0.90 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting  
Diff0 (Mean Difference|H0) ..................... 0 
Diff1 (Mean Difference|H1) ..................... 10 
Specify S as ............................................ Sw 
S .............................................................. 20 
Alternative Hypothesis ............................ H1: Diff0 ≠ Diff1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

       Effect 
Power N Diff0 Diff1 Alpha Beta Sw Size 
0.906483 88 0.000 10.000 0.050000 0.093435 20.000 0.500 
 

PASS obtained a sample size of 88, two higher than that obtained by Julious (2004). However, if 
you look at the power achieved by an N of 86, you will find that it is 0.899997—slightly less than 
the goal of 0.90. 
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Chapter 505 

Inequality Tests 
for Two Means in a 
2x2 Cross-Over 
Design using 
Ratios 
Introduction 
This procedure calculates power and sample size for a 2x2 cross-over design in which the 
logarithm of the outcome is a continuous normal random variable. This routine deals with the case 
in which the statistical hypotheses are expressed in terms of ratios of means instead of differences of 
means.  

The details of testing two treatments using data from a 2x2 cross-over design are given in another 
chapter and they will not be repeated here. If the logarithms of the responses can be assumed to 
follow a normal distribution, hypotheses stated in terms of the ratio can be transformed into 
hypotheses about the difference. The details of this analysis are given in Julious (2004). They will 
only be summarized here. 

Testing Using Ratios 
It will be convenient to adopt the following specialized notation for the discussion of these tests. 

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment (group 2) mean. T

μR  Not used Reference mean. This is the reference (group 1) mean.  

φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 
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Note that the actual values of μT  and μR  are not needed. Only the ratio of these values is needed 
for power and sample size calculations. 

The null hypothesis is 

H0 0:φ φ=  

and the alternative hypothesis is  

H1 0:φ φ≠  

Log Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as percentages, but differences must 
be interpreted as actual amounts in their original scale. Hence, it has become a common practice 
to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the null hypothesis are as follows. 
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φ φ
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φ μ μ

=

⇒ =
⎧
⎨
⎩

⎫
⎬
⎭

⇒ ≠ −

0

T

R

T Rln ln ln

 

Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 

σY
2
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From this relationship, the coefficient of variation of Y can be found to be  
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where  is the within mean square error from the analysis of variance of the logged data. 
Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σw
2

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. In either case, the power and sample size calculations are 
made using the formulas for testing the difference in two means. These formulas are presented in 
another chapter and are not duplicated here. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 
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Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. In most situations, 
you will select either Power and Beta for a power analysis or N1 for sample size determination. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the total sample size, the number of individuals in the 
study (total subjects in both sequences). This value must be an integer greater than one.  

When N is even, it is split evenly between the two sequences. When N is odd, the first sequence 
has one more subject than the second sequence. 

Note that you may enter a list of values using the syntax 50 100 150 200 250 or 50 to 250 by 50.  

Effect Size – Ratios 

R0 (Ratio Under H0) 
This is the value of the ratio of the two means assumed by the null hypothesis, H0. Usually, R0 = 
1.0 which implies that the two means are equal. However, you may test other values of R0 as 
well. Strictly speaking, any positive number is valid, but, usually, 1.0 is used. 

Warning: you cannot use the same value for both R0 and R1. 
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R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Often, a 
range of values will be tried. For example, you might try the four values: 

1.05 1.10 1.15 1.20 

Strictly speaking, any positive number is valid. However, numbers between 0.50 and 2.00 are 
usually used. 

Warning: you cannot use the same value for both R0 and R1. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not log) scale. This value must be 
determined from past experience or from a pilot study. It is most easily calculated from the within 
mean-square error of the analysis of variance of the logged data using the relationship  

COV eY
w= −σ 2

1 . 

If prior studies used a t-test to analyze the logged data, you will not have a direct estimate of . 
However, the two variances,  and , are functionally related by . 

$σw
2

σd
2 σw

2 σ σd w
2 22=

Test 

Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. Possible selections are: 

• H1: R1 <> R0 
This is the most common selection. It yields the two-tailed t-test. Use this option when you 
are testing whether the means are different, but you do not want to specify beforehand which 
mean is larger. 

• H1: R1 < R0 
This option yields a one-tailed t-test. Use it when you are only interested in the case in which 
Mean1 is greater than Mean2. 

• H1: R1 > R0 
This option yields a one-tailed t-test. Use it when you are only interested in the case in which 
Mean1 is less than Mean2. 
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Example 1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is 
better than the standard drug. Responses for either treatment are assumed to follow a lognormal 
distribution. A 2x2 cross-over design will be used and the logged data will be analyzed using an 
appropriate analysis of variance. Note that using an analysis of variance instead of a t-test to 
analyze the data forces the researchers to use two-sided tests.   

Past experience leads the researchers to set the COV to 0.50. The significance level is 0.05. The 
power will be computed for R1 equal to 1.10 and 1.20. Sample sizes between 20 and 220 will be 
included in the initial analysis. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a 2x2 Cross-Over Design [Ratios] 
procedure window by expanding Means, then 2x2 Cross-Over Design, then clicking on Test 
(Inequality), and then clicking on Tests for Two Means in a 2x2 Cross-Over Design [Ratios]. 
You may then make the appropriate entries as listed below, or open Example 1 by going to the 
File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. 20 to 220 by 40 
R0 (Ratio Under H0) ............................... 1.0 
R1 (True Ratio) ....................................... 1.1  1.2 
COV (Coefficient of Variation) ................. 0.50 
Alternative Hypothesis ............................ R1 ≠ R0 (Two-Sided) 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for 2x2 Cross-Over Design Using Ratios 
H0: R1=R0.  H1: R1<>R0. 
 
 Total Mean Mean  Coefficient   
 Sample Ratio Ratio Effect of Significance  
 Size Under H0 Under H1 Size Variation Level  
Power (N) (R0) (R1) (ES) (COV) (Alpha) Beta 
0.0928 20 1.000 1.100 0.143 0.500 0.0500 0.9072 
0.1925 60 1.000 1.100 0.143 0.500 0.0500 0.8075 
0.2925 100 1.000 1.100 0.143 0.500 0.0500 0.7075 
0.3885 140 1.000 1.100 0.143 0.500 0.0500 0.6115 
0.4777 180 1.000 1.100 0.143 0.500 0.0500 0.5223 
0.5627 220 1.000 1.100 0.143 0.500 0.0500 0.4373 
0.2116 20 1.000 1.200 0.273 0.500 0.0500 0.7884 
0.5474 60 1.000 1.200 0.273 0.500 0.0500 0.4526 
0.7711 100 1.000 1.200 0.273 0.500 0.0500 0.2289 
0.8937 140 1.000 1.200 0.273 0.500 0.0500 0.1063 
0.9537 180 1.000 1.200 0.273 0.500 0.0500 0.0463 
0.9808 220 1.000 1.200 0.273 0.500 0.0500 0.0192 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the total sample size drawn from all sequences. The sample is divided equally among sequences. 
R0 is the ratio of the means (Mean2/Mean1) under the null hypothesis, H0. 
R1 is the ratio of the means (Mean2/Mean1) at which the power is calculated. 
ES is the effect size which is |Ln(R0)-Ln(R1)| / (sigma). 
COV is the coefficient of variation on the original scale. The value of sigma is calculated from this. 
Alpha is the probability of a false positive H0. 
Beta is the probability of a false negative H0. 
 
Summary Statements 
A two-sided t-test achieves 9% power to infer that the mean ratio is not 1.000 when the total 
sample size of a 2x2 cross-over design is 20, the actual mean ratio is 1.100, the coefficient 
of variation is 0.500, and the significance level is 0.0500. 

 

This report shows the power for the indicated scenarios.  

Plots Section 
 

 

Power vs N by R1
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This plot shows the power versus the sample size. 
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Example 2 – Validation 
We will validate this procedure by showing that it gives the identical results to the regular test on 
differences—a procedure that has been validated. We will use the same settings as those given in 
Example 1. Since the output for this example is shown above, all that we need is the output from 
the procedure that uses differences.   

To run the power analysis on differences, we need the values of Diff1 (which correspond to R1) 
and Sw. The value of Diff0 will be zero. 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a 2x2 Cross-Over Design 
[Differences] procedure window by expanding Means, then 2x2 Cross-Over Design, then 
clicking on Test (Inequality), and then clicking on Tests for Two Means in a 2x2 Cross-Over 
Design [Differences]. You may then make the appropriate entries as listed below, or open 
Example 1d by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. 20 to 220 by 40 
Diff0 (Mean Difference|H0) ..................... 0 
Diff1 (Mean Difference|H1) ..................... 0.095310 0.182322 
Specify S as Sw or Sd ............................. Sw 
S (Value of Sw or Sd) .............................. 0.472381 
Alternative Hypothesis ............................ H1: DIFF0 ≠ Diff1 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for 2x2 Cross-Over Design 
Null Hypothesis: Diff0=Diff1     Alternative Hypothesis: Diff0<>Diff1 
       Effect 
Power N Diff0 Diff1 Alpha Beta Sw Size 
0.0928 20 0.000 0.095 0.0500 0.9072 0.472 0.202 
0.1925 60 0.000 0.095 0.0500 0.8075 0.472 0.202 
0.2925 100 0.000 0.095 0.0500 0.7075 0.472 0.202 
0.3885 140 0.000 0.095 0.0500 0.6115 0.472 0.202 
0.4777 180 0.000 0.095 0.0500 0.5223 0.472 0.202 
0.5627 220 0.000 0.095 0.0500 0.4373 0.472 0.202 
0.2116 20 0.000 0.182 0.0500 0.7884 0.472 0.386 
0.5474 60 0.000 0.182 0.0500 0.4526 0.472 0.386 
0.7711 100 0.000 0.182 0.0500 0.2289 0.472 0.386 
0.8937 140 0.000 0.182 0.0500 0.1063 0.472 0.386 
0.9537 180 0.000 0.182 0.0500 0.0463 0.472 0.386 
0.9808 220 0.000 0.182 0.0500 0.0192 0.472 0.386 

 

You can compare these power values with those shown above in Example 1 to validate the 
procedure. You will find that the power values are identical.  
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Chapter 508 

Tests for Two 
Means in a 2x2 
Cross-Over 
Design with Non-
Zero Null using 
Differences 
Introduction 
This procedure computes power and sample size for non-zero null tests in 2x2 cross-over designs 
in which the outcome is a continuous normal random variable. The details of sample size 
calculation for the 2x2 cross-over design are presented in the 2x2 Cross-Over Designs chapter 
and they will not be duplicated here. This chapter only discusses those changes necessary for non-
zero null tests. Sample size formulas for non-zero null tests of cross-over designs are presented in 
Chow et al. (2003) pages 63-68.  

Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments and 
the objective is to study differences among the treatments. The name cross-over comes from the 
most common case in which there are only two treatments. In this case, each subject crosses over 
from one treatment to the other. It is assumed that there is a washout period between treatments 
during which the response returns back to its baseline value. If this does not occur, there is said to 
be a carry-over effect. 
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A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence receives treatment A followed by treatment B. The other sequence 
receives B and then A. The design includes a washout period between responses to make certain 
that the effects of the first drug do no carry-over to the second. Thus, the groups in this design are 
defined by the sequence in which the two drugs are administered, not by the treatments they 
receive. 

Cross-over designs are employed because, if the no-carryover assumption is met, treatment 
differences are measured within a subject rather than between subjects—making a more precise 
measurement. Examples of the situations that might use a cross-over design are the comparison of 
anti-inflammatory drugs in arthritis and the comparison of hypotensive agents in essential 
hypertension. In both of these cases, symptoms are expected to return to their usual baseline level 
shortly after the treatment is stopped. 

The Statistical Hypotheses 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests and their 
power and sample size can be calculated using the 2x2 Cross-Over Design procedure. However, 
at the urging of our users, we have developed this module which provides the input and output in 
formats that are convenient for these types of tests. This section reviews the specifics of non-
inferiority and superiority testing. 

Remember that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-
sided tests are defined as  

H0:μX A H1:≤ μ versus X A>

H0:

 

Rejecting H0 implies that the mean is larger than the value A. This test is called an upper-tailed 
test because it is rejected in samples in which the difference in sample means is larger than A. 

Following is an example of a lower-tailed test. 

μX A≥ H1:μX A<   versus 

Non-inferiority and non-zero null tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialize notation for the discussion of these tests.  

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR

sM

 Not used Reference mean. This is the mean of a reference 
population.  

 SM Margin of superiority. This is a tolerance value that 
defines the magnitude of difference that is required for 
practical importance. This may be thought of as the 
smallest difference from the reference that is considered 
to be different. 

μ μδ  D True difference. This is the value of T R− , the 
difference between the treatment and reference means. 
This is the value at which the power is calculated. 
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Note that the actual values of μT  and μR  are not needed. Only their difference is needed for 
power and sample size calculations. 

Non-Zero Null Tests 
A non-zero null test tests that the treatment mean is better than the reference mean by more than 
the superiority margin. The actual direction of the hypothesis depends on the response variable 
being studied.  

Case 1: High Values Good 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is greater than the reference mean by at least the 
margin of superiority. The value of δ  must be greater than SM . The following are equivalent 
sets of hypotheses. 

SM+≤ 210H μμ:  versus  SM+> 21H μ1μ:  

SM≤− 210H μμ: SM>− 211H μμ:  versus   

S0 M≤δ:H S1 M>δ:H  versus   

Case 2: High Values Bad 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is less than the reference mean by at least the margin 
of superiority. The value of δ  must be less than SM− . The following are equivalent sets of 
hypotheses. 

SM−≥ 210H μμ: SM−< 211H μμ:   versus   

SM−≥− 210H μμ: <− 211H μμ: SM−  versus   

SM−≥δ:0H SM−<δ:1H    versus   

Test Statistics 
This section describes the test statistic that is used to perform the hypothesis test.  

T-Test 
A t-test is used to analyze the data. When the data are balanced between sequences, the two-sided 
t-test is equivalent to an analysis of variance F-test. The test assumes that the data are a simple 
random sample from a population of normally-distributed values that have the same variance. 
This assumption implies that the differences are continuous and normal. The calculation of the t-
statistic proceeds as follow 
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( )

N

xxt

w

RT
d 2σ̂

ε−−
=  

where  is the within mean square error from the appropriate ANOVA table.  $σw
2

The significance of the test statistic is determined by computing the p-value. If this p-value is less 
than a specified level (usually 0.05), the hypothesis is rejected. That is, the one-sided null 
hypothesis is rejected at the α  significance level if . Otherwise, no conclusion can be 
reached. 

t t>

2

σ d
2 2

d N −α , 2

If prior studies used a t-test rather than an ANOVA to analyze the data, you may not have a direct 
estimate of . Instead, you will have an estimate of the variance of the period differences from 
the t-test, . These variances are functionally related by . Either variance can be 
entered. 

σw
2ˆdσ σw 2=

Computing the Power 
The power is calculated as follows.  

1. Find tα  such that 1 , where ( )− =T tdf α α ( )T xdf  is the area under a central-t curve to the 
left of x and df = N - 2. 

( )
2. Calculate the noncentrality parameter: 

2
N−

=

( )− ′T tdf ,λ α

wσ
εδλ . 

( )′T xdf ,λ3. Calculate: Power = 1 , where  is the area under a noncentral-t curve 
with degrees of freedom df and noncentrality parameter λ  to the left of x. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Power and Beta or N. 
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Select N when you want to determine the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of inferiority 
when in fact the null hypothesis should be rejected. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis when in fact the treatment is not superior.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study. This value must be an integer greater than one. Note that you may enter a list of values 
using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Effect Size – Mean Difference 

SM (Superiority Margin) 
This is the magnitude of the margin of superiority. It must be entered as a positive number. 

When higher means are better, this value is the distance above the reference mean that is required 
to be considered superior. When higher means are worse, this value is the distance below the 
reference mean that is required to be considered superior. 

D (True Difference) 
This is the actual difference between the treatment mean and the reference mean at which the 
power is calculated. 
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When higher means are better, this value should be greater than SM. When higher means are 
worse, this value should be negative and greater in magnitude than SM. 

Effect Size – Standard Deviation 

Specify S as Sw, SdPeriod, or SdPaired 
Specify the form of the standard deviation that is entered in the box below.  

• Sw 
Specify S as the square root of the within mean square error from a repeated measures 
ANOVA. This is the most common method since cross-over designs are usually analyzed 
using ANOVA. 

• SdPeriod 
Specify the standard deviation S as the the standard deviation of the period differences for 
each subject within each sequence. Note SdPeriod^2 = var((Yi2k - Yi1k)/2) = Sw^2 / 2. 

• SdPaired 
Specify the standard deviation S as the the standard deviation of the paired differences. Note 
SdPaired^2  = var(Yi2k - Yi1k) = 2 * Sw^2. 

S (Value of Sw, SdPeriod, or SdPaired) 
Specify the value(s) of the standard deviation S. The interpretation of this value depends on the 
entry in "Specify S as Sw, SdPeriod or SdPaired" above. 

If S=Sw is selected, this is the value of Sw which is sqrt(WMSE), where WMSE is the within 
mean square error from the ANOVA table used to analyze the Cross-Over design. Note Sw^2 = 
var(Yijk). 

IF S=SdPeriod is selected, this is the value of SdPeriod, which is the standard deviation of the 
period differences for each subject within each sequence. Note SdPeriod^2 = var((Yi2k - Yi1k)/2) 
= Sw^2 / 2. 

IF S=SdPaired is selected, this is the value of Sd which is the standard deviation of the paired 
differences. Note SdPaired^2  = var(Yi2k - Yi1k) = 2 * Sw^2. 

These values must be positive. A list of values may be entered. 

Test 

Higher Means Are 
This option defines whether higher values of the response variable are to be considered better or 
worse. 

The choice here determines the direction of the test. 

If Higher Means Are Better the null hypothesis is Diff <= SM and the alternative hypothesis is 
Diff > SM. If Higher Means Are Worse the null hypothesis is Diff >= -SM and the alternative 
hypothesis is Diff < -SM. 
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Example 1 – Power Analysis 
Suppose you want to consider the power of a balanced, cross-over design that will be analyzed 
using the t-test approach. You want to compute the power when the margin of superiority is either 
5 or 10 at several sample sizes between 5 and 50. The true difference between the means under 
H0 is assumed to be 15. Similar experiments have had a value for Sw of 10. The significance 
level is 0.025.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a 2x2 Cross-Over Design (Non-
Zero Null) [Differences] procedure window by expanding Means, then 2x2 Cross-Over Design, 
then clicking on Test (Non-Zero Null), and then clicking on Tests for Two Means in a 2x2 
Cross-Over Design (Non-Zero Null) [Differences]. You may then make the appropriate entries 
as listed below, or open Example 1 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.025 
N (Total Sample Size) ............................. 5 10 15 20 30 40 50 
SM (Superiority Margin) .......................... 5 10 
D (True Difference) ................................. 15 
Specify S as Sw or Sd ............................. Sw 
S (Value of Sw or Sd) .............................. 10 
Higher Means Are ................................... Better 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results for Superiority T-Test (H0: Diff <= SM; H1: Diff > SM) 
Higher Means are Better 
 
  Superiority Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (SM) (D) (Alpha) Beta (Sw)  
0.20131 5 5.000 15.000 0.02500 0.79869 10.000 
0.50245 10 5.000 15.000 0.02500 0.49755 10.000 
0.71650 15 5.000 15.000 0.02500 0.28350 10.000 
0.84845 20 5.000 15.000 0.02500 0.15155 10.000 
0.96222 30 5.000 15.000 0.02500 0.03778 10.000 
0.99173 40 5.000 15.000 0.02500 0.00827 10.000 
0.99835 50 5.000 15.000 0.02500 0.00165 10.000 
0.08310 5 10.000 15.000 0.02500 0.91690 10.000 
0.16563 10 10.000 15.000 0.02500 0.83437 10.000 
0.24493 15 10.000 15.000 0.02500 0.75507 10.000 
0.32175 20 10.000 15.000 0.02500 0.67825 10.000 
0.46414 30 10.000 15.000 0.02500 0.53586 10.000 
0.58682 40 10.000 15.000 0.02500 0.41318 10.000 
0.68785 50 10.000 15.000 0.02500 0.31215 10.000 
 
 
Report Definitions 
H0 (null hypothesis) is Diff <= SM, where D = Treatment Mean - Reference Mean. 
H1 (alternative hypothesis) is Diff > SM. 
Power is the probability of rejecting H0 when it is false. 
N is the total sample size drawn from all sequences. The sample is divided equally among sequences. 
SM is the magnitude of the margin of superiority. Since higher means are better, this value is positive and is 
   the distance above the reference mean that is required to be considered superior. 
D is the mean difference at which the power is computed. D = Mean1 - Mean2 = treatment mean - reference mean. 
Alpha is the probability of a false positive. 
Beta is the probability of a false negative. 
Sw is the square root of the within mean square error from the ANOVA table. 
 
Summary Statements 
A total sample size of 5 achieves 20% power to detect superiority using a one-sided t-test when 
the margin of superiority is 5.000, the true mean difference is 15.000, the significance level 
is 0.02500, the square root of the within mean square error is 10.000, and A 2x2 cross-over 
design with an equal number in each sequence is used. 
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This report shows the values of each of the parameters, one scenario per row. The plot shows the 
relationship between sample size and power. We see that a sample size of about 20 is needed to 
achieve 80% power when SM = 5. 

Example 2 – Finding the Sample Size 
Continuing with Example 1, suppose the researchers want to find the exact sample size necessary 
to achieve 90% power for both values of D.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a 2x2 Cross-Over Design (Non-
Zero Null) [Differences] procedure window by expanding Means, then 2x2 Cross-Over Design, 
then clicking on Test (Non-Zero Null), and then clicking on Tests for Two Means in a 2x2 
Cross-Over Design (Non-Zero Null) [Differences]. You may then make the appropriate entries 
as listed below, or open Example 2 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Sample Size) 
Power ...................................................... 0.90 
Alpha ....................................................... 0.025 
N (Total Sample Size) ............................. Ignored since this is the Find setting  
SM (Superiority Margin) .......................... 5 10 
D (True Difference) ................................. 15 
Specify S as Sw or Sd ............................. Sw 
S (Value of Sw or Sd) .............................. 10 
Higher Means Are ................................... Better 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Superiority T-Test (H0: Diff <= SM; H1: Diff > SM) 
Higher Means are Better 
 
  Superiority Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (SM) (D) (Alpha) Beta (Sw)  
0.91139 24 5.000 15.000 0.02500 0.08861 10.000 
0.90648 88 10.000 15.000 0.02500 0.09352 10.000 
 

This report shows the exact sample size necessary for each scenario.  

Note that the search for N is conducted across only even values of N since the design is assumed 
to be balanced. 

Example 3 – Validation using Julious 
This procedure uses the same mechanics as the Non-Inferiority Tests for Two Means in a 2x2 
Cross-Over Design using Differences procedure. We refer the user to Example 3 of Chapter 510 
for the validation.  
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Chapter 510 

Non-Inferiority 
Tests for Two 
Means in a 2x2 
Cross-Over 
Design using 
Differences 
Introduction 
This procedure computes power and sample size for non-inferiority tests in 2x2 cross-over 
designs in which the outcome is a continuous normal random variable. The details of sample size 
calculation for the 2x2 cross-over design are presented in the 2x2 Cross-Over Designs chapter 
and they will not be duplicated here. This chapter only discusses those changes necessary for non-
inferiority tests. Sample size formulas for non-inferiority tests of cross-over designs are presented 
in Chow et al. (2003) pages 63-68.  

Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments and 
the objective is to study differences among the treatments. The name cross-over comes from the 
most common case in which there are only two treatments. In this case, each subject crosses over 
from one treatment to the other. It is assumed that there is a washout period between treatments 
during which the response returns back to its baseline value. If this does not occur, there is said to 
be a carry-over effect. 



510-2  Non-Inferiority Tests for Two Means in a 2x2 Cross-Over Design using Differences 

A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence receives treatment A followed by treatment B. The other sequence 
receives B and then A. The design includes a washout period between responses to make certain 
that the effects of the first drug do no carry-over to the second. Thus, the groups in this design are 
defined by the sequence in which the two drugs are administered, not by the treatments they 
receive. 

Cross-over designs are employed because, if the no-carryover assumption is met, treatment 
differences are measured within a subject rather than between subjects—making a more precise 
measurement. Examples of the situations that might use a cross-over design are the comparison of 
anti-inflammatory drugs in arthritis and the comparison of hypotensive agents in essential 
hypertension. In both of these cases, symptoms are expected to return to their usual baseline level 
shortly after the treatment is stopped. 

The Statistical Hypotheses 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests and their 
power and sample size can be calculated using the 2x2 Cross-Over Design procedure. However, 
at the urging of our users, we have developed this module which provides the input and output in 
formats that are convenient for these types of tests. This section reviews the specifics of non-
inferiority and superiority testing. 

Remember that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-
sided tests are defined as  

H0:μX A H1:≤ μ versus X A>

H0:

 

Rejecting H0 implies that the mean is larger than the value A. This test is called an upper-tailed 
test because it is rejected in samples in which the difference in sample means is larger than A. 

Following is an example of a lower-tailed test. 

μX A≥ H1:μX A<   versus 

Non-inferiority and superiority tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialize notation for the discussion of these tests.  

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μ  Not used Reference mean. This is the mean of a reference 
population.  

R
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NIM  NIM Margin of non-inferiority. This is a tolerance value that 
defines the magnitude of the amount that is not of 
practical importance. This may be thought of as the 
largest change from the baseline that is considered to be 
trivial. The absolute value is shown to emphasize that 
this is a magnitude. The sign of the value will be 
determined by the specific design that is being used. 

δ  D True difference. This is the value of μ μT − R , the 
difference between the treatment and reference means. 
This is the value at which the power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their difference is needed for 
power and sample size calculations. 

Non-Inferiority Tests 
A non-inferiority test tests that the treatment mean is not worse than the reference mean by more 
than the equivalence margin. The actual direction of the hypothesis depends on the response 
variable being studied.  

Case 1: High Values Good, Non-Inferiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no less than a small amount below the reference 
mean. The value of δ  is often set to zero. The following are equivalent sets of hypotheses. 

NIM−≤ 210H μμ: NIM−> 211 μμ:    versus  H  

NIM−≤− 210H μμ: NIM−>− 211H μμ:  versus   

NI0 M−≤δ:H NI1 M−>δ:H      versus   

Case 2: High Values Bad, Non-Inferiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no more than a small amount above the reference 
mean. The value of δ  is often set to zero. The following are equivalent sets of hypotheses. 

NIM+≥ 210H μμ: NIM+< 211H μμ:  versus   

NIM≥− 210H μμ: NIM<− 211H μμ:  versus   

NIM≥δ:0H NIM<δ:1H   versus   
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Test Statistics 
This section describes the test statistic that is used to perform the hypothesis test.  

T-Test 
A t-test is used to analyze the data. When the data are balanced between sequences, the two-sided 
t-test is equivalent to an analysis of variance F-test. The test assumes that the data are a simple 
random sample from a population of normally-distributed values that have the same variance. 
This assumption implies that the differences are continuous and normal. The calculation of the t-
statistic proceeds as follow 

( )

Nwσ̂

xxt RT
d 2

− − ε
=

$σw
2

 

where  is the within mean square error from the appropriate ANOVA table.  

The significance of the test statistic is determined by computing the p-value. If this p-value is less 
than a specified level (usually 0.05), the hypothesis is rejected. That is, the one-sided null 
hypothesis is rejected at the α  significance level if . Otherwise, no conclusion can be 
reached. 

t td N> −α , 2

σw
2

2ˆdσ σ σw d
2 22=

If prior studies used a t-test rather than an ANOVA to analyze the data, you may not have a direct 
estimate of . Instead, you will have an estimate of the variance of the period differences from 
the t-test, . These variances are functionally related by . Either variance can be 
entered. 

Computing the Power 
The power is calculated as follows.  

1. Find tα  such that 1 , where ( )− =T tdf α α ( )T xdf  is the area under a central-t curve to the 
left of x and df = N - 2. 

( )
2w

N
σ
εδ −

=2. Calculate the noncentrality parameter: λ . 

3. Calculate: Power = , where ( )1− ′T tdf ,λ α ( )′T xdf ,λ  is the area under a noncentral-t curve 
with degrees of freedom df and noncentrality parameter λ  to the left of x. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated from the values of the other parameters. 
Under most conditions, you would select either Power and Beta or N. 

Select N when you want to determine the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of inferiority 
when in fact the treatment mean is non-inferior. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of different means when in fact the means are different.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study. This value must be an integer greater than one. Note that you may enter a list of values 
using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Effect Size – Mean Difference 

NIM (Non-Inferiority Margin) 
This is the magnitude of the margin of non-inferiority. It must be entered as a positive number. 

When higher means are better, this value is the distance below the reference mean that is still 
considered non-inferior. When higher means are worse, this value is the distance above the 
reference mean that is still considered non-inferior. 

D (True Difference) 
This is the actual difference between the treatment mean and the reference mean at which power 
is calculated. 

For non-inferiority tests, this value is often set to zero. When this value is non-zero, care should 
be taken that this value is consistent with whether higher means are better or worse. 

Effect Size – Standard Deviation 

Specify S as Sw, SdPeriod, or SdPaired 
Specify the form of the standard deviation that is entered in the box below.  

• Sw 
Specify S as the square root of the within mean square error from a repeated measures 
ANOVA. This is the most common method since cross-over designs are usually analyzed 
using ANOVA. 

• SdPeriod 
Specify the standard deviation S as the the standard deviation of the period differences for 
each subject within each sequence. Note SdPeriod^2 = var((Yi2k - Yi1k)/2) = Sw^2 / 2. 

• SdPaired 
Specify the standard deviation S as the the standard deviation of the paired differences. Note 
SdPaired^2  = var(Yi2k - Yi1k) = 2 * Sw^2. 

S (Value of Sw, SdPeriod, or SdPaired) 
Specify the value(s) of the standard deviation S. The interpretation of this value depends on the 
entry in "Specify S as Sw, SdPeriod or SdPaired" above. 

If S=Sw is selected, this is the value of Sw which is sqrt(WMSE), where WMSE is the within 
mean square error from the ANOVA table used to analyze the Cross-Over design. Note Sw^2 = 
var(Yijk). 
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IF S=SdPeriod is selected, this is the value of SdPeriod, which is the standard deviation of the 
period differences for each subject within each sequence. Note SdPeriod^2 = var((Yi2k - Yi1k)/2) 
= Sw^2 / 2. 

IF S=SdPaired is selected, this is the value of Sd which is the standard deviation of the paired 
differences. Note SdPaired^2  = var(Yi2k - Yi1k) = 2 * Sw^2. 

These values must be positive. A list of values may be entered. 

Test 

Higher Means Are 
This option defines whether higher values of the response variable are to be considered better or 
worse. 

The choice here determines the direction of the non-inferiority test. 

If Higher Means Are Better the null hypothesis is Diff <= -NIM and the alternative hypothesis is 
Diff > -NIM. If Higher Means Are Worse the null hypothesis is Diff >= NIM and the alternative 
hypothesis is Diff < NIM. 

Example 1 – Power Analysis 
Suppose you want to consider the power of a balanced, cross-over design that will be analyzed 
using the t-test approach. You want to compute the power when the margin of equivalence is 
either 5 or 10 at several sample sizes between 5 and 50. The true difference between the means 
under H0 is assumed to be 0. Similar experiments have had an Sw of 10. The significance level is 
0.025.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by expanding Means, then 2x2 Cross-Over Design, 
then clicking on Non-Inferiority, and then clicking on Non-Inferiority Tests for Two Means in 
a 2x2 Cross-Over Design [Differences]. You may then make the appropriate entries as listed 
below, or open Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.025 
N (Total Sample Size) ............................. 5 10 15 20 30 40 50 
NIM (Non-Inferiority Margin) ................... 5 10 
D (True Difference) ................................. 0 
Specify S as ............................................ Sw 
S .............................................................. 10 
Higher Means Are ................................... Better 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results for Non-Inferiority T-Test (H0: Diff <= -NIM; H1: Diff > -NIM) 
Higher Means are Better 
 
  Non-Inf. Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (-NIM) (D) (Alpha) Beta (Sw)  
0.08310 5 -5.000 0.000 0.02500 0.91690 10.000 
0.16563 10 -5.000 0.000 0.02500 0.83437 10.000 
0.24493 15 -5.000 0.000 0.02500 0.75507 10.000 
0.32175 20 -5.000 0.000 0.02500 0.67825 10.000 
0.46414 30 -5.000 0.000 0.02500 0.53586 10.000 
0.58682 40 -5.000 0.000 0.02500 0.41318 10.000 
0.68785 50 -5.000 0.000 0.02500 0.31215 10.000 
0.20131 5 -10.000 0.000 0.02500 0.79869 10.000 
0.50245 10 -10.000 0.000 0.02500 0.49755 10.000 
0.71650 15 -10.000 0.000 0.02500 0.28350 10.000 
0.84845 20 -10.000 0.000 0.02500 0.15155 10.000 
0.96222 30 -10.000 0.000 0.02500 0.03778 10.000 
0.99173 40 -10.000 0.000 0.02500 0.00827 10.000 
0.99835 50 -10.000 0.000 0.02500 0.00165 10.000 
 
Report Definitions 
H0 (null hypothesis) is that Diff <= -NIM, where Diff = Treatment Mean - Reference Mean. 
H1 (alternative hypothesis) is that Diff > -NIM. 
Power is the probability of rejecting H0 when it is false. 
N is the total sample size drawn from all sequences. The sample is divided equally among sequences. 
-NIM is the magnitude and direction of the margin of non-inferiority. Since higher means are better, this 
   value is negative and is the distance below the reference mean that is still considered non-inferior. 
D is the actual difference between the treatment and reference means that is used in the power calculations. 
Alpha is the probability of a false positive. 
Beta is the probability of a false negative. 
Sw is the square root of the within mean square error from the ANOVA table. 
 
Summary Statements 
A total sample size of 5 achieves 8% power to detect non-inferiority using a one-sided t-test 
when the margin of non-inferiority is -5.000, the true mean difference is 0.000, the significance 
level is 0.02500, and the square root of the within mean square error is 10.000. A 2x2 
cross-over design with an equal number in each sequence is used. 
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This report shows the values of each of the parameters, one scenario per row. The plot shows the 
relationship between sample size and power. We see that a sample size of about 20 is needed to 
achieve 80% power when NIM = -10. 

Example 2 – Finding the Sample Size 
Continuing with Example 1, suppose the researchers want to find the exact sample size necessary 
to achieve 90% power for both values of D.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by expanding Means, then 2x2 Cross-Over Design, 
then clicking on Non-Inferiority, and then clicking on Non-Inferiority Tests for Two Means in 
a 2x2 Cross-Over Design [Differences]. You may then make the appropriate entries as listed 
below, or open Example 2 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Sample Size) 
Power ...................................................... 0.90 
Alpha ....................................................... 0.025 
N (Total Sample Size) ............................. Ignored since this is the Find setting  
NIM (Non-Inferiority Margin) ................... 5 10 
D (True Difference) ................................. 0 
Specify S as ............................................ Sw 
S .............................................................. 10 
Higher Means Are ................................... Better 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority T-Test (H0: Diff <= -NIM; H1: Diff > -NIM) 
Higher Means are Better 
 
 Non-Inferiority Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (-NIM) (D) (Alpha) Beta (Sw)  
0.90648 88 -5.000 0.000 0.02500 0.09352 10.000 
0.91139 24 -10.000 0.000 0.02500 0.08861 10.000 
 

This report shows the exact sample size necessary for each scenario.  

Note that the search for N is conducted across only even values of N since the design is assumed 
to be balanced. 
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Example 3 – Validation using Julious 
Julious (2004) page 1953 presents an example in which D = 0.0, E = 10, Sw = 20.00, alpha = 
0.025, and beta = 0.10. Julious obtains a sample size of 86.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by expanding Means, then 2x2 Cross-Over Design, 
then clicking on Non-Inferiority, and then clicking on Non-Inferiority Tests for Two Means in 
a 2x2 Cross-Over Design [Differences]. You may then make the appropriate entries as listed 
below, or open Example 3 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Sample Size) 
Power ...................................................... 0.90 
Alpha ....................................................... 0.025 
N (Total Sample Size) ............................. Ignored since this is the Find setting  
NIM (Non-Inferiority Margin) .................... 10 
D (True Difference) ................................. 0 
Specify S as ............................................ Sw 
S .............................................................. 20 
Higher Means Are ................................... Better 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority T-Test (H0: Diff <= -NIM; H1: Diff > -NIM) 
Higher Means are Better 
 
 Non-Inferiority Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (-NIM) (D) (Alpha) Beta (Sw)  
0.90648 88 -10.000 0.000 0.02500 0.09352 20.000 
 

PASS obtained a sample size of 88, two higher than that obtained by Julious (2004). However, if 
you look at the power achieved by an N of 86, you will find that it is 0.899997—slightly less than 
the goal of 0.90. 
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Chapter 513 

Tests for Two 
Means in a 2x2 
Cross-Over 
Design with Non-
Unity Null using 
Ratios 
Introduction 
This procedure calculates power and sample size of statistical tests for non-unity null tests from a 
2x2 cross-over design. This routine deals with the case in which the statistical hypotheses are 
expressed in terms mean ratios rather than mean differences.  

The details of testing the non-unity null of two treatments using data from a 2x2 cross-over design 
are given in another chapter and they will not be repeated here. If the logarithms of the responses 
can be assumed to follow the normal distribution, hypotheses about non-unity null hypotheses 
stated in terms of the ratio can be transformed into hypotheses about the difference. The details of 
this analysis are given in Julious (2004). They will only be summarized here.  
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Non-Inferiority Testing Using Ratios 
It will be convenient to adopt the following specialized notation for the discussion of these tests. 

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

sM  SM Margin of superiority. This is a tolerance value that 
defines the magnitude of difference that is required for 
practical importance. This may be thought of as the 
smallest difference from the reference that is considered 
to be different.  

 φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their ratio is needed for power 
and sample size calculations. 

The null hypothesis of non-superiority is 

.: 1whereH0 >≤ LL φφφ  

and the alternative hypothesis of superiority is  

H1: φ φ> L  

Log Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the null hypothesis are as follows. 
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Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  
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Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter is used to represent the variation in the data because of a unique relationship that it has 
in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 
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From this relationship, the coefficient of variation of Y can be expressed as  
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where  is the within mean square error from the analysis of variance of the logged data. 
Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σw
2

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

 

Thus, the hypotheses can be stated in the original (Y) scale and then power can be analyzed in the 
transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. Either way, the power and sample size calculations are made 
using the formulas for testing the equivalence of the difference in two means. These formulas are 
presented in another chapter and are not duplicated here. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of non-superiority 
when in fact the treatment mean is superior. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Recently, the standard has shifted to 0.10. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80, respectively.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when rejecting the 
null hypothesis of non-superiority when in fact the treatment group is not superior to the 
reference group.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  
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Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in both sequences). This value must be an integer greater than one.  

When N is even, it is split evenly between the two sequences. When N is odd, the first sequence 
has one more subject than the second sequence. 

Note that you may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Effect Size – Ratios 

SM (Superiority Margin) 
This is the magnitude of the margin of superiority. It must be entered as a positive number. 

When higher means are better, this value is the distance above one that is required for the mean 
ratio (Treatment Mean / Reference Mean) to be considered superior. When higher means are 
worse, this value is the distance below one that is required for the mean ratio (Treatment Mean / 
Reference Mean) to be considered superior. 

R1 (True Ratio) 
This is the value of the ratio of the two means (Treatment Mean / Reference Mean) at which the 
power is to be calculated. 

When higher means are better, this value should be greater than 1+SM. When higher means are 
worse, this value should be less than 1-SM. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is the ratio of the standard deviation and the mean (SD/Mean). It is 
used to specify the variability (standard deviation). Note that this COV is defined on the original 
(not logarithmic) scale. This value must be determined from past experience or from a pilot study. 

To be clear, consider the following definition. Suppose data on a response variable Y are 
collected. This procedure assumes that the values of X = Ln(Y) are analyzed using an appropriate 
ANOVA procedure. Thus, there are two sets of means and standard deviations: those of X 
labelled MX and SX and those of Y labelled MY and SY. The COV entered here is the COV of Y 
= SY/MY. For log-normal data, the following relationship exists: COV(Y) = SQR(Exp(SX*SX)-
1) where SX is the square root of the within mean square error in the ANOVA table of the log-
transformed values. 

Test 

Higher Means Are 
This option defines whether higher values of the response variable are to be considered better or 
worse. 

The choice here determines the direction of the test. 
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If Higher Means Are Better the null hypothesis is R <= 1+SM and the alternative hypothesis is R 
> 1+SM. If Higher Means Are Worse the null hypothesis is R >= 1-SM and the alternative 
hypothesis is R < 1-SM. 

Example 1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is 
superior to the standard drug by a certain amount. A 2x2 cross-over design will be used to test the 
superiority of the treatment drug to the reference drug.   

Researchers have decided to set the margin of superiority to 0.20. Past experience leads the 
researchers to set the COV to 1.50. The significance level is 0.05. The power will be computed 
assuming that the true ratio is 1.40. Sample sizes between 50 and 550 will be included in the 
analysis. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a 2x2 Cross-Over Design (Non-
Unity Null) [Ratios] procedure window by expanding Means, then 2x2 Cross-Over Design, 
then clicking on Test (Non-Zero Null), and then clicking on Tests for Two Means in a 2x2 
Cross-Over Design (Non-Unity Null) [Ratios]. You may then make the appropriate entries as 
listed below, or open Example 1 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. 50 to 550 by 100 
SM (Superiority Margin) .......................... 0.20 
R1 (True Ratio) ....................................... 1.40 
COV (Coefficient of Variation) ................. 1.50 
Higher Means Are ................................... Better 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Superiority Ratio Test (H0: R <= 1+SM; H1: R > 1+SM) 
Higher Means are Better 
 
 
  Superiority Superiority Actual Significance   
  Margin Bound Ratio Level   
Power N (SM) (SB) (R1) (Alpha) Beta COV 
0.1724 50 0.2000 1.2000 1.4000 0.0500 0.8276 1.5000 
0.3369 150 0.2000 1.2000 1.4000 0.0500 0.6631 1.5000 
0.4754 250 0.2000 1.2000 1.4000 0.0500 0.5246 1.5000 
0.5909 350 0.2000 1.2000 1.4000 0.0500 0.4091 1.5000 
0.6850 450 0.2000 1.2000 1.4000 0.0500 0.3150 1.5000 
0.7602 550 0.2000 1.2000 1.4000 0.0500 0.2398 1.5000 
 
 
Report Definitions 
H0 (null hypothesis) is R <= 1+SM, where R = Treatment Mean / Reference Mean. 
H1 (alternative hypothesis) is R > 1+SM. 
Power is the probability of rejecting H0 when it is false. 
N is the total sample size drawn from all sequences. The sample is divided equally among sequences. 
SM is the magnitude of the margin of superiority. Since higher means are better, this value is positive and is 
   the distance above one that is required to be considered superior. 
SB is the corresponding bound to the superiority margin, and equals 1 + SM. 
R1 is the mean ratio (treatment/reference) at which the power is computed. 
Alpha is the probability of falsely rejecting H0. 
Beta is the probability of not rejecting H0 when it is false. 
COV is the coefficient of variation on the original scale. 
 
Summary Statements 
A total sample size of 50 achieves 17% power to detect superiority using a one-sided t-test 
when the margin of superiority is 0.2000, the true mean ratio is 1.4000, the significance level 
is 0.0500, and the coefficient of variation on the original, unlogged scale is 1.5000. A 2x2 
cross-over design with an equal number in each sequence is used. 

 

This report shows the power for the indicated scenarios. Note that if they want 80% power, they 
will require a sample of more than 450 subjects. 



513-8  Tests for Two Means in a 2x2 Cross-Over Design with Non-Unity Null using Ratios 

Plot Section 
 

  
 

This plot shows the power versus the sample size. 

Example 2 – Validation 
This procedure uses the same mechanics as the Non-Inferiority Tests for Two Means in a 2x2 
Cross-Over Design using Ratios procedure. We refer the user to Example 2 of Chapter 515 for 
the validation. 
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Chapter 515 

Non-Inferiority 
Tests for Two 
Means in a 2x2 
Cross-Over 
Design using 
Ratios 
Introduction 
This procedure calculates power and sample size of statistical tests for non-inferiority tests from a 
2x2 cross-over design. This routine deals with the case in which the statistical hypotheses are 
expressed in terms mean ratios rather than mean differences.  

The details of testing the non-inferiority of two treatments using data from a 2x2 cross-over design 
are given in another chapter and they will not be repeated here. If the logarithms of the responses 
can be assumed to follow the normal distribution, hypotheses about non-inferiority stated in terms 
of the ratio can be transformed into hypotheses about the difference. The details of this analysis are 
given in Julious (2004). They will only be summarized here.  
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Non-Inferiority Testing Using Ratios 
It will be convenient to adopt the following specialized notation for the discussion of these tests. 

Parameter PASS Input/Output Interpretation 
μT  Not used Treatment mean. This is the treatment mean. 

μR  Not used Reference mean. This is the mean of a reference 
population.  

NIM  NIM Margin of non-inferiority. This is a tolerance value that 
defines the maximum amount that is not of practical 
importance. This is the largest change in the mean ratio 
from the baseline value (usually one) that is still 
considered to be trivial.  

φ  R1 True ratio. This is the value of φ μ μ= T R/  at which the 
power is calculated. 

 

μT  and Note that the actual values of μR  are not needed. Only their ratio is needed for power 
and sample size calculations. 

The null hypothesis of inferiority is 

H0 1: .φ φ φ≤ <L Lwhere  

and the alternative hypothesis of non-inferiority is  

H1:φ φ> L  

Log Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the null hypothesis are as follows. 
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Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  
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Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter is used to represent the variation in the data because of a unique relationship that it has 
in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 
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From this relationship, the coefficient of variation of Y can be expressed as  
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where  is the within mean square error from the analysis of variance of the logged data. 
Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σw
2

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
 

 

Thus, the hypotheses can be stated in the original (Y) scale and then power can be analyzed in the 
transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. Either way, the power and sample size calculations are made 
using the formulas for testing the equivalence of the difference in two means. These formulas are 
presented in another chapter and are not duplicated here. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Error Rates 

Power or Beta 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of inferiority when in fact the treatment 
mean is non-inferior. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Recently, the standard has shifted to 0.10. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80, respectively.  

Alpha (Significance Level) 
Specify one or more values of alpha. Alpha is the probably of a type-I error. A type-I error occurs 
when you reject the null hypothesis of inferiority when in fact the treatment group is not inferior 
to the reference group.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in both sequences). This value must be an integer greater than one.  
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When N is even, it is split evenly between the two sequences. When N is odd, the first sequence 
has one more subject than the second sequence. 

Note that you may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Effect Size – Ratios 

NIM (Non-Inferiority Margin) 
This is the magnitude of the margin of non-inferiority. It must be entered as a positive number. 

When higher means are better, this value is the distance below one for which the mean ratio 
(Treatment Mean / Reference Mean)  still indicates non-inferiority of the treatment mean. E.g., a 
value of 0.2 here specifies that mean ratios greater than 0.8 indicate non-inferiority of the 
treatment mean. 

When higher means are worse, this value is the distance above one for which the mean ratio 
(Treatment Mean / Reference Mean) still indicates non-inferiority of the treatment mean. E.g., a 
value of 0.2 here specifies that mean ratios less than 1.2 indicate non-inferiority of the treatment 
mean. 

Recommended values: 0.20 is a common value for the parameter. 

R1 (True Ratio) 
This is the value of the ratio of the two means (Treatment Mean / Reference Mean) at which the 
power is to be calculated. 

Often, the ratio will be set to one. However, some authors recommend using a ratio slightly 
different than one, such as 0.95 (when higher means are "better") or 1.05 (when higher means are 
"worse"), since this will require a larger sample size. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is the ratio of the standard deviation and the mean (SD/Mean). It is 
used to specify the variability (standard deviation). Note that this COV is defined on the original 
(not logarithmic) scale. This value must be determined from past experience or from a pilot study. 

To be clear, consider the following definition. Suppose data on a response variable Y are 
collected. This procedure assumes that the values of X = Ln(Y) are analyzed using an appropriate 
ANOVA procedure. Thus, there are two sets of means and standard deviations: those of X 
labelled MX and SX and those of Y labelled MY and SY. The COV entered here is the COV of Y 
= SY/MY. For log-normal data, the following relationship exists: COV(Y) = SQR(Exp(SX*SX)-
1) where SX is the square root of the within mean square error in the ANOVA table of the log-
transformed values. 

Test 

Higher Means Are 
This option defines whether higher values of the response variable are to be considered better or 
worse. 

The choice here determines the direction of the non-inferiority test. 
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If Higher Means Are Better the null hypothesis is R <= 1-NIM and the alternative hypothesis is R 
> 1-NIM. If Higher Means Are Worse the null hypothesis is R >= 1+NIM and the alternative 
hypothesis is R < 1+NIM. 

Example 1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is not 
inferior to standard drug. A 2x2 cross-over design will be used to test the non-inferiority of the 
treatment drug to the reference drug.   

Researchers have decided to set the margin of non-inferiority to 0.20. Past experience leads the 
researchers to set the COV to 1.50. The significance level is 0.05. The power will be computed 
assuming that the true ratio is one. Sample sizes between 50 and 550 will be included in the 
analysis. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for Two Means in a 2x2 Cross-Over 
Design [Ratios] procedure window by expanding Means, then 2x2 Cross-Over Design, then 
clicking on Non-Inferiority, and then clicking on Non-Inferiority Tests for Two Means in a 
2x2 Cross-Over Design [Ratios]. You may then make the appropriate entries as listed below, or 
open Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. 50 to 550 by 100 
NIM (Non-Inferiority Margin) .................... 0.20 
R1 (True Ratio) ....................................... 1.0 
COV (Coefficient of Variation) ................. 1.50 
Higher Means Are ................................... Better 



Non-Inferiority Tests for Two Means in a 2x2 Cross-Over Design using Ratios  515-7 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Ratio Test (H0: R <= 1-NIM; H1: R > 1-NIM) 
Higher Means are Better 
 
 Non-InferiorityNon-Inferiority Actual Significance   
  Margin Bound Ratio Level   
Power N (-NIM) (NIB) (R1) (Alpha) Beta COV 
0.2638 50 0.2000 0.8000 1.0000 0.0500 0.7362 1.5000 
0.5505 150 0.2000 0.8000 1.0000 0.0500 0.4495 1.5000 
0.7411 250 0.2000 0.8000 1.0000 0.0500 0.2589 1.5000 
0.8574 350 0.2000 0.8000 1.0000 0.0500 0.1426 1.5000 
0.9241 450 0.2000 0.8000 1.0000 0.0500 0.0759 1.5000 
0.9607 550 0.2000 0.8000 1.0000 0.0500 0.0393 1.5000 
 
Report Definitions 
H0 (null hypothesis) is R <= 1-NIM, where R = Treatment Mean / Reference Mean. 
H1 (alternative hypothesis) is R > 1-NIM. 
Power is the probability of rejecting H0 when it is false. 
N is the total sample size drawn from all sequences. The sample is divided equally among sequences. 
-NIM is the magnitude and direction of the margin of non-inferiority. Since higher means are better, this 
   value is negative and is the distance below one that is still considered non-inferior. 
NIB is the corresponding bound to the non-inferiority margin, and equals 1 - NIM. 
R1 is the mean ratio (treatment/reference) at which the power is computed. 
Alpha is the probability of falsely rejecting H0. 
Beta is the probability of not rejecting H0 when it is false. 
COV is the coefficient of variation on the original scale. 
 
Summary Statements 
A total sample size of 50 achieves 26% power to detect non-inferiority using a one-sided t-test 
when the margin of non-inferiority is -0.2000, the true mean ratio is 1.0000, the significance 
level is 0.0500, and the coefficient of variation on the original, unlogged scale is 1.5000. A 
2x2 cross-over design with an equal number in each sequence is used. 
 

 

This report shows the power for the indicated scenarios. Note that if they want 90% power, they 
will require a sample of around 450 subjects. 

Plot Section 
 

 

Power vs N
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This plot shows the power versus the sample size. 
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Example 2 – Validation 
We could not find a validation example for this procedure in the statistical literature. Therefore, 
we will show that this procedure gives the same results as the non-inferiority test on 
differences—a procedure that has been validated. We will use the same settings as those given in 
Example 1. Since the output for this example is shown above, only the output from the procedure 
that uses differences is shown below.   

To run the inferiority test on differences, we need the values of |E| and Sw. 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by expanding Means, then 2x2 Cross-Over Design, 
then clicking on Non-Inferiority, and then clicking on Non-Inferiority Tests for Two Means in 
a 2x2 Cross-Over Design [Differences]. You may then make the appropriate entries as listed 
below, or open Example 1a by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. 50 to 550 by 100 
NIM (Non-Inferiority Margin) .................... 0.223144 
D (True Difference) ................................. 0 
Specify S as ............................................ Sw 
S .............................................................. 1.085659 
Higher Means Are ................................... Better 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority T-Test (H0: Diff <= -NIM; H1: Diff > -NIM) 
Higher Means are Better 
 
  Non-Infer. Actual Significance  Standard  
  Margin Difference Level  Deviation  
Power N (-NIM) (D) (Alpha) Beta (Sw)  
0.2638 50 -0.223 0.000 0.0500 0.7362 1.086 
0.5505 150 -0.223 0.000 0.0500 0.4495 1.086 
0.7411 250 -0.223 0.000 0.0500 0.2589 1.086 
0.8574 350 -0.223 0.000 0.0500 0.1426 1.086 
0.9242 450 -0.223 0.000 0.0500 0.0758 1.086 
0.9607 550 -0.223 0.000 0.0500 0.0393 1.086 

 

You can compare these power values with those shown above in Example 1 to validate the 
procedure. You will find that the power values are identical.  
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Chapter 520 

Equivalence Tests 
for Two Means in a 
2x2 Cross-Over 
Design using 
Differences 
Introduction 
This procedure calculates power and sample size of statistical tests of equivalence of the means of a 
2x2 cross-over design which is analyzed with a t-test. Schuirmann’s (1987) two one-sided tests 
(TOST) approach is used to test equivalence. Only a brief introduction to the subject will be 
given here. For a comprehensive discussion on the subject, refer to Chow and Liu (1999) and 
Julious (2004).  

Measurements are made on individuals that have been randomly assigned to one of two sequences. 
The first sequence receives the treatment followed by the reference (AB). The second sequence 
receives the reference followed by the treatment (BA). This cross-over design may be analyzed 
by a TOST equivalence test to show that the two means do not differ by more than a small 
amount, called the margin of equivalence. 

The definition of equivalence has been refined in recent years using the concepts of 
prescribability and switchability. Prescribability refers to ability of a physician to prescribe either 
of two drugs at the beginning of the treatment. However, once prescribed, no other drug can be 
substituted for it. Switchability refers to the ability of a patient to switch from one drug to another 
during treatment without adverse effects. Prescribability is associated with equivalence of 
location and variability. Switchability is associated with the concept of individual equivalence. 
This procedure analyzes average equivalence. Thus, it partially analyzes prescribability. It does 
not address equivalence of variability or switchability. 
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Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments and 
the objective is to study differences among the treatments. The name cross-over comes from the 
most common case in which there are only two treatments. In this case, each subject crosses over 
from one treatment to the other. It is assumed that there is a washout period between treatments 
during which the response returns back to its baseline value. If this does not occur, there is said to 
be a carryover effect. 

A 2x2 cross-over design contains to two sequences (treatment orderings) and two time periods 
(occasions). One sequence receives treatment A followed by treatment B. The other sequence 
receives B and then A. The design includes a washout period between responses to make certain 
that the effects of the first drug do no carry over to the second. Thus, the groups in this design are 
defined by the sequence in which the drugs are administered, not by the treatments they receive. 
Indeed, higher-order cross-over designs have been used in which the same treatment is used at 
both occasions. 

Cross-over designs are employed because, if the no-carryover assumption is met, treatment 
differences are measured within a subject rather than between subjects—making a more precise 
measurement. Examples of the situations that might use a cross-over design are the comparison of 
anti-inflammatory drugs in arthritis and the comparison of hypotensive agents in essential 
hypertension. In both of these cases, symptoms are expected to return to their usual baseline level 
shortly after the treatment is stopped. 

Advantages of Cross-Over Designs 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment into the study may 
be easier because each patient will receive both treatments. Finally, it is often more difficult to 
obtain a subject than to obtain a measurement. 

Disadvantages of Cross-Over Designs 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. It may be difficult to separate the treatment 
effect from the period effect, the carry-over effect of the previous treatment, and the interaction 
between period and treatment. 

The design cannot be used when the treatment (or the measurement of the response) alters the 
subject permanently. Hence, it should not be used to compare treatments that are intended to 
provide a cure. 

Because subjects must be measured at least twice, it is often more difficult to keep patients 
enrolled in the study. It is arguably simpler to measure a subject once than to obtain their 
measurement twice. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 
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Outline of an Equivalence Test 
PASS follows the two one-sided tests approach described by Schuirmann (1987) and Phillips 
(1990). It will be convenient to adopt the following specialize notation for the discussion of these 
tests. 

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

ε  |E| Margin of equivalence. This is a tolerance value that 
defines the maximum change that is not of practical 
importance. This may be thought of as the largest change 
from the baseline that is considered to be trivial. The 
absolute value is shown to emphasize that this is a 
magnitude. The sign of the value will be determined by 
the specific design that is being used. 

δ  D True difference. This is the value of μ μT − R , the 
difference between the treatment and reference means. 
This is the value at which the power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their difference is needed for 
power and sample size calculations. 

The null hypothesis of non-equivalence is 

H or0 0 0: , .δ ε δ ε ε ε≤ ≥ < >L U L Uwhere  

and the alternative hypothesis of equivalence is  

H1:ε δ εL U< <  

Test Statistics 
This section describes the test statistic that is used to perform the hypothesis test.  

T-Test 
A t-test is used to analyze the data. The test assumes that the data are a simple random sample 
from a population of normally-distributed values that have the same variance. This assumption 
implies that the differences are continuous and normal. The calculation of the two, one-sided t-
tests proceeds as follow  
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2
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The significance of each test statistic is determined by computing the p-value. If this p-value is 
less than a specified level (usually 0.05), the null hypothesis is rejected.  

If prior studies used a t-test rather than an ANOVA to analyze the data, you may not have a direct 
estimate of . Instead, you will have an estimate of the variance of the period differences from 
the t-test, . These variances are functionally related by . Either variance can be 
entered. 

σw
2

2ˆdσ 22 2 dw σσ =

Power Calculation 
The power of this test is given by 

)  and  (Pr 2,12,1 −−−− −≤≥ NUNL tTtT αα  

where  and T   are distributed as the bivariate, noncentral t distribution with noncentrality 
parameters  and  given by 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and beta. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level.  
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Select Power and Beta when you want to calculate the power of an experiment that has already 
been run. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of unequal means 
when in fact the means are equal. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of unequal means when in fact the means are unequal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in both sequences). This value must be an integer greater than one.  

When N is even, it is split evenly between the two sequences. When N is odd, the first sequence 
has one more subject than the second sequence. 

Note that you may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Effect Size – Equivalence Limits 

|EU| (Upper Equivalence Limit) 
This value gives upper limit on equivalence. Differences outside EL and EU are not considered 
equivalent. Differences between them are considered equivalent. 

Note that EL<0 and EU>0. Also, you must have EL<D<EU. 

-|EL| (Lower Equivalence Limit) 
This value gives lower limit on equivalence. Differences outside EL and EU are not considered 
equivalent. Differences between them are. 
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If you want symmetric limits, enter -UPPER LIMIT for EL to force EL = -|EU|.  

Note that EL<0 and EU>0. Also, you must have EL<D<EU. Finally, the scale of these numbers 
must match the scale of S. 

Effect Size – True Mean Difference 

D (True Difference) 
This is the true difference between the two means at which the power is to be computed. Often 
this value is set to zero, but it can be non-zero as long as it is between the equivalence limits EL 
and EU. 

Effect Size – Standard Deviation 

Specify S as Sw or Sd 
Specify the form of the standard deviation that is entered in the box below.  

• Sw 
Specify S as the square root of the within mean square error from a repeated measures 
ANOVA. This is the most common method since cross-over designs are usually analyzed 
using ANOVA. 

• Sd 
Specify S as the standard deviation of the individual treatment differences computed for each 
subject. This option is used when you have previous studies that produced this value. 

S (Value of Sw or Sd) 
Specify the value(s) of the standard deviation S. The interpretation of this value depends on the 
entry in Specify S as Sw or Sd above. If S = Sw is selected, this is the value of Sw which is 
SQR(WMSE) where WMSE is the within mean square error from the ANOVA table used to 
analyze the Cross-Over design. If S = Sd is selected, this is the value of Sd which is the standard 
deviation of the period differences—pooled from both sequences. 

These values must be positive. A list of values may be entered.  

You can press the SD button to load the Standard Deviation Estimator window. 
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Example 1 – Finding Power 
A cross-over design is to be used to compare the impact of two drugs on diastolic blood pressure. 
The average diastolic blood pressure after administration of the reference drug is known to be 96 
mmHg. Researchers believe this average may drop to 92 mmHg with the use of a new drug. The 
within mean square error of similar studies is 324. Its square root is 18.   

Following FDA guidelines, the researchers want to show that the diastolic blood pressure with the 
new drug is within 20% of the diastolic blood pressure with the reference drug. Thus, the 
equivalence limits of the mean difference of the two drugs are -19.2 and 19.2. They decide to 
calculate the power for a range of sample sizes between 6 and 100. The significance level is 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by expanding Means, then 2x2 Cross-Over Design, 
then clicking on Equivalence, and then clicking on Equivalence Tests for Two Means in a 2x2 
Cross-Over Design [Differences]. You may then make the appropriate entries as listed below, or 
open Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. 6 10 16 20 40 60 80 100 
|EU| (Upper Equivalence Limit) ............... 19.2 
-|EL| (Lower Equivalence Limit) .............. -Upper Limit 
D (True Difference) ................................. -4 
Specify S as ............................................ Sw 
S .............................................................. 18 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.1470 6 -19.20 19.20 -4.00 18.00 0.0500 0.8530 
0.3873 10 -19.20 19.20 -4.00 18.00 0.0500 0.6127 
0.6997 16 -19.20 19.20 -4.00 18.00 0.0500 0.3003 
0.8104 20 -19.20 19.20 -4.00 18.00 0.0500 0.1896 
0.9804 40 -19.20 19.20 -4.00 18.00 0.0500 0.0196 
0.9983 60 -19.20 19.20 -4.00 18.00 0.0500 0.0017 
0.9999 80 -19.20 19.20 -4.00 18.00 0.0500 0.0001 
1.0000 100 -19.20 19.20 -4.00 18.00 0.0500 0.0000 
 
Report Definitions 
Power is the probability of rejecting non-equivalence when the means are equivalent. 
N is the total number of subjects split between both sequences. 
EU & EL are the maximum allowable differences that still result in equivalence. 
D is the difference between the means at which the power is computed. 
Sw is the square root of the within mean square error from the ANOVA table. 
Alpha is the probability of rejecting non-equivalence when the means are non-equivalent. 
Beta is the probability of accepting non-equivalence when the means are equivalent. 
 
