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About This Manual 
Congratulations on your purchase of the PASS package! PASS offers: 

• Easy parameter entry. 

• A comprehensive list of power analysis routines that are accurate and verified, yet are 
quick and easy to learn and use. 

• Straightforward procedures for creating paper printouts and file copies of both the 
numerical and graphical reports. 

Our goal is that with the help of these user's guides, you will be up and running on PASS quickly. 
After reading the quick start manual (at the front of User's Guide I) you will only need to refer to 
the chapters corresponding to the procedures you want to use. The discussion of each procedure 
includes one or more tutorials that will take you step-by-step through the tasks necessary to run 
the procedure. 

I believe you will find that these user’s guides provides a quick, easy, efficient, and effective way 
for first-time PASS users to get up and running.  

I look forward to any suggestions you have to improve the usefulness of this manual and/or the 
PASS system. Meanwhile, good computing! 

 

 Jerry Hintze, Author 



   

PASS License Agreement 
Important: The enclosed Power Analysis and Sample Size software program (PASS) is licensed by NCSS to customers for 
their use only on the terms set forth below. Your purchase and use of the PASS system indicates your acceptance of these 
terms. 
 
1. LICENSE. NCSS hereby agrees to grant you a non-exclusive license to use the accompanying PASS program 
subject to the terms and restrictions set forth in this License Agreement. 
 
2. COPYRIGHT. PASS and its documentation are copyrighted. You may not copy or otherwise reproduce any part of 
PASS or its documentation, except that you may load PASS into a computer as an essential step in executing it on the 
computer and make backup copies for your use on the same computer. 
 
3. BACKUP POLICY. PASS may be backed up by you for your use on the same machine for which PASS was 
purchased. 
 
4. RESTRICTIONS ON USE AND TRANSFER. The original and any backup copies of PASS and its 
documentation are to be used only in connection with a single user.  This user may load PASS onto several machines for 
his/her convenience (such as a desktop and laptop computer), but only for use by the licensee. You may physically transfer 
PASS from one computer to another, provided that PASS is used in connection with only one user. You may not distribute 
copies of PASS or its documentation to others. You may transfer this license together with the original and all backup 
copies of PASS and its documentation, provided that the transferee agrees to be bound by the terms of this License 
Agreement. PASS licenses may not be transferred more frequently than once in twelve months. Neither PASS nor its 
documentation may be modified or translated without written permission from NCSS. 
 You may not use, copy, modify, or transfer PASS, or any copy, modification, or merged portion, in whole or in part, 
except as expressly provided for in this license. 
 
5. NO WARRANTY OF PERFORMANCE. NCSS does not and cannot warrant the performance or results that may 
be obtained by using PASS. Accordingly, PASS and its documentation are licensed "as is" without warranty as to their 
performance, merchantability, or fitness for any particular purpose. The entire risk as to the results and performance of 
PASS is assumed by you. Should PASS prove defective, you (and not NCSS nor its dealer) assume the entire cost of all 
necessary servicing, repair, or correction. 
 
6.  LIMITED WARRANTY ON CD. To the original licensee only, NCSS warrants the medium on which PASS is 
recorded to be free from defects in materials and faulty workmanship under normal use and service for a period of ninety 
days from the date PASS is delivered. If, during this ninety-day period, a defect in a CD should occur, the CD may be 
returned to NCSS at its address, or to the dealer from which PASS was purchased, and NCSS will replace the CD without 
charge to you, provided that you have sent a copy of your receipt for PASS. Your sole and exclusive remedy in the event 
of a defect is expressly limited to the replacement of the CD as provided above. 
 Any implied warranties of merchantability and fitness for a particular purpose are limited in duration to a period of 
ninety (90) days from the date of delivery. If the failure of a CD has resulted from accident, abuse, or misapplication of the 
CD, NCSS shall have no responsibility to replace the CD under the terms of this limited warranty. This limited warranty 
gives you specific legal rights, and you may also have other rights which vary from state to state. 
 
7. LIMITATION OF LIABILITY.  Neither NCSS nor anyone else who has been involved in the creation, production, 
or delivery of PASS shall be liable for any direct, incidental, or consequential damages, such as, but not limited to, loss of 
anticipated profits or benefits, resulting from the use of PASS or arising out of any breach of any warranty. Some states do 
not allow the exclusion or limitation of direct, incidental, or consequential damages, so the above limitation may not apply 
to you. 
 
8. TERM. The license is effective until terminated. You may terminate it at any time by destroying PASS and 
documentation together with all copies, modifications, and merged portions in any form. It will also terminate if you fail to 
comply with any term or condition of this License Agreement. You agree upon such termination to destroy PASS and 
documentation together with all copies, modifications, and merged portions in any form. 
 
9. YOUR USE OF PASS ACKNOWLEDGES that you have read this customer license agreement and agree to its 
terms. You further agree that the license agreement is the complete and exclusive statement of the agreement between us 
and supersedes any proposal or prior agreement, oral or written, and any other communications between us relating to the 
subject matter of this agreement. 
 
Dr. Jerry L. Hintze & NCSS, Kaysville, Utah 



Preface 
PASS (Power Analysis and Sample Size) is an advanced, easy-to-use statistical analysis software 
package. The system was designed and written by Dr. Jerry L. Hintze over the last Seventeen 
years. Dr. Hintze drew upon his experience both in teaching statistics at the university level and 
in various types of statistical consulting. 

The present version, written for 32-bit versions of Microsoft Windows (Vista, XP, NT, ME, 2000, 
98, etc.) computer systems, is the result of several iterations. Experience over the years with 
several different types of users has helped the program evolve into its present form. 

NCSS maintains a website at www.ncss.com where we make the latest edition of PASS available 
for free downloading. The software is password protected, so only users with valid serial numbers 
may use this downloaded edition. We hope that you will download the latest edition routinely and 
thus avoid any bugs that have been corrected since you purchased your copy. 

We believe PASS to be an accurate, exciting, easy-to-use program. If you find any portion which 
you feel needs to be changed, please let us know. Also, we openly welcome suggestions for 
additions and enhancements. 

Verification 
All calculations used in this program have been extensively tested and verified. First, they have 
been verified against the original journal article or textbook that contained the formulas. Second, 
they have been verified against second and third sources when these exist. 

 

http://www.ncss.com/
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Chapter 1 

Installation 
Before You Install 

1. Check System Requirements 
PASS runs on 32-bit Windows systems. These include Windows Vista, Windows XP, Windows 
2000, Windows NT 4.0, Windows ME, and Windows 98. The recommended minimum system is 
a Pentium PC with at least 64 MB of memory.  

PASS takes up about 80 MB of disk space. Once installed, PASS also requires about 20 MB of 
temporary disk space while it is running.  

2. Find a Home for PASS 
Before you start installing, decide on a folder where you want to install PASS. By default, the 
setup program will install PASS application files in C:\Program Files\NCSS\PASS 2008. You 
may change this during the installation, but not after. The example data, template, and macro files 
will be placed in your personal documents folder (usually C:\…\[My] Documents\NCSS\PASS 
2008) in appropriate subdirectories. The program will save all procedure templates and macros to 
these folders while the program is running. 

What Install Does 
The installation procedure creates the necessary folders and copies the PASS program from the 
installation file, called PASS2008SETUP.EXE, to those folders. The files in 
PASS2008SETUP.EXE are compressed, so the installation program decompresses these files as it 
copies them to your hard disk.  

The following folders are created during installation (assuming defaults are chosen during 
installation): 

Folder Contents 

C:\Program Files\NCSS\PASS 2008 Contains most of the program files 
including the PASS executable file, 
PASS2008.exe, and the PASS Help 
System file, PASS Help.exe. 

C:\Program Files\NCSS\PASS 2008\Icons Contains some program icons. 

C:\Program Files\NCSS\PASS 2008\Pdf Contains printable copies of the 
documentation in PDF format. 

C:\Program Files\NCSS\PASS 2008\Sts Contains all labels, text, and online 
messages. 
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C:\…\[My] Documents\NCSS\PASS 2008\Data Contains the database files used by 
some of the tutorials. An empty 
subfolder called “My Data” is created 
within this folder for easy storage of 
your personal data files. You can save 
the data to any folder you wish. 

C:\…\[My] Documents\NCSS\PASS 2008\Junk Contains temporary files used by the 
program while it is running. Under 
normal operation, PASS will 
automatically delete temporary files. 
After closing PASS, you can delete any 
files left in this folder (but do not delete 
the folder itself). 

C:\…\[My] Documents\NCSS\PASS 2008\Macros Contains saved macros. 

C:\…\[My] Documents\NCSS\PASS 2008\Report The default folder in which to save your 
output. You can save the reports to any 
folder you wish. 

C:\…\[My] Documents\NCSS\PASS 2008\Settings Contains the files used to store your 
procedure templates. These files are 
used by the PASS template system, 
which is described in a later chapter. 

Installing PASS 
This section gives instructions for installing PASS on your computer system. You must use the 
PASS setup program to install PASS. The files are compressed, so you cannot simply copy the files 
to your hard drive. 

Follow these basic steps to install PASS on your computer system: 

1. Make sure that you are using a 32-bit or 64-bit version of Windows such as Windows 
Vista, Windows XP, Windows 2000, Windows NT 4.0, Windows ME, and Windows 98. 

2. If you are installing from a CD, insert the CD in the CD drive. The installation program 
should start automatically. If it does not, on the Start menu, select the Run command. 
Enter D:\NCSS\PASS2008Setup. You may have to substitute the appropriate letter for 
your CD drive if it is not D. If you are installing from a download, simply run the 
downloaded file (PASS2008SETUP.exe). 

3. Once the setup starts, follow the instructions on the screen. PASS will be installed to the 
drive and folder you designate. 

If Something Goes Wrong during Installation 
The installation procedure is automatic. If something goes wrong during installation, delete the 
C:\Program Files\NCSS\PASS 2008 directory and start the installation process at the beginning. 
If trouble persists, contact our technical support staff as indicated below. 
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Starting PASS 
PASS may be started using your keyboard or your mouse using the same techniques that you use 
to start any other Windows application. You can start PASS by selecting PASS 2008 from your 
Start menu using standard mouse or keyboard operations.  

The first time you run PASS, enter your serial number in the pop-up window that appears when 
the program begins. After entering a serial number, the PASS Home window will appear. 

 

 
 



1-4  Quick Start – Installation  

Entering Your Serial Number 
The first time you run PASS, enter your serial number in the pop-up window that appears. If you 
do not enter a serial number, PASS will enter trial mode and you will have 7 days to evaluate 
PASS. When in trial mode, PASS is fully-functional but the spreadsheet is limited to 100 rows of 
data.  

 

  

Enter your PASS serial 
number here. 

 

When you click OK, the PASS Home window will appear.  



   Quick Start – Installation  1-5 

Obtaining Help 

The PASS Help System 
To help you learn and use PASS efficiently, the material in this manual is included in the PASS 
Help System. The Help System is started from the Help menu or by clicking on the yellow “?” 
icon on the right side of the toolbar. PASS updates, available for download at www.ncss.com, 
may contain adjustments or improvements of the PASS Help System. Adobe Acrobat or Adobe 
Reader version 7 or 8 is required to view the help system. You can download Adobe Reader 8 for 
free by going to www.adobe.com. Adobe Reader 8 can also be installed from the Utilities folder 
on your PASS installation CD. 

 

 

http://www.ncss.com/
http://www.adobe.com/
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Navigating the Help System 
There are a few key features of our help system that will let you use the help system more 
efficiently. We will now explain each of these features.  

Index Window 
The Index Window can be launched at any time by clicking on the Index button on the PASS 
Help System display window. The index allows you to quickly locate keywords and/or statistical 
topics. You can narrow the list of index entries displayed by selecting a specific topic category in 
the uppermost dropdown box.  

 

 
 

Index entries are displayed in the format  

Index Entry --- CHAPTER    or     CHAPTER --- Index Entry. 

You can control which entries are displayed by clicking on the radio buttons at the bottom of the 
window. 
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Contents Window 
Clicking on the Contents button opens the Contents (Bookmarks) Window of the viewer. From 
this window you can expand the table of contents to view nested headings. You can click on the 
“Expand Current Bookmark” icon to instantly find the bookmark location for the currently-
displayed page in the help document.  
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Search Window 
Clicking on the Search button opens the Search Window of the viewer. From this window you 
can search the entire help system for any word or phrase. A search can also be initiated from the 
Find box in the viewer toolbar.  
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Printing the Documentation 
To print pages from the documentation, click on the Print button on the PASS Help System 
toolbar. This will launch the Adobe Reader print dialogue screen. You can choose to print a 
single page or a range of pages from the help file. When entering page numbers, remember to use 
the PDF file page numbers (e.g., 510-514) and not the page numbers found in the document pages 
(e.g., 400-4 to 400-8 is not a valid page range). The Adobe Reader page numbers can be seen in 
the viewer window.  

 
 

If you are using Adobe Reader 7, then the page numbers are found at the bottom of the viewer 
window. 

One of the benefits of the PASS Help System is the ease with which you can print any chapter or 
topic from the electronic help manual. To print a single chapter or topic using your default PDF 
viewer, take the following steps: 

1. Click on the Chapter PDF icon in the PASS Help System toolbar.  

 
 

2. Choose the chapter you would like to print from the list and click Load Chapter PDF. 
This will launch the individual chapter PDF in a separate window using your default PDF 
viewer (e.g., Adobe Reader). 
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3. Use the Print function of your PDF viewer to print the entire chapter or individual pages 
from the chapter. 

 

If you have Adobe Reader 8 or later, you can print entire chapters using an alternative method as 
follows (This will not work with Adobe Reader 7): 

1. Open the Contents (Bookmarks) Window by clicking on the Contents button at the top 
of the PASS Help System display window. 

 
 

2. Expand the bookmarks to display the chapter or topic name you wish to print (e.g., the 
Two-Sample T-Test Chapter). Then, highlight the chapter name, right-click on the 
highlighted selection (or select Options in the panel above), and select Print Page(s). 
This will automatically print only the pages from the selected chapter. 

CAUTION: When you click Print Page(s), the command is sent to the printer 
automatically without any intermediate Print Setup window being displayed. Make sure 
that you have selected only the topic you want before clicking Print Page(s). 

 
 

If you do not want to print the entire chapter, continue to expand the bookmark tree to the 
topic you wish to print before completing step 2. The Print Page(s) command prints all 
pages containing bookmarks that are nested within the highlighted bookmark.  
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Technical Support 
If you have a question about PASS, you should first look to the printed documentation and the 
included Help system. If you cannot find the answer there, look for help on the web at 
www.ncss.com/support.html. If you are unable to find the answer to your question by these 
means, contact NCSS technical support for assistance by calling (801) 546-0445 between 8 a.m. 
and 5 p.m. (MST). You can contact us by email at support@ncss.com or by fax at (801) 546-
3907. Our technical support staff will help you with your question. 

If you encounter problems or errors while using PASS, please view our list of recent corrections 
before calling by going to www.ncss.com/release_notes.html to find out if you problem or error 
has been corrected by an update. You can download updates anytime by going to 
http://www.ncss.com/download.html. If updating your software does not correct the problem, 
contact us by phone or email. 

To help us answer your questions more accurately, we may need to know about your computer 
system. Please have pertinent information about your computer and operating system available.  

http://www.ncss.com/support.html
mailto:support@ncss.com
http://www.ncss.com/release_notes.html
http://www.ncss.com/download.html#Updates
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Chapter 2 

Running PASS 
About This Chapter 
This chapter will show you how to start up and run a power analysis of the two-sample t test. It 
will give you a brief introduction to the windows used in PASS: the PASS Home window, the 
procedure window, and the output window.  

Starting PASS 
To start PASS, select PASS 2008 from the Windows Start menu or double-click the PASS icon. 
If you are licensed for PASS, the following PASS Home window will appear.  
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This window gives you access to all of the PASS procedures. Clicking on the plus sign or double-
clicking on a phrase will expand the list so that you can see the procedures in that group. To load 
a specific procedure window, double-click on it or highlight it and click the Load button. 

Loading a Procedure 
The Two-Sample T-test is a procedure to test the inequality of two means from independent 
samples. Take the following steps to load this procedure.  Expand the Means topic by double-
clicking on the word Means. Drilling down, double-click on Two Means, and then on 
Independent, then Inequality Tests. The first topic in the list is Specify using Differences 
(Two-Sample T-Test/Mann-Whitney). This is the Two-Sample T-test. Double-click it.  

 

 
 

The PASS: Inequality Tests for Two Means (Two-Sample T-Test) [Differences] procedure 
window will appear. Procedure windows let you specify parameters, load and save templates, and 
run the analyses. 
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Entering Parameters and Running the Procedure 
We will run a power analysis using the default values except that the value of Mean2 will be 2 
and the value of S1 will be 3.  

 

 

1.  Click the Reset 
button to set all 
options to their 
default values. 

 
2.  Click the Guide Me 

button to have 
PASS prompt you 
for the necessary 
options. 