Summary Statements 
In an equivalence test of means using two one-sided tests on data from a two-period cross-over 
design, a total sample size of 6 achieves 15% power at a 5% significance level when the true 
difference between the means is -4.00, the square root of the within mean square error is 
18.00, and the equivalence limits are -19.20 and 19.20. 

 

This report shows the power for the indicated scenarios. Note that if they want 90% power, they 
will require a sample of around 30 subjects. 

Plots Section 
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This plot shows the power versus the sample size. 
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Example 2 – Finding Sample Size 
Continuing with Example 1, the researchers want to find the exact sample size needed to achieve 
both 80% power and 90% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by expanding Means, then 2x2 Cross-Over Design, 
then clicking on Equivalence, and then clicking on Equivalence Tests for Two Means in a 2x2 
Cross-Over Design [Differences]. You may then make the appropriate entries as listed below, or 
open Example 2 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.8 0.9  
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
|EU| (Upper Equivalence Limit) ............... 19.2 
-|EL| (Lower Equivalence Limit) .............. -Upper Limit 
D (True Difference) ................................. -4 
Specify S as ............................................ Sw 
S .............................................................. 18 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.9032 26 -19.20 19.20 -4.00 18.00 0.0500 0.0968 
0.8104 20 -19.20 19.20 -4.00 18.00 0.0500 0.1896 
 

We note that 20 subjects are needed to achieve 80% power and 26 subjects are needed to achieve 
90% power.  
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Example 3 – Validation using Phillips 
Phillips (1990) page 142 presents a table of sample sizes for various parameter values. In this 
table, the treatment mean, standard deviation, and equivalence limits are all specified as 
percentages of the reference mean. We will reproduce the second line of the table in which the 
square root of the within mean square error is 20%; the equivalence limits are 20%; the treatment 
mean is 100%, 95%, 90%, and 85%; the power is 70%; and the significance level is 0.05. Phillips 
reports total sample size as 16, 20, 40, and 152 corresponding to the four treatment mean 
percentages. We will now setup this example in PASS.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by expanding Means, then 2x2 Cross-Over Design, 
then clicking on Equivalence, and then clicking on Equivalence Tests for Two Means in a 2x2 
Cross-Over Design [Differences]. You may then make the appropriate entries as listed below, or 
open Example 3 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.7  
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
|EU| (Upper Equivalence Limit) ............... 20 
-|EL| (Lower Equivalence Limit) .............. -Upper Limit 
D (True Difference) ................................. 0 -5 -10 -15 
Specify S as ............................................ Sw 
S .............................................................. 20 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.7001 152 -20.00 20.00 -15.00 20.00 0.0500 0.2999 
0.7092 40 -20.00 20.00 -10.00 20.00 0.0500 0.2908 
0.7221 20 -20.00 20.00 -5.00 20.00 0.0500 0.2779 
0.7031 16 -20.00 20.00 0.00 20.00 0.0500 0.2969 

 

Note that PASS has obtained the same samples sizes as Phillips (1990).  
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Example 4 – Validation using Machin 
Machin et al. (1997) page 107 present an example of determining the sample size for a cross-over 
design in which the reference mean is 35.03, the treatment mean is 35.03, the standard deviation, 
entered as the square root of the within mean square error, is 40% of the reference mean, the 
limits are plus or minus 20% of the reference mean, the power is 80%, and the significance level 
is 0.10. Machin et al. calculate the total sample size to be 54.  

When the parameters are given as percentages of the reference mean, it is easy enough to 
calculate the exact amounts by applying those percentages. However, the percentages can all be 
entered directly as long as all parameters (EU, EL, D, and Sw) are specified as percentages. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by expanding Means, then 2x2 Cross-Over Design, 
then clicking on Equivalence, and then clicking on Equivalence Tests for Two Means in a 2x2 
Cross-Over Design [Differences]. You may then make the appropriate entries as listed below, or 
open Example 4 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.8  
Alpha ....................................................... 0.10 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
|EU| (Upper Equivalence Limit) ............... 20 
-|EL| (Lower Equivalence Limit) .............. -Upper Limit 
D (True Difference) ................................. 0 
Specify S as ............................................ Sw 
S .............................................................. 40 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.8050 54 -20.00 20.00 0.00 40.00 0.1000 0.1950 
 

Note that PASS also has obtained a sample size of 54.  
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Example 5 – Validation using Chow and Liu 
Chow and Liu (1999) page 153 present an example of determining the sample size for a cross-
over design in which the reference mean is 82.559, the treatment mean is 82.559, the standard 
deviation, entered as the square root of the within mean square error,  is 15.66%, the limits are 
plus or minus 20%, the power is 80%, and the significance level is 0.05. They calculate a sample 
size of 12. PASS calculates a sample size of 13. To see why PASS has increased the sample size 
by one, we will evaluate the power at sample sizes of 10, 12, 13, 14, and 16. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by expanding Means, then 2x2 Cross-Over Design, 
then clicking on Equivalence, and then clicking on Equivalence Tests for Two Means in a 2x2 
Cross-Over Design [Differences]. You may then make the appropriate entries as listed below, or 
open Example 5 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. 10 12 13 14 16 
|EU| (Upper Equivalence Limit) ............... 20 
-|EL| (Lower Equivalence Limit) .............. -Upper Limit 
D (True Difference) ................................. 0 
Specify S as ............................................ Sw 
S .............................................................. 15.66 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.6643 10 -20.00 20.00 0.00 15.66 0.0500 0.3357 
0.7932 12 -20.00 20.00 0.00 15.66 0.0500 0.2068 
0.8363 13 -20.00 20.00 0.00 15.66 0.0500 0.1637 
0.8752 14 -20.00 20.00 0.00 15.66 0.0500 0.1248 
0.9258 16 -20.00 20.00 0.00 15.66 0.0500 0.0742 

 

The power for N = 12 is 0.7932. The power for N = 13 is 0.8363. Hence, to achieve better than 
80% power, a sample size of 13 is necessary. However, 0.7932 is sufficiently close to 0.800 to 
make N = 12 a reasonable choice (as Chow and Liu did). 
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Example 6 – Validation using Senn 
Senn (1993) page 217 presents an example of determining the sample size for a cross-over design 
in which the reference mean is equal to the treatment mean, the standard deviation, entered as the 
square root of the within mean square error, is 45, the equivalence limits are plus or minus 30, the 
power is 80%, and the significance level is 0.05. He calculates a sample size of 40. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a 2x2 Cross-Over 
Design [Differences] procedure window by expanding Means, then 2x2 Cross-Over Design, 
then clicking on Equivalence, and then clicking on Equivalence Tests for Two Means in a 2x2 
Cross-Over Design [Differences]. You may then make the appropriate entries as listed below, or 
open Example 6 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.8  
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
|EU| (Upper Equivalence Limit) ............... 30 
-|EL| (Lower Equivalence Limit) .............. -Upper Limit 
D (True Difference) ................................. 0 
Specify S as ............................................ Sw 
S .............................................................. 45 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
 Total      
 Sample Lower Upper  Standard  
 Size Equiv. Equiv. True Deviation   
Power (N) Limit Limit Difference Sw Alpha Beta 
0.8004 40 -30.00 30.00 0.00 45.00 0.0500 0.1996 
 

PASS also calculates a sample size of 40. 
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Chapter 525 

Equivalence Tests 
for Two Means in a 
2x2 Cross-Over 
Design using 
Ratios 
Introduction 
This procedure calculates power and sample size of statistical tests of equivalence of the means 
from a 2x2 cross-over design which is analyzed with a t-test. This routine deals with the case in 
which the statistical hypotheses are expressed in terms mean of ratios rather than mean differences.  

The details of testing the equivalence of two treatments using data from a 2x2 cross-over design are 
given in another chapter and will not be repeated here. If the logarithms of the responses can be 
assumed to follow the normal distribution, hypotheses about the equivalence of two means stated in 
terms of the ratio can be transformed into hypotheses about the difference. The details of this 
analysis are given in Julious (2004). They will only be summarized here.  

Equivalence Testing Using Ratios 
PASS follows the two one-sided tests approach described by Schuirmann (1987) and Phillips 
(1990). It will be convenient to adopt the following specialized notation for the discussion of 
these tests. 
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Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

φ φL U,  RL, RU Margin of equivalence. These limits that define an 
interval of the ratio of the means in which their 
difference is so small that it may be ignored.  

φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their ratio is needed for power 
and sample size calculations. 

The null hypothesis of non-equivalence is 

H or 1 1: , .0 φ φ φ φ≤ ≥ φ < φ >where

H1:

L U L U  

and the alternative hypothesis of equivalence is  

φ φ φL U< <  

Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the null hypothesis are as follows. 

φ φ φ

( ) ( ) ( ){ } ( )

φ μ
μ

φ

φ μ μ φ

L U

L
T

R
U

L T R U

≤ ≤

⇒ ≤
⎧
⎨
⎩

⎫
⎬
⎭
≤

⇒ ≤ − ≤ln ln ln ln

 

Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

When performing an equivalence test on the difference between means, the usual procedure is to 
set the equivalence limits symmetrically above and below zero. Thus the equivalence limits will 
be plus or minus an appropriate amount. The common practice is to do the same when the data 
are being analyzed on the log scale. However, when symmetric limits are set on the log scale, 
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they do not translate to symmetric limits on the original scale. Instead, they translate to limits that 
are the inverses of each other. 

Perhaps these concepts can best be understood by considering an example. Suppose the 
researchers have determined that the lower equivalence limit should be 80% on the original scale. 
Since they are planning to use a log scale for their analysis, they transform this limit to the log 
scale by taking the logarithm of 0.80. The result is -0.223144. Wanting symmetric limits, they set 
the upper equivalence limit to 0.223144. Exponentiating this value, they find that exp(0.223144) 
= 1.25. Note that 1/(0.80) = 1.25. Thus, the limits on the original scale are 80% and 125%, not 
80% and 120%.  

Using this procedure, appropriate equivalence limits for the ratio of two means can be easily 
determined. Here are a few sets of equivalence limits. 
 
 Lower Upper Lower Upper 
Specified Limit Limit  Limit Limit 
Percent Original Original  Log Log 
Change Scale Scale Scale Scale 
-25% 75.0% 133.3% -0.287682 0.287682 
+25% 80.0% 125.0% -0.223144 0.223144 
-20% 80.0% 125.0% -0.223144 0.223144 
+20% 83.3% 120.0% -0.182322 0.182322 
-10% 90.0% 111.1% -0.105361 0.105361 
+10% 90.9% 110.0% -0.095310 0.095310 

 

Note that negative percent-change values specify the lower limit first, while positive percent-
change values specify the upper limit first. After the first limit is found, the other limit is 
calculated as its inverse. 

Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter can be used to represent the variation in the data because of a unique relationship that it 
has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX σ X

2 and , respectively. Similarly, label the mean 
and variance of Y as μY σY

2 and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 

( )σ μY Y e X= −1

μ
σ

σ

Y
X

X

⎝

⎞

⎠
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+
2

2

2

2 2
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⎛
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From this relationship, the coefficient of variation of Y can be expressed as  
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Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

YCOV
=

+ln 2 1
Y  

Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Power Calculation 
As is shown above, the hypotheses can be stated in the original (Y) scale using ratios or the 
logged (X) scale using differences. Either way, the power and sample size calculations are made 
using the formulas for testing the equivalence of the difference in two means. These formulas are 
presented in another chapter and are not duplicated here. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 



Equivalence Tests for Two Means in a 2x2 Cross-Over Design using Ratios  525-5 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of unequal means 
when in fact the means are equal. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of unequal means when in fact the means are unequal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in both sequences). This value must be an integer greater than one.  

When N is even, it is split evenly between the two sequences. When N is odd, the first sequence 
has one more subject than the second sequence. 

Note that you may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Effect Size – Equivalence Limits 

RU (Upper Equivalence Limit) 
Enter the upper equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RL, the two means are said to be equivalent. The value must be greater 
than one. A popular choice is 1.25. Note that this value is not a percentage. 

If you enter 1/RL, then 1/RL will be calculated and used here. This choice is commonly used 
because RL and 1/RL give limits that are of equal magnitude on the log scale. 



525-6  Equivalence Tests for Two Means in a 2x2 Cross-Over Design using Ratios 

RL (Lower Equivalence Limit) 
Enter the lower equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RU, the two means are said to be equivalent. The value must be less than 
one. A popular choice is 0.80. Note that this value is not a percentage. 

If you enter 1/RU, then 1/RU will be calculated and used here. This choice is commonly used 
because RU and 1/RU give limits that are of equal magnitude on the log scale. 

Effect Size – True Ratio 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Usually, the 
ratio will be assumed to be one. However, some authors recommend calculating the power using 
a ratio of 1.05 since this will require a larger sample size. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not logged) scale. This value must be 
determined from past experience or from a pilot study. It is most easily calculated from the within 
mean-square error of the analysis of variance using the logged data using the relationship  

COV eY
w= −σ 2

1

$σw
2

σd
2 σw

2

σ σd w
2 22=

. 

If prior studies used a t-test to analyze the logged data, you will not have a direct estimate of . 
However, the two variances,  and , are functionally related. The relationship between these 
quantities is . 
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Example 1 – Finding Power 
A company has opened a new manufacturing plant and wants to show that the drug produced in 
the new plant is equivalent to that produced in an older plant. A cross-over design will be used to 
test the equivalence of drugs produced at the two plants.   

Researchers have decided to set the equivalence limits for the ratio at 0.90 and 1.111 (note that 
1.111 = 1/0.90). Past experience leads the researchers to set the COV to 0.50. The significance 
level is 0.05. The power will be computed assuming that the true ratio is one. Sample sizes 
between 50 and 550 will be included in the analysis. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a 2x2 Cross-Over 
Design [Ratios] procedure window by expanding Means, then 2x2 Cross-Over Design, then 
clicking on Equivalence, and then clicking on Equivalence Tests for Two Means in a 2x2 
Cross-Over Design [Ratios]. You may then make the appropriate entries as listed below, or open 
Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. 50 to 550 by 100 
RU (Upper Equivalence Limit) ................ 1/RL 
RL (Lower Equivalence Limit) ................. 0.90 
R1 (True Ratio) ....................................... 1.0 
COV (Coefficient of Variation) ................. 0.50 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
  Lower Upper    
 Total Equiv. Equiv.  Coefficient  
 Sample Limit Limit True of  
 Size of Ratio of Ratio Ratio Variation   
Power (N) (RL) (RU) (R1) (COV) Alpha Beta 
0.0000 50 0.9000 1.1111 1.0000 0.5000 0.0500 1.0000 
0.2190 150 0.9000 1.1111 1.0000 0.5000 0.0500 0.7810 
0.6002 250 0.9000 1.1111 1.0000 0.5000 0.0500 0.3998 
0.8064 350 0.9000 1.1111 1.0000 0.5000 0.0500 0.1936 
0.9101 450 0.9000 1.1111 1.0000 0.5000 0.0500 0.0899 
0.9596 550 0.9000 1.1111 1.0000 0.5000 0.0500 0.0404 
 
Report Definitions 
Power is the probability of rejecting non-equivalence when the means are equivalent. 
N is the total number of subjects split between both sequences. 
RU & RL are the upper and lower equivalence limits. Ratios between these limits are equivalent. 
R1 is the ratio of the means at which the power is computed. 
COV is the coefficient of variation on the original scale.  
Alpha is the probability of rejecting non-equivalence when the means are non-equivalent. 
Beta is the probability of accepting non-equivalence when the means are equivalent. 
 
Summary Statements 
In an equivalence test of means using two one-sided tests on data from a two-period cross-over 
design, a total sample size of 50 achieves 0% power at a 5% significance level when the true 
ratio of the means is 1.0000, the coefficient of variation on the original, unlogged scale is 
0.5000, and the equivalence limits of the mean ratio are 0.9000 and 1.1111. 

 

This report shows the power for the indicated scenarios. Note that if they want 90% power, they 
will require a sample of around 450 subjects. 

Plots Section 
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This plot shows the power versus the sample size. 
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Example 2 – Validation using Julious 
Julious (2004) page 1963 presents a table of sample sizes for various parameter values. The 
power is 0.90 and the significance level is 0.05. The COV is set to 0.25, the ‘level of 
bioequivalence’ is set to 10%, 15%, 20%, and 25%, and the true ratio is set to 1.00, the necessary 
sample sizes are 120, 52, 28, and 18. Note that the level of bioequivalence as defined in Julious 
(2004) is equal to 1 – RL.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a 2x2 Cross-Over 
Design [Ratios] procedure window by expanding Means, then 2x2 Cross-Over Design, then 
clicking on Equivalence, and then clicking on Equivalence Tests for Two Means in a 2x2 
Cross-Over Design [Ratios]. You may then make the appropriate entries as listed below, or open 
Example 2 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N 
Power ...................................................... 0.90 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
RU (Upper Equivalence Limit) ................ 1/RL 
RL (Lower Equivalence Limit) ................. 0.90 0.85 0.80 0.75 
R1 (True Ratio) ....................................... 1.00 
COV (Coefficient of Variation) ................. 0.25 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Equivalence Using a Cross-Over Design 
 
  Lower Upper    
 Total Equiv. Equiv.  Coefficient  
 Sample Limit Limit True of  
 Size of Ratio of Ratio Ratio Variation   
Power (N) (RL) (RU) (R1) (COV) Alpha Beta 
0.9121 18 0.7500 1.3333 1.0000 0.2500 0.0500 0.0879 
0.9023 28 0.8000 1.2500 1.0000 0.2500 0.0500 0.0977 
0.9060 52 0.8500 1.1765 1.0000 0.2500 0.0500 0.0940 
0.9012 120 0.9000 1.1111 1.0000 0.2500 0.0500 0.0988 

 

Note that PASS obtains the same samples sizes as Julious (2004). 
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Chapter 528 

Tests for Two 
Means in a Higher-
Order Cross-Over 
Design with Non-
Zero Null using 
Differences 
Introduction 
This procedure calculates power and sample size for non-zero null tests which use the difference in 
the means of a higher-order cross-over design. Measurements are made on individuals that have 
been randomly assigned to one of several treatment sequences. Only a brief introduction to the 
subject will be given here. For a comprehensive discussion on the subject, refer to Chen et al. 
(1997) and Chow et al. (2003).  

Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments at 
least once and the object is to study differences among the treatments. The name cross-over 
comes from the most common case in which there are only two treatments. In this case, each 
subject crosses over from one treatment to another. It is assumed that there is a washout period 
between treatments during which the response returns to its baseline value. If this does not occur, 
there is said to be a carryover effect. 

A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence of treatments is treatment A followed by treatment B. The other 
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sequence is B and then A. The design includes a washout period between responses to make 
certain that the effects of the first drug do no carryover to the second. Thus, the groups of subjects 
in this design are defined by the sequence in which the two treatments are administered, not by 
the treatments they receive. 

Higher-Order Cross-Over Designs 
Chen et al. (1997) present the results for four cross-over designs that are more complicated than 
the 2x2 design. Assume that the two treatments are labeled A and B. The available designs are 
defined by the order and number of times the two treatments are administered. 

Balaam’s Design 
Balaam’s design has four sequences with two treatments each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 
1 A A 
2 B B 
3 A B 
4 B A 

Two-Sequence Dual Design 
This design has two sequences with three periods each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 Period 3 
1 A B B 
2 B A A 

Four-Period Design with Two Sequences 
This design has two sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A B B A 
2 B A A B 

Four-Period Design with Four Sequences 
This design has four sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A A B B 
2 B B A A 
1 A B B A 
2 B A A B 

Advantages of Cross-Over Designs 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment may be easier to 
obtain because each patient will receive both treatments. 
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Disadvantages of Cross-Over Designs 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. In a cross-over experiment, it may be difficult to 
separate the treatment effect from the time effect and the carry-over effect of the previous 
treatment. 

These cross-over designs cannot be used when the treatment (or the measurement of the response) 
alters the subject permanently. Hence, it cannot be used to compare treatments that are intended 
to provide a cure. 

Because subjects must be measured at least twice, it may be more difficult to keep patients 
enrolled in the study. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 

The Statistical Hypotheses 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests. Remember 
that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-sided tests are 
defined as  

A H1: > A  H0:δ ≤ δ versus 

Rejecting H0 implies that the mean is larger than the value A. This test is called an upper-tailed 
test because H0 is rejected only in samples in which the difference in sample means is larger than 
A. 

Following is an example of a lower-tailed test. 

H0:δ ≥ A H1:δ < A versus  

Non-inferiority and superiority tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialize notation for the discussion of these tests.  
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Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

sM  SM Margin of superiority. This is a tolerance value that 
defines the magnitude of difference that is required for 
practical importance. This may be thought of as the 
smallest difference from the reference that is considered 
to be different. 

δ  D True difference. This is the value of μ μT − R , the 
difference between the treatment and reference means. 
This is the value at which the power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their difference is needed for 
power and sample size calculations. 

Non-Zero Null Tests 
A non-zero null test tests that the treatment mean is better than the reference mean by more than 
the superiority margin. The actual direction of the hypothesis depends on the response variable 
being studied.  

Case 1: High Values Good 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is greater than the reference mean by at least the 
margin of superiority. The value of δ  must be greater than SM . The following are equivalent 
sets of hypotheses. 

SM+≤ 210H μμ:  versus  SM+> 21H μ1μ:  

S210 M≤−H μμ: S211 M>−H μμ:  versus   

SM≤δ:0H SM>δ:1H  versus   

Case 2: High Values Bad 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is less than the reference mean by at least the margin 
of superiority. The value of δ  must be less than SM− . The following are equivalent sets of 
hypotheses. 

SM−≥ 210H μμ: SM−< 211H μμ:   versus   

SM−≥− 210H μμ: SM−<− 211H μμ:  versus   

SM−≥δ:0H SM−<δ:1H    versus   



Two Means in a Higher-Order Cross-Over Design with Non-Zero Null (Differences)  528-5 

Test Statistics 
The analysis for assessing non-inferiority and non-zero null tests using higher-order cross-over 
designs is discussed in detail in Chapter 9 of Chow and Liu (2000). Unfortunately, their 
presentation is too lengthy to give here. Their method involves the computation of an analysis of 
variance to estimate the error variance. It also describes the construction of confidence limits for 
appropriate contrasts. One-sided confidence limits can be used for non-inferiority tests. Details of 
this approach are given in Chapter 3 of Chow et al. (2003). We refer you to these books for 
details. 

Power Calculation 
The power of the non-inferiority and superiority tests for the case in which higher values are 
better is given by 
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σwhere T represents the cumulative t distribution, V and b depend on the design, W is the square 
root of the within mean square error from the ANOVA table used to analyze the cross-over 
design, and n is the average number of subjects per sequence. Note that the constants V and b 
depend on the design as follows.  

The power of the non-inferiority and superiority tests for the case in which higher values are 
worse is given by  
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The constants V and b depend on the design as follows: 

Design Type Parameters (V,b) 

Balaam’s Design V = 4n – 3, b = 2. 

Two-Sequence Dual Design V = 4n – 4, b = 3/4. 

Four-Period Design with Two Sequences V = 6n – 5, b = 11/20. 

Four-Period Design with Four Sequences V = 12n – 5, b = 1/4. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 
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Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Note that there are two choices for finding N. Select N (Equal Per Sequence) when you 
want the design to have an equal number of subjects per sequence. Select N (Exact) when you 
want to find the exact sample size even though the number of subjects cannot be dividing equally 
among the sequences. 

Select Power and Beta when you want to calculate the power of an experiment. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in all sequences). This value must be an integer greater than one.  

Effect Size – Mean Difference 

SM (Superiority Margin) 
This is the magnitude of the margin of superiority. It must be entered as a positive number. 
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When higher means are better, this value is the distance above the reference mean that is required 
to be considered superior. When higher means are worse, this value is the distance below the 
reference mean that is required to be considered superior. 

D (True Difference) 
This is the actual difference between the treatment mean and the reference mean at which the 
power is calculated. 

When higher means are better, this value should be greater than SM. When higher means are 
worse, this value should be negative and greater in magnitude than SM. 

Effect Size – Standard Deviation 

Sw (Within Standard Error) 
Specify one or more values of Sw, which is SQR(WMSE) where WMSE is the within mean 
square error from the ANOVA table used to analyze the cross-over design. These values must be 
positive.  

You can press the Standard Deviation Estimator button to load the Standard Deviation Estimator 
window. 

Test 

Design Type 
Specify the type of cross-over design that you are analyzing. Note that all of these designs assume 
that you are primarily interested in the overall difference between the two treatment means. 

Higher Means Are 
This option defines whether higher values of the response variable are to be considered better or 
worse. The choice here determines the direction of the test. 

If Higher Means Are Better the null hypothesis is Diff <= SM and the alternative hypothesis is 
Diff > SM. If Higher Means Are Worse the null hypothesis is Diff >= -SM and the alternative 
hypothesis is Diff < -SM. 
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Example 1 – Finding Power 
Researchers want to calculate the power of a non-zero null test using data from a two-sequence, 
dual cross-over design. The margin of superiority is either 5 or 10 at several sample sizes between 
6 and 66. The true difference between the means under is assumed to be 15. Similar experiments 
have had a standard deviation (Sw) of 10. The significance level is 0.025.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a Higher-Order Cross-Over 
Design (Non-Zero Null) [Differences] procedure window by expanding Means, then MxK 
Cross-Over Design, then clicking on Test (Non-Zero Null), and then clicking on Tests for Two 
Means in a Higher-Order Cross-Over Design (Non-Zero Null) [Differences]. You may then 
make the appropriate entries as listed below, or open Example 1 by going to the File menu and 
choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.025 
N (Total Sample Size) ............................. 6 to 66 by 10 
SM (Superiority Margin) .......................... 5 10 
D (True Difference) ................................. 15 
Sw (Within Standard Error) ..................... 10 
Design Type ............................................ 2x3 (Two-Sequence Dual) 
Higher Means Are ................................... Better 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Non-Inferiority Using the Difference 
Higher Means are Better 
Design: Two-Sequence Dual Cross-Over. Hypotheses: H0: Diff <= SM; H1: Diff > SM. 
 
 Total Sequences  Difference Standard  
 Sample and Superiority for Error   
 Size Periods Margin Power of Diff.   
Power (N) (SxP) (SM) (D) (Sw) Alpha Beta 
0.3837 6 2x3 5.00 15.00 10.00 0.0250 0.6163 
0.8832 16 2x3 5.00 15.00 10.00 0.0250 0.1168 
0.9818 26 2x3 5.00 15.00 10.00 0.0250 0.0182 
0.9975 36 2x3 5.00 15.00 10.00 0.0250 0.0025 
0.9997 46 2x3 5.00 15.00 10.00 0.0250 0.0003 
1.0000 56 2x3 5.00 15.00 10.00 0.0250 0.0000 
1.0000 66 2x3 5.00 15.00 10.00 0.0250 0.0000 
 
Report continues… 
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Report Definitions 
Power is the probability of rejecting H0 (concluding non-inferiority) when H0 is false. 
N is the total number of subjects. They are divided evenly among all sequences. 
S is the number of sequences. 
P is the number of periods per sequence. 
SM is the magnitude of the margin of superiority. Since higher means are better, this value is positive and is 
   the distance above the reference mean that is required to be considered superior. 
D is the mean difference at which the power is computed. D = Mean1 - Mean2 = treatment mean - reference mean. 
Sw is the square root of the within mean square error from the ANOVA table. 
Alpha is the probability of falsely rejecting H0 (falsely concluding non-inferiority). 
Beta is the probability of not rejecting H0 when it is false. 
Two-Sequence Dual Cross-Over Design with pattern: ABB; BAA 
 
Summary Statements 
In a superiority test on data for which higher values are better drawn from a two-sequence dual 
cross-over design, a total sample size of 6 achieves 38% power at a 3% significance level when 
the true difference between the means is 15.00, the square root of the within mean square error 
is 10.00, and the superiority margin is 5.00. 

 

This report shows the power for the indicated scenarios.  

Plots Section 
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This plot shows the power versus the sample size. 
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Example 2 – Finding Sample Size 
Continuing with Example1, the researchers want to find the exact sample size needed to achieve 
both 80% power and 90% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a Higher-Order Cross-Over 
Design (Non-Zero Null) [Differences] procedure window by expanding Means, then MxK 
Cross-Over Design, then clicking on Test (Non-Zero Null), and then clicking on Tests for Two 
Means in a Higher-Order Cross-Over Design (Non-Zero Null) [Differences]. You may then 
make the appropriate entries as listed below, or open Example 2 by going to the File menu and 
choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Equal Per Sequence) 
Power ...................................................... 0.80 0.90 
Alpha ....................................................... 0.025 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
SM (Superiority Margin) .......................... 5 10 
D (True Difference) ................................. 15 
Sw (Within Standard Error) ..................... 10 
Design Type ............................................ 2x3 (Two-Sequence Dual) 
Higher Means Are ................................... Better 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing Non-Inferiority Using the Difference 
Higher Means are Better 
Design: Two-Sequence Dual Cross-Over. Hypotheses: H0: Diff <= SM; H1: Diff > SM. 
 
 Total Sequences  Difference Standard  
 Sample and Superiority for Error   
 Size Periods Margin Power of Diff.   
Power (N) (SxP) (SM) (D) (Sw) Alpha Beta 
0.9184 18 2x3 5.00 15.00 10.00 0.0250 0.0816 
0.8343 14 2x3 5.00 15.00 10.00 0.0250 0.1657 
0.9084 66 2x3 10.00 15.00 10.00 0.0250 0.0916 
0.8153 50 2x3 10.00 15.00 10.00 0.0250 0.1847 
 

When the superiority margin is set to 10, 66 subjects are needed to achieve 90% power and 50 
subjects are needed to achieve at least 80% power.  
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Example 3 – Validation 
This procedure uses the same mechanics as the Non-Inferiority Tests for Two Means in a Higher-
Order Cross-Over Design using Differences procedure. We refer the user to Example 3 of 
Chapter 530 for the validation  
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Chapter 530 

Non-Inferiority 
Tests for Two 
Means in a Higher-
Order Cross-Over 
Design using 
Differences 
Introduction 
This procedure calculates power and sample size for non-inferiority tests which use the difference 
in the means of a higher-order cross-over design. Measurements are made on individuals that have 
been randomly assigned to one of several treatment sequences. Only a brief introduction to the 
subject will be given here. For a comprehensive discussion on the subject, refer to Chen et al. 
(1997) and Chow et al. (2003).  

Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments at 
least once and the object is to study differences among the treatments. The name cross-over 
comes from the most common case in which there are only two treatments. In this case, each 
subject crosses over from one treatment to another. It is assumed that there is a washout period 
between treatments during which the response returns to its baseline value. If this does not occur, 
there is said to be a carryover effect. 

A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence of treatments is treatment A followed by treatment B. The other 
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sequence is B and then A. The design includes a washout period between responses to make 
certain that the effects of the first drug do no carryover to the second. Thus, the groups of subjects 
in this design are defined by the sequence in which the two treatments are administered, not by 
the treatments they receive. 

Higher-Order Cross-Over Designs 
Chen et al. (1997) present the results for four cross-over designs that are more complicated than 
the 2x2 design. Assume that the two treatments are labeled A and B. The available designs are 
defined by the order and number of times the two treatments are administered. 

Balaam’s Design 
Balaam’s design has four sequences with two treatments each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 
1 A A 
2 B B 
3 A B 
4 B A 

Two-Sequence Dual Design 
This design has two sequences with three periods each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 Period 3 
1 A B B 
2 B A A 

Four-Period Design with Two Sequences 
This design has two sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A B B A 
2 B A A B 

Four-Period Design with Four Sequences 
This design has four sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A A B B 
2 B B A A 
1 A B B A 
2 B A A B 

Advantages of Cross-Over Designs 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment may be easier to 
obtain because each patient will receive both treatments. 
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Disadvantages of Cross-Over Designs 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. In a cross-over experiment, it may be difficult to 
separate the treatment effect from the time effect and the carry-over effect of the previous 
treatment. 

These cross-over designs cannot be used when the treatment (or the measurement of the response) 
alters the subject permanently. Hence, it cannot be used to compare treatments that are intended 
to provide a cure. 

Because subjects must be measured at least twice, it may be more difficult to keep patients 
enrolled in the study. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 

The Statistical Hypotheses 
Both non-inferiority and superiority tests are examples of directional (one-sided) tests. Remember 
that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-sided tests are 
defined as  

A H1: > A  H0:δ ≤ δ versus 

Rejecting H0 implies that the mean is larger than the value A. This test is called an upper-tailed 
test because H0 is rejected only in samples in which the difference in sample means is larger than 
A. 

Following is an example of a lower-tailed test. 

H0:δ ≥ A H1:δ < A versus  

Non-inferiority and superiority tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialize notation for the discussion of these tests.  
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Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

NIM  NIM Margin of non-inferiority. This is a tolerance value that 
defines the magnitude of the amount that is not of 
practical importance. This may be thought of as the 
largest change from the baseline that is considered to be 
trivial. The absolute value is shown to emphasize that 
this is a magnitude. The sign of the value will be 
determined by the specific design that is being used. 

δ  D True difference. This is the value of μ μT − R , the 
difference between the treatment and reference means. 
This is the value at which the power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their difference is needed for 
power and sample size calculations. 

Non-Inferiority Tests 
A non-inferiority test tests that the treatment mean is not worse than the reference mean by more 
than the equivalence margin. The actual direction of the hypothesis depends on the response 
variable being studied.  

Case 1: High Values Good, Non-Inferiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no less than a small amount below the reference 
mean. The value of δ  is often set to zero. The following are equivalent sets of hypotheses. 

NIM−≤ 210H μμ: NIM−> 211 μμ:    versus  H  

NI210 M−≤−H μμ: NI211 M−>−H μμ:  versus   

NIM−≤δ:0H NIM−>δ:1H      versus   

Case 2: High Values Bad, Non-Inferiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no more than a small amount above the reference 
mean. The value of δ  is often set to zero. The following are equivalent sets of hypotheses. 

NIM+≥ 210H μμ: NIM+< 211H μμ:  versus   

NIM≥− 210H μμ: NIM<− 211H μμ:  versus   

NIM≥δ:0H NIM<δ:1H   versus   



Non-Inferiority of Two Means in a Higher-Order Cross-Over Design (Differences)  530-5 

Test Statistics 
The analysis for assessing equivalence (and thus non-inferiority) using higher-order cross-over 
designs is discussed in detail in Chapter 9 of Chow and Liu (2000). Unfortunately, their 
presentation is too lengthy to give here. Their method involves the computation of an analysis of 
variance to estimate the error variance. It also describes the construction of confidence limits for 
appropriate contrasts. One-sided confidence limits can be used for non-inferiority tests. Details of 
this approach are given in Chapter 3 of Chow et al. (2003). We refer you to these books for 
details. 

Power Calculation 
The power of the non-inferiority and superiority tests for the case in which higher values are 
better is given by 
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σwhere T represents the cumulative t distribution, V and b depend on the design, W is the square 
root of the within mean square error from the ANOVA table used to analyze the cross-over 
design, and n is the average number of subjects per sequence. Note that the constants V and b 
depend on the design as follows.  

The power of the non-inferiority and superiority tests for the case in which higher values are 
worse is given by  
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The constants V and b depend on the design as follows: 

Design Type Parameters (V,b) 

Balaam’s Design V = 4n – 3, b = 2. 

Two-Sequence Dual Design V = 4n – 4, b = 3/4. 

Four-Period Design with Two Sequences V = 6n – 5, b = 11/20. 

Four-Period Design with Four Sequences V = 12n – 5, b = 1/4. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 
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Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Note that there are two choices for finding N. Select N (Equal Per Sequence) when you 
want the design to have an equal number of subjects per sequence. Select N (Exact) when you 
want to find the exact sample size even though the number of subjects cannot be dividing equally 
among the sequences. 

Select Power and Beta when you want to calculate the power of an experiment. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in all sequences). This value must be an integer greater than one.  

Effect Size – Mean Difference 

NIM (Non-Inferiority Margin) 
This is the magnitude of the margin of non-inferiority. It must be entered as a positive number. 
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When higher means are better, this value is the distance below the reference mean that is still 
considered non-inferior.  When higher means are worse, this value is the distance above the 
reference mean that is still considered non-inferior. 

D (True Difference) 
This is the actual difference between the treatment mean and the reference mean at which power 
is calculated. 

For non-inferiority tests, this value is often set to zero. When this value is non-zero, care should 
be taken that this value is consistent with whether higher means are better or worse. 

Effect Size – Standard Deviation 

Sw (Within Standard Error) 
Specify the value(s) of the standard deviation Sw. This is the value of Sw which is SQR(WMSE) 
where WMSE is the within mean square error from the ANOVA table used to analyze the Cross-
Over design. 

These values must be positive. A list of values may be entered. 

Test 

Design Type 
Specify the type of cross-over design that you are analyzing. Note that all of these designs assume 
that you are primarily interested in the overall difference between the two treatment means. 

Higher Means Are 
This option defines whether higher values of the response variable are to be considered better or 
worse. 

The choice here determines the direction of the non-inferiority test. 

If Higher Means Are Better the null hypothesis is Diff <= -NIM and the alternative hypothesis is 
Diff > -NIM. If Higher Means Are Worse the null hypothesis is Diff >= NIM and the alternative 
hypothesis is Diff < NIM. 
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Example 1 – Finding Power 
Researchers want to calculate the power of a non-inferiority test using data from a two-sequence, 
dual cross-over design. The margin of equivalence is either 5 or 10 at several sample sizes 
between 6 and 66. The true difference between the means under is assumed to be 0. Similar 
experiments have had a standard deviation (Sw) of 10. The significance level is 0.025.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for Two Means in a Higher-Order 
Cross-Over Design [Differences] procedure window by expanding Means, then MxK Cross-
Over Design, then clicking on Non-Inferiority, and then clicking on Non-Inferiority Tests for 
Two Means in a Higher-Order Cross-Over Design [Differences]. You may then make the 
appropriate entries as listed below, or open Example 1 by going to the File menu and choosing 
Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.025 
N (Total Sample Size) ............................. 6 to 66 by 10 
NIM (Non-Inferiority Margin) .................... 5 10 
D (True Difference) ................................. 0 
Sw (Within Standard Error) ..................... 10 
Design Type ............................................ 2x3 (Two-Sequence Dual) 
Higher Means Are ................................... Better 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Non-Inferiority Using the Difference 
Higher Means are Better 
Design: Two-Sequence Dual Cross-Over. Hypotheses: H0: Diff <= -NIM; H1: Diff > -NIM. 
 
 Total Sequences  Difference Standard  
 Sample and Non-Inferiority for Error   
 Size Periods Margin Power of Diff.   
Power (N) (SxP) (-NIM) (D) (Sw) Alpha Beta 
0.1139 6 2x3 5.00 0.00 10.00 0.0250 0.8861 
0.3405 16 2x3 5.00 0.00 10.00 0.0250 0.6595 
0.5282 26 2x3 5.00 0.00 10.00 0.0250 0.4718 
0.6744 36 2x3 5.00 0.00 10.00 0.0250 0.3256 
0.7817 46 2x3 5.00 0.00 10.00 0.0250 0.2183 
0.8571 56 2x3 5.00 0.00 10.00 0.0250 0.1429 
0.9084 66 2x3 5.00 0.00 10.00 0.0250 0.0916 
Report continues… 
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Report Definitions 
Power is the probability of rejecting H0 (concluding non-inferiority) when H0 is false. 
N is the total number of subjects. They are divided evenly among all sequences. 
S is the number of sequences. 
P is the number of periods per sequence. 
-NIM is the magnitude and direction of the margin of non-inferiority. Since higher means are better, this 
   value is negative and is the distance below the reference mean that is still considered non-inferior. 
D is the actual difference between the treatment and reference means that is used in the power calculations. 
Sw is the square root of the within mean square error from the ANOVA table. 
Alpha is the probability of falsely rejecting H0 (falsely concluding non-inferiority). 
Beta is the probability of not rejecting H0 when it is false. 
Two-Sequence Dual Cross-Over Design with pattern: ABB; BAA 
 
Summary Statements 
In a non-inferiority test on data for which higher values are better drawn from a two-sequence 
dual cross-over design, a total sample size of 6 achieves 11% power at a 3% significance level 
when the true difference between the means is 0.00, the square root of the within mean square 
error is 10.00, and the non-inferiority margin is -5.00. 

 

This report shows the power for the indicated scenarios.  

Plots Section 
 

 

Power vs N by NIM
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This plot shows the power versus the sample size. 
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Example 2 – Finding Sample Size 
Continuing with Example1, the researchers want to find the exact sample size needed to achieve 
both 80% power and 90% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for Two Means in a Higher-Order 
Cross-Over Design [Differences] procedure window by expanding Means, then MxK Cross-
Over Design, then clicking on Non-Inferiority, and then clicking on Non-Inferiority Tests for 
Two Means in a Higher-Order Cross-Over Design [Differences]. You may then make the 
appropriate entries as listed below, or open Example 2 by going to the File menu and choosing 
Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Equal Per Sequence) 
Power ...................................................... 0.80 0.90 
Alpha ....................................................... 0.025 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
NIM (Non-Inferiority Margin) .................... 5 10 
D (True Difference) ................................. 0 
Sw (Within Standard Error) ..................... 10 
Design Type ............................................ 2x3 (Two-Sequence Dual) 
Higher Means Are ................................... Better 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing Non-Inferiority Using the Difference 
Higher Means are Better 
Design: Two-Sequence Dual Cross-Over. Hypotheses: H0: Diff <= -NIM; H1: Diff > -NIM. 
 
 Total Sequences  Difference Standard  
 Sample and Non-Inferiority for Error   
 Size Periods Margin Power of Diff.   
Power (N) (SxP) (-NIM) (D) (Sw) Alpha Beta 
0.9084 66 2x3 5.00 0.00 10.00 0.0250 0.0916 
0.8153 50 2x3 5.00 0.00 10.00 0.0250 0.1847 
0.9184 18 2x3 10.00 0.00 10.00 0.0250 0.0816 
0.8343 14 2x3 10.00 0.00 10.00 0.0250 0.1657 
 

When the non-inferiority margin is set to 5, 66 subjects are needed to achieve 90% power and 50 
subjects are needed to achieve at least 80% power.  
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Example 3 – Validation 
We could not find a validation example for this procedure in the statistical literature, so we will 
have to generate a validated example from within PASS. To do this, we use the Higher-Order, 
Cross-Over Equivalence using Differences procedure which was validated. By setting the upper 
equivalence limit to a large value (we used 22), we obtain results for a non-inferiority test.   

Suppose the square root of the within mean square error is 0.10, the equivalence limit is 0.20, the 
difference between the means is 0.05, the power is 90%, and the significance level is 0.05 (see the 
Example4 template). PASS calculates a sample size of 16.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for Two Means in a Higher-Order 
Cross-Over Design [Differences] procedure window by expanding Means, then MxK Cross-
Over Design, then clicking on Non-Inferiority, and then clicking on Non-Inferiority Tests for 
Two Means in a Higher-Order Cross-Over Design [Differences]. You may then make the 
appropriate entries as listed below, or open Example 3 by going to the File menu and choosing 
Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Equal Per Sequence) 
Power ...................................................... 0.90 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
NIM (Non-Inferiority Margin) ................... 0.2 
D (True Difference) ................................. 0.05 
Sw (Within Standard Error) ..................... 0.10 
Design Type ............................................ 4x2 (Balaam) 
Higher Means Are ................................... Better 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Non-Inferiority Using the Difference 
Higher Means are Better 
Design: Balaam's Cross-Over. Hypotheses: H0: Diff <= -NIM; H1: Diff > -NIM. 
 
 Total Sequences  Difference Standard  
 Sample and Non-Inferiority for Error   
 Size Periods Margin Power of Diff.   
Power (N) (SxP) (-NIM) (D) (Sw) Alpha Beta 
0.9495 16 4x2 0.20 0.05 0.10 0.0500 0.0505 

 

PASS has also obtained a sample size of 16 using the non-inferiority procedure. 
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Chapter 533 

Tests for Two 
Means in a Higher-
Order Cross-Over 
Design with Non-
Unity Null using 
Ratios 
Introduction 
This procedure calculates power and sample size for non-zero null tests which use the ratio of the 
two means of a higher-order cross-over design. Measurements are made on individuals that have 
been randomly assigned to one of several treatment sequences. Only a brief introduction to the 
subject will be given here. For a comprehensive discussion on the subject, refer to Chen et al. 
(1997) and Chow et al. (2003).  

Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments at 
least once and the object is to study differences among the treatments. The name cross-over 
comes from the most common case in which there are only two treatments. In this case, each 
subject crosses over from one treatment to another. It is assumed that there is a washout period 
between treatments during which the response returns to its baseline value. If this does not occur, 
there is said to be a carryover effect. 

A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence of treatments is treatment A followed by treatment B. The other 
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sequence is B and then A. The design includes a washout period between responses to make 
certain that the effects of the first drug do no carryover to the second. Thus, the groups of subjects 
in this design are defined by the sequence in which the two treatments are administered, not by 
the treatments they receive. 

Higher-Order Cross-Over Designs 
Chen et al. (1997) present the results for four cross-over designs that are more complicated than 
the 2x2 design. Assume that the two treatments are labeled A and B. The available designs are 
defined by the order and number of times the two treatments are administered. 

Balaam’s Design 
Balaam’s design has four sequences with two treatments each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 
1 A A 
2 B B 
3 A B 
4 B A 

Two-Sequence Dual Design 
This design has two sequences with three periods each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 Period 3 
1 A B B 
2 B A A 

Four-Period Design with Two Sequences 
This design has two sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A B B A 
2 B A A B 

Four-Period Design with Four Sequences 
This design has four sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A A B B 
2 B B A A 
1 A B B A 
2 B A A B 

Advantages of Cross-Over Designs 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment may be easier to 
obtain because each patient will receive both treatments. 
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Disadvantages of Cross-Over Designs 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. In a cross-over experiment, it may be difficult to 
separate the treatment effect from the time effect and the carry-over effect of the previous 
treatment. 

These cross-over designs cannot be used when the treatment (or the measurement of the response) 
alters the subject permanently. Hence, it cannot be used to compare treatments that are intended 
to provide a cure. 

Because subjects must be measured at least twice, it may be more difficult to keep patients 
enrolled in the study. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 

The Statistical Hypotheses 
Both non-inferiority and non-zero null tests are examples of directional (one-sided) tests. 
Remember that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-
sided tests are defined as  

A H1:H0:φ ≤ φ > A   versus 

Rejecting H0 implies that the ratio of the mean is larger than the value A. This test is called an 
upper-tailed test because H0 is rejected only in samples in which the ratio of the sample means is 
larger than A. 

Following is an example of a lower-tailed test. 

H0:φ ≥ A H1:φ < A versus  

Non-inferiority and non-zero null tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialize notation for the discussion of these tests.  

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR

sM

 Not used Reference mean. This is the mean of a reference 
population.  

 SM Margin of superiority. This is a tolerance value that 
defines the magnitude of difference that is required for 
practical importance. This may be thought of as the 
smallest difference from the reference that is considered 
to be different.  

 φ φ μ μ R1 True ratio. This is the value of = T R/  at which the 
power is calculated. 

μ μT  and Note that the actual values of R  are not needed. Only their ratio is needed for power 
and sample size calculations. 

The null hypothesis of non-superiority is 
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.: 1whereH0 >≤ LL φφφ  

and the alternative hypothesis of superiority is  

H : φ φ> L  1

Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the alternative hypothesis are as follows. 

φ φ

( ) ( ) ( ){ }

φ μ
μ

φ μ μ
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L
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Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter is used to represent the variation in the data because of a unique relationship that it has 
in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX σ X

2 and , respectively. Similarly, label the mean 
and variance of Y as μY σY

2 and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 
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From this relationship, the coefficient of variation of Y can be found to be  
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where  is the within mean square error from the analysis of variance of the logged data. 
Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σw
2

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

YCOV
=

+ln 2 1
Y  

 

Thus, the hypotheses can be stated in the original (Y) scale and then power analyzed in the 
transformed (X) scale. 

Non-Inferiority and Superiority Tests 
A non-zero null test tests that the treatment mean is better than the reference mean by more than a 
small superiority margin. The actual direction of the hypothesis depends on the response variable 
being studied.  

Case 3: High Values Good, Superiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is greater than the reference mean by at least the 
margin of superiority. The null and alternative hypotheses are 

( )H0 1:μ
μ

εT

R

≤ +  versus  ( )1 1:μH
μ

εT

R

( ) ( ) ( )H0 1:ln ln ln

> +  

( ) ( ) (μ μ εT R− ≤ +  versus  )1 1:ln ln lnH μ μ εT R− > +  

Case 4: High Values Bad, Superiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is less than the reference mean by at least the margin 
of superiority. The null and alternative hypotheses are 

( )H0 1:μ
μ

εT ≥ −  versus  ( )H1 1:μ
μ

εT < −  
R R

( ) ( ) ( )H0 1:ln ln ln ( ) ( ) (μ μ εT R− ≥ −  versus  )1 1:ln ln lnH μ μ εT R− < −  
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Test Statistics 
The analysis for assessing non-inferiority and non-zero null hypotheses using higher-order cross-
over designs is discussed in detail in Chapter 9 of Chow and Liu (2000). Unfortunately, their 
presentation is too lengthy to give here. Their method involves the computation of an analysis of 
variance to estimate the error variance. It also describes the construction of confidence limits for 
appropriate contrasts. One-sided confidence limits can be used for non-inferiority tests. Details of 
this approach are given in Chapter 3 of Chow et al. (2003). We refer you to these books for 
details. 

Power Calculation 
The power of the non-inferiority and superiority tests for the case in which higher values are 
better is given by 

( )Power T
b n

tV
W

V=
−⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
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/ ,

1
1

ε
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where T represents the cumulative t distribution, V and b depend on the design, n is the average 
number of subjects per sequence, and 

( )σW YCOV= +ln 2 1  

The power of the non-inferiority and superiority tests for the case in which higher values are 
worse is given by  

( )Power
b n

− +⎛ ⎞

⎠
⎟
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The constants V and b depend on the design as follows: 

Design Type Parameters (V,b) 

Balaam’s Design V = 4n – 3, b = 2. 

Two-Sequence Dual Design V = 4n – 4, b = 3/4. 

Four-Period Design with Two Sequences V = 6n – 5, b = 11/20. 

Four-Period Design with Four Sequences V = 12n – 5, b = 1/4. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Note that there are two choices for finding N. Select N (Equal Per Sequence) when you 
want the design to have an equal number of subjects per sequence. Select N (Exact) when you 
want to find the exact sample size even though the number of subjects cannot be dividing equally 
among the sequences. 

Select Power and Beta when you want to calculate the power of an experiment. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in all sequences). These values must be integers greater than one.  

Effect Size – Ratios 

SM (Superiority Margin) 
This is the magnitude of the margin of superiority. It must be entered as a positive number. 

When higher means are better, this value is the distance above one that is required for the mean 
ratio (Treatment Mean / Reference Mean) to be considered superior. When higher means are 
worse, this value is the distance below one that is required for the mean ratio (Treatment Mean / 
Reference Mean) to be considered superior. 

 R1 (True Ratio) 
This is the value of the ratio of the two means (Treatment Mean / Reference Mean) at which the 
power is to be calculated. 

When higher means are better, this value should be greater than 1+SM. When higher means are 
worse, this value should be less than 1-SM. 

 Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is the ratio of the standard deviation and the mean (SD/Mean). It is 
used to specify the variability (standard deviation). Note that this COV is defined on the original 
(not logarithmic) scale. This value must be determined from past experience or from a pilot study. 

To be clear, consider the following definition. Suppose data on a response variable Y are 
collected. This procedure assumes that the values of X = Ln(Y) are analyzed using an appropriate 
ANOVA procedure. Thus, there are two sets of means and standard deviations: those of X 
labelled MX and SX and those of Y labelled MY and SY. The COV entered here is the COV of Y 
= SY/MY. For log-normal data, the following relationship exists: COV(Y) = SQR(Exp(SX*SX)-
1) where SX is the square root of the within mean square error in the ANOVA table of the log-
transformed values. 

 Test 

Design Type 
Specify the type of cross-over design that you are analyzing. Note that all of these designs assume 
that you are primarily interested in the overall difference between the two treatment means. 

Higher Means Are 
This option defines whether higher values of the response variable are to be considered better or 
worse. The choice here determines the direction of the test. 

If Higher Means Are Better the null hypothesis is R <= 1+SM and the alternative hypothesis is R 
> 1+SM. If Higher Means Are Worse the null hypothesis is R >= 1-SM and the alternative 
hypothesis is R < 1-SM. 
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Example 1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is 
superior to a standard drug by a small amount. Balaam’s cross-over design will be used.   

Researchers have decided to set the margin of superiority at 0.20. Past experience leads the 
researchers to set the COV to 0.40. The significance level is 0.05. The power will be computed 
assuming that the true ratio is 1.40. Sample sizes between 50 and 550 will be included in the 
analysis. Note that several of these sample size values are not divisible by 4. This is not a problem 
here because are main goal is to get an overview of power versus sample size. When searching 
for the sample size, we can request that only designs divisible by 4 be considered. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a Higher-Order Cross-Over 
Design (Non-Unity Null) [Ratios] procedure window by expanding Means, then MxK Cross-
Over Design, then clicking on Test (Non-Zero Null), and then clicking on Tests for Two 
Means in a Higher-Order Cross-Over Design (Non-Unity Null) [Ratios]. You may then make 
the appropriate entries as listed below, or open Example 1 by going to the File menu and 
choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. 50 to 550 by 100 
SM (Superiority Margin) .......................... 0.20 
R1 (True Ratio) ....................................... 1.40 
COV (Coefficient of Variation) ................. 0.40 
Design Type ............................................ 4x2 (Balaam) 
Higher Means Are ................................... Better 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Non-Inferiority Using the Mean Ratio 
Higher Means are Better 
Design: Balaam's Cross-Over.  Hypotheses: H0: R <= 1+SM; H1: R > 1+SM. 
 
 Total Sequences  Mean Coef.  
 Sample and Superiority Ratio for of   
 Size Periods Margin Power Variation   
Power (N) (SxP) (SM) (R1) (COV) Alpha Beta 
0.2507 50 4x2 0.20 1.40 0.40 0.0500 0.7493 
0.5308 150 4x2 0.20 1.40 0.40 0.0500 0.4692 
0.7207 250 4x2 0.20 1.40 0.40 0.0500 0.2793 
0.8404 350 4x2 0.20 1.40 0.40 0.0500 0.1596 
0.9116 450 4x2 0.20 1.40 0.40 0.0500 0.0884 
0.9523 550 4x2 0.20 1.40 0.40 0.0500 0.0477 
 
Report Definitions 
H0 (null hypothesis) is R <= 1+SM, where R = Treatment Mean / Reference Mean. 
H1 (alternative hypothesis) is R > 1+SM. 
Power is the probability of rejecting H0 when H0 is false. 
N is the total number of subjects. They are divided evenly among all sequences. 
SM is the magnitude of the margin of superiority. Since higher means are better, this value is positive and is 
   the distance above one that is required to be considered superior. 
R1 is the ratio of the means at which the power is computed. 
COV is the coefficient of variation on the original scale. 
Alpha is the probability of falsely rejecting H0 (falsely concluding superiority). 
Beta is the probability of not rejecting H0 when it is false. 
Balaam's Cross-Over Design with pattern: AA; BB; AB; BA 
 
Summary Statements 
In a superiority test on data for which higher values are better, drawn from Balaam's 
cross-over design, a total sample size of 50 achieves 25% power at a 5% significance level when 
the true ratio of the means is 1.40, the coefficient of variation is 0.40, and the superiority 
margin is 0.20. 
 

This report shows the power for the indicated scenarios.  

Plots Section 
 

 

Power vs N
R1=1.40 N=0.40 SM=0.20 Alpha=0.05

N
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This plot shows the power versus the sample size. 
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Example 2 – Finding Sample Size 
Continuing with Example1, the researchers want to find the exact sample size needed to achieve 
both 80% and 90% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Tests for Two Means in a Higher-Order Cross-Over 
Design (Non-Unity Null) [Ratios] procedure window by expanding Means, then MxK Cross-
Over Design, then clicking on Test (Non-Zero Null), and then clicking on Tests for Two 
Means in a Higher-Order Cross-Over Design (Non-Unity Null) [Ratios]. You may then make 
the appropriate entries as listed below, or open Example 2 by going to the File menu and 
choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Equal Per Sequence) 
Power ...................................................... 0.8 0.9 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
SM (Superiority Margin) .......................... 0.20 
R1 (True Ratio) ....................................... 1.40 
COV (Coefficient of Variation) ................. 0.40 
Design Type ............................................ 4x2 (Balaam) 
Higher Means Are ................................... Better 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing Non-Inferiority Using the Mean Ratio 
Higher Means are Better 
Design: Balaam's Cross-Over.  Hypotheses: H0: R <= 1+SM; H1: R > 1+SM. 
 
 Total Sequences  Mean Coef.  
 Sample and Superiority Ratio for of   
 Size Periods Margin Power Variation   
Power (N) (SxP) (SM) (R1) (COV) Alpha Beta 
0.9015 432 4x2 0.20 1.40 0.40 0.0500 0.0985 
0.8017 312 4x2 0.20 1.40 0.40 0.0500 0.1983 
 

When the equivalence margin is set to 0.20, we note that 432 subjects are needed to achieve 90% 
power and 312 subjects are needed to achieve at least 80% power.  
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Example 3 – Validation 
This procedure uses the same mechanics as the Non-Inferiority Tests for Two Means in a Higher-
Order Cross-Over Design using Ratios procedure. We refer the user to Example 3 of Chapter 535 
for the validation.   



  535-1 

Chapter 535 

Non-Inferiority 
Tests for Two 
Means in a Higher-
Order Cross-Over 
Design using 
Ratios 
Introduction 
This procedure calculates power and sample size for non-inferiority tests which use the ratio of the 
two means of a higher-order cross-over design. Measurements are made on individuals that have 
been randomly assigned to one of several treatment sequences. Only a brief introduction to the 
subject will be given here. For a comprehensive discussion on the subject, refer to Chen et al. 
(1997) and Chow et al. (2003).  

Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments at 
least once and the object is to study differences among the treatments. The name cross-over 
comes from the most common case in which there are only two treatments. In this case, each 
subject crosses over from one treatment to another. It is assumed that there is a washout period 
between treatments during which the response returns to its baseline value. If this does not occur, 
there is said to be a carryover effect. 

A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence of treatments is treatment A followed by treatment B. The other 
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sequence is B and then A. The design includes a washout period between responses to make 
certain that the effects of the first drug do no carryover to the second. Thus, the groups of subjects 
in this design are defined by the sequence in which the two treatments are administered, not by 
the treatments they receive. 

Higher-Order Cross-Over Designs 
Chen et al. (1997) present the results for four cross-over designs that are more complicated than 
the 2x2 design. Assume that the two treatments are labeled A and B. The available designs are 
defined by the order and number of times the two treatments are administered. 

Balaam’s Design 
Balaam’s design has four sequences with two treatments each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 
1 A A 
2 B B 
3 A B 
4 B A 

Two-Sequence Dual Design 
This design has two sequences with three periods each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 Period 3 
1 A B B 
2 B A A 

Four-Period Design with Two Sequences 
This design has two sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A B B A 
2 B A A B 

Four-Period Design with Four Sequences 
This design has four sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A A B B 
2 B B A A 
1 A B B A 
2 B A A B 

Advantages of Cross-Over Designs 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment may be easier to 
obtain because each patient will receive both treatments. 
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Disadvantages of Cross-Over Designs 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. In a cross-over experiment, it may be difficult to 
separate the treatment effect from the time effect and the carry-over effect of the previous 
treatment. 

These cross-over designs cannot be used when the treatment (or the measurement of the response) 
alters the subject permanently. Hence, it cannot be used to compare treatments that are intended 
to provide a cure. 

Because subjects must be measured at least twice, it may be more difficult to keep patients 
enrolled in the study. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 

The Statistical Hypotheses 
Both non-inferiority and non-zero null tests are examples of directional (one-sided) tests. 
Remember that in the usual t-test setting, the null (H0) and alternative (H1) hypotheses for one-
sided tests are defined as  

A H1:H0:φ ≤ φ > A   versus 

Rejecting H0 implies that the ratio of the mean is larger than the value A. This test is called an 
upper-tailed test because H0 is rejected only in samples in which the ratio of the sample means is 
larger than A. 

Following is an example of a lower-tailed test. 

H0:φ ≥ A H1:φ < A versus  

Non-inferiority and non-zero null tests are special cases of the above directional tests. It will be 
convenient to adopt the following specialize notation for the discussion of these tests.  

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR

NIM

 Not used Reference mean. This is the mean of a reference 
population.  

 NIM Margin of non-inferiority. This is a tolerance value that 
defines the maximum amount that is not of practical 
importance. This is the largest change in the mean ratio 
from the baseline value (usually one) that is still 
considered to be trivial.  

 φ φ μ μ R1 True ratio. This is the value of = T R/  at which the 
power is calculated. 

μ μT  and Note that the actual values of R

H0 1: .

 are not needed. Only their ratio is needed for power 
and sample size calculations. 

The null hypothesis of inferiority is 

φ φ φ≤ <L Lwhere  
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and the alternative hypothesis of non-inferiority is  

H1:φ φ> L  

Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as scale-less percentages, but 
differences must be interpreted as actual amounts in their original scale. Hence, it has become a 
common practice to take the following steps in hypothesis testing.  

1. State the statistical hypotheses in terms of ratios. 

2. Transform these into hypotheses about differences by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in terms of the ratio. 