 

 

 

3.  Click the Next 
button until you get 
to the Mean2 
option. 

 
4.  Enter 2. 
 
5. Click the Next 

button until you get 
to the S1 option. 

 
6. Enter 3. 
 
7. Click the Next 

button until he Next 
button changes 
into the Run 
button. 
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The completed window will appear as follows. 

 

 

Viewing the Output 
The Output window displays the output of the power analysis. It serves as a mini word 
processor—allowing you to view, edit, save, and print your output. You may want to scroll down 
to view the graph at the end of the report.  

 

When you are finished, you can quit PASS by selecting Exit PASS from the File menu. 

 

 

8.  Click the Run 
button to perform 
the power analysis 
and display the 
report. 
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Chapter 3 

The PASS Home 
Window 
Introduction 
The PASS Home window lets you quickly and easily find the appropriate procedure to be loaded. 
Using an outline format, it lists every procedure in PASS along with a brief statement that 
describes what the procedure is for and when it might be used.  

The PASS Home window also lets you configure the eight quick-access buttons that appear on 
the toolbars of the Map, Procedure, and Output windows. These buttons give you immediate 
access to your favorite procedures. Right click on any procedure button to change it.  
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Using the PASS Home Window 
The PASS Home window was designed to be easy to use. The window has a set of menus, a 
toolbar, and a large display area. On the left side of the display area is an outline list of all the 
procedures in PASS. On the right side of the display area is the immediate help area that displays 
a brief statement explaining the currently selected item to the left. 

Menus 
The menus provide a convenient way to transfer from module to module within the PASS system. 
Each set of menus will be briefly described here. 

Collapse Outline 
This option collapses the outline so that only the main headings are displayed.  

Expand to First Level 
This option expands the outline so that the main headings and first-level subheadings are 
displayed. 

Expand All 
This option completely expands the outline so that all entries are displayed. 

Bold Text 
This option toggles the bolding of the text. 

Goto Selected Procedure 
This option loads the window of the procedure selected in the outline. 

Options 
This brings up a window allowing you to personalize your PASS installation and set various 
options affecting reports, constants, plots, and views. 

Exit PASS 
This option closes the PASS Home window and exits PASS. 

Procedure Menus 
The procedure menus allow you to quickly find and load PASS power analysis procedures.  

Tools Menu 
The tools menu contains links to various PASS utilities.  
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Window Menu 
This menu allows you to open other windows in the PASS system such as the Spreadsheet, the 
Map (Quick Launch), or the Output window.  

Help Menu 
This menu allows you to view the PASS Help System, modify your serial numbers, get 
information about the program and load various portions of the printable PDF documentation.  

Toolbar 
The toolbar gives you one-click access to several of the menu items. The menu item assigned to 
each button on the toolbar is displayed when the mouse is held over the button for a few seconds.  

 

 
 

The action caused by each of these icons is discussed next. 

 Load Procedure. This button causes the window of the currently selected procedure 
to be displayed. You can accomplish the same action by double-clicking on the 
procedure name. 

 

Map. This button causes the PASS Map (Quick Launch) window to be displayed. 
This window allows you to quickly select any procedure using icon buttons. This 
window can also be used to change the procedure quick-access buttons in the toolbar. 
 

  Output. This button causes the output window to be displayed. 
 

 

 Macro. This button can be used to interface with the macro system. Left-click on this 
button to run the active macro. Hold your mouse over the button to display the active 
macro name. Right-click on this button to load the Macro Command Center window. 

 

Quick-Access. These buttons show up on all 
toolbars throughout the PASS system. Clicking on 
them with the left mouse button will display the 
corresponding procedure. Clicking on any of these 
buttons with the right mouse button allows you to 
change the procedure assigned to each button. 
 

 Help. This button loads the PASS Help System at the appropriate topic. 
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 Printable PDF. This button loads the appropriate printable PDF chapter. 

 

Pricing. This button loads pricing information and product brochures in PDF format. 

 

Customizing the Toolbars 
The eight quick-access procedure buttons that show up on all toolbars throughout the program 
may be changed using the PASS Home Window, the Map (Quick Launch), any procedure 
window, or the output window. To change the procedures available in the toolbar, right-click on 
any quick-access button. The buttons can also be changed by dragging and dropping buttons from 
the Map to the toolbar.  

Outline 
The outline expands and contracts as you either click on a plus or minus sign, or double-click on 
a topic. This gives you quick, intuitive access to all of the procedures in PASS.  

 

 
 

In the example shown here, we clicked on Means, then on Two Means, then on Independent, 
then on Non-Inferiority & Superiority Tests, and finally on Specify using Ratios to highlight 
it. If we double-clicked on Specify using Ratios, the Non-Inferiority & Superiority Tests for Two 
Mans [Ratios] procedure would be displayed.  
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Chapter 4 

The Procedure 
Window 
Introduction 
All PASS procedures are controlled by a procedure window that contains all of the settings, 
options, and parameters that determine the input and output of the program. These options are 
separated into groups called panels or tabs. A particular panel is viewed by pressing the 
corresponding tab that appears near the top of the window. For example, in the window below, 
the Data panel is active. Other panels include Reports, Axes/Legend/Grid, and Plot Text.  
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The values of all options available for a procedure are referred to as a template. A template may 
be stored for future use in a template file. By creating and saving template files (often referred to 
as templates), you can tailor each procedure to your own specific needs. Each time you use a 
procedure, you simply load your template and run the analysis you have preset. You do not have 
to set all the options every time. The specific operations needed to do this are shown later. 

At most six procedure windows can be opened at a time. You can widen the window to increase 
the size of the immediate help window by dragging the corners of the window. 

Default Template 
Whenever you close a procedure, the current settings are automatically saved in a default 
template file named default. This template file is automatically loaded when the procedure is next 
opened. This allows you to continue using the template without resetting all of the options.  

Procedure Window Anatomy 
This section explains the various objects found on the procedure window.  
 

 

 
Menus. The 
menus let you 
move to other 
windows. 
 
Run. Clicking 
this button runs 
the program 
and generates 
output. 
 
Options. These 
fields set values 
that control the 
analysis. 
 

Tabs. The tabs let 
you view different 
groups of options.
 
Immediate Help. 
This box displays 
a brief help 
message about 
the field that the 
over-which the 
mouse is currently 
positioned. 
 
 

Template Id. This 
box can contain a 
phrase that 
identifies this 
template. 

Reset. This button 
resets all options 
under all tabs to 
their default 
values. 
 

Guide Me. This 
button instructs 
the program to 
step you through 
the main options 
that must be set 
for an analysis. 
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Menus 
The menus provide a convenient way to transfer from module to module within the PASS system. 
Each set of menus will be briefly described here.  

File Menu 
The File Menu is used for initializing, loading, and saving a copy of a template. Each set of 
options for a procedure, called a template, may be saved for future use. In this way, you do not 
have to set the options every time you use a procedure. Instead, you set the options the first time, 
save them as a template, and re-use the template whenever you re-use the procedure.  

New Template (Reset) 
This menu item resets all options to their default values. It performs the same function as the 
Reset buttons.  

Open Template Panel 
This option sets the Template panel as the active procedure panel. The Template panel lets you 
load or save template files. It displays all templates associated with this procedure along with the 
Template Id (the optional phrase at the bottom of the window).  
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Load Template (button) 
To load a template file, select it from the list of files given in the Template Files box. Once the 
desired file is selected, press the Load Template button to load the template. 

Save Template (button) 
To save a template, enter the name you want to give the template file in the File Name box. You 
may also enter an identifying phrase in the box at the bottom of the window since this will be 
displayed along side of the file names. Finally, press the Save Template button to save the file. 
The template files are stored in the folder specified under Template Directory (C:\...\[My] 
Documents\NCSS\PASS 2008\Settings).  

Note that there is no automatic connection between the template in memory and the copy on the 
disk. If you want to save the changes you have made to a template, you must use the Save 
Template option to save them. 

Delete Template (button) 
This button deletes the highlighted template file.  

Save Template 
This option saves the current option settings to the template file that is currently specified in the 
File Name option of the Template panel. You can be viewing any panel of the procedure when 
you issue this command—you do not have to be viewing the Template panel. 

The template files are stored in the folder specified under Template Directory (C:\...\[My] 
Documents\NCSS\PASS 2008\Settings). You can erase any unwanted template files by deleting 
them from this folder using the Windows Explorer program.  

The template files for each procedure have different file name extensions. Thus, you can use the 
same name for a template saved from the T-Test procedure as for a template saved from the 
Multiple Regression procedure. For example, if the Save Template command is issued in the 
window shown above, the current settings will be saved in a file called default.110 in the Settings 
folder.  

The Save button on the toolbar provides this same operation. It may be more convenient than 
selecting this menu item. 

Options 
This brings up a window allowing you to personalize your PASS installation and set various 
options affecting reports, constants, plots, and views.  

Close Procedure 
This option closes this procedure window. 

Exit PASS 
This option terminates the PASS system. Before using this option, you should save all 
spreadsheets, templates, and output documents that you want to keep.  
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Run Menu 
This menu controls the execution of the program.  

Run Procedure 
The Run Procedure option runs the analysis, displaying the output in the Output document of the 
word processor. After you have set all options to their appropriate values, select this option to 
perform the analysis. 

Note that the procedure may also be run by pressing the F9 function key or by pressing the left-
most key on the toolbar (the dark-blue-arrow button). 

Abort 
After starting a procedure, you may find that it is taking longer than you anticipated to finish. 
You can stop the running of the procedure by pressing this button. The red stop-sign icon that 
appears on the top right of the screen may be pressed for the same purpose.  

Procedure and Tools Menus 
These menus allow you to transfer to various PASS procedures and utilities.  

Window Menu 
This menu lets you display any of the other windows in the PASS system that are currently open 
such as the Output window, the Spreadsheet window, the PASS Home window, or any procedure 
windows.  

Output 
Select this option to display the output window. 

Spreadsheet 
Select this option to display the spreadsheet. 

PASS Home  
Select this option to display the PASS Home window. 

Map – Quick Launch 
Select this option to display the procedure Map. 

Reset Window Positions 
Occasionally, PASS windows will be loaded, but will not display. This menu item will load the 
Options window to a tab that will let you reset the position of all program windows. 
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Help Menu 
This menu gives you access to the PASS Help System and PDF documentation, including 
references and the Quick Start Manual.  

Toolbar 
The toolbar is a series of small buttons that appear just below the menus at the top of the 
procedure window. Each of these buttons provides quick access to a menu item.  

 

 
 

The action caused by each of these icons is discussed next. 
  

 Run. This button runs the current procedure with the current settingsand generates 
output. 

 

Reset (New Template). This button sets all parameters to their default values. 
 

 

Open. This button opens the template panel so you can load a saved template. 
 

 

Save. This button saves the current settings to a template file. 
 

Map. This button causes the PASS Map (Quick Launch) window to be displayed. 
This window allows you to quickly select any procedure using icon buttons. This 
window can also be used to change the procedure quick-access buttons in the toolbar. 
 

  PASS Home. This button causes the output window to be displayed. 

 

  Output. This button causes the output window to be displayed. 
 

 

 Macro. This button can be used to interface with the macro system. Left-click on this 
button to run the active macro. Hold your mouse over the button to display the active 
macro name. Right-click on this button to load the Macro Command Center window. 

 

Quick-Access. These buttons show up on all 
toolbars throughout the PASS system. Clicking on 
them with the left mouse button will display the 
corresponding procedure. Clicking on any of these 
buttons with the right mouse button allows you to 
change the procedure assigned to each button. 
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 Help. This button loads the PASS Help System at the appropriate topic. 
 

 Printable PDF. This button loads the appropriate printable PDF chapter. 
 

The Procedure Window Tabs 
The procedure window contains several sets of options on panels (or tabs). Each panel is 
displayed by clicking on the appropriate tab. We will now describe the purpose and operation of 
each tab.  

Data Tab 
The Data tab displays most of the options specific to the procedure. This is where you set the 
values of power, sample size, alpha, etc. These options are described in detail in the chapters 
corresponding to each procedure. Once you have set the options, click the Run button to generate 
the output. 
 

 

Entering Multiple Values 
In most cases, boxes that are extra wide allow you to enter multiple values. When this is done, a 
separate analysis is done for each combination of all multiple values. For example, if you enter 
four sample sizes and three alpha values, the resulting report will contain 3 × 4 = 12 rows, one for 
each combination.  
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You can enter multiple options using list or the to-by syntax. The to-by syntax is most easily 
described by an example. 

The to-by phrase 20 to 100 by 20 is translated to the values: 20,40,60,80,100.  

Find (Solve For) 
Specify the parameter that is to be solved for in terms of the other parameters. For example, you 
might want to solve for power or sample size. 

In most cases, the algorithm for the calculating the power is programmed within PASS. When 
other parameters (such as sample size or difference) are selected, a binary search is conducted 
using the power algorithm. These searches can be time consuming, so the best place to start is 
with Find (Solve For) set to Power and Beta. 

Reports Tab 
The Reports tab displays the options that control the output reports. 
 

 

Select Output – Numeric Reports 

Show Numeric Report 
Determines whether the numeric report is displayed in the output.  

Show References 
Check this box to cause the literature reference(s) to be displayed on the report.  
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Show Definitions 
Check this box to show the definitions at the end of the numeric report. Although these 
definitions are helpful at first, they tend to clutter the output and this option lets you skip them.  

Number of Summary Statements 
The program will output a text statement summarizing the results for each scenario. This option 
specifies the number of scenarios (rows) from the Numerical Report that will have a summary 
statement displayed. Select 0 to omit the summary statements. 

Select Output – Plots 

Show Plots 
Check this box to display plots in the output. 

Plot Options 

Show Power (not Beta) on Plots 
When checked, power is displayed on the plots. When unchecked, power quantities are displayed 
on the plots as beta using the relationship: Beta = 1 – Power. 

Interactive Format 
This option controls 
whether the plot may be 
reformatted interactively 
after it has been 
generated. When 
checked, this option 
allows charts to be 
formatted interactively 
using a plot-editing 
window.  

The four scroll bars 
around the edge of this 
window control the 
vertical axis, horizontal 
axis, depth, and 
perspective. The current 
values of these 
parameters are shown in 
the boxes at the bottom 
of the screen. 

Once you are finished 
editing chart, click the 
Ok button to proceed. 
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Each of the buttons along the 
top of the Scatter Plot Editing 
window will display a different 
tab of the Graph Control 
window. Each tab provides 
options which allow detailed 
modification of the chart. 

We will not document these 
options here since most of them 
are not necessary to the running 
of PASS. If you want to explore 
these options further, choose the 
Help button at the bottom of the 
window. This will bring up a 
special help system that 
describes all graphics options in 
detail. 

 

 

 

 

 

Decimal Places 

Decimals 
These options set the number of decimal places in corresponding values of the numeric and 
graphic output. 

Page Title 

Page Title 
This option allows you to enter an option title phrase that will appear in the heading of each page 
of the output. 
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Axes/Legend/Grid Tab 
The Axes/Legend/Grid tab presents the options that control the plot axes (including the 
parameters plotted), legend, and gridlines.  
 

 

Vertical and Horizontal Axes 

Parameter 
This option selects which of the parameters from the Data tab is displayed on the horizontal axis. 
The vertical axis always contains the Solve For parameter, so you cannot select the parameter 
that was listed in the Find option. Also, you would normally only select a parameter that has 
multiple entries.  

When this option is set to Automatic, the parameter with the most values is selected. 

Range 
This option designates how the minimum and maximum along this axis are specified. Available 
options are:  

• Min=0, Max=Data 
The axis minimum is set to zero. The maximum is selected from the data values. The values 
of the Minimum, Maximum, and Number of Tickmarks are ignored.  
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• Min=Data, Max=Data 
Both the minimum and the maximum of the axis are determined from the data. The values of 
the Minimum, Maximum, and Number of Tickmarks are ignored. 

• User (Given Below) 
This option lets you set the Minimum, Maximum, and Tumber of Tickmarks to scale the axis. 
These options determine which of the axes have grid lines displayed. This option is 
particularly useful when you want to make sure that the axis displaying power values displays 
a grid between zero and one. 

Vertical and Horizontal Axes – Range 
= User 
These options are only used when Range is set to User. 

Minimum and Maximum 
Specify the axis minimum and/or maximum. 

Number of Tickmarks 
Specify the number of tickmarks along this axis.  

Legend 

Parameter 
A separate line is drawn for each value of this parameter. The lines are labeled in the legend. 
When this option is set to Automatic, the parameter with the second most values is selected.  

Legend – Layout 

Position 
This option sets the position of the legend. 

% of Vertical Space 
Specify the size of the legend area as a percentage of the maximum possible. This option lets you 
shrink a legend that is too large.  

Axes and Grid 

Axis Color 
Specify the color of the axis lines.  

Grid Color 
Specify the color of the grid lines.  

Grid Lines 
This option determines which of the axes have grid lines displayed.  

Grid Line Style 
Specify the pattern of the grid lines. 
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Show Tickmarks On 
This option controls which of the axes have tickmarks displayed.  

Plot Text Tab 
This tab controls the titles, labels, and abbreviations on the plots.  
 

 

Titles and Labels 

Plot Titles and Labels 
These options specify the text of the titles and labels displayed on the plots. 

Rotation 
This option allows you to change the orientation of the corresponding titles or labels. 

Titles and Labels – Font 

Color, Size, Bold, and Italics 
These options specify the font of text displayed on the plot. 
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Titles and Labels – Legend Text 

Color Legend as Symbols 
Normally, text in the legend is displayed using the color selected by the Color option. This option 
indicates that each legend entry is to be displayed in the corresponding group color.  

Titles and Labels – Tick Labels 

Hort Fmt and Vert Fmt 
This option allows you to specify the format of the tick labels on the vertical axis. Select a format 
from the list or type your own format string according to the syntax rules that follow. Select 
Automatic to use the default format. 

Syntax 

Character Function Description 

0 Digit Placeholder Displays a digit or a zero. 

# Digit Placeholder Displays a digit or nothing. 

. Decimal Placeholder Determines how many digits are displayed to the left and 
right of the decimal separator. 

, Thousand Separator Separates thousands from hundreds within a number that 
has four or more places to the left of the decimal 
separator. 

% Percentage Placeholder The number is multiplied by 100. The percent character 
(%) is inserted in the position where it appears in the 
format string. 

E- E+ e- e+ Scientific Format Displays the number in scientific format. 

\ Literal Character Displays the character immediately following “\” in the 
format string. 

Syntax Examples 

Number Format String Number Displayed on Plots 

1234 0 1234 

1234 00000 01234 

0.1234 0.00% 12.34% 

0.1234 0% 12% 

1234 #,##0 1,234 

123456 #,##0,\k 123k 

12345678 #,##0,,\m\i\l 12mil 

12345678 0.0E+00 1.2E+07 

0.1234 0.00 0.12 

0.1234 0.00000 0.12340 

0.1234 0.0E-00 1.2E-01 
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Plot Title and Plot Label 
Abbreviations 

Parameter Abbreviations 
These options specify the abbreviations that are used for the parameters in the titles of the plots 
and the axis labels. It is usually necessary to keep these abbreviations as short as possible since 
the titles can only contain 80 characters. 

Plot Type Tab 
These options allow you to specify to type of plot to output.  
 

 

Plot Type 

Plot Type 
This option controls the type of plot that is displayed. Bar charts, line charts, and surface charts 
are available.  
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Bar Chart Options 
The following plots are available when Plot Type is set to Bar.  

Bar Chart
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Line Chart Options 
The following plots are available when Plot Type is set to Line.  

Line Chart - Lines
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Line Chart - Symbols
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Line Chart - Lines & Symbols
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Line Chart - Tape
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Surface Chart Options 
The following plots are available when Plot Type is set to Surface.  

Surface Chart - Lines
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Surface Chart - Surface
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Surface Chart - Lines & Surface

P
ow

er

A
lp

ha

N1

0.10
0.05

0.01

0.0
0.1
0.2
0.3
0.4
0.5

20
40

80

120

 

Surface Chart - Lines, Surface, &
Walls
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3D Surface Options 
These options are only used when Plot Type is set to Surface. 

Projection Method 
Sets the projection method of 3D charts.  

• Off 
No graph is drawn. 

• Perspective 
The axes are tilted to give a 3D perspective to the plot.  

• Isometric 
The graph is drawn, but no perspective is attempted.  

3D Surface Options – Projection 
Options 
These options are only used when Projection Method is set to Perspective. 

Horizontal Angle 
This option sets the horizontal viewing angle (in degrees) for 3D plots. It represents an angle 
around the base of the plot. The range of values is -180 to 180 degrees. This option may be 
changed interactively when the Interactive Format option is checked.  
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Vertical Angle 
This option sets the vertical viewing angle (in degrees) for 3D plots. It represents an angle above 
or below a point halfway up the graph. Values may range from -60 to 90 degrees. This option 
may be changed interactively when the Interactive Format option is checked.  

Depth 
This option sets the projected depth of 3D plots. Depth is a percentage of 100, calculated to 
provide equal increments in the X and Z directions. Values may range from 5 to 400. This option 
may be changed interactively when the Interactive Format option is checked. 

Perspective 
This option sets the degree of perspective foreshortening in 3D plots. Perspective is the perceived 
distance of the viewer from the graph. The range of values is 0 to 100. This option may be 
changed interactively when the Interactive Format option is checked. 

3D Surface Options – Cage 

Thin Walls 
This option specifies whether the walls of the axis grid that form the background of the chart are 
thick or thin.  

Edge Color 
Specify the color of the cage (grid) edge. This option is only used if Thin Walls is unchecked.  

Wall Color and Outside Wall Color 
Specify the color of the cage (grid) wall.  

Cage Flip 
This option controls whether the back and side walls of the graph cage are allowed to switch to 
the opposite edge for better viewing as the graph is rotated.  

3D Surface Options – Surface Colors 

Color Palette 
Specify a color palette for the surface chart. Using a setting of, say, Black to Red will allow the 
surface plot to show a continuous array of red hues from lowest to highest.  

3D Surface Options – Surface Colors 
– 128-Color Palettes Only 
These options are only used when Color Palette is set to a value containing 128 colors. 

Color Min 
Specifies the number of the color to be associated with the lowest numerical value. Possible 
values are 32 to 127. A value near 50 usually works well. Note that this option only works with 
128-color palettes.  
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Color Max 
Specifies the number of the color to be associated with the largest numerical value. Possible 
values are 32 to 127. A value near 120 usually works well. Note that this option only works with 
128-color palettes.  

Symbols/Background Tab 
This tab specifies the appearance of up to fifteen symbols. If more than fifteen symbols are 
needed, the first fifteen are repeated. The plot background is also controlled by this tab. 
 

 

Symbol Color, Style, and Size 

Color and Style 
These options specify the color and shape of the plotting symbols.  

Symbol Size 
This option sets the radius (size) of all plotting symbols. 

Background Colors and Styles 

Color and Style 
These options specify the style and color of the plot background. 
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Iterations Tab 
The Iterations tab presents the parameters that control the searching process.  
 

 

Maximum Iterations 

Maximum Iterations Before Search Termination 
This option specifies the maximum number of iterations before a search for the parameter of 
interest is halted. When the maximum number of iterations is reached without convergence, the 
criterion is left blank. We recommend that at least 500 iterations be specified.  
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Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure.  
 

 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored.  

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template ID’s of the corresponding files. This ID value is loaded in the box at the 
bottom of the panel.  

Template Action Buttons 

Load Template 
To load a template file, select it from the list of files given in the Template Files box. Once the 
desired file is selected, press the Load Template button to load the template.  
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Save Template 
This option saves the current option settings to the template file that is currently specified in the 
File Name box. You may also enter an identifying phrase in the box at the bottom of the window 
since this will be displayed along side of the file names. The template files are stored in the folder 
specified under Template Directory (C:\...\[My] Documents\NCSS\PASS 2008\Settings). You can 
erase any unwanted template files by deleting them from this folder using the Windows Explorer 
program.  

The template files for each procedure have different file name extensions. Thus, you can use the 
same name for a template saved from the T-Test procedure as for a template saved from the 
Multiple Regression procedure. For example, if the Save Template command is issued in the 
window shown previously, the current settings will be saved in a file called default.110 in the  

Note that there is no automatic connection between the template in memory and the copy on the 
disk. If you want to save the changes you have made to a template, you must use the Save 
Template button to save them.  

Delete Template 
Move the currently selected template file to the Windows Recycle Bin from which it will be 
automatically deleted the next time the Windows Recycle Bin is emptied. If you wish to undo the 
delete operation, move the file back to the PASS Settings directory (C:\...\[My] 
Documents\NCSS\PASS 2008\Settings) from the Windows Recycle Bin.  
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Chapter 5 

The Output 
Window 
Introduction 
PASS sends all statistics and graphics output to its built-in word processor from where they can 
be viewed, edited, printed, or saved. Reports and graphs are saved in rich text format (RTF). 
Since RTF is a standard document transfer format, these files may be loaded directly into your 
word processor for further processing. This chapter covers the basics of the built-in word 
processor in PASS.  

Viewing the Output 
The output of the Example 1 template of the Two-Sample T-Test procedure is shown below. The 
output window is in full-screen mode. The screen will look similar to this. Note that the actual 
size of your screen depends on the resolution of your monitor, so it may vary. 
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Documents 
The PASS word processor maintains two documents: Output and Log. Although both of these 
documents allow you to view your data, the Output document serves as a viewer while the Log 
document serves as a recorder.  

You can load additional documents as well. For example, you might want to view the output from 
a previous analysis to compare the results with the current analysis. To do this, you open a third 
document that is actually the log file from a previous analysis. 

All PASS documents are stored in the RTF format. This is a common format that is used by most 
word processors, including MS-Word and MS-Write. When you save a PASS report, you will be 
able to load that report directly into your own word processor. All text, formatting, and graphics 
will appear in your word processor ready for further editing. You can then save the document in 
your word processor’s native format. In this way, you can easily transfer the output of a PASS 
procedure to almost any format you desire.  

Output Document 
The Output document displays the output report from the current analysis. Whenever you run a 
PASS procedure, the resulting reports and graphs are displayed in the Output document. Each 
new run clears the existing Output document, so if you want to save a report, you must do so 
before running the next report. 

The Output document provides four main functions: display, print, save to the Log document, and 
save as an RTF file. 

Log Document 
The Log document provides a place to store a permanent record of your analysis. Since the 
Output document is erased by each new analysis, you need a place to store your permanent work. 
The Log document serves this purpose. When you have a report or graph that you want to keep, 
copy it from the Output document to the Log document. 

The Log document provides four main word processing functions: load, display and edit, print, 
and save. When you load a file into the Log document, you can add new output to it. In this way, 
you can record your work on a project in a single file, even though your work on that project is 
spread out over several days.  

 

Menus 
The menus provide a convenient way to transfer from module to module within the PASS system. 
Each set of menus will be briefly described here.  

File Menu 
The File Menu is used for opening, saving, and printing PASS word processor files. All options 
apply to the currently active document (the document whose title bar is selected). We will now 
discuss each of the options on this menu.  
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New 
This option opens an empty document. You might use this when you want to make notes about 
your analysis. 

New Log 
This option opens an empty log document. You might use this when you want to start a new 
project. 

Open 
This option opens an existing file. When this item is selected, the Open Report File dialog box 
appears. Note that no connection is maintained between a loaded file and its image on the disk. If 
you make changes to a file, you must save those changes to the disk. 

Open Log 
This option opens an existing log file. When this item is selected, the Open Report File dialog 
box appears. The requested file is loaded into the Log document. Note that no connection is 
maintained between a loaded file and its image on the disk. If you make changes to a file, you 
must save those changes to the disk. 

You might use this option when you want to continue using a certain file as the Log file. 

Toggle Auto-Log 
When Auto-Log is on, the contents of the Output document are automatically copied to the Log 
document. The Output document remains unchanged. If you want to keep a copy of all the output 
that has been placed in the Log document, you will still need to save it manually.  

This function allows you to automatically save all output for further use. 

Add Output to Log 
Selecting this option copies the contents of the Output document to the Log document. The 
Output document remains unchanged. This allows you to save the current output document for 
further use. 

Save As 
This option lets you save the contents of the currently active document to a designated file using 
the RTF format. Note that only the active document is saved. Also note that all file names should 
have the “RTF” extension so that other systems can recognize their format.  

Printer Setup 
This option allows you to set printing options on your printer. 

Print Preview 
This option displays the output report as it will appear on the printed page. Use it to preview your 
report before printing it out. 
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Print 
This option lets you print the entire document or a range of pages. When you select this option, a 
Print Dialog box will appear that lets you control which pages are printed.  

Close Output Window 
Minimizes the document that is currently being viewed. Note that this option does not clear the 
document, it simply minimizes it. 

Exit PASS 
This option exits the PASS system. All documents, spreadsheets, and procedure windows are 
closed. 

Edit Menu 
This menu contains options that let you edit a document.  

Undo 
This item reverses the last edit action. It is particularly useful for replacing something that was 
accidentally deleted. 

Cut 
This item copies the currently selected text to the Windows clipboard and erases it from the 
document. You can paste the information from the clipboard to a different location in the current 
document, into another document, into a datasheet in the spreadsheet, or into another application. 
The selected text is erased. 

Copy 
This item copies the currently selected text from the document to the Windows clipboard. You 
can paste this information from the clipboard to a different location in the current document, into 
another document, into a datasheet in the spreadsheet, or into another application. The selected 
text is not modified. 

Paste 
This item copies the contents of the clipboard to the current document at the insertion point. This 
command is especially useful for moving selected information from the Output document to the 
Log document. 

Select All 
This item selects the entire document. Although you can select a portion of the document using 
the mouse or a shift-arrow key, this is much faster if you want to select the entire document. 
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Toggle Page Break 
Changes the status of the page break on the line at which the insertion point resides. If a page 
break exists (shown by a horizontal line), it is removed. If a page break does not currently exist at 
that point, one is added. 

Note that PASS does not repaginate your document for you. Once you make changes, it will be 
up to you to repaginate your document. 

Find 
This item opens the Search dialog box. You can specify text that you want to search for. This is 
especially useful when you are looking for a certain topic or data value in a large report. 

Find Next 
This item continues finding the text you entered in the Search Dialog box. 

Replace 
This item opens the Search and Replace dialog box. This allows you to make repetitive changes. 
For example, you might want to change the name of one of the variables to a more useful name. 

Goto Section 
This item does not modify the document. Instead, it lets you reposition the insertion point to one 
of the major topics. When PASS runs a procedure, it stores the major report topics in this list box. 
You can quickly position the view to a desired topic using this screen. 

View Menu 
 This menu lets you designate which editing tools you want to use.  

Ruler 
This option controls whether the ruler and the tabs bar are displayed. The ruler displays the 
physical dimensions of the document. The tabs bar, found just below the ruler bar, lets you set the 
margins and tabs of your document. Only the currently selected part of your document is affected 
by a change in the tabs and margins.  

Format Toolbar 
This option controls whether the Format Toolbar is displayed. The function of each of the buttons 
is discussed below.  

Status Bar 
This option controls whether the Status Bar is displayed at the bottom of the output window. 

Show All  
Selecting this menu item causes the Ruler, Tabs Bar, Format Toolbar, and Status Bar to be 
displayed. 
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Hide All  
Selecting this menu item causes the Ruler, Tabs Bar, Format Toolbar, and Status Bar to be 
hidden. This gives you more screen space to view your output. 

Redraw  
Occasionally the Output Window becomes cluttered. If this happens, select this option to 
redisplay the output. 

Format Menu 
This menu lets you set the format for a selected block of text.  

Font 
This option displays the Replace Font dialog box, which lets you specify the font and style of the 
selected text.  

Paragraph 
This option displays the Paragraph dialog box, which lets you specify the tabs and margins of the 
selected text. 

Format Markers 
Indicates whether the (usually hidden) tab arrows and the end-of-paragraph marks are displayed 
in the document. Note that these characters are never printed. 

Window Menu 
This menu lets you designate how you want the documents arranged on the screen and which 
window you want displayed on top of your output desktop.  

Cascade 
This item arranges the documents in a cascading display from the upper left to the lower right of 
the screen. 

Tile Horizontal 
This item arranges the documents horizontally down the word processor window. 

Tile Vertical 
This item arranges the documents vertically across the word processor window. 

Arrange Icons 
When a document is minimized, it is represented as an icon at the bottom of the word processor 
window. This option arranges all document icons. It is usually applied when the word processor 
window has been resized. 
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Current Output 
This item causes the Output window to be displayed. 

Log 
This item causes the Log window to be displayed. 

PASS Home 
This item causes the PASS Home window to be displayed. 

Map – Quick Launch 
This item causes the Map window to be displayed. 

Help Menu 
This menu controls the display of the serial numbers and help system.  

PASS Help System 
This item displays the help system. 

About 
This item displays the release date and version number of your software. 

Serial Numbers 
This item displays the PASS Registration window where your serial numbers can be modified.  

Toolbars 
A toolbar is a series of small buttons that appear just below the menus at the top of the procedure 
window. The output window has two toolbars. Each button on the toolbar provides quick access 
to a menu item.  

 

 
 

Add Output to Log. This button copies the contents of the Output document to the 
Log document. The Output document remains unchanged. This allows you to save 
the current output document for further use. 
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Open Log. This button opens an existing log file. When this item is selected, the 
Open Report File dialog box appears. The requested file is loaded into the Log 
document.  

Save As. This button lets you save the contents of the currently active document to a 
designated file using the RTF format. Note that only the active document is saved. 
Also note that all file names should have the “RTF” extension so that other systems 
can recognize their format. 
 