The details of step 2 for the alternative hypothesis are as follows. 

φ φ

( ) ( ) ( ){ }

φ μ
μ

L

L
T

R

R

≤

⇒ ≤
⎧
⎨
⎩

⎫
⎬
⎭

φ μ μL T⇒ ≤ −ln ln ln

 

Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

Coefficient of Variation 
The coefficient of variation (COV) is the ratio of the standard deviation to the mean. This 
parameter is used to represent the variation in the data because of a unique relationship that it has 
in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX σ X

2 and , respectively. Similarly, label the mean 
and variance of Y as μY σY

2 and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 

( )= −1

μ
μ

σ

σ

Y e

e

X
X

X

=
⎛

⎝
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⎞

⎠
⎟⎟

+
2

2

2

σ μY Y
2 2

 

From this relationship, the coefficient of variation of Y can be found to be  
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where  is the within mean square error from the analysis of variance of the logged data. 
Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σw
2

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

YCOV
=

+ln 2 1
Y  

 

Thus, the hypotheses can be stated in the original (Y) scale and then power analyzed in the 
transformed (X) scale. 

Non-Inferiority Tests 
A non-inferiority test tests that the treatment mean is not worse than the reference mean by more 
than a small non-inferiority margin. The actual direction of the hypothesis depends on the 
response variable being studied.  

Case 1: High Values Good, Non-Inferiority Test 
In this case, higher values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no less than a small amount below the reference 
mean. The null and alternative hypotheses are 

( )H0 1:μ
μ

εT

R

≤ −  versus  ( )1 1:μH
μ

εT

R

( ) ( ) ( )H0 1:ln ln ln

> −  

( ) ( ) (μ μ εT R− ≤ −  versus  )1 1:ln ln lnH μ μ εT R− > −  

Case 2: High Values Bad, Non-Inferiority Test 
In this case, lower values are better. The hypotheses are arranged so that rejecting the null 
hypothesis implies that the treatment mean is no more than a small amount above the reference 
mean. The null and alternative hypotheses are 

( )H0 1:μ
μ

εT ≥ +  versus  ( )H1 1:μ
μ

εT < +  
R R

( ) ( ) ( )H0 1:ln ln ln ( ) ( ) (μ μ εT R− ≥ +  versus  )1 1:ln ln lnH μ μ εT R− < +  



535-6  Non-Inferiority Tests for Two Means in a Higher-Order Cross-Over Design (Ratios) 

Test Statistics 
The analysis for assessing non-inferiority using higher-order cross-over designs is discussed in 
detail in Chapter 9 of Chow and Liu (2000). Unfortunately, their presentation is too lengthy to 
give here. Their method involves the computation of an analysis of variance to estimate the error 
variance. It also describes the construction of confidence limits for appropriate contrasts. One-
sided confidence limits can be used for non-inferiority tests. Details of this approach are given in 
Chapter 3 of Chow et al. (2003). We refer you to these books for details. 

Power Calculation 
The power of the non-inferiority and superiority tests for the case in which higher values are 
better is given by 

( )Power T
b n

tV
W

V=
−⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−

ln
/ ,

1
1

ε
σ α  

where T represents the cumulative t distribution, V and b depend on the design, n is the average 
number of subjects per sequence, and 

( )σW YCOV= +ln 2 1  

The power of the non-inferiority and superiority tests for the case in which higher values are 
worse is given by  

( )Power
b n

− +⎛ ⎞

⎠
⎟

⎛ ⎞

⎠
⎟⎟

1ln
/
ε

T tV V
W

= − −
⎝
⎜

⎝
⎜⎜ −1 1, α σ

 

The constants V and b depend on the design as follows: 

Design Type Parameters (V,b) 

Balaam’s Design V = 4n – 3, b = 2. 

Two-Sequence Dual Design V = 4n – 4, b = 3/4. 

Four-Period Design with Two Sequences V = 6n – 5, b = 11/20. 

Four-Period Design with Four Sequences V = 12n – 5, b = 1/4. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and power. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Note that there are two choices for finding N. Select N (Equal Per Sequence) when you 
want the design to have an equal number of subjects per sequence. Select N (Exact) when you 
want to find the exact sample size even though the number of subjects cannot be dividing equally 
among the sequences. 

Select Power and Beta when you want to calculate the power of an experiment. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in all sequences). These values must be integers greater than one.  

Effect Size – Ratios 

NIM (Non-Inferiority Margin) 
This is the magnitude of the margin of non-inferiority. It must be entered as a positive number. 

When higher means are better, this value is the distance below one for which the mean ratio 
(Treatment Mean / Reference Mean)  still indicates non-inferiority of the treatment mean. E.g., a 
value of 0.2 here specifies that mean ratios greater than 0.8 indicate non-inferiority of the 
treatment mean. 

When higher means are worse, this value is the distance above one for which the mean ratio 
(Treatment Mean / Reference Mean) still indicates non-inferiority of the treatment mean. E.g., a 
value of 0.2 here specifies that mean ratios less than 1.2 indicate non-inferiority of the treatment 
mean. 

Recommended values: 0.20 is a common value for the parameter. 

R1 (True Ratio) 
This is the value of the ratio of the two means (Treatment Mean / Reference Mean) at which the 
power is to be calculated. 

Often, the ratio will be set to one. However, some authors recommend using a ratio slightly 
different than one, such as 0.95 (when higher means are "better") or 1.05 (when higher means are 
"worse"), since this will require a larger sample size. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is the ratio of the standard deviation and the mean (SD/Mean). It is 
used to specify the variability (standard deviation). Note that this COV is defined on the original 
(not logarithmic) scale. This value must be determined from past experience or from a pilot study. 

To be clear, consider the following definition. Suppose data on a response variable Y are 
collected. This procedure assumes that the values of X = Ln(Y) are analyzed using an appropriate 
ANOVA procedure. Thus, there are two sets of means and standard deviations: those of X 
labelled MX and SX and those of Y labelled MY and SY. The COV entered here is the COV of Y 
= SY/MY. For log-normal data, the following relationship exists: COV(Y) = SQR(Exp(SX*SX)-
1) where SX is the square root of the within mean square error in the ANOVA table of the log-
transformed values. 

Test 

Design Type 
Specify the type of cross-over design that you are analyzing. Note that all of these designs assume 
that you are primarily interested in the overall difference between the two treatment means. 
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Higher Means Are 
This option defines whether higher values of the response variable are to be considered better or 
worse. The choice here determines the direction of the non-inferiority test. 

If Higher Means Are Better the null hypothesis is R <= 1-NIM and the alternative hypothesis is R 
> 1-NIM. If Higher Means Are Worse the null hypothesis is R >= 1+NIM and the alternative 
hypothesis is R < 1+NIM. 

Example 1 – Finding Power 
A company has developed a generic drug for treating rheumatism and wants to show that it is not 
inferior to standard drug. Balaam’s cross-over design will be used.   

Researchers have decided to set the margin of equivalence at 0.20. Past experience leads the 
researchers to set the COV to 0.40. The significance level is 0.05. The power will be computed 
assuming that the true ratio is one. Sample sizes between 50 and 550 will be included in the 
analysis. Note that several of these sample size values are not divisible by 4. This is note a 
problem here because are main goal is to get an overview of power versus sample size. When 
searching for the sample size, we can request that only designs divisible by 4 be considered. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for Two Means in a Higher-Order 
Cross-Over Design [Ratios] procedure window by expanding Means, then MxK Cross-Over 
Design, then clicking on Non-Inferiority, and then clicking on Non-Inferiority Tests for Two 
Means in a Higher-Order Cross-Over Design [Ratios]. You may then make the appropriate 
entries as listed below, or open Example 1 by going to the File menu and choosing Open 
Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. 50 to 550 by 100 
NIM (Non-Inferiority Margin) ................... 0.20 
R1 (True Ratio) ....................................... 1 
COV (Coefficient of Variation) ................. 0.40 
Design Type ............................................ 4x2 (Balaam) 
Higher Means Are ................................... Better 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing Non-Inferiority Using the Mean Ratio 
Higher Means are Better 
Design: Balaam's Cross-Over.  Hypotheses: H0: R <= 1-NIM; H1: R > 1-NIM. 
 
 Total Sequences  Mean Coef.  
 Sample and Non-Inferiority Ratio for of   
 Size Periods Margin Power Variation   
Power (N) (SxP) (-NIM) (R1) (COV) Alpha Beta 
0.4096 50 4x2 0.20 1.00 0.40 0.0500 0.5904 
0.8024 150 4x2 0.20 1.00 0.40 0.0500 0.1976 
0.9438 250 4x2 0.20 1.00 0.40 0.0500 0.0562 
0.9853 350 4x2 0.20 1.00 0.40 0.0500 0.0147 
0.9964 450 4x2 0.20 1.00 0.40 0.0500 0.0036 
0.9992 550 4x2 0.20 1.00 0.40 0.0500 0.0008 
 
Report Definitions 
H0 (null hypothesis) is R <= 1-NIM, where R = Treatment Mean / Reference Mean. 
H1 (alternative hypothesis) is R > 1-NIM. 
Power is the probability of rejecting H0 (concluding non-inferiority) when H0 is false. 
N is the total number of subjects. They are divided evenly among all sequences. 
-NIM is the magnitude and direction of the margin of non-inferiority. Since higher means are better, this 
   value is negative and is the distance below one that is still considered non-inferior. 
R1 is the ratio of the means at which the power is computed. 
COV is the coefficient of variation on the original scale. 
Alpha is the probability of falsely rejecting H0 (falsely concluding non-inferiority). 
Beta is the probability of not rejecting H0 when it is false. 
Balaam's Cross-Over Design with pattern: AA; BB; AB; BA 
 
Summary Statements 
In a non-inferiority test on data for which higher values are better, drawn from Balaam's 
cross-over design, a total sample size of 50 achieves 41% power at a 5% significance level when 
the true ratio of the means is 1.00, the coefficient of variation is 0.40, and the 
non-inferiority margin is -0.20. 
 

This report shows the power for the indicated scenarios.  

Plots Section 
 

  
 

This plot shows the power versus the sample size. 
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Example 2 – Finding Sample Size 
Continuing with Example1, the researchers want to find the exact sample size needed to achieve 
both 80% and 90% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for Two Means in a Higher-Order 
Cross-Over Design [Ratios] procedure window by expanding Means, then MxK Cross-Over 
Design, then clicking on Non-Inferiority, and then clicking on Non-Inferiority Tests for Two 
Means in a Higher-Order Cross-Over Design [Ratios]. You may then make the appropriate 
entries as listed below, or open Example 2 by going to the File menu and choosing Open 
Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Equal Per Sequence) 
Power ...................................................... 0.8 0.9 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
NIM (Non-Inferiority Margin) ................... 0.20 
R1 (True Ratio) ....................................... 1 
COV (Coefficient of Variation) ................. 0.40 
Design Type ............................................ 4x2 (Balaam) 
Higher Means Are ................................... Better 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing Non-Inferiority Using the Mean Ratio 
Higher Means are Better 
Design: Balaam's Cross-Over.  Hypotheses: H0: R <= 1-NIM; H1: R > 1-NIM. 
 
 Total Sequences  Mean Coef.  
 Sample and Non-Inferiority Ratio for of   
 Size Periods Margin Power Variation   
Power (N) (SxP) (-NIM) (R1) (COV) Alpha Beta 
0.9027 208 4x2 0.20 1.00 0.40 0.0500 0.0973 
0.8070 152 4x2 0.20 1.00 0.40 0.0500 0.1930 
 

When the non-inferiority margin is set to 0.20, we note that 208 subjects are needed to achieve 
90% power and 152 subjects are needed to achieve at least 80% power. 
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Example 3 – Validation 
We could not find a validation example for this procedure in the statistical literature, so we will 
have to generate a validated example from within PASS. To do this, we use the Higher-Order, 
Cross-Over Equivalence using Ratios procedure which was validated. By setting the upper 
equivalence limit to a large value (we used 11), we obtain results for a non-inferiority test that can 
be used to validate this procedure.   

In the other procedure, suppose the coefficient of variation is 0.40, the equivalence limits are 0.80 
and 11.0, the true ratio of the means is 1, the power is 90%, and the significance level is 0.05. 
These settings are stored as Example4 in that procedure. PASS calculates a sample size of 208.  

We will now setup this example in PASS. The only difference is that now we set E to 0.2 instead 
of RL to 0.8. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for Two Means in a Higher-Order 
Cross-Over Design [Ratios] procedure window by expanding Means, then MxK Cross-Over 
Design, then clicking on Non-Inferiority, and then clicking on Non-Inferiority Tests for Two 
Means in a Higher-Order Cross-Over Design [Ratios]. You may then make the appropriate 
entries as listed below, or open Example 3 by going to the File menu and choosing Open 
Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Equal Per Sequence) 
Power ...................................................... 0.90 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
NIM (Non-Inferiority Margin) .................... 0.2 
R1 (True Ratio) ....................................... 1.0 
COV (Coefficient of Variation) ................. 0.40 
Design Type ............................................ 4x2 (Balaam) 
Higher Means Are ................................... Better 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

 Total Sequences  Mean Coef.  
 Sample and Equivalence Ratio for of   
 Size Periods Margin Power Variation   
Power (N) (SxP) (E) (R) (COV) Alpha Beta 
0.9027 208 4x2 0.20 1.00 0.40 0.0500 0.0973 

 

PASS has also obtained the sample size of 208.  
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Chapter 540 

Equivalence Tests 
for Two Means in a 
Higher-Order 
Cross-Over 
Design using 
Differences 
Introduction 
This procedure calculates power and sample size of statistical tests of equivalence of two means of 
higher-order cross-over designs when the analysis uses a t-test or equivalent. The parameter of 
interest is the difference of the two means. Schuirmann’s (1987) two one-sided tests (TOST) 
approach is used to test equivalence. Only a brief introduction to the subject will be given here. 
For a comprehensive discussion on the subject, refer to Chen, Chow, and Li (1997). The designs 
covered in this chapter are analyzed using what is called the ‘additive model’ in Chen et al 
(1997). The ‘multiplicative model’ is covered in the procedure that uses ratios.  

Measurements are made on individuals that have been randomly assigned to one of several 
treatment sequences. This cross-over design may be analyzed by a TOST equivalence test to show 
that the two means do not differ by more than a small amount, called the margin of equivalence.  
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Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments at 
least once and the object is to study differences among the treatments. The name cross-over 
comes from the most common case in which there are only two treatments. In this case, each 
subject crosses over from one treatment to another. It is assumed that there is a washout period 
between treatments during which the response returns to its baseline value. If this does not occur, 
there is said to be a carryover effect. 

A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence of treatments is treatment A followed by treatment B. The other 
sequence is B and then A. The design includes a washout period between responses to make 
certain that the effects of the first drug do no carryover to the second. Thus, the groups of subjects 
in this design are defined by the sequence in which the two treatments are administered, not by 
the treatments they receive. 

Higher-Order Cross-Over Designs 
Chen et al. (1997) present the results for four cross-over designs that are more complicated than 
the 2x2 design. Assume that the two treatments are labeled A and B. The available designs are 
defined by the order and number of times the two treatments are administered. 

Balaam’s Design 
Balaam’s design has four sequences with two treatments each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 
1 A A 
2 B B 
3 A B 
4 B A 

Two-Sequence Dual Design 
This design has two sequences with three periods each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 Period 3 
1 A B B 
2 B A A 

Four-Period Design with Two Sequences 
This design has two sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A B B A 
2 B A A B 
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Four-Period Design with Four Sequences 
This design has four sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A A B B 
2 B B A A 
1 A B B A 
2 B A A B 

Advantages of Cross-Over Designs 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment may be easier to 
obtain because each patient will receive both treatments. 

Disadvantages of Cross-Over Designs 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. In a cross-over experiment, it may be difficult to 
separate the treatment effect from the time effect and the carry-over effect of the previous 
treatment. 

These cross-over designs cannot be used when the treatment (or the measurement of the response) 
alters the subject permanently. Hence, it cannot be used to compare treatments that are intended 
to provide a cure. 

Because subjects must be measured at least twice, it may be more difficult to keep patients 
enrolled in the study. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 
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Outline of an Equivalence Test 
PASS follows the two one-sided tests approach described by Schuirmann (1987) and Phillips 
(1990). It will be convenient to adopt the following specialized notation for the discussion of 
these tests. 

Parameter PASS Input/Output Interpretation 

μT  Not used Treatment mean. This is the treatment mean. 

μR  Not used Reference mean. This is the mean of a reference 
population.  

ε  |E| Margin of equivalence. This is a tolerance value that 
defines the maximum difference that is not of practical 
importance. This may be thought of as the largest change 
from the baseline that is considered to be trivial. The 
absolute value is shown to emphasize that this is a 
magnitude. The sign of the value will be determined by 
the specific design that is being used. 

δ  D True difference. This is the value of μ μT − R , the 
difference between the treatment and reference means. 
This is the value at which the power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their difference is needed for 
power and sample size calculations. 

The null hypothesis of non-equivalence is 

H or where0 0 0: , .δ ε δ ε ε ε≤ ≥ < >L U L U  

The alternative hypothesis of equivalence is  

H1:ε δ εL U< <  

Test Statistics 
The analysis for assessing equivalence using higher-order cross-over designs is discussed in detail 
in Chapter 9 of Chow and Liu (2000). Unfortunately, their presentation is too lengthy to give 
here. Their method involves the computation of an analysis of variance to estimate the error 
variance. It also describes the construction of confidence limits for appropriate contrasts. These 
confidence limits can then be compared to the equivalence limits to test for equivalence. We refer 
you to their book for details. 
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Power Calculation 
The power is given by 
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where T represents the cumulative t distribution, V and b depend on the design, σW  is the square 
root of the within mean square error from the ANOVA table using data in the original scale used 
to analyze the cross-over design, and n is the average number of subjects per sequence. The 
constants V and b depend on the design as follows.  

Design Type Parameters (V,b) 

Balaam’s Design V = 4n – 3, b = 2. 

Two-Sequence Dual Design V = 4n – 4, b = 3/4. 

Four-Period Design with Two Sequences V = 6n – 5, b = 11/20. 

Four-Period Design with Four Sequences V = 12n – 5, b = 1/4. 

 

The presentation of Chen et al (1997) uses the following, different parameterization. 
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U
U μ

ε
=∇ . This parameterization has the 

advantage that the variables are scaled by the reference mean, so all you need to know is their 
relative magnitudes rather than their absolute values. It turns out that you can use either 
parameterization as input, as long as you are consistent. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and beta. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Note that there are two choices for finding N. Select N (Equal Per Sequence) when you 
want the design to have an equal number of subjects per sequence. Select N (Exact) when you 
want to find the exact sample size even though the number of subjects cannot be dividing equally 
among the sequences. 

Select Power and Beta when you want to calculate the power of an experiment. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in all sequences). This value must be an integer greater than one.  

You may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50.  

Effect Size – Equivalence Limits 

|EU| (Upper Equivalence Limit) 
This value gives the upper limit of equivalence. Differences outside EL and EU are not 
considered equivalent, while differences between them are.  

Note that EL must be less than zero and EU must be greater than zero. Also, D, EL, and EU must 
satisfy EL<D<EU. Finally, the scale of these numbers must match the scale of Sw. 

Alternatively, you can enter a value for 
R

U
U

E
μ

=∇  here as long as you enter similarly scaled 

values for the other effect size parameters. 

-|EL| (Lower Equivalence Limit) 
This value gives lower limit on equivalence. Differences outside EL and EU are not considered 
equivalent, while differences between them are.  

If you want symmetric limits, enter -UPPER LIMIT for EL to force EL = -|EU|.  

Note that EL must be less than zero and EU must be greater than zero. Also, D, EL, and EU must 
satisfy EL<D<EU. Finally, the scale of these numbers must match the scale of Sw. 

Alternatively, you can enter a value for 
R

L
L

E
μ

=∇  here as long as you enter similarly scaled 

values for the other effect size parameters. 

 

Effect Size – True Mean Difference 

D (True Difference) 
δThis is the true difference, RTμ −μ= , between the two means at which the power is to be 

computed. Often this value is set to zero, but it can be non-zero as long as it is between the 
equivalence limits, EL and EU. That is, D, EL, and EU must satisfy EL<D<EU. The scale of 
these numbers must match the scale of Sw. 

Alternative, you can enter 
R

RT

μ
μ − μθ =  as long as you enter similarly scaled values for the other 

effect size parameters. 
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Effect Size – Standard Deviation 

Sw (Within Standard Error) 

MSESpecify one or more values of Sw ( Wσ ), which is estimated by  from the ANOVA table 
calculated on the original (not logged) scale. These values must be positive. Alternatively, you 

can enter
R

WCV
μ
σ

=  here, as long as you enter similarly scaled values in the other effect size 

parameters. 

You can press the SD button to load the Standard Deviation Estimator window. 

Test 

Design Type 
Specify the type of cross-over design that you are analyzing. Note that all of these designs assume 
that you are primarily interested in the overall difference between the two treatment means. 
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Example 1 – Finding Power 
A two-sequence, dual cross-over design is to be used to compare the impact of two drugs on 
diastolic blood pressure. The average diastolic blood pressure after administration of the 
reference drug is 96 mmHg. Researchers believe this average may drop to 92 mmHg with the use 
of a new drug. The within mean square error found from similar studies is 324. Its square root is 
18.   

Following FDA guidelines, the researchers want to show that the diastolic blood pressure is 
within 20% of the diastolic blood pressure of the reference drug. Thus, the equivalence limits of 
the mean difference of the two drugs are -19.2 and 19.2. They decide to calculate the power for a 
range of sample sizes between 4 and 40. The significance level is 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a Higher-Order 
Cross-Over Design [Differences] procedure window by expanding Means, then MxK Cross-
Over Design, then clicking on Equivalence, and then clicking on Equivalence Tests for Two 
Means in a Higher-Order Cross-Over Design [Differences]. You may then make the 
appropriate entries as listed below, or open Example 1 by going to the File menu and choosing 
Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. 4 6 8 10 12 14 16 18 20 30 40 
|EU| (Upper Equivalence Limit) ............... 19.2 
-|EL| (Lower Equivalence Limit) .............. -Upper Limit 
D (True Difference) ................................. -4 
Sw (Within Standard Error) ..................... 18 
Design Type ............................................ 2x3 (Two-Sequence Dual) 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing the Equivalence of Two Means 
Design: Two-Sequence Dual Cross-Over 
 
 Total Sequences Lower Upper Diff. Standard  
 Sample and Equiv. Equiv. for Error   
 Size Periods Limit Limit Power of Diff.   
Power (N) (SxP) (EL) (EU) (D) (Sw) Alpha Beta 
0.0000 4 2x3 -19.20 19.20 -4.00 18.00 0.0500 1.0000 
0.1878 6 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.8122 
0.4375 8 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.5625 
0.5985 10 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.4015 
Report Continues… 
 
Report Definitions 
Power is the probability of rejecting non-equivalence when the means are equivalent. 
N is the total number of subjects. They are divided evenly among all sequences. 
S is the number of sequences. 
P is the number of periods per sequence. 
EU & EL are the upper & lower limits of the maximum allowable difference that results in equivalence. 
D is the difference between the means at which the power is computed. 
Sw is the square root of the within mean square error from the ANOVA table. 
Alpha is the probability of rejecting non-equivalence when they are non-equivalent. 
Beta is the probability of accepting non-equivalence when they are equivalent. 
Two-Sequence Dual Cross-Over Design with pattern: ABB; BAA 
 
Summary Statements 
In an equivalence test of means using two one-sided tests on data from a two-sequence dual 
cross-over design, a total sample size of 4 achieves 0% power at a 5% significance level when 
the true difference between the means is -4.00, the square root of the within mean square error 
is 18.00, and the equivalence limits are -19.20 and 19.20. 

 

This report shows the power for the indicated scenarios.  

Plots Section 
 

  
 

This plot shows the power versus the sample size. 
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Example 2 – Finding Sample Size 
Continuing with Example1, the researchers want to find the exact sample size needed to achieve 
both 80% and 90% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a Higher-Order 
Cross-Over Design [Differences] procedure window by expanding Means, then MxK Cross-
Over Design, then clicking on Equivalence, and then clicking on Equivalence Tests for Two 
Means in a Higher-Order Cross-Over Design [Differences]. You may then make the 
appropriate entries as listed below, or open Example 2 by going to the File menu and choosing 
Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Equal Per Sequence) 
Power ...................................................... 0.80 0.90 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
|EU| (Upper Equivalence Limit) ............... 19.2 
-|EL| (Lower Equivalence Limit) .............. -Upper Limit 
D (True Difference) ................................. -4 
Sw (Within Standard Error) ..................... 18 
Design Type ............................................ 2x3 (Two-Sequence Dual) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing the Equivalence of Two Means 
Design: Two-Sequence Dual Cross-Over 
 
 Total Sequences Lower Upper Diff. Standard  
 Sample and Equiv. Equiv. for Error   
 Size Periods Limit Limit Power of Diff.   
Power (N) (SxP) (EL) (EU) (D) (Sw) Alpha Beta 
0.9119 20 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.0881 
0.8411 16 2x3 -19.20 19.20 -4.00 18.00 0.0500 0.1589 
 

Twenty subjects are needed to achieve at least 90% power and sixteen subjects are needed to 
achieve at least 80% power.  
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Example 3 – Validation using Chen 
Chen et al. (1997) page 757 present a table of sample sizes for various parameter values. In this 
table, the treatment mean, standard deviation, and equivalence limits are all specified as 
percentages of the reference mean. We will reproduce the seventeenth line of the table in which 
the square root of the within mean square error is 10%, the equivalence limits are 20%, the 
difference between the means is 0%, 5%, 10%, and 15%, the power is 90%, and the significance 
level is 0.05. Chen reports total sample sizes of 24, 36, 72, and 276. We will now setup this 
example in PASS.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a Higher-Order 
Cross-Over Design [Differences] procedure window by expanding Means, then MxK Cross-
Over Design, then clicking on Equivalence, and then clicking on Equivalence Tests for Two 
Means in a Higher-Order Cross-Over Design [Differences]. You may then make the 
appropriate entries as listed below, or open Example 3 by going to the File menu and choosing 
Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Equal Per Sequence) 
Power ...................................................... 0.90 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
|EU| (Upper Equivalence Limit) ............... 0.2 
-|EL| (Lower Equivalence Limit) .............. -Upper Limit 
D (True Difference) ................................. 0 0.05 0.10 0.15 
Sw (Within Standard Error) ..................... 0.1 
Design Type ............................................ 4x2 (Balaam) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing the Equivalence of Two Means 
Design: Balaam's Cross-Over 
 
 Total Sequences Lower Upper Diff. Standard  
 Sample and Equiv. Equiv. for Error   
 Size Periods Limit Limit Power of Diff.   
Power (N) (SxP) (EL) (EU) (D) (Sw) Alpha Beta 
0.9041 24 4x2 -0.20 0.20 0.00 0.10 0.0500 0.0959 
0.9266 36 4x2 -0.20 0.20 0.05 0.10 0.0500 0.0734 
0.9065 72 4x2 -0.20 0.20 0.10 0.10 0.0500 0.0935 
0.9003 276 4x2 -0.20 0.20 0.15 0.10 0.0500 0.0997 

 

PASS obtains the same samples sizes as Chen et al. (1997).  
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Chapter 545 

Equivalence Tests 
for Two Means in a 
Higher-Order 
Cross-Over 
Design using 
Ratios 
Introduction 
This procedure calculates power and sample size of statistical tests of equivalence of two means of 
higher-order cross-over designs when the analysis uses a t-test or equivalent. The parameter of 
interest is the ratio of the two means. Schuirmann’s (1987) two one-sided tests (TOST) approach 
is used to test equivalence. Only a brief introduction to the subject will be given here. For a 
comprehensive discussion on the subject, refer to Chen, Chow, and Li (1997). The designs 
covered in this chapter are analyzed using what is called the ‘multiplicative model’ in Chen et al 
(1997). The ‘additive model’ is covered in the procedure that uses differences. Note that the 
multiplicative model is simply an additive model applied to the logarithmic transform of the 
original data.  

Measurements are made on individuals that have been randomly assigned to one of several 
treatment sequences. This cross-over design may be analyzed by a TOST equivalence test to show 
that the two means do not differ by more than a small amount, called the margin of equivalence.  
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Cross-Over Designs 
Senn (2002) defines a cross-over design as one in which each subject receives all treatments at 
least once and the object is to study differences among the treatments. The name cross-over 
comes from the most common case in which there are only two treatments. In this case, each 
subject crosses over from one treatment to another. It is assumed that there is a washout period 
between treatments during which the response returns to its baseline value. If this does not occur, 
there is said to be a carryover effect. 

A 2x2 cross-over design refers to two treatments (periods) and two sequences (treatment 
orderings). One sequence of treatments is treatment A followed by treatment B. The other 
sequence is B and then A. The design includes a washout period between responses to make 
certain that the effects of the first drug do no carryover to the second. Thus, the groups of subjects 
in this design are defined by the sequence in which the two treatments are administered, not by 
the treatments they receive. 

Higher-Order Cross-Over Designs 
Chen et al. (1997) present the results for four cross-over designs that are more complicated than 
the 2x2 design. Assume that the two treatments are labeled A and B. The available designs are 
defined by the order and number of times the two treatments are administered. 

Balaam’s Design 
Balaam’s design has four sequences with two treatments each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 
1 A A 
2 B B 
3 A B 
4 B A 

Two-Sequence Dual Design 
This design has two sequences with three periods each. It is popular because it allows the 
intrasubject variabilities to be estimated. The design is 
Sequence Period 1 Period 2 Period 3 
1 A B B 
2 B A A 

Four-Period Design with Two Sequences 
This design has two sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A B B A 
2 B A A B 
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Four-Period Design with Four Sequences 
This design has four sequences of four periods each. The design is 
Sequence Period 1 Period 2 Period 3  Period 4 
1 A A B B 
2 B B A A 
1 A B B A 
2 B A A B 

Advantages of Cross-Over Designs 
A comparison of treatments on the same subject is expected to be more precise. The increased 
precision often translates into a smaller sample size. Also, patient enrollment may be easier to 
obtain because each patient will receive both treatments. 

Disadvantages of Cross-Over Designs 
The statistical analysis of a cross-over experiment is more complex than a parallel-group 
experiment and requires additional assumptions. In a cross-over experiment, it may be difficult to 
separate the treatment effect from the time effect and the carry-over effect of the previous 
treatment. 

These cross-over designs cannot be used when the treatment (or the measurement of the response) 
alters the subject permanently. Hence, it cannot be used to compare treatments that are intended 
to provide a cure. 

Because subjects must be measured at least twice, it may be more difficult to keep patients 
enrolled in the study. This is particularly true when the measurement process is painful, 
uncomfortable, embarrassing, or time consuming. 

Outline of an Equivalence Test 
PASS follows the two one-sided tests approach described by Schuirmann (1987) and Phillips 
(1990). It will be convenient to adopt the following specialized notation for the discussion of 
these tests. 

Parameter PASS Input/Output Interpretation 
μ  Not used Treatment mean. This is the treatment mean. T

μR  Not used Reference mean. This is the mean of a reference 
population.  

φ φL U,  RL, RU Margin of equivalence. These limits define an interval of 
the ratio of the means in which their difference is so 
small that it may be ignored.  

φ  R1 True ratio. This is the value of φ μ μ= T / R  at which the 
power is calculated. 

Note that the actual values of μT  and μR  are not needed. Only their ratio is needed for power 
and sample size calculations. 
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The null hypothesis of non-equivalence is 

H or where0 1 1: , .φ φ φ φ φ φ≤ ≥ < >L U L U  

The alternative hypothesis of equivalence is  

H1:φ φ φL U< <  

Log-Transformation 
In many cases, hypotheses stated in terms of ratios are more convenient than hypotheses stated in 
terms of differences. This is because ratios can be interpreted as percentages, but differences must 
be interpreted as actual amounts in their original scale. Also, the distributions of variables such as 
CMax or AUC are often skewed. Hence, a common practice is to take the following steps in 
hypothesis testing.  

1. State the statistical hypothesis in terms of a ratio. 

2. Transform this into a hypothesis about the difference by taking logarithms. 

3. Analyze the logged data—that is, do the analysis in terms of the difference. 

4. Draw the conclusion in the original ratio scale. 

The details of step 2 for the alternative hypothesis are as follows. 

( ) ( ) ( ){ } ( )
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Thus, a hypothesis about the ratio of the means on the original scale can be translated into a 
hypothesis about the difference of two means on the logged scale.  

When performing an equivalence test on the difference between means, the usual procedure is to 
set the equivalence limits symmetrically above and below zero. Thus, the equivalence limits will 
be plus or minus an appropriate amount. The common practice is to do the same when the data 
are being analyzed on the log scale. However, when symmetric limits are set on the log scale, 
they do not translate to symmetric limits on the original scale. Instead, they translate to limits that 
are the inverses of each other. 

Perhaps these concepts can best be understood by considering an example. Suppose the 
researchers have determined that the lower equivalence limit should be 80% on the original scale. 
Since they are planning to use a log scale for their analysis, they transform this limit into the log 
scale by taking the logarithm of 0.80. The result is -0.223144. Wanting symmetric limits, they set 
the upper equivalence limit to 0.223144. Exponentiating this value, they find that exp(0.223144) 
= 1.25. Note that 1/(0.80) = 1.25. Thus, the limits on the original scale are 80% and 125%, not 
80% and 120%.  

Using this procedure, appropriate equivalence limits for the ratio of two means can be easily 
determined. Here are a few sets of equivalence limits for ratios. 
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 Lower Upper Lower Upper 
Specified Limit Limit  Limit Limit 
Percent Original Original  Log Log 
Change Scale Scale Scale Scale 
-25% 75.0% 133.3% -0.287682 0.287682 
+25% 80.0% 125.0% -0.223144 0.223144 
-20% 80.0% 125.0% -0.223144 0.223144 
+20% 83.3% 120.0% -0.182322 0.182322 
-10% 90.0% 111.1% -0.105361 0.105361 
+10% 90.9% 110.0% -0.095310 0.095310 

Note that negative percent-change values specify the lower limit first, while positive percent-
change values specify the upper limit first. After the first limit is found, the other limit is 
calculated as its inverse. 

Coefficient of Variation 
The coefficient of variation (COV or CV) as it is used here is the ratio of the standard deviation to 
the reference mean. This parameter can be used to represent the variation in the data because of a 
unique relationship that it has in the case of log-normal data.  

Suppose the variable X is the logarithm of the original variable Y. That is, X = ln(Y) and Y = 
exp(X). Label the mean and variance of X as μX  and , respectively. Similarly, label the mean 
and variance of Y as 

σ X
2

μY  and , respectively. If X is normally distributed, then Y is log-normally 
distributed. Julious (2004) presents the following well-known relationships between these two 
variables 

σY
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From this relationship, the coefficient of variation of Y can be expressed as  
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Solving this relationship for , the standard deviation of X can be stated in terms of the 
coefficient of variation of Y. This equation is 

σ X
2

( )σ X YCOV= +ln 2 1  

Similarly, the mean of X is 

( )μ μ
X

Y

YCOV
=

+ln 2 1
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Thus, the hypotheses can be stated in the original (Y) scale and then the power can be analyzed in 
the transformed (X) scale. 

Test Statistics 
The analysis for assessing equivalence using higher-order cross-over designs is discussed in detail 
in Chapter 9 of Chow and Liu (2000). Unfortunately, their presentation is too lengthy to give 
here. Their method involves the computation of an analysis of variance to estimate the error 
variance. It also describes the construction of confidence limits for appropriate contrasts. These 
confidence limits can then be compared to the equivalence limits to test for equivalence. We refer 
you to their book for details. 

Power Calculation 
The power is given by 
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where 

( ) 1exp log −= gedm MSECV , T represents the cumulative t distribution, V and b depend on the 

design, and n is the average number of subjects per sequence. Note that the constants V and b 
depend on the design as follows.  

Design Type Parameters (V,b) 

Balaam’s Design V = 4n – 3, b = 2. 

Two-Sequence Dual Design V = 4n – 4, b = 3/4. 

Four-Period Design with Two Sequences V = 6n – 5, b = 11/20. 

Four-Period Design with Four Sequences V = 12n – 5, b = 1/4. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains the parameters associated with this test such as the means, sample sizes, 
alpha, and beta. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level. Note that there are two choices for finding N. Select N (Equal Per Sequence) when you 
want the design to have an equal number of subjects per sequence. Select N (Exact) when you 
want to find the exact sample size even though the number of subjects cannot be dividing equally 
among the sequences. 

Select Power and Beta when you want to calculate the power of an experiment. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N (Total Sample Size) 
This option specifies one or more values of the sample size, the number of individuals in the 
study (total subjects in all sequences). This value must be an integer greater than one.  

You may enter a list of values using the syntax 50,100,150,200,250 or 50 to 250 by 50. 

Effect Size – Equivalence Limits 

RU (Upper Equivalence Limit) 
Enter the upper equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RL, the two means are said to be equivalent. The value must be greater 
than one. A popular choice is 1.25. Note that this value is not a percentage. 

If you enter 1/RL, then 1/RL will be calculated and used here. This choice is commonly used 
because RL and 1/RL give limits that are of equal magnitude on the log scale. 

RL (Lower Equivalence Limit) 
Enter the lower equivalence limit for the ratio of the two means. When the ratio of the means is 
between this value and RU, the two means are said to be equivalent. The value must be less than 
one. A popular choice is 0.80. Note that this value is not a percentage. 

If you enter 1/RU, then 1/RU will be calculated and used here. This choice is commonly used 
because RU and 1/RU give limits that are of equal magnitude on the log scale. 

Effect Size – True Ratio 

R1 (True Ratio) 
This is the value of the ratio of the two means at which the power is to be calculated. Usually, the 
ratio will be assumed to be one. However, some authors recommend calculating the power using 
a ratio of 1.05 since this will require a larger, more conservative, sample size. 

Effect Size – Coefficient of Variation 

COV (Coefficient of Variation) 
The coefficient of variation is used to specify the variability (standard deviation). It is important 
to realize that this is the COV defined on the original (not logged) scale. This value must be 
determined from past experience or from a pilot study. It is most easily calculated from the within 
mean-square error of the analysis of variance of the logged data using the relationship  

( ) 1exp logged −= MSECVm . 

Test 

Design Type 
Specify the type of cross-over design that you are analyzing. Note that all of these designs assume 
that you are primarily interested in the overall difference between two means. 
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Example 1 – Finding Power 
A company has opened a new manufacturing plant and wants to show that the drug produced in 
the new plant is equivalent to that produced in the older plant. A two-sequence, dual cross-over 
design will be used to test the equivalence of drugs produced at the two plants.   

Researchers have decided to set the equivalence limits for the ratio at 0.80 and 1.25. Past 
experience leads the researchers to set the COV to 0.40. The significance level is 0.05. The power 
will be computed assuming that the true ratio is 0.96. Sample sizes between 10 and 80 will be 
included in the analysis. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a Higher-Order 
Cross-Over Design [Ratios] procedure window by expanding Means, then MxK Cross-Over 
Design, then clicking on Equivalence, and then clicking on Equivalence Tests for Two Means 
in a Higher-Order Cross-Over Design [Ratios]. You may then make the appropriate entries as 
listed below, or open Example 1 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. 10 20 30 40 60 80 
RU (Upper Equivalence Limit) ................ 1.25 
RL (Lower Equivalence Limit) ................. 1/RU 
R1 (True Ratio) ....................................... 0.96 
COV (Coefficient of Variation) ................. 0.40 
Design Type ............................................ 2x3 (Two-Sequence Dual) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

 Total Sequences Lower Upper Mean Coef.  
 Sample and Equiv. Equiv. Ratio for of   
 Size Periods Limit Limit Power Variation   
Power (N) (SxP) (RL) (RU) (R1) (COV) Alpha Beta 
0.0000 10 2x3 0.80 1.25 0.96 0.40 0.0500 1.0000 
0.3051 20 2x3 0.80 1.25 0.96 0.40 0.0500 0.6949 
0.5858 30 2x3 0.80 1.25 0.96 0.40 0.0500 0.4142 
0.7483 40 2x3 0.80 1.25 0.96 0.40 0.0500 0.2517 
0.9035 60 2x3 0.80 1.25 0.96 0.40 0.0500 0.0965 
0.9627 80 2x3 0.80 1.25 0.96 0.40 0.0500 0.0373 
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Report Definitions 
Power is the probability of rejecting non-equivalence when the means are equivalent. 
N is the total number of subjects. They are divided evenly among all sequences. 
RU & RL are the upper and lower equivalence limits. Ratios between these limits are equivalent. 
R1 is the ratio of the means at which the power is computed. 
COV is the coefficient of variation on the original scale.  
Alpha is the probability of rejecting non-equivalence when they are non-equivalent. 
Beta is the probability of accepting non-equivalence when they are equivalent. 
Two-Sequence Dual Cross-Over Design with pattern: ABB; BAA 
 
Summary Statements 
In an equivalence test of means using two one-sided tests on data from a two-sequence dual 
cross-over design, a total sample size of 10 achieves 0% power at a 5% significance level when 
the true ratio of the means is 0.96, the coefficient of variation on the original (unlogged) 
scale is 0.40, and the equivalence limits are 0.80 and 1.25. 

 

This report shows the power for the indicated scenarios. Note that 60 subjects  will yield a power 
of just over 90%. 

Plots Section 
 

  
 

This plot shows the power versus the sample size. 
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Example 2 – Finding Sample Size 
Continuing with Example 1, the researchers want to find the exact sample size needed to achieve 
both 80% power and 90% power. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a Higher-Order 
Cross-Over Design [Ratios] procedure window by expanding Means, then MxK Cross-Over 
Design, then clicking on Equivalence, and then clicking on Equivalence Tests for Two Means 
in a Higher-Order Cross-Over Design [Ratios]. You may then make the appropriate entries as 
listed below, or open Example 2 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Equal per Sequence) 
Power ...................................................... 0.80 0.90 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
RU (Upper Equivalence Limit) ................ 1.25 
RL (Lower Equivalence Limit) ................. 1/RU 
R1 (True Ratio) ....................................... 0.96 
COV (Coefficient of Variation) ................. 0.40 
Design Type ............................................ 2x3 (Two-Sequence Dual) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

 Total Sequences Lower Upper Mean Coef.  
 Sample and Equiv. Equiv. Ratio for of   
 Size Periods Limit Limit Power Variation   
Power (N) (SxP) (RL) (RU) (R1) (COV) Alpha Beta 
0.9035 60 2x3 0.80 1.25 0.96 0.40 0.0500 0.0965 
0.8119 46 2x3 0.80 1.25 0.96 0.40 0.0500 0.1881 
 

We note that 60 subjects are needed to achieve 90% power and 46 subjects are needed to achieve 
at least 80% power.  
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Example 3 – Validation using Chen 
Chen et al. (1997) page 761 presents a table of sample sizes for various parameter values for 
Balaam’s design. We will reproduce entries from the first and seventeenth lines of the table in 
which the COV is 10%, the equivalence limits are 0.8 and 1.25, the actual ratio of between the 
means is 1, the power values are 80% and 90%, and the significance level is 0.05. Chen reports 
total sample sizes of 16 and 20. We will now setup this example in PASS.   

The COV entered by Chen is the COV of the logged data. Since PASS requires the COV of the 
original data, we must use the relationship 
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to obtain the appropriate value of COV. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Means in a Higher-Order 
Cross-Over Design [Ratios] procedure window by expanding Means, then MxK Cross-Over 
Design, then clicking on Equivalence, and then clicking on Equivalence Tests for Two Means 
in a Higher-Order Cross-Over Design [Ratios]. You may then make the appropriate entries as 
listed below, or open Example 3 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... N (Equal Per Sequence) 
Power ...................................................... 0.80 0.90 
Alpha ....................................................... 0.05 
N (Total Sample Size) ............................. Ignored since this is the Find setting 
RU (Upper Equivalence Limit) ................ 1.25 
RL (Lower Equivalence Limit) ................. 1/RU 
R1 (True Ratio) ....................................... 1 
COV (Coefficient of Variation) ................. 0.10025 
Design Type ............................................ 4x2 (Balaam) 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
 Numeric Results for Testing the Equivalence of Two Means Using Ratios 
 Design: Balaam's Cross-Over 
 

 Total Sequences Lower Upper Mean Coef.  
 Sample and Equiv. Equiv. Ratio for of   
 Size Periods Limit Limit Power Variation   
Power (N) (SxP) (RL) (RU) (R) (COV) Alpha Beta 
0.9085 20 4x2 0.80 1.25 1.00 0.10 0.0500 0.0915 
0.8106 16 4x2 0.80 1.25 1.00 0.10 0.0500 0.1894 

 

Note that PASS has obtained the same samples sizes as Chen et al. (1997).  
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Chapter 550 

One-Way Analysis 
of Variance 
Introduction 
A common task in research is to compare the averages of two or more populations (groups). We 
might want to compare the income level of two regions, the nitrogen content of three lakes, or the 
effectiveness of four drugs. The one-way analysis of variance compares the means of two or more 
groups to determine if at least one mean is different from the others. The F test is used to 
determine statistical significance. F tests are non-directional in that the null hypothesis specifies 
that all means are equal and the alternative hypothesis simply states that at least one mean is 
different.  

The methods described here are usually applied to the one-way experimental design. This design 
is an extension of the design used for the two-sample t test. Instead of two groups, there are three 
or more groups. With careful modifications, this procedure may be used to test interaction terms 
as well. 

Planned Comparisons 
PASS performs power and sample size calculations for user-specified contrasts.  

The usual F test tests the hypothesis that all means are equal versus the alternative that at least 
one mean is different from the rest. Often, a more specific alternative is desired. For example, you 
might want to test whether the treatment means are different from the control mean, the low dose 
is different from the high dose, a linear trend exists across dose levels, and so on. These questions 
are tested using planned comparisons. 

We call the comparison planned because it was determined before the experiment was conducted. 
We planned to test the comparison.  

A comparison is a weighted average of the means, in which the weights may be negative. When 
the weights sum to zero, the comparison is called a contrast. PASS provides results for contrasts. 
To specify a contrast, we need only specify the weights. Statisticians call these weights the 
contrast coefficients.  

For example, suppose an experiment conducted to study a drug will have three dose levels: none 
(control), 20 mg., and 40 mg. The first question is whether the drug made a difference. If it did, 
the average response for the two groups receiving the drug should be different from the control. If 
we label the group means M0, M20, and M40, we are interested in comparing M0 with M20 and 
M40. This can be done in two ways. One way is to construct two tests, one comparing M0 and 
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M20 and the other comparing M0 and M40. Another method is to perform one test comparing 
M0 with the average of M20 and M40. These tests are conducted using planned comparisons. The 
coefficients are as follows: 

M0 vs. M20 

To compare M0 versus M20, use the coefficients -1,1,0. When applied to the group means, these 
coefficients result in the comparison M0(-1)+M20(1)+M40(0) which reduces to M20-M0. That 
is, this contrast results in the difference between the two group means. We can test whether this 
difference is non-zero using the t test (or F test since the square of the t test is an F test). 

M0 vs. M40 

To compare M0 versus M40, use the coefficients -1,0,1. When applied to the group means, these 
coefficients result in the comparison M0(-1)+M20(0)+M40(1) which reduces to M40-M0. That 
is, this contrast results in the difference between the two group means.  

M0 vs. Average of M20 and M40 

To compare M0 versus the average of M20 and M40, use the coefficients -2,1,1. When applied to 
the group means, these coefficients result in the comparison M0(-2)+M20(1)+M40(1) which is 
equivalent to M40+M20-2(M0).   

To see how these coefficients were obtained, consider the following manipulations. Beginning 
with the difference between the average of M20 and M40 and M0, we obtain the coefficients 
above—aside from a scale factor of one-half. 
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Assumptions 
Using the F test requires certain assumptions. One reason for the popularity of the F test is its 
robustness in the face of assumption violation. However, if an assumption is not even 
approximately met, the significance levels and the power of the F test are invalidated. 
Unfortunately, in practice it often happens that several assumptions are not met. This makes 
matters even worse. Hence, steps should be taken to check the assumptions before important 
decisions are made. 

The assumptions of the one-way analysis of variance are: 

1. The data are continuous (not discrete). 

2. The data follow the normal probability distribution. Each group is normally distributed 
about the group mean. 

3. The variances of the populations are equal. 
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4. The groups are independent. There is no relationship among the individuals in one group 
as compared to another. 

5. Each group is a simple random sample from its population. Each individual in the 
population has an equal probability of being selected in the sample. 

Technical Details for the One-Way ANOVA 
Suppose k groups each have a normal distribution and equal means ( )μ μ μ1 2= = =L k . Let 

 denote the number of subjects in each group and let N denote the total sample 
size of all groups. Let
n n nk1 2= = =L

μW denote the weighted mean of all groups. That is 

W
i=1

k
i

i =  n
N

μ μ∑⎛
⎝⎜

⎞
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Let σ  denote the common standard deviation of all groups.  

Given the above terminology, the ratio of the mean square between groups to the mean square 
within groups follows a central F distribution with two parameters matching the degrees of 
freedom of the numerator mean square and the denominator mean square. When the null 
hypothesis of mean equality is rejected, the above ratio has a noncentral F distribution which also 
depends on the noncentrality parameter, λ . This parameter is calculated as 

λ σ
σ

 =  N m
2

2  
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Some authors use the symbolφ for the noncentrality parameter. The relationship between the two 
noncentrality parameters is 

φ λ
=

k
. 

The process of planning an experiment should include the following steps: 

1. Determine an estimate of the within group standard deviation, σ. This may be done from 
prior studies, from experimentation with the Standard Deviation Estimation module, from 
pilot studies, or from crude estimates based on the range of the data. See the chapter on 
estimating the standard deviation for more details. 

2. Determine a set of means that represent the group differences that you want to detect. 

3. Determine the appropriate group sample sizes that will ensure desired levels of α  and 
β . Although it is tempting to set all group sample sizes equal, it is easy to show that 
putting more subjects in some groups than in others may have better power than keeping 
group sizes equal (see Example 4). 
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Power Calculations for One-Way ANOVA 
The calculation of the power of a particular test proceeds as follows: 

1. Determine the critical value,  whereFk N k− −1, ,α α is the probability of a type-I error and k 
and N are defined above. Note that this is a two-tailed test as no direction is assigned in 
the alternative hypothesis. 

2. From a hypothesized set ofμi s' , calculate the noncentrality parameterλ based on the 
values of  N, k, mσ , andσ . 

3. Compute the power as the probability of being greater than  on a noncentral-F 
distribution with noncentrality parameter 

Fk N k− −1, ,α

λ . 

Technical Details for a Planned Comparison 
The terminology of planned comparisons is identical to that of the one-way AOV, so the notation 
used above will be repeated here. 

Suppose you want to test whether the contrast C 

C =  c
i=1

k

i i∑ μ  

is significantly different from zero. Here the are the contrast coefficients.  c si '

Define 
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Define the noncentrality parameterλc , as 

λ σ
σC

mc
2

2 =  N  

Power Calculations for Planned Comparisons 
The calculation of the power of a particular test proceeds as follows: 

1. Determine the critical value,  whereF N k1, ,− α α is the probability of a type-I error and k 
and N are defined above. Note that this is a two-tailed test as no direction is assigned in 
the alternative hypothesis. 

2. From a hypothesized set ofμi s' , calculate the noncentrality parameterλc based on the 
values of  N, k, mcσ , andσ . 
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3. Compute the power as the probability of being greater than  on a noncentral-F 
distribution with noncentrality parameter 

F N k1, ,− α

λc . 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are SM, S, k, n, Alpha, and Power and Beta. Under most situations, you will 
select either Power and Beta for a power analysis or n for sample size determination. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 



550-6  One-Way Analysis of Variance 

Sample Size / Groups – Groups 

k (Number of Groups) 
This is the number of group means being compared. It must be greater than or equal to two.  

You can enter a list of values, in which case, a separate analysis will be calculated for each value. 
Commas or blanks may separate the numbers. A TO-BY list may be used. 

Note that the number of items used in the Hypothesized Means box and the Group Sample Size 
Pattern box is controlled by this number. 

Examples: 

2,3,4 

2 3 4 

2 to 10 by 2 

Group Allocation Ratios 
A set of positive, numeric values, one for each group, is entered here. The sample size of group i 
is found by multiplying the ith number from this list times the value of n and rounding up to the 
next whole number. The number of values must match the number of groups, k. When too few 
numbers are entered, 1’s are added. When too many numbers are entered, the extras are ignored.  

• Equal 
If all sample sizes are to be equal, enter “Equal” here and the desired sample size in n. A set 
of k 1's will be used. This will result in N1 = N2 = N3 = n. That is, all sample sizes are equal 
to n.  

n (Sample Size per Group) 
This is the base, per group, sample size. One or more values, separated by blanks or commas, 
may be entered. A separate analysis is performed for each value listed here. 

The group samples sizes are determined by multiplying this number by each of the Group Sample 
Size Pattern numbers. If the Group Sample Size Pattern numbers are represented by m1, m2, m3, 
…, mk and this value is represented by n, the group sample sizes N1, N2, N3, ..., Nk are calculated 
as follows: 

N1=[n(m1)] 

N2=[n(m2)] 

N3=[n(m3)] 

etc. 

where the operator, [X] means the next integer after X, e.g. [3.1]=4. 

For example, suppose there are three groups and the Group Sample Size Pattern is set to 1,2,3. If 
n is 5, the resulting sample sizes will be 5, 10, and 15. If n is 50, the resulting group sample sizes 
will be 50, 100, and 150. If n is set to 2,4,6,8,10, five sets of group sample sizes will be generated 
and an analysis run for each. These sets are: 

2 4 6 
4 8 12 
6 12 18 
8 16 24 
10 20 30 
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As a second example, suppose there are three groups and the Group Sample Size Pattern is 
0.2,0.3,0.5. When the fractional Pattern values sum to one, n can be interpreted as the total 
sample size of all groups and the Pattern values as the proportion of the total in each group.  

If n is 10, the three group sample sizes would be 2, 3, and 5. 

If n is 20, the three group sample sizes would be 4, 6, and 10. 

If n is 12, the three group sample sizes would be 

(0.2)12 = 2.4 which is rounded up to the next whole integer, 3. 

(0.3)12 = 3.6 which is rounded up to the next whole integer, 4. 

(0.5)12 = 6.  

Note that in this case, 3+4+6 does not equal n (which is 12). This can happen because of 
rounding. 

Effect Size – Means 

Hypothesized Means 
Enter a set of hypothesized means, one for each group. These means represent the group centers 
under the alternative hypothesis (the null hypothesis is that they are equal). The standard 
deviation of these means (SM) is used in the power calculations to represent the average size of 
the differences among the means. The standard deviation of the means is calculated using the 
formula: 

m
i=1

k
i

2

 =  ( - )
kσ

μ μ∑  

This quantity gives the magnitude of the differences among the group means. Note that when all 
means are equal, mσ  is zero. 

You should enter a set of means that give the pattern of differences you expect or the pattern that 
you wish to detect. For example, in a particular study involving three groups, your research might 
be “meaningful” if either of two treatment means is 50% larger than the control mean. If the 
control mean is 50, then you would enter 50,75,75 as the three means. 

It is usually more intuitive to enter a set of mean values. However, it is possible to enter the 
standard deviation of the means directly by placing an S in front of the number (see below).  

Some might wish to specify the alternative hypothesis as the effect size,  f, which is defined as  

f =  mσ
σ

 

If so, set σ = 1and . Cohen (1988) has designated values of f less than 0.1 as small, 
values around 0.25 to be medium, and values over 0.4 to be large. 

m fσ =
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Entering a List of Means 
If a set of numbers is entered without a leading S, they are assumed to be the hypothesized group 
means under the alternative hypothesis. Their standard deviation will be calculated and used in 
the calculations. Blanks or commas may separate the numbers. Note that it is not the values of the 
means themselves that is important, but only their differences. Thus, the mean values 0,1,2 
produce the same results as the values 100,101,102. 

If too few means are entered to match the number of groups, the last mean is repeated. For 
example, suppose that four means are needed and you enter 1,2 (only two means). PASS will 
treat this as 1,2,2,2. If too many values are entered, PASS will truncate the list to the number of 
means needed. 

Examples: 

5 20 60 

2,5,7 

-4,0,6,9 

S Option 
If an S is entered before the list of numbers, they are assumed to be values of mσ , the standard 
deviations of the group means. A separate power calculation is made for each value. Note that 
this list can be a TO-BY phrase. 

Examples: 

S 4.7 

S 4.3 5.7 4.2 

S 10 to 20 by 2 

Effect Size – Standard Deviation 

S (Standard Deviation of Subjects) 
This isσ , the standard deviation within a group. It represents the variability from subject to 
subject that occurs when the subjects are treated identically. It is assumed to be the same for all 
groups. This value is approximated in an analysis of variance table by the square root of the mean 
square error. 

Since they are positive square roots, the numbers must be strictly greater than zero. You can press 
the SD button to obtain further help on estimating the standard deviation. 

Note that if you are using this procedure to test a factor (such as an interaction) from a more 
complex design, the value of standard deviation is estimated by the square root of the mean 
square of the term that is used as the denominator in the F test.  
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You can enter a list of values separated by blanks or commas, in which case, a separate analysis 
will be calculated for each value. 

Examples of valid entries: 

1,4,7,10 

1 4 7 10 

1 to 10 by 3 

Planned Comparisons 

Contrast Coefficients 
If you want to analyze a specific planned comparison, enter a set of contrast coefficients here. 
The calculations will then refer to the hypothesis that the corresponding contrast of the means is 
zero versus the alternative that it is non-zero (two-sided test). These are often called Planned 
Comparisons. 

A contrast is a weighted average of the means in which the weights sum to zero. For example, 
suppose you are studying four groups and that the main hypothesis of interest is whether there is a 
linear trend across the groups. You would enter -3, -1, 1, 3 here. This would form the weighted 
average of the means: 

-3(Mean1)-(Mean2)+(Mean3)+3(Mean3) 

The point to realize is that these numbers (the coefficients) are used to calculate a specific 
weighted average of the means which is to be compared against zero using a standard F (or t) test. 

• NONE or blank 
When the box is left blank or the word None is entered, this option is ignored. 

• Linear Trend 
A set of coefficients is generated appropriate for testing the alternative hypothesis that there 
is a linear (straight-line) trend across the means. These coefficients assume that the means are 
equally spaced across the trend variable. 

• Quadratic 
A set of coefficients is generated appropriate for testing the alternative hypothesis that the 
means follow a quadratic model. These coefficients assume that the means are equally spaced 
across the implicit X variable. 

• Cubic 
A set of coefficients is generated appropriate for testing the alternative hypothesis that the 
means follow a cubic model. These coefficients assume that the means are equally spaced 
across the implicit X variable. 

• First Against Others 
A set of coefficients is generated appropriate for testing the alternative hypothesis that the 
first mean is different from the average of the remaining means. For example, if there were 
four groups, the generated coefficients would be -3, 1, 1, 1. 
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• List of Coefficients 
A list of coefficients, separated by commas or blanks, may be entered. If the number of items 
in the list does not match the number of groups (k), zeros are added or extra coefficients are 
truncated. 

Remember that these coefficients must sum to zero. Also, the scale of the coefficients does 
not matter. That is 0.5,0.25,0.25; -2,1,1; and -200,100,100 will yield the same results.  

To avoid rounding problems, it is better to use -3,1,1,1 than the equivalent -
1,0.333,0.333,0.333. The second set does not sum to zero. 

Example 1 – Finding the Statistical Power 
An experiment is being designed to compare the means of four groups using an F test with a 
significance level of either 0.01 or 0.05. Previous studies have shown that the standard deviation 
within a group is 18. Treatment means of 40, 10, 10, and 10 represent clinically important 
treatment differences. To better understand the relationship between power and sample size, the 
researcher wants to compute the power for several group sample sizes between 2 and 14. The 
sample sizes will be equal across all groups.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking on 
One-Way Analysis of Variance. You may then make the appropriate entries as listed below, or 
open Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.01 0.05 
k (Number of Groups) ............................. 4 
Group Allocation Ratios .......................... Equal 
n (Sample Size per Group) ..................... 2 to 14 by 2 
Hypothesized Means ............................... 40 10 10 10 
S (Standard Deviation of Subjects) ......... 18 
Contrast Coefficients ............................... None 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.04238 2.00 4 8 0.01000 0.95762 12.99 18.00 0.7217 
0.17513 2.00 4 8 0.05000 0.82487 12.99 18.00 0.7217 
0.23886 4.00 4 16 0.01000 0.76114 12.99 18.00 0.7217 
0.52165 4.00 4 16 0.05000 0.47835 12.99 18.00 0.7217 
0.50581 6.00 4 24 0.01000 0.49419 12.99 18.00 0.7217 
0.77327 6.00 4 24 0.05000 0.22673 12.99 18.00 0.7217 
0.72695 8.00 4 32 0.01000 0.27305 12.99 18.00 0.7217 
0.90642 8.00 4 32 0.05000 0.09358 12.99 18.00 0.7217 
0.86702 10.00 4 40 0.01000 0.13298 12.99 18.00 0.7217 
0.96514 10.00 4 40 0.05000 0.03486 12.99 18.00 0.7217 
0.94143 12.00 4 48 0.01000 0.05857 12.99 18.00 0.7217 
0.98802 12.00 4 48 0.05000 0.01198 12.99 18.00 0.7217 
0.97623 14.00 4 56 0.01000 0.02377 12.99 18.00 0.7217 
0.99614 14.00 4 56 0.05000 0.00386 12.99 18.00 0.7217 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
n is the average group sample size. 
k is the number of groups. 
Total N is the total sample size of all groups. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
Sm is the standard deviation of the group means under the alternative hypothesis. 
Standard deviation is the within group standard deviation. 
The Effect Size is the ratio of Sm to standard deviation. 
 
Summary Statements 
In a one-way ANOVA study, sample sizes of 2, 2, 2, and 2 are obtained from the 4 groups whose 
means are to be compared. The total sample of 8 subjects achieves 4% power to detect 
differences among the means versus the alternative of equal means using an F test with a 
0.01000 significance level. The size of the variation in the means is represented by their 
standard deviation which is 12.99. The common standard deviation within a group is assumed to 
be 18.00. 

 

This report shows the numeric results of this power study. Following are the definitions of the 
columns of the report. 

Power 
The probability of rejecting a false null hypothesis. 

Average n 
The average of the group sample sizes. 

k 
The number of groups. 