Print. This button lets you print the entire document or a range of pages. When you 
select this option, a Print Dialog box will appear that lets you control which pages are 
printed. 
 

Print Preview. This button displays the output report as it will appear on the printed 
page. Use it to preview your report before printing it out. 
 

Cut. This button copies the currently selected text to the Windows clipboard and 
erases it from the document. You can paste the information from the clipboard to a 
different location in the current document, into another document, into a datasheet in 
the spreadsheet, or into another application. The selected text is erased. 
 

Copy. This button copies the currently selected text from the document to the 
Windows clipboard. You can paste this information from the clipboard to a different 
location in the current document, into another document, into a datasheet in the 
spreadsheet, or into another application. The selected text is not modified. 
 

Paste. This button copies the contents of the clipboard to the current document at the 
insertion point. This command is especially useful for moving selected information 
from the Output document to the Log document. 
 

Find. This button opens the Search dialog box. You can specify text that you want to 
search for. This is especially useful when you are looking for a certain topic or data 
value in a large report. 
 

Undo. This button reverses the last edit action. It is particularly useful for replacing 
something that was accidentally deleted. 
 

Font. This button displays the Replace Font dialog box, which lets you specify the 
font and style of the selected text. 
 

Format Marks. This button is used to toggle the display of the tab arrows and the 
end-of-paragraph marks in the document. Note that these characters are never 
printed. 
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Ruler. This button controls whether the ruler and the tabs bar are displayed. The 
ruler displays the physical dimensions of the document. The tabs bar, found just 
below the ruler bar, lets you set the margins and tabs of your document. Only the 
currently selected part of your document is affected by a change in the tabs and 
margins. 
 

Format Bar. This button controls whether the Format Toolbar is displayed.  

 

Show Output. This button causes the Output window to be displayed. 
 

 

Show Log. This button causes the Log window to be displayed. 
 

 

PASS Home. This button causes the PASS Home window to be displayed. 
 

 

Map. This button causes the PASS Map (Quick Launch) window to be displayed. 
This window allows you to quickly select any procedure using icon buttons. This 
window can also be used to change the procedure quick-access buttons in the toolbar. 
 

Back to Procedure. This button displays the procedure window used to create the 
current output. This allows you to quickly move between the procedure and the 
output windows. 
  

Macro. This button can be used to interface with the macro system. Left-click on this 
button to run the active macro. Hold your mouse over the button to display the active 
macro name. Right-click on this button to load the Macro Command Center window. 
 

Quick-Access. These buttons show up on all 
toolbars throughout the PASS system. Clicking on 
them with the left mouse button will display the 
corresponding procedure. Clicking on any of these 
buttons with the right mouse button allows you to 
change the procedure assigned to each button. 

 

Help. This button loads the PASS Help System at the appropriate topic. 
 

 

Printable PDF. This button loads the appropriate printable PDF chapter. 
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Chapter 6 

The Map (Quick 
Launch) Window 
Introduction 
The Map or Quick Launch window allows you to easily navigate to any PASS procedure using 
icons. Click on the tabs to view the associated procedure icons. The Map window drag-and-drop 
feature allows you to easily edit the eight quick-access buttons that appear on all PASS toolbars.  
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Toolbar 
A toolbar is a series of small buttons that appear just below the menus at the top of the procedure 
window. Each button on the Map toolbar provides quick access to a PASS procedure, window, or 
help file.  

 

 
 

 

PASS Home. This button causes the PASS Home window to be displayed. 
 

 

  Output. This button causes the output window to be displayed. 

 
  

Macro. This button can be used to interface with the macro system. Left-click on this 
button to run the active macro. Hold your mouse over the button to display the active 
macro name. Right-click on this button to load the Macro Command Center window. 
 

Quick-Access. These buttons show up on all 
toolbars throughout the PASS system. Clicking on 
them with the left mouse button will display the 
corresponding procedure. Clicking on any of these 
buttons with the right mouse button allows you to 
change the procedure assigned to each button. 

  

Help. This button loads the PASS Help System at the appropriate topic. 
 

Printable PDF. This button loads the appropriate printable PDF chapter. 
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Customizing the Toolbar using Drag-and-Drop 
The eight quick-access procedure buttons that show up on all toolbars throughout the program 
may be changed using the PASS Home Window, the Map (Quick Launch), any procedure 
window, or the output window. To change the procedures available in the toolbar using the Map 
window, drag and drop any procedure icon to replace any quick-access button in the toolbar at the 
top of the window.  

 

 
 

 

1.  Left-click on any 
procedure icon on 
the Map window 
and hold down the 
mouse button. 

2.  While still holding 
down the left 
mouse button, drag 
the icon to the 
toolbar to replace 
any of the eight 
quick-access 
button icons. 
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The toolbar will now display the new icon. This new icon will appear in all toolbars throughout 
the PASS system. 
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Chapter 7 

Introduction to 
Power Analysis 
Overview 
A statistical test’s power is the probability that it will result in statistical significance. Since 
statistical significance is the desired outcome of a study, planning to achieve high power is of 
prime importance to the researcher. Because of its complexity, however, an analysis of power is 
often omitted.  

PASS calculates statistical power and determines sample sizes. It does so for a broad range of 
statistical techniques, including the study of means, variances, proportions, survival curves, 
correlations, bioequivalence, analysis of variance, log rank tests, multiple regression, and 
contingency tables. 

PASS was developed to meet several goals, including ease of learning, ease of use, accuracy, 
completeness, interpretability, and appropriateness. It lets you study the influence of sample size, 
effect size, variability, significance level, and power on your statistical analysis.  

Brief Introduction to Power Analysis 
Statistical power analysis must be discussed in the context of statistical hypothesis testing. Hence, 
this discussion starts with a brief introduction to statistical hypothesis testing, paying particular 
attention to topics that relate to power analysis and sample size determination. Although the 
theory behind hypothesis testing is general, its concepts can be reviewed by discussing simple 
case: testing whether a proportion is greater than a known standard.  

Following the usual terminology of statistical hypothesis testing, define two complementary 
hypotheses 

H P P0 0: ≤  vs.  H P P1 0: >

where P is the response proportion in the population of interest and P0 is the known standard 
value. 

H0 is called the null hypothesis because it specifies that the difference between the two 
proportions is zero (null). 

H1 is called the alternative hypothesis. This is the hypothesis of interest to us. Our motivation for 
conducting the study is to provide evidence that the alternative (or research) hypothesis is true. 
We do this by showing that the null hypothesis is unlikely—thus establishing that the alternative 
hypothesis (the only possibility left) is likely. 



7-2  Quick Start – Introduction to Power Analysis 

Outcomes from a statistical test may be categorized as follows:  

1. Reject H  when  is true. That is, conclude that  is unlikely when it is true. This 
constitutes a decision error known as the Type-I error. The probability of this error is 
alpha (

0 H0 H0

α ) and is often referred to as the significance level of the hypothesis test. 

2.  Do not reject H0  when H0  is false. That is, conclude that H0  is likely when it is false. 
This constitutes a decision error known as the Type-II error. The probability of this error 
is beta (β ). Power is 1− β . It is the probability of rejecting H0  when it is false. 

3.  Reject H0  when H0  is false. This is a correct decision. 

4.  Do not reject H0  when H0  is true. This is also a correct decision. 

The basic steps in conducting a study that is analyzed with a hypothesis test are: 

1. Specify the statistical hypotheses,  and . H0 H1

2. Run the experiment on a given number of subjects.  

3. Calculate the value of a test statistic, such as the sample proportion. 

4. Determine whether the sample values favor  or . H0 H1

Binomial Probability Table 
In the current example, suppose that a random sample of ten individuals is selected, i.e. N = 10. 
The number of individuals, R, with the characteristic of interest is counted. Hence, R is the test 
statistic. A table of binomial probabilities gives the probability that R takes on each of its eleven 
possible values for various values for P.  
  

     P     

R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
0 0.349 0.107 0.028 0.006 0.001 0.000 0.000 0.000 0.000 
1 0.387 0.376 0.121 0.040 0.010 0.002 0.000 0.000 0.000 
2 0.194 0.302 0.233 0.121 0.044 0.011 0.001 0.000 0.000 
3 0.057 0.201 0.267 0.215 0.117 0.042 0.009 0.001 0.000 
4 0.011 0.088 0.200 0.251 0.205 0.111 0.037 0.006 0.000 
5 0.001 0.026 0.103 0.201 0.246 0.201 0.103 0.026 0.001 
6 0.000 0.006 0.037 0.111 0.205 0.251 0.200 0.088 0.011 
7 0.000 0.001 0.009 0.042 0.117 0.215 0.267 0.201 0.057 
8 0.000 0.000 0.001 0.011 0.044 0.121 0.233 0.302 0.194 
9 0.000 0.000 0.000 0.002 0.010 0.040 0.121 0.376 0.387 
10 0.000 0.000 0.000 0.000 0.001 0.006 0.028 0.107 0.349 

 

Let us discuss in detail the interpretation of the values in this table for the simple case in which a 
coin is flipped ten times and the number of heads is recorded. The column parameter P is the 
probability of obtaining a head on any one toss of the coin. When dealing with coin tossing, one 
would usually set P = 0.5, but this does not have to be the case. The row parameter R is the 
number of heads obtained in ten tosses of a coin.  



Quick Start – Introduction to Power Analysis  7-3 

The body of the table gives the probability of obtaining a particular value of R. One way to 
interpret this probability value is as follows: conduct a simulation in which this experiment is 
repeated a million times for each value of P. Using the results of this simulation, calculate the 
proportion of experiments that result in each value of R. This proportion is recorded in this table. 
For example, when the probability of obtaining a head on a single toss of a coin is 0.5, ten flips of 
a coin would result in five heads 24.6% of the time. That is, as the procedure is repeated (flipping 
a coin ten times) over and over, 24.6% of the outcomes would be five heads. 

Calculating the Significance Level, Alpha 
We will now explain how the above table is used to set the significance level (the probability of a 
type-I error) to a pre-specified value. Recall that a type-I error occurs when an experiment results 
in the rejection of the null hypothesis when, in fact, the null hypothesis is true. By studying the 
table, the impact of using different rejection regions can be determined. A rejection region is a 
simple rule that states which values of the test statistic will result in the null hypothesis being 
rejected.  

For example, suppose we want to test P0 = 0.5. That is, the null hypothesis is that P = 0.5 and the 
alternative hypothesis is that P > 0.5. Suppose the rejection region is R equal to 8, 9, or 10. That 
is,  is rejected if R = 8, 9, or 10. From the above table, the probability of obtaining 8, 9, or 10 
heads in 10 tosses when P = 0.5 is calculated as follows: 

H0

055.0                                     
001.0010.0044.0                                     

)5.0|10Pr()5.0|9Pr()5.0|8Pr()5.0|10,9,8Pr(

=
++=

==+==+===== PRPRPRPR
 

That is, 5.5% of these coin tossing experiments using this decision rule result in a type-I error. By 
setting the rejection criterion to R = 8, 9, or 10, alpha has been set to 0.055. 

It is extremely important to understand what alpha means, so we will go over its interpretation 
again. If the probability of obtaining a head on a single toss of a coin is 0.5, then 5.5% of the 
experiments that use the rejection criterion of R = 8, 9, or 10 will result in the false conclusion 
that P > 0.5.  

The key features of this definition that are often overlooked by researchers are: 

1. The value of alpha is based on a particular value of P. Note that we used the 
assumption “if the probability of obtaining a head is 0.5” in our calculation of alpha. 
Hence, if the actual value of P is 0.4, our calculations based on the assumption that P is 
0.5 are wrong. Mathematicians call this a conditional probability since it is based on the 
condition that P is 0.5. Alpha is 0.055 if P is 0.5.  

Often, researchers think that setting alpha to 0.05 means that the probability of rejecting 
the null hypothesis is 0.05. Can you see what is wrong with this statement? They have 
forgotten to mention the key fact that this statement is based on the assumption that P is 
0.5!  

2. Alpha is a statement about a proportion in multiple experiments. Alpha tells us what 
percentage of a large number of experiments will result in 8, 9, or 10 heads. Alpha is a 
statement about what to expect from future experiments. It is not a statement about P. 
Occasionally, researchers conclude that the alpha level is the probability that P = 0.5. 
This is not what is meant. Alpha is not a statement about P. It is a statement about future 
experiments, given a particular value of P. 
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Interpreting P Values 
The term alpha value is often used interchangeably with the term p value. Although these two 
terms are closely related, there is an important distinction between them. A p value is the largest 
value of alpha that would result in the rejection of the null hypothesis for a particular set of data. 
Hence, while the value of alpha is set during the planning of an experiment, the p value is 
calculated from the data after experiment has been run.  

Calculating Power and Beta 
We will now explain how to calculate the power. Recall that power is the probability of rejecting 
a false null hypothesis. A false  means that P is some value other than P0. In order to 
compute power, we must know the actual value of P.  

H0

Returning to our coin tossing example, suppose the actual value of P is 0.7. What is the power 
and beta value of this testing procedure? The decision rule is to reject the null hypothesis when R 
is 8, 9, or 10. From the above probability table, the probability of obtaining 8, 9, or 10 heads in 10 
tosses of a coin when probability of a head is actually 0.7 is  

382.0                                     
028.0121.0233.0                                     

)7.0|10Pr()7.0|9Pr()7.0|8Pr()7.0|10,9,8Pr(

=
++=

==+==+===== PRPRPRPR
 

This is the power. The value of a type-II error is 1.000 - 0.382, which is 0.618. That is, if P is 0.7, 
then 38.2% of these coin tossing experiments will reject , while 61.8% of them will result in a 
type-II error. 

H0

It is extremely important to understand what beta means, so we will go over its interpretation 
again. If the probability of obtaining a head on the toss of a coin is 0.7, then 61.8% of the 
experiments that use the rejection criterion of R = 8, 9, or 10 will result in the false conclusion 
that P = 0.5.  

The key features of this definition that are often overlooked by researchers are: 

1. The value of beta is based on a particular value of P. Note that we used the 
assumption “if the probability of obtaining a head is 0.7” in our calculation of beta. 
Hence, if the actual value of P is 0.6, our calculation based on the assumption that P was 
0.7 is wrong. 

2. Beta is a statement about the proportion of experiments. Beta tells us what percentage 
of a large number of experiments will result in 8, 9, or 10 heads. Beta is a statement about 
what we can expect from future experiments. It is not a statement about P.  

3. Beta depends on the value of alpha. Since the rejection region (8, 9, or 10 heads) 
depends on the value of alpha, beta depends on alpha. 

4. You cannot make both errors at the same time. A type-II error can only occur when a 
type-I error did not occur, and vice versa.  

Specifying Alternative Values of the Parameters 
We have noted a great deal of confusion about specifying the values of the parameters under the 
alternative hypothesis. The alternative hypothesis is usually that the value of one parameter is 
different from another. The hypothesis does not usually specify how different. It simply gives the 
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direction of the difference. The power is calculated at specified alternative values. These values 
should be considered as values at which the power is calculated, not as the true value.  

Effect Size 
The effect size is the size of the change in the parameter of interest that can be detected by an 
experiment. For example, in the coin tossing example, the parameter of interest is P, the 
probability of a head. In calculating the sample size, we would need to state what the baseline 
probability is (probably 0.5) and how large of a deviation from P that we want to detect with our 
experiment. We would expect that it would take a much larger sample size to detect a deviation of 
0.01 than it would to detect a deviation of 0.40.  

Selecting an appropriate effect size is difficult because it is subjective. The question that must be 
answered is: what size change in the parameter would be of interest? Note that, in power analysis, 
the effect size is not the actual difference. Instead, the effect size is the change in the parameter 
that is of interest or is to be detected. This is a fundamental concept that is often forgotten after 
the experiment is run.  

After an experiment is run that leads to non-significance, researchers often ask, “What was the 
experiment’s power?” and “How large of a sample size would have been needed to detect 
significance?” To compute the power or sample size, they set the effect size equal to the amount 
that was seen in their experiment. This is incorrect. When performing a power analysis after an 
experiment has completed, the effect size is still the change in the parameter that would be of 
interest to other scientists.  It is not the change that was actually observed! 

Often, the effect size is stated as a percentage change rather than an absolute change. If this is the 
case, you must convert the percentage change to an absolute change. For example, suppose that 
you are designing an experiment to determine if tossing a particular coin has exactly a 50% 
chance of yielding a head. That is, P0 is 0.50. Suppose your gambling friends are interested in 
whether a certain coin has a 10% greater chance. That is, they are concerned with the case where 
P is 0.55 or greater. The effect size is |0.50 - 0.55| or 0.05. 