Total N 
The total sample size of the study. 

Alpha 
The probability of rejecting a true null hypothesis. This is often called the significance level. 
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Beta 
The probability of accepting a false null hypothesis that Sm is zero when Sm is actually equal to 
the value shown in the next column. 

Std Dev of Means (Sm) 
This is the standard deviation of the hypothesized means. It was computed from the hypothesized 
means. It is roughly equal to the average difference between the group means and the overall 
mean. 

Once you have computed this, you can enter a range of values to determine the effect of the 
hypothesized means on the power. 

Standard Deviation (S) 
This is the within-group standard deviation. It was set in the Data window. 

Effect Size 
The effect size is the ratio of SM to S. It is an index of relative difference between the means that 
can be compared from study to study. 

Detailed Results Report 
 

Details when Alpha = 0.01000, Power = 0.04238, SM = 12.99, S = 18.00 
  Percent  Deviation Ni 
  Ni of  From Times 
Group Ni Total Ni Mean Mean Deviation 
1 2 25.00 40.00 22.50 45.00 
2 2 25.00 10.00 7.50 15.00 
3 2 25.00 10.00 7.50 15.00 
4 2 25.00 10.00 7.50 15.00 
ALL 8 100.00 17.50   
 
Details when Alpha = 0.05000, Power = 0.17513, SM = 12.99, S = 18.00 
  Percent  Deviation Ni 
  Ni of  From Times 
Group Ni Total Ni Mean Mean Deviation 
1 2 25.00 40.00 22.50 45.00 
2 2 25.00 10.00 7.50 15.00 
3 2 25.00 10.00 7.50 15.00 
4 2 25.00 10.00 7.50 15.00 
ALL 8 100.00 17.50   

 

This report shows the details of each row of the previous report. 

Group 
The number of the group shown on this line. The last line, labeled ALL, gives the average or the 
total as appropriate. 

Ni 
This is the sample size of each group. This column is especially useful when the sample sizes are 
unequal. 

Percent Ni of Total Ni 
This is the percentage of the total sample that is allocated to each group. 

Mean 
The is the value of the Hypothesized Mean. The final row gives the average for all groups. 
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Deviation From Mean 
This is the absolute value of the mean minus the overall mean. Since Sm is the sum of the squared 
deviations, these values show the relative contribution to Sm. 

Ni Times Deviation 
This is the group sample size times the absolute deviation. It shows the combined influence of the 
size of the deviation and the sample size on Sm. 

Plots Section 
 

 
 

This plot gives a visual presentation to the results in the Numeric Report. We can quickly see the 
impact on the power of increasing the sample size and increase the significance level. 
When you create one of these plots, it is important to use trial and error to find an appropriate 
range for the horizontal variable so that you have results with both low and high power. 

Example 2 – Power after a Study 
This example will cover the situation in which you are calculating the power of a one-way 
analysis of variance F test on data that have already been collected and analyzed. 

An experiment included a control group and two treatment groups. Each group had seven 
individuals. A single response was measured for each individual and recorded in the following 
table. 
 

Control T1 T2 
452 646 685 
674 547 658 
554 774 786 
447 465 536 
356 759 653 
654 665 669 
558 767 557 
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When analyzed using the one-way analysis of variance procedure in NCSS, the following results 
were obtained.  
   
 Analysis of Variance Table  
   
 Source  Sum of Mean  Prob 
 Term DF Squares Square F-Ratio Level  
 A ( ... ) 2 75629.8 37814.9 3.28 0.061167 
 S(A) 18 207743.4 11541.3 
 Total (Adjusted) 20 283373.3 
 Total 21 
 
 Means Section 
    

Group Count Mean 
Control 7 527.8571 
T1 7 660.4286 
T2 7 649.1429 

 

The significance level (Prob Level) was only 0.061—not enough for statistical significance. The 
researcher had hoped to show that the treatment groups had higher response levels than the 
control group. He could see that the group means followed this pattern since the mean for T1 was 
about 25% higher than the control mean and the mean for T2 was about 23% higher than the 
control mean. He decided to calculate the power of the experiment using these values of the 
means. (We do not recommend this approach because the power should be calculated for the 
minimum difference among the means that is of interest, not at the values of the sample means.) 
The data entry for this problem is simple. The only entry that is not straight forward is finding an 
appropriate value for the standard deviation. Since the standard deviation is estimated by the 
square root of the mean square error, it is calculated as 11541.3 = 107 4304. . 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking on 
One-Way Analysis of Variance. You may then make the appropriate entries as listed below, or 
open Example 2 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
k (Number of Groups) ............................. 3 
Group Allocation Ratios .......................... Equal 
n (Sample Size per Group) ..................... 7 
Hypothesized Means ............................... 527.8571 660.4286 649.1429 
S (Standard Deviation of Subjects) ......... 107.4304 
Contrast Coefficients ............................... None 



One-Way Analysis of Variance  550-15 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results  
      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.54788 7.00 3 21 0.05000 0.45212 60.01 107.43 0.5586 

 

The power is only 0.55. That is, there was only a 55% chance of rejecting the false null 
hypothesis. It is important to understand this power statement is conditional, so we will state it in 
detail. Given that the population means are equal to the sample means (that Sm is 60.01) and the 
population standard deviation is equal to 107.43, the probability of rejecting the false null 
hypothesis is 0.55. If the population means are different from the sample means (which they must 
be), the power is different. However, the sample means provide a reasonable place to begin. 

Example 3 – Finding the Sample Size Necessary to 
Reject 
Continuing with the last example, we will determine how large the sample size would need to 
have been for alpha = 0.05 and beta = 0.20. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking on 
One-Way Analysis of Variance. You may then make the appropriate entries as listed below, or 
open Example 3 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... n (Sample Size) 
Power ...................................................... 0.80 
Alpha ....................................................... 0.05 
k (Number of Groups) ............................. 3 
Group Allocation Ratios .......................... Equal 
n (Sample Size per Group) ..................... Ignored since this is the Find setting 
Hypothesized Means ............................... 527.8571 660.4286 649.1429 
S (Standard Deviation of Subjects) ......... 107.4304 
Contrast Coefficients ............................... None 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
 Numeric Results for One-Way Analysis of Variance 

      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.82511 12.00 3 36 0.05000 0.17489 60.01 107.43 0.5586 

 
The required sample size is 12 per group or 36 subjects. 

Example 4 – Using Unequal Sample Sizes 
Continuing with the last example, consider the impact of allowing the group sample sizes to be 
unequal. Since the control group is being compared to two treatment groups, the mean of the 
control group is assumed to be different from those of the treatment groups. In this situation, 
experience has shown that adding extra subjects to the control group can increase the power. In a 
separate analysis, the power with 11 subjects per group was found to be 0.7851—not quite the 
required 0.80.  

We will try moving two subjects from each treatment group into the control group. This will give 
an experimental design with 15 in the control group and 9 in each of the treatment groups.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking on 
One-Way Analysis of Variance. You may then make the appropriate entries as listed below, or 
open Example 4 by going to the File menu and choosing Open Example Template. 

Pay particular attention to how the sample size parameters were changed. The value of n is set to 
one so that it is essentially ignored. The Group Sample Size Pattern contains the three unequal 
sample sizes.  

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
k (Number of Groups) ............................. 3 
Group Allocation Ratios .......................... 15 9 9 
n (Sample Size per Group) ..................... 1 
Hypothesized Means ............................... 527.8571 660.4286 649.1429 
S (Standard Deviation of Subjects) ......... 107.4304 
Contrast Coefficients ............................... None 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results  
      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.82967 11.00 3 33 0.05000 0.17033 63.34 107.43 0.5896 
 

The power of 0.82967 achieved with the 33 subjects in this design is slightly higher than the 
power of 0.82511 that was achieved with the 36 subjects in the equal group size design. 
Apparently, unequal sample allocation can achieve better power! 

We suggest that you try several different sample allocations. You will find that the optimum 
sample allocation depends on the values of the hypothesized means.  

You should keep in mind that power may not be the only goal of the experiment. Other goals may 
include finding confidence intervals for each of the group means. And the narrowness of the 
width of the confidence interval is directly related to the sample size.  

Example 5 – Minimum Detectable Difference 
It may be useful to determine the minimum detectable difference among the means that can be 
found at the experimental conditions. This amounts to finding mσ (which we call Sm on the 
windows and printouts). 

Continuing with the previous example, find Sm for a wide range of sample sizes when alpha is 
0.05 and beta is 0.10 or 0.20. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking on 
One-Way Analysis of Variance. You may then make the appropriate entries as listed below, or 
open Example 5 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Sm (Std Dev of Means) 
Power ...................................................... 0.80 0.90 
Alpha ....................................................... 0.05 
k (Number of Groups) ............................. 3 
Group Allocation Ratios .......................... Equal 
n (Sample Size per Group) ..................... 2 3 5 8 10 15 20 40 60 80 100 
Hypothesized Means ............................... Ignored since this is the Find setting 
S (Standard Deviation of Subjects) ......... 107.4304 
Contrast Coefficients ............................... None 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results  
      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.90000 2.00 3 6 0.05000 0.10000 287.18 107.43 2.6732 
0.80000 2.00 3 6 0.05000 0.20000 244.31 107.43 2.2741 
0.90000 3.00 3 9 0.05000 0.10000 168.33 107.43 1.5669 
0.80000 3.00 3 9 0.05000 0.20000 145.82 107.43 1.3573 
0.90000 5.00 3 15 0.05000 0.10000 112.62 107.43 1.0483 
0.80000 5.00 3 15 0.05000 0.20000 98.08 107.43 0.9130 
0.90000 8.00 3 24 0.05000 0.10000 83.98 107.43 0.7817 
0.80000 8.00 3 24 0.05000 0.20000 73.23 107.43 0.6817 
0.90000 10.00 3 30 0.05000 0.10000 73.86 107.43 0.6875 
0.80000 10.00 3 30 0.05000 0.20000 64.42 107.43 0.5997 
0.90000 15.00 3 45 0.05000 0.10000 59.07 107.43 0.5499 
0.80000 15.00 3 45 0.05000 0.20000 51.54 107.43 0.4797 
0.90000 20.00 3 60 0.05000 0.10000 50.67 107.43 0.4716 
0.80000 20.00 3 60 0.05000 0.20000 44.21 107.43 0.4115 
0.90000 40.00 3 120 0.05000 0.10000 35.34 107.43 0.3289 
0.80000 40.00 3 120 0.05000 0.20000 30.83 107.43 0.2870 
0.90000 60.00 3 180 0.05000 0.10000 28.73 107.43 0.2674 
0.80000 60.00 3 180 0.05000 0.20000 25.07 107.43 0.2333 
0.90000 80.00 3 240 0.05000 0.10000 24.82 107.43 0.2311 
0.80000 80.00 3 240 0.05000 0.20000 21.66 107.43 0.2016 
0.90000 100.00 3 300 0.05000 0.10000 22.18 107.43 0.2064 
0.80000 100.00 3 300 0.05000 0.20000 19.35 107.43 0.1801 
 
 

 
 

This plot shows the relationships between power, sample size, and detectable difference. Several 
conclusions are possible, but the most impressive is the sharp elbow in the curve that occurs near 
n = 10 when Sm is about 64. 

How do you interpret an Sm of 64? The easiest way is to generate a set of means that have a 
standard deviation of 64. To do this, press the SD button in the lower right corner of the One Way 
ANOVA panel to load the Standard Deviation Estimator module. Set N = 3, Mean = 0, and 
Standard Deviation = 64. Press the Two Unique Values button. This results in three means equal 
to -91, 45, and 45. The differences among these means are the minimum detectable differences 
that can be detecting with a sample size of 9 when the power is 80%. 
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Example 6 – Validation using Fleiss 
Fleiss (1986) page 374 presents an example of determining a sample size in an experiment with 4 
groups; means of 9.775, 12, 12, and 14.225; standard deviation of 3; alpha of 0.05, and beta of 
0.20. He finds a sample size of 11 per group.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking on 
One-Way Analysis of Variance. You may then make the appropriate entries as listed below, or 
open Example 6 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... n (Sample Size) 
Power ...................................................... 0.80 
Alpha ....................................................... 0.05 
k (Number of Groups) ............................. 4 
Group Allocation Ratios .......................... Equal 
n (Sample Size per Group) ..................... Ignored since this is the Find setting 
Hypothesized Means ............................... 9.775 12 12 14.225 
S (Standard Deviation of Subjects) ......... 3 
Contrast Coefficients ............................... None 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.80273 11.00 4 44 0.05000 0.19727 1.57 3.00 0.5244 
 
 
Details when Alpha = 0.05000, Power = 0.80273, SM = 1.57, S = 3.00 
  Percent  Deviation Ni 
  Ni of  From Times 
Group Ni Total Ni Mean Mean Deviation 
1 11 25.00 9.78 2.23 24.48 
2 11 25.00 12.00 0.00 0.00 
3 11 25.00 12.00 0.00 0.00 
4 11 25.00 14.23 2.23 24.48 
ALL 44 100.00 12.00   

 
PASS also found n = 11. Note that Fleiss used calculations based on a normal approximation, but 
PASS uses exact calculations based on the non-central F distribution. 
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Example 7 – Validation using Desu 
Desu (1990) page 48 presents an example of determining a sample size in an experiment with 3 
groups; means of 0, -0.2553, and 0.2553; standard deviation of 1; alpha of 0.05, and beta of 0.10. 
He finds a sample size of 99 per group. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking on 
One-Way Analysis of Variance. You may then make the appropriate entries as listed below, or 
open Example 7 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... n (Sample Size) 
Power ...................................................... 0.90 
Alpha ....................................................... 0.05 
k (Number of Groups) ............................. 3 
Group Allocation Ratios .......................... Equal 
n (Sample Size per Group) ..................... Ignored since this is the Find setting 
Hypothesized Means ............................... 0  -0.2553  0.2553 
S (Standard Deviation of Subjects) ......... 1 
Contrast Coefficients ............................... None 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.90285 99.00 3 297 0.05000 0.09715 0.21 1.00 0.2085 
 
  
Details when Alpha = 0.05000, Power = 0.90285, SM = 0.21, S = 1.00 
  Percent  Deviation Ni 
  Ni of  From Times 
Group Ni Total Ni Mean Mean Deviation 
1 99 33.33 0.00 0.00 0.00 
2 99 33.33 -0.26 0.26 25.27 
3 99 33.33 0.26 0.26 25.27 
ALL 297 100.00 0.00   

 
PASS also found n = 99. 
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Example 8 – Validation using Kirk 
Kirk (1982) pages 140-144 presents an example of determining a sample size in an experiment 
with 4 groups; means of 2.75, 3.50, 6.25, and 9.0; standard deviation of 1.20995; alpha of 0.05, 
and beta of 0.05. He finds a sample size of 3 per group. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking on 
One-Way Analysis of Variance. You may then make the appropriate entries as listed below, or 
open Example 8 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... n (Sample Size) 
Power ...................................................... 0.95 
Alpha ....................................................... 0.05 
k (Number of Groups) ............................. 4 
Group Allocation Ratios .......................... Equal 
n (Sample Size per Group) ..................... Ignored since this is the Find setting 
Hypothesized Means ............................... 2.75 3.5 6.25 9 
S (Standard Deviation of Subjects) ......... 1.20995 
Contrast Coefficients ............................... None 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.99767 3.00 4 12 0.05000 0.00233 2.47 1.21 2.0376 

 
PASS also found n = 3. 
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Example 9 – Power of a Planned Comparison 
An experiment is being designed to study the response to different doses of a drug. Three groups, 
receiving a dose of 0, 10, and 20 milligrams of the drug, are anticipated. An F test will be used to 
test the hypothesis that the means exhibit a linear trend across the doses. The significance level is 
0.05. Previous studies have shown the within group standard deviation to be 18. Treatment means 
of 5, 16, and 30 represent clinically important treatment differences. To better understand the 
relationship between power and sample size, the researcher wants to compute the power for 
several group sample sizes between 2 and 18. The sample sizes will be equal across all groups.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance procedure window by 
expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking on 
One-Way Analysis of Variance. You may then make the appropriate entries as listed below, or 
open Example 9 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
k (Number of Groups) ............................. 3 
Group Allocation Ratios .......................... Equal 
n (Sample Size per Group) ..................... 2 to 18 by 2 
Hypothesized Means ............................... 5 16 30 
S (Standard Deviation of Subjects) ......... 18 
Contrast Coefficients ............................... Linear Trend 

Axes/Legend/Grid Tab 
Vertical Range ......................................... User (Given Below) 
Minimum .................................................. 0 
Maximum ................................................. 1 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results Report 
 

Numeric Results 
      Std Dev Standard  
 Average  Total   of Means Deviation Effect 
Power n k N Alpha Beta (Sm) (S) Size 
0.16781 2.00 3 6 0.05000 0.83219 10.21 18.00 0.5670 
0.41889 4.00 3 12 0.05000 0.58111 10.21 18.00 0.5670 
0.61410 6.00 3 18 0.05000 0.38590 10.21 18.00 0.5670 
0.75458 8.00 3 24 0.05000 0.24542 10.21 18.00 0.5670 
0.84932 10.00 3 30 0.05000 0.15068 10.21 18.00 0.5670 
0.91013 12.00 3 36 0.05000 0.08987 10.21 18.00 0.5670 
0.94768 14.00 3 42 0.05000 0.05232 10.21 18.00 0.5670 
0.97017 16.00 3 48 0.05000 0.02983 10.21 18.00 0.5670 
0.98329 18.00 3 54 0.05000 0.01671 10.21 18.00 0.5670 
 
Summary Statements 
In a one-way ANOVA study, sample sizes of 2, 2, and 2 are obtained from the 3 groups whose 
means are to be compared using a planned comparison (contrast). The total sample of 6 subjects 
achieves 17% power to detect a non-zero contrast of the means versus the alternative that the 
contrast is zero using an F test with a 0.05000 significance level. The value of the contrast 
of the means is 25.00. The common standard deviation within a group is assumed to be 18.00. 
 

This report shows the numeric results of this power study. Most of the definitions are the same as 
with the one-way ANOVA test. Following are the definitions that are different. 

Std Dev of Means (Sm) 
When displaying results for planned comparisons, this is not the standard deviation of the 
hypothesized means. Instead, it is a special function of the coefficients and the hypothesized 
means given by the equation 

mc
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i i
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Effect Size 
The effect size is the ratio of SM to S. It is an index of relative difference between the means that 
can be compared from study to study. 
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Details Report 
 

Details when Alpha = 0.05000, Power = 0.16781, SM = 10.21, S = 18.00 
  Percent   Mean 
  Ni of  Contrast Times 
Group Ni Total N Mean Coefficient Contrast 
1 2 33.33 5.00 -1.000 -5.00 
2 2 33.33 16.00 0.000 0.00 
3 2 33.33 30.00 1.000 30.00 
ALL 6 100.00 17.00 0.00 25.00 
 

This report shows the details of each row of the previous report. It is especially useful because it 
shows the values of the contrast coefficients and the contrast (which is the value in the lower right 
corner of the table). 

Plots Section 
 

 
 

This plot gives a visual presentation to the results in the Numeric Report. We can quickly see the 
impact on the power of increasing the sample size. 
When you create one of these plots, it is important to use trial and error to find an appropriate 
range for the horizontal variable so that you have results with both low and high power. 
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Chapter 551 

Analysis of 
Covariance 
Introduction 
A common task in research is to compare the averages of two or more populations (groups). We 
might want to compare the income level of two regions, the nitrogen content of three lakes, or the 
effectiveness of four drugs. The one-way analysis of variance compares the means of two or more 
groups to determine if at least one mean is different from the others. The F test is used to 
determine statistical significance.  

Analysis of Covariance (ANCOVA) is an extension of the one-way analysis of variance model 
that adds quantitative variables (covariates). When used, it is assumed that their inclusion will 
reduce the size of the error variance and thus increase the power of the design.  

Covariates can only be used if the assumption of parallel slopes is viable. 

Planned Comparisons 
PASS performs power and sample size calculations for user-specified contrasts.  

The usual F test tests the hypothesis that all means are equal versus the alternative that at least 
one mean is different from the rest. Often, a more specific alternative is desired. For example, you 
might want to test whether the treatment means are different from the control mean, the low dose 
is different from the high dose, a linear trend exists across dose levels, and so on. These questions 
are tested using planned comparisons. 

We call the comparison planned because it was determined before the experiment was conducted. 
We planned to test the comparison.  

A comparison is a weighted average of the means, in which the weights may be negative. When 
the weights sum to zero, the comparison is called a contrast. PASS provides results for contrasts. 
To specify a contrast, we need only specify the weights. Statisticians call these weights the 
contrast coefficients.  

For example, suppose an experiment conducted to study a drug will have three dose levels: none 
(control), 20 mg., and 40 mg. The first question is whether the drug made a difference. If it did, 
the average response for the two groups receiving the drug should be different from the control. If 
we label the group means M0, M20, and M40, we are interested in comparing M0 with M20 and 
M40. This can be done in two ways. One way is to construct two tests, one comparing M0 and 
M20 and the other comparing M0 and M40. Another method is to perform one test comparing 
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M0 with the average of M20 and M40. These tests are conducted using planned comparisons. The 
coefficients are as follows: 

M0 vs. M20 

To compare M0 versus M20, use the coefficients -1,1,0. When applied to the group means, these 
coefficients result in the comparison M0(-1)+M20(1)+M40(0) which reduces to M20-M0. That 
is, this contrast results in the difference between the two group means. We can test whether this 
difference is non-zero using the t test (or F test since the square of the t test is an F test). 

M0 vs. M40 

To compare M0 versus M40, use the coefficients -1,0,1. When applied to the group means, these 
coefficients result in the comparison M0(-1)+M20(0)+M40(1) which reduces to M40-M0. That 
is, this contrast results in the difference between the two group means.  

M0 vs. Average of M20 and M40 

To compare M0 versus the average of M20 and M40, use the coefficients -2,1,1. When applied to 
the group means, these coefficients result in the comparison M0(-2)+M20(1)+M40(1) which is 
equivalent to M40+M20-2(M0).   

To see how these coefficients were obtained, consider the following manipulations. Beginning 
with the difference between the average of M20 and M40 and M0, we obtain the coefficients 
above—aside from a scale factor of one-half. 

( )

M M M M M M

M M M

M M M

20 40
2
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+
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Assumptions 
Using the F test requires certain assumptions. One reason for the popularity of the F test is its 
robustness in the face of assumption violation. However, if an assumption is not even 
approximately met, the significance levels and the power of the F test are invalidated. 
Unfortunately, in practice it often happens that several assumptions are not met. This makes 
matters even worse. Hence, steps should be taken to check the assumptions before important 
decisions are made. 

The following assumptions are needed for a one-way analysis of variance: 

1. The data are continuous (not discrete). 

2. The data follow the normal probability distribution. Each group is normally distributed 
about the group mean. 

3. The variances of the populations are equal. 
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4. The groups are independent. There is no relationship among the individuals in one group 
as compared to another. 

5. Each group is a simple random sample from its population. Each individual in the 
population has an equal probability of being selected in the sample. 

Additional assumptions are needed for an analysis of covariance: 

1. The covariates have a linear relationship the response variable. 

2. The slopes of these linear relationships between the covariate and the response variable 
are approximately equal across all groups. 

Technical Details for ANCOVA 
We found two, slightly different, formulations for computing power for analysis of covariance. 
Keppel (1991) gives results that modify the standard deviation by an amount proportional to its 
reduction because of the covariate. Borm et al. (2007) give results that use a normal 
approximation to the noncentral F distribution. We use the Keppel approach in PASS. 

Suppose that each observation consists of a response measurement, Y, and one or more covariate 
measurements: X1, X2, …, Xp. Further suppose that samples of n1, n2, …, nk observations will be 
obtained from each of k groups. The multiple regression equation relating Y to the X’s within the 
ith group is 

εββββ +++++ ppii XXX = Y L22110  

The β 's  are the regression coefficients or slopes. Analysis of covariance assumes that, except for 
the intercept 0β , the slopes are equal across all groups. Thus, the difference between the means 
of any two groups is equal to the difference between their intercepts.  

Let  denote the common variance of all groups ignoring the covariates and  the within-
group variance after considering the covariates. These values are related according to the formula 

2σ 2
εσ

( ) 222 1 σρσε −=  

where is the coefficient of multiple determination (estimated by R2). 2ρ

Given the above terminology, the ratio of the mean square between groups to the mean square 
within groups follows a central F distribution with two parameters matching the degrees of 
freedom of the numerator mean square and the denominator mean square. When the null 
hypothesis of mean equality is rejected, the above ratio has a noncentral F distribution which also 
depends on the noncentrality parameter, λ . This parameter is calculated as 

2
εσ

σλ
2
mkn =  
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N
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and 

k
N =n . 

Some authors use the symbolφ for the noncentrality parameter. The relationship between the two 
noncentrality parameters is 

φ λ
=

k
. 

The process of planning an experiment should include the following steps: 

1. Determine an estimate of the within group standard deviation, σ. This may be done from 
prior studies, from experimentation with the Standard Deviation Estimation module, from 
pilot studies, or from crude estimates based on the range of the data. See the chapter on 
estimating the standard deviation for more details. 

2. Determine a set of means that represent the group differences that you want to detect. 

3. Determine the R-squared value between the response and the covariates. 

4. Determine the appropriate group sample sizes that will ensure desired levels of α  and 
β .  

Power Calculations for ANCOVA 
The calculation of the power of a particular test proceeds as follows: 

1. Determine the critical value, whereα,,1 pkNkF −−− α is the probability of a type-I error and 
k, p, and N are defined above. Note that this is a two-tailed test as no direction is assigned 
in the alternative hypothesis. 

2. From a hypothesized set ofμi s' , calculate the noncentrality parameterλ based on the 
values of  N, k, mσ , , and2ρ σ . 

3. Compute the power as the probability of being greater than  on a noncentral-
F distribution with noncentrality parameter 

α,,1 pkNkF −−−

λ . 

Technical Details for a Planned Comparison 
The terminology of planned comparisons is identical to that of the one-way AOV, so the notation 
used above will be repeated here. 

Suppose you want to test whether the contrast C 
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C =  c
i=1

k

i i∑ μ  

is significantly different from zero. Here the are the contrast coefficients.  c si '
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Define the noncentrality parameterλc , as 

2
εσ

σλ
2
mckn =  

Power Calculations for Planned Comparisons 
The calculation of the power of a particular test proceeds as follows: 

1. Determine the critical value,  whereα,,1 pkNF −− α is the probability of a type-I error and k 
and N are defined above. Note that this is a two-tailed test as no direction is assigned in 
the alternative hypothesis. 

2. From a hypothesized set ofμi s' , calculate the noncentrality parameterλc based on the 
values of  N, k, mcσ , ,  and2ρ σ . 

3. Compute the power as the probability of being greater than  on a noncentral-F 
distribution with noncentrality parameter 

α,,1 pkNF −−

λc . 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are SM, S, k, n, Alpha, and Power and Beta. Under most situations, you will 
select either Power and Beta for a power analysis or n for sample size determination. 
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting)
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not re

. 

jected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 

 means are different. 

ero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
 (Beta = 0.10) is also commonly used. 

es for the probability of a type-I error. A type-I error occurs 

s are equal.  

a. 
ns that about one test in twenty will falsely reject the null hypothesis. You should pick a 

value for alpha that represents the risk of a type-I error you are willing to take in your 

when in fact the

Values must be between z
power. Now, 0.90

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more valu
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the mean

Values must be between zero and one. Historically, the value of 0.05 has been used for alph
This mea

experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size / Groups 

k (Number of Groups) 
This is the number of group means being compared. It must be greater than or equal to two.  

 

oup, is entered here. The sample size of group i 
 ith number from this list times the value of n and rounding up to the 

 
  

e equal, enter “Equal” here and the desired sample size in n. A set 

red. A separate analysis is performed for each value listed here. 

The
All

Note that the number of items used in the Hypothesized Means box and the Group Allocation
Ratios box is controlled by this number. 

Group Allocation Ratios 
A set of positive, numeric values, one for each gr
is found by multiplying the
next whole number. The number of values must match the number of groups, k. When too few
numbers are entered, 1’s are added. When too many numbers are entered, the extras are ignored.

• Equal 
If all sample sizes are to b
of k 1's will be used. This will result in N1 = N2 = N3 = n. That is, all sample sizes are equal 
to n.  

n (Sample Size per Group) 
This is the base, per group, sample size. One or more values, separated by blanks or commas, 
may be ente

 group samples sizes are determined by multiplying this number by each of the Group 
ocation Ratios numbers. If the Group Allocation Ratios numbers are represented by m1, m2, 
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m3, …, mk and this value is represented by n, the group sample sizes N1, N2, N3, ..., Nk are 

where the operator, [X] means the next integer after X, e.g. [3.1]=4. 

For pose there are three groups and the Group Allocation Ratios is set to 1,2,3. If n 
is 5, the resulting sample sizes will be 5, 10, and 15. If n is 50, the resulting group sample sizes 
will be 50, 100, and 150. If n is set to 2,4,6,8,10, five sets of group sample sizes will be generated 
and an analysis run for each. These sets are: 

As a second exam ee groups and the Group Allocation Ratios is 
0.2, llocation ratios values sum to one, n can be interpreted as the total 
sam he allocation ratios values as the proportion of the total in each 
grou

 sample sizes would be 2, 3, and 5. 

)12 = 2.4 which is rounded up to the next whole integer, 3. 

. 

Not is 12). This can happen because of 
roun

Effect Size – Means 

calculated as follows: 
N1=[n(m1)] 

N2=[n(m2)] 

N3=[n(m3)] 

etc. 

 example, sup

2 4 6 
4 8 12 
6 12 18 
8 16 24 
10 20 30 

ple, suppose there are thr
0.3,0.5. When fractional a
ple size of all groups and t
p.  

If n is 10, the three group

If n is 20, the three group sample sizes would be 4, 6, and 10. 

If n is 12, the three group sample sizes would be 

(0.2

(0.3)12 = 3.6 which is rounded up to the next whole integer, 4

(0.5)12 = 6.  

e that in this case, 3+4+6 does not equal n (which 
ding. 

Hypothesized Means 
Enter a set of hypothesized means, one for each group. These means represent the group centers 
under the alternative hypothesis (the null hypothesis is that they are equal). The standard 

SM) is used in the power calculations to represent the average size of 
means. The standard deviation of the means is calculated using the 

deviation of these means (
the differences among the 
formula: 

m
i=1

k
i

2

 =  ( - )
kσ

μ μ∑  

This quantity gives the magnitude of the differences among the group means. Note that when a
means are

ll 
 equal,  is zero. mσ
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You should enter a set of means that give the pattern of differences you expect or the pattern that 
you wish to detect. For example, in a particular study involvi  three groups, your research might 
be “meaningful” if either of two treatment means is 50% larger than the control mean. If the 

 in enter a set of mean values. However, it is possible to enter the 

ng

control mean is 50, then you would enter 50,75,75 as the three means. 

It is usually more tuitive to 
standard deviation of the means directly by placing an S in front of the number (see below).  

Some might wish to specify the alternative hypothesis as the effect size,  f, which is defined as  

f =  mσ
σ

 

If so, set σ = 1and m fσ = . Cohen (1988) has designated values of f less than 0.1 as small, 
values around 0.25 to be medium, and values over 0.4 to be large. 

Entering a List of Means 
If a set of numbers is entered without a leading S, they are assumed to be the hypothesized group 
means under the alternative hypothesis. Their standard deviation will be calculated and used in 

ations nks or c f the 
s, the mean values 0,1,2 

produce the same results as the values 100,101,102. 

 to match the number of groups, the last mean is repeated. For 

S O
If an red before the list of numbers, they are assumed to be values of 

the calcul . Bla ommas may separate the numbers. Note that it is not the values o
means themselves that is important, but only their differences. Thu

If too few means are entered
example, suppose that four means are needed and you enter 1,2 (only two means). PASS will 
treat this as 1,2,2,2. If too many values are entered, PASS will truncate the list to the number of 
means needed. 

Examples: 

5 20 60 

2,5,7 

-4,0,6,9 

ption 
 S is ente mσ , the standard 

deviations of the group means. A separate power calculation is made for each value. Note that 
this list can be a TO-BY phrase. 

s: 

Effect Size – Standard Deviation 

Example

S 4.7 

S 4.3 5.7 4.2 

S 10 to 20 by 2 

S (Standard Deviation of Subjects) 
This isσ , the standard deviation within a group. It represents the variability from subject to 
subject that occurs when the subjects are treated identically. It is assumed to be the same for all 
groups. This value is approximated in an analysis of variance table by the square root of the mean 
square error. 
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Since they are positive square roots, the nu
the SD button to obtain further help on estimating the standard deviation.

mbers must be strictly greater than zero. You can press 
 

Note that if you are using this procedure to test a factor (such as an interaction) from a more 
complex design, the value of standard deviation is estimated by the square root of the mean 
square of the term that is used as the denominator in the F test.  

You can enter a list of values separated by blanks or commas, in which case, a separate analysis 
will be calculated for each value. 

Examples of valid entries: 

1,4,7,10 

1 4 7 10 

1 to 10 by 3 

Effect Size – Covariates 

Number of Covariates 
This is the number of covariates (X’s) in the study. Because of the stringent assumptions, this 
value is usually set to 1 or 2. 

R2 (R-Squa ith Covariates) 
is achieved within a group by the covariates. It must be 

red w
This is the average R-squared value that 
between 0 and 1. 

Planned Comparisons 

Contrast Coefficients 
If you want to analyze a specific planned comparison, enter a set of contrast coefficients here. 

ernative that it is non-zero (two-sided test). These are often called Planned 
Comparisons. 

ge of the means in which the weights sum to zero. For example, 
ups and that the main hypothesis of interest is whether there is a 

ps. You would enter -3, -1, 1, 3 here. This would form the weighted 

 to be compared against zero using a standard F (or t) test. 

• 
there 

The calculations will then refer to the hypothesis that the corresponding contrast of the means is 
zero versus the alt

A contrast is a weighted avera
suppose you are studying four gro
linear trend across the grou
average of the means: 

-3(Mean1)-(Mean2)+(Mean3)+3(Mean3) 

The point to realize is that these numbers (the coefficients) are used to calculate a specific 
weighted average of the means which is

• NONE or blank 
When the box is left blank or the word None is entered, this option is ignored. 

Linear Trend 
A set of coefficients is generated appropriate for testing the alternative hypothesis that 
is a linear (straight-line) trend across the means. These coefficients assume that the means are 
equally spaced across the trend variable. 
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• Quadratic 
A set of coefficients is generated appropriate for testing the alternative hypothesis that the 
means follow a quadratic model. These coefficients assume that the means are equally spaced 

cit X variable. 

• 
ate for testing the alternative hypothesis that the 

means follow a cubic model. These coefficients assume that the means are equally spaced 
plicit X variable. 

• 
d appropriate for testing the alternative hypothesis that the 

first mean is different from the average of the remaining means. For example, if there were 
ups, the generated coefficients would be -3, 1, 1, 1. 

• 
 by commas or blanks, may be entered. If the number of items 

in the list does not match the number of groups (k), zeros are added or extra coefficients are 

he equivalent -
The second set does not sum to zero. 

Example 1 – Finding the Statistical Power 

across the impli

Cubic 
A set of coefficients is generated appropri

across the im

First Against Others 
A set of coefficients is generate

four gro

List of Coefficients 
A list of coefficients, separated

truncated. 

Remember that these coefficients must sum to zero. Also, the scale of the coefficients does 
not matter. That is 0.5,0.25,0.25; -2,1,1; and -200,100,100 will yield the same results.  

To avoid rounding problems, it is better to use -3,1,1,1 than t
1,0.333,0.333,0.333. 

An 
sign  0.4 
with n a group is 18. 
Not

Treatment means of 40, 10, 10, and 10 represent clinically important treatment differences. To 
better understand the relationship between power, sample size, and R-squared, the researcher 

for several group 
groups.   

experiment is being designed to compare the means of four groups using an F test with a 
ificance level of 0.05. A covariate is available that is estimated to have an R-squared of
 the response. Previous studies have shown that the standard deviation withi

e that this value ignores the covariate.  

wants to compute the power for R-squared’s of 0.2, 0.3, 0.4, and 0.5, and 
sample sizes between 2 and 10. The sample sizes will be equal across all 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 

is 
le 1 

the PASS Home window, load the Analysis of Covariance procedure window by expanding 
Means, then ANOVA, then clicking on Analysis of Covariance, and then clicking on Analys
of Covariance. You may then make the appropriate entries as listed below, or open Examp
by going to the File menu and choosing Open Example Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
k (Number of Groups) ............................. 4 
Group Allocation Ratios .......................... Equal 
n (Sample Size per Group) ..................... 2 to 14 by 2 
Hypothesized Means ............................... 40 10 10 10 
S (Standard Deviation of Subjects) ......... 18 
Number of Covariates ............................. 1 
R2 (R-Squared with Covariates) ............. 0.2 to 0.5 by 0.1 
Contrast Coefficients ............................... None 
 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev Standard  
 Average Groups Total   of Means Deviation Effect 
Power n (k) N Alpha Beta (Sm) (S) Size Cov’s R2 
0.17245 2.0 4 8 0.05000 0.82755 12.99 18.00 0.7217 1 0.200 
0.19041 2.0 4 8 0.05000 0.80959 12.99 18.00 0.7217 1 0.300 
0.21428 2.0 4 8 0.05000 0.78572 12.99 18.00 0.7217 1 0.400 
0.24742 2.0 4 8 0.05000 0.75258 12.99 18.00 0.7217 1 0.500 
0.61111 4.0 4 16 0.05000 0.38889 12.99 18.00 0.7217 1 0.200 
0.67475 4.0 4 16 0.05000 0.32525 12.99 18.00 0.7217 1 0.300 
0.74725 4.0 4 16 0.05000 0.25275 12.99 18.00 0.7217 1 0.400 
0.82656 4.0 4 16 0.05000 0.17344 12.99 18.00 0.7217 1 0.500 
0.86165 6.0 4 24 0.05000 0.13835 12.99 18.00 0.7217 1 0.200 
0.90662 6.0 4 24 0.05000 0.09338 12.99 18.00 0.7217 1 0.300 
0.94625 6.0 4 24 0.05000 0.05375 12.99 18.00 0.7217 1 0.400 
0.97632 6.0 4 24 0.05000 0.02368 12.99 18.00 0.7217 1 0.500 
0.95878 8.0 4 32 0.05000 0.04122 12.99 18.00 0.7217 1 0.200 
0.97817 8.0 4 32 0.05000 0.02183 12.99 18.00 0.7217 1 0.300 
0.99102 8.0 4 32 0.05000 0.00898 12.99 18.00 0.7217 1 0.400 
0.99758 8.0 4 32 0.05000 0.00242 12.99 18.00 0.7217 1 0.500 
0.98919 10.0 4 40 0.05000 0.01081 12.99 18.00 0.7217 1 0.200 
0.99559 10.0 4 40 0.05000 0.00441 12.99 18.00 0.7217 1 0.300 
0.99873 10.0 4 40 0.05000 0.00127 12.99 18.00 0.7217 1 0.400 
0.99980 10.0 4 40 0.05000 0.00020 12.99 18.00 0.7217 1 0.500 
 
References 
Desu, M. M. and Raghavarao, D. 1990. Sample Size Methodology. Academic Press. New York. 
Fleiss, Joseph L. 1986. The Design and Analysis of Clinical Experiments. John Wiley & Sons. New York. 
Kirk, Roger E. 1982. Experimental Design: Procedures for the Behavioral Sciences. Brooks/Cole. Pacific Grove, 
   California. 
Borm, Fransen, and Lemmens. 2007. 'A simple sample size formula for analysis of covariance in randomized 
   clinical trials.' J of Clinical Epidemiology, 60, 1234-1238. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
n is the average group sample size. 
k is the number of groups. 
Total N is the total sample size of all groups combined. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
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Beta is th ypothesis.e probability of accepting a false null h  It should be small. 
Sm is the standard deviation of the group means under the alternative hypothesis. 
Standard deviation is the within group standard deviation. 
The Effect Size is the ratio of Sm to standard deviation. 
Cov's is the number of covariates. 
R2 (R-Squared) gives the strength of the relationship between the response and the covariates. 
 
Summary Statements 
In an analysis of covariance study, sample sizes of 2, 2, 2, and 2 are obtained from each of 
the 4 groups whose means are to be compared. The covariate has an R-squared of 0.200.  
The total sample of 8 subjects achieves 17% power to detect differences among the means  
versus the alternative of equal means using an F test with a 0.05000 significance level. The size of the 
variation in the means is represented by their standard deviation which is 12.99. The common 
standard deviation within a group is assumed to be 18.00. 

 

This report shows the numeric results of this power study. Following are the definitions of the 

a false null hypothesis. 

The average of the group sample sizes. 

T

T
T

A
T

B
T y
th

S
T
m
m

O
hy

S
T

E
The effect siz SM to S. It is an index of relative difference between the means that 
ca

C
T

columns of the report. 

Power 
The probability of rejecting 

Average n 

k 
he number of groups. 

otal N 
he total sample size of the study. 

lpha 
he probability of rejecting a true null hypothesis. This is often called the significance level. 

eta 
he probability of accepting a false null hypothesis that Sm is zero when Sm is actuall  equal to 
e value shown in the next column. 

td Dev of Means (Sm) 
his is the standard deviation of the hypothesized means. It was computed from the hypothesized 
eans. It is roughly equal to the average difference between the group means and the overall 
ean. 

nce you have computed this, you can enter a range of values to determine the effect of the 
pothesized means on the power. 

tandard Deviation (S) 
his is the within-group standard deviation. It was set in the Data window. 

ffect Size 
e is the ratio of 

n be compared from study to study. 

ov’s 
his is the number of covariates. 
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R2 
T

Detailed Results Report 

his is the value of R-squared. 

 
Details when Alpha = 0.05000, Power = 0.17245, SM = 12.99, S = 18.00, Cov's = 1, R2 = 0.20 
  Percent  Deviation Ni 
  Ni of  From Times 
Group Ni Total Ni Mean Mean Deviation 
1 2 25.00 40.00 22.50 45.00 
2 2 25.00 10.00 7.50 15.00 
3 2 25.00 10.00 7.50 15.00 
4 2 25.00 10.00 7.50 15.00 
ALL 8 100.00 17.50   

 

These reports show details of each row of the previous report. 

t line, labeled ALL, gives the average or the 
priate. 

is is the sample size of each group. This column is especially useful when the sample sizes are 

Ni of Total Ni 
ample that is allocated to each group. 

tion From Mean 
 

Group 
The number of the group shown on this line. The las
total as appro

Ni 
Th
unequal. 

Percent 
This is the percentage of the total s

Mean 
The is the value of the Hypothesized Mean. The final row gives the average for all groups. 

Devia
This is the absolute value of the mean minus the overall mean. Since Sm is the sum of the squared
deviations, these values show the relative contribution to Sm. 

Ni Times Deviation 
This is the group sample size times the absolute deviation. It shows the combined influence of the 
size of the deviation and the sample size on Sm. 
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Plots Section 
 

     
  

 
This plot gives a visual presentation to the results in the Numeric Report. We can quickly see the 
impact on the power of increasing the sample size and increasing the R-squared. 

t the value of R-squared has a large impact on power for small sample sizes, but now for Note tha
larger ones. 

Example 2 – Validation using Borm, et al. 
Borm, Fransen, and Lem
size in an experiment w

mens (2007) page 1237 presents an example of determining a sample 

Setup 

ith 2 groups, mean difference of 0.6, standard deviation of 1.2, alpha of 
0.05, one covariate with an R-squared of 0.25, and power of 0.80. They find a total sample size of 
95.   

This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Analysis of Covariance procedure window by expanding 
Means, then ANOVA, then clicking on Analysis of Covariance, and then clicking on Analysis 
of Covariance. You may then make the appropriate entries as listed below, or open Example 2 
by going to the File menu and choosing Open Example Template. 
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Option Value 
ata Tab 

Find (Solve For) ...................................... n (Sample Size) 
Power ...................................................... 0.80 
Alpha ....................................................... 0.05 
k (Number of Groups) ............................. 2 
Group Allocation Ratios .......................... Equal 
Hypothesized Means ............................... 0 0.6 
S (Standard Deviation of Subjects) ......... 1.2 
n (Sample Size per Group) ..................... Ignored since this is to be solved for 
Number of Covariates ............................. 1 
R2 (R-Squared with Covariates) ............. 0.25 
Contrast Coefficients ............................... None 

Output 

D

Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev Standard  
 Average Groups Total   of Means Deviation Effect 
Power n (k) N Alpha Beta (Sm) (S) Size Cov’s R2 
0.80752 49.0 2 98 0.05000 0.19248 0.30 1.20 0.2500 1 0.250 

 
PASS also found N = 98. Note that Borm (2007) used calculations based on a normal 
approximation and obtained N = 95, but PASS uses exact calculations based on the non-central F 
distribution. 
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Chapter 555 

One-Way Analysis 
of Variance 
(Simulation) 
Introduction 
This procedure analyzes the power and significance level of the parametric F-Test and the 
nonparametric Kruskal-Wallis test which are used to test statistical hypotheses in a one-way 
experimental design. For each scenario that is set up, two simulations are run. One simulation 
estimates the significance level and the other estimates the power.  

Technical Details 
Computer simulation allows us to estimate the power and significance level that is actually achieved 
by a test procedure in situations that are not mathematically tractable. Computer simulation was 
once limited to mainframe computers. But, in recent years, as computer speeds have increased, 
simulation studies can be completed on desktop and laptop computers in a reasonable period of 
time.  

The steps to a simulation study are  

1. Specify how the test is carried out. This includes indicating how the test statistic is 
calculated and how the significance level is specified. 

2. Generate random samples from the distributions specified by the alternative hypothesis. 
Calculate the test statistics from the simulated data and determine if the null hypothesis is 
accepted or rejected. Tabulate the number of rejections and use this to calculate the test’s 
power.  

3. Generate random samples from the distributions specified by the null hypothesis. Calculate 
each test statistic from the simulated data and determine if the null hypothesis is accepted or 
rejected. Tabulate the number of rejections and use this to calculate the test’s significance 
level.  

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated 
data leads to a rejection of the null hypothesis. The power is the proportion of simulated 
samples in step 2 that lead to rejection. The significance level is the proportion of simulated 
samples in step 3 that lead to rejection. 
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Generating Random Distributions 
Two methods are available in PASS to simulate random samples. The first method generates the 
random variates directly, one value at a time. The second method generates a large pool (over 
10,000) of random values and then draw the random numbers from this pool. This second method 
can cut the running time of the simulation by 70%. 

As mentioned above, the second method begins by generating a large pool of random numbers from 
the specified distributions. Each of these pools is evaluated to determine if its mean is within a small 
relative tolerance (0.0001) of the target mean. If the actual mean is not within the tolerance of the 
target mean, individual members of the population are replaced with new random numbers if the 
new random number moves the mean towards its target. Only a few hundred such swaps are 
required to bring the actual mean to within tolerance of the target mean. This population is then 
sampled with replacement using the uniform distribution. We have found that this method works 
well as long as the size of the pool is the maximum of twice the number of simulated samples 
desired and 10,000.  

Test Statistics 
Suppose g groups each have a normal distribution and meansμ μ μ1 2, , ,L g  and common 
standard deviation σ . Let  denote the number of subjects in each group and let N 
denote the total sample size of all groups. The tests that follow assume that the data are obtained 
by taking simple random samples from the g populations. 

n n ng1 2, , ,L

F-Test 
The formula for the calculation of the F-test is 

F MSR
MSEg N g− − =1,  
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If the assumptions are met, the distribution of this test statistic follows the F distribution with 
degrees of freedom g-1 and N-g. 

Kruskal-Wallis Test 
The Kruskal-Wallis test corrected for ties is calculated using the formula 

W H
TC

=  

where 
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N N
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g
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Rk  is the sum of the ranks of the kth group, and t is the count of a particular tie. The distribution 
of W is approximately Chi-square with g-1 degrees of freedom. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data1, Data 2, Reports, and Options tabs. For more information about the options of other tabs, 
go to the Procedure Window chapter. 

Data 1 Tab 
The Data 1 tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be calculated using the values of the other parameters. 
Under most conditions, you would select either Power or n. 

Select Power when you want to estimate the power of a certain scenario.  

Select n when you want to determine the sample size needed to achieve a given power and alpha 
error level. This option is very computationally intensive, so it may take a long time to complete. 
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

n (Sample Size Multiplier) 
This is the base, per group, sample size. One or more values, separated by blanks or commas, 
may be entered. A separate analysis is performed for each value listed here. 

The group samples sizes are determined by multiplying this number by each of the Group Sample 
Size Pattern numbers. If the Group Sample Size Pattern numbers are represented by m1, m2, m3, 
…, mk and this value is represented by n, the group sample sizes N1, N2, N3, ..., Nk are calculated 
as follows: 

n1=[n(m1)] 

n2=[n(m2)] 

n3=[n(m3)] 

etc. 

where the operator, [X] means the next integer after X, e.g. [3.1]=4. This is required since sample 
sizes must be whole numbers. 
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For example, suppose there are three groups and the Group Sample Size Pattern is set to 1,2,3. If 
n is 5, the resulting sample sizes will be 5, 10, and 15. If n is 50, the resulting group sample sizes 
will be 50, 100, and 150. If n is set to 2,4,6,8,10; five sets of group sample sizes will be generated 
and an analysis run for each. These sets are: 

2 4 6 
4 8 12 
6 12 18 
8 16 24 
10 20 30 

As a second example, suppose there are three groups and the Group Sample Size Pattern is 
0.2,0.3,0.5. When the fractional Pattern values sum to one, n can be interpreted as the total 
sample size N of all groups and the Pattern values as the proportion of the total in each group.  

If n is 10, the three group sample sizes would be 2, 3, and 5. 

If n is 20, the three group sample sizes would be 4, 6, and 10. 

If n is 12, the three group sample sizes would be 

(0.2)12 = 2.4 which is rounded up to the next whole integer, 3. 

(0.3)12 = 3.6 which is rounded up to the next whole integer, 4. 

(0.5)12 = 6.  

Note that in this case, 3+4+6 does not equal n (which is 12). This can happen because of 
rounding. 

Group Sample Size Pattern 
A set of positive, numeric values, one for each row of distributions, is entered here. Each item 
specified in this list applies to the whole row of distributions. For example, suppose the entry is 1 
2 1 and Grps 1 = 3, Grps 2 = 1, Grps 3 = 2. The sample size pattern used would be 1 1 1 2 1 1. 

The sample size of group i is found by multiplying the ith number from this list by the value of n 
and rounding up to the next whole number. The number of values must match the number of 
groups, g. When too few numbers are entered, 1’s are added. When too many numbers are 
entered, the extras are ignored. 

• Equal 
If all sample sizes are to be equal, enter Equal here and the desired sample size in n. A set of 
g 1's will be used. This will result in n1 = n2 = … = ng = n. That is, all sample sizes are equal 
to n.  

Effect Size 
These options specify the distributions to be used in the two simulations, one set per row. The 
first option specifies the number of groups represented by the two distributions that follow. The 
second option specifies the distribution to be used in simulating the null hypothesis to determine 
the significance level (alpha). The third option specifies the distribution to be used in simulating 
the alternative hypothesis to determine the power.  

Grps [1 – 3] (Grps 4 – 9 are found on the Data 2 tab) 
This value specifies the number of groups specified by the H0 and H1 distribution statements to 
the right. Usually, you will enter ‘1’ to specify a single H0 and a single H1 distribution, or you 
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will enter ‘0’ to indicate that the distributions specified on this line are to be ignored. This option 
lets you easily specify many identical distributions with a single phrase. 

The total number of groups g is equal to the sum of the values for the three rows of distributions 
shown under the Data1 tab and the six rows of distributions shown under the Data2 tab. 

Note that each item specified in the ‘Group Sample Size Pattern’ option applies to the whole row 
of entries here. For example, suppose the ‘Group Sample Size Pattern’ was ‘1 2 1’ and ‘Grps 1’ = 
3, ‘Grps 2’ = 1, and ‘Grps 3’ = 2. The sample size pattern would be ‘1 1 1 2 1 1’.  

Group Distribution(s)|H0 
This entry specifies the distribution of one or more groups under the null hypothesis, H0. The 
magnitude of the differences of the means of these distributions, which is often summarized as 
the standard deviation of the means, represents the magnitude of the mean differences specified 
under H0. Usually, the means are assumed to be equal under H0, so their standard deviation 
should be zero except for rounding.  

These distributions are used in the simulations that estimate the actual significance level. They 
also specify the value of the mean under the null hypothesis, H0. Usually, these distributions will 
be identical. The parameters of each distribution are specified using numbers or letters. If letters 
are used, their values are specified in the boxes below. The value M0 is reserved for the value of 
the mean under the null hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean is entered 
first. 

Beta=A(M0,A,B,Minimum) 
Binomial=B(M0,N) 
Cauchy=C(M0,Scale) 
Constant=K(Value) 
Exponential=E(M0) 
F=F(M0,DF1) 
Gamma=G(M0,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M0,SD) 
Poisson=P(M0) 
Student's T=T(M0,D) 
Tukey's Lambda=L(M0,S,Skewness,Elongation) 
Uniform=U(M0,Minimum) 
Weibull=W(M0,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Finding the Value of the Mean of a Specified Distribution 
Except for the multinomial distribution, the distributions have been parameterized in terms of 
their means, since this is the parameter being tested. The mean of a distribution created as a linear 
combination of other distributions is found by applying the linear combination to the individual 
means. However, the mean of a distribution created by multiplying or dividing other distributions 
is not necessarily equal to applying the same function to the individual means. For example, the 
mean of 4N(4, 5) + 2N(5, 6) is 4*4 + 2*5 = 26, but the mean of 4N(4, 5) * 2N(5, 6) is not exactly 
4*4*2*5 = 160 (although it is close). 
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Group Distribution(s)|H1 
Specify the distribution of this group under the alternative hypothesis, H1. This distribution is 
used in the simulation that determines the power. A fundamental quantity in a power analysis is 
the amount of variation among the group means. In fact, classical power analysis formulas, this 
variation is summarized as the standard deviation of the means.  

The important point to realize is that you must pay particular attention to the values you give to 
the means of these distributions because they are fundamental to the interpretation of the 
simulation. 

For convenience in specifying a range of values, the parameters of the distribution can be 
specified using numbers or letters. If letters are used, their values are specified in the boxes 
below. The value M1 is reserved for the value of the mean under the alternative hypothesis.  

Following is a list of the distributions that are available and the syntax used to specify them. Note 
that, except for the multinomial, the distributions are parameterized so that the mean, M1, is 
entered first. 

Beta=A(M1,A,B,Minimum) 
Binomial=B(M1,N) 
Cauchy=C(M1,Scale) 
Constant=K(Value) 
Exponential=E(M1) 
F=F(M1,DF1) 
Gamma=G(M1,A) 
Multinomial=M(P1,P2,…,Pk) 
Normal=N(M1,SD) 
Poisson=P(M1) 
Student's T=T(M1,D) 
Tukey's Lambda=L(M1,S,Skewness,Elongation) 
Uniform=U(M1,Minimum) 
Weibull=W(M1,B) 

Details of writing mixture distributions, combined distributions, and compound distributions are 
found in the chapter on Data Simulation and will not be repeated here. 

Effect Size – Distribution Parameters 

M0 (Mean|H0) 
These values are substituted for M0 in the distribution specifications given above. M0 is intended 
to be the value of the mean hypothesized by the null hypothesis, H0. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 

M1 (Mean|H1) 
These values are substituted for M1 in the distribution specifications given above. Although it can 
be used wherever you want, M1 is intended to be the value of the mean hypothesized by the 
alternative hypothesis, H1. 

You can enter a list of values using the syntax 0 1 2 3 or 0 to 3 by 1. 
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Parameter Values (S, A, B, C) 
Enter the numeric value(s) of the parameters listed above. These values are substituted for the 
corresponding letter in all four distribution specifications. 

You can enter a list of values for each letter using the syntax 0 1 2 3 or 0 to 3 by 1. 

You can also change the letter that is used as the name of this parameter using the pull-down 
menu to the side. 

Test 

Test Statistic 
Specify which test is to be simulated. Although the F-test is the most commonly used test, it is 
based on assumptions that may not be viable in some situations. For your data, you may find that 
the Kruskal-Wallis test is more accurate (actual alpha = target alpha) and more precise (better 
power). 

Simulations 

Simulations 
This option specifies the number of iterations, M, used in the simulation. The larger the number 
of iterations, the longer the running time, and, the more accurate the results. 

The precision of the simulated power estimates are calculated from the binomial distribution. 
Thus, confidence intervals may be constructed for various power values. The following table 
gives an estimate of the precision that is achieved for various simulation sizes when the power is 
either 0.50 or 0.95. The table values are interpreted as follows: a 95% confidence interval of the 
true power is given by the power reported by the simulation plus and minus the ‘Precision’ 
amount given in the table. 
  

 Simulation Precision Precision 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
   

Notice that a simulation size of 1000 gives a precision of plus or minus 0.01 when the true power 
is 0.95. Also note that as the simulation size is increased beyond 5000, there is only a small 
amount of additional accuracy achieved.  
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Reports Tab 
The Reports tab contains settings about the format of the output. 

Select Output – Numeric Reports 

Show Numeric Reports & Plots 
These options let you specify whether you want to generate the standard reports and plots. 

Show Inc’s & 95% C.I. 
Checking this option causes an additional line to be printed showing a 95% confidence interval 
for both the power and actual alpha and half the width of the confidence interval (the increment). 

Select Output – Plots 

Show Comparative Reports & Plots 
These options let you specify whether you want to generate reports and plots that compare the test 
statistics that are available. 

Iterations Tab 
The Options tab contains limits on the number of iterations and various options about individual 
tests. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the sample size is aborted. When 
the maximum number of iterations is reached without convergence, the sample size is left blank. 
We recommend a value of at least 500. 

Random Numbers 

Random Number Pool Size 
This is the size of the pool of values from which the random samples will be drawn. Pools should 
be at least the maximum of 10,000 and twice the number of simulations. You can enter Automatic 
and an appropriate value will be calculated. 

If you do not want to draw numbers from a pool, enter 0 here. 
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Example 1 – Power at Various Sample Sizes 
For this first example we repeat Example 1 of the regular One-Way ANOVA procedure. This will 
allow you to compare the values obtained by simulation with the actual values obtained from the 
theoretical results.   

An experiment is being designed to compare the means of four groups using an F test with a 
significance level of 0.05. Previous studies have shown that the standard deviation within a group 
is 18. Treatment means of 40, 10, 10, and 10 represent clinically important treatment differences. 
To better understand the relationship between power and sample size, the researcher wants to 
compute the power for group sample sizes of 4, 8, and 12. The group sample sizes are equal.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance (Simulation) procedure 
window by expanding Means, then ANOVA, then clicking on Analysis of Variance, and then 
clicking on One-Way Analysis of Variance (Simulation). You may then make the appropriate 
entries as listed below, or open Example 1 by going to the File menu and choosing Open 
Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
n (Sample Size Multiplier) ....................... 4 8 12 
Group Sample Size Pattern .................... Equal 
Grps 1 ...................................................... 1 
Group 1 Distribution(s) | H0 .................... N(M0 S) 
Group 1 Distribution(s) | H1 .................... N(M1 S) 
Grps 2 ...................................................... 3 
Group 2 Distribution(s) | H0 .................... N(M0 S) 
Group 2 Distribution(s) | H1 .................... N(M0 S) 
Grps 3 ...................................................... 0 
M0 (Mean|H0) ......................................... 10 
M1 (Mean|H1) ......................................... 40 
S .............................................................. 18 
Test Type ................................................ F-Test 
Simulations .............................................. 2000 

Iterations Tab 
Random Number Pool Size ..................... Automatic 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results Report 
 

Numeric Results for Testing the g = 4 Group Means 
Test Statistic: F-Test 
 
 Average Total       
 Group Sample    S.D. of S.D. of  
 Size Size Target Actual  Means Data  
Power n N Alpha  Alpha  Beta Sm|H1 SD|H1 M0 M1 S 
0.536 4.0 16 0.050 0.047 0.465 13.0 18.0 10.0 40.0 18.0    
(0.022) [0.514 0.557]  (0.009) [0.038 0.056]        
 
0.896 8.0 32 0.050 0.053 0.105 13.0 18.1 10.0 40.0 18.0    
(0.013) [0.882 0.909]  (0.010) [0.043 0.063]        
 
0.982 12.0 48 0.050 0.051 0.019 13.0 18.1 10.0 40.0 18.0    
(0.006) [0.976 0.987]  (0.010) [0.041 0.061]        
 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 12.84 seconds. 
H0 Distributions: Normal(M0 S); Normal(M0 S); Normal(M0 S); and Normal(M0 S) 
H1 Distributions: Normal(M1 S); Normal(M0 S); Normal(M0 S); and Normal(M0 S) 
 
Report Definitions 
H0 represents the null hypothesis. 
H1 represents the alternative hypothesis. 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
'n' is the average of the group sample sizes. 
Total N is the total sample size of all groups combined. 
Target Alpha is the desired probability of rejecting a true null hypothesis.  
Actual Alpha is the alpha achieved by this simulation.  
Beta is the probability of accepting a false null hypothesis. 
Sm|H1 is the standard deviation of the group means under the alternative hypothesis. 
SD|H1 is the within group standard deviation under the alternative hypothesis. 
Second Row: (Power Prec.) [95% LCL and UCL Power]    (Alpha Prec.) [95% LCL and UCL Alpha] 
 
Summary Statements 
A one-way design with 4 groups has sample sizes of 4, 4, 4, and 4. The null hypothesis is that 
the standard deviation of the group means is 0.1 and the alternative standard deviation of the 
group means is 13.0. The total sample of 16 subjects achieves a power of 0.536 using the F-Test 
with a target significance level of 0.050 and an actual significance level of 0.047. The 
average within group standard deviation assuming the alternative distribution is 18.0. These 
results are based on 2000 Monte Carlo samples from the null distributions: Normal(M0 S); 
Normal(M0 S); Normal(M0 S); and Normal(M0 S) and the alternative distributions: Normal(M1 S); 
Normal(M0 S); Normal(M0 S); and Normal(M0 S). Other parameters used in the simulation were: M0 
= 10.0, M1 = 40.0, and S = 18.0. 