Types of Power Analyses 
There are several types of power analyses. Often, power analysis is performed during the design 
phase of a study to determine the sample size. This type of study would determine the value of N 
for set values of alpha and beta. Another type of power analysis is a post hoc analysis, which is 
done after the study is concluded. A post hoc analysis studies such questions as: 

1. What sample size would have been needed to detect a specific effect size? 

2. What is the smallest effect size that could be detected with this sample size? 

3. What was the power of the test procedure? 

These and similar questions may be answered using power analysis. By considering these kinds 
of questions after a study is concluded, you can gain important insights into how to make your 
research more efficient and effective. 
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Nuisance Parameters 
Statistical hypotheses usually make statements about one or more parameters from a set of one or 
more probability distributions. Often, the hypotheses leave other parameters of the probability 
distribution unspecified. These unspecified parameters are called ‘nuisance’ parameters.  

For example, a common clinical hypothesis is that the response proportions of two drugs are 
equal. The null hypothesis is that the difference between these two drugs is zero. The alternative 
is that the difference is non-zero. Note that the actual values of the two proportions are not stated 
in the hypothesis—just their difference. The actual values of the proportions will be needed to 
compute the power. That is, different powers will result for the case when P1 = 0.05 and P2 = 
0.25 and for the case P1 = 0.50 and P2 = 0.70. In this example, the proportion difference (D = P1 
– P2) is the parameter of interest. The baseline proportion, P1, is a nuisance parameter. 

Another example of a nuisance parameter occurs when using the t-test to test whether the mean is 
equal to a particular value. When computing the power or sample size for this test, the hypothesis 
specifies the value of the mean. However, the value of the standard deviation is also required. In 
this case, the standard deviation is a nuisance parameter. 

When performing a power analysis, you should state all your assumptions, including the values of 
any nuisance parameters that were used. When you do not have any idea as to reasonable values 
for nuisance parameters, you should use a range of possible values so that you can analyze how 
sensitive the results are to the values of the nuisance parameters. Also, do not be tempted to use 
the nuisance parameter’s value from a previous (or pilot) study. Instead, a reasonable strategy is 
to compute a confidence interval and use the confidence limit that results in the largest sample 
size. 

Choice of Test Statistics 
Many hypothesis tests can be tested with a variety of test statistics. For example, statisticians 
often have to decide between the t-test and the Wilcoxon test when testing means. Similarly, 
when testing whether two proportions are equal, they have to decide whether to use a z-test or an 
exact test. If they choose a z-test, they have to decide whether to apply a continuity correction.  

In most cases, each test statistic will have a different power. Thus, it should be obvious that you 
must compute the power of the test statistic that will be used in the analysis. A sample size based 
on the t-test will not be accurate for a nonparametric test. 

The next question is usually “Which test statistic should I use?” You might say “They one that 
requires the smallest sample size.” However, other issues besides power must be considered. For 
example, consideration must be given to whether the assumptions of the test statistic will be met 
be the data. If your data is binary, it is probably unreasonable to assume that they are continuous. 

These are simple principles, but they are often overlooked.  

Types of Hypotheses 
Hypothesis tests work this way. If the null hypothesis if rejected, the alternative hypothesis is 
concluded to be true. However, if null hypothesis is not rejected, no conclusion is reached--the 
null hypothesis is not concluded to be true. The only way that a conclusion is reach is if the null 
hypothesis is rejected.  
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Because of this, it is very important that the null and alternative hypotheses be constructed so that 
the conclusion of interest is associated with the alternative hypothesis. That way, if the null 
hypothesis is rejected, the study reaches the desired conclusion. 

There are several types of hypotheses. These include inequality, equivalence, non-inferiority, and 
superiority hypotheses. In the statistical literature, these terms are used with completely different 
meanings, so it is important to define what is meant by each. We have tried to adopted names that 
are associated with the alternative hypothesis, since this is the hypothesis of interest.  

It is important to note that even though two sets of hypotheses may be similar, they often will 
have different power and sample size requirements. For example, an equivalence test (see below) 
appears to be the simple reverse of a two-sided test of inequality, yet the equivalence test requires 
a much larger sample size to achieve the same power as the inequality test. Hence, you cannot 
select the sample size for an inequality test and then later decide to run an equivalence test.  

Each of the sections to follow will give a brief definition along with an example based on the 
difference between two proportions. 

Inequality Hypothesis 
The term ‘inequality’ is represents the classical one-sided and two-sided hypotheses in which the 
alternative hypothesis is simply that the two values are unequal. These hypotheses are called tests 
of superiority by Julious (2004), emphasizing the one-sided versions.  

Two-Sided 
When the null hypothesis is rejected, the conclusion is simply that the two parameters are 
unequal. No statement is made about how different. For example, 0.501 and 0.500 are unequal, as 
are 0.500 and 0.800. Obviously, even though the former are different, the difference is not large 
enough to be of practical importance in most situations. 

H p p0 1 2 0: − =  vs. H p p1 1 2 0: − ≠  or H or1 1 2 1 20 0: p p p p− < − >  

One-Sided 
These tests offer a little more information than the two sided tests since the direction of the 
difference is given. Again, no indication is made about how much higher (or lower) the superior 
value is to the inferior.  

H p p0 1 2 0: − ≤  vs. H p p1 1 2 0: − >  or  H p p0 1 2 0: − ≥  vs.  H p p1 1 2 0: − <

Non-Inferiority Hypothesis  
These tests are a special case of the one-sided inequality tests. The term ‘non-inferiority’ is used 
to indicate that one treatment is not worse than another treatment. That is, one proportion is not 
less than another proportion by more than a trivial amount called the ‘margin of equivalence’.  

For example, suppose that a new drug is being developed that is less expensive and has fewer side 
effects than the standard drug. Producers must show that its effectiveness is no worse than the 
drug it is to replace. 
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When testing two proportions in which a higher proportion is better, the non-inferiority of 
treatment 1 as compared to treatment 2 is expressed as 

H0 1 2: p p− ≤ −δ  vs. H1 1 2: p p− > −δ  or H0 1 2: p p≤ − δ  vs. H1 1 2: p p> −δ , 

where δ > 0  is called the margin of equivalence. Note that when  is rejected, the conclusion 
is that the first proportion is not less than the second proportion by more than 

H0

δ . 

Perhaps an example will help introduce this type of test. Suppose that the current treatment for a 
disease works 70% of the time. Unfortunately, this treatment is expensive and occasionally 
exhibits serious side-effects. A promising new treatment has been developed to the point where it 
can be tested. One of the first questions that must be answered is whether the new treatment is as 
good as the current treatment. In other words, do at least 70% of subjects respond to the new 
treatment?  

Because of the many benefits of the new treatment, clinicians are willing to adopt the new 
treatment even if it is slightly less effective than the current treatment. They must determine, 
however, how much less effective the new treatment can be and still be adopted. Should it be 
adopted if 69% respond? 68%? 65%? 60%? There is a percentage below 70% at which the 
difference between the two treatments is no longer considered ignorable. After thoughtful 
discussion with several clinicians, it is decided that if a response of at least 63% is achieved, the 
new treatment will be adopted. The difference between these two percentages is called the margin 
of equivalence. The margin of equivalence in this example is 7% (which is ten percent of the 
original 70%).  

The developers must design an experiment to test the hypothesis that the response rate of the new 
treatment is at least 0.63. The statistical hypothesis to be tested is 

H p p0 1 2 0 07: .− ≤ −  versus H p p1 1 2 0 07: .− > − . 

Notice that when the null hypothesis is rejected, the conclusion is that the response rate is at least 
0.63. Note that even though the response rate of the current treatment is 0.70, the hypothesis test 
is about a response rate of 0.63. Also, notice that a rejection of the null hypothesis results in the 
conclusion of interest.  

Superiority Hypothesis  
These tests are a special case of the one-sided inequality tests. The term ‘superiority’ is used to 
indicate that one treatment is better than another by more than a trivial amount called the ‘margin 
of equivalence’. For example, suppose that a new drug is being developed that is thought to have 
superior performance to the existing drug. Producers must show that its effectiveness is better 
than the drug it is to replace.  

When testing two proportions in which a higher proportion is better, the superiority of treatment 1 
over treatment 2 is expressed as 

H0 1 2: p p− ≤ δ  vs. H1 1 2: p p− > δ  or H0 1 2: p p≤ + δ  vs. H1 1 2: p p> + δ , 

where δ > 0  is called the margin of equivalence. Note that when  is rejected, the conclusion 
is that the first proportion is higher than the second proportion by more than 

H0

δ . 
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Equivalence Hypothesis  
The term ‘equivalence’ is used here to represent tests designed to show that response rates of two 
treatments do not differ by more than a trivial amount called the ‘margin of equivalence’. These 
tests are the reverse of the two-sided inequality test.  

The typical set of hypotheses are 

H or0 1 2 1 2: p p p pL U− ≤ − ≥δ δ  vs. H1 1 2:δ δL Up p≤ − ≤ , 

where δL < 0 and δU > 0  are called the equivalence limits. 

Suppose 70% of subjects with a certain disease respond to a certain drug. The company that 
produces the drug has decided to open a new facility in another city. They must show that the 
drug produced in the new facility is equivalent (all most the same) as that produced in existing 
facilities. After thoughtful discussion with several clinicians and regulatory agencies, it is decided 
that if the response rate of the drug produced at the new facility is between 65% and 75%, the 
new facility will go into production. In this case, the margin of equivalence is 5%.  

The statistical hypothesis to be tested is 

H p p0 1 2 0 05: .− ≥  vs. H p p1 1 2 0 05: .− < . 
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Chapter 8 

Proportions 
Introduction 
This chapter introduces power analysis and sample size calculation for proportions. When the 
response is binary, the results for each group may be summarized as proportions. Usually, 
hypothesis tests are conducted to compare two proportions.  

There are many issues that must be considered when designing experiments that use proportions. 
For example, will the proportions be analyzed directly, or will they be converted into differences, 
ratios, or odds ratios? Which test statistic will be used? Will the design use independent groups or 
will subjects be measured twice? Will the study have an active control? 

The various answers to these and other questions result in a large number of situations. This 
chapter will introduce you to the issues that are common to all the tests of proportions. 

Designs 
There are several experimental designs for comparing two proportions. You can you a one-
sample design to compare a sample proportion to a specific value. You can compare proportions 
from two independent samples using independent, stratified, cluster-randomized, or group-
sequential designs. You can compare two correlated proportions. And finally, you can compare 
several categories in a contingency table.  

Comparing Proportions  
Two proportions may be compared by considering their difference, ratio, or odds ratio. Each of 
these cases may lead to different test statistics with different powers and sample size 
requirements.  

Assume that  is the response proportion of the experimental group and  is the response 
proportion of the control (standard or reference) group. Mathematically, these alternative 
parameterizations are 

p1 p2

Parameter Computation 

Difference  δ = −p p1 2  

Ratio φ = p p1 2/  

Odds Ratio 
( )
( )

ψ =
−
−

p p
p p

1 1

2 2

1
1

/
/
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Once you know  and , you can calculate any of these values, and you can easily change 
from once parameterization to another. Thus, the choice of which parameter you use may seem 
arbitrary. However, since different parameterizations lead to different test statistics, the choice 
can lead to a different power and sample size. These parameterizations will be discussed next. 

p1 p2

Difference 
The difference δ = −p p1 2  is perhaps the most common method of comparing two proportions. 
This parameter is easy to interpret and communicate. It gives the absolute impact of the 
treatment. However, there are subtle difficulties that can arise with its use.  

One difficulty occurs when the event of interest is rare. If a difference of 0.001 is reported for an 
event with a baseline probability of 0.40, we would dismiss this as being trivial. That is, there is 
usually little interest in a treatment that decreases the probability from 0.400 to 0.399. However, 
if the baseline probability of a disease is 0.002, a 0.001 decrease in the disease probability would 
represent a 50% reduction. Thus, the interpretation of the difference depends on the baseline 
probability of the event. 

When planning studies, the value of  is usually known and the power is calculated at various 
values of 

p2

δ . The value of  is then calculated using p1 p p1 2= + δ . Because of the requirement 
that 0 , the values of 11< p < δ  are restricted to the interval − < < −p p2 21δ , not − < <1 1δ  
as you might expect. Likewise, the values of  are restricted to p2 0 12< < −p δ  if δ > 0  and 
− < <δ p 12  if δ < 0 . 

Because typical values of δ  are usually between -0.2 and 0.2, the allowable values of  are 
restricted to be between 0.2 and 0.8. When the values of  are outside this range, it may be 
more convenient to use the odds ratio. 

p2

p2

Ratio 
The (risk) ratio, φ = p p1 / 2 , gives the relative change in the probability of the outcome under 
each of the hypothesized values. This parameter is direct and easy to interpret. To compare the 
ratio with the difference, examine the case where  = 0.1437 and = 0.0793. One should 
consider which number is more enlightening, 

p1 p2

δ  = -0.0644, or φ  = 55.18%. In many cases, the 
relative change (the ratio) is easier to interpret that the absolute change (the difference).  

When planning studies, the value of  is usually known and the power is calculated at various 
values of 

p2

φ . The value of  is then calculated using p1 p p1 2= × δ . Because of the requirement 
that 0 , the values of 11< p < φ  are restricted to the interval 0 1 2< <φ / p , not 0 < < ∞φ  as 
you might expect. Likewise, the values of  are restricted to p2 0 12< <p / φ  if φ > 1 and 

 if 0 1<2< p φ < 1. 

Because typical values of φ  are usually between 0.5 and 1.5, the values of  are restricted to be 
between 0 and 0.667. When the values of  are outside this range, it may be more convenient to 
use the odds ratio. 

p2

p2
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Odds Ratio 
Chances are usually communicated as long-term proportions or probabilities. In betting, chances 
are often given as odds. For example, the odds of a horse winning a race might be set at 10-to-1 
or 3-to-2. Odds can easily be translated into probabilities, and vice versa. An odds of 3-to-2 
means that the event is expected to occur three out of five times. That is, an odds of 3-to-2 (1.5) 
translates to a probability of winning of 0.60.  

The odds of an event are calculated by dividing the event risk by the non-event risk. Thus the 
odds are 

Odds p
p1

1

11
=

−
 and Odds p

p2
2

21
=

−
 

For example, if p is 0.6, the odds are 0.6/0.4 = 1.5. Rather than represent the odds as a decimal 
amount, it is re-scaled into whole numbers. Thus, instead of presenting the odds as 1.5-to-1, they 
present as 3-to-2. 

Two odds could be compared by considering their difference, but it is more convenient in many 
situations to form their ratio. Thus, another way to compare proportions is to compute the ratio of 
their odds. The odds ratio is 

ψ =

=
−

−

Odds
Odds

p
p

p
p

1

2

1

1

2

2

1

1

 

Unlike the difference and the ratio, the odds ratio is not restricted by the value of . The range 
of possible values of the odds ratio is 

p2

− ∞ < < ∞ψ . Because of the freedom in specifying the 
parameters, the odds ratio is a popular parameterization, even though it is not as easy to interpret 
as the difference and the ratio. 

Specifying the Proportions – Very Important! 
It is important to understand the interpretation of  and  within PASS. Suppose  
represents the proportion in the treatment group and  represents the proportion in the control 
group. In most hypothesis tests, these values are equal under the null hypothesis and different 
under the alternative hypothesis. Thus, under the null hypothesis, all that is needed is the value of 

 or , but not both. Under the alternative hypothesis, both values are necessary. So, when the 
input screen asks for  and the difference, these values should be interpreted as follows. The 
value of  is actually the value of both  and  under . Under , the value of  is 
calculated from  and 

p1

p2

p2

H

p1

p2

p1 p2

p
p2

2 p1 0 H1 p1

p2 δ  using the formula p p1 2= + δ .  

Also, it is important to understand what we mean by ‘under ’ in the above discussion. Notice 
that  does not specify the exact value of . Instead, it specifies a range of values. For 

H1

H1 p1
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example,  might be  or H1 p p1 2> p p1 2− > δ . However, even though  gives a range of 
values for , the power is computed at a specific value of . 

H1

p1 p1

Selecting an appropriate value for  must be done very carefully. We recommend the following 
approach. Select a value of  that represents the change from  that you want the experiment 
to detect. When you calculate a sample size, it is interpreted as the sample size necessary to detect 
a difference of at least  when the significance level is 

p1

p1

p p1 2−

p2

α and the power is 1− β .  

The important point is that  is not the value you anticipate obtaining from an experiment. 
Instead, it is that value of  at which you want to compute the power. This is a very important 
distinction! This is why, when investigating the power after an experiment is run, we recommend 
that you do not simply plug in the values of  and  from that experiment. Rather, you use 
values that represent the size of the difference that you want to detect. 

p1

p1

p1 p2
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Chapter 9 

Means 
Introduction 
This chapter introduces power analysis and sample size calculation for tests that compare means. 
In many situations, the results for each treatment group are summarized as means. There are 
many issues that must be considered when designing experiments for comparing means. For 
example, are the means independent or correlated? Which test statistic to use? Will a parametric 
or nonparametric test be used? Are the data normally distributed? Are there more than two 
treatment groups? The answers to these and other questions result in a large number of situations.  