 

This report shows the estimated power for each scenario. The first row shows the parameter 
settings and the estimated power and significance level (Actual Alpha).  
The second row shows two 95% confidence intervals in brackets: the first for the power and the 
second for the significance level. Half the width of each confidence interval is given in 
parentheses as a fundamental measure of the accuracy of the simulation. As the number of 
simulations is increased, the width of the confidence intervals will decrease. 

Power 
This is the probability of rejecting a false null hypothesis. This value is estimated by the 
simulation using the H1 distributions. 
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Note that a precision value (half the width of its confidence interval) and a confidence interval are 
shown on the line below this row. These values are provided to help you understand the precision 
of the estimated power. 

Average Group Size n 
This is the average of the group sample sizes. 

Total Sample Size N 
This is the total sample size of the study. 

Target Alpha 
The target value of alpha: the probability of rejecting a true null hypothesis. This is often called 
the significance level.  

Actual Alpha 
This is the value of alpha estimated by the simulation using the H0 distributions. It should be 
compared with the Target Alpha to determine if the test statistic is accurate in this scenario.  

Note that a precision value (half the width of its confidence interval) and a confidence interval are 
shown on the line below this row. These values are provided to help you understand the precision 
of the Actual Alpha. 

Beta 
Beta is the probability of accepting a false null hypothesis. This is the value of beta estimated by 
the simulation using the H1 distributions.  

S.D. of Means Sm|H1 
This is the standard deviation of the hypothesized means of the alternative distributions. Under 
the null hypothesis, this value is zero. So this value represents the magnitude of the difference 
among the means that is being tested. It is roughly equal to the average difference between the 
group means and the overall mean.  

Note that the effect size is the ratio of Sm|H1 and SD|H1. 

S.D. of Data SD|H1 
This is the within-group standard deviation calculated from samples from the alternative 
distributions.  

M0 
This is the value entered for M0, the group means under H0. 

M1 
This is the value entered for M1, the group means under H1. 

S 
This is the value entered for S, the standard deviation. 
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Detailed Results Report 
 

Details when Target Alpha = 0.050, M0 = 10.0, M1 = 40.0, S = 18.0 
Test Statistic: F-Test 
  Percent H0 H1 H0 H1 H0 H1 Actual  
Group Ni Ni of N Mean Mean S.D. S.D. Sm Sm Alpha Power 
All 16 100.00 10.0 17.5 18.1 18.0 0.0 13.0 0.051 0.536 
1 4 25.00 10.0 40.0 17.7 17.9 
2 4 25.00 10.0 10.0 18.4 18.2 
3 4 25.00 10.0 10.0 18.2 17.8 
4 4 25.00 10.0 10.0 18.0 18.1 
 
Details when Target Alpha = 0.050, M0 = 10.0, M1 = 40.0, S = 18.0 
Test Statistic: F-Test 
  Percent H0 H1 H0 H1 H0 H1 Actual  
Group Ni Ni of N Mean Mean S.D. S.D. Sm Sm Alpha Power 
All 32 100.00 10.0 17.5 18.0 18.1 0.0 13.0 0.051 0.896 
1 8 25.00 10.0 40.0 17.9 18.1 
2 8 25.00 10.0 10.0 18.1 18.4 
3 8 25.00 10.0 10.0 18.1 18.1 
4 8 25.00 10.0 10.0 18.0 18.0 
 
Details when Target Alpha = 0.050, M0 = 10.0, M1 = 40.0, S = 18.0 
Test Statistic: F-Test 
  Percent H0 H1 H0 H1 H0 H1 Actual  
Group Ni Ni of N Mean Mean S.D. S.D. Sm Sm Alpha Power 
All 48 100.00 10.0 17.5 18.1 18.1 0.0 13.0 0.051 0.982 
1 12 25.00 10.0 40.0 18.3 18.0 
2 12 25.00 10.0 10.0 18.1 18.4 
3 12 25.00 10.0 10.0 18.2 18.0 
4 12 25.00 10.0 10.0 17.9 17.9 
 

This report shows the details of each row of the previous report. 

Group 
This is the number of the group shown on this line. The first line, labeled All, gives the average or 
the total as appropriate. 

Ni 
This is the sample size of each group. This column is especially useful when the sample sizes are 
unequal. 

Percent Ni of N 
This is the percentage of the total sample that is allocated to each group. 

H0 and H1 Means 
These are the means that were used in the simulations for H0 and H1, respectively.  

H0 and H1 S.D.’s 
These are the standard deviations that were obtained by the simulations for H0 and H1, 
respectively. Note that they often are not exactly equal to what was specified because of 
simulation error.  

H0 and H1 Sm’s 
These are the standard deviations of the means that were obtained by the simulations for H0 and 
H1, respectively. Under H0, the value of Sm should be near zero. It lets you determine if your 
simulation of H0 was correctly specified. 
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Plots Section 
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This plot gives a visual presentation to the results in the Numeric Report. We can quickly see the 
impact on the power of increasing the sample size. 

Example 2 – Comparative Results 
Continuing with Example 1, the researchers want to study the characteristics of alternative test 
statistics. They want to compare the results of the F-test and the Kruskal-Wallis test. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance (Simulation) procedure 
window by expanding Means, then ANOVA, then clicking on Analysis of Variance, and then 
clicking on One-Way Analysis of Variance (Simulation). You may then make the appropriate 
entries as listed below, or open Example 2 by going to the File menu and choosing Open 
Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
n (Sample Size Multiplier) ....................... 4 8 12 
Group Sample Size Pattern .................... Equal 
Grps 1 ...................................................... 1 
Group 1 Distribution(s) | H0 .................... N(M0 S) 
Group 1 Distribution(s) | H1 .................... N(M1 S) 
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Data Tab (continued) 
Grps 2...................................................... 3 
Group 2 Distribution(s) | H0 .................... N(M0 S) 
Group 2 Distribution(s) | H1 .................... N(M0 S) 
Grps 3...................................................... 0 
M0 (Mean|H0) ......................................... 10 
M1 (Mean|H1) ......................................... 40 
S .............................................................. 18 
Test Type ................................................ F-Test 
Simulations .............................................. 2000 

Reports Tab 
Show Comparative Reports .................... Checked 
Show Comparative Plots ......................... Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results for Testing the g = 4 Group Means 
Test Statistic: F-Test 
 
 Average Total       
 Group Sample    S.D. of S.D. of  
 Size Size Target Actual  Means Data  
Power n N Alpha  Alpha  Beta Sm|H1 SD|H1 M0 M1 S    
0.510 4.0 16 0.050 0.051 0.490 13.0 17.8 10.0 40.0 18.0    
0.901 8.0 32 0.050 0.047 0.100 13.0 18.0 10.0 40.0 18.0    
0.986 12.0 48 0.050 0.046 0.015 13.0 18.1 10.0 40.0 18.0    
 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 21.02 seconds. 
H0 Distributions: Normal(M0 S); Normal(M0 S); Normal(M0 S); and Normal(M0 S) 
H1 Distributions: Normal(M1 S); Normal(M0 S); Normal(M0 S); and Normal(M0 S) 
 
Power Comparison for Testing the g = 4 Group Means 
 
Total S.D. of S.D. of   Kruskal    
Sample Means Data Target F-Test Wallis    
Size Sm|H1 SD|H1 Alpha Power Power M0 M1 S     
16 13.0 17.8 0.050 0.510 0.366 10.0 40.0 18.0     
32 13.0 18.0 0.050 0.901 0.860 10.0 40.0 18.0     
48 13.0 18.1 0.050 0.986 0.979 10.0 40.0 18.0     
 
Alpha Comparison for Testing the g = 4 Group Means 
 
Total S.D. of S.D. of   Kruskal    
Sample Means Data Target F-Test Wallis    
Size Sm|H1 SD|H1 Alpha Alpha Alpha M0 M1 S     
16 13.0 16.5 0.050 0.042 0.026 10.0 40.0 18.0     
16 13.0 17.8 0.050 0.051 0.041 10.0 40.0 18.0     
32 13.0 18.0 0.050 0.047 0.042 10.0 40.0 18.0     
48 13.0 18.1 0.050 0.046 0.039 10.0 40.0 18.0     
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We notice that the power of the F-test is much greater than the Kruskal-Wallis test for n = 4. 
However, when n = 12, the powers of the two tests are almost equal. Note that the alpha value of 
the Kruskal-Wallis test is almost half that of the F-test for n = 4. This is probably why the power 
is also low.  

Example 3 – Validation using Fleiss 
Fleiss (1986) page 374 presents an example of determining an appropriate sample size when 
using an F-test in an experiment with 4 groups; means of 9.775, 12, 12, and 14.225; standard 
deviation of 3; alpha of 0.05, and beta of 0.20. He finds a sample size of 11 per group.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance (Simulation) procedure 
window by expanding Means, then ANOVA, then clicking on Analysis of Variance, and then 
clicking on One-Way Analysis of Variance (Simulation). You may then make the appropriate 
entries as listed below, or open Example 3 by going to the File menu and choosing Open 
Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... n 
Power ...................................................... 0.80 
Alpha ....................................................... 0.05 
n (Sample Size Multiplier) ....................... Ignored since this is the Find setting 
Group Sample Size Pattern .................... Equal 
Grps 1 ...................................................... 1 
Group 1 Distribution(s) | H0 .................... N(M0 S) 
Group 1 Distribution(s) | H1 .................... N(9.775 S) 
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Data Tab (continued) 
Grps 2...................................................... 2 
Group 2 Distribution(s) | H0 .................... N(M0 S) 
Group 2 Distribution(s) | H1 .................... N(M0 S) 
Grps 3...................................................... 1 
Group 3 Distribution(s) | H0 .................... N(M0 S) 
Group 3 Distribution(s) | H1 .................... N(14.225 S) 
M0 (Mean|H0) ......................................... 12 
M1 (Mean|H1) ......................................... 0 
S .............................................................. 3 
Test Type ................................................ F-Test 
Simulations .............................................. 2000 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing the g = 4 Group Means 
Test Statistic: F-Test 
 
 Average Total       
 Group Sample    S.D. of S.D. of  
 Size Size Target Actual  Means Data  
Power n N Alpha  Alpha  Beta Sm|H1 SD|H1 M0 S 
0.822 11.0 44 0.050 0.052 0.179 1.6 3.0 12.0 3.0     
(0.017) [0.805 0.838]  (0.010) [0.042 0.061]        
 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 18.88 seconds. 
H0 Distributions: Normal(M0 S); Normal(M0 S); Normal(M0 S); and Normal(M0 S) 
H1 Distributions: Normal(9.775 S); Normal(M0 S); Normal(M0 S); and Normal(14.225 S) 
 
Details when Target Alpha = 0.050, M0 = 12.0, S = 3.0 
Test Statistic: F-Test 
  Percent H0 H1 H0 H1 H0 H1 Actual  
Group Ni Ni of N Mean Mean S.D. S.D. Sm Sm Alpha Power 
All 44 100.00 12.0 12.0 3.0 3.0 0.0 1.6 0.052 0.822 
1 11 25.00 12.0 9.8 3.0 3.0 
2 11 25.00 12.0 12.0 3.0 3.0 
3 11 25.00 12.0 12.0 3.0 3.0 
4 11 25.00 12.0 14.2 3.0 3.0 
 

Note that PASS has also found the group sample size to be 11. 
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Example 4 – Selecting a Test Statistic when the Data 
Contain Outliers 
The F-test is known to be robust to the violation of some assumptions, but it is susceptible to 
inaccuracy when the data contain outliers. This example will investigate the impact of outliers on 
the power and precision of the F-test and the Kruskal-Wallis test.  

A mixture of two normal distributions will be used to randomly generate outliers. The mixture 
will draw 95% of the data from a normal distribution with mean zero and variance one. The other 
5% of the data will come from a normal distribution with mean zero and variance that ranges 
from one to ten. In the alternative distributions, two will have a mean of zero and one will have a 
mean of one. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance (Simulation) procedure 
window by expanding Means, then ANOVA, then clicking on Analysis of Variance, and then 
clicking on One-Way Analysis of Variance (Simulation). You may then make the appropriate 
entries as listed below, or open Example 4 by going to the File menu and choosing Open 
Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
n (Sample Size Multiplier) ....................... 10 20 
Group Sample Size Pattern .................... Equal 
Grps 1 ...................................................... 2 
Group 1 Distribution(s) | H0 .................... N(M0 S)[95];N(M0 A)[5] 
Group 1 Distribution(s) | H1 .................... N(M0 S)[95];N(M0 A)[5] 
Grps 2 ...................................................... 1 
Group 2 Distribution(s) | H0 .................... N(M0 S)[95];N(M0 A)[5] 
Group 2 Distribution(s) | H1 .................... N(M1 S)[95];N(M1 A)[5] 
Grps 3 ...................................................... 0 
M0 (Mean|H0) ......................................... 0 
M1 (Mean|H1) ......................................... 1 
S .............................................................. 1 
A .............................................................. 1 5 10 
Test Type ................................................ F-Test 
Simulations .............................................. 2000 

Reports Tab 
Show Comparative Reports .................... Checked 
Show Comparative Plots ......................... Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing the g = 3 Group Means 
Test Statistic: F-Test 
 
 Average Total       
 Group Sample    S.D. of S.D. of  
 Size Size Target Actual  Means Data  
Power n N Alpha  Alpha  Beta Sm|H1 SD|H1 M0 M1 S A 
0.588 10.0 30 0.050 0.054 0.413 0.5 1.0 0.0 1.0 1.0 1.0   
0.381 10.0 30 0.050 0.035 0.619 0.5 1.4 0.0 1.0 1.0 5.0   
0.321 10.0 30 0.050 0.026 0.680 0.5 2.4 0.0 1.0 1.0 10.0   
0.897 20.0 60 0.050 0.049 0.104 0.5 1.0 0.0 1.0 1.0 1.0   
0.618 20.0 60 0.050 0.047 0.383 0.5 1.5 0.0 1.0 1.0 5.0   
0.408 20.0 60 0.050 0.026 0.592 0.5 2.4 0.0 1.0 1.0 10.0   
 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 40.30 seconds. 
H0 Distributions: Normal(M0 S)[95];Normal(M0 A)[5]; Normal(M0 S)[95];Normal(M0 A)[5]; and Normal(M0 
S)[95];Normal(M0 A)[5] 
H1 Distributions: Normal(M1 S)[95];Normal(M1 A)[5]; Normal(M0 S)[95];Normal(M0 A)[5]; and Normal(M0 
S)[95];Normal(M0 A)[5] 
 
Power Comparison for Testing the g = 3 Group Means 
 
Total S.D. of S.D. of   Kruskal    
Sample Means Data Target F-Test Wallis    
Size Sm|H1 SD|H1 Alpha Power Power M0 M1 S A    
30 0.5 1.0 0.050 0.588 0.544 0.0 1.0 1.0 1.0    
30 0.5 1.4 0.050 0.381 0.458 0.0 1.0 1.0 5.0    
30 0.5 2.4 0.050 0.321 0.473 0.0 1.0 1.0 10.0    
60 0.5 1.0 0.050 0.897 0.880 0.0 1.0 1.0 1.0    
60 0.5 1.5 0.050 0.618 0.813 0.0 1.0 1.0 5.0    
60 0.5 2.4 0.050 0.408 0.801 0.0 1.0 1.0 10.0    
 
Alpha Comparison for Testing the g = 3 Group Means 
 
Total S.D. of S.D. of   Kruskal    
Sample Means Data Target F-Test Wallis    
Size Sm|H1 SD|H1 Alpha Alpha Alpha M0 M1 S A    
30 0.5 1.0 0.050 0.054 0.055 0.0 1.0 1.0 1.0    
30 0.5 1.4 0.050 0.035 0.041 0.0 1.0 1.0 5.0    
30 0.5 2.4 0.050 0.026 0.041 0.0 1.0 1.0 10.0    
60 0.5 1.0 0.050 0.049 0.050 0.0 1.0 1.0 1.0    
60 0.5 1.5 0.050 0.047 0.054 0.0 1.0 1.0 5.0    
60 0.5 2.4 0.050 0.026 0.048 0.0 1.0 1.0 10.0    
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We note that when the variances are equal (A = 1), the F-Test is slightly better than the Kruskal-
Wallis test. However, as the number of outliers is increased, the F-test does increasingly worse 
both in terms of power and significance, but the Kruskal-Wallis test is considerably less affected. 

Example 5 – Selecting a Test Statistic when the Data are 
Skewed 
The F-test is known to be robust to the violation of some assumptions, but it is susceptible to 
inaccuracy when the underlying distributions are skewed. This example will investigate the 
impact of skewness on the power and precision of the F-test and the Kruskal-Wallis test. 

Tukey’s lambda distribution will be used because it allows the amount of skewness to be 
gradually increased.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the One-Way Analysis of Variance (Simulation) procedure 
window by expanding Means, then ANOVA, then clicking on Analysis of Variance, and then 
clicking on One-Way Analysis of Variance (Simulation). You may then make the appropriate 
entries as listed below, or open Example 5 by going to the File menu and choosing Open 
Example Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power 
Power ...................................................... Ignored since this is the Find setting 
Alpha ....................................................... 0.05 
n (Sample Size Multiplier) ....................... 10 20 
Group Sample Size Pattern .................... Equal 
Grps 1 ...................................................... 2 
Group 1 Distribution(s) | H0 .................... L(M0 S G 0) 
Group 1 Distribution(s) | H1 .................... L(M0 S G 0) 
Grps 2 ...................................................... 1 
Group 2 Distribution(s) | H0 .................... L(M0 S G 0) 
Group 2 Distribution(s) | H1 .................... L(M1 S G 0) 
Grps 3 ...................................................... 0 
M0 (Mean|H0) ......................................... 0 
M1 (Mean|H0) ......................................... 1 
S .............................................................. 1 
G .............................................................. 0 0.5 0.9 
Test Type ................................................ F-Test 
Simulations .............................................. 2000 

Reports Tab 
Show Comparative Reports .................... Checked 
Show Comparative Plots ......................... Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Numeric Results for Testing the g = 3 Group Means 
Test Statistic: F-Test 
 
 Average Total       
 Group Sample    S.D. of S.D. of  
 Size Size Target Actual  Means Data  
Power n N Alpha  Alpha  Beta Sm|H1 SD|H1 M0 M1 S G 
0.596 10.0 30 0.050 0.050 0.405 0.5 1.0 0.0 1.0 1.0 0.0   
0.615 10.0 30 0.050 0.034 0.386 0.5 1.0 0.0 1.0 1.0 0.5   
0.719 10.0 30 0.050 0.036 0.281 0.5 1.0 0.0 1.0 1.0 0.9   
0.899 20.0 60 0.050 0.046 0.101 0.5 1.0 0.0 1.0 1.0 0.0   
0.902 20.0 60 0.050 0.050 0.098 0.5 1.0 0.0 1.0 1.0 0.5   
0.895 20.0 60 0.050 0.034 0.105 0.5 1.0 0.0 1.0 1.0 0.9   
 
Notes: 
Pool Size: 10000. Simulations: 2000. Run Time: 40.30 seconds. 
H0 Distributions: Tukey(M0 S G 0); Tukey(M0 S G 0); and Tukey(M0 S G 0) 
H1 Distributions: Tukey(M0 S G 0); Tukey(M0 S G 0); and Tukey(M1 S G 0) 

 
Power Comparison for Testing the g = 3 Group Means 
 
Total S.D. of S.D. of   Kruskal    
Sample Means Data Target F-Test Wallis    
Size Sm|H1 SD|H1 Alpha Power Power M0 M1 S G    
30 0.5 1.0 0.050 0.596 0.554 0.0 1.0 1.0 0.0    
30 0.5 1.0 0.050 0.615 0.735 0.0 1.0 1.0 0.5    
30 0.5 1.0 0.050 0.719 0.932 0.0 1.0 1.0 0.9    
60 0.5 1.0 0.050 0.899 0.871 0.0 1.0 1.0 0.0    
60 0.5 1.0 0.050 0.902 0.978 0.0 1.0 1.0 0.5    
60 0.5 1.0 0.050 0.895 1.000 0.0 1.0 1.0 0.9    
 
Alpha Comparison for Testing the g = 3 Group Means 
 
Total S.D. of S.D. of   Kruskal    
Sample Means Data Target F-Test Wallis    
Size Sm|H1 SD|H1 Alpha Alpha Alpha M0 M1 S G    
30 0.5 1.0 0.050 0.050 0.045 0.0 1.0 1.0 0.0    
30 0.5 1.0 0.050 0.034 0.039 0.0 1.0 1.0 0.5    
30 0.5 1.0 0.050 0.036 0.047 0.0 1.0 1.0 0.9    
60 0.5 1.0 0.050 0.046 0.041 0.0 1.0 1.0 0.0    
60 0.5 1.0 0.050 0.050 0.046 0.0 1.0 1.0 0.5    
60 0.5 1.0 0.050 0.034 0.055 0.0 1.0 1.0 0.9    
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We note that as the skewness increases, the power of the Kruskal-Wallis test increases 
substantially as compared to the F-test.  
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Chapter 560 

Fixed Effects 
Analysis of 
Variance 
Introduction 
A common task in research is to compare the average response across levels of one or more factor 
variables. Examples of factor variables are income level of two regions, nitrogen content of three 
lakes, or drug dosage. The fixed-effects analysis of variance compares the means of two or more 
factors. F tests are used to determine statistical significance of the factors and their interactions. 
The tests are nondirectional in that the null hypothesis specifies that all means are equal and the 
alternative hypothesis simply states that at least one mean is different. This PASS module 
performs power analysis and sample size estimation for an analysis of variance design with up to 
three factors.  

In the following example, the responses of a weight loss experiment are arranged in a two-factor, 
fixed-effect, design. The first factor is diet (D1 and D2) and the second factor is dose level of a 
dietary drug (low, medium, and high). The twelve individuals available for this study were 
assigned at random to one of the six treatment groups (cells) so that there were two per group. 
The response variable was an individual’s weight loss after four months. 
 

Table of  Individual Weight Losses 
 Dietary Drug Dose Level 
Diet Low Medium High 

D1 14, 16 15, 18 23, 28 

D2 18, 21 18, 22 38, 39 

 

Important features to note are that each table entry represents a different individual and that the 
response variable (weight loss) is continuous, while the factors (Diet and Dose) are discrete.  
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Means can be calculated for each cell of the table. These means are shown in the table below. 
Note that we have added an additional row and column for the row, column, and overall means. 
The six means in the interior of this table are called the cell means. 
 

Table of Means   
 Dietary Drug Dose Level   
Diet Low Medium High Total 
D1 15.00 16.50 25.50 19.00 

D2 19.50 20.00 38.50 26.00 

Total 17.25 18.25 32.00 22.50 

The Linear Model 
A mathematical model may be formulated that underlies this experimental design. This model 
expresses each cell mean, μij ,  as the sum of parameters called effects. A common linear model 
for a two-factor experiment is 

μij i j ijm a b ab= + + + ( )  

where i = 1, 2, ..., I and j = 1, 2, ..., J. This model expresses the value of a cell mean as the sum of 
four components:  

m  the grand mean. 

ai  the effect of the ith level of factor A. Note that ai =∑ 0.  

bj  the effect of the jth level of factor B. Note that bj =∑ 0.  

abij  the combined effect of the ith level of factor A and the jth level of factor B. Note that 

 ( )ab ij =∑ 0.

Another way of stating this model for the two factor case is 

Cell Mean = Overall Effect + Row Effect + Column Effect + Interaction Effect. 

Since this model is the sum of various constants, it is called a linear model. 

Calculating the Effects 
We will now calculate the effects for our example. We will let Drug Dose correspond to factor A 
and Diet correspond to factor B.  
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Step 1 – Remove the Grand Mean 
Remove the grand mean from the table of means by subtracting 22.50 from each entry. The 
values in the margins are the effects of the corresponding factors. 

Table of  Mean Weight Losses 
After Subtracting the Grand Mean 

  

 Dietary Drug Dose Level   
Diet Low Medium High Overall 
D1 -7.50 -6.00 3.00 -3.50 

D2 -3.00 -2.50 16.00 3.50 

Overall -5.25 -4.25 9.50 22.50 

Step 2 – Remove the Effects of Factor B (Diet) 
Subtract the Diet effects (-3.50 and 3.50) from the entries in those rows. 

Table of  Mean Weight Losses 
After Subtracting the Diet Effects 

  

 Dietary Drug Dose Level   
Diet Low Medium High Overall 
D1 -4.00 -2.50 6.50 -3.50 

D2 -6.50 -6.00 12.50 3.50 

Overall -5.25 -4.25 9.50 22.50 

Step 3 – Remove the Effects of Factor A (Drug Dose) 
Subtract the Drug Dose effects (-5.25, -4.25, and 9.50) from the rest of the entries in those 
columns. This will result in a table of effects. 

Table of  Effects   
 Dietary Drug Dose Level   
Diet Low Medium High Overall 
D1 1.25 1.75 -3.00 -3.50 

D2 -1.25 -1.75 3.00 3.50 

Overall -5.25 -4.25 9.50 22.50 
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We have calculated a table of effects for the two-way linear model. Each cell mean can calculated 
by summing the appropriate entries from this table. 
The estimated linear effects are: 

m = 22.50 

a1 = -5.25 a2 = -4.25 a3 = 9.50 

b1 = -3.50 b2 = 3.50 

ab11 = 1.25 ab21 = 1.75 ab31 = -3.00 

ab12 = -1.25 ab22 = -1.75 ab32 = 3.00. 

The six cell means are calculated from these effects as follows: 

15.00 = 22.50 - 5.25 - 3.50 + 1.25 

19.50 = 22.50 - 5.25 + 3.50 - 1.25 

16.50 = 22.50 - 4.25 - 3.50 + 1.75 

20.00 = 22.50 - 4.25 + 3.50 - 1.75 

25.50 = 22.50 + 9.50 - 3.50 - 3.00 

38.50 = 22.50 + 9.50 + 3.50 + 3.00 

Analysis of Variance Hypotheses 
The hypotheses that are tested in an analysis of variance table concern the effects, so in order to 
conduct a power analysis you must have a firm grasp of their meaning. For example, we would 
usually test the following hypotheses: 

1. Are there differences in weight loss among the three drug doses? That is, are the drug 
dose effects all zero? This hypothesis is tested by the F test for factor A, which tests 
whether the standard deviation of the a is zero. i

2. Is there a difference in weight loss between the two diets? That is, are the diet effects all 
zero? This hypothesis is tested by the F test for factor B, which tests whether the standard 
deviation of the is zero. bj

3.  Are there any diet-dose combinations that exhibit a weight loss that cannot be explained 
by diet and/or drug dose singly? This hypothesis is tested by the F test for the AB 
interaction, which tests whether the standard deviation of the ( )ab ij is zero. 

Each of these hypotheses can be tested at a different alpha level and different precision. Hence 
each can have a different power. One of the tasks in planning such an experiment is to determine 
a sample size that yields necessary power values for each of these hypothesis tests. This is 
accomplished using this program module. 
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Definition of Terms 
Factorial designs evaluate the effect of two or more categorical variables (called factors) on a 
response variable by testing hypotheses about various averages. These designs are popular 
because they allow experimentation across a wide variety of conditions and because they evaluate 
the interaction of two or more factors. Interaction is the effect that may be attributed to a 
combination of two or more factors, but not to one factor singly. 

A factor is a variable that relates to the response. Either the factor is discrete by nature (as in 
location or gender) or has been made discrete by collapsing a continuous variable (as in income 
level or age group). The term factorial implies that all possible combinations of the factors being 
studied are included in the design. 

A fixed factor is one in which all possible levels (categories) are considered. Examples of fixed 
factors are gender, dose level, and country of origin. They are different from random factors 
which represent a random selection of individuals from the population described by the factor. 
Examples of random factors are people living within a region, a sample of schools in a state, or a 
selection of labs. Again, a fixed factor includes the range of interest while a random factor 
includes only a sample of all possible levels.  

A factorial design is analyzed using the analysis of variance. When only fixed factors are used in 
the design, the analysis is said to be a fixed-effects analysis of variance. Other types of designs 
will be discussed in later chapters.  

Suppose a group of individuals have agreed to be in a study involving six treatments. In a 
completely randomized factorial design, each individual is assigned at random to one of the six 
groups and then the treatments are applied. In some situations, the randomization occurs by 
randomly selecting individuals from the populations defined by the treatment groups. The designs 
analyzed by this module are completely randomized factorial designs.  

Power Calculations 
The calculation of the power of a particular test proceeds as follows 

1. Determine the critical value,  where df1 is the numerator degrees of freedom, 
df2 is the denominator degrees of freedom, and 

Fdf df1 2, ,α

α is the probability of a type-I error 
(significance level). Note that the F test is a two-tailed test as no logical direction is 
assigned in the alternative hypothesis. 

2.  Calculate the standard deviation of the hypothesized effects, using the formula: 

( )
σm

i
i

k

e e

k
=

−
=
∑ 2

1  

where the e are effect values and k is the number of effects. Note that the average effect 
will be zero by construction, so this formula reduces to 

i

( )
σm

i
i

k

e

k
= =
∑ 2

1  
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3.  Compute the noncentrality parameter λ  using the relationship: 

λ σ
σ

 =  N m
2

2  

where N is the total number of subjects. 

4.  Compute the power as the probability of being greater than Fdf df1 2, ,α on a noncentral-F 
distribution with noncentrality parameter λ . 

Example 
In the example discussed earlier, the standard deviation of the dose effects is  

( ) ( )σm A( )
. .

.

=
− + − +

=

5 25 4 25 9 50
3

6 729908

2 2 2.
 

the standard deviation of the diet effects is  

( )σm B( )
. .

.

=
− +

=

35 35
2

35

2 2

 

and the standard deviation of the interaction effects is  

( ) ( ) ( )σm AB( )
. . . . . .

.

=
+ − + + − + − +

=

125 125 175 175 300 300
6

2131119

2 2 2 2 2 2

 

Change in Calculation from PASS 6.0 
In PASS 6.0, we used the approach of Cohen (1988) to calculate λ . However, we have found 
that Cohen’s method is less accurate in some situations. Here’s why. Cohen produced a set of 
tables for the one-way AOV which he extended to the two-way and three-way cases by adjusting 
the per group sample size (his ) so that the denominator degrees of freedom were accurate. 
However, his adjustment also causes a change in 

′n
λ  which can cause a substantial difference in 

the calculated power. By using the formula 

λ σ
σ

 =  N m
2

2  

we now calculate the correct power. This is why our calculations differ from that of Cohen (1988) 
for fixed factorial models. 
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Standard Deviation of Effects (of Means) 
In the two-sample t-test case, the alternative hypothesis was represented as the difference between 
two group means. Unfortunately, for three or more groups, there is no simple extension of the two 
group difference. Instead, you must hypothesize a set of effects and calculate the value of σm .  

Some might wish to specify the alternative hypothesis as the effect size, f, which is defined as  

f =  mσ
σ

 

where σ is the standard deviation of values within a cell (see Sigma below). If you want to use f, 
setσ = 1and then f  is always equal to σm  so that the values you enter for σm  will be the values 
of f. Cohen (1988) has designated values of f less than 0.1 as small, values around 0.25 to be 
medium, and values over 0.4 to be large. You should come up with your own cutoff values for 
low, medium, and high. 

When you are analyzing the power of an existing analysis of variance table, you can compute the 
values ofσm  for each term from its mean square or F ratio using the following formulas: 

m
numerator numerator =  df MS

Nσ  

or 

( )( )
m

numerator =  
df F MSE

N
σ  

where N is the total number of observations, MSE is the mean square error, df is the numerator 
degrees of freedom, MS is the mean square of the term, and F is the F ratio of the term. If you do 
this, you are setting the sample effects equal to the population effects for the purpose of 
computing the power. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Sample Size 

N per Cell 
This is the sample size within a cell. Fractional values are allowed. When you have an unequal 
number of observations per cell, enter the average cell sample size.  

If you enter more than one value, a separate analysis will be generated for each value. 
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Effect Size – Main Effects & 
Interactions 

Factors (A, B, C) & Interactions (AB, …, ABC) 
These check boxes specify which terms are included in the analysis of variance model. Check a 
term to signify that it must be included in the analysis.  

The three factors are assigned the labels A, B, and C. The interaction between factors A and B is 
labeled AB. The three-way interaction is labeled ABC.  

You cannot include an interaction term without including all shorter terms that make up that 
interaction. For example, if you include the interaction AC, you must also include the terms A and 
C. Similarly, if you include the term ABC, you must also include the terms A, B, C, AB, AC, and 
BC. 

Effect Size – Main Effects 

Categories (A, B, and C) 
These options specify the number of categories (levels) contained in each factor. Since the total 
sample size is equal to the product of the number of levels in each factor and the number of 
observations per cell (N Per Cell), increasing the number of levels of a factor increases the total 
sample size of the experiment. 

Hypothesized Means (A, B, C) 
Enter a set of hypothesized means (or effects), one for each factor level. The standard deviation of 
these means is used in the power calculations. The standard deviation is calculated using the 
formula: 

( )σ
μ μ

m
i=1

k
i =  

k∑
− 2

 

where k is the number of effects. Note that the standard deviation will be the same whether you 
enter means or effects since the average of the effects is zero by definition. 

Enter a set of means that give the pattern of differences you expect or the pattern that you wish to 
detect. For example, in a particular study involving a factor with three categories, your research 
might be meaningful if either of two treatment means is 50% larger than the control mean. If the 
control mean is 50, then you would enter 50,75,75 as the three means. 

It is usually more intuitive to enter a set of mean values. However, it is possible to enter the 
standard deviation of the means directly by placing an S in front of the number.  

Entering a List of Means 
If numbers are entered without a leading S, they are assumed to be the hypothesized group means 
under the alternative hypothesis. Their standard deviation will be calculated and used in the 
calculations. Blanks or commas may separate the numbers. Note that it is not the values of the 
means themselves that is important, but only their differences. Thus, the mean values 0,1,2 
produce the same results as the values 100,101,102. 
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If not enough means are entered to match the number of groups, the last mean is repeated. For 
example, suppose that four means are needed and you enter 1,2 (only two means). PASS will 
treat this as 1,2,2,2. If too many values are entered, PASS will truncate the list to the number of 
means needed. 

Examples: 

5 20 60 

2,5,7 

-4,0,6,9 

S Option 
If an S is entered before a number, the number is assumed to be the value of mσ , the standard 
deviation of the means.  

Examples: 

S 4.7 

S 5.7 

Effect Size – Interactions 

Hypothesized Effects 
Specify the standard deviation of the interaction effects using one of the following methods: 

1.  Enter a set of effects and let the program calculate their standard deviation (see below). 

2.  Enter the standard deviation directly. 

3.  Instruct the program to make the standard deviation proportional to one of the main effect 
terms.  

The standard deviation of the effects is calculated using the formula: 

( )σm
i=1

k
i

i=1

k
i

 =  
e e

k

e
k

∑

∑

−

=

2

2
 

where k is the number of effects and are the effect values. The value of e e ek1 2, , ,L e  may be 
ignored because it is zero by definition.  

Entering a List of Effects 
If numbers are entered without a leading letter, they are assumed to be the hypothesized effects 
under the alternative hypothesis (they are all assumed to be zero under the null hypothesis). Their 
standard deviation will be calculated and used in the calculations.  Blanks or commas may 
separate the numbers.  

If not enough effects are entered to match the number of levels in the term, the last effect is 
repeated. For example, suppose that four effects are needed and you enter 1,2 (only two effects). 
PASS will treat this as 1,2,2,2. If too many values are entered, PASS will truncate the list to the 
number of effects needed. 
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For interactions, the number of effects is equal to the product of the number of levels of each 
factor in the interaction. For example, suppose a two-factor design has one factor with three 
levels and another factor with five levels. The number of effects in the two-factor interaction is 
(3)(5) = 15. 

Examples (note that they sum to zero): 

-1 1 -3 3 

2 2 0 -1 -1 -2 

-4,0,1,3 

S Option 
If an S is followed by a number, the number is assumed to be the value of σm , the standard 
deviation of the effects. 

When a set of effects are equal to either e or -e, the formula for the standard deviation may be 
simplified as follows: 

( )σm
i=1

k
i

i=1

k

 =  
e

k

e
k

e

∑

∑

−

=

=

0 2

2

 

Hence, another interpretation of σm  is the absolute value of a set of effects that are equal, except 
for the sign. 

Example: 

S 4.7 

Enter a Term Followed by a Percentage 
You can enter the name of a previous term followed by a percentage. This instructs the program 
to set this standard deviation to x% of the term you specify, where x is a positive integer. This 
allows you to set the magnitude of the interaction standard deviation as a percentage of another 
term without specifying the interaction in detail.  

Note that the term you are taking a percentage of must appear above the term you are specifying. 
That is, you cannot specify AB 50 for factor C (since only A and B occur above C on the screen).  

For example, if the standard deviation of factor A is 16, the command 

A 75 

will set the standard deviation of the current term to (16)(75)/(100) = 12.0. 

Other examples of this syntax are: 

A 50 

B 25 

AB 125 

AC 150 
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Discussion 
The general formula for the calculation of the standard deviation is 

( )
σm

i
i

k

e

k
= =
∑ 2

1  

where k is the number of effects. In the case of a two-way interaction, the standard deviation is 
calculated using the formula: 

( )
( )

σ
μ μ μ μ

m

ij i j
j

J

i

I

AB
IJ

=
− − +• •

==
∑∑

2

11  

where i is the factor A index (from 1 to I), j is the factor B index (from 1 to J), μij is the mean in 

the ijth cell, μi• is the mean of factor A across all levels of other factors, ith μ• j is the mean 
when factor B across all levels of other factors, and 

jth

μ is the overall mean of the means. 

To see how this works, consider the following table of means from an experiment with I = 2 and 
J = 3: 
 

   i 

   1 2 

  1 2.0 4.0 | 3.0 

j 2 4.0 6.0 | 5.0 

  3 6.0 11.0 | 8.5 

  --- --- --- | --- 

  Total 4.0 7.0 | 5.5 
 

Now, if we subtract the factor A means, subtract the factor B means, and add the overall mean, we 
get the interaction effects: 
 

0.5 -0.5 

0.5 -0.5 

-1.0 1.0 
 

Next, we sum the squares of these six values: 

( ) ( ) ( ) ( ) ( ) ( )05 05 05 05 10 10 32 2 2 2 2 2. . . . . .+ − + + − + − + =  

Next we divide this value by (2)(3) = 6: 

3 6 0 5/ .=  



560-12  Fixed Effects Analysis of Variance 

Finally, we take the square root of this value: 

05 0 7071. .=  

Hence, for this configuration of means, 

( )σm AB = 0 7071. . 

Notice that the average of the absolute values of the interaction effects is: 

[0.5 + 0.5 + 0.5 + 0.5 + 1.0 + 1.0]/6 = 0.6667  

We see that SD(interaction) is close to the average absolute interaction effect. That is, 0.7071 is 
close to 0.6667. This will usually be the case. Hence, one way to interpret the interaction standard 
deviation is as a number a little larger than the average absolute interaction effect. 

Alpha  
These options specify the significance levels (the probability of a type-I error) of each term. A 
type-I error occurs when you reject the null hypothesis of that all effects are zero when in fact 
they are. 

Since they are probabilities, alpha values must be between zero and one. Historically, the value of 
0.05 has been used for alpha. This value may be interpreted as meaning that about one F test in 
twenty will falsely reject the null hypothesis. You should pick a value for alpha that represents 
the risk of a type-I error you are willing to take in your experimental situation.  

You can select different alpha values for different terms. For example, although you have three 
factors in an experiment, you might be mainly interested in only one of them. Hence, you could 
increase the alpha level of the tests from, for example, 0.05 to 0.10 and thereby increase their 
power. Also, you may want to increase the alpha level of the interaction terms, since these will 
often have poor power otherwise. 

Effect Size – Standard Deviation 

S (Standard Deviation of Subjects) 
This option specifies the value of the standard deviation (σ ) within a cell (the analysis of 
variance assumes that σ  is constant across all cells). Since they are positive square roots, the 
numbers must be strictly greater than zero. You can press the SD button to obtain further help on 
estimating the standard deviation. 

This value may be estimated from a previous analysis of variance table by the square root of the 
mean square error. 

If you want to use the effect size, f, as the measure of the variability of the effects, you can use 
1.0 for σ . 
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Example 1 – Power after a Study 
This example will explain how to calculate the power of F tests from data that have already been 
collected and analyzed.   

Analyze the power of the experiment that was given at the beginning of this chapter. These data 
were analyzed using the analysis of variance procedure in NCSS and the following results were 
obtained. 
   
 Analysis of Variance Table 

Source  Sum of Mean  Prob Power 
Term DF Squares Square F-Ratio Level (Alpha=0.05) 
A (Dose) 2 543.5 271.75 50.95 0.000172* 1.000000 
B (Diet) 1 147 147 27.56 0.001920* 0.990499 
AB 2 54.5 27.25 5.11 0.050629 0.588884 
S 6 32 5.333333 
Total (Adjusted) 11 777 
Total 12 
* Term significant at alpha = 0.05 

 
Means and Effects Section 
   Standard  
Term Count Mean Error Effect 
All 12 22.50  22.50 
A: Dose 
High 4 32.00 1.154701 9.50 
Medium 4 18.25 1.154701 -4.25 
Low 4 17.25 1.154701 -5.25 
 
B: Diet 
D1 6 19.00 0.942809 -3.50 
D2 6 26.00 0.942809 3.50 
 
AB: Dose,Diet 
High,D1 2 25.50 1.632993 -3.00 
High,D2 2 38.50 1.632993 3.00 
Low,D1 2 15.00 1.632993 1.25 
Low,D2 2 19.50 1.632993 -1.25 
Medium,D1 2 16.50 1.632993 1.75 
Medium,D2 2 20.00 1.632993 -1.75 

 

Setup 
To analyze these data, we can enter the means for factors A and B as well as the AB interaction 
effects.  

Alternatively, we could have calculated the standard deviation of the interaction. This can be 
done in either of two ways. 

Using mean square for AB (27.25), the degrees of freedom for AB (2), and the total sample size 
(12), the standard deviation of the AB-interaction effects is calculated as follows 

( ) ( )σm AB = =
2 27 25

12
21311

.
.   

Using the formula based on the effects, the standard deviation of the AB-interaction effects is 
calculated as follows 



560-14  Fixed Effects Analysis of Variance 

( )σm AB =
+ + + + +

=
3 3 125 125 175 175

6
21311

2 2 2 2 2 2. . . . .  

The value ofσ is estimated from the square root of the mean square error: 

σ = =5333333 2 3094. .  

This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Fixed Effects Analysis of Variance procedure window by 
expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking on 
Fixed Effects Analysis of Variance. You may then make the appropriate entries as listed below, 
or open Example 1 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
N Per Cell ................................................ 2 
Factors (A, B, AB) ................................... Checked 
Factors (C, AC, BC, ABC) ....................... Not checked 
Categories (A) ......................................... 3 
Categories (B) ......................................... 2 
Hypothesized Means (A) ......................... 17.25 18.25 32 
Hypothesized Means (B) ......................... 19  26 
Hypothesized Effects (AB) ...................... -3 3 1.25 -1.25 1.75 -1.75 
Alpha ....................................................... All are set to 0.05 
S (Std Dev of Subjects) ........................... 2.3094 
Report Tab 
Numeric Report Prob Decimals .............. 6 
Std Dev Decimals .................................... 4 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev  
   Total   of Means Effect 
Term Power n N df1 df2 (Sm) Size Alpha Beta 
A 1.000000 2.00 12 2 6 6.7299 2.914 0.050000 0.000000 
B 0.990499 2.00 12 1 6 3.5000 1.516 0.050000 0.009501 
AB 0.588914 2.00 12 2 6 2.1311 0.923 0.050000 0.411086 
Standard Deviation Within Subjects = 2.3094 
 
Summary Statements 
A factorial design with two factors at 3 and 2 levels has 6.0 cells (treatment combinations). A 
total of 12.0 subjects are required to provide 2.0 subjects per cell. The within-cell standard 
deviation is 2.3094. This design achieves 100% power when an F test is used to test factor A at 
a 5% significance level and the actual standard deviation among the appropriate means is 6.7299 
(an effect size of 2.914), achieves 99% power when an F test is used to test factor B at a 5% 
significance level and the actual standard deviation among the appropriate means is 3.5000 (an 
effect size of 1.516), and achieves 59% power when an F test is used to test the AB interaction 
at a 5% significance level and the actual standard deviation among the appropriate means is 
2.1312 (an effect size of 0.923). 
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This report shows the power for each of the three factors. Note that these power values match 
those given by the NCSS program in the analysis of variance report. 

It is important to emphasize that these power values are for the case when the effects associated 
with the alternative hypotheses are equal to those given by the data. It will often be informative to 
calculate the power for other values as well. 

Term 
This is the term (main effect or interaction) from the analysis of variance model being displayed 
on this line. 

Power 
This is the power of the F test for this term. Note that since adding and removing terms changes 
the denominator degrees of freedom (df2), the power depends on which other terms are included 
in the model. 

n 
This is the sample size per cell (treatment combination). Fractional values indicate an unequal 
allocation among the cells. 

Total N 
This is the total sample size for the complete design. 

df1 
This is the numerator degrees of freedom of the F test. 

df2 
This is the denominator degrees of freedom of the F test. This value depends on which terms are 
included in the AOV model. 

Std Dev of Means (Sm) 
This is the standard deviation of the means (or effects). It represents the size of the differences 
among the effects that is to be detected by the analysis. If you have entered hypothesized means, 
only their standard deviation is displayed here. 

Effect Size 
This is the standard deviation of the means divided by the standard deviation of subjects. It 
provides an index of the magnitude of the difference among the means that can be detected by 
this design. 

Alpha 
This is the significance level of the F test. This is the probability of a type-I error given the null 
hypothesis of equal means and zero effects. 

Beta 
This is the probability of the type-II error for this test given the sample size, significance level, 
and effect size. 



560-16  Fixed Effects Analysis of Variance 

Example 2 – Finding the Sample Size 
In this example, we will investigate the impact of increasing the sample size on the power of each 
of the seven tests in the analysis of variance table of a three factor experiment. The first factor (A) 
has two levels, the second factor (B) has three levels, and the third factor (C) has four levels. This 
creates a design with 2 x 3 x 4 = 24 treatment combinations. 

All values of σm  will be set equal to 0.2, σ is set equal to 1.0, and alpha is set to 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Fixed Effects Analysis of Variance procedure window by 
expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking on 
Fixed Effects Analysis of Variance. You may then make the appropriate entries as listed below, 
or open Example 2 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
N Per Cell ................................................ 2  8  16  22 
Factors and Interactions .......................... All Checked 
Categories (A) ......................................... 2 
Categories (B) ......................................... 3 
Categories (C) ......................................... 4 
Hypothesized Means (A, B, & C) ............ S 0.2 
Hypothesized Effects (AB to ABC) .......... A 100 (so they will equal that of factor A) 
Alpha ....................................................... All are set to 0.05 
S (Std Dev of Subjects) ........................... 1.0 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev  
   Total   of Means Effect 
Term Power n N df1 df2 (Sm) Size Alpha Beta 
A 0.26502 2.00 48 1 24 0.2 0.200 0.05000 0.73498 
B 0.19674 2.00 48 2 24 0.2 0.200 0.05000 0.80326 
C 0.16369 2.00 48 3 24 0.2 0.200 0.05000 0.83631 
AB 0.19674 2.00 48 2 24 0.2 0.200 0.05000 0.80326 
AC 0.16369 2.00 48 3 24 0.2 0.200 0.05000 0.83631 
BC 0.11945 2.00 48 6 24 0.2 0.200 0.05000 0.88055 
ABC 0.11945 2.00 48 6 24 0.2 0.200 0.05000 0.88055 
 
A 0.78682 8.00 192 1 168 0.2 0.200 0.05000 0.21318 
B 0.69038 8.00 192 2 168 0.2 0.200 0.05000 0.30962 
C 0.62299 8.00 192 3 168 0.2 0.200 0.05000 0.37701 
AB 0.69038 8.00 192 2 168 0.2 0.200 0.05000 0.30962 
AC 0.62299 8.00 192 3 168 0.2 0.200 0.05000 0.37701 
BC 0.49353 8.00 192 6 168 0.2 0.200 0.05000 0.50647 
ABC 0.49353 8.00 192 6 168 0.2 0.200 0.05000 0.50647 
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A 0.97434 16.00 384 1 360 0.2 0.200 0.05000 0.02566 
B 0.94723 16.00 384 2 360 0.2 0.200 0.05000 0.05277 
C 0.92061 16.00 384 3 360 0.2 0.200 0.05000 0.07939 
AB 0.94723 16.00 384 2 360 0.2 0.200 0.05000 0.05277 
AC 0.92061 16.00 384 3 360 0.2 0.200 0.05000 0.07939 
BC 0.84559 16.00 384 6 360 0.2 0.200 0.05000 0.15441 
ABC 0.84559 16.00 384 6 360 0.2 0.200 0.05000 0.15441 
 
A 0.99569 22.00 528 1 504 0.2 0.200 0.05000 0.00431 
B 0.98880 22.00 528 2 504 0.2 0.200 0.05000 0.01120 
C 0.98045 22.00 528 3 504 0.2 0.200 0.05000 0.01955 
AB 0.98880 22.00 528 2 504 0.2 0.200 0.05000 0.01120 
AC 0.98045 22.00 528 3 504 0.2 0.200 0.05000 0.01955 
BC 0.95001 22.00 528 6 504 0.2 0.200 0.05000 0.04999 
ABC 0.95001 22.00 528 6 504 0.2 0.200 0.05000 0.04999 
 
Standard Deviation of Subjects = 1.0 

 

A few interesting features of this report stand out. First note the range of power values across the 
range of sample size values tested. Reasonable power is not reached until n is 16. Also note that 
as the number of numerator degrees of freedom (df1) increases, the power decreases, other things 
being equal. We must use this knowledge when planning for appropriate power in tests of 
important interaction terms. 
There are a lot of additional runs that you might try. For example, you might look at the impact of 
setting the alpha level of interaction terms 0.08. You might look at varying σm  across the 
different terms. You might try varying the number of levels of a factor. All of these will impact 
the power of the F tests and will thus be important to consider during the planning stage of an 
experiment. 

Example 3 – Latin Square Design 
This example shows how to study the power of a complicated experimental design like a Latin 
square. Suppose you want to run a Five-Level Latin square design. Recall that a Five-Level Latin 
square design consists of three factors each at five levels. One factor is associated with the 
columns of the square, a second factor is associated with the rows of the square, and a third factor 
is associated with the letters of the square. In all there are only 5 x 5 = 25 observations used 
instead of the 5 x 5 x 5 = 125 that would normally be required. The Latin square design has 
reduced the number of observations by 80%. 

The 80% decrease in observations comes at a price—the interaction terms must be ignored. If you 
can legitimately assume that the interactions are zero, the Latin square (or some other design 
which reduces the number of observations) is an efficient design to use. We will now show you 
how to analyze the power of the F tests from such a design. 

The key is to enter 0.2 (which is 25/125) for n and set all the interaction indicators off.  

Since all three factors have five levels, the power of the three F tests will be the same if σm  is the 
same. Hence, we can try three different sets of hypothesized means. The first set will be five 
means 0.1 units apart. The second set will be five means 0.5 units apart. The third set will be five 
means 1.0 unit apart. The standard deviation will be set to 1.0. All alpha levels will be set at 0.05. 

The sample size per cell is set at 0.2 and 0.4. This will result in total sample sizes of 25 (one 
replication) and 50 (two replications). 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Fixed Effects Analysis of Variance procedure window by 
expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking on 
Fixed Effects Analysis of Variance. You may then make the appropriate entries as listed below, 
or open Example 3 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
N Per Cell ................................................ 0.2 0.4 
Factors (A, B, C) ..................................... Checked 
Interactions (AB, AC, BC, ABC) .............. Not checked 
Categories (A, B, C) ................................ 5 
Hypothesized Means (A) ......................... 1.0 1.1 1.2 1.3 1.4 
Hypothesized Means (B) ......................... 1.0 1.5 2.0 2.5 3.0 
Hypothesized Means (C) ......................... 1.0 2.0 3.0 4.0 5.0 
Alpha ....................................................... All are set to 0.05 
S (Std Dev of Subjects) ........................... 1.0 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev  
   Total   of Means Effect 
Term Power n N df1 df2 (Sm) Size Alpha Beta 
A 0.06807 0.20 25 4 12 0.141 0.141 0.05000 0.93193 
B 0.63675 0.20 25 4 12 0.707 0.707 0.05000 0.36325 
C 0.99867 0.20 25 4 12 1.414 1.414 0.05000 0.00133 
 
A 0.09842 0.40 50 4 37 0.141 0.141 0.05000 0.90158 
B 0.97743 0.40 50 4 37 0.707 0.707 0.05000 0.02257 
C 1.00000 0.40 50 4 37 1.414 1.414 0.05000 0.00000 
 
Standard Deviation of Subjects = 1.000 
 

In the first design in which N = 25, only the power of the test for C is greater than 0.8. Of course, 
this power value also depends on the value of the standard deviation of subjects within a cell. 

It is interesting to note that doubling the sample size did not double the power! 
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Example 4 – Validation using Winer 
Winer (1991) pages 428-429 presents the power calculations for a two-way design in which 
factor A has two levels and factor B has three levels. Winer provides estimates of the sum of 
squared A effects (1.0189), sum of squared B effects (5.06), and sum of squared interaction 
effects (42.11). The mean square error is 8.83 and the per cell sample size is 3. All alpha levels 
are set to 0.05.   

Winer’s results are approximate because he has to interpolate in the tables that he is using. He 
finds the power of the F test for factor A to be between 0.10 and 0.26. He estimates it as 0.17. The 
exact power of the F test for factor B is not given. Instead, the range is found to be between 0.26 
and 0.36. The power of the F test for the AB interaction is “approximately” 0.86. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Fixed Effects Analysis of Variance procedure window by 
expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking on 
Fixed Effects Analysis of Variance. You may then make the appropriate entries as listed below, 
or open Example 4 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
N Per Cell ................................................ 3 
Factors (A and B) .................................... Checked 
Factor (C) ................................................ Not checked 
Interaction (AB) ....................................... Checked 
Interactions (AC, BC, ABC) ..................... Not checked 
Categories (A) ......................................... 2 
Categories (B) ......................................... 3 
Hypothesized Means (A) ......................... S 0.714 
Hypothesized Means (B) ......................... S 1.3 
Hypothesized Effects (AB) ...................... S 2.65 
Alpha ....................................................... All are set to 0.05 
S (Std Dev of Subjects) ........................... 2.97 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev  
   Total   of Means Effect 
Term Power n N df1 df2 (Sm) Size Alpha Beta 
A 0.15576 3.00 18 1 12 0.714 0.240 0.05000 0.84424 
B 0.29178 3.00 18 2 12 1.300 0.438 0.05000 0.70822 
AB 0.85338 3.00 18 2 12 2.650 0.892 0.05000 0.14662 
 
Standard Deviation of Subjects = 2.970 
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The power of the test for factor A is 0.16 which is between 0.10 and 0.26. It is close to the 
interpolated 0.17 that Winer obtained from his tables. 

The power of the test for factor B is 0.29 which is between 0.26 and 0.36.  

The power of the test for the AB interaction is 0.85 which is close to the interpolated 0.86 that 
Winer obtained from his tables. 

Example 5 – Validation using Prihoda 
Prihoda (1983) pages 7-8 presents the power calculations for a two-way design with the following 
pattern of means: 

    Factor B 
  1 2 3 4 All 
Factor A 1 41 34 30 27 33 

 2 33 24 22 29 27 

All  37 29 26 28 30 

 

The means may be manipulated to show the overall mean, the main effects, and the interaction 
effects: 

    Factor B 
  1 2 3 4 All 
Factor A 1 1 2 1 -4 3 

 2 -1 -2 -1 4 -3 

All  7 -1 -4 -2 30 

 

Based on the above effects, Prihoda calculates the power of the interaction test when the sample 
size per cell is 6, 8, 10, 12, and 14 to be 0.34, 0.45, 0.56, 0.65, and 0.73. The mean square error is 
64 and the alpha level is 0.05.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Fixed Effects Analysis of Variance procedure window by 
expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking on 
Fixed Effects Analysis of Variance. You may then make the appropriate entries as listed below, 
or open Example 5 by going to the File menu and choosing Open Example Template. 
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Option Value 
Data Tab 
N Per Cell ................................................ 6 8 10 12 14 
Factors (A and B) .................................... Checked 
Factor (C) ................................................ Not checked 
Interaction (AB) ....................................... Checked 
Interactions (AC, BC, ABC) ..................... Not checked 
Categories (A) ......................................... 2 
Categories (B) ......................................... 4 
Hypothesized Means (A) ......................... 33 27 
Hypothesized Means (B) ......................... 37 29 26 28 
Hypothesized Effects (AB) ...................... 1 -2 2 -2 1 -1 -4 4 
Alpha ....................................................... All are set to 0.05 
S (Std Dev of Subjects) ........................... 8 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev  
   Total   of Means Effect 
Term Power n N df1 df2 (Sm) Size Alpha Beta 
A 0.71746 6.00 48 1 40 3.000 0.375 0.05000 0.28254 
B 0.83676 6.00 48 3 40 4.183 0.523 0.05000 0.16324 
AB 0.33722 6.00 48 3 40 2.345 0.293 0.05000 0.66278 
 
A 0.83848 8.00 64 1 56 3.000 0.375 0.05000 0.16152 
B 0.93871 8.00 64 3 56 4.183 0.523 0.05000 0.06129 
AB 0.45099 8.00 64 3 56 2.345 0.293 0.05000 0.54901 
 
A 0.91134 10.00 80 1 72 3.000 0.375 0.05000 0.08866 
B 0.97917 10.00 80 3 72 4.183 0.523 0.05000 0.02083 
AB 0.55558 10.00 80 3 72 2.345 0.293 0.05000 0.44442 
 
A 0.95292 12.00 96 1 88 3.000 0.375 0.05000 0.04708 
B 0.99346 12.00 96 3 88 4.183 0.523 0.05000 0.00654 
AB 0.64749 12.00 96 3 88 2.345 0.293 0.05000 0.35251 
 
A 0.97568 14.00 112 1 104 3.000 0.375 0.05000 0.02432 
B 0.99807 14.00 112 3 104 4.183 0.523 0.05000 0.00193 
AB 0.72541 14.00 112 3 104 2.345 0.293 0.05000 0.27459 
 
Standard Deviation of Subjects = 8.000 
 

Prihoda only presents the power for the interaction test at each sample size. You can check to see 
that the results match Prihoda’s exactly. 
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Example 6 – Validation using Neter, Kutner, Nachtsheim, 
and Wasserman 
Neter, Kutner, Nachtsheim, and Wasserman (1996) page 1057 presents a power analysis of a two-
factor experiment in which factor A has three levels and factor B has two levels. The significance 
level is 0.05, the standard deviation is 3.0, and N is 2. They calculate a power of about 0.89 for 
the test of factor A when the three means are 50, 55, and 45. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Fixed Effects Analysis of Variance procedure window by 
expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking on 
Fixed Effects Analysis of Variance. You may then make the appropriate entries as listed below, 
or open Example 6 by going to the File menu and choosing Open Example Template. 

Option Value 
Data Tab 
N Per Cell ................................................ 2 
Factors (A and B) .................................... Checked 
Factor (C) ................................................ Not checked 
Interaction (AB) ....................................... Checked 
Interactions (AC, BC, ABC) ..................... Not checked 
Categories (A) ......................................... 3 
Categories (B) ......................................... 2 
Hypothesized Means (A) ......................... 50 55 45 
Hypothesized Means (B) ......................... S 1 
Hypothesized Effects (AB) ...................... S 1 
Alpha ....................................................... All are set to 0.05 
S (Std Dev of Subjects) ........................... 3.0 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev  
   Total   of Means Effect 
Term Power n N df1 df2 (Sm) Size Alpha Beta 
A 0.90162 2.00 12 2 6 4.082 1.361 0.05000 0.09838 
B 0.16479 2.00 12 1 6 1.000 0.333 0.05000 0.83521 
AB 0.11783 2.00 12 2 6 1.000 0.333 0.05000 0.88217 
 
Standard Deviation of Subjects = 3.000 
 

Note that the power of 0.90 that PASS has calculated is within rounding of the 0.89 that Neter et 
al. calculated. 
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Chapter 565 

Randomized Block 
Analysis of 
Variance 
Introduction 
This module analyzes a randomized block analysis of variance with up to two treatment factors 
and their interaction. It provides tables of power values for various configurations of the 
randomized block design.  

The Randomized Block Design 
The randomized block design (RBD) may be used when a researcher wants to reduce the 
experimental error among observations of the same treatment by accounting for the differences 
among blocks.  If three treatments are arranged in two blocks, the RBD might appear as follows: 
 

Block A  Block B 

Treatment 1  Treatment 2 

Treatment 3  Treatment 1 

Treatment 2  Treatment 3 

 
This diagram shows the main features of a RBD: 

1. Each block is divided into k sub-blocks, where k is the number of treatments. 

2. Each block receives all the treatments. 

3. The treatments are assigned to the sub-blocks in random order. 

4.  There is some reason to believe that the blocks are the same internally, but different from 
each other. 
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RBD Reduces Random Error 
The random error component of a completely randomized design (such as a one-way or a fixed-
effects factorial design) represents the influence of all possible variables in the universe on the 
response except for the controlled (treatment) variables. This random error component is called 
the standard deviation or σ (sigma).  
As we have discussed, the sample size required to meet alpha and beta error requirements 
depends directly on the standard deviation. As the standard deviation increases, the sample size 
increases. Hence, researchers are always looking for ways to reduce the standard deviation. Since 
the random error component contains the variation due to all possible variables other than 
treatment variables, one of the most obvious ways to reduce the standard deviation is to remove 
one or more of these nuisance variables from the random error component. One of the simplest 
ways of doing this is by blocking on them.  

For example, an agricultural experiment is often blocked on fields so that differences among 
fields are explicitly accounted for and removed from the error component. Since these field 
differences are caused by variations in variables such as soil type, sunlight, temperature, and 
water, blocking on fields removes the influence of several variables. 

Blocks are constructed so that the response is as alike (homogeneous) as possible within a block, 
but as different as possible between blocks. In many situations, there are obvious natural blocking 
factors such as schools, seasons, individual farms, families, times of day, etc. In other situations, 
the blocks may be somewhat artificially constructed.  

Once the blocks are defined, they are divided into k smaller sections called subblocks, where k is 
the number of treatment levels. The k treatments are randomly assigned to the subblocks, one 
block at a time. Hence the order of treatment application will be different from block to block. 