Specifying the Means 
Assume that μ1  is the mean of an experimental group and μ2  is the mean of a control (standard 
or reference) group. Suppose δ  represents their difference. That is, δ μ μ= −1 2 . In most 
hypothesis tests, the null hypothesis ( ) is H0 δ = 0  and the alternative hypothesis ( ) is H1

δ ≠ 0 . Since  assumes that H0 δ = 0 , all that is really needed to compute the power is the value 
of δ  under . So, when the input screen asks for H1 μ1  and μ2 , these values should be interpreted 
as follows. The value of μ1  is actually the value of both μ1  and μ2  under . Under , the 
values of 

H0 H1

μ1  and μ2  provide the value of δ  at which the power is calculated.  

The above discussion is summarized in the following chart: 
 

Input Parameter Under  Under H  H0 1

Mean1 μ1 ,μ2  μ1  
Mean2 ignored μ2  

 

Also, it is important to understand what we mean by ‘under ’ in the above discussion.  
defines a range of values for 

H1 H1

δ  at which the power can be computed. To compute the power, the 
specific values of δ  must be determined. Thus, there is not a single power value. Instead, there 
are an infinite number of power values possible, depending on the value of δ . 

Selecting an appropriate value for μ1  must be done very carefully. We recommend the following 
approach. Select a value of μ1  that represents the change from μ2  that you want the experiment 
to detect. When you calculate a sample size, it is interpreted as the sample size necessary to detect 
a difference of at least δ  when the significance level is α and the power is 1− β .  

It is important to realize that δ  is not the value you anticipate obtaining from the experiment. 
Instead, it is that value of δ  at which you want to compute the power. This is a very important 
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distinction! This is why, when investigating the power after an experiment is run, we recommend 
that you do not simply plug in the values of μ1  and μ2  from that experiment. Rather, you use 
values that represent the size of the difference that you want to detect. 

Specifying the Standard Deviation 
Usually, statistical hypotheses about the means make no direct statement about the standard 
deviation. However, the standard deviation is a parameter in the normal distribution, so its value 
must be specified. For this reason, it is called a nuisance parameter.  

Even though it is not of primary interest, an estimate of the standard deviation is necessary to 
perform a power analysis. Finding such an estimate is difficult not only because it is required 
before the data are available, but also because the physical interpretation of the standard deviation 
is vague. How do you estimate a quantity without data and without a clear understanding of what 
it is? This section will try to help.  

Understanding the Standard Deviation 
The standard deviation has two general interpretations. First, it is similar to the average absolute 
difference between each observation and the mean. Second, it is the average absolute difference 
between every pair of observations. 

The standard deviation of a population of values is calculated using the formula 

( )
σ

μ
X

i X
i

N

=
∑

1

X
=

2

N

−
 

where N is the number of items in the population, X is the variable being measured, and μX  is the 
mean of X. This formula indicates that the standard deviation is the square root of an average of 
the squared differences between each value and the mean. The differences are squared to remove 
the sign so that negative values will not cancel out positive values. After summing up these 
squared differences and dividing by N, the square root is taken to put the result back in the 
original scale. Bottom line—the standard deviation can be thought of as the average absolute 
difference between the data values and their mean.  

Estimating the Standard Deviation 
Our task is to find a rough estimate of the standard deviation to use in a power analysis. Several 
possible methods could be used. These include using the results of a previous study or a pilot 
study, using the range, using the coefficient of variation, etc. PASS includes a Standard Deviation 
Estimator procedure that will help you obtain a standard deviation estimate based on these 
methods. It is loaded from the Tools menu. Remember that as the standard deviation increases, 
the power decreases. Hence, an increase in the standard deviation will cause an increase in the 
sample size. To be conservative in sample size calculation, you should use a large value for the 
standard deviation. 
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Simulations 
Most of the formulas used in PASS were derived by analytic methods. That is, based on a series 
of assumptions, a formula for the power and sample size is derived mathematically. This formula 
is then programmed and made available in PASS. Unfortunately, the formula is only as realistic 
as the assumptions upon which it is based. If the assumptions are inaccurate in a certain situation, 
the power calculations may also be inaccurate. An alternative to using analytic methods is to use 
simulation (or Monte Carlo) techniques. Because of the speed of modern computers, simulations 
can now be run in minutes that would have taken days or weeks only a few years ago.  

In power analysis, simulation refers to the process of generating several thousand random 
samples that follow a particular distribution, calculating the test statistic from each sample, and 
tabulating the distribution of these test statistics so that the significance level and power of the 
procedure may be estimated.  

The steps to a simulation study are  

1. Specify how the study is carried out. This includes specifying the randomization procedure, 
the test statistic that is used, and the significance level that will be used. 

2. Generate random samples from the distributions specified by the null hypothesis. Calculate 
each test statistic from the simulated data and determine if the null hypothesis is accepted or 
rejected. Tabulate the number of rejections and use this to calculate the test’s significance 
level.  

3. Generate random samples from the distributions specified by the alternative hypothesis. 
Calculate the test statistics from the simulated data and determine if the null hypothesis is 
accepted or rejected. Tabulate the number of rejections and use this to calculate the test’s 
power.  

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated 
data leads to a rejection of the null hypothesis. The significance level is the proportion of 
simulated samples in step 2 that lead to rejection. The power is the proportion of simulated 
samples in step 3 that lead to rejection.  

How Large Should the Simulation Be? 
As the number of simulations is increased, the precision and running time of the simulation will 
be increased also. This section provides a method for estimating of the number simulations 
needed to achieve a given precision.  

Each simulation iteration (or simulation) generates a binary outcome: either the null hypothesis is 
rejected or not. Thus, the significance level and power estimates each follow the binomial 
distribution. This knowledge makes it a simple matter to compute confidence intervals for the 
significance level and power values. 
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The following table gives one-half the width of a 95% confidence interval for the power when the 
estimated value is either 0.50 or 0.95.  
  

 Simulation Half-Width Half-Width 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 
 

Notice that a simulation size of 1000 gives a precision of plus or minus 0.014 when the true 
power is 0.95. Also, as the simulation size is increased beyond 5000, there is only a small amount 
of additional accuracy achieved. Since most sample-size studies require an accuracy of within one 
or two percentage points, simulation sizes from 2000 to 10000 should be ample. 

You are Running Two Simulations 
It is important to realize that when you run a simulation in PASS, you are actually running two 
separate simulations: one to estimate the significance level and the other to estimate the power. 
The significance-level simulation is defined by the input parameters labeled “|H0”. The power 
simulation is defined by the input parameters labeled “|H1”. Even though you have complete 
flexibility as to what distributions you use in each of these simulations, it usually makes sense to 
use the same distributions for both simulations—only changing the values of the means. 

Unequal Standard Deviations 
One of the subtle problems that can make the results of a simulation study misleading is to 
specify unequal standard deviations unknowingly when you are investigating another feature, 
such as the amount of skewness. It is well known that if the standard deviations differ (a situation 
called heteroskedasticity), the accuracy of the significance level and power is doubtful. When 
investigating the power of the t or F tests in non-normal situations, care must be taken to insure 
that the standard deviations of the groups remain about the same. Otherwise, the effects of 
skewness and heteroskedasticity cannot be separated. 

Finding the Hypothesized Means 
It is important to set the mean difference of each simulation carefully. In the case of analytic 
formulas, the mean difference is specified easily and directly. Usually, the mean difference is set 
to zero under the null hypothesis and to a non-zero value under the alternative hypothesis. You 
must make certain that you follow this pattern when setting up a simulation. 

For most distributions, the means are set explicitedly (the exception is the multinomial 
distribution, where this is impossible). Hence, for both the null and alternative simulations, it is 
relatively simple to calculate the mean difference. You must do this! We will now present two 
examples showing how this is done. 
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For the first example, consider the case of a simulation being run to compare two independent 
group means using the two-sample t-test. Suppose the PASS setup is as follows. Note that N(40 
2) stands for a normal distribution with a mean of 40 and a standard deviation of 2. 
 

  Mean Value 
Distribution PASS Input of Simulated Data 
Group 1 Distribution | H0  N(40 2) 40.0  
Group 2 Distribution | H0  N(40 2) 40.0  
Group 1 Distribution | H1  N(42 2) 42.0 
Group 2 Distribution | H1  N(40 2) 40.0 
 

The mean difference under H0 is 40 – 40 = 0, which is as it should be. The mean difference under 
H1 is 42 – 40 = 2. Hence, the power is being estimated for a mean difference of 2. 

Next we will consider a more complicated example. Suppose the PASS setup is as follows. Note 
that N(40 2)[70];K(0)[30] specifies a mixture distribution made up of 70% from a normal 
distribution with a mean of 40 and a standard deviation of 2 and 30% from a constant distribution 
with a value of 30. 
 

  Mean Value 
Distribution PASS Input of Simulated Data 
Group 1 Distribution | H0 N(40 2) [70];K(0)[30] 40(0.7) + 30(0.3) = 37.0 
Group 2 Distribution | H0 N(40 2) [70];K(0)[30] 40(0.7) + 30(0.3) = 37.0 
Group 1 Distribution | H1 N(42 2) [70];K(0)[30]  42(0.7) + 30(0.3) = 38.4 
Group 2 Distribution | H1 N(40 2) [70];K(0)[30]  40(0.7) + 30(0.3) = 37.0 
 

The mean difference under H0 is 37.0 – 37.0 = 0, which is as it should be for the null hypothesis. 
The mean difference under H1 is 38.4 – 37.0 = 1.4. Hence, the power is being estimated by 
simulation for a mean difference of 1.4. 

You must always be aware of what the mean differences are under both the null and alternative 
hypotheses. 

Adjusting the Significance Level 
When faced with the task of designing an experiment that will have a specific significance level 
for a situation that does not meet the usual assumptions, there are several possibilities.  

1. A statistician could be hired to find an appropriate testing procedure.  

2. A nonparametric test could be run that (hopefully) corrects for the implausible 
assumptions.  

3. The regular parametric test could be run, relying on the test’s ‘robustness’ to correct for 
the implausible assumptions. 

4.  A simulation study could be conducted to determine an appropriate adjustment to the 
significance level so that the actual significance level is at the required value. 

We will now present an example of how to do the simulation adjustment alluded to in item 4, 
above.  

The two-sample t-test is known to be robust to the violation of some assumptions, but it is 
susceptible to inaccuracies when the data contain outliers. A mixture of two normal distributions 
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will be used to generate data with outliers. The mixture will draw 95% of the data from a normal 
distribution with a mean of 0 and a standard deviation of 1. The other 5% of the data will come 
from a normal distribution with a mean of zero and a standard deviation of 10. A simulation study 
using 10,000 iterations and a sample size of 100 per group produced the following results when 
the nominal significance level was set to 0.05. 
 

  Lower 95% Upper 95%  
Nominal Actual Confidence Confidence  
Alpha Alpha Limit Limit Power 
0.050 0.045 0.041 0.049 0.816 
0.055 0.051 0.047 0.055 0.843 
0.060 0.057 0.053 0.062 0.835 
 

The actual alpha level of the t-test is 0.045, which is below the target value of 0.50. When the 
nominal alpha level is increased to 0.055, the actual alpha is 0.051—close to the desired level of 
0.05. Hence, an adjustment could be applied as follows. Analyze the data with the two-sample t-
test even though they contain outliers. However, instead of using an alpha of 0.050, use an alpha 
of 0.055. When this is done, the simulation shows that the actual alpha will be at the desired 0.05 
level. 

There is one limitation to this method: the resulting test procedure is not necessarily efficient. 
That is, it may be possible to derive a testing procedure that is more efficient (requires a smaller 
sample size to achieve the same power). For example, in this example, a test based on the 
trimmed mean may be more efficient in the presence of outliers. However, if you do not have the 
time or ability to derive an alternative test, this adjustment allows you to obtain reasonable testing 
procedure that achieves a desired significance level and power.  
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Chapter 100 

Inequality Tests 
for One Proportion 
Introduction 
The One-Sample Proportion Test is used to assess whether a population proportion is 
significantly different from a hypothesized value. This is called the hypothesis of inequality. The 
hypotheses may be stated in terms of the proportions, their difference, their ratio, or their odds 
ratio.  

For example, suppose that the current treatment for a disease cures 62% of all cases. A new 
treatment method has been proposed and studied. In a sample of 80 subjects with the disease that 
were treated with the new method, 63 were cured. Do the results of this study support the claim 
that the new method has a higher response rate than the existing method? 

This procedure calculates sample size and statistical power for testing a single proportion using 
either exact or approximate tests. Results are based on exact calculations using the binomial and 
hypergeometric distributions. Because the analysis of several different test statistics is available, 
their statistical power may be compared to find the most appropriate test for a given situation. 

Some sample size programs use the normal approximation to the binomial distribution for power 
and sample size estimates. This approximation is useful for rough hand calculations, but more 
accurate results are easily obtainable with today’s software. When the normal approximation to 
the binomial is used, issues such as the need for continuity correction come into play. We avoid 
these issues by calculating exact results. Programs that use these approximations will often give 
different answers. Our calculations are exact, not approximate. 

Four Procedures Documented Here 
There are four procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, ratios of proportions, and odds ratios. Each 
of these options is listed separately on the menus.  
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Binomial Model 
A binomial variable should exhibit the following four properties:  

1. The variable is binary --- it can take on one of two possible values. 

2. The variable is observed a known number of times. Each observation or replication is called 
a Bernoulli trial. The number of replications is n. The number of times that the outcome of 
interest is observed is r. Thus r takes on the possible values 0, 1, 2, ..., n. 

3. The probability, P, that the outcome of interest occurs is constant for each trial.  

4. The trials are independent. The outcome of one trial does not influence the outcome of 
the any other trial. 

A binomial probability is calculated using the formula 
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The Hypergeometric Model 
When samples are taken without replacement from a population of known size, N, the 
hypergeometric distribution should be used in place of the binomial distribution. The properties of a 
variable that is distributed according to the hypergeometric distribution are  

1. The variable is binary--it can take on one of two possible values.  

2. The variable is observed a known number of times. Each observation or replication is called 
a Bernoulli trial. The number of replications is n. The number of times that the outcome of 
interest is observed is r. Thus r takes on the possible values 0, 1, 2, ..., n. 

3. The total number of items is N. The proportion of items with the characteristic of interest 
is P.  

The hypergeometric probability of obtaining exactly r of n items with the characteristic of interest 
is calculated using 
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Note that the quantity NP is rounded to the nearest integer. 
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Hypothesis Testing 

Steps to Calculate Power 
The testing procedure is as follows. Let P represent the true probability that an item selected at 
random from a population will have a characteristic of interest.  

1.  State the Hypotheses 
H0 is the null hypothesis that the proportion is P0.  

H1 is the alternative hypothesis that the proportion is P1. 

Three sets of statistical hypotheses may be formulated: 

1.  versus 0:0 PPH = 01:1 PPPH ≠= . This hypothesis results in a two-tailed test. 

2.  versus 0:0 PPH ≤ 01 PPPH >:1 = . This hypothesis results in a one-tailed test. 

3.  versus 0:0 PPH ≥ 01:1 PPPH <= . This hypothesis results in a one-tailed test. 

2.  Find the Critical Value 
For an upper-tailed test with a given sample size find the critical value, Pc, based on the binomial 
(or hypergeometric) distribution, so that the probability of rejecting H0 when H0 is true is equal 
to a specified significance level,α .  

3.  Evaluate the Sample 
Select a sample of n items from the population and compute the sample proportion, p = r / n. If p 
> Pc then reject the null hypothesis that P = P0 in favor of an alternative hypothesis that P = P1 > 
P0.  

4.  Calculate the Power 
The power is the probability of rejecting H0 when the true proportion is P1. That is, the power is 
the probability that p > Pc calculated from a binomial (or hypergeometric) distribution in which P 
= P1. 

Similar steps are used for the lower-tail and two-tailed tests. 

Test Statistics 
Many different test statistics have been proposed for testing a single proportion. Most of these were 
proposed before computers or hand calculators were widely available. Although these legacy 
methods are still presented in textbooks, their power and accuracy should be compared against 
modern exact methods before they are adopted for serious research. To make this comparison easy, 
the power and significance of several tests of a single proportion are available in this procedure.  

Exact Binomial Test 
The test statistic is r, the number of successes in n trials. This test should be the standard against 
which other test statistics are judged. The significance level and power are computed by 
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enumerating the possible values of r, computing the probability of each value, and then 
computing the corresponding value of the test statistic. Hence the values that are reported in the 
output for these tests are exact, not approximate.  

Z Test 
Several z statistics have been proposed that use the central limit theorem. This theorem states that for 
large sample sizes, the distribution of the z statistic is approximately normal. All of these tests take 
the following form:  

z p P
=

s
− 0

 

Although these z tests were developed because the distribution of z is approximately normal in 
large samples, the actual significance level and power can be computed exactly using the 
binomial distribution.  

We include four z tests which are based on two methods for computing s and whether a continuity 
correction is applied.  