Measurement of Random Error 
The measurement of the random error component (σ) is based on the assumption that there is no 
fundamental relationship between the treatment variable and the blocking variable. When this is 
true, the interaction component between blocks and treatment is zero. If the interaction 
component is zero, then the amount measured by the interaction is actually random error and can 
be used as an estimate of σ.  

Hence, the randomized block design makes the assumption that there is no interaction between 
treatments and blocks. The block by treatment mean square is still calculated, but it is used as the 
estimated standard deviation. This means that the degrees of freedom associated with the block-
treatment interaction are the degrees of freedom of the error estimate. If the experimental design 
has k treatments and b blocks, the interaction degrees of freedom are equal to (k-1)(b-1). Hence 
the sample size of this type of experiment is measured in terms of the number of blocks. 

Treatment Effects 
Either one or two treatment variables may be specified. If two are used, their interaction may also 
be measured. The null hypothesis in the F test states that the effects of the treatment variable are 
zero. The magnitude of the alternative hypothesis is represented as the size of the standard 
deviation (σm) of these effects. The larger the size of the effects, the larger their standard 
deviation. 
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When there are two factors, the block-treatment interaction may be partitioned just as the 
treatment may be partitioned. For example, if we let C and D represent two treatments, an 
analysis of variance will include the terms C, D, and CD. If we represent the blocking factor as B, 
there will be three interactions with blocks: BC, BD, and BCD. Since all three of these terms are 
assumed to measure the random error, the overall estimate of random error is found by averaging 
(or pooling) these three interactions. The pooling of these interactions increases the power of the 
experiment by effectively increasing the sample size on which the estimate of σ  is based. 
However, it is based on the assumption that σ σ σ σ= = =BC BD BCD , which may or may not be 
true. 

An Example 
Following is an example of data from a randomized block design. The block factor has four 
blocks (B1, B2, B3, B4) while the treatment factor has three levels (low, medium, and high). The 
response is shown within the table. 

Randomized Block Example    
 Treatments 

Blocks Low  Medium High 

B1 16 19 20 

B2 18 20 21 

B3 15 17 22 

B4 14 17 19 

Analysis of Variance Hypotheses 
The F test for treatments in a randomized block design tests the hypothesis that the treatment 
effects are zero. (See the beginning of the Fixed-Effects Analysis of Variance chapter for a 
discussion of the meaning of effects.) 

Single-Factor Repeated Measures Designs 
The randomized block design is often confused with a single-factor repeated measures design 
because the analysis of each is similar. However, the randomization pattern is different. In a 
randomized block design, the treatments are applied in random order within each block. In a 
repeated measures design, however, the treatments are usually applied in the same order through 
time. You should not mix the two. If you are analyzing a repeated measures design, we suggest 
that you use that module of PASS to do the sample size and power calculations. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. For more information about the options of other tabs, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Sample Size 

Number of Blocks 
This specifies one or more values for the number of blocks. If a list of values is entered, a 
separate calculation will be made for each value.  

Effect Size – Main Effects & 
Interactions 

Factors (A, B, and AB) 
These check boxes specify which terms are included in the analysis of variance model. Check a 
term to indicate that it is included.  

The two factors are assigned the labels A and B. The interaction between factors A and B is 
labeled AB. You cannot include the interaction term without including both A and B. 

Effect Size – Main Effects 

Categories (A and B) 
This option specifies the number of categories (levels) contained in each factor. Since the 
effective sample size is equal to the product of the number of levels in each factor and the number 
of blocks, increasing the number of levels of a factor increases the sample size of the experiment. 

Hypothesized Means (A and B) 
Enter a set of hypothesized means (or effects), one for each factor level. The standard deviation of 
these means is used in the power calculations. The standard deviation is calculated using the 
formula: 

m
i=1

k
i

2

 =  (e e )
kσ ∑ −

 

where k is the number of levels. Note that the standard deviation will be the same whether you 
enter means or effects since the average of the effects is zero by definition. 

Enter a set of means that give the pattern of differences you expect or the pattern that you wish to 
detect. For example, in a particular study involving a factor with three categories, your research 
might be meaningful if either of two treatment means is 50% larger than the control mean. If the 
control mean is 50, then you would enter 50,75,75 as the three means. 



Randomized Block Analysis of Variance  565-5 

It is usually more intuitive to enter a set of mean values. However, it is possible to enter the 
standard deviation of the means directly by placing an S in front of the number.  

Entering a List of Means 
If numbers are entered without a leading S, they are assumed to be the hypothesized group means 
under the alternative hypothesis. Their standard deviation will be calculated and used in the 
calculations. Blanks or commas may separate the numbers. Note that it is not the values of the 
means themselves that is important, but only their differences. Thus, the mean values 0,1,2 
produce the same results as the values 100,101,102. 

If not enough means are entered to match the number of groups, the last mean is repeated. For 
example, suppose that four means are needed and you enter 1,2 (only two means). PASS will 
treat this as 1,2,2,2. If too many values are entered, PASS will truncate the list to the number of 
means needed. 

Examples: 

5 20 60 

2,5,7 

-4,0,6,9 

S Option 
If an S is entered before a number, the number is assumed to be the value of mσ , the standard 
deviation of the means.  

Examples: 

S 4.6 

S 5.8 

Effect Size – Interactions 

Hypothesized Effects 
Specify the standard deviation of the interaction effects using one of the following methods: 

1.  Enter a set of effects and let the program calculate their standard deviation. 

2.  Enter the standard deviation directly. 

3.  Instruct the program to make the standard deviation proportional to one of the main effect 
terms.  

The standard deviation of the effects is calculated using the formula: 

m
i=1

k
i

2

 =  (e e )
kσ ∑ −

 

where k is the number of effects and are the effect values. The value of e e ek1 2, , ,L e  may be 
ignored because it is zero by definition.  
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Entering a List of Effects 
If numbers are entered without a leading letter, they are assumed to be the hypothesized effects 
under the alternative hypothesis (they are all assumed to be zero under the null hypothesis). Their 
standard deviation will be calculated and used in the calculations.  Blanks or commas may 
separate the numbers.  

If not enough effects are entered to match the number of levels in the term, the last effect is 
repeated. For example, suppose that four effects are needed and you enter 1,2 (only two effects). 
PASS will treat this as 1,2,2,2. If too many values are entered, PASS will truncate the list to the 
number of effects needed. 

For interactions, the number of effects is equal to the product of the number of levels of each 
factor in the interaction. For example, suppose a two-factor design has one factor with three 
levels and another factor with five levels. The number of effects in the two-factor interaction is 
(3)(5) = 15. 

Examples (note that they sum to zero): 

-1 1 -3 3 

2 2 0 -1 -1 -2 

-4,0,1,3 

S Option 
If an S is followed by a number, the number is assumed to be the value of mσ , the standard 
deviation of the effects. 

When a set of effects are equal to either e or -e, the formula for the standard deviation may be 
simplified as follows: 

m
i=1

k
i

2

 =  (e e )
k

σ ∑ −
 

Hence, another interpretation of mσ  is the absolute value of a set of effects that are equal, except 
for the sign. 

Example: 

S 4.7 

Enter a Term Followed by a Percentage 
You can enter the name of a previous term followed by a percentage. This instructs the program 
to set this standard deviation to x% of the term you specify, where x is a positive integer. This 
allows you to set the magnitude of the interaction standard deviation as a percentage of the 
standard deviation of one of the factors without specifying the interaction in detail.  

For example, if the standard deviation of factor A is 16, the command 

A 75 

will set the standard deviation of the current term to (16)(75)/(100) = 12.0. 

Other examples of this syntax are: 

A 50 

B 25 
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Discussion 
The general formula for the calculation of the standard deviation is 

( )
σm

i
i

k

e

k
= =
∑ 2

1  

where k is the number of effects. In the case of a two-way interaction, the standard deviation is 
calculated using the formula:  

( )
( )

σ
μ μ μ μ

m

ij i j
j

J

i

I

AB
IJ

=
− − +• •

==
∑∑

2

11  

where i is the factor A index (from 1 to I), j is the factor B index (from 1 to J), μij  is the mean in 

the ijth cell, μi•  is the mean of factor A across all levels of other factors, ith μ• j  is the mean 
when factor B across all levels of other factors, and 

jth

μ  is the overall mean of the means. 

To see how this works, consider the following table of means from an experiment with I = 2 and 
J = 3: 
 

   i 

   1 2 

  1 2.0 4.0 | 3.0 

j 2 4.0 6.0 | 5.0 

  3 6.0 11.0 | 8.5 

  --- --- --- | --- 

  Total 4.0 7.0 | 5.5 
 

Now, if we subtract the factor A means, subtract the factor B means, and add the overall mean, we 
get the interaction effects: 
 

0.5 -0.5 

0.5 -0.5 

-1.0 1.0 
 

Next, we sum the squares of these six values: 

( ) ( ) ( ) ( ) ( ) ( )05 05 05 05 10 10 32 2 2 2 2 2. . . . . .+ − + + − + − + =  

Next we divide this value by (2)(3) = 6: 

3 6 0 5/ .=  
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Finally, we take the square root of this value: 

0 5 0 7071. .=  

Hence, for this configuration of means,  

( )σm AB = 0 7071. . 

Notice that the average of the absolute values of the interaction effects is: 

[0.5 + 0.5 + 0.5 + 0.5 + 1.0 + 1.0]/6 = 0.6667.  
We see that SD(interaction) is close to the average absolute interaction effect. That is, 0.7071 is 
close to 0.6667. This will usually be the case. Hence, one way to interpret the interaction standard 
deviation is as a number a little larger than the average absolute interaction effect. 

Alpha 
This option specifies the probability of a type-I error (alpha) for each term. A type-I error occurs 
when you reject the null hypothesis that the effects are zero when in fact they are.  

Since they are probabilities, alpha values must be between zero and one. Historically, the value of 
0.05 has been used for alpha. This value may be interpreted as meaning that about one F test in 
twenty will falsely reject the null hypothesis. You should pick a value for alpha that represents 
the risk of a type-I error you are willing to take in your experimental situation.  

You can select different alpha values for different terms. For example, although you have three 
factors in an experiment, you might be mainly interested in only one of them. Hence, you could 
increase the alpha level of the tests from, for example, 0.05 to 0.10 and thereby increase their 
power. Also, you may want to increase the alpha level of the interaction terms, since these will 
often have poor power otherwise. 

S (Standard Deviation) 
This option specifies the value of the standard deviation. In a randomized block design, this value 
is estimated by the square root of the mean square error (which may be listed as the mean square 
of the block-by-treatment interaction). This value will usually have to be determined from a 
previous study. 

Assuming that each block is divided into several subblocks, this is an estimate of the standard 
deviation that would result when the subblocks within the same block received the same 
treatment. 

If you want to use the effect size, f, as the measure of the variability of the effects, you can use 
1.0 for σ. 

Estimation of the standard deviation is discussed in detail in the Standard Deviation Estimator 
chapter. 
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Example 1 – Power after a Study 
This example will explain how to calculate the power of F tests from data that have already been 
collected and analyzed.   

We will analyze the power of the experiment that was given at the beginning of this chapter. 

These data were analyzed using the analysis of variance procedure in NCSS and the following 
results were obtained. 
   
 Analysis of Variance Table 

Source  Sum of Mean  Prob Power 
Term DF Squares Square F-Ratio Level (Alpha=0.05) 
A (Blocks) 3 13.66667 4.555555    
B (Treatment) 2 45.16667 22.58333 19.83 0.002269* 0.991442 
AB 6 6.833333 1.138889    
S 0 0  
Total (Adjusted) 11 65.66666 
Total 12 
* Term significant at alpha = 0.05 

 
Means and Effects Section 
   Standard  
Term Count Mean Error Effect 
B: Treatment 
High 4 20.5 0.5335937 2.333333 
Low 4 15.75 0.5335937 -2.416667 
Medium 4 18.25 0.5335937 8.333334E-02 

 

We will now calculate the power of the F test. Note that factor B in this printout becomes factor A 
on the PASS template. 

Setup 
To analyze these data, we enter the means for factor A. The value of σ  is estimated as the square 
root of the mean square error: 

σ = =1.138889 1.0672  

This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Randomized Block Analysis of Variance procedure window 
by expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking 
on Randomized Block Analysis of Variance. You may then make the appropriate entries as 
listed below, or open Example 1 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Number of Blocks .................................... 2 3 4 5 
Factor (A) ................................................ Checked 
Factors (B, AB) ........................................ Not checked 
Categories (A) ......................................... 3 
Hypothesized Means ............................... 15.75 18.25 20.50 
Alpha ....................................................... All are set to 0.05 
S (Standard Deviation) ............................ 1.0672 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev  
     of Means Effect 
Term Power Blocks Units df1 df2 (Sm) Size Alpha Beta 
A 0.42132 2 6 2 2 1.940 1.8179 0.05000 0.57868 
A 0.89376 3 9 2 4 1.940 1.8179 0.05000 0.10624 
A 0.99144 4 12 2 6 1.940 1.8179 0.05000 0.00856 
A 0.99956 5 15 2 8 1.940 1.8179 0.05000 0.00044 
Standard Deviation Within Blocks (block-treatment interaction) = 1.067 
 
 
Summary Statements 
A randomized-block design with one treatment factor at 3 levels has 2.0 blocks each with 3.0 
treatment combinations. The square root of the block-treatment interaction is 1.067. This 
design achieves 42% power when an F test is used to test factor A at a 5% significance level 
and the actual standard deviation among the appropriate means is 1.940 (an effect size of 
1.8179). 

 

This report shows the power for each of the five block counts. We see that adequate power of 
about 0.9 would have been achieved by three blocks. 
It is important to emphasize that these power values are for the case when the effects associated 
with the alternative hypotheses are equal to those given by the data. It will often be informative to 
calculate the power for other values as well. 

Term 
This is the term (main effect or interaction) from the analysis of variance model being displayed 
on this line. 

Power 
This is the power of the F test for this term. Note that since adding and removing terms changes 
the denominator degrees of freedom (df2), the power depends on which other terms are included 
in the model. 

Blocks 
This is the number of blocks in the design. 

Units 
This is the number of subblocks (plots) in the design. It is the product of the number of treatment 
levels and the number of blocks. 

df1 
This is the numerator degrees of freedom of the F test. 

df2 
This is the denominator degrees of freedom of the F test. This value depends on which terms are 
included in the AOV model. 
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Std Dev of Means (Sm) 
This is the standard deviation of the means (or effects). It represents the size of the differences 
among the effects that is to be detected by the analysis. If you have entered hypothesized means, 
only their standard deviation is displayed here. 

Effect Size 
This is the standard deviation of the means divided by the standard deviation of subjects. It 
provides an index of the magnitude of the difference among the means that can be detected by 
this design. 

Alpha 
This is the significance level of the F test. This is the probability of a type-I error given the null 
hypothesis of equal means and zero effects. 

Beta 
This is the probability of the type-II error for this test given the sample size, significance level, 
and effect size. 

Example 2 – Validation using Prihoda 
Prihoda (1983) presents details of an example that is given in Odeh and Fox (1991). In this 
example, Alpha is 0.025, Sm of A is 0.577, the number of treatments in factor A is 6, the number 
of treatments in factor B is 3, S is 1.0, and the Number of Blocks is 2, 3, 4, 5, 6, 7, and 8. Prihoda 
gives the power values for the F test on factor A as 0.477, 0.797, 0.935, 0.982, 0.995, 0.999, and 
1.000.   

This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Randomized Block Analysis of Variance procedure window 
by expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking 
on Randomized Block Analysis of Variance. You may then make the appropriate entries as 
listed below, or open Example 2 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Number of Blocks .................................... 2 3 4 5 6 7 8 
Terms (A, B, AB) ..................................... Checked 
Categories (A) ......................................... 6 
Categories (B) ......................................... 3 
Hypothesized Means (A) ......................... S 0.577 
Hypothesized Means (B) ......................... S 1 
Hypothesized Effects (AB) ...................... S 1 
Alpha ....................................................... All are set to 0.025 
S (Standard Deviation) ............................ 1.0 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
      Std Dev  
     of Means Effect 
Term Power Blocks Units df1 df2 (Sm) Size Alpha Beta 
A 0.47622 2 36 5 17 0.577 0.5770 0.02500 0.52378 
B 0.99697 2 36 2 17 1.000 1.0000 0.02500 0.00303 
AB 0.85337 2 36 10 17 1.000 1.0000 0.02500 0.14663 
 
A 0.79521 3 54 5 34 0.577 0.5770 0.02500 0.20479 
B 0.99999 3 54 2 34 1.000 1.0000 0.02500 0.00001 
AB 0.99615 3 54 10 34 1.000 1.0000 0.02500 0.00385 
 
A 0.93479 4 72 5 51 0.577 0.5770 0.02500 0.06521 
B 1.00000 4 72 2 51 1.000 1.0000 0.02500 0.00000 
AB 0.99995 4 72 10 51 1.000 1.0000 0.02500 0.00005 
 
A 0.98226 5 90 5 68 0.577 0.5770 0.02500 0.01774 
B 1.00000 5 90 2 68 1.000 1.0000 0.02500 0.00000 
AB 1.00000 5 90 10 68 1.000 1.0000 0.02500 0.00000 
 
A 0.99573 6 108 5 85 0.577 0.5770 0.02500 0.00427 
B 1.00000 6 108 2 85 1.000 1.0000 0.02500 0.00000 
AB 1.00000 6 108 10 85 1.000 1.0000 0.02500 0.00000 
 
A 0.99907 7 126 5 102 0.577 0.5770 0.02500 0.00093 
B 1.00000 7 126 2 102 1.000 1.0000 0.02500 0.00000 
AB 1.00000 7 126 10 102 1.000 1.0000 0.02500 0.00000 
 
A 0.99981 8 144 5 119 0.577 0.5770 0.02500 0.00019 
B 1.00000 8 144 2 119 1.000 1.0000 0.02500 0.00000 
AB 1.00000 8 144 10 119 1.000 1.0000 0.02500 0.00000 
 
Standard Deviation Within Blocks (block-treatment interaction) = 1.000 

 

We have bolded the power values on this report that should match Prihoda’s results. You see that 
they do match. 



  570-1 

Chapter 570 

Repeated 
Measures Analysis 
of Variance 
Introduction 
This module calculates the power for repeated measures designs having up to three within factors 
and up to three between factors. It computes power for various test statistics including the F test 
with the Geisser-Greenhouse correction, Wilks’ lambda, Pillai-Bartlett trace, and Hotelling-
Lawley trace. It can be used to calculate the power of crossover designs. . 

Repeated measures designs are popular because they allow a subject to serve as their own control. 
This usually improves the precision of the experiment. However, when the analysis of the data 
uses the traditional F tests, additional assumptions concerning the structure of the error variance 
must be made. When these assumptions do not hold, the Geisser-Greenhouse correction provides 
reasonable adjustments so that significance levels are accurate.  

An alternative to using the F test with repeated measures designs is to use one of the multivariate 
tests: Wilks’ lambda, Pillai-Bartlett trace, or Hotelling-Lawley trace. These alternatives are 
appealing because they do not make the strict, often unrealistic, assumptions about the structure 
of the error variance. Unfortunately, they may have less power than the F test and they cannot be 
used in all situations.  

An example of a two-factor repeated measures design that can be analyzed by this procedure is 
shown by the following diagram. 

 

Group 1  Group 2 

Subject 1 Subject 2 Month Subject 3 Subject 4 

Treatment L Treatment L 1 Treatment L Treatment L 

Treatment M Treatment M 2 Treatment M Treatment M 

Treatment H Treatment H 3 Treatment H Treatment H 

 

Groups 1 and 2 form the between factor. The within factor has three levels: L, M, and H (low, 
medium, and high). There are four subjects in this experiment. The three treatments are applied to 
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each subject, one treatment per month. Note that the three treatments are applied to each subject 
in the same order. Although the order of treatment application should be randomized, it is often 
the same for all subjects.  

This diagram shows the main features of a repeated measures design, which are 

1. Each subject receives all treatments. 

2. The treatments are applied through time. When the treatments are applied in the same 
order across all subjects, it is impossible to separate the treatment effects from the 
sequence effects. Some processes that can cause sequence effects are learning, practice, 
or fatigue—any pattern in the responses across time that occurs without the treatment. If 
you think the possibility for sequence effects exists, you must make sure that the effects 
of prior treatments have been washed out before applying the next treatment. 

3.  Unlike other designs, the repeated measures design has two experimental units: between 
and within. In this example, the first (between) experimental unit is a subject. Subject-to-
subject variability is used to test the between factor (groups). The second (within) 
experimental unit is the time period. In the above example, the month to month 
variability within a subject is used to test the treatment. The important point to realize is 
that the repeated measures design has two error components, the between and the within.  

Assumptions 
The following assumptions are made when using the F test to analyze a factorial experimental 
design. 

1.  The response variable is continuous. 

2.  The residuals follow the normal probability distribution with mean equal to zero and 
constant variance. 

3.  The subjects are independent. 

Since in a within-subject design responses coming from the same subject are not independent, 
assumption 3 must be modified for responses within a subject. Independence between subjects is 
still assumed. 

4.  The within-subject covariance matrices are equal for all between-subject groups. In this 
type of experiment, the repeated measurements on a subject may be thought of as a 
multivariate response vector having a certain covariance structure. This assumption states 
that these covariance matrices are constant from group to group.  

5.  When using an F test, the within-subject covariance matrices are assumed to be circular. 
One way of defining circularity is that the variances of differences between any two 
measurements within a subject are constant for all measurements. Since responses that 
are close together in time often have a higher correlation than those that are far apart, it is 
common for this assumption to be violated. This assumption is not necessary for the 
validity of the three multivariate tests: Wilks’ lambda, Pillai-Bartlett trace, or Hotelling-
Lawley trace. 
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Advantages of Within-Subjects Designs 
Because the response to stimuli usually varies less within an individual than between individuals, 
the within-subject variability is usually less than (or at most equal to) the between-subject 
variability. By reducing the underlying variability, the same power can be achieved with a smaller 
number of subjects.  

Disadvantages of Within-Subjects Designs 
1.  Practice effect. In some experiments, subjects systematically improve as they practice the 

task being studies. In other cases, subjects may systematically get worse as the get 
fatigued or bored with the experimental task. Note that only the treatment administered 
first is immune to practice effects. Hence, experimenters should make an effort to balance 
the number of subjects receiving each treatment first. 

2.  Carryover effect. In many drug studies, it is important to wash out the influence of one 
drug completely before the next drug is administered. Otherwise, the influence of the first 
drug carries over into the response to the second drug.  

3.  Statistical analysis. The statistical model is more restrictive than in a regular factorial 
design since the individual responses must have certain mathematical properties. 

Even in the face of all these disadvantages, repeated measures (within-subject) designs are 
popular in many areas of research. It is important that you recognize these problems going in so 
you can make sure that the design is appropriate, rather than learning of them later after the 
research has been conducted. 

Technical Details 

General Linear Multivariate Model 
This section provides the technical details of the repeated measures designs that can be analyzed 
by PASS. The approximate power calculations outlined in Muller, LaVange, Ramey, and Ramey 
(1992) are used. Using their notation, for N subjects, the usual general linear multivariate model 
is 

( ) ( ) ( )
Y XM R

N p N q p N p× × × ×
= +  

where each row of the residual matrix R is distributed as a multivariate normal 

( ) ( )row R Nk p~ ,0 Σ  

Note that p is the product of the number of levels of each of the within-subject factors, q is the 
number of design variables, Y is the matrix of responses, X is the design matrix, M is the matrix of 
regression parameters (means), and R is the matrix of residuals. 

Hypotheses about various sets of regression parameters are tested using  

H
a b0 0: Θ Θ
×
=  

CMD
a q p b× × ×

= Θ  
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where C and D are orthonormal contrast matrices and Θ0  is a matrix of hypothesized values, 
usually zeros. Note that C defines contrasts among the between-subject factor levels and D 
defines contrast among the within-subject factor levels. 

Tests of the various main effects and interactions may be constructed with suitable choices for C 
and D. These tests are based on  

( )$ ' 'M X X X= − Y  

$ $Θ = CMD  

( ) ( )[ ] ( )H C X X C
b b×

− −
= −

′
−$ ' ' $Θ Θ Θ Θ0

1

0  

( )E D D N r
b b×

= ⋅ −' $Σ  

T H E
b b×

= +  

where r is the rank of X.  

Geisser-Greenhouse F Test 
Upon the assumption that  has compound symmetry, a size Σ α  test of  H0: 0Θ Θ=  is given by 
the F ratio 

( )
( ) ( )[ ]F

H ab
E b N r

=
−

tr
tr

/
/

 

with degrees of freedom given by 

df ab1=  

( )df b N r2 = −  

and noncentrality parameter 

( )λ = df F1  

The assumption that  has compound symmetry is usually not viable. Box (1954a,b) suggested 
that adjusting the degrees of freedom of the above F-ratio could compensate for the lack of 
compound symmetry in . His adjustment has become known as the Geisser-Greenhouse 
adjustment. Under this adjustment, the modified degrees of freedom and noncentrality parameter 
are given by 

Σ

Σ

df ab1= ε  

( )df b N r2 = − ε  

( )λ ε= df F1  

where 

( )
( )ε =
tr

tr

D D

b D DD D

' $

' $ ' $
Σ

Σ Σ

2
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The range of ε  is 1
1b−

 to 1.  When ε = 1, the matrix is spherical. When ε =
−
1

1b
, the matrix 

differs maximally from sphericity. 

Note that the Geisser-Greenhouse adjustment is only needed for testing main effects and 
interactions involving within-subject factors. Main effects and interactions that involve only 
between-subject factors need no such adjustment. 

The critical value  is computed using the expected value of FCrit ε  to adjust the degrees of 
freedom. That is, the degrees of freedom of are given by FCrit

( )df ab1= E ε  

( ) ( )df b N r2 = − E ε  

where 

( )E
g

N r
g

N r$

/
ε

ε ε
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where the ξ j 's  are the ordered eigenvalues of D D'Σ . 

Wilks’ Lambda Approximate F Test 
The hypothesis  may be tested using Wilks’ likelihood ratio statistic W. This statistic 
is computed using 

H0:Θ Θ= 0

W ET= −1  

An F approximation to the distribution of W is given by 

( )
F df

dfdf df1 2

1

21,
/

/
=

−
η
η

 

where 

λ = df Fdf df1 1 2,  

η = −1 1W g/  

df ab1=  

( ) ( )[ ] ( )df g N r b a ab2 1 2= − − − + − −/ /2 2  

g a b
a b

=
−

+ −
⎛
⎝
⎜

⎞
⎠
⎟

2 2

2 2

1
24

5
 

Pillai-Bartlett Trace Approximate F Test 
The hypothesis  may be tested using the Pillai-Bartlett Trace. This statistic is 
computed using 

H0:Θ Θ= 0

( )T tr HTPB =
−1  

A non-central F approximation to the distribution of  is given by TPB

( )
F df

dfdf df1 2

1

21,
/

/
=

−
η
η

 

where 

λ = df Fdf df1 1 2,  

η =
T
s
PB  

( )s a= min ,b  

df ab1=  

( )[ ]df s N r b s2 = − − +  
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Hotelling-Lawley Trace Approximate F Test 
The hypothesis  may be tested using the Hotelling-Lawley Trace. This statistic is 
computed using 

H0:Θ Θ= 0

( )T tr HEHL =
−1  

An F approximation to the distribution of T  is given by HL

( )
F df

dfdf df1 2

1

21,
/

/
=

−
η
η

 

where 

λ = df Fdf df1 1 2,  

η =
+

T
s
T

s

HL

HL1
 

( )s a= min ,b  

df ab1=  

( )[ ]df s N r b s2 = − − +  

The M (Mean) Matrix 
In the general linear multivariate model presented above, M represents a matrix of regression 
coefficients. Since you must provide the elements of M, we will discuss its meaning in more 
detail. Although other structures and interpretations of M are possible, in this module we assume 
that the elements of M are the cell means. The rows of M represent the between-subject categories 
and the columns of M represent the within-group categories.  

The q rows of M represent the q groups into which the subjects can be classified. For example, if 
a design includes three between-subject factors with 2, 3, and 4 categories, the matrix M would 
have 2 x 3 x 4 = 24 rows. That is, q = 24. Similarly, if a design has three within-subject factors 
with 3, 3, and 3 categories, the matrix M would have 3 x 3 x 3 = 27 columns. That is, p = 27. 

Consider now an example in which q = 3 and p = 4. That is, there are three groups into which 
subjects can be placed. Each subject is measured four times. The matrix M would appear as 
follows.  

M =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

μ μ μ μ
μ μ μ μ
μ μ μ μ

11 12 13 14

21 22 23 24

31 32 33 34

 

For example, the element μ12  is the mean of the second measurement of subjects in the first 
group. To calculate the power of this design, you would need to specify appropriate values of all 
twelve means. 
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As a second example, consider a design with three between-subject factors and three within-
subject factors, all of which have two categories. The M matrix for this design would be as 
follows.  

M

W
W
W

B B B

=

1 1 1 1 1 2 2 2 2
2 1 1 2 2 1 1 2 2
3 1 2 1 2 1 2 1 2

1 2 3
1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2

111111 111112 111121 111122 111211 111212 111221 111222

112111 112112 112121 112122 112211 112212 112221 112222

121111 121112 121121 121122 121211 121212 121221 121222

122111 122112 122121 122122 122211 122212 122221 122222

211111 211112 211121 211122 211211 211212 211221 211222

212111

μ μ μ μ μ μ μ μ
μ μ μ μ μ μ μ μ
μ μ μ μ μ μ μ μ
μ μ μ μ μ μ μ μ
μ μ μ μ μ μ μ μ
μ μ μ μ μ μ μ μ
μ μ μ μ μ μ μ μ
μ μ μ μ μ μ μ μ

212112 212121 212122 212211 212212 212221 212222

221111 221112 221121 221122 221211 221212 221221 221222

222111 222112 222121 222122 222211 222212 222221 222222

2 2 1
2 2 2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

The subscripts for each mean follow the pattern μB B B W W W1 2 3 1 2 3 . The first three subscripts 
indicate the between-subject categories and the second three subscripts indicate the within-subject 
categories. Notice that the first three subscripts are constant in each row and the second three 
subscripts are constant in each column.  

Specifying the M Matrix 
When computing the power in a repeated measures analysis of variance, the specification of the 
M matrix is one of your main tasks. The program cannot do this for you. The calculated power is 
directly related to your choice. So your choice for the elements of M must be selected carefully 
and thoughtfully. When authorization and approval from a government organization is sought, 
you should be prepared to defend your choice of M. In this section, we will explain how you can 
specify M. 

Before we begin, it is important that you have in mind exactly what M is. M is a table of means 
that represent the size of the differences among the means that you want the study or experiment 
to detect. That is, M gives the means under the alternative hypothesis. Under the null hypothesis, 
these means are assumed to be equal. Because of the complexity of the repeated measures design, 
it is often difficult to choose reasonable values, so PASS will help you. But it is important to 
remember that you are responsible for these values and that the sample sizes calculated are based 
on them. 

One way to specify the M matrix is to do so directly into the spreadsheet. You might do this if 
you are calculating the ‘retrospective’ power of a study that has already been completed, or if it is 
simply easier to write the matrix directly. Usually, however, you will specify the M matrix in 
portions. 

We will begin our discussion of specifying the M matrix with an example. Consider a study of 
two groups of subjects. Each subject was tested, then a treatment was administered, then the 
subject was tested again at the ten minute mark, and then tested a third time after sixty minutes. 
The researchers wanted the sample size to be large enough to detect the following pattern in the 
means. 
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Table of Hypothesized Means   
 Time Period   
Group T0 T10 T60 Average 
A 100 130 100 110 

B 120 180 120 140 

Average 110 155 110 125 

 
To understand how they derived this table, we will perform some basic arithmetic on it. 

Step 1 – Remove the Overall Mean 
Subtract 125, the overall mean, from each of the individual means. 

Table of Hypothesized Means 
Adjusted for Overall Mean 

  

 Time Period   
Group T0 T10 T60 Average 
A -25 5 -25 -15 

B -5 55 -5 15 

Average -15 30 -15 125 

 

Step 2 – Remove the Group Effect 
Subtract -15 from the first row and 15 from the second row. 

Table of Hypothesized Means 
Adjusted for Group 

  

 Time Period   
Group T0 T10 T60 Total 
A -10 20 -10 -15 

B -20 40 -20 15 

Total -15 30 -15 125 
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Step 3 – Remove the Time Effect 
Subtract -15 from the first column, 30 from the second column, and -15 from the third column. 

Table of Hypothesized Means 
Adjusted for Group and Time 

   

 Time Period    
Group T0 T10 T60 Effect Effect + Overall 
A 5 -10 5 -15 110 

B -5 10 -5 15 140 

Effect -15 30 -15   

Effect + Overall 110 155 110  125 

 
This table, called an effects table, lets us see the individual effect of each component of the 
model. For example, we can see that the hypothesized pattern across time is that T10 is 45 units 
higher than either endpoint. Similarly, we note that the hypothesized pattern for the two groups is 
that Group B is 30 units larger than Group A. 

Understanding the interaction is more difficult. One interpretation focuses on T10. We note that 
in Group A the response for T10 is 10 less than expected while in Group B the response for T10 
is 10 more than expected. 

Entering This Information into PASS 
Rather than enter the individual values into PASS, you can enter the group, time, and interaction 
effects directly. For this example, you could enter ‘110  140’ or ‘-15 15’ for the hypothesized 
means of the between factor and ‘110  155  110’ or ‘-15 30 -15’ for the hypothesized means of 
the within factor. For the interaction, you would enter the six interaction values ‘5 -10 5 -5 10 -5’.  

Another way to enter the interaction information would be to indicate that the size of the 
interaction to be detected is about half that of the group factor or about a third of the time factor. 
For a complete discussion of the interpretation of various interactions, we suggest that you look at 
Kirk (1982). 

The C Matrix for Between-Subject Contrasts 
The C matrix is comprised of contrasts that are applied to the rows of M. That is, these are 
between-group contrasts. You do not have to specify these contrasts. They are generated for you. 
You should understand that a different C matrix is generated for each between-subject term in the 
model. For example, in the six factor example above, the C matrix that will be generated for 
testing the between-subject factor B1 is 

CB1
1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

=
− − − −⎡

⎣⎢
⎤

⎦⎥
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Note that the divisor 8  is used so that the total of the squared elements is one. This is required 
so that the contrast matrix is orthonormal. 

When creating a test for B1, the matrix D is created to average across all within-subject 
categories. 

DB1

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

Generating the C Matrix when There are Multiple Between Factors 
Generating the C matrix when there is more than one between factor is more difficult. We like the 
method of O’Brien and Kaiser (1985) which we briefly summarize here. 

Step 1. Write a complete set of contrasts suitable for testing each factor separately. For example, 
if you have three factors with 2, 3, and 4 categories, you might use 

&&CB1
1
2

1
2

=
−⎡

⎣⎢
⎤

⎦⎥
, &&CB2

2
6

1
6

1
6

0 1
2

1
2

=

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, and &&CB3

3
12

1
12

1
12

1
12

0 2
6

1
6

1
6

0 0 1
2

1
2

=

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

. 

Step 2. Define appropriate  matrices corresponding to each factor. These matrices comprised 
of one row and k columns whose equal element is chosen so that the sum of its elements squared 
is one. In this example, we use 

Jk

J2
1
2

1
2

= ⎡

⎣⎢
⎤

⎦⎥
, J3

1
3

1
3

1
3

= ⎡

⎣⎢
⎤

⎦⎥
, J4

1
4

1
4

1
4

1
4

= ⎡

⎣⎢
⎤

⎦⎥
 

Step 3. Create the appropriate contrast matrix using a direct (Kronecker) product of either the  
matrix if the factor is included in the term or the  matrix when the factor is not in the term. 
Remember that the direct product is formed by multiplying each element of the second matrix by 
all members of the first matrix. Here is an example 

&&CBi

Ji
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1 2
3 4

1 0 1
0 2 0
1 0 3

1 2 0 0 1 2
3 4 0 0 3 4
0 0 2 4 0 0
0 0 6 8 0 0
1 2 0 0 3 6
3 4 0 0 9 12

⎡

⎣
⎢

⎤

⎦
⎥ ⊗

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

− −
− −

− −
− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

As an example, we will compute the C matrix suitable for testing factor B2 

C J C JB B2 2 2= ⊗ ⊗&&
4  

Expanding the direct product results in 
C J C JB B2 2 2 4

1
2

1
2

2
6

1
6

1
6

0 1
2

1
2

1
4

1
4

1
4

1
4

2
12

2
12

1
12

1
12

1
12

1
12

0 0 1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

2
48

2
48

1
48

1
48

1
48

1
48

2
48

2
48

1
48

1
48

1
48

1
48

2

= ⊗ ⊗

= ⎡

⎣⎢
⎤

⎦⎥
⊗

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⊗ ⎡

⎣⎢
⎤

⎦⎥

=

− −

− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⊗ ⎡

⎣⎢
⎤

⎦⎥

=

− − − − −

&&

48
2

48
1
48

1
48

1
48

1
48

2
48

2
48

1
48

1
48

1
48

1
48

0 0 1
16

1
16

1
16

1
16

0 0 1
16

1
16

1
16

1
16

0 0 1
16

1
16

1
16

1
16

0 0 1
16

1
16

1
16

1
16

− − −

− − − − − − − −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

Similarly, the C matrix suitable for testing interaction B2B3 is 

C J C CB B B B2 3 2 2 3= ⊗ ⊗&& &&  

We leave the expansion of this matrix PASS, but we think you have the idea. 

The D Matrix for Within-Subject Contrasts 
The D matrix is comprised of contrasts that are applied to the columns of M. That is, these are 
within-group contrasts. You do not have to specify these contrasts either. They will be generated 
for you. Specification of the D matrix is similar to the specification of the C matrix, except that 
now the matrices are all transposed.  

Interactions of Between-Subject and Within-Subject Factors 
Interactions that include both between-subject factors and within-subject factors require that 
between-subject portion be specified by the C matrix and the within-subject portion be specified 
with the D matrix. 
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Power Calculations 
To calculate statistical power, we must determine distribution of the test statistic under the 
alternative hypothesis which specifies a different value for the regression parameter matrix B. The 
distribution theory in this case has not been worked out, so approximations must be used. We use 
the approximations given by Mueller and Barton (1989) and Muller, LaVange, Ramey, and 
Ramey (1992). These approximations state that under the alternative hypothesis,  is distributed 
as a noncentral F random variable with degrees of freedom and noncentrality shown above. The 
calculation of the power of a particular test may be summarized as follows 

FU

1.  Specify values of X M C D, , , , ,Σ Θand 0 . 

2.  Determine the critical value using ( )F FINV df dfcrit = −1 1 2α , , , where FINV( ) is the 
inverse of the central F distribution and α is the significance level.  

3.  Compute the noncentrality parameter λ . 

4.  Compute the power as  

( )Power NCFPROB F df dfcrit= −1 1, , ,2 λ  

where NCFPROB( ) is the noncentral F distribution.  

Covariance Matrix Assumptions 
The following assumptions are made when using the F test. These assumptions are not needed 
when using one of the three multivariate tests.   

In order to use the F ratio to test hypotheses, certain assumptions are made about the distribution 
of the residuals .  Specifically, it is assumed that the residuals for each subject, 

, are distributed as a multivariate normal with means equal to zero and covariance 
matrix . Two additional assumptions are made about these covariance matrices. First, they are 

assumed to be equal for all subjects. That is, it is assumed that 

eijk

e e eij ij ijT1 2, , ,L

Σ ij

Σ Σ Σ Σ11 12= = = =L Gn . 
Second, the covariance matrix is assumed to have a particular form called circularity. A 
covariance matrix is circular if there exists a matrix A such that 

Σ = + +A A IT' λ  

where  is the identity matrix of order T and IT λ  is a constant.  

This property may also be defined as 

σ σ σ λii jj ij+ − =2 2  

One type of matrix that is circular is one that has compound symmetry. A matrix with this 
property has all elements on the main diagonal equal and all elements off the main diagonal 
equal. An example of a covariance matrix with compound symmetry is 
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Σ =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

σ ρσ ρσ ρσ
ρσ σ ρσ ρσ
ρσ ρσ σ ρσ

ρσ ρσ ρσ σ

2 2 2

2 2 2

2 2 2

2 2 2 2

L

L

L

M M M O M

L

2

2

2  

or, with actual numbers, 

9 2 2 2
2 9 2 2
2 2 9 2
2 2 2 9

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

An example of a matrix which does not have compound symmetry  but is still circular is 

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

4 3 4 5
3 6 5 6
4 5 8 7
5 6 7 10

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

Needless to say, the need to have the covariance matrix circular is a very restrictive assumption. 

Between-Subject Standard Deviation 
The subject-to-subject variability is represented by . In the repeated measures AOV table, 
this quantity is estimated by the between subjects mean square (MSB). This quantity is calculated 
from  using the formula 

σBetween
2

Σ

σ
σ

σ σ ρ

Between

ij
j

T

i

T

ii jj ij
j

T

i

T
T

T

2 11

11

=

=

==

==

∑∑

∑∑
 

When  has compound symmetry, which requires all Σ σ σii =  and all ρ ρij = , the above 
formula reduces to 

( )( )σ σBetween T2 2 1 1= + − ρ  

Note that F tests of between factors and their interactions do not require the circularity 
assumption so the Geisser-Greenhouse correction is not applied to these tests. 
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Within-Subject Standard Deviation 
The within-subject variability is represented by . In the repeated measures AOV table, this 
quantity is estimated by the within-subjects mean square (MSW). This quantity is calculated from 

 using the formula 

σWithin
2

Σ

( )

( )

σ
σ σ

σ ρ σ σ

Within

ii
i

T

ij
j i

T

i

T

ii
i

T

ij ii jj
j i

T

i

T

T T T

T T T

2 1 11

1 11

2

1

2

1

= −
−

= −
−

= = +=

= = +=

∑ ∑∑

∑ ∑∑
 

When  has compound symmetry, which requires all Σ σ σii =  and all ρ ρij = , the above 
formula reduces to 

( )σ σWithin
2 2 1= − ρ  

Estimating Sigma and Rho from Existing Data 
Using the above results for existing data, approximate values for σ  and ρ  may be estimated 
from a previous analysis of variance table that provides estimates of MSB and MSW. Solving the 
above equations for σ  and ρ   yields 

( )
ρ σ σ

σ σ
=

−
+ −

Between Within

Between WithinT

2 2

2 21
 

σ σ
ρ

2
2

1
=

−
Within  

Substituting MSB for  and MSW for  yields the estimates σ Between
2 σWithin

2

( )
$ρ =

−
+ −

MSB MSW
MSB T MSW1

 

$
$

σ
ρ

2

1
=

−
MSW

 

Note that these estimators assume that the design meets the circularity assumption, which is 
usually not the case. However, they provide crude estimates that can be used in planning. 
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Procedure Options 
This section describes the options that are unique to this procedure. To find out more about using 
the other tabs, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for. If you choose to solve for n (sample size), 
you must also specify which test statistic you want to use. 

When you choose to solve for n, the program searches for the lowest sample size that meets the 
alpha and power criterion you have specified for each of the terms. If you do not want a term to 
be used in the search, set its levels to empty or 0. 

Also, when the ‘= n’s’ box is not checked, the search is made using unequal group sample sizes. 
The relative proportion of the sample in each group is set by the values of n given in the Subjects 
Per Group box. For example, if your design has three groups and you entered ‘1 1 2’ in the 
Subjects Per Group box, the search will only consider designs in which the size of the last group 
is twice the rest. That is, it will consider ‘2 2 4’, ‘3 3 6’, ‘4 4 8’, etc. 

Note: no plots are generated when you solve for n. 

Sample Size 

n (Subjects Per Group) 
Specify one or more values for the number of subjects per group. The total sample size is the sum 
of the individual group sizes across all groups. 

You can specify a list like ‘2 4 6’. The items in the list may be separated with commas or blanks. 
The interpretation of the list depends on the =n's check box. When the =n's box is checked, a 
separate analysis is calculated for each value of n. When the =n's box is not checked, PASS uses 
the n’s as the actual group sizes. In this case, the number of items entered must match the number 
of groups in the design. 

When you choose to solve for n and the ‘= n’s’ box is not checked, the search is made using 
unequal group sample sizes. The relative proportion of the sample in each group is set by the 
values of n given in this box. For example, if your design has three groups and you enter ‘1 1 2’ 
here, the search will only consider designs in which the size of the last group is twice the rest. 
That is, it will consider ‘2 2 4’, ‘3 3 6’, ‘4 4 8’, etc. 

= n’s 
This option controls whether the number of subjects per group is to be equal for all groups or not. 
When checked, the number of subjects per group is equal for all groups. A list of values such as 
‘5 10 15’ represents three designs: one with five per group, one with ten per group, and one with 
fifteen per group.  
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When this option is not checked, the n’s are assumed to be unequal. A list of values represents the 
size of the individual groups. For example, ‘5 10 15’ represents a single, three-group design with 
five in the first group, ten in the second group, and fifteen in the third group. 

Effect Size – Means 

Means Matrix 
Use this option to the specify spreadsheet columns containing a hypothesized means matrix that 
will be used to compute the Sm values. All individual Sm values are ignored. You can obtain the 
spreadsheet by selecting ‘Window’, then ‘Data’, from the menus. 

The between factors are represented across the columns of the spreadsheet and the within factors 
are represented down the rows. The number of columns specified must equal the number of 
groups. The number of rows with data in these columns must equal the number of times. For 
example, suppose you are designing an experiment that is to have two between factors (A & B) 
and two within factors (D & E). Suppose each of the four factors has two levels. The columns of 
the spreadsheet would be 

A1B1 A1B2 A2B1 A2B2. 

The rows of the spreadsheet would represent 

D1E1 

D1E2 

D2E1 

D2E2 

Example 
To see how this option works, consider the following table of hypothesized means for an 
experiment with one between factor (A) having two groups and one within factor (B) having 
three time periods. The values in columns C1 and C2 of the spreadsheet are 

C1 C2 
2.0 4.0 
4.0 6.0 
6.0 11.0 

By subtracting the appropriate means, the following table of effects results 
C1 C2 | Means | Effects 

Row1 0.5 -0.5 | 3.0 | -2.5 
Row2 0.5 -0.5 | 5.0 | -0.5 
Row3 -1.0 1.0 | 8.5 |  3.0 

--- --- | --- 
Means 4.0 7.0 | 5.5 
Effects -1.5 1.5 
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The standard deviation of the A effects is calculated as  

( ) ( )σ A =
− +

=
=

15 15
2

2 25
15

2 2. .

.
.

 

The standard deviation of the B effects is calculated as 

( ) ( ) ( )σ B =
− + − +

=

=

2 5 0 5 30
3

155
3

2 27

2 2. . .

.

.

2

 

The standard deviation of the interaction effects is found to be 

( ) ( ) ( ) ( ) ( ) ( )σ AB =
+ + − + − + − +

=

=

0 5 0 5 10 0 5 0 5 10
6

30
6

0 71

2 2 2 2 2. . . . . .

.

.

2

 

These three standard deviations are used to represent the effect sizes of the corresponding terms. 

Discussion 
When using this option, it is less confusing to concentrate on a single term at a time. For example, 
consider a 2-by-4 design in which your primary interest is in testing the AB interaction. Instead of 
trying to determine a means matrix the will represent factor A, factor B, and the AB interaction, 
ignore factor A and factor B and just consider the interaction. You might want to consider the 
following pattern  

C1 C2 
0.0 0.0 
0.0 1.0 
0.0 2.0 
0.0 3.0 

That is, the first group remains constant while the second group increases for 0.0 to 3.0. 

By specifying various values for K (the means multiplier), you can study to impact of increasing 
the values. For example, when K is set to 2, the above means matrix becomes 

C1 C2 
0.0 0.0 
0.0 2.0 
0.0 4.0 
0.0 6.0 

Thus, by simply changing K, several scenarios may be studied. (We wish to thank Keith Muller 
for suggesting this method of specifying the Sm values.) 
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K (Means Multipliers) 
These values are multiplied times the means matrix to give you various effect sizes. A separate 
power calculation is generated for each value of K. These values become the horizontal axis in 
the second power chart. For example, if an Sm value is 80, setting this option to ‘50 100 150’ 
would result in three Sm values: 40, 80, and 120. If you want to ignore this setting, enter ‘1’. 

Note that when you enter Sm values directly, PASS generates an appropriate means matrix and 
then multiplies this matrix by each of these K values. 

Effect Size – Between- and Within-
Subject Factors 

Label 
Specify a label for this factor. Although we suggest that only a single letter be used, the label can 
consist of several letters. When several letters are used, the labels for the interactions may be 
extra long and confusing. Of course, you must be careful not to use the same label for two factors. 

One of the easiest sets of labels is to use A, B, and C for the between factors and D, E, and F for 
the within factors. A useful alternative is to use B1, B2, and B3 for the between factors and W1, 
W2, and W3 for the within factors. 

Levels 
Specify the number of levels (categories) in this factor. Typical values are from 2 to 8. Set this to 
a blank (or 0) to ignore the factor in the design. 

Alpha 
These options specify the probability of a type-I error (alpha) for each factor and interaction. A 
type-I error occurs when you reject the null hypothesis of zero effects when in fact they are zero. 
Since they are probabilities, alpha values must be between zero and one. Historically, the value of 
0.05 has been used for alpha. This value may be interpreted as meaning that about one F-test in 
twenty will falsely reject the null hypothesis. You should pick a value for alpha that represents 
the risk of a type-I error you are willing to take in your experimental situation.  

You can specify different alpha values for different terms. For example, although you have three 
terms in an experiment, you might be mainly interested in only one of them. Hence, you could 
increase the alpha level of the tests of the other terms and thereby increase their power. Also, you 
may want to increase the alpha level of the interaction terms, as these will often have poor power 
otherwise. 

Power or Beta 
These options specify the power or beta (depending on the chosen setting) for each factor and 
interaction. Power is the probability of rejecting a false null hypothesis, and is equal to one minus 
Beta. Beta is the probability of a type-II error, which occurs when you fail to reject the null 
hypothesis of equal effects when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

Sm (Standard Deviation of Effects) 
Enter the standard deviation of the effects ( effectsσ ) for this factor or interaction. This value 
represents the magnitude of the differences among the means (effects) that is to be detected.  
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The value of Sm may be entered in several ways: directly, as a list of numbers, or as a percentage 
of another term. 

• Directly 
You can enter the value of Sm directly by specifying a single number. If only a single number 
is entered, it becomes the value of Sm.  

You can use the Standard Deviation Estimator window to calculate the value of Sm for 
various sets of means. This window is obtained by selecting PASS, then Other, and then 
Standard Deviation Estimator from the menus. 

• List of Numbers 
When a list of numbers is entered, the standard deviation of those numbers is computed and 
used as the value of Sm. The numbers in the list may represent means or effects. The list may 
be a simple list, the STEP command, or the RANGE command. 

Simple List 

A Simple List is a set of numbers separated by blanks or commas. Examples a simple list are 

5 20 60 

2,5,7 

-4,0,6,9 

STEP Command 

The syntax of the STEP command is STEP Start Inc. The list begins at Start and increases by 
Inc. The number of values generated is determined by the number of levels in the term. 
Examples of the STEP command for a term with four levels are 

‘STEP 0 2’ results in ‘0 2 4 6’. 

‘STEP 1 -1’ results in ‘1 0 -1 -2’. 

‘STEP 1 0.5’ results in ‘1 1.5 2 2.5’.  

RANGE Command 

The syntax of the RANGE command is RANGE Minimum Maximum. The list of numbers 
generated increase steadily from Minimum to Maximum. The RANGE command is handy 
when you want to vary the number of levels while keeping the values in a known range. 
Examples of the RANGE command for a term with four levels are 

‘RANGE 10 70’ results in ‘10 30 50 70’. 

‘RANGE 0 1’ results in ‘0 0.33 0.67 1’. 

‘RANGE 1 4’ results in ‘1 2 3 4’.  
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Percentage of another Term 

You can specify the value as a percentage of another term. The syntax of this command is 
TERM PCT where TERM is any other main effect or interaction in the model and PCT is a 
percentage. This method is often used to specify interaction Sm’s. Examples of the 
PERCENTAGE command are 

‘A 100’ results in an Sm equal to the Sm of factor A. 

‘B 50’ results in an Sm equal to one-half of the Sm of factor B. 

Interactions Tab 
The values of Alpha, Power, and Sm are entered for various groups of 2-way and higher-order 
interactions.  

Covariance Tab 
This tab specifies the covariance matrix. 

Covariance Matrix Specification 

Specify Which Covariance Matrix Input Method to Use 
This option specifies which method will be used to define the covariance matrix. 

• Standard Deviations and Autocorrelations 
This option generates a covariance matrix based on the settings for the standard deviations 
(SD’s) and the pattern of autocorrelations as specified in the options on this screen down to 
and including ‘R2’. More about this option is given below. 

• Covariance Matrix Variables 
When this option is selected, the covariance matrix is read in from the columns of the 
spreadsheet. This is the most flexible method, but specifying a covariance matrix is tedious. 
You will usually only use this method when a specific covariance is given to you. More about 
this option is given below. 

Note that the spreadsheet is shown by selecting the menus: ‘Window’ and then ‘Data’. 

Time Metric 
This option is used when the ‘Specify How the Standard Deviations Change Across Time’ option 
is set to ‘Range from SD1 to SD2 using the Time Metric’ to help define the covariance matrix. It 
specifies a sequential list of time points at which measurements of the subjects are made. Often, 
measurements are made at equally-spaced points through time. This is not always the case. It is 
important to define a time metric that corresponds to the study. For example, measurements might 
be planned at the beginning, after one day, after one week, and after one month.  

The number of time points is the product of the number of levels of all within factors.  

The time metric influences the values of the SD’s as well as the correlations between two 
measurements on the same individual. 
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Entering a List of Times 
A list of times can be entered in which the time values are separated by blanks or commas. The 
time metric can be defined in any time scale desired. For example, you could enter 0, 0.143, 1, 2, 
3 if times were 0 weeks, 1/7 week (day 1), 1 week, 2 weeks, 3 weeks. The same values in days 
would be 0, 1, 7, 14, 21. 

Using the RANGE Command 
The RANGE command can be used to specify a list of times. The syntax of the RANGE 
command is 

RANGE Minimum Maximum 

A set of equal-spaced time points is generated between Minimum and Maximum. The number of 
time points depends on the number of within-factor levels. 

This setting is very useful when you want to study the impact of increasing/decreasing the 
number of measurements per subject during the same period of time. That is, if the study will last 
five weeks, will the power of the statistical tests increase if you take ten measurements rather than 
five? 

For example, suppose there are six times. Entering  

RANGE 0 10  

will generate the time metric: 0, 2, 4, 6, 8, 10. If the number of times is changed to eleven, the 
time metric will become: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 

Using the STEP Command 
The STEP command can be used to specify a list of times. The syntax of the STEP command is 

STEP Start, Inc 

This command generates time points beginning at Start and incrementing by Inc. For example,  

STEP 0 2  

would generate the values 0, 2, 4, 6, 8, … 

Covariance Matrix Specification – 
Within-Subject Standard Deviation 
Pattern 
The parameters in this section provide a flexible way to specifyΣ , the covariance matrix. 
Because the covariance matrix is symmetric, it can be represented as 
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where T is the product of the number of levels of all of the within factors. 

Thus, the covariance matrix can be represented with complete generality by specifying the 
standard deviations σ σ σ1 2, , ,L T  and the correlation matrix 
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Specify How the Standard Deviations Change Across Time 
This option specifies the method used to specify the standard deviations σ σ σ1 2, , ,L T . Based on 
the method selected, the actual values are specified using SD1 and, in some cases, SD2.  

Each σ  is an estimate of the standard deviation that occurs when the same individual is 
measured at the same point in time under identical treatment conditions. It is a measure of the 
within-subject variability. 

The available options are 

• Constant (Use SD1. Ignore SD2) 
When this option is selected, the standard deviations are assumed to be equal. That is, it is 
assumed that σ σ1 = =L T . The value of σ i  is specified in the SD1 field. The value in the 
SD2 field is ignored. 

• List of Standard Deviations (Use list in SD1. Ignore SD2.) 
When this option is selected, a list of standard deviations can be entered in SD1. The items in 
the list can be separated by commas or blanks. The first value in the list becomes σ1 , the 
second value becomes σ2 , and so on. If the number of values in the list is less than the 
number of standard deviations required, the last value in the list is repeated. Note that all 
standard deviations in the list must be positive numbers. 
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• Range from SD1 to SD2 using the Time Metric 
When this option is selected, the standard deviations are spread between σ1  and σT  
according to the spread in the Time Metric. The value in SD1 becomes σ1  and the value in 
SD2 becomes σT . 

For example, suppose SD1 = 100, SD2 = 200, and the Time Metric values are 0, 2, 4, 10. The 
standard deviations would be  

σ1 100 0= .  σ2 120 0= .  σ3 140 0= .  σ4 200 0= .  

SD1 (Standard Deviation 1) 
This option is used to generate the covariance matrix. Its interpretation depends on the ‘How the 
SD’s Change Across Time’ option’s setting. Fundamentally, this is the standard deviation that 
occurs when the same individual is measured at the same point in time under identical treatment 
conditions. It is a measure of the within-subject variability. 

You may want to use the special window that has been prepared to estimate SD1 from the mean 
square between (MSB) and the mean square within (MSW) of an existing table. To display this 
special window, from the menus select ‘PASS’, then ‘Other’, and then ‘Standard Deviation 
Estimator’. Click on the ‘Covariance Matrix’ tab. Enter the values from the ANOVA table. The 
resulting value of ‘Sigma’ should be placed here. 

Specify How the Standard Deviations Change Across Time = Constant  
The value entered here is used as the standard deviation for all time points.  

Specify How the Standard Deviations Change Across Time = List of Standard Deviations  
The values in the list entered here become the values of the standard deviations. If the number in 
the list is less than the number required, the last value in the list is repeated. 

Specify How the Standard Deviations Change Across Time = Range from SD1 to SD2 using 
the Time Metric 
The value entered here is used as a beginning standard deviation, the value in SD2  is used as an 
ending standard deviation, and the intermediate standard deviations are spaced between SD1 and 
SD2 proportional to the values of the Time Metric.  

For example, suppose SD1 = 100, SD2 = 200, and the Time Metric values are 0,2,4,10. The 
standard deviation values would be: 

S(1)=100 

S(2)=120 

S(3)=140 

S(4)=200 

SD2 (Standard Deviation 2) 
This parameter is used when ‘How the SD’s Change Across Time’ option is set to ‘Range…’. In 
that case, this option specifies the value of Tσ . 
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Covariance Matrix Specification – 
Autocorrelation Pattern 

Specify How the Autocorrelations Change Across Time 
This option specifies the pattern of the autocorrelations in the variance-covariance matrix. Three 
options are possible: 

• Constant 
The value of R1 is used as the constant autocorrelation until the maximum time difference is 
reached, then the value of R2 is used. For example, if the maximum time difference is 3, R1 = 
0.6, R2 = 0.1, and T = 6, the correlation matrix would appear as 

R =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
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1 0 600 0 600 0 600 0100 0100
0 600 1 0 600 0 600 0 600 0100
0 600 0 600 1 0 600 0 600 0 600
0 600 0 600 0 600 1 0 600 0 600
0100 0 600 0 600 0 600 1 0 600
0100 0100 0 600 0 600 0 600 1

. . . . .
. . . .
. . . . .
. . . . .
. . . . .
. . . . .

.

.

 

Note that when all correlations are equal, this is the correlation pattern that is assumed by the 
repeated measure ANOVA F-test. It may be a good first approximation, but many researchers 
believe the next option (first-order autocorrelation) is more realistic. 

• 1st Order Autocorrelation 
The value of R1 is used as the base autocorrelation in a first-order, serial correlation pattern. 
For example, if the maximum time difference is 3, R1 = 0.6, R2 = 0.1, and T = 6, the 
correlation matrix would appear as 

R =
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This pattern is often chosen as the most realistic when little is known about the correlation 
pattern. 

• Custom 
The values of R1, R2, A, V, and Max Time Diff are used to generate a custom autocorrelation 
pattern. This relationship is modeled using the equation 

( )
( )

Corr Y Y  

= d R d R

si sj ij

A A t ti j
V

, =

⎛
⎝⎜

⎞
⎠⎟ + −− + −

ρ

1 11 2
 



570-26  Repeated Measures Analysis of Variance 

where R1 is the base correlation,  and  are two time points, and A and V are specified 

constants. The variable d is one if  ||
it jt

jtit − is less than Max Time Diff and zero otherwise.  

Machin, Campbell, Fayers, and Pinol (1997) state that values of R1 between 0.60 and 0.75 
are common. 

We will present some examples to show you how this formula may be interpreted. For the 
moment, assume that the time metric is four, equally space time points of 1, 2, 3, and 4. Also, 
assume that Max Time Diff is set to 20. 

Example 1 

Let A = 0, V = 1, and ρ ρ1 = . The correlation matrix becomes 

R =
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Example 2 

Let A = 1, V = 1, and ρ ρ1 = . The correlation matrix becomes 

R =
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which is the first-order autoregression model, a popular model in time series analysis.  

Example 3 

Let A = 1, V = 2, and ρ ρ1 = . The correlation matrix becomes 

R =
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which is similar to Example 2 except that the correlations die out much more quickly.  
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Example 4 

Let A = 0.5, V = 1, and ρ ρ1 = . The correlation matrix becomes 

R =
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which is similar to Example 2 except that the correlations die out much more slowly.  

Example 5 

Let A = 1 and V = 1. For this example, set the Max Time Diff option to 2. The correlation 
matrix becomes 

R =
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Notice that this scenario lets you create a banded correlation matrix with two unique 
correlations.  

Example 6 

This example shows how this formula works when the Max Time Diff is set to 7 and the time 
metric is 1, 2, 7, 15. Let A = 1 and V = 1. The correlation matrix becomes 

R =
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R1 (Autocorrelation) 
This is the autocorrelation, r1, between two measurements made on a subject at two time points 
that differ by one time unit. This value is combined with the other parameters in this section to 
form the covariance matrix.  

Since this is a type of correlation, possible values range from -1 to 1. However, in this situation, a 
positive value is usually assumed, so the range is 0 to 1. A value near 0 indicates low 
autocorrelation. A value near 1 indicates high autocorrelation. 

The value of this parameter depends on the Time Metric that is defined. Normally, you would 
expect a larger autocorrelation if the time metric units were in hours rather than days. In their 
book on sample size, Machin and Campbell comment the values between 0.60 and 0.75 are 
typical. 
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It is reasonable to assume that there is a correlation between two measurements made on the same 
subject at two points in time. It is often reasonable to assume that the size of this correlation 
diminishes as the two time points are further and further apart. That is, you would expect a much 
larger autocorrelation between two measurements taken one minute apart than between two 
measurements taken one week apart. 

You may want to use the special window that has been prepared to estimate R1 from the mean 
square between (MSB) and the mean square within (MSW) of an existing table. To display this 
special window, from the menus select ‘PASS’, then ‘Other’, and then ‘Standard Deviation 
Estimator’. Click on the ‘Covariance Matrix’ tab. Enter the values from the ANOVA table. The 
resulting value of ‘Rho should be placed here. 

R2 (Second AC) 
This is the value of the secondary autocorrelation, R2. This value is used when the difference 
between two time points (see Time Metric) is greater than the value of Max Time Diff. Hence, if 
you set Max Time Diff to zero, this value will be used to calculate all correlations in the 
covariance matrix. When used, think of R2 as the correlation between measurements made on the 
same subject, regardless Of how far apart in time they are. Since we are assuming a positive 
autocorrelation, this value ranges between 0 and 1. 

Max Time Diff 
This is the maximum time difference (MTD) between two measurement points before the 
autocorrelation is set to the constant correlation value, R2. 

In the autocorrelation formula: 

2)1(1
V||

, RddR ji tt
ji −+= −ρ  

The parameter d is equal to 1 when || < MTD and 0 otherwise. Hence, this value controls 
when the autocorrelation is set to R2. 

ji tt −

If you think of R2 as the correlation between measurements made on the same subject, regardless 
of how far apart in time they are, then this value should be set to that time difference at which the 
measurements times are no longer a factor.  

For example, you might postulate that the autocorrelations are 0.9, 0.5, 0.2, 0.2, 0.2, and so on. 
That is, the autocorrelation is 0.9 for measurements taken one day apart, 0.5 for measurements 
taken two days apart, and 0.2 for all others. In this case, you would set Max Time Diff to 3. 

A, V 
These parameters are used when a 'Custom' autocorrelation pattern across time is specified. The 
formula used to calculate the autocorrelation is: 

2)1(1
V||1

, RddR ji ttAA
ji −+= −+−ρ  

where d is 1 if the time difference is <= Max Time Diff and 0 otherwise. 

A = 0, V = 1 gives constant autocorrelation. 

A = 1, V = 1 gives first-order autocorrelation. 

Usually, V is set to 1. V should only be set to 1 or 2. The value of 1 is recommended. Set V at 2 
when you want the autocorrelations to taper off rapidly as time occurs between measurements. 
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Covariance Matrix Specification – 
Covariance Matrix Variables 
This option instructs the program to read the covariance matrix from the spreadsheet. 

Spreadsheet Columns Containing the Covariance Matrix 
This option designates the columns on the current spreadsheet holding the covariance matrix. It is 
used when the ‘Specify Which Covariance Matrix Input Method to Use’ option is set to 
Covariance Matrix Variables. 

The number of columns and number of rows must match the number of time periods at which the 
subjects are measured. 

Reports Tab 
This tab specifies which reports and graphs are displayed as well as their format. 

Select Output – Numeric Reports 

Test in Summary Statement(s) 
Indicate the test that is to be reported on in the Summary Statements. 

Select Output – Report Options 

Maximum Term-Order Reported 
Indicate the maximum order of terms to be reported on. Occasionally, higher-order interactions 
are of little interest and so they may be omitted. For example, enter a ‘2’ to limit output to 
individual factors and two-way interactions. 

Skip Line After 
The names of the terms can be too long to fit in the space provided. If the name contains more 
characters than this, the rest of the output is placed on a separate line. Enter ‘1’ when you want 
every term’s results printed on two lines. Enter ‘100’ when you want every variable’s results 
printed on one line. 

Example 1 – Determining Power 
Researchers are planning a study of the impact of a drug on heart rate. They want to evaluate the 
differences in heart rate among three age groups: 20-40, 41-60, and over 60. Their experimental 
protocol calls for a baseline heart rate measurement, followed by administration of a certain level 
of the drug, followed by three additional measurements 30 minutes apart. They want to be able to 
detect a 10% difference in heart rate among the age groups. They want to detect 5% difference in 
heart rate within an individual across time. They decide the experiment should detect interaction 
effects of the same magnitude as the time factor. They plan to analyze the data using a Geisser-
Greenhouse corrected F test.   

Similar studies have found an average heart rate of 93, a standard deviation of 4, and an 
autocorrelation between adjacent measurements on the same individual of 0.7. The researchers 
assume that first-order autocorrelation adequately represents the autocorrelation pattern.  
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From a heart rate of 93, a 10% reduction gives 84. They decide on the age-group means of 93, 87, 
and 84. Similarly, a 5% reduction within a subject would result in a heart rate of 88. They decide 
on time means of 93, 89, 88, and 91. 

How many subjects per age group are needed to achieve 95% power and a 0.05 significance 
level? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Repeated Measures Analysis of Variance procedure window 
by expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking 
on Repeated Measures Analysis of Variance. You may then make the appropriate entries as 
listed below, or open Example 1 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta  
n (Subjects Per Group) ........................... 2 to 8 by 1 
=n’s .......................................................... checked  
Means Matrix ........................................... blank  
K (Means Multipliers) .............................. 1.0 

For First Between-Subject Factor 
Label ........................................................ B 
Levels ...................................................... 3 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... 93 87 84 

For First Within-Subject Factor 
Label ........................................................ W 
Levels ...................................................... 4 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... 93 89 88 91 

Interactions Tab 
2-Way(Mixed) Interaction 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... W 100 

Covariance Tab 
Specify Covariance Method .................... 1) Standard Deviations and Autocorrelations  
Time Metric.............................................. Ignored 
How SD’s Change Across Time .............. Constant 
SD1 (Standard Deviation 1) .................... 4 
Specify How Autocorr’s Change ............. 1st Order Autocorr  
R1 (Autocorrelation) ................................ 0.7 
Max Time Diff. ......................................... 100 (This large value will cause R2 to be ignored.) 
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Reports Tab 
Numeric Results by Term........................ Checked 
Numeric Results by Design ..................... Checked  
Regular F Test ........................................ Not checked 
GG F Test ............................................... Checked 
Wilks’ Lambda ......................................... Not checked 
Pillai-Bartlett ............................................ Not checked 
Hotelling-Lawley ...................................... Not checked 
GG Detail Report ..................................... Checked 
Means Matrix ........................................... Checked 
Covariance Matrix ................................... Checked 
Test in Summary Statement ................... GG F Test 
Show Plot 1 ............................................. Checked 
Show Plot 2 ............................................. Not checked 
Test That is Plotted ................................. GG F Test 
Max Term-Order Plotted ......................... 2 
Max Term-Order Reported ...................... 2 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Design Report 
 

     Multiply SD of Standard 
     Means Effects Deviation Effect 
Term Test Power n N By (Sm) (Sigma) Size Alpha Beta 
B(3) GG F 0.3096 2 6 1.00 3.74 3.29 1.14 0.0500 0.6904 
W(4) GG F 0.3266 2 6 1.00 1.92 1.31 1.47 0.0500 0.6734 
BW GG F 0.1588 2 6 1.00 1.92 1.31 1.47 0.0500 0.8412 
 
B(3) GG F 0.6459 3 9 1.00 3.74 3.29 1.14 0.0500 0.3541 
W(4) GG F 0.8099 3 9 1.00 1.92 1.31 1.47 0.0500 0.1901 
BW GG F 0.6267 3 9 1.00 1.92 1.31 1.47 0.0500 0.3733 
 
B(3) GG F 0.8478 4 12 1.00 3.74 3.29 1.14 0.0500 0.1522 
W(4) GG F 0.9486 4 12 1.00 1.92 1.31 1.47 0.0500 0.0514 
BW GG F 0.8598 4 12 1.00 1.92 1.31 1.47 0.0500 0.1402 
 
B(3) GG F 0.9415 5 15 1.00 3.74 3.29 1.14 0.0500 0.0585 
W(4) GG F 0.9871 5 15 1.00 1.92 1.31 1.47 0.0500 0.0129 
BW GG F 0.9535 5 15 1.00 1.92 1.31 1.47 0.0500 0.0465 
 
B(3) GG F 0.9793 6 18 1.00 3.74 3.29 1.14 0.0500 0.0207 
W(4) GG F 0.9970 6 18 1.00 1.92 1.31 1.47 0.0500 0.0030 
BW GG F 0.9860 6 18 1.00 1.92 1.31 1.47 0.0500 0.0140 
 
B(3) GG F 0.9931 7 21 1.00 3.74 3.29 1.14 0.0500 0.0069 
W(4) GG F 0.9993 7 21 1.00 1.92 1.31 1.47 0.0500 0.0007 
BW GG F 0.9961 7 21 1.00 1.92 1.31 1.47 0.0500 0.0039 
 
B(3) GG F 0.9978 8 24 1.00 3.74 3.29 1.14 0.0500 0.0022 
W(4) GG F 0.9999 8 24 1.00 1.92 1.31 1.47 0.0500 0.0001 
BW GG F 0.9990 8 24 1.00 1.92 1.31 1.47 0.0500 0.0010 

 

The Design Report gives the power for each term in the design for each value of n. It is useful 
when you want to compare the powers of the terms in the design at a specific sample size. 
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In this example, the design goals of 0.95 power on all terms are achieved for n = 6. 

The definitions of each of the columns of the report are as follows. 

Term 
This column contains the identifying label of the term. The number of levels for a factor is given 
in parentheses. 

Test 
This column identifies the test statistic. Since the power depends on the test statistic, you should 
make sure that this is the test statistic that you will use. 

Power 
This is the computed power for the term. 

n 
The value of n is the number of subjects per group. 

N 
The value of N is the total number of subjects in the study. 

Multiply Means By 
This is the value of the means multiplier, K.  

SD of Effects (Sm) 
This is the standard deviation of the effects  σm  for this term.  

Standard Deviation 
This is the value of σ , the random variation that σm  is compared against by the F test. See the 
Technical Details for details on how these values are calculated. 

Effect Size 
The Effect Size is calculated by the expression σ σm / . It is an index of the size of the effect 
values relative to the standard deviation. Its value may be compared from experiment to 
experiment, regardless of the scale of the response variable. 

Alpha 
Alpha is the significance level of the test 

Beta 
Beta is the probability of failing to reject the null hypothesis when the alternative hypothesis is 
true. 
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Term Reports 
 

Results for Factor B (Levels = 3) 
    Multiply SD of Standard 
    Means Effects Deviation Effect 
Test Power n N By (Sm) (Sigma) Size Alpha Beta  
GG F 0.3096 2 6 1.00 3.74 3.29 1.14 0.0500 0.6904  
GG F 0.6459 3 9 1.00 3.74 3.29 1.14 0.0500 0.3541  
GG F 0.8478 4 12 1.00 3.74 3.29 1.14 0.0500 0.1522  
GG F 0.9415 5 15 1.00 3.74 3.29 1.14 0.0500 0.0585  
GG F 0.9793 6 18 1.00 3.74 3.29 1.14 0.0500 0.0207  
GG F 0.9931 7 21 1.00 3.74 3.29 1.14 0.0500 0.0069  
GG F 0.9978 8 24 1.00 3.74 3.29 1.14 0.0500 0.0022  
 
Results for Factor W (Levels = 4) 
    Multiply SD of Standard 
    Means Effects Deviation Effect 
Test Power n N By (Sm) (Sigma) Size Alpha Beta  
GG F 0.3266 2 6 1.00 1.92 1.31 1.47 0.0500 0.6734  
GG F 0.8099 3 9 1.00 1.92 1.31 1.47 0.0500 0.1901  
GG F 0.9486 4 12 1.00 1.92 1.31 1.47 0.0500 0.0514  
GG F 0.9871 5 15 1.00 1.92 1.31 1.47 0.0500 0.0129  
GG F 0.9970 6 18 1.00 1.92 1.31 1.47 0.0500 0.0030  
GG F 0.9993 7 21 1.00 1.92 1.31 1.47 0.0500 0.0007  
GG F 0.9999 8 24 1.00 1.92 1.31 1.47 0.0500 0.0001  
 
Results for Term BW 
    Multiply SD of Standard 
    Means Effects Deviation Effect 
Test Power n N By (Sm) (Sigma) Size Alpha Beta  
GG F 0.1588 2 6 1.00 1.92 1.31 1.47 0.0500 0.8412  
GG F 0.6267 3 9 1.00 1.92 1.31 1.47 0.0500 0.3733  
GG F 0.8598 4 12 1.00 1.92 1.31 1.47 0.0500 0.1402  
GG F 0.9535 5 15 1.00 1.92 1.31 1.47 0.0500 0.0465  
GG F 0.9860 6 18 1.00 1.92 1.31 1.47 0.0500 0.0140  
GG F 0.9961 7 21 1.00 1.92 1.31 1.47 0.0500 0.0039  
GG F 0.9990 8 24 1.00 1.92 1.31 1.47 0.0500 0.0010  

 

The Term Reports provide a complete report for each term at all sample sizes. They are especially 
useful when you are only interested in the power of one or two terms. 

The definitions of each of the columns of the report are identical to the corresponding columns in 
the Design Report, so they are not repeated here. 

Geisser-Greenhouse Correction Detail Report 
 

   Critical   
Term (Levels) Power Alpha F Lambda df1|df2 Epsilon E(Epsilon) G1 
n = 2  N = 6 Means x 1 
B (3) 0.3096 0.0500 9.55 7.74 2|3 1.00 1.00 0.00 
W (4) 0.3266 0.0500 7.60 12.88 3|9 0.77 0.43 -1.01 
BW 0.1588 0.0500 6.92 12.88 6|9 0.77 0.43 -1.01 
n = 3  N = 9 Means x 1 
B (3) 0.6459 0.0500 5.14 11.62 2|6 1.00 1.00 0.00 
W (4) 0.8099 0.0500 4.12 19.32 3|18 0.77 0.60 -1.01 
BW 0.6267 0.0500 3.46 19.32 6|18 0.77 0.60 -1.01 
n = 4  N = 12 Means x 1 
B (3) 0.8478 0.0500 4.26 15.49 2|9 1.00 1.00 0.00 
W (4) 0.9486 0.0500 3.58 25.76 3|27 0.77 0.66 -1.01 
BW 0.8598 0.0500 2.95 25.76 6|27 0.77 0.66 -1.01 
n = 5  N = 15 Means x 1 
B (3) 0.9415 0.0500 3.89 19.36 2|12 1.00 1.00 0.00 
W (4) 0.9871 0.0500 3.36 32.20 3|36 0.77 0.68 -1.01 
BW 0.9535 0.0500 2.75 32.20 6|36 0.77 0.68 -1.01 
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n = 6  N = 18 Means x 1 
B (3) 0.9793 0.0500 3.68 23.23 2|15 1.00 1.00 0.00 
W (4) 0.9970 0.0500 3.25 38.64 3|45 0.77 0.70 -1.01 
BW 0.9860 0.0500 2.64 38.64 6|45 0.77 0.70 -1.01 
n = 7  N = 21 Means x 1 
B (3) 0.9931 0.0500 3.55 27.11 2|18 1.00 1.00 0.00 
W (4) 0.9993 0.0500 3.17 45.07 3|54 0.77 0.71 -1.01 
BW 0.9961 0.0500 2.57 45.07 6|54 0.77 0.71 -1.01 
n = 8  N = 24 Means x 1 
B (3) 0.9978 0.0500 3.47 30.98 2|21 1.00 1.00 0.00 
W (4) 0.9999 0.0500 3.12 51.51 3|63 0.77 0.72 -1.01 
BW 0.9990 0.0500 2.52 51.51 6|63 0.77 0.72 -1.01 

 

This report gives the details of the components of the Geisser-Greenhouse correction for each 
term and sample size. It is useful when you want to compare various aspects of this test. 

The definitions of each of the columns of the report are as follows. 

Term 
This column contains the identifying label of the term. For factors, the number of levels is also 
given in parentheses. 

Power 
This is the computed power for the term. 

Alpha 
Alpha is the significance level of the test. 

Critical F 
This is the critical value of the F statistic. An F value computed from the data that is larger than 
this value is statistically significant at the alpha level given. 

Lambda 
This is the value of the noncentrality parameter λ  of the approximate noncentral F distribution.  

df1|df2 
These are the values of the numerator and denominator degrees of freedom of the approximate F 
test that is used. These values are useful when comparing various designs. Other things being 
equal, you would like to have df2 large and df1 small. 

Epsilon 
The Geisser-Greenhouse epsilon is a measure of how far the covariance matrix departs from the 
assumption of circularity.  

E(Epsilon) 
This is the expected value of epsilon. It is a measure of how far the covariance matrix departs 
from the assumption of circularity.  

G1 
G1 is part of a correction factor used to convert ε  to ( )E $ε . It is reported for your convenience. 
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Summary Statements 
 

A repeated measures design with 1 between factor and 1 within factor has 3 groups with 2 
subjects each for a total of 6 subjects. Each subject is measured 4 times. This design achieves 
31% power to test factor B if a Geisser-Greenhouse Corrected F Test is used with a 5% 
significance level and the actual effect standard deviation is 3.74 (an effect size of 1.14), 
achieves 33% power to test factor W if a Geisser-Greenhouse Corrected F Test is used with a 5% 
significance level and the actual effect standard deviation is 1.92 (an effect size of 1.47), 
and achieves 16% power to test the BW interaction if a Geisser-Greenhouse Corrected F Test is 
used with a 5% significance level and the actual effect standard deviation is 1.92 (an effect 
size of 1.47). 

 

A summary statement can be generated for each sample size that is used. This statement gives the 
results in sentence form. The number of designs reported on textually is controlled by the 
Summary Statement option on the Reports Tab. 

Means Matrix 
 

Name B1 B2 B3 
W1 -10.62 5.19 -2.72 
W2 1.46 3.97 2.72 
W3 -4.58 4.58 0.00 
W4 -4.58 4.58 0.00 

 

This report shows the means matrix that was read in from the spreadsheet or generated by the Sm 
values that were given. It may be used to get an impression of the magnitude of the difference 
among the means that is being studied. When a Means Multiplier, K, is used, each value of K is 
multiplied times each value of this matrix. 

Variance-Covariance Matrix Section 
 

Variance-Covariance Matrix Section 
Time W1 W2 W3 W4 
W1 4.00 0.70 0.49 0.34 
W2 0.70 4.00 0.70 0.49 
W3 0.49 0.70 4.00 0.70 
W4 0.34 0.49 0.70 4.00 

 

This report shows the variance-covariance matrix that was read in from the spreadsheet or 
generated by the settings of on the Covariance tab. The standard deviations are given on the 
diagonal and the autocorrelations are given off the diagonal. 
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Plots Section 
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The chart shows the relationship between power and n for the terms in the design. Note that high-
order interactions may be omitted from the plot by reducing the Max Term-Order Plotted option 
on the Plot Setup tab. 

Example 2 – Varying the Difference Between the Means 
Continuing with Example 1, the researchers want to evaluate the impact on power of varying the 
size of the difference among the means for a range of sample sizes from 2 to 8 per groups. The 
researchers could try calculating various multiples of the means, inputting them, and recording 
the results. This can be accomplished very easily by using the K option.  

Keeping all other settings as in Example 1, the value of K is varied from 0.2 to 3.0 in steps of 0.2. 
We determined these values by experimentation so that a full range of power values are shown on 
the plots. 

In the output to follow, we only display the plots. You may want to display the numeric reports as 
well, but we do not here in order to save space.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Repeated Measures Analysis of Variance procedure window 
by expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking 
on Repeated Measures Analysis of Variance. You may then make the appropriate entries as 
listed below, or open Example 2 by going to the File menu and choosing Open Example 
Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta  
n (Subjects Per Group) ........................... 2 3 4 8 
=n’s .......................................................... checked  
Means Matrix ........................................... blank  
K (Means Multipliers) .............................. 0.2 to 3.0 by 0.2 

For First Between-Subject Factor 
Label........................................................ B 
Levels ...................................................... 3 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... 93 87 84 

For First Within-Subject Factor 
Label........................................................ W 
Levels ...................................................... 4 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... 93 89 88 91 

Interactions Tab 
2-Way(Mixed) Interaction 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... W 100 

Covariance Tab 
Specify Covariance Method .................... 1) Standard Deviations and Autocorrelations  
How SD’s Change Across Time .............. Constant 
SD1 (Standard Deviation 1) .................... 4 
Time Metric ............................................. Ignored 
Specify How Autocorr’s Change ............. 1st Order Autocorr  
R1 (Autocorrelation) ................................ 0.7 
Max Time Diff. ......................................... 100 (This large value will cause R2 to be ignored.) 

Reports Tab 
Numeric Results by Term........................ Not checked 
Numeric Results by Design ..................... Not checked 
Regular F Test ........................................ Not checked 
GG F Test ............................................... Not checked 
Wilks’ Lambda ......................................... Not checked 
Pillai-Bartlett ............................................ Not checked 
Hotelling-Lawley ...................................... Not checked 
GG Detail Report ..................................... Not checked 
Means Matrix ........................................... Not checked 
Covariance Matrix ................................... Not checked 
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Reports Tab (continued) 
Show Plot 1 ............................................. Not checked 
Show Plot 2 ............................................. Checked 
Test That is Plotted ................................. GG F Test 
Max Term-Order Plotted ......................... 2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Plots Section 
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These charts show how the power depends on the relative size of Sm (i.e. K) as well as the group 
sample size n. 
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Example 3 – Impact of the Number of Repeated 
Measurements 
Continuing with Example 1, the researchers want to study the impact on power of changing the 
number of measurements made on each individual. Their experimental protocol calls for four 
measurements that are 30 minutes apart. They want to see the impact of taking twice that many 
measurements. To keep the output simple and two the point, they decide to look at the case when 
n = 4 and K = 1. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Repeated Measures Analysis of Variance procedure window 
by expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking 
on Repeated Measures Analysis of Variance. You may then make the appropriate entries as 
listed below, or open Example 3 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta  
n (Subjects Per Group) ........................... 4 
=n’s .......................................................... checked  
Means Matrix ........................................... blank  
K (Means Multipliers) .............................. 1.0 

For First Between-Subject Factor 
Label........................................................ B 
Levels ...................................................... 3 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... 93 87 84 

For First Within-Subject Factor 
Label........................................................ W 
Levels ...................................................... 4 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... RANGE 88 93 

Interactions Tab 
2-Way(Mixed) Interaction 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... W 100 

Covariance Tab 
Specify Covariance Method .................... 1) Standard Deviations and Autocorrelations  
Time Metric ............................................. Range 0 3 
How SD’s Change Across Time .............. Constant 
SD1 (Standard Deviation 1) .................... 4 
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Covariance Tab (continued) 
Specify How Autocorr’s Change ............. 1st Order Autocorr  
R1 (Autocorrelation) ................................ 0.7 
Max Time Diff. ......................................... 100 (This large value will cause R2 to be ignored.) 

Reports Tab 
Numeric Results by Term ........................ Not checked 
Numeric Results by Design ..................... Checked  
Regular F Test ........................................ Not checked 
GG F Test................................................ Checked 
Wilks’ Lambda ......................................... Not checked 
Pillai-Bartlett ............................................ Not checked 
Hotelling-Lawley ...................................... Not checked 
GG Detail Report ..................................... Not checked 
Means Matrix ........................................... Not checked 
Covariance Matrix ................................... Not checked 
Show Plot 1 ............................................. Not checked 
Show Plot 2 ............................................. Not checked 
Max Term-Order Reported ...................... 2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Design Report 
 

     Multiply SD of Standard 
     Means Effects Deviation Effect 
Term Test Power n N By (Sm) (Sigma) Size Alpha Beta 
(Results with 4 measurements) 
B(3) GG F 0.8478 4 12 1.00 3.74 3.29 1.14 0.0500 0.1522 
W(4) GG F 0.9350 4 12 1.00 1.86 1.31 1.42 0.0500 0.0650 
BW GG F 0.8348 4 12 1.00 1.86 1.31 1.42 0.0500 0.1652 
 
(Results with 8 measurements) 
B(3) GG F 0.8375 4 12 1.00 3.74 3.34 1.12 0.0500 0.1625 
W(8) GG F 0.9354 4 12 1.00 1.64 0.83 1.97 0.0500 0.0646 
BW GG F 0.8321 4 12 1.00 1.64 0.83 1.97 0.0500 0.1679 
 

Notice that the power of the between subjects factor decreased slightly, the power of the within-
subjects factor increased slightly, and the power of the interaction test decreased slightly. This 
pattern of increase or decrease depends on all the settings.  

We tried varying the value of the autocorrelation from 0.7 to 0.1 and found this to impact the 
direction of the change in the number of measurements. Hence, our conclusion is that there is no 
single answer. Changing the number of measurements may increase or decrease the power of a 
specific test depending on the values of the other parameters. 
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Example 4 – Power after a Study 
This example will show how to calculate the power of F tests from data that have already been 
collected and analyzed using the analysis of variance. The following results were obtained using 
the analysis of variance procedure in NCSS. In this example, Gender is the between factor with 
two levels and Treatment is the within factor with three levels. The experiment was conducted 
with two subjects per group, but there is interest in the power for 2, 3, and 4 subjects per group. 
All significance levels are set to 0.05. 
   
 Analysis of Variance Table 

Source  Sum of Mean  Prob  
Term DF Squares Square F-Ratio Level  
A (Gender) 1 21.33333 21.33333 32.00 0.029857 
B(A) 2 1.333333 0.6666667    
C (Treatment) 2 5.166667 2.583333 6.20 0.059488 
AC 2 5.166667 2.583333 6.20 0.059488 
BC(A) 4 1.666667 0.4166667    
Total (Adjusted) 11 34.66667 
Total 12 
 
Means and Effects Section 
   Standard 
Term Count Mean Error 
All 12 17.33333  
A: Gender 
Females 6 16 0.3333333 
Males 6 18.66667 0.3333333 
C: Treatment 
L 4 16.75 0.3227486 
M 4 17 0.3227486 
H 4 18.25 0.3227486 
AC: Gender,Treatment 
Females,L 2 14.5 0.4564355 
Females,M 2 16 0.4564355 
Females,H 2 17.5 0.4564355 
Males,L 2 19 0.4564355 
Males,M 2 18 0.4564355 
Males,H 2 19 0.4564355 

 
Note that the treatment means (L, M, and H) show an increasing pattern from 16.75 to 18.25, but 
the hypothesis test of this factor is not statistically significant at the 0.05 level. We will now 
calculate the power of the three F tests using PASS. We will use the regular F test since that is 
what was used in the above table. 

From the above printout, we note that MSB = 0.6666667 and MSW = 0.4166667. Plugging these 
values into the estimating equations 

( )
$ρ =

−
+ −

MSB MSW
MSB T MSW1

 

$
$

σ
ρ

2

1
=

−
MSW

 

yields 

$
. .

. ( ) .
.ρ = −

+ −
=

06666667 04166667
0 6666667 3 1 04166667

016666667 
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$
.
.

.σ 2 0 4166667
1 016666667

0 5=
−

=  

so that 

$ . .σ = =05 0 70710681 

With these values calculated, we can setup PASS to calculate the power of the three F tests as 
follows. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Repeated Measures Analysis of Variance procedure window 
by expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking 
on Repeated Measures Analysis of Variance. You may then make the appropriate entries as 
listed below, or open Example 4 by going to the File menu and choosing Open Example 
Template. You can see that the values have been loaded into the spreadsheet by clicking on the 
spreadsheet button. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta  
n (Subjects Per Group) ........................... 2 3 4 
=n’s .......................................................... checked  
Means Matrix ........................................... FEMALES-MALES  
K (Means Multipliers) .............................. 1.0 

For First Between-Subject Factor 
Label ........................................................ B 
Levels ...................................................... 2 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects) ......... Ignored since the Means Matrix is loaded. 

For First Within-Subject Factor 
Label ........................................................ W 
Levels ...................................................... 3 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects) ......... Ignored since the Means Matrix is loaded. 

Interactions Tab 
2-Way(Mixed) Interaction 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects) ......... Ignored since the Means Matrix is loaded. 
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Covariance Tab 
Specify Covariance Method .................... 1) Standard Deviations and Autocorrelations  
Time Metric ............................................. Ignored 
How SD’s Change Across Time .............. Constant 
SD1 (Standard Deviation 1) .................... .70710681 
Specify How Autocorr’s Change ............. Constant  
R1 (Autocorrelation) ................................ 0.16666667 
Max Time Diff. ......................................... 100 (This large value will cause R2 to be ignored.) 

Reports Tab 
Numeric Results by Term........................ Not Checked 
Numeric Results by Design ..................... Checked 
Regular F Test ........................................ Checked 
GG F Test ............................................... Not checked 
Wilks’ Lambda ......................................... Not checked 
Pillai-Bartlett ............................................ Not checked 
Hotelling-Lawley ...................................... Not checked 
GG Detail Report ..................................... Not checked 
Means Matrix ........................................... Not checked 
Covariance Matrix ................................... Not checked 
Test in Summary Statement ................... Regular F Test 
Show Plot 1 ............................................. Not checked 
Show Plot 2 ............................................. Not checked 
Max Term-Order Reported ...................... 2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

     Multiply SD of Standard 
     Means Effects Deviation Effect 
Term Test Power n N By (Sm) (Sigma) Size Alpha Beta 
B(2) F 0.8004 2 4 1.00 1.33 0.47 2.83 0.0500 0.1996 
W(3) F 0.5536 2 4 1.00 0.66 0.37 1.76 0.0500 0.4464 
BW F 0.5536 2 4 1.00 0.66 0.37 1.76 0.0500 0.4464 
 
B(2) F 0.9985 3 6 1.00 1.33 0.47 2.83 0.0500 0.0015 
W(3) F 0.8933 3 6 1.00 0.66 0.37 1.76 0.0500 0.1067 
BW F 0.8933 3 6 1.00 0.66 0.37 1.76 0.0500 0.1067 
 
B(2) F 1.0000 4 8 1.00 1.33 0.47 2.83 0.0500 0.0000 
W(3) F 0.9801 4 8 1.00 0.66 0.37 1.76 0.0500 0.0199 
BW F 0.9801 4 8 1.00 0.66 0.37 1.76 0.0500 0.0199 
 

You can see that the power of the tests on W and BW was only 0.55 for an n of 2. However, if n 
would have been 3, a much more reasonable power of 0.89 would have been achieved.  
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Example 5 – Cross-Over Design 
A crossover design is a special type of repeated measures design in which the treatments are 
applied to the subjects in different orders. The between-subjects (grouping) factor is defined by 
the specific sequence in which the treatments are applied. For example, suppose the treatments 
are represented by B1 and B2. Further suppose that half the subjects receive treatment B1 
followed by treatment B2 (sequence B1B2), while the other half receive treatment B2 followed 
by treatment B1 (sequence B2B1). This is a two-group crossover design.  

Crossover designs assume that a long enough period elapses between measurements so that the 
effects of one treatment are washed out before the next treatment is applied. This is known as the 
assumption of no carryover effects. 

When a crossover design is analyzed using repeated measures, the interaction is the only term of 
interest. The F test on the between factor tests whether averages across each sequence are equal—
a test of little interest. The F test on the within factor tests whether the response is different across 
the time periods—also of little interest. The F test for interaction tests whether the change in 
response across time is the same for both sequences. The interaction can only be significant if the 
treatments effect the outcome differently. Hence, to specify a crossover design requires the 
careful specification of the interaction effects. 

With this background, we present an example. Suppose researchers want to investigate the 
reduction in heart-beat rate caused by the administration of a certain drug using a simple two-
period crossover design. The researchers want a sample size large enough to detect a drop in 
heart-beat rate from 95 to 90 with a power of 90% at the 0.05 significance level. Previous studies 
have shown a within-patient autocorrelation of 0.50 and a standard deviation of 3.98. They decide 
to consider sample sizes between 2 and 8. 

The hypothesized interaction is specified by entering the mean heart-beat rates of the four 
treatment groups as 95, 90, 90, and 95. Since the standard deviation of these values is all that is 
used, the order of these values does not matter. In this case the sequences means are both 92.5 
and the average time-period means are both 92.5. Hence, the interaction effects are 2.5, -2.5, -2.5, 
and 2.5. You can check that the set of numbers ‘95, 90, 90, 95’ has the same standard deviation as 
the set ‘2.5, -2.5, -2.5, 2.5’ or even ‘5, 0, 0, 5’. All of these will work. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Repeated Measures Analysis of Variance procedure window 
by expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking 
on Repeated Measures Analysis of Variance. You may then make the appropriate entries as 
listed below, or open Example 5 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta  
n (Subjects Per Group) ........................... 2 to 8 by 1 
=n’s .......................................................... checked  
Means Matrix ........................................... blank  
K (Means Multipliers) .............................. 1.0 
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Data Tab (continued) 

For First Between-Subject Factor 
Label........................................................ Seq 
Levels ...................................................... 2 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... 0.1 (This value is arbitrary.) 

For First Within-Subject Factor 
Label........................................................ Time 
Levels ...................................................... 2 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... 0.1 (This value is arbitrary.) 

Interactions Tab 
2-Way(Mixed) Interaction 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... 95 90 90 95 

Covariance Tab 
Specify Covariance Method .................... 1) Standard Deviations and Autocorrelations  
Time Metric ............................................. Range 0 1 
How SD’s Change Across Time .............. Constant 
SD1 (Standard Deviation 1) .................... 3.98 
Specify How Autocorr’s Change ............. 1st Order Autocorr  
R1 (Autocorrelation) ................................ 0.5 
Max Time Diff. ......................................... 100 (This large value will cause R2 to be ignored.) 

Reports Tab 
Numeric Results by Term........................ Checked 
Numeric Results by Design ..................... Not checked 
Regular F Test ........................................ Not checked 
GG F Test ............................................... Checked 
Wilks’ Lambda ......................................... Not checked 
Pillai-Bartlett ............................................ Not checked 
Hotelling-Lawley ...................................... Not checked 
GG Detail Report ..................................... Not checked 
Means Matrix ........................................... Not checked 
Covariance Matrix ................................... Not checked 
Show Plot 1 ............................................. Not checked 
Show Plot 2 ............................................. Not checked 
Max Term-Order Reported ...................... 2 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Results for Term SeqTime 
    Multiply SD of Standard 
    Means Effects Deviation Effect 
Test Power n N By (Sm) (Sigma) Size Alpha Beta  
GG F 0.3017 2 4 1.00 2.50 1.99 1.26 0.0500 0.6983  
GG F 0.6401 3 6 1.00 2.50 1.99 1.26 0.0500 0.3599  
GG F 0.8395 4 8 1.00 2.50 1.99 1.26 0.0500 0.1605  
GG F 0.9338 5 10 1.00 2.50 1.99 1.26 0.0500 0.0662  
GG F 0.9742 6 12 1.00 2.50 1.99 1.26 0.0500 0.0258  
GG F 0.9903 7 14 1.00 2.50 1.99 1.26 0.0500 0.0097  
GG F 0.9965 8 16 1.00 2.50 1.99 1.26 0.0500 0.0035  
 

We only display the interaction term since that is the only term of interest. A quick glance at the 
plot shows that 90% power is achieved when n is five. This corresponds to a total sample size of 
ten subjects.  

Example 6 – Power of a Completed Cross-Over Design 
The following analysis of variance table was generated by NCSS for a set of crossover data. Find 
the power of the interaction F test assuming a significance level of 0.05. 

 
Analysis of Variance Table 
Source  Sum of Mean  Prob 
Term DF Squares Square F-Ratio Level 
A: Sequence 1 89397.6 89397.6 1.19 0.285442 
B(A): Subject 28 2110739 75383.54    
C: Period 1 117395.3 117395.3 1.40 0.246854  
AC 1 122401.7 122401.7 1.46 0.237263  
BC(A) 28 2349752 83919.72    
Total (Adjusted) 59 4789686 
Total 60 
 
Means Section 
   Standard 
Term Count Mean Error  
All 60 492.2000  
A: Sequence 
1 30 453.6000 50.12768 
2 30 530.8000 50.12768 
C: Period 
1 30 447.9667 52.88973 
2 30 536.4333 52.88973 
AC: Sequence,Period 
1,1 15 364.2000 74.79738 
1,2 15 543.0000 74.79738 
2,1 15 531.7333 74.79738 
2,2 15 529.8666 74.79738  
 

One difficulty in analyzing an existing crossover design is determining an appropriate value for 
the hypothesized interaction effects. One method is to find the standard deviation of the 
interaction effects by taking the square root of the Sum of Squares for the interaction divided by 
the total number of observations. In this case,  
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σ Interaction =
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Another method is to find the individual interaction effects by subtraction. This method proceeds 
as follows. 

First, subtract the Period means from the Sequence by Period means. 
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Next, compute the column means and subtract them from the current values. This results in the 
effects. 
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Finally, compute the standard deviation of the effects. Since the mean of the effects is zero, the 
standard deviation is  

 
( ) ( ) ( ) ( )σ Interaction =
− + + + −
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Another difficulty that must be solved is to estimate the autocorrelation and within-subject 
standard deviation. From the above printout, we note that MSB = 75383.54 and MSW = 
83919.72. Plugging these values into the estimating equations 

( )
$ρ =

−
+ −

MSB MSW
MSB T MSW1
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yields 
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so that 

$ . .σ = =7965163 282 2262  
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Repeated Measures Analysis of Variance procedure window 
by expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking 
on Repeated Measures Analysis of Variance. You may then make the appropriate entries as 
listed below, or open Example 6 by going to the File menu and choosing Open Example 
Template. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta  
n (Subjects Per Group) ........................... 15 
=n’s .......................................................... checked  
Means Matrix ........................................... blank  
K (Means Multipliers) .............................. 1.0 

For First Between-Subject Factor 
Label ........................................................ S 
Levels ...................................................... 2 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... 453.6000 530.8000 

For First Within-Subject Factor 
Label ........................................................ P 
Levels ...................................................... 2 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... 447.9667 536.4333 

Interactions Tab 
2-Way(Mixed) Interaction 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... 45.1667 

Covariance Tab 
Specify Covariance Method .................... 1) Standard Deviations and Autocorrelations  
How SD’s Change Across Time .............. Constant 
SD1 (Standard Deviation 1) .................... 282.2262 
Time Metric.............................................. Ignored 
Specify How Autocorr’s Change ............. 1st Order Autocorr  
R1 (Autocorrelation) ................................ -0.05358447 
Max Time Diff. ......................................... 100 (This large value will cause R2 to be ignored.) 

Reports Tab 
Numeric Results by Term ........................ Not checked 
Numeric Results by Design ..................... Checked 
Regular F Test ........................................ Not checked 
GG F Test................................................ Checked 
Wilks’ Lambda ......................................... Not checked 
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Reports Tab (continued) 
Pillai-Bartlett ............................................ Not checked 
Hotelling-Lawley ...................................... Not checked 
GG Detail Report ..................................... Not checked 
Means Matrix ........................................... Not checked 
Covariance Matrix ................................... Not checked 
Show Summary Statements ................... Not checked 
Show Plot 1 ............................................. Not checked 
Show Plot 2 ............................................. Not checked 
Max Term-Order Reported ...................... 2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

     Multiply SD of Standard 
     Means Effects Deviation Effect 
Term Test Power n N By (Sm) (Sigma) Size Alpha Beta 
S(2) GG F 0.1832 15 30 1.00 38.60 194.14 0.20 0.0500 0.8168 
P(2) GG F 0.2078 15 30 1.00 44.23 204.84 0.22 0.0500 0.7922 
SP GG F 0.2147 15 30 1.00 45.17 204.84 0.22 0.0500 0.7853 
 

Notice that these power values are low. Fifteen was not a large enough sample size to detect Sm 
values near 40. 

Example 7 – Validation using O’Brien and Muller 
O’Brien and Muller’s article in the book edited by Edwards (1993) analyze the power of a two-
group repeated-measures experiment in which three measurements are made on each subject. 

The hypothesized means are  
 

 Group 1 Group 2 
Time 1 3 1 
Time 2 12 5 
Time 3 8 7 
 

The covariance matrix is 
 

 Time 1 Time 2 Time 3 
Time 1 25 16 12 
Time 2 16 64 30 
Time 3 12 30 36 
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With n’s of 12, 18, and 24 and an alpha of 0.05, they obtained power values using the Wilks’ 
Lambda test. Their reported power values are 
 

Power Values for each Term 
n Group Time Interaction 
12 0.326 0.983 0.461 
18 0.467 0.999 0.671 
24 0.589 0.999 0.814 
 

O’Brien, in a private communication, re-ran these data using the Geisser-Greenhouse correction. 
His results were as follows: 
  

Power Values for each Term 
n Group Time Interaction 
12 0.326 0.993 0.486 
18 0.467 0.999 0.685 
24 0.589 0.999 0.819 
 

In order to run this example in PASS, the values of the means and the covariance matrix (given 
above) must be entered on a spreadsheet. We have loaded these values into the database called 
OBRIEN. Either enter the values yourself, or load the OBRIEN database which should be in the 
Data directory. The instructions below assume that the means are in columns one and two, while 
the covariance matrix is in columns four through six of the current database.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Repeated Measures Analysis of Variance procedure window 
by expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking 
on Repeated Measures Analysis of Variance. You may then make the appropriate entries as 
listed below, or open Example 7 by going to the File menu and choosing Open Example 
Template. You can see that the values have been loaded into the spreadsheet by clicking on the 
spreadsheet button. 

Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta 
n (Subjects Per Group) ........................... 12 18 24 
=n’s .......................................................... checked  
Means Matrix ........................................... M1-M2  
K (Means Multipliers) .............................. 1.0 

For First Between-Subject Factor 
Label ........................................................ G 
Levels ...................................................... 2 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... Ignored 
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Data Tab (continued) 

For First Within-Subject Factor 
Label........................................................ T 
Levels ...................................................... 3 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... Ignored 

Interactions Tab 
2-Way(Mixed) Interaction 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting 
Sm (Standard Deviation of Effects) ......... Ignored 

Covariance Tab 
Specify Covariance Method .................... 2) Covariance Matrix Variables  
Spreadsheet Columns ............................. S1-S3 

Reports Tab 
Numeric Results by Term........................ Checked 
Numeric Results by Design ..................... Not checked 
Regular F Test ........................................ Not checked 
GG F Test ............................................... Checked 
Wilks’ Lambda ......................................... Checked 
Pillai-Bartlett ............................................ Not checked 
Hotelling-Lawley ...................................... Not checked 
GG Detail Report ..................................... Not checked 
Means Matrix ........................................... Not checked 
Covariance Matrix ................................... Not checked 
Show Summary Statements ................... Not checked 
Show Plot 1 ............................................. Not checked 
Show Plot 2 ............................................. Not checked 
Max Term-Order Reported ...................... 2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
  
Results for Factor G (Levels =2) 
    Multiply SD of Standard 
    Means Effects Deviation Effect 
Test Power n N By (Sm) (Sigma) Size Alpha Beta  
GG F 0.3263 12 24 1.00 1.67 5.17 0.32 0.0500 0.6737  
Wilks 0.3263 12 24 1.00 1.67 5.17 0.32 0.0500 0.6737  
GG F 0.4673 18 36 1.00 1.67 5.17 0.32 0.0500 0.5327  
Wilks 0.4673 18 36 1.00 1.67 5.17 0.32 0.0500 0.5327  
GG F 0.5889 24 48 1.00 1.67 5.17 0.32 0.0500 0.4111  
Wilks 0.5889 24 48 1.00 1.67 5.17 0.32 0.0500 0.4111  



570-52  Repeated Measures Analysis of Variance 

 
Results for Factor T (Levels =3) 
    Multiply SD of Standard 
    Means Effects Deviation Effect 
Test Power n N By (Sm) (Sigma) Size Alpha Beta  
GG F 0.9933 12 24 1.00 2.86 2.73 1.05 0.0500 0.0067  
Wilks 0.9825 12 24 1.00 2.86 2.73 1.05 0.0500 0.0175  
GG F 0.9999 18 36 1.00 2.86 2.73 1.05 0.0500 0.0001  
Wilks 0.9995 18 36 1.00 2.86 2.73 1.05 0.0500 0.0005  
GG F 1.0000 24 48 1.00 2.86 2.73 1.05 0.0500 0.0000  
Wilks 1.0000 24 48 1.00 2.86 2.73 1.05 0.0500 0.0000  
 
Results for Term GT 
    Multiply SD of Standard 
    Means Effects Deviation Effect 
Test Power n N By (Sm) (Sigma) Size Alpha Beta  
GG F 0.4861 12 24 1.00 1.31 2.73 0.48 0.0500 0.5139  
Wilks 0.4605 12 24 1.00 1.31 2.73 0.48 0.0500 0.5395  
GG F 0.6850 18 36 1.00 1.31 2.73 0.48 0.0500 0.3150  
Wilks 0.6706 18 36 1.00 1.31 2.73 0.48 0.0500 0.3294  
GG F 0.8193 24 48 1.00 1.31 2.73 0.48 0.0500 0.1807  
Wilks 0.8136 24 48 1.00 1.31 2.73 0.48 0.0500 0.1864  

 

PASS agrees exactly with O’Brien’s calculations.  

Example 8 – Unequal Group Sizes 
Usually, in the planning stages, the group sample sizes are equal. Occasionally, however, you 
may want to plan for a situation in which one group will have a much larger sample size than the 
others. Also, when doing a power analysis on a study that has already been conducted, the group 
sample sizes are often unequal. 

In this example, we will re-analyze the Example 4. However, we will now assume that there were 
four subjects in group 1 and eight subjects in group 2. The setup and output for this example are 
as follows.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Repeated Measures Analysis of Variance procedure window 
by expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking 
on Repeated Measures Analysis of Variance. You may then make the appropriate entries as 
listed below, or open Example 8 by going to the File menu and choosing Open Example 
Template. You can see that the values have been loaded into the spreadsheet by clicking on the 
spreadsheet button. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta  
n (Subjects Per Group) ........................... 4 8 
=n’s .......................................................... Not checked  
Means Matrix ........................................... FEMALES-MALES  
K (Means Multipliers) .............................. 1.0 

For First Between-Subject Factor 
Label........................................................ B 
Levels ...................................................... 2 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects) ......... Ignored since the Means Matrix is loaded. 

For First Within-Subject Factor 
Label........................................................ W 
Levels ...................................................... 3 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects) ......... Ignored since the Means Matrix is loaded. 

Interactions Tab 
2-Way(Mixed) Interaction 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects) ......... Ignored since the Means Matrix is loaded. 

Covariance Tab 
Specify Covariance Method .................... 1) Standard Deviations and Autocorrelations  
Time Metric ............................................. Ignored 
How SD’s Change Across Time .............. Constant 
SD1 (Standard Deviation 1) .................... .70710681 
Specify How Autocorr’s Change ............. Constant  
R1 (Autocorrelation) ................................ 0.16666667 
Max Time Diff. ......................................... 100 (This large value will cause R2 to be ignored.) 

Reports Tab 
Numeric Results by Term........................ Not Checked 
Numeric Results by Design ..................... Checked  
Regular F Test ........................................ Not checked 
GG F Test ............................................... Checked 
Wilks’ Lambda ......................................... Not checked 
Pillai-Bartlett ............................................ Not checked 
Hotelling-Lawley ...................................... Not checked 
GG Detail Report ..................................... Not checked 
Means Matrix ........................................... Not checked 
Covariance Matrix ................................... Not checked 
Show Plot 1 ............................................. Not checked 
Show Plot 2 ............................................. Not checked 
Max Term-Order Reported ...................... 2 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

     Multiply SD of Standard 
     Means Effects Deviation Effect 
Term Test Power n N By (Sm) (Sigma) Size Alpha Beta 
B(2) GG F 1.0000 6.0 12 1.00 1.26 0.47 2.67 0.0500 0.0000 
W(3) GG F 0.9983 6.0 12 1.00 0.62 0.37 1.66 0.0500 0.0017 
BW GG F 0.9983 6.0 12 1.00 0.62 0.37 1.66 0.0500 0.0017 
n's: 4 8  
 

Notice that the values of n are now shown to one decimal place. That is because the value 
reported is the average value of n. The actual n’s are shown following the report.  

Example 9 – Designs with More Than Two Factors 
Occasionally, you will have a design that has more than two factors. We will now show you how 
to compute the necessary sample size for such a design. 

Suppose your design calls for two between-subject factors, Age (A) and Gender (G), and two 
within-subject factors, Dose-Level (D) and Application-Method (M). Suppose the number of 
levels of these four factors are, respectively, 3, 2, 4, and 2. 

Our first task is to determine appropriate values of Sm for each of the terms. We decide to ignore 
the interactions during the planning and only consider the factors themselves. The desired 
difference to be detected among the three age groups can be represented by the means 80, 88, and 
96. The desired difference to be detected among the two genders can be represented by the means 
80 and 96. The desired difference to be detected among the four dose levels is represented by the 
means 80, 82, 84, and 86. The desired difference to be detected among the two application 
methods is represented by the means 80 and 86. 

Our next task is to specify the covariance matrix. From previous experience, we have found that a 
constant value of 20.0 is appropriate for SD1. An autocorrelation of 0.5 with a first-order 
autocorrelation pattern is also appropriate. 

Finally, we decide to calculate the power using the GG F test at the following sample sizes: 2, 4, 
6, 8, 10, 20, 30, and 40. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Repeated Measures Analysis of Variance procedure window 
by expanding Means, then ANOVA, then clicking on Analysis of Variance, and then clicking 
on Repeated Measures Analysis of Variance. You may then make the appropriate entries as 
listed below, or open Example 9 by going to the File menu and choosing Open Example 
Template. 
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Option Value 
Data Tab 
Find (Solve For) ...................................... Power and Beta  
n (Subjects Per Group) ........................... 2 4 6 8 10 20 30 40 
=n’s .......................................................... Checked  
Means Matrix ........................................... blank  
K (Means Multipliers) .............................. 1.0 

For First Between-Subject Factor 
Label........................................................ A 
Levels ...................................................... 3 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects) ......... 80 88 96 

For Second Between-Subject Factor 
Label........................................................ G 
Levels ...................................................... 2 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects) ......... 80 96 

For First Within-Subject Factor 
Label........................................................ D 
Levels ...................................................... 4 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects) ......... 80 82 84 86 

For Second Within-Subject Factor 
Label........................................................ M 
Levels ...................................................... 2 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects) ......... 80 86 

Interactions Tab 
All Interactions 
Alpha ....................................................... 0.05 
Power ...................................................... Ignored since this is the Find setting. 
Sm (Standard Deviation of Effects) ......... D 100 

Covariance Tab 
Specify Covariance Method .................... 1) Standard Deviations and Autocorrelations  
Time Metric ............................................. Step 0 1 
How SD’s Change Across Time .............. Constant 
SD1 (Standard Deviation 1) .................... 20 
Specify How Autocorr’s Change ............. 1st Order Autocorrelation 
R1 (Autocorrelation) ................................ 0.5 
Max Time Diff. ......................................... 100 (This large value will cause R2 to be ignored.) 
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Reports Tab 
Numeric Results by Term ........................ Not checked 
Numeric Results by Design ..................... Checked  
Regular F Test ........................................ Not checked 
GG F Test................................................ Checked 
Wilks’ Lambda ......................................... Not checked 
Pillai-Bartlett ............................................ Not checked 
Hotelling-Lawley ...................................... Not checked 
GG Detail Report ..................................... Not checked 
Means Matrix ........................................... Not checked 
Covariance Matrix ................................... Not checked 
Test in Summary Statement.................... Regular F Test 
Show Plot 1 ............................................. Checked 
Show Plot 2 ............................................. Not checked 
Test That is Plotted ................................. GG F Test  
Max Term-Order Plotted ......................... 1 
Max Term-Order Reported ...................... 1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

     Multiply SD of Standard 
     Means Effects Deviation Effect 
Term Test Power n N By (Sm) (Sigma) Size Alpha Beta 
A(3) GG F 0.2735 2 12 1.00 6.53 11.18 0.58 0.0500 0.7265 
G(2) GG F 0.5465 2 12 1.00 8.00 11.18 0.72 0.0500 0.4535 
D(4) GG F 0.0506 2 12 1.00 2.24 7.64 0.29 0.0500 0.9494 
M(2) GG F 0.5072 2 12 1.00 3.00 4.41 0.68 0.0500 0.4928 
 
A(3) GG F 0.6493 4 24 1.00 6.53 11.18 0.58 0.0500 0.3507 
G(2) GG F 0.9118 4 24 1.00 8.00 11.18 0.72 0.0500 0.0882 
D(4) GG F 0.1563 4 24 1.00 2.24 7.64 0.29 0.0500 0.8437 
M(2) GG F 0.8833 4 24 1.00 3.00 4.41 0.68 0.0500 0.1167 
 
A(3) GG F 0.8556 6 36 1.00 6.53 11.18 0.58 0.0500 0.1444 
G(2) GG F 0.9858 6 36 1.00 8.00 11.18 0.72 0.0500 0.0142 
D(4) GG F 0.2412 6 36 1.00 2.24 7.64 0.29 0.0500 0.7588 
M(2) GG F 0.9767 6 36 1.00 3.00 4.41 0.68 0.0500 0.0233 
 
A(3) GG F 0.9471 8 48 1.00 6.53 11.18 0.58 0.0500 0.0529 
G(2) GG F 0.9980 8 48 1.00 8.00 11.18 0.72 0.0500 0.0020 
D(4) GG F 0.3245 8 48 1.00 2.24 7.64 0.29 0.0500 0.6755 
M(2) GG F 0.9959 8 48 1.00 3.00 4.41 0.68 0.0500 0.0041 
 
A(3) GG F 0.9823 10 60 1.00 6.53 11.18 0.58 0.0500 0.0177 
G(2) GG F 0.9997 10 60 1.00 8.00 11.18 0.72 0.0500 0.0003 
D(4) GG F 0.4054 10 60 1.00 2.24 7.64 0.29 0.0500 0.5946 
M(2) GG F 0.9993 10 60 1.00 3.00 4.41 0.68 0.0500 0.0007 
 
A(3) GG F 1.0000 20 120 1.00 6.53 11.18 0.58 0.0500 0.0000 
G(2) GG F 1.0000 20 120 1.00 8.00 11.18 0.72 0.0500 0.0000 
D(4) GG F 0.7286 20 120 1.00 2.24 7.64 0.29 0.0500 0.2714 
M(2) GG F 1.0000 20 120 1.00 3.00 4.41 0.68 0.0500 0.0000 
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A(3) GG F 1.0000 30 180 1.00 6.53 11.18 0.58 0.0500 0.0000 
G(2) GG F 1.0000 30 180 1.00 8.00 11.18 0.72 0.0500 0.0000 
D(4) GG F 0.8971 30 180 1.00 2.24 7.64 0.29 0.0500 0.1029 
M(2) GG F 1.0000 30 180 1.00 3.00 4.41 0.68 0.0500 0.0000 
 
A(3) GG F 1.0000 40 240 1.00 6.53 11.18 0.58 0.0500 0.0000 
G(2) GG F 1.0000 40 240 1.00 8.00 11.18 0.72 0.0500 0.0000 
D(4) GG F 0.9658 40 240 1.00 2.24 7.64 0.29 0.0500 0.0342 
M(2) GG F 1.0000 40 240 1.00 3.00 4.41 0.68 0.0500 0.0000 
 

This report gives the power values for the various terms and sample sizes that were entered. It is 
much easier to consider the following plot to interpret the results. 