Z Test using S(P0) 
This test statistic uses the value of P0 to compute s. 
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Z Test using S(P0) with Continuity Correction 
This test statistic is similar to the one above except that a continuity correction is applied to make the 
normal distribution more closely approximate the binomial distribution. 

( )
( )

z
p P c

P P n
2

0
0 1 0

=
− +

− /
 

where 

c
n

n
p P

p P
n

= <

− <

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

2
1

2
0

0 0 1
2

if

if

( )

p P−
>⎧ 1 0if

 

Z Test using S(P-hat) 
This test statistic uses the value of p to compute s. 
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Z Test using S(P-hat) with Continuity Correction 
This test statistic is similar to the one above except that a continuity correction is applied to make the 
normal distribution more closely approximate the binomial distribution.  
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T Test 
The one-sample t-test may be applied to this design. This is accomplished by considering the n trials 
as the outcomes of a numeric variable in which a success is coded as a ‘1’ and a failure is coded as a 
‘0’. The standard t-test may then be computed on these data values. 

Parameterizations of the Proportions  
There are several ways to specify the proportions under the null and the alternative hypotheses. 
The most direct is to simply give values for P0 and P1. However, it is often more meaningful to 
specify P0 and then specify the alternative as the difference, the ratio, or the odds ratio. The value 
of P1 is calculated from these values. 

Mathematically, these alternative parameterizations are 

Parameter Computation 
= −P P1 0δDifference   

φ = P P1 0/  Ratio 

Odds Ratio ψ = =
P Q
P Q

P Q
P Q

1 1
0 0

1 0
0 1

/
/

 

Difference 
δThe (risk) difference, = −P P1 0 , is perhaps the most direct method of comparison between 

the two proportions. This parameter is easy to interpret and communicate. It gives the absolute 
impact of the treatment. However, there are subtle difficulties that can arise with its 
interpretation. 

One interpretation difficulty occurs when the event of interest is rare. If a difference of 0.001 is 
reported for an event with a baseline probability of 0.40, we would dismiss this as being trivial. 
That is, there is usually little interest in a treatment that decreases the probability from 0.400 to 
0.399. However, if the baseline probability of a disease is 0.002, a 0.001 decrease in the disease 
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probability would represent a reduction of 50%. The interpretation depends on the baseline 
probability of the event. 

Ratio 
φThe (risk) ratio, = P P1 0/ , gives the relative change in the probability of the outcome under 

each of the hypothesized values. This parameter is direct and easy to interpret. To compare the 
ratio with the difference, examine the case where P0 = 0.1437 and P1 = 0.0793. One should 
consider which number is more enlightening, the difference of -0.0644, or the ratio of 55.18%. In 
many cases, the ratio communicates the change in proportion in a manner that is more appropriate 
than the difference. 

Odds Ratio 
Chances are usually communicated as long-term proportions or probabilities. In betting, chances 
are often given as odds. For example, the odds of a horse winning a race might be set at 10-to-1 
or 3-to-2. Odds can easily be translated into probability. An odds of 3-to-2 means that the event is 
expected to occur three out of five times. That is, an odds of 3-to-2 (1.5) translates to a 
probability of winning of 0.60.  

The odds of an event are calculated by dividing the event risk by the non-event risk. Thus the 
odds are 
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For example, if P1 is 0.60, the odds are 0.60/0.4 = 1.5. Rather than represent the odds as a 
decimal amount, it is re-scaled into whole numbers. Thus, instead of saying the odds are 1.5-to-1, 
we say they are 3-to-2. 

Thus, another way to compare proportions is to compute the ratio of their odds. The odds ratio of 
two proportions is 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs, go to the Procedure Window chapter. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and power. This chapter covers four procedures, each of which has different options. 
This section documents options that are common to all four procedures. Later, unique options for 
each procedure will be documented. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for using the other parameters. The parameters 
that may be selected are P0, P1, Alpha, Power and Beta, and n. Under most situations, you will 
select either Power and Beta or n. 

Select n when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. For this procedure, a type-I error occurs when you reject 
the null hypothesis of equal proportions when in fact they are equal. 

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation. 

Note that because of the discrete nature of the binomial distribution, the alpha level rarely will be 
achieved exactly. 

A single value may be entered here or a range of values such as 0.05 to 0.2 by 0.05 may be 
entered. 
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Sample Size 

n (Sample Size)  
This option specifies the total number of observations in the sample. Values must be integers 
greater than one. 

You may enter a single value or a range of values such as 10, 50, 100 or 10 to 100 by 10. 

Effect Size 

P0 (Null Proportion) 
Enter a value (or range of values) for the population proportion under the null hypothesis, P0. 
This is the baseline proportion, the proportion that exists in the general population. The 
proportion estimated from the data will be compared to this value by the statistical test. 

Proportions must be between zero and one. 

You may enter a single value or a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1. 

Test 

Test Type 
Specify the type of test that will be used in reporting. Note that C.C. is short for Continuity 
Correction. This refers to the adding or subtracting 1/(2n) to (or from) the numerator of the z-
value to bring the normal approximation closer to the binomial distribution. 

In most situations, you would select the ‘Exact Test’ option. The other options are provided for 
comparative purposes. 

N (Population Size)  
Enter the total number of items in the population from which the sample of n items is selected. 
Enter Infinite to signify an infinite population so that no correction factor is applied. An infinite 
population is generally one in which the number in the population is large and unknown. 

Note that N must be greater than n. 

When samples are drawn from a very large (infinite) population, calculations are based on the 
binomial distribution. 

When samples are drawn from a population of known size, specified here as N, calculations are 
based on the hypergeometric distribution. 
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Data Tab (Proportions) 
This section documents options that are used when the parameterization is in terms of the 
alternative proportion, P1. P0 is the value of the proportion assumed by the null hypothesis and 
P1 (or P) is the value of the proportion at which the power is calculated. 

Effect Size 

P1 (Alternative Proportion) 
Enter a value (or range of values) for the value of the binomial proportion at which the power is 
calculated. This is labeled P1 on the screen. Power calculations assume that this is the true value 
of the proportion. 

This value cannot be equal to P0 since, by definition, it must be an alternative. 

Test 

H1 (Alternative Hypothesis) 
This option specifies the alternative hypothesis, H1. This implicitly specifies the direction of the 
hypothesis test. Note that the null hypothesis, H0, is the opposite of H1.   

P represents the actual value of the proportion and P0 represents the specific value of the 
proportion assumed by the null hypothesis, H0. 

Possible selections are 

• H1: P <> P0 
This is the most common selection. It yields the two-tailed test. Use this option when you are 
testing whether the proportions are different, but you do not want to specify beforehand 
which proportion is larger. By tradition, most studies are two-tailed unless there is a strong 
reason to make them one-tailed. 

• H1: P < P0 
This option yields a one-tailed test. 

• H1: P > P0 
This option also yields a one-tailed test. 



100-10  Inequality Tests for One Proportion 

Data Tab (Differences) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P0. P0 is the value of the proportion assumed by the null hypothesis and P1 (or 
P) is the value of the proportion at which the power is calculated. Once P0 and the difference are 
given, the value of P1 is found by the formula: P1 = difference + P0. 

Effect Size 

Alternative Difference (P1-P0) 
This option implicitly specifies the value of P1 (the proportion at which the power is calculated) 
by explicitly specifying the difference. The difference is used with P0 to calculate the value of P1 
using the formula, P1 = diff + P0.  

Since P1 is a proportion, the difference must be between –P0 and 1 – P0. By definition, the 
difference cannot be zero since P1 is an ‘alternative’ to P0. 

A single value or a range of values may be entered here. 

Test 

H1 (Alternative Hypothesis) 
This option specifies the alternative hypothesis, H1. This implicitly specifies the direction of the 
hypothesis test. Note that the null hypothesis, H0, is the opposite of H1.   

Possible selections are 

• H1: Difference <> 0 
This is the most common selection. It yields the two-tailed test. Use this option when you are 
testing whether the proportions are different, but you do not want to specify beforehand 
which proportion is larger. By tradition, most studies are two-tailed unless there is a strong 
reason to make them one-tailed. 

• H1: Difference < 0 
This option yields a one-tailed test.  

• H1: Difference > 0 
This option also yields a one-tailed test. 
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Data Tab (Ratios) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P0. P0 is the value of the proportion assumed by the null hypothesis and P1 (or P) is the 
value of the proportion at which the power is calculated. Once P0 and the ratio are given, the 
value of P1 is found by the formula: P1 = (P0) x (ratio). 

Effect Size 

Alternative Ratio (P1/P0) 
This option implicitly specifies the value of P1 (the proportion at which the power is calculated) 
by explicitly specifying the ratio. The ratio is used with P0 to calculate the value of P1 using the 
formula, P1 = (P0) x (ratio).  

Since P1 is a proportion, the ratio must be between 0 and 1 / P0. By definition, the ratio cannot be 
one since P1 is an ‘alternative’ to P0. 

A single value or a range of values may be entered here. 

Test 

H1 (Alternative Hypothesis) 
This option specifies the alternative hypothesis, H1. This implicitly specifies the direction of the 
hypothesis test. Note that the null hypothesis, H0, is the opposite of H1.   

Possible selections are 

• H1: Ratio <> 1 
This is the most common selection. It yields the two-tailed test. Use this option when you are 
testing whether the proportions are different, but you do not want to specify beforehand 
which proportion is larger. By tradition, most studies are two-tailed unless there is a strong 
reason to make them one-tailed. 

• H1: Ratio < 1 
This option yields a one-tailed test.  

• H1: Ratio > 1 
This option also yields a one-tailed test. 
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Data Tab (Odds Ratios) 
This section documents options that are used when the parameterization is in terms of the odds 
ratio, O1 / O0 where O1 = P1 / (1 – P1) and O0 = P0 / (1 – P0). P0 is the value of the proportion 
assumed by the null hypothesis and P1 (or P) is the value of the proportion at which the power is 
calculated. Once P0 and the odds ratio are given, the value of P1 is found by the formula P1 = A / 
(1 + A) where A = (O0) x (odds ratio). 

Effect Size 

Alternative Odds Ratio (O1/O0) 
This option implicitly specifies the value of P1 (the proportion at which the power is calculated) 
by explicitly specifying the odds ratio. Since P1 is a proportion, the odds ratio must be greater 
than zero. By definition, the odds ratio cannot be one since P1 is an ‘alternative’ to P0. 

A single value or a range of values may be entered here. 

Test 

H1 (Alternative Hypothesis) 
This option specifies the alternative hypothesis, H1. This implicitly specifies the direction of the 
hypothesis test. Note that the null hypothesis, H0, is the opposite of H1.   

Possible selections are 

• H1: Odds Ratio <> 1 
This is the most common selection. It yields the two-tailed test. Use this option when you are 
testing whether the proportions are different, but you do not want to specify beforehand 
which proportion is larger. By tradition, most studies are two-tailed unless there is a strong 
reason to make them one-tailed. 

• H1: Odds Ratio < 1 
This option yields a one-tailed test.  

• H1: Odds Ratio > 1 
This option also yields a one-tailed test. 

Iterations Tab 
The Iterations tab allows for specification of the maximum number of iterations to be used in 
searches. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. 
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Example 1 – Finding the Power 
Suppose 50% of patients with a certain type of cancer survive five years. Researchers have 
developed a new treatment to increase the percentage of individuals that survive five years. 
Although the researchers do not know the true percentage of patients that will survive with the 
new treatment, they would like to examine the power that is achieved if the percentage under the 
new treatment is 60%. The power will be determined for trials with sample sizes of 50, 100, 200, 
300, 500, or 800 and a significance level of 0.05. For comparative purposes, the power is also to 
be calculated for alternative proportions of 55% and 65%. 

This is an example of a historically controlled trial. Historically controlled means that no control 
group is formed for the current study. Instead, the rates reported from previous studies or that are 
known to exist in the general population are used. Because of the many advantages that occur 
when an actual control group is used, historically controlled trials should only be used when a 
control group is either impossible to obtain or unethical. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Proportion [Proportions] 
procedure window by clicking on Proportions, then One Proportion, then Inequality Tests, 
then Specify using Proportions. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example1 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power or Beta ......................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size).......................................50 100 200 300 500 800 
P0 (Null Proportion).................................0.50 
P1 (Alternative Proportion)......................0.55 0.60 0.65 
H1 (Alternative Hypothesis) ....................H1: P <> P0 
Test Type ................................................Exact Test 
N (Population) ......................................... Infinite 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H0: P = P0 versus H1: P = P<>P0 
Test Statistic: Exact Test 
 
  Proportion Proportion 
  Given H0 Given H1 Target Actual  Reject H0 If 
Power N (P0) (P1) Alpha Alpha Beta <=R|>=R 
0.0788 50 0.5000 0.5500 0.0500 0.0328 0.9212 17|33  
0.1352 100 0.5000 0.5500 0.0500 0.0352 0.8648 39|61  
0.2620 200 0.5000 0.5500 0.0500 0.0400 0.7380 85|115  
0.3867 300 0.5000 0.5500 0.0500 0.0431 0.6133 132|168  
0.5895 500 0.5000 0.5500 0.0500 0.0441 0.4105 227|273  
0.7932 800 0.5000 0.5500 0.0500 0.0438 0.2068 371|429 
0.2371 50 0.5000 0.6000 0.0500 0.0328 0.7629 17|33  
0.4621 100 0.5000 0.6000 0.0500 0.0352 0.5379 39|61  
0.7868 200 0.5000 0.6000 0.0500 0.0400 0.2132 85|115  
0.9291 300 0.5000 0.6000 0.0500 0.0431 0.0709 132|168  
0.9937 500 0.5000 0.6000 0.0500 0.0441 0.0063 227|273  
0.9999 800 0.5000 0.6000 0.0500 0.0438 0.0001 371|429  
0.5060 50 0.5000 0.6500 0.0500 0.0328 0.4940 17|33  
0.8276 100 0.5000 0.6500 0.0500 0.0352 0.1724 39|61  
0.9884 200 0.5000 0.6500 0.0500 0.0400 0.0116 85|115  
0.9995 300 0.5000 0.6500 0.0500 0.0431 0.0005 132|168  
1.0000 500 0.5000 0.6500 0.0500 0.0441 0.0000 227|273 
1.0000 800 0.5000 0.6500 0.0500 0.0438 0.0000 371|429  
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the size of the sample drawn from the population. To conserve resources, it should be small. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
P0 is the value of the population proportion under the null hypothesis. 
P1 is the value of the population proportion under the alternative hypothesis. 
 
Summary Statements 
A sample size of 50 achieves 8% power to detect a difference (P1-P0) of 0.0500 using a 
two-sided binomial test. The target significance level is 0.0500. The actual significance level 
achieved by this test is 0.0328. These results assume that the population proportion under the 
null hypothesis is 0.5000. 
 

This report shows the values of each of the parameters, one scenario per row. Because of the 
discrete nature of the binomial distribution, the stated (Target) alpha is usually greater than the 
actual alpha. Hence, we also show the Actual Alpha along with the rejection region.  
The symbol, R, stands for the number of items with the characteristic of interest out of the n items 
sampled. Hence, for the scenario presented on the first line, an exact test does not exist for these 
parameters at the target alpha of 0.05. The closest that can be achieved is an alpha of 0.0328. In 
this case, we would reject the null hypothesis in any sample of size 50 in which the count of 
individuals with the characteristic of interest is less than or equal to 17 or greater than or equal to 
33. 
The values from this table are plotted in the chart below.  
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Plots Section 
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This plot shows the relationship between power, sample size, and P1 in this example. We note 
that 80% power is achieved with a sample size of about 200 when P1 is 0.60, which was the 
specific value of interest. 

Example 2 – Finding the Sample Size 
Continuing with Example 1, suppose you want to study the impact of various choices for P1 on 
sample size. Using a significance level of 0.05 and 90% power, find the sample size when P1 is 
0.55, 0.60, 0.65, 0.70, 0.75, and 0.80. Assume that an exact, two-tailed binomial test will be used. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Proportion [Proportions] 
procedure window by clicking on Proportions, then One Proportion, then Inequality Tests, 
then Specify using Proportions. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example2 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................n 
Power or Beta .........................................0.90 
Alpha .......................................................0.05 
n (Sample Size)....................................... Ignored since this is the Find setting 
P0 (Null Proportion).................................0.50 
P1 (Alternative Proportion)......................0.55 to 0.80 by 0.05 
H1 (Alternative Hypothesis) ....................H1: P <> P0 
Test Type ................................................Exact Test 
N (Population) ......................................... Infinite 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H0: P = P0 versus H1: P <>P0 
 
  Proportion Proportion 
  Given H0 Given H1 Target Actual  Reject H0 If 
Power N (P0) (P1) Alpha Alpha Beta <=R|>=R 
0.9003 1055 0.5000 0.5500 0.0500 0.0487 0.0997 495|560  
0.9022 263 0.5000 0.6000 0.0500 0.0483 0.0978 115|148  
0.9015 114 0.5000 0.6500 0.0500 0.0487 0.0985 46|68  
0.9100 65 0.5000 0.7000 0.0500 0.0464 0.0900 24|41  
0.9195 42 0.5000 0.7500 0.0500 0.0436 0.0805 14|28  
0.9100 28 0.5000 0.8000 0.0500 0.0357 0.0900 8|20  
 

This report shows the sample sizes corresponding to various values of P1. Notice that a sample 
size of only 28 is needed to detect the difference between 0.5 and 0.8, but a sample size of 1055 is 
needed to detect a difference between 0.50 and 0.55. 