Plots Section 
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From this chart, we can see that the first within-subject factor, dose level, has a power much 
lower than the other factors. Looking at the Sm values in the numeric table, we find that the Sm 
value for factor D is much less than for the other values. This explains why its power is so poor. 
Our options are to either increase the sample size or increase the value of Sm for factor D. 
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Clinical trial 
three-stage, 130-1 

Clinical trials 
one proportion, 120-1 

Clopper-Pearson confidence interval, 115-2 
Cluster randomized - equivalence 

two proportions, 240-1 
Cluster randomized - non-inferiority 

two proportions, 235-1 
Cluster randomized - non-zero null 

two proportions, 233-1 
Cluster randomized design 

two means, 480-1 
two proportions, 230-1 
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Cochran-Armitage test, 255-1 
examples, 255-12 
validation, 255-19 

Cochran-Mantel-Haenszel, 225-1 
Coefficient alpha 

one, 815-1 
two, 820-1 

Coefficient alpha (one) 
examples, 815-4 
validation, 815-7 

Coefficient alphas (two) 
examples, 820-6 
validation, 820-10 

Coefficient of variation 
cross-over, 505-2 
cross-over - equivalence, 525-3 
cross-over - higher-order - equivalence, 545-5 
cross-over - higher-order - non- zero null, 533-4 
cross-over - higher-order - non-inferiority, 535-4 
cross-over - non-inferiority, 515-3 
cross-over - non-unity null, 513-3 
mean ratio, 445-2 
mean ratio - equivalence, 470-3 
mean ratio - non- zero null, 453-2 
mean ratio - non-inferiority, 455-2 
standard deviation estimator, 905-9 

Cohort study 
post-marketing surveillance, 135-2 

Color 
histogram, 945-11 
scatter plot, 940-11 

Comments 
histogram, 945-10 
scatter plot, 940-10 

Comparisons 
ANCOVA, 551-1 
multiple comparisons, 575-1 
one-way ANOVA, 550-1 

Comparisonwise error rate 
simulation, 580-1, 585-2, 590-1 

Complete randomization, 880-3 
Compound symmetry 

repeated measures ANOVA, 570-13 
Confidence interval 

one proportion, 115-1 
paired means, 496-1 

Confidence intervals 
one correlation, 801-1 
one mean, 420-1 
one mean - tolerance probability, 421-1 
one standard deviation, 640-1 
one standard deviation - relative error, 642-1 
one standard deviation - tolerance probability, 641-

1 
one variance, 651-1 
one variance - relative error, 653-1 
one variance - tolerance probability, 652-1 
paired means - tolerance probability, 497-1 
slope - simple linear regression, 856-1 
two means, 471-1 
two means - tolerance probability, 472-1 

two proportions - difference, 216-1 
two proportions - odds ratio, 216-1 
two proportions - ratio, 216-1 
variance ratio, 656-1 
variance ratio - relative error, 657-1 

Confounding 
two-level designs, 881-2 

Connecting points 
scatter plot, 940-10 

Constant distribution 
simulation, 920-6 

Consumer’s risk 
exponential mean (one), 405-2 

Contaminated normal simulation, 920-19 
Contingency table, 250-1 

chi-square estimator, 900-1 
Continuity correction 

one proportion, 100-5 
two proportions - group sequential, 220-8 
two proportions - offset, 205-7 

Contrast matrix 
repeated measures ANOVA, 570-10 

Contrasts 
ANCOVA, 551-1 
MANOVA, 605-4 
mixed models, 201-6, 431-7 
one-way ANOVA, 550-1 

Contrasts - multiple 
simulation, 590-1 

Control chart 
Cusum, 290-1 
EWMA, 290-1 
FIR, 290-1 
one mean - simulation, 290-1 
R Chart, 295-1 
S Chart, 295-1 
S Chart with Probability Limits, 295-1 
Shewhart, 290-1 
variability - simulation, 295-1 

Control charts 
formulas, 290-2, 295-2 

Control charts - means 
examples, 290-10 
validation, 290-14 

Control charts - variability 
examples, 295-8 
validation, 295-11 

Controlled variables 
multiple regression, 865-4 

Corners 
histogram, 945-4 
scatter plot, 940-1 

Correlated proportions 
matched case-control, 155-1 
McNemar test, 150-1 

Correlation 
intraclass, 810-1 

Correlation (one) 
confidence interval, 801-1 
examples, 800-4 
validation, 800-7 
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Correlation (one) - confidence interval 
examples, 801-4 
validation, 801-7 

Correlation coefficient, 800-1 
Correlation coefficient distribution 

probablility calculator, 915-3 
Correlation test 

one, 800-1 
two, 805-1 

Correlations (two) 
examples, 805-5 
validation, 805-8 

Covariance matrix 
repeated measures ANOVA, 570-13 

Covariance patterns 
AR(1), 201-11, 431-4 
banded, 201-11, 431-4 
compound symmetry, 201-11, 431-4 
simple, 201-12 
simple, 431-5 

Cox regression, 850-1 
examples, 850-4 
validation, 850-6 

Creating data 
simulation, 920-1 

Creating randomization lists, 880-1 
Cronbach's alpha 

one, 815-1 
two, 820-1 

Crossed factors 
design generator, 889-1 

Cross-over 
higher-order - equivalence, 540-1, 545-1 
higher-order - non-inferiority, 530-1 
higher-order - non-zero null, 528-1 
ratio - equivalence, 525-1 
ratio - higher-order - non-inferiority, 535-1 
ratio - higher-order - non-zero null, 533-1 
ratio - non-inferiority, 515-1 
ratio - non-unity null, 513-1 
repeated measures ANOVA, 570-44 
two means, 500-1 
two means - equivalence, 520-1 
two means - non-inferiority, 510-1 
two means - non-zero null, 508-1 
two means - ratio, 505-1 

Cross-over - higher-order - equivalence 
examples, 540-9 
validation, 540-12 

Cross-over - higher-order - non- zero null 
examples, 528-8 
validation, 528-11 

Cross-over - higher-order - non-inferiority 
examples, 530-8 
validation, 530-11 

Cross-over - ratio - equivalence 
examples, 525-7 
validation, 525-9 

Cross-over - ratio - higher-order - equivalence 
examples, 545-9 
validation, 545-12 

Cross-over - ratio - higher-order - non- zero null 
examples, 533-9 
validation, 533-12 

Cross-over - ratio - higher-order - non-inferiority 
examples, 535-9 
validation, 535-12 

Cross-over - ratio - non-inferiority 
examples, 515-6 
validation, 515-8 

Cross-over - ratio - non-unity null 
examples, 513-6 

Cross-over (two means) 
examples, 500-7 
validation, 500-10 

Cross-over (two means) - equivalence 
examples, 520-7 
validation, 520-10 

Cross-over (two means) - non- unity null 
validation, 513-8 

Cross-over (two means) - non- zero null 
examples, 508-7 
validation, 508-10 

Cross-over (two means) - non-inferiority 
examples, 510-7 
validation, 510-10 

Cross-over (two means) - ratio 
examples, 505-6 
validation, 505-8 

Crossover analysis 
mixed models, 571-1 

Cumulative scale 
histogram, 945-4 

CUSUM chart, 290-4 

D 
D’Agostino kurtosis, 670-2 
D’Agostino omnibus test, 670-3 
D’Agostino skewness test, 670-4 
Data 

histogram, 945-11 
scatter plot, 940-11 
simulation of, 920-1 

Data bars 
scatter plot, 940-11 

Data entry, 925-1 
Data simulation 

examples, 920-18 
Data simulator, 920-1 
Data tab, 4-6 
Data ticks 

scatter plot, 940-10 
Decimals 

histogram, 945-6 
scatter plot, 940-4 

Default template, 4-2 
D-efficiency 

D-optimal designs, 888-12 
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Density trace 
histogram, 945-3 

Design generator, 889-1 
examples, 889-3 

Design of experiments 
randomization lists, 880-1 

Designs 
Box-Behnken, 885-1 
central-composite, 885-1 
design generator, 889-1 
factorial, 881-2 
fractional factorial, 882-1 
Plackett-Burman, 886-1 
response surface, 885-1 
screening, 886-1 
Taguchi, 887-1 
two-level factorial, 881-1, 889-1 

Determinant 
D-optimal designs, 888-13 

Determinant analysis 
D-optimal designs, 888-11 

Diagnostic testing 
ROC curve (one), 260-1 

Difference 
proportions, 7-2 

Difference data 
simulation, 920-25 

Discordant pairs 
McNemar test, 150-2 

Distributions 
combining, 920-13 
mixing, 920-13 
simulation, 920-1 

Documentation 
printing, 1-7 

Donner and Klar 
cluster randomized design, 230-2 

D-optimal designs, 888-1 
examples, 888-8 

Dot plot 
histogram, 945-11 

Downloading updates, 1-2 
Drift 

survival - group sequential, 710-5 
two means - group sequential, 475-4 
two proportions - group sequential, 220-4 

Dunn’s test 
multiple contrasts - simulation, 590-3 

Dunnett’s test 
multiple comparisons, 575-3 

Dunnett's test 
simulation, 585-1, 585-3 

Dunn's test 
simulation, 590-1 

Duplicates 
D-optimal designs, 888-4 

E 
Edit menu 

output window, 5-5 
spreadsheet, 925-2 

Effect size, 6-5 
ANOVA, 560-2, 560-7 
chi-square estimator, 900-1 
chi-square test, 250-2 
multiple regression, 865-2 
one-way ANOVA, 550-3 
randomized block ANOVA, 565-2 

Efficacy boundaries, 221-1, 222-1, 223-1, 476-1, 477-
1, 478-1 

Efron’s biased coin randomization, 880-3 
Entering procedure options, 4-1 
Entering your serial number, 1-2 
Equivalence 

correlated proportions, 165-1 
means (two), 460-1 
means (two) - ratio, 470-1 
means (two) - simulation, 465-1 
one proportion, 110-1 
two proportions, 215-1 

Equivalence - two correlated proportions 
examples, 165-11 
validation, 165-14 

Equivalence hypothesis, 6-9 
Equivalence limits - paired means 

simulation, 495-9 
Equivalence test data 

simulating, 495-3 
Error rates - simulation 

multiple comparison, 580-1, 585-2 
multiple contrasts, 590-1 

Errors, 6-2 
EWMA chart limits, 290-5 
Exact binomial test 

one proportion, 100-4 
Example data 

histogram, 945-11 
scatter plot, 940-11 

Examples 
ANCOVA, 551-10 
balanced incomplete block designs, 883-3 
Chi-square estimator, 900-2 
Chi-square test, 250-6 
Cochran-Armitage test, 255-12 
control charts - means, 290-10 
control charts - variability, 295-8 
correlation (one) - confidence interval, 801-4 
Cox regression, 850-4 
cross-over - higher-order - equivalence, 540-9 
cross-over - higher-order - non- zero null, 528-8 
cross-over - higher-order - non-inferiority, 530-8 
cross-over - ratio - equivalence, 525-7 
cross-over - ratio - higher-order - equivalence, 545-

9 
cross-over - ratio - higher-order - non- zero null, 

533-9 
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cross-over - ratio - higher-order - non-inferiority, 
535-9 

cross-over - ratio - non-inferiority, 515-6 
cross-over - ratio - non-unity null, 513-6 
cross-over (two means), 500-7 
cross-over (two means) - equivalence, 520-7 
cross-over (two means) - non- zero null, 508-7 
cross-over (two means) - non-inferiority, 510-7 
cross-over (two means) - ratio, 505-6 
data simulation, 920-18 
design generator, 889-3 
D-optimal designs, 888-8 
equivalence - two correlated proportions, 165-11 
exponential mean (one), 405-8 
exponential means (two), 435-5 
fixed effects ANOVA, 560-13 
fractional factorial designs, 882-3 
intraclass correlation, 810-4 
kappa, 811-6 
Latin square designs, 884-4 
linear regression, 855-5 
logistic regression, 860-9 
logrank tests - non-inferiority, 706-7 
logrank tests (Lakatos), 715-15 
Mann-Whitney test, 430-16 
MANOVA, 605-12 
many proportions - trend, 255-12 
matched case-control - proportions, 155-6 
McNemar test - two correlated proportions, 150-7 
mean ratio - non- zero null, 453-6 
mean ratio - non-inferiority, 455-6 
microarray one-sample or paired t-test, 610-12 
microarray two-sample t-test, 615-12 
minimum effective dos, 595-4 
mixed models, 571-36 
multiple comparisons, 575-13 
multiple comparisons - simulation, 580-13 
multiple comparisons - vs control - simulation, 

585-12 
multiple contrasts - simulation, 590-14 
multiple regression, 865-6 
non-inferiority - two correlated proportions, 160-

10 
normality - simulation, 670-8 
odds ratio estimator, 910-2 
one coefficient alpha, 815-4 
one correlation, 800-4 
one mean - confidence interval, 420-5 
one mean - tolerance - confidence interval, 421-6 
one proportion, 100-13 
one proportion - confidence interval, 115-6 
one proportion - equivalence, 110-11 
one proportion - non-inferiority, 105-10 
one proportion - non-zero null, 103-10 
one sensitivity, 270-6 
one specificity, 270-6 
one standard deviation - confidence interval, 640-5 
one standard deviation - relative error - confidence 

interval, 642-4 
one standard deviation - tolerance - confidence 

interval, 641-6 

one variance - confidence interval, 651-4 
one variance - relative error - confidence interval, 

653-4 
one variance - tolerance - confidence interval, 652-

6 
one-way ANOVA, 550-10 
one-way ANOVA - simulation, 555-10 
paired means - confidence interval, 496-5 
paired means - tolerance - confidence interval, 

497-6 
paired sensitivities, 276-7 
Poisson mean (one), 412-4 
Poisson means (two), 437-7 
Poisson regression, 870-7 
post-marketing surveillance, 135-6 
proportions estimator, 910-2 
randomization lists, 880-9 
randomized block ANOVA, 565-9 
ratio of two means, 445-6 
ratio of two means - equivalence, 470-7 
regression - confidence interval, 856-7 
repeated measures - two means, 431-13 
repeated measures - two proportions, 201-16 
repeated measures ANOVA, 570-29 
response surface designs, 885-3 
ROC curve (one), 260-8 
ROC curves (two), 265-8 
screening designs, 886-3 
single-stage phase II trials, 120-3 
standard deviation estimator, 905-6 
survival - group sequential, 710-11, 711-27 
survival - logrank, 700-6 
survival - logrank - advanced, 705-8 
Taguchi designs, 887-4 
three-stage phase II trials, 130-8 
t-test (one mean), 400-8 
t-test (one mean) - non- zero null, 413-8 
t-test (one mean) - non-inferiority, 415-8 
t-test (one mean) - simulation, 410-10 
t-test (paired means) - equivalence - simulation, 

495-11 
t-test (paired means) - simulation, 490-11 
t-test (paired), 400-13, 485-8 
t-test (two means), 430-10 
t-test (two means) - simulation, 440-12 
two coefficient alphas, 820-6 
two correlated proportions - equivalence, 165-11 
two correlated proportions - non-inferiority, 160-

10 
two correlations, 805-5 
two means - cluster randomized, 480-4 
two means - confidence interval, 471-5 
two means - equivalence, 460-5 
two means - equivalence - simulation, 465-12 
two means - group sequential, 475-10, 476-17, 

477-15 
two means - non- zero null, 448-10 
two means - non-inferiority, 450-10 
two means – non-inferiority – group sequential, 

478-17 
two means - ratio, 445-6 

 



  Index-7 

two means - ratio - equivalence, 470-7 
two means - tolerance - confidence interval, 472-6 
two ordered categorical variables, 253-5 
two proportions - cluster - equivalence, 240-8 
two proportions - cluster - non-inferiority, 235-7 
two proportions - cluster - non-zero null, 233-7 
two proportions - cluster randomized, 230-9 
two proportions - confidence interval, 216-26 
two proportions - equivalence, 215-17 
two proportions - group sequential, 220-9, 221-18 
two proportions - inequality, 200-14 
two proportions - non-inferiority, 210-17 
two proportions – non-inferiority – group 

sequential, 223-22 
two proportions – non-zero null – group sequential, 

222-22 
two proportions - offset, 205-18 
two proportions - stratified design, 225-8 
two sensitivities, 275-9 
two-level designs, 881-6 
two-stage phase II trials, 125-8 
variance (one), 650-4 
variance ratio - confidence interval, 656-5 
variance ratio - relative error - confidence interval, 

657-4 
variances (two), 655-4 
Williams’ test, 595-4 

Exiting PASS, 4-3 
Experiment (run) 

two-level designs, 881-2 
Experimental design, 881-1 

two-level designs, 881-2 
Experimental error 

two-level designs, 881-2 
Experimentwise error rate 

simulation, 580-1, 585-2, 590-1 
Exponential 

logrank, 705-3 
log-rank, 715-2 

Exponential distribution 
simulation, 920-6 

Exponential mean (one), 405-1 
examples, 405-8 
validation, 405-10 

Exponential means (two), 435-1 
examples, 435-5 
validation, 435-7 

Exponential test 
simulation, 410-4 

Exposure 
Poisson regression, 870-1 

Exposure probability 
matched case-control, 155-4 

F 
F distribution 

probablility calculator, 915-3 
simulation, 920-7 

Factor scaling 
D-optimal designs, 888-2 

Factorial ANOVA, 560-1 
Factorial designs 

two-level designs, 881-1, 881-2 
False discovery rate adjustment 

t-test 
two groups, 615-4 

t-test - one group, 610-6 
Familywise error rate 

simulation, 580-1, 585-2, 590-1 
Farrington-Manning confidence interval 

two proportions, 216-5 
Farrington-Manning test 

two proportions - equivalence, 215-9 
two proportions - non-inferiority, 210-10 
two proportions - offset, 205-9 

Fast initial response, 290-4 
File menu 

output window, 5-2 
procedure window, 4-3 
spreadsheet, 925-2 

Finite population correction 
t test, 400-8, 485-8 

Finite population size 
one mean - confidence interval, 420-2 

FIR, 290-4 
Fisher's exact test 

two proportions, 200-4 
Fisher-z transformation 

two correlations, 805-1 
Fixed effects ANOVA 

examples, 560-13 
validation, 560-19 

Fixed effects models 
mixed models, 571-1 

Fixed factor 
ANOVA, 560-5 

Fleiss Confidence intervals 
two proportions, 216-12, 216-16 

Fleming algorithm 
single-stage phase II trials, 120-1 

Fleming-Harrington tests 
Group Sequential, 711-5 

Follow-up 
logrank, 705-4 

Font 
histogram, 945-4 
scatter plot, 940-2 

Forced points 
D-optimal designs, 888-5 

FPR 
ROC curve (one), 260-7 
ROC curves (two), 265-1 

Fractional factorial designs, 882-1 
examples, 882-3 

Freedman 
logrank, 700-1 

Frequency polygon 
histogram, 945-3 
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F-test 
Geisser-Greenhouse, 570-4 
simulation, 555-1 
two variances, 655-1 

Futility boundaries, 221-1, 222-1, 223-1, 476-1, 477-
1, 478-1 

G 
Gallery, 5-2 
Games-Howell - simulation 

multiple comparison, 580-1 
Games-Howell test 

simulation, 580-3 
Gamma data 

simulation, 920-23 
Gamma distribution 

probablility calculator, 915-4 
simulation, 920-7 

Gart-Nam confidence interval 
two proportions, 216-7 

Gart-Nam test 
two proportions - equivalence, 215-10 
two proportions - non-inferiority, 210-11 
two proportions - offset, 205-10 

Gehan test 
Group Sequential, 711-5 

Geisser-Greenhouse 
repeated measures ANOVA, 570-1 

Geisser-Greenhouse F-test 
repeated measures ANOVA, 570-4 

General linear multivariate model 
MANOVA, 605-2 
repeated measures ANOVA, 570-3 

Generating data, 920-1 
Goodness of fit 

chi-square estimator, 900-1 
Chi-square test, 250-1 

Graeco-Latin square designs, 884-1 
Grid lines 

histogram, 945-7 
scatter plot, 940-5 

Group sequential test 
log-rank, 710-1, 711-1 
survival, 710-1, 711-1 
two means, 475-1, 476-1, 477-1 
two means – non-inferiority, 478-1 
two means – non-inferiority (simulation), 478-1 
two proportions, 220-1, 221-1 
two proportions – non-inferiority, 223-1 
two proportions – non-inferiority (simulation), 

223-1 
two proportions – non-zero null, 222-1 
two proportions – non-zero null (simulation), 222-

1 
two proportions (simulation), 221-1 

H 
Hazard rate 

Cox regression, 850-1 
Hazard rate conversion, 903-1 
Hazard rate parameterization 

logrank, 711-2, 715-2 
Hazard rates 

logrank, 700-2 
logrank - advanced, 705-2 
time dependent, 715-22 

Hazard ratio 
group sequential, 710-2 

Help menu 
output window, 5-7 
procedure window, 4-5 
spreadsheet, 925-3 

Help system, 1-3 
contents window, 1-5 
index window, 1-4 
navigating, 1-4 
printing documentation, 1-7 
search window, 1-6 

Heterogeneous variances 
mixed models, 571-47, 571-49 

Histogram 
alignment, 945-4 
axis, 945-3 
axis line, 945-5 
background color, 945-11 
bars, 945-1 
bin width, 945-2 
bins, 945-1 
border plots, 945-10 
boundaries, 945-3 
box plot, 945-11 
color, 945-11 
comments, 945-10 
corners, 945-4 
cumulative scale, 945-4 
data, 945-11 
decimals, 945-6 
density trace, 945-3 
dot plot, 945-11 
example data, 945-11 
font, 945-4 
frequency polygon, 945-3 
grid lines, 945-7 
interior lines, 945-1 
labels, 945-4 
layout, 945-4 
legend, 945-9 
lines, 945-10 
major ticks, 945-5 
maximum, 945-3 
minimum, 945-3 
minor ticks, 945-6 
normal density, 945-3 
notes, 945-10 
number bins, 945-2 
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painting order, 945-11 
scale, 945-4 
scaling, 945-2 
settings, 945-1 
size, 945-11 
text, 945-10 
ticks, 945-5 
titles, 945-8 

Histograms, 945-1 
Hotelling’s T2, 600-1 

validation, 600-11 
Hotelling’s T2 distribution 

probablility calculator, 915-4 
Hotelling-Lawley trace, 605-1 

MANOVA, 605-3 
repeated measures ANOVA, 570-1, 570-7 

Hypergeometric distribution 
probablility calculator, 915-4 

Hypergeometric model 
one proportion, 100-2 

Hypothesis 
equivalence, 6-9 
inequality, 6-7 
introduction, 6-1 
means, 8-1 
non-inferiority, 6-7 
superiority, 6-8 
types, 6-6 

Hypothesis testing 
introduction, 6-1 

I 
Icons 

output window, 5-8 
procedure window, 4-5 

Incidence rate 
post-marketing surveillance, 135-2 

Inclusion points 
D-optimal designs, 888-6 

Independence test, 250-1 
Inequality 

one proportion, 100-1 
two means ratio, 445-1 
two proportions, 200-1 
two proportions - offset, 205-1 

Inequality hypothesis, 6-7 
Installation, 1-1 
Interaction 

two-level designs, 881-3 
Intercept 

linear regression, 855-1 
Interim analysis 

survival, 710-1, 711-1 
three-stage trial, 130-1 
two means, 475-1, 476-1, 477-1 
two means – non-inferiority, 478-1 
two proportions, 220-1, 221-1 
two proportions – non-inferiority, 223-1 

two proportions – non-zero null, 222-1 
Interior lines 

histogram, 945-1 
Intraclass correlation, 810-1 

examples, 810-4 
validation, 810-6 

Intracluster correlation 
cluster randomization - two means, 480-3 
cluster randomized - non-inferiority, 235-4 
cluster randomized - non-zero null, 233-4 
cluster randomized design, 230-2 

Introduction to power analysis, 6-1 
Iterations 

maximum, 4-7 
Iterations tab, 4-7 

K 
Kappa 

examples, 811-6 
validation, 811-11 

Kappa test for rater agreement, 811-1 
Kenward and Roger method 

mixed models, 571-11 
Kolmogorov-Smirnov test, 670-2 
Kruskal-Wallis 

multiple comparisons - simulation, 580-1 
simulation, 555-1 

Kruskal-Wallis test 
multiple comparisons - simulation, 580-3, 585-1 
simulation, 585-3 

L 
Labels 

histogram, 945-4 
scatter plot, 940-2 

Lachin and Foulkes 
logrank test, 705-1 

Lakatos 
logrank, 715-1 

Lan-DeMets 
survival - group sequential, 710-1, 711-1 
two means - group sequential, 475-1 
two proportions - group sequential, 220-1 

Latin square 
ANOVA, 560-17 

Latin square designs, 884-1 
examples, 884-4 

Layout 
histogram, 945-4 
scatter plot, 940-2 

Legend 
histogram, 945-9 
parameter, 4-10 
scatter plot, 940-8 
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Likelihood ratio test 
two proportions, 200-7 

Likert-scale 
simulation, 410-21, 920-8 
simulation, 920-21 

Lilliefors' critical values 
normality tests, 670-2 

Linear model 
ANOVA, 560-2 
repeated measures ANOVA, 570-3 

Linear regression, 855-1 
confidence interval, 856-1 
examples, 855-5 
validation, 855-7 

Lines 
histogram, 945-10 
scatter plot, 940-10 

Loading a procedure, 2-3 
Log base 

scatter plot, 940-2 
Log transformation 

cross-over, 505-2 
cross-over - equivalence, 525-2 
cross-over - higher-order - equivalence, 545-4 
cross-over - higher-order - non- zero null, 533-4 
cross-over - higher-order - non-inferiority, 535-4 
cross-over - non-inferiority, 515-2 
cross-over - non-unity null, 513-2 
mean ratio, 445-2 
mean ratio - equivalence, 470-2 
mean ratio - non- zero null, 453-2 
mean ratio - non-inferiority, 455-2 

Logarithm 
scatter plot, 940-1 

Logistic regression, 860-1 
examples, 860-9 
validation, 860-14 

Logit 
logistic regression, 860-2 

Logrank 
hazard rate parameterization, 711-2, 715-2 
median survival time parameterization, 711-2, 715-

2 
mortality parameterization, 711-2, 715-2 
proportion surviving parameterization, 711-2, 715-

2 
Log-rank 

group sequential test, 710-1, 711-1 
Logrank procedure comparison, 715-3 
Logrank test, 700-1, 715-1 

Lachin and Foulkes, 705-1 
non-inferiority, 706-1 

Log-rank test 
Group Sequential, 711-5 

Logrank tests - non-inferiority 
examples, 706-7 
validation, 706-11 

Logrank tests (Lakatos) 
examples, 715-15 
validation, 715-21 

Longitudinal data models 
mixed models, 571-2 

Longitudinal models, 571-1 

M 
Macros, 930-1 

commands, 930-6 
examples, 930-18 
syntax, 930-2 

Major ticks 
histogram, 945-5 
scatter plot, 940-4 

Mann-Whitney test, 430-1 
assumptions, 430-4 
examples, 430-16 
group-sequential - simulation, 476-4, 477-4, 478-5 
non- zero null, 448-5 
non-inferiority, 450-5 
simulation, 440-5 

Mann-Whitney test - equivalence 
simulation, 465-5 

Mann-Whitney test - simulation 
equivalence, 465-1 

MANOVA, 605-1 
assumptions, 605-1 
examples, 605-12 
validation, 605-17 

Mantel Haenszel test 
two proportions, 200-7 

Mantel-Haenszel, 225-1 
Many proportions - trend 

examples, 255-12 
validation, 255-19 

Martinez-Iglewicz test, 670-3 
Matched case-control, 155-1 

post-marketing surveillance, 135-2 
Matched case-control - proportions 

examples, 155-6 
validation, 155-10 

Maximum 
histogram, 945-3 
scatter plot, 940-1 

Maximum iterations, 4-7 
Maximum likelihood 

mixed models, 571-8 
McNemar test, 150-1 
McNemar test - two correlated proportions 

examples, 150-7 
validation, 150-9 

Mean (one) 
confidence interval, 420-1 
control chart - simulation, 290-1 
exponential, 405-1 
Poisson, 412-1 
simulation, 410-1 

Mean (one) - confidence interval 
examples, 420-5 
validation, 420-7 
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Mean (one) - tolerance - confidence interval 
examples, 421-6 
validation, 421-8 

Mean (one) - tolerance probability 
confidence interval, 421-1 

Mean absolute deviation 
standard deviation estimator, 905-3 

Mean ratio 
equivalence, 470-1 
inequality, 445-1 

Means 
introduction, 8-1 
one-way - simulation, 555-1 

Means - ratio - equivalence 
cross-over, 525-1 

Means - ratio - non- zero null - higher-order 
cross-over, 533-1 

Means - ratio - non-inferiority 
cross-over, 515-1 

Means - ratio - non-inferiority - higher-order 
cross-over, 535-1 

Means - ratio - non-unity null 
cross-over, 513-1 

Means (paired) 
confidence interval, 496-1 
simulation, 490-1 

Means (paired) - confidence interval 
examples, 496-5 
validation, 496-6 

Means (paired) - equivalence 
simulation, 495-1 

Means (paired) - tolerance - confidence interval 
examples, 497-6 
validation, 497-8 

Means (paired) - tolerance probability 
confidence interval, 497-1 

Means (two) 
cluster randomized design, 480-1 
confidence interval, 471-1 
cross-over, 500-1 
equivalence, 460-1 
exponential, 435-1 
group sequential test, 475-1, 476-1, 477-1 
interim analysis, 475-1, 476-1, 477-1 
interim analysis – non-inferiority, 478-1 
non-inferiority, 450-1 
non-zero null, 448-1 
Poisson, 437-1 
ratio, 445-1 
simulation, 440-1 
T-test, 430-1 
t-test - equivalence, 460-1 
T-test - non-inferiority, 450-1 
T-test - non-zero null, 448-1 

Means (two) - cluster randomized design 
examples, 480-4 
validation, 480-6 

Means (two) - confidence interval 
examples, 471-5 
validation, 471-7 

Means (two) - equivalence 
cross-over, 520-1 
examples, 460-5 
validation, 460-7 

Means (two) - equivalence - higher-order 
cross-over, 540-1, 545-1 

Means (two) - equivalence - simulation 
examples, 465-12 
validation, 465-19 

Means (two) - group sequential 
examples, 475-10, 476-17, 477-15 
validation, 475-17, 476-28, 477-26 

Means (two) – non- inferiority – group sequential 
examples, 478-17 
validation, 478-28 

Means (two) - non- zero null 
cross-over, 508-1 
examples, 448-10 
validation, 448-13 

Means (two) - non- zero null - higher-order 
cross-over, 528-1 

Means (two) - non-inferiority 
cross-over, 510-1 
examples, 450-10 
validation, 450-13 

Means (two) - non-inferiority - higher-order 
cross-over, 530-1 

Means (two) - ratio 
cross-over, 505-1 
equivalence, 470-1 
non- zero null, 453-1 
non-inferiority, 455-1 

Means (two) - ratio - non- zero null 
examples, 453-6 
validation, 453-8 

Means (two) - ratio - non-inferiority 
examples, 455-6 
validation, 455-8 

Means (two) - simulation 
equivalence, 465-1 
t-test - equivalence, 465-1 

Means (two) - tolerance - confidence interval 
examples, 472-6 
validation, 472-8 

Means (two) - tolerance probability 
confidence interval, 472-1 

Means matrix 
MANOVA, 605-4 
repeated measures ANOVA, 570-7 

Measurement error 
randomized block ANOVA, 565-2 

Median survival time conversion, 903-1 
Median survival time parameterization 

logrank, 711-2, 715-2 
Menus 

output window, 5-2 
PASS home window, 3-2 
procedure window, 4-3 
spreadsheet, 925-2 
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Microarray data 
one sample t-test, 610-1 
paired T-test, 610-1 
two sample t-test, 615-1 

Microarray one-sample or paired t-test 
examples, 610-12 
validation, 610-19 

Microarray two-sample t-test 
examples, 615-12 
validation, 615-19 

Miettinen-Nurminen confidence interval 
two proportions, 216-6 

Miettinen-Nurminen test 
two proportions - equivalence, 215-7 
two proportions - non-inferiority, 210-8 
two proportions - offset, 205-7 

Minimum 
histogram, 945-3 
scatter plot, 940-1 

Minimum detectable difference 
mixed models, 571-14 
multiple comparisons, 575-11 
one-way ANOVA, 550-17 
t-test, 400-12 
two-sample t test, 430-14 

Minimum effective dose 
examples, 595-4 
validation, 595-7 

Minimum Effective Dose 
Williams’ Test, 595-1 

Minimum system requirements, 1-1 
Minor ticks 

histogram, 945-6 
scatter plot, 940-4 

Mixed model 
defined, 571-2 

Mixed models, 571-1 
differential evolution, 571-12 
examples, 571-36 
F test, 571-11 
Fisher scoring, 571-12 
fixed effects, 571-1 
G matrix, 571-5 
heterogeneous variances, 571-47, 571-49 
Kenward and Roger method, 571-11 
L matrix, 571-9 
likelihood formulas, 571-8 
maximum likelihood, 571-8 
minimum detectable difference, 571-14 
MIVQUE, 571-12 
Newton-Raphson, 571-12 
pairwise contrasts, 201-6, 431-7 
R matrix, 571-5 
restricted maximum likelihood, 571-9 
simulation steps, 571-17 
types, 571-1 
validation, 571-42 

Mixture data 
simulation, 920-24 

Mixture design 
D-optimal designs, 888-20 

Monte Carlo, 8-3 
Monte Carlo simulation, 920-1 
Mortality conversion, 903-1 
Mortality parameterization 

logrank, 711-2, 715-2 
MTBF 

exponential mean (one), 405-1 
Multinomial 

chi-square estimator, 900-3 
Multinomial distribution 

simulation, 920-8 
Multiple comparisons, 575-1 

Dunnett's test - simulation, 585-1 
examples, 575-13 
Games-Howell - simulation, 580-1 
pair-wise - simulation, 580-1 
validation, 575-19 
vs control - simulation, 585-1 
with a control, 575-2 
with best, 575-5 

Multiple comparisons - simulation 
examples, 580-13 
power, 580-4 
validation, 580-22 

Multiple comparisons - vs control - simulation 
examples, 585-12 
validation, 585-21 

Multiple contrasts 
simulation, 590-1 

Multiple contrasts - simulation 
examples, 590-14 
validation, 590-24 

Multiple regression, 865-1 
examples, 865-6 
validation, 865-10 

Multiple testing adjustment 
t-test - two groups, 615-2 
t-test -one group, 610-4 

Multivariate analysis of variance, 605-1 

N 
Navigating the help system, 1-4 
Navigation pane 

output window, 5-9 
Negative binomial distribution 

probablility calculator, 915-5 
Nested factors 

design generator, 889-1 
New template, 4-3 
Noncentrality 

one-way ANOVA, 550-3 
Noncentrality parameter 

one-way ANOVA, 550-4 
Non-inferiority 

correlated proportions, 160-1 
logrank, 705-13, 706-1 
means (two), 450-1 
means (two) - ratio, 455-1 
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one proportion, 105-1 
paired t-test, 415-1 
survival, 706-1 
two proportions, 210-1 

Non-inferiority - two correlated proportions 
examples, 160-10 
validation, 160-13 

Non-inferiority hypothesis, 6-7 
Non-Inferiority test (two means) 

simulation, 440-17 
Nonparametric 

t-test, 400-7, 485-7 
Nonparametric tests 

Wilcoxon test, 400-1 
Non-zero null 

means (two), 448-1 
means (two) - ratio, 453-1 
one proportion, 103-1 
paired t-test, 413-1 

Normal density 
histogram, 945-3 

Normal distribution 
probablility calculator, 915-5 
simulation, 920-9, 920-18 

Normality - simulation 
examples, 670-8 
validation, 670-11 

Normality tests, 670-1 
Anderson-Darling test, 670-2 
D’Agostino kurtosis, 670-2 
D’Agostino omnibus, 670-3 
D’Agostino skewness, 670-4 
Kolmogorov-Smirnov, 670-2 
Lilliefors' critical values, 670-2 
Martinez-Iglewicz, 670-3 
range, 670-4 
Shapiro-Wilk, 670-4 

Notes 
histogram, 945-10 
scatter plot, 940-10 

Nuisance parameter, 8-2 
Nuisance parameters, 6-6 
Null hypothesis, 6-1, 8-1 
Number bins 

histogram, 945-2 

O 
O’Brien-Fleming 

survival - group sequential, 710-1, 711-1 
two means - group sequential, 475-1 
two proportions - group sequential, 220-1 

Odds ratio 
logistic regression, 860-2 
matched case-control, 155-1 
McNemar test, 150-3 
one proportion, 100-6 
proportions, 7-3 
two proportions, 200-3 

Odds ratio estimator, 910-1 
examples, 910-2 

One proportion 
equivalence, 110-1 
inequality, 100-1 
non-inferiority, 105-1 
non-zero null, 103-1 
superiority, 103-1 

One-sample t-test 
microarray data, 610-1 

One-way ANOVA, 550-1 
examples, 550-10 
simulation, 555-1 
validation, 550-19 

One-way ANOVA - simulation 
examples, 555-10 
validation, 555-16 

Open example template, 4-3 
Open template, 4-3 
Operating system, 1-1 
Ordered categorical variables (two), 253-1 

examples, 253-5 
validation, 253-10 

Orthogonal arrays, 887-1 
Orthogonal sets of Latin squares, 884-2 
Outliers 

multiple comparisons - simulation, 580-23 
one-way ANOVA - simulation, 555-18 

Outliers (two means) 
simulation, 440-19 

Output, 2-5 
Output Gallery, 5-2 
Output window, 5-1 

bottom bar, 5-10 
edit menu, 5-5 
file menu, 5-2 
help menu, 5-7 
navigation pane, 5-9 
toolbar, 5-8 
view menu, 5-4 
window menu, 5-7 

P 
P value, 6-4 
Painting order 

histogram, 945-11 
scatter plot, 940-11 

Paired design 
microarray data, 610-1 

Paired designs 
non- zero null, 413-1 
non-inferiority, 415-1 

Paired distributions 
simulating, 490-2 

Paired means 
simulation, 490-1 

Paired means - equivalence 
simulation, 495-1 
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Paired proportions 
equivalence, 165-1 
non-inferiority, 160-1 

Paired t-test, 400-1, 485-1 
assumptions, 400-3, 485-3 
microarray data, 610-1 
non- zero null, 413-1 
non-inferiority, 415-1 
superiority, 413-1 

Pairwise comparisons 
multiple comparisons, 575-7 

Pair-wise comparisons 
simulation, 580-1 

Pairwise contrasts 
mixed models, 201-6 

Pairwise contrasts 
mixed models, 431-7 

Panel, 4-1 
Parameters 

abbreviations, 4-10 
axis, 4-10 
entering, 4-6 
legend, 4-10 

PASS help system, 1-3 
PASS home window, 3-1 

Category Tree, 3-4 
Find, 3-5 
Menus, 3-2 
Procedure list, 3-5 
Search, 3-5 
toolbar, 3-3 

Patient entry 
logrank, 705-3 

Peto-Peto test 
Group Sequential, 711-5 

Phase I trials 
definition, 120-1 

Phase II clinical trials 
single-stage one proportion, 120-1 
three-stage one proportion, 130-1 
two-stage one proportion, 125-1 

Phase II trials 
definition, 120-1 

Pillai-Bartlett trace, 605-1 
MANOVA, 605-3 
repeated measures ANOVA, 570-1, 570-6 

Plackett-Burman designs, 886-1 
Planned comparisons 

ANCOVA, 551-1 
one-way ANOVA, 550-1 

Plot setup tab, 4-9 
Pocock 

survival - group sequential, 710-1, 711-1 
two means - group sequential, 475-1 
two proportions - group sequential, 220-1 

Poisson distribution 
probablility calculator, 915-5 
simulation, 920-9 

Poisson incidence 
post-marketing surveillance, 135-1 

Poisson mean (one), 412-1 

examples, 412-4 
validation, 412-9 

Poisson means (two), 437-1 
examples, 437-7 
validation, 437-10 

Poisson regression, 870-1 
examples, 870-7 
validation, 870-9 

Population size 
t-test, 400-8, 485-8 

Post-marketing surveillance, 135-1 
examples, 135-6 
validation, 135-8 

Power 
calculating, 6-4 
introduction, 6-1 
means, 8-1 
multiple comparisons - simulation, 580-4 

Prevalence 
correlated proportions, 160-2, 165-2 

Printing documentation, 1-7 
Printing output, 5-4, 5-8 
Probability calculator, 915-1 

Beta distribution, 915-1 
Binomial distribution, 915-2 
Bivariate normal distribution, 915-2 
Chi-square distribution, 915-2 
Correlation coefficient distribution, 915-3 
F distribution, 915-3 
Gamma distribution, 915-4 
Hotelling’s T2 distribution, 915-4 
Hypergeometric distribution, 915-4 
Negative binomial distribution, 915-5 
Normal distribution, 915-5 
Poisson distribution, 915-5 
Student’s t distribution, 915-6 
Studentized range distribution, 915-6 
Weibull distribution, 915-6 

Procedure menus 
procedure window, 4-4 

Procedure options, 4-1 
Procedure window, 4-1 

file menu, 4-3 
help menu, 4-5 
procedure menus, 4-4 
run menu, 4-4 
tabs, 4-6 
toolbar, 4-5 
tools menu, 4-4 
view menu, 4-4 
window menu, 4-4 

Producer’s risk 
exponential mean (one), 405-2 

Program updates, 1-2 
Proportion (one) 

binomial model, 100-2, 270-2 
confidence interval, 115-1 
continuity correction, 100-5 
equivalence, 110-1 
exact binomial test, 100-4 
examples, 100-13 
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hypergeometric model, 100-2 
inequality, 100-1 
non-inferiority, 105-1 
odds ratio, 100-6 
saw-tooth power function, 100-16 
single-stage phase II trials, 120-1 
superiority, 103-1 
three-stage phase II trials, 130-1 
two-stage phase II trials, 125-1 
validation, 100-20 
Z test, 100-4 

Proportion (one) - confidence interval 
examples, 115-6 
validation, 115-9 

Proportion (one) - equivalence 
examples, 110-11 
validation, 110-17 
Z test, 110-6 

Proportion (one) - non-inferiority 
examples, 105-10 
validation, 105-16 

Proportion (one) - non-zero null 
examples, 103-10 
validation, 103-14 

Proportion surviving parameterization 
logrank, 711-2, 715-2 

Proportion trend test, 255-1 
Proportional hazards regression, 850-1 
Proportions 

comparing, 7-1 
difference, 7-2 
interpretation, 7-3 
introduction, 7-1 
logistic regression, 860-1 
odds ratio, 7-3 
odds ratio estimator, 910-1 
paired (equivalence), 165-1 
paired (non-inferiority), 160-1 
ratio, 7-2 

Proportions (many) 
trend, 255-1 

Proportions (many) - trend 
examples, 255-12 
validation, 255-19 

Proportions (multiple) 
Chi-square test, 250-1 

Proportions (two) 
Chi-square test, 200-5, 223-6 
cluster randomized - equivalence, 240-1 
cluster randomized - non-inferiority, 235-1 
cluster randomized – non-zero null, 233-1 
cluster randomized design, 230-1 
confidence intervals, 216-1 
equivalence, 215-1 
Fisher's exact, 200-4 
group sequential test, 220-1, 221-1 
group sequential test – non-inferiority, 223-1, 478-

1 
group sequential test – non-zero null, 222-1 
independent, 200-1 
independent - equivalence, 215-1 

independent - non-inferiority & superiority, 210-1 
independent - offset, 205-1 
inequality, 200-1 
inequality - offset, 205-1 
interim analysis, 220-1, 221-1 
interim analysis – non-inferiority, 223-1 
interim analysis – non-zero null, 222-1 
matched case control, 155-1 
McNemar test, 150-1 
non-inferiority & superiority, 210-1 
stratified, 225-1 

Proportions (two) - cluster - equivalence 
examples, 240-8 
validation, 240-12 

Proportions (two) - cluster - non-inferiority 
examples, 235-7 
validation, 235-11 

Proportions (two) - cluster - non-zero null 
examples, 233-7 
validation, 233-11 

Proportions (two) - cluster randomized design 
examples, 230-9 
validation, 230-17 

Proportions (two) - confidence interval 
examples, 216-26 
validation, 216-28 

Proportions (two) - equivalence 
examples, 215-17 
validation, 215-23 

Proportions (two) - group sequential 
examples, 220-9, 221-18 
validation, 220-17, 221-29 

Proportions (two) - inequality 
examples, 200-14 
validation, 200-19 

Proportions (two) – non- inferiority – group sequential 
examples, 223-22 
validation, 223-33 

Proportions (two) - non-inferiority 
examples, 210-17 
validation, 210-24 

Proportions (two) – non-zero null – group sequential 
examples, 222-22 
validation, 222-33 

Proportions (two) - offset 
examples, 205-18 
validation, 205-24 

Proportions (two) - stratified design 
examples, 225-8 
validation, 225-11 

Proportions (two) correlated 
equivalence, 165-1 
non-inferiority, 160-1 

Proportions estimator, 910-1 
examples, 910-2 
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Q 
Qualitative factors 

D-optimal designs, 888-5 
Quitting PASS, 4-3 

R 
Random assignment, 880-1 
Random effects models, 571-1 

mixed models, 571-2 
Random factor 

ANOVA, 560-5 
Random numbers, 920-1 

multiple comparisons - simulation, 580-5 
simulation, 585-5, 590-5 

Random sorting, 880-3 
Random sorting using max % deviation, 880-5 
Randomization 

complete, 880-3 
Efron’s biased coin, 880-3 
Latin square designs, 884-2 
random sorting, 880-3 
random sorting using max % deviation, 880-5 
Smith, 880-4 
Wei’s urn, 880-4 

Randomization lists, 880-1 
examples, 880-9 

Randomized block ANOVA, 565-1 
examples, 565-9 
validation, 565-11 

Randomized block design 
design generator, 889-5 

Range test, 670-4 
Rater agreement - kappa, 811-1 
Rating data 

ROC curve (one), 260-4 
ROC curves (two), 265-3 

Ratio 
proportions, 7-2 
two means, 445-1 
two means - equivalence, 470-1 

Ratio (two means) 
non- zero null, 453-1 
non-inferiority, 455-1 

Ratio of two means 
examples, 445-6 
validation, 445-8 

Ratio of two means - equivalence 
examples, 470-7 
validation, 470-9 

Ratio -two means 
cross-over, 505-1 

Regression 
confidence interval, 856-1 
Cox, 850-1 
linear, 855-1 
logistic, 860-1 

multiple, 865-1 
Poisson, 870-1 

Regression - confidence interval 
examples, 856-7 
validation, 856-10 

Rejection region, 6-3 
Repeated measures 

mixed models, 571-1 
two means, 431-1 
two proportions, 201-1 

Repeated measures - two means 
examples, 431-13 
validation, 431-19 

Repeated measures - two proportions 
examples, 201-16 
validation, 201-24 

Repeated measures ANOVA, 570-1 
examples, 570-29 
validation, 570-49 

Repeated measures design 
design generator, 889-6 

Replication 
two-level designs, 881-3 

Reports tab, 4-8 
Requirements, 1-1 
Resetting a template, 4-3 
Response surface designs, 885-1 

examples, 885-3 
Restricted maximum likelihood 

mixed models, 571-9 
Risk ratio 

Blackwelder, 205-26 
ROC curve (one), 260-1 

examples, 260-8 
validation, 260-12 

ROC curves (two), 265-1 
examples, 265-8 
validation, 265-13 

R-squared 
logistic regression, 860-7 
multiple regression, 865-1 

RTF files, 5-1 
Ruler, 5-4 
Run menu 

procedure window, 4-4 
Running PASS, 2-1 

S 
Sample size 

introduction, 6-1 
Save template, 4-3 
Saw-tooth power function 

one proportion, 100-16 
Scale 

histogram, 945-4 
scatter plot, 940-1 

Scaling 
histogram, 945-2 
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Scaling factors 
D-optimal designs, 888-2 

Scatter plot 
alignment, 940-2 
axis, 940-1 
axis line, 940-3 
background color, 940-11 
bars, 940-11 
boundaries, 940-1 
color, 940-11 
comments, 940-10 
connecting points, 940-10 
corners, 940-1 
data, 940-11 
data bars, 940-11 
data ticks, 940-10 
decimals, 940-4 
example data, 940-11 
font, 940-2 
grid lines, 940-5 
labels, 940-2 
layout, 940-2 
legend, 940-8 
lines, 940-10 
log base, 940-2 
logarithm, 940-1 
major ticks, 940-4 
maximum, 940-1 
minimum, 940-1 
minor ticks, 940-4 
notes, 940-10 
painting order, 940-11 
scale, 940-1 
settings, 940-1 
size, 940-11 
symbols, 940-6, 940-10 
text, 940-10 
ticks, 940-3, 940-10 
titles, 940-7 
trend lines, 940-10 

Score test 
two proportions - equivalence, 215-7 
two proportions - non-inferiority, 210-8 
two proportions - offset, 205-7 

Screening designs, 886-1 
examples, 886-3 

Search 
PASS home window, 3-5 

Sensitivities (paired) 
examples, 276-7 
validation, 276-11 

Sensitivities (two) 
examples, 275-9 
validation, 275-13 

Sensitivity 
correlated proportions, 160-2, 165-2 
one-sample, 270-1 
paired, 276-1 
ROC curve (one), 260-1 
two-sample, 275-1 

Sensitivity (one) 
examples, 270-6 
validation, 270-11 

Serial number, 1-2 
Settings 

histogram, 945-1 
Shapiro-Wilk test, 670-4 
Sign test 

simulation, 410-3 
Sign test - paired means 

simulation, 490-4 
Sign test - paired means - equivalence 

simulation, 495-5 
Significance boundaries, 221-1, 222-1, 223-1, 476-1, 

477-1, 478-1 
Significance level, 6-3 

adjusting, 8-5 
Significance level - simulation 

multiple comparisons, 580-1, 585-2 
multiple contrasts, 590-1 

Simon 
two-stage phase II trials, 125-1 

Simple linear regression 
confidence interval, 856-1 

Simulation, 8-3, 920-1 
Beta distribution, 920-3 
Binomial distribution, 920-5 
Cauchy distribution, 920-5 
Constant distribution, 920-6 
contaminated normal, 920-19 
Exponential distribution, 920-6 
F distribution, 920-7 
Gamma distribution, 920-7 
Likert-scale, 920-8, 920-21 
Multinomial distribution, 920-8 
multiple comparisons, 580-1, 580-5, 585-1, 585-4 
multiple contrasts, 590-1, 590-4 
Normal distribution, 920-9, 920-18 
normality tests, 670-1 
one mean, 410-1 
one mean – control chart, 290-1 
one-way ANOVA, 555-1 
paired means, 490-1 
paired means - equivalence, 495-1 
Poisson distribution, 920-9 
random number generation, 580-5, 585-5, 590-5 
size, 8-3 
skewed distribution, 920-10 
Student's T distribution, 920-10 
syntax, 920-13 
T distribution, 920-10 
Tukey's lambda distribution, 920-10 
two means, 440-1 
two means - equivalence, 465-1 
Uniform distribution, 920-11 
variability – control chart, 295-1 
Weibull distribution, 920-12 

Simulation steps 
mixed models, 571-17 

Single-stage design 
one proportion, 120-1 
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Single-stage phase II trials 
examples, 120-3 
validation, 120-3 

Size 
histogram, 945-11 
scatter plot, 940-11 

Skewed data 
one-way ANOVA - simulation, 555-20 
simulation, 410-12 

Skewed data (two means) 
simulation, 440-20 

Skewed distribution 
simulation, 920-10 

Skewness test, 670-4 
Slope 

linear regression, 855-1 
Slope - simple linear regression 

confidence interval, 856-1 
Smith’s randomization, 880-4 
Specificity 

correlated proportions, 160-2, 165-2 
one-sample, 270-1 
ROC curve (one), 260-1 

Specificity (one) 
examples, 270-6 
validation, 270-11 

Spending functions 
survival - group sequential, 710-3 
two means - group sequential, 475-2, 476-5, 477-4 
two proportions - group sequential, 220-2, 221-7 
two proportions - group sequential – non-zero null, 

222-10, 223-10 
Split plot analysis 

mixed models, 571-1 
Spreadsheet, 925-1 

edit menu, 925-2 
file menu, 925-2 
help menu, 925-3 
menus, 925-2 

Standard deviation, 8-2 
estimator, 905-1 
interpretation, 905-1 

Standard deviation (one) 
confidence interval, 640-1 

Standard deviation (one) - confidence interval 
examples, 640-5 
validation, 640-7 

Standard deviation (one) - relative error 
confidence interval, 642-1 

Standard deviation (one) - relative error - confidence 
interval 
examples, 642-4 
validation, 642-6 

Standard deviation (one) - tolerance - confidence 
interval 
examples, 641-6 
validation, 641-8 

Standard deviation (one) - tolerance probability 
confidence interval, 641-1 

Standard deviation estimator 
examples, 905-6 

Standard deviation of means estimator, 912-1 
Standard deviation test 

one, 650-1 
two, 655-1 

Starting PASS, 1-2, 2-1 
Stratified designs 

two proportions, 225-1 
Student’s t distribution 

probablility calculator, 915-6 
Studentized range distribution 

probablility calculator, 915-6 
Student's T distribution 

simulation, 920-10 
Superiority 

one proportion, 103-1 
paired t-test, 413-1 
two proportions, 210-1 

Superiority hypothesis, 6-8 
Survival 

logrank, 700-1, 715-1 
logrank - Lachin and Foulkes, 705-1 
non-inferiority, 706-1 

Survival - group sequential 
examples, 710-11, 711-27 
validation, 710-18, 711-40 

Survival - logrank 
examples, 700-6 
validation, 700-9 

Survival - logrank - Lachin and Foulkes 
examples, 705-8 
validation, 705-12 

Survival Parameter Conversion Tool, 903-1 
Symbols 

scatter plot, 940-6, 940-10 
Syntax 

macros, 930-2 
System requirements, 1-1 

T 
T distribution 

simulation, 920-10 
T test 

two proportions - equivalence, 215-7 
two proportions - non-inferiority, 210-8 

T2 
Hotelling’s, 600-1 

Tabs 
data, 4-6 
iterations, 4-7 
plot setup, 4-9 
reports, 4-8 

Tabs on the procedure window, 4-6 
Taguchi designs, 887-1 

examples, 887-4 
Tarone-Ware test 

Group Sequential, 711-5 
Technical support, 1-9 
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Templates, 4-1 
automatic, 4-2 
creating a new, 4-3 
default, 4-2 
loading, 4-3 
loading examples, 4-3 
opening, 4-3 
opening examples, 4-3 
saving, 4-3 

Test statistics, 6-6 
Text 

histogram, 945-10 
scatter plot, 940-10 

Three-stage design 
one proportion, 130-1 

Three-stage phase II trials 
examples, 130-8 
validation, 130-8 

Ticks 
histogram, 945-5 
scatter plot, 940-3, 940-10 

Time averaged difference 
binary data, 201-1 
normal data, 431-1 
power for, 201-2, 431-2 
two means, 431-1 
two proportions, 201-1 

Titles 
histogram, 945-8 
scatter plot, 940-7 

Toolbar 
output window, 5-8 
PASS home window, 3-3 
procedure window, 4-5 

Tools menu 
procedure window, 4-4 

Trend in proportions, 255-1 
Trend lines 

scatter plot, 940-10 
Trimmed t-test (two means) 

simulation, 440-4 
Trimmed t-test (two means) - equivalence 

simulation, 465-4 
T-test 

cross-over, 500-3 
microarray data, 610-1, 615-1 
one group - multiple testing adjustment, 610-4 
one mean, 400-1 
one mean - simulation, 410-1 
paired, 400-1, 485-1 
paired - equivalence - simulation, 495-1 
paired - simulation, 490-1 
two groups - multiple testing adjustment, 615-2 
two means, 430-1 
two means - equivalence, 460-1 
two means - non-inferiority, 450-1 
two means - non-zero null, 448-1 
two means - simulation, 440-1 
two proportions, 200-8, 223-6 

T-test - equivalence 
cross-over, 520-3 

T-test - simulation 
two means - equivalence, 465-1 

T-test (one mean) 
assumptions, 400-3 
examples, 400-8 
non-inferiority, 415-1 
non-zero null, 413-1 
superiority, 413-1 
validation, 400-17 

T-test (one mean) - non- zero null 
examples, 413-8 
validation, 413-10 

T-test (one mean) - non-inferiority 
examples, 415-8 
validation, 415-11 

T-test (one mean) - simulation 
examples, 410-10 
validation, 410-16 

T-test (paired means) - equivalence - simulation 
examples, 495-11 
validation, 495-17 

T-test (paired means) - simulation 
examples, 490-11 
validation, 490-16 

T-test (paired) 
examples, 400-13, 485-8 
validation, 485-10 

T-test (two means) 
assumptions, 430-3 
examples, 430-10 
validation, 430-18 

T-test (two means) - simulation 
examples, 440-12 
validation, 440-16 

Tukey-Kramer 
simulation, 580-1 

Tukey-Kramer test 
multiple comparisons, 575-7 
simulation, 580-3 

Tukey's lambda distribution 
simulation, 920-10 

Two correlated proportions - equivalence 
examples, 165-11 
validation, 165-14 

Two correlated proportions - non-inferiority 
examples, 160-10 
validation, 160-13 

Two means 
cluster randomized design, 480-1 
cross-over, 500-1 

Two means - cluster randomized design 
examples, 480-4 
validation, 480-6 

Two means - equivalence 
cross-over, 520-1 
examples, 460-5 
validation, 460-7 

Two means - equivalence - higher-order 
cross-over, 540-1, 545-1 
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Two means - equivalence - simulation 
examples, 465-12 
validation, 465-19 

Two means - group sequential 
examples, 475-10, 476-17, 477-15 
validation, 475-17, 476-28, 477-26 

Two means – non- inferiority – group sequential 
examples, 478-17 
validation, 478-28 

Two means - non- zero null 
cross-over, 508-1 
examples, 448-10 
validation, 448-13 

Two means - non- zero null - higher-order 
cross-over, 528-1 

Two means - non-inferiority 
cross-over, 510-1 
examples, 450-10 
validation, 450-13 

Two means - non-inferiority - higher-order 
cross-over, 530-1 

Two means - ratio 
cross-over, 505-1 
examples, 445-6 
validation, 445-8 

Two means - ratio - equivalence 
cross-over, 525-1 
examples, 470-7 
validation, 470-9 

Two means - ratio - non- zero null - higher-order 
cross-over, 533-1 

Two means - ratio - non-inferiority 
cross-over, 515-1 

Two means - ratio - non-inferiority - higher-order 
cross-over, 535-1 

Two means - ratio - non-unity null 
cross-over, 513-1 

Two means (ratio) - non- zero null 
examples, 453-6 
validation, 453-8 

Two means (ratio) - non-inferiority 
examples, 455-6 
validation, 455-8 

Two ordered categorical variables, 253-1 
examples, 253-5 
validation, 253-10 

Two proportions 
cluster randomized - equivalence, 240-1 
cluster randomized - non-inferiority, 235-1 
cluster randomized - non-zero null, 233-1 
cluster randomized design, 230-1 
equivalence, 215-1 
inequality, 200-1 
inequality - offset, 205-1 
matched case-control, 155-1 
McNemar test, 150-1 
non-inferiority & superiority, 210-1 

Two proportions - cluster - equivalence 
examples, 240-8 
validation, 240-12 

Two proportions - cluster - non-inferiority 
examples, 235-7 
validation, 235-11 

Two proportions - cluster - non-zero null 
examples, 233-7 
validation, 233-11 

Two proportions - cluster randomized design 
examples, 230-9 
validation, 230-17 

Two proportions - equivalence 
examples, 215-17 
validation, 215-23 

Two proportions - group sequential 
examples, 220-9, 221-18 
validation, 220-17, 221-29 

Two proportions - inequality 
examples, 200-14 
validation, 200-19 

Two proportions – non- inferiority – group sequential 
examples, 223-22 
validation, 223-33 

Two proportions - non-inferiority 
examples, 210-17 
validation, 210-24 

Two proportions – non-zero null – group sequential 
examples, 222-22 
validation, 222-33 

Two proportions - offset 
examples, 205-18 
validation, 205-24 

Two proportions - stratified design 
examples, 225-8 
validation, 225-11 

Two-channel arrays, 610-1 
Two-level designs, 881-1 

examples, 881-6 
Two-level factorial designs, 881-1 
Two-sample t-test, 430-1 

equivalence, 460-1 
microarray data, 615-1 
non-inferiority, 450-1 
non-zero null, 448-1 

Two-sample t-test - simulation 
equivalence, 465-1 

Two-stage design 
one proportion, 125-1 

Two-stage phase II trials 
examples, 125-8 
validation, 125-10 

Type-I error, 6-2 
Type-II error, 6-2 

U 
Uniform distribution 

simulation, 920-11 
Updates, 1-2 
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V 
Validation 

ANCOVA, 551-14 
Chi-square test, 250-9 
Cochran-Armitage test, 255-19 
control charts - means, 290-14 
control charts - variability, 295-11 
correlation (one) - confidence interval, 801-7 
Cox regression, 850-6 
cross-over - higher-order - equivalence, 540-12 
cross-over - higher-order - non- zero null, 528-11 
cross-over - higher-order - non-inferiority, 530-11 
cross-over - ratio - equivalence, 525-9 
cross-over - ratio - higher-order - equivalence, 545-

12 
cross-over - ratio - higher-order - non- zero null, 

533-12 
cross-over - ratio - higher-order - non-inferiority, 

535-12 
cross-over - ratio - non-inferiority, 515-8 
cross-over (two means), 500-10 
cross-over (two means) - equivalence, 520-10 
cross-over (two means) - non- unity null, 513-8 
cross-over (two means) - non- zero null, 508-10 
cross-over (two means) - non-inferiority, 510-10 
cross-over (two means) - ratio, 505-8 
equivalence - two correlated proportions, 165-14 
exponential mean (one), 405-10 
exponential means (two), 435-7 
fixed effects ANOVA, 560-19 
Hotelling’s T2, 600-11 
intraclass correlation, 810-6 
kappa, 811-11 
linear regression, 855-7 
logistic regression, 860-14 
logrank tests - non-inferiority, 706-11 
logrank tests (Lakatos), 715-21 
MANOVA, 605-17 
many proportions - trend, 255-19 
matched case-control - proportions, 155-10 
McNemar test - two correlated proportions, 150-9 
mean ratio - non- zero null, 453-8 
mean ratio - non-inferiority, 455-8 
microarray one-sample or paired t-test, 610-19 
microarray two-sample t-test, 615-19 
minimum effective dos, 595-7 
mixed models, 571-42 
multiple comparisons, 575-19 
multiple comparisons - simulation, 580-22 
multiple comparisons - vs control - simulation, 

585-21 
multiple contrasts - simulation, 590-24 
multiple regression, 865-10 
non-inferiority - two correlated proportions, 160-

13 
normality - simulation, 670-11 
one coefficient alpha, 815-7 
one correlation, 800-7 
one mean - confidence interval, 420-7 

one mean - tolerance - confidence interval, 421-8 
one proportion, 100-20 
one proportion - confidence interval, 115-9 
one proportion - equivalence, 110-17 
one proportion - non-inferiority, 105-16 
one proportion - non-zero null, 103-14 
one sensitivity, 270-11 
one specificity, 270-11 
one standard deviation - confidence interval, 640-7 
one standard deviation - relative error - confidence 

interval, 642-6 
one standard deviation - tolerance - confidence 

interval, 641-8 
one variance - confidence interval, 651-6 
one variance - relative error - confidence interval, 

653-6 
one variance - tolerance - confidence interval, 652-

8 
one-way ANOVA, 550-19 
one-way ANOVA - simulation, 555-16 
paired means - confidence interval, 496-6 
paired means - tolerance - confidence interval, 

497-8 
paired sensitivities, 276-11 
Poisson mean (one), 412-9 
Poisson means (two), 437-10 
Poisson regression, 870-9 
post-marketing surveillance, 135-8 
randomized block ANOVA, 565-11 
ratio of two means, 445-8 
ratio of two means - equivalence, 470-9 
regression - confidence interval, 856-10 
repeated measures - two means, 431-19 
repeated measures - two proportions, 201-24 
repeated measures ANOVA, 570-49 
ROC curve (one), 260-12 
ROC curves (two), 265-13 
single-stage phase II trials, 120-3 
survival - group sequential, 710-18, 711-40 
survival - logrank, 700-9 
survival - logrank - Lachin and Foulkes, 705-12 
three-stage phase II trials, 130-8 
t-test (one mean), 400-17 
t-test (one mean) - non- zero null, 413-10 
t-test (one mean) - non-inferiority, 415-11 
t-test (one mean) - simulation, 410-16 
t-test (paired means) - equivalence - simulation, 

495-17 
t-test (paired means) - simulation, 490-16 
t-test (paired), 485-10 
t-test (two means), 430-18 
t-test (two means) - simulation, 440-16 
two coefficient alphas, 820-10 
two correlated proportions - equivalence, 165-14 
two correlated proportions - non-inferiority, 160-

13 
two correlations, 805-8 
two means - cluster randomized, 480-6 
two means - confidence interval, 471-7 
two means - equivalence, 460-7 
two means - equivalence - simulation, 465-19 
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two means - group sequential, 475-17, 476-28, 
477-26 

two means - non- zero null, 448-13 
two means - non-inferiority, 450-13 
two means – non-inferiority – group sequential, 

478-28 
two means - ratio, 445-8 
two means - ratio - equivalence, 470-9 
two means - tolerance - confidence interval, 472-8 
two ordered categorical variables, 253-10 
two proportions - cluster - equivalence, 240-12 
two proportions - cluster - non-inferiority, 235-11 
two proportions - cluster - non-zero null, 233-11 
two proportions - cluster randomized, 230-17 
two proportions - confidence interval, 216-28 
two proportions - equivalence, 215-23 
two proportions - group sequential, 220-17, 221-29 
two proportions - inequality, 200-19 
two proportions – non- inferiority – group 

sequential, 223-33 
two proportions - non-inferiority, 210-24 
two proportions – non-zero null – group sequential, 

222-33 
two proportions - offset, 205-24 
two proportions - stratified design, 225-11 
two sensitivities, 275-13 
two-stage phase II trials, 125-10 
variance (one), 650-7 
variance ratio - confidence interval, 656-8 
variance ratio - relative error - confidence interval, 

657-6 
variances (two), 655-8 
Williams’ test, 595-7 

Variance (one) 
confidence interval, 651-1 
examples, 650-4 
validation, 650-7 

Variance (one) - confidence interval 
examples, 651-4 
validation, 651-6 

Variance (one) - relative error 
confidence interval, 653-1 

Variance (one) - relative error - confidence interval 
examples, 653-4 
validation, 653-6 

Variance (one) - tolerance - confidence interval 
examples, 652-6 
validation, 652-8 

Variance (one) - tolerance probability 
confidence interval, 652-1 

Variance ratio 
confidence interval, 656-1 

Variance ratio - confidence interval 
examples, 656-5 
validation, 656-8 

Variance ratio - relative error 
confidence interval, 657-1 

Variance ratio - relative error - confidence interval 
examples, 657-4 
validation, 657-6 

Variance test 

one, 650-1 
two, 655-1 

Variances (two) 
examples, 655-4 
validation, 655-8 

View menu 
output window, 5-4 
procedure window, 4-4 

Viewing output, 2-5 

W 
Walter’s confidence intervals 

two proportions, 216-11 
Wei’s urn randomization, 880-4 
Weibull distribution 

probablility calculator, 915-6 
simulation, 920-12 

Welch test 
multiple contrasts - simulation, 590-4 

Welch's test - simulation 
equivalence, 465-1 

Welch's t-test 
non- zero null, 448-4 
non-inferiority, 450-4 
simulation, 440-3 

Wilcoxon test, 400-1, 400-7, 413-7, 415-7, 448-9, 
450-9, 485-7 
assumptions, 400-3, 485-3 
non- zero null, 413-1 
non-inferiority, 415-1 
simulation, 410-3 
superiority, 413-1 

Wilcoxon test - paired means 
simulation, 490-4 

Wilcoxon test - paired means - equivalence 
simulation, 495-4 

Wilks’ Lambda, 605-1 
MANOVA, 605-2 
repeated measures ANOVA, 570-1, 570-6 

Williams test 
examples, 595-4 
validation, 595-7 

Williams’ test, 595-1 
Wilson score limits 

one proportion, 115-2 
Wilson’s score confidence interval 

two proportions, 216-7 
Window menu 

output window, 5-7 
procedure window, 4-4 

Winsorized test (two means) - equivalence 
simulation, 465-4 

Within standard deviation 
repeated measures ANOVA, 570-15 

Within-subjects design 
repeated measures ANOVA, 570-3 
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Z 
Z test 

one proportion, 100-4 

one proportion - equivalence, 110-6 
two proportions - equivalence, 215-5 
two proportions - non-inferiority, 210-6 
two proportions - offset, 205-6 
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