Example 3 – Investigating the Saw-Tooth Power 
Function 
After releasing the first version of PASS, we received many inquiries about the strange shape of 
the relationship between power and sample size when testing a single proportion using the exact 
binomial test. This example will show why this strange shape occurs.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Proportion [Proportions] 
procedure window by clicking on Proportions, then One Proportion, then Inequality Tests, 
then Specify using Proportions. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example3 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power or Beta .........................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size).......................................51 to 60 by 1 
P0 (Null Proportion).................................0.60 
P1 (Alternative Proportion)......................0.70 
H1 (Alternative Hypothesis) ....................H1: P <> P0 
Test Type ................................................Exact Test 
N (Population Size) .................................Infinite 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for H0: P = P0 versus H1: P <>P0 
  Proportion Proportion 
  Given H0 Given H1 Target Actual  Reject H0 If 
Power N (P0) (P1) Alpha Alpha Beta <=R|>=R 
0.2966 51 0.6000 0.7000 0.0500 0.0443 0.7034 23|38  
0.2669 52 0.6000 0.7000 0.0500 0.0328 0.7331 23|39  
0.2393 53 0.6000 0.7000 0.0500 0.0348 0.7607 24|40  
0.3124 54 0.6000 0.7000 0.0500 0.0371 0.6876 24|40  
0.2828 55 0.6000 0.7000 0.0500 0.0379 0.7172 25|41  
0.2549 56 0.6000 0.7000 0.0500 0.0281 0.7451 25|42  
0.3277 57 0.6000 0.7000 0.0500 0.0417 0.6723 26|42  
0.2981 58 0.6000 0.7000 0.0500 0.0314 0.7019 26|43  
0.2701 59 0.6000 0.7000 0.0500 0.0327 0.7299 27|44  
0.3423 60 0.6000 0.7000 0.0500 0.0354 0.6577 27|44  
 

This report shows the values of each of the parameters, one scenario per row. The values from 
this table are plotted in the chart below.  

Plots Section 
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Notice that the power decreases as n increases from 51 to 52 and continues to decrease as n 
increases to 53. Usually, the power increases as the sample size increases. 
To understand why this happens, look at the last column and at the Actual Alpha column. Note 
that at n = 51, the actual alpha is 0.0443 and at n = 52, the actual alpha has decreased to 0.0328. 
Remember that as alpha decreases, power decreases as well. Hence, increasing the sample size 
from 51 to 52 was not enough to counterbalance the effect on power of a decrease in alpha from 
0.04428 to 0.03281. Hence, the power drops from 0.29656 to 0.26688. 
This phenomenon usually occurs for relatively small values of n.  
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Example 4 – Step by Step Calculations 
In this example, we will take you step by step through the calculations necessary to compute the 
power of a specific scenario. We will set n = 10, P0 = 0.50, P1 = 0.80, and alpha = 0.05. We will 
compute the power of the two-tailed test.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Proportion [Proportions] 
procedure window by clicking on Proportions, then One Proportion, then Inequality Tests, 
then Specify using Proportions. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example4 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power or Beta .........................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size).......................................10 
P0 (Null Proportion).................................0.5 
P1 (Alternative Proportion)......................0.8 
H1 (Alternative Hypothesis) ....................H1: P <> P0 
Test Type ................................................Exact Test 
N (Population Size) .................................Infinite 

Reports Tab 
Numeric Report Probability Decimals .....6 
Report and Plot Proportion Decimals......6 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H0: P = P0 versus H1: P <>P0. 
  Proportion Proportion 
  Given H0 Given H1 Target Actual  Reject H0 If 
Power N (P0) (P1) Alpha Alpha Beta <=R|>=R 
0.375814 10 0.500000 0.800000 0.050000 0.021484 0.624186 1|9 

 

We will now proceed through the calculations necessary to compute this power value.  
We first construct a table of binomial probabilities for n = 10 and p = 0.5 using the formula 

( ) ( )b r
r

r r; , . . .10 0 5
10

0 5 1 0 5 10=
⎛
⎝
⎜

⎞
⎠
⎟ − −  
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Binomial Probabilities for n = 10 and p = 0.5 
R Prob(r = R) Cumulative Total  1 – Cumulative Total 
0 0.000977 0.000977 0.999023 
1 0.009766 0.010742 0.989258 
2 0.043945 0.054688 0.945313 
3 0.117188 0.171875 0.828125 
4 0.205078 0.376953 0.623047 
5 0.246094 0.623047 0.376953 
6 0.205078 0.828125 0.171875 
7 0.117188 0.945313 0.054688 
8 0.043945 0.989258 0.010742 
9 0.009766 0.999023 0.000977 
10 0.000977 1.000000 0.000000 
 

When we construct a two-tailed test, we split the alpha value evenly between the two tails. Hence, 
we place α / 2  (or 0.025) in each tail. Moving down from the top, we find that the cumulative 
probability is 0.010742 for R = 1 and 0.054688 for R = 2. Since 0.054688 is greater than 0.025, 
we adopt R = 1 as our lower rejection value. Likewise, we find that R = 9 is the upper rejection 
value. 

Our testing strategy is 

1.  Draw a sample of 10 items and count the number with the characteristic of interest. Call 
this value r. 

2.  If r = 0, 1, 9, or 10, reject the null hypothesis that p = 0 5.  in favor of the alternative 
hypothesis that p ≠ 0 5. . 

Now, to compute the power for P1 = 0.8, we must compute another table of binomial 
probabilities, this time for p = 0.8 using the formula. 

( ) ( )b r
r

r r; , . . .10 0 8 0 8 1 0 8 10=
⎝
⎜

⎠
⎟ − −10⎛ ⎞

 

 

Binomial Probabilities for n = 10 and p = 0.8 
R Prob(r = R) Cumulative Total  1 - Cumulative Total 
0 0.000000 0.000000 1.000000 
1 0.000004 0.000004 0.999996 
2 0.000074 0.000078 0.999922 
3 0.000786 0.000864 0.999136 
4 0.005505 0.006369 0.993631 
5 0.026424 0.032793 0.967207 
6 0.088080 0.120874 0.879126 
7 0.201327 0.322200 0.677800 
8 0.301990 0.624190 0.375810 
9 0.268435 0.892626 0.107374 
10 0.107374 1.000000 0.000000 
 

The power is the probability of rejecting the null hypothesis. This occurs when r = 0, 1, 9, or 10. 
From the above table, we compute the power as 0.000000 + 0.000004 + 0.268435 + 0.107374 = 
0.375813. This matches the calculated power value as displayed in the results above to within 
rounding error. 
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Example 5 – Validation using Zar 
Zar (1984) page 388 gives the results of a power analysis. When n = 12, P0 = 0.50, P1 = 0.83, and 
alpha = 0.05 using a one-sided test, Zar reports a power of 0.666.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Proportion [Proportions] 
procedure window by clicking on Proportions, then One Proportion, then Inequality Tests, 
then Specify using Proportions. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example5 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power or Beta .........................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size).......................................12 
P0 (Null Proportion).................................0.5 
P1 (Alternative Proportion)......................0.83 
H1 (Alternative Hypothesis) ....................H1: P>P0 
Test Type ................................................Exact Test 
N (Population Size) .................................Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for H0: P = P0 versus Ha: P = P1>P0 
 
  Proportion Proportion 
  Given H0 Given H1 Target Actual  Reject H0 
Power N (P0) (P1) Alpha Alpha Beta If R>=This 
0.6656 12 0.5000 0.8300 0.0500 0.0193 0.3344 10 
 

PASS calculated the power as 0.6656, which agrees with Zar’s value of 0.666.  
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Example 6 – Comparing Test Statistics 
One important decision that must be made before conducting the experiment is to decide which of 
the available test statistics to use. This procedure makes it easy to make this comparison. The 
parameter settings will be set as they were in Example 1 except that the alternative proportion is 
set to 0.60 and the sample sizes are 10, 11, 12, 25, 50, and 70.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Proportion [Proportions] 
procedure window by clicking on Proportions, then One Proportion, then Inequality Tests, 
then Specify using Proportions. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example6 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power or Beta ......................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size).......................................10 11 12 25 50 70 
P0 (Null Proportion).................................0.50 
P1 (Alternative Proportion)......................0.60 
H1 (Alternative Hypothesis) ....................H1: P <> P0 
Test Type ................................................Exact Test 
N (Population Size) ................................. Infinite 

Reports Tab 
Show Comparative Reports ....................Checked 
Show Comparative Plots.........................Checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Power Comparison for Methods of Testing H0: P = P0 versus H1: P <> P0 
 
    Exact Z-Test Z-Test Z-Test Z-Test   
    Test S(P0) S(P0)C S(P) S(P)C T-Test  
N P0 P1 Alpha Power Power Power Power Power Power  
10 0.5000 0.6000 0.0500 0.0480 0.0480 0.0480 0.1796 0.1796 0.0480  
11 0.5000 0.6000 0.0500 0.0310 0.1248 0.0310 0.1248 0.1248 0.1248  
12 0.5000 0.6000 0.0500 0.0863 0.0863 0.0863 0.2406 0.0863 0.0863  
25 0.5000 0.6000 0.0500 0.1548 0.1548 0.1548 0.1548 0.1548 0.1548  
50 0.5000 0.6000 0.0500 0.2371 0.3361 0.2371 0.3361 0.2371 0.3361  
70 0.5000 0.6000 0.0500 0.3601 0.3601 0.3601 0.4549 0.3601 0.3601  
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Actual Alpha Comparison for Methods of Testing H0: P = P0 versus H1: P <> P0 
 
    Exact Z-Test Z-Test Z-Test Z-Test   
   Target Test S(P0) S(P0)C S(P) S(P)C T-Test  
N P0 P1 Alpha Alpha Alpha Alpha Alpha Alpha Alpha  
10 0.5000 0.6000 0.0500 0.0215 0.0215 0.0215 0.1094 0.1094 0.0215  
11 0.5000 0.6000 0.0500 0.0117 0.0654 0.0117 0.0654 0.0654 0.0654  
12 0.5000 0.6000 0.0500 0.0386 0.0386 0.0386 0.1460 0.0386 0.0386  
25 0.5000 0.6000 0.0500 0.0433 0.0433 0.0433 0.0433 0.0433 0.0433  
50 0.5000 0.6000 0.0500 0.0328 0.0649 0.0328 0.0649 0.0328 0.0649  
70 0.5000 0.6000 0.0500 0.0414 0.0414 0.0414 0.0722 0.0414 0.0414  
 
 
Chart Section 
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An examination of the first report shows that for most sample sizes, the power is different for at 
least one of the tests. Also, notice that the exact test always has the minimum power in each row. 
This would lead us discard this test statistic. However, consider the second report, which shows 
the actual alpha level (the target was 0.05) for each test. By inspecting corresponding entries in 
both tables, we can see that whenever a test statistic achieves a better power than the exact test, it 
also exceeds the target alpha. For example, look at the powers for n = 12. The z test using s(p hat) 
has an unusually large power of 0.2406. This is a much larger power than the exact test’s value of 
0.0863. However, note that the actual alpha level for this test is 0.1460, which is much higher 
than the target of 0.05 and the actual value of the other tests, which is 0.0386. 
We conclude that indeed, the exact test is consistently the best test since it always achieves a 
significance level that is less than the target value. 
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Example 7 – Finding the Power using Ratios 
Suppose that only 5% of patients with an aggressive type of cancer respond to the standard 
treatment.  Researchers have found a new treatment which could be widely used if the percentage 
of patients responding is at least 0.5 times greater than the proportion responding to the standard 
treatment, i.e. P1 = 1.5(P0), or in terms of ratios, P1/P0 = 1.5. What power will be achieved for 
trials with sample sizes of 200, 300, 500, or 800 and a significance level of 0.05? For comparative 
purposes, also calculate the power for alternative ratios of 1.25 and 1.75. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Proportion [Ratios] procedure 
window by clicking on Proportions, then One Proportion, then Inequality Tests, then Specify 
using Ratios. You may then follow along here by making the appropriate entries as listed below 
or load the completed template Example7 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power or Beta ......................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size).......................................200 300 500 800 
P0 (Null Proportion).................................0.05 
Alternative Ratio (P1/P0).........................1.25 1.50 1.75 
H1 (Alternative Hypothesis) ....................H1: Ratio <> 1 
Test Type ................................................Exact Test 
N (Population Size) ................................. Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for testing H0: P = P0 versus H1: P <> P0 
Test Statistic: Exact Test 
 
  Proportion Proportion 
  Given H0 Given H1 Ratio Target Actual  Reject H0 If 
Power N (P0) (P1) (P1 / P0) Alpha Alpha Beta <=R|>=R 
0.1247 200 0.0500 0.0625 1.2500 0.0500 0.0328 0.8753 3|17 
0.1315 300 0.0500 0.0625 1.2500 0.0500 0.0328 0.8685 7|24 
0.2138 500 0.0500 0.0625 1.2500 0.0500 0.0395 0.7862 15|36 
0.3509 800 0.0500 0.0625 1.2500 0.0500 0.0420 0.6491 27|53 
0.3322 200 0.0500 0.0750 1.5000 0.0500 0.0328 0.6678 3|17 
0.4019 300 0.0500 0.0750 1.5000 0.0500 0.0328 0.5981 7|24 
0.6248 500 0.0500 0.0750 1.5000 0.0500 0.0395 0.3752 15|36 
0.8432 800 0.0500 0.0750 1.5000 0.0500 0.0420 0.1568 27|53 
0.5861 200 0.0500 0.0875 1.7500 0.0500 0.0328 0.4139 3|17 
0.7062 300 0.0500 0.0875 1.7500 0.0500 0.0328 0.2938 7|24 
0.9072 500 0.0500 0.0875 1.7500 0.0500 0.0395 0.0928 15|36 
0.9882 800 0.0500 0.0875 1.7500 0.0500 0.0420 0.0118 27|53 
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This report shows the values of each of the parameters, one scenario per row. Because of the 
discrete nature of the binomial distribution, the stated (Target) alpha is usually greater than the 
actual alpha. Hence, we also show the Actual Alpha along with the rejection region.  
The values from this table are plotted in the chart below.  

Plots Section 
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This plot shows the relationship between power and P1/P0 in this example. We note that 80% 
power is achieved with a sample size of about 720 when P1/P0 is 1.50, which was the specific 
ratio of interest. 
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Example 8 – Determining the Power after Completing an 
Experiment 
A group of researchers is studying the effects of a new diet on cholesterol levels in high-risk 
patients.  The researchers had hypothesized that the cholesterol level would be reduced to a safe 
level in more than 70% of subjects following the new diet.  They are confident that the proportion 
will be no less than 0.70.  To test this one-sided hypothesis, they randomly sampled 200 
individuals with dangerously high cholesterol and put them on the new diet.  After the period of 
the study, the researchers determined that 150 of the 200 patients sampled (75%) had reduced 
their cholesterol level while on the new diet.  Statistical analysis using the exact test and an alpha 
level of 0.05, however, resulted in failure to reject the null hypothesis that the proportion is 0.70.  
The researchers desire now to compute the power of their study for true proportions ranging from 
0.71 to 0.80. 

Note that a range of proportions is considered for power calculations instead of just 0.75, the 
sample proportion found in the experiment.  While it is tempting to use the sample proportion as 
the true proportion in post-experiment power calculations, it is more informative to review a 
range of possible alternatives representing practically significant differences from the null value.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One Proportion [Proportions] 
procedure window by clicking on Proportions, then One Proportion, then Inequality Tests, 
then Specify using Proportions. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example8 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power or Beta ......................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size).......................................200 
P0 (Null Proportion).................................0.70 
P1 (Alternative Proportion)......................0.71 to 0.80 by 0.01 
H1 (Alternative Hypothesis) ....................H1: P > P0 
Test Type ................................................Exact Test 
N (Population Size) ................................. Infinite 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for testi g H0: P = P0 versus H1: P > P0 n
Test Statistic: Exact Test 
 
  Proportion Proportion 
  Given H0 Given H1 Target Actual  Reject H0 
Power N (P0) (P1) Alpha Alpha Beta If R>=This 
0.0675 200 0.7000 0.7100 0.0500 0.0359 0.9325 152  
0.1178 200 0.7000 0.7200 0.0500 0.0359 0.8822 152  
0.1913 200 0.7000 0.7300 0.0500 0.0359 0.8087 152  
0.2894 200 0.7000 0.7400 0.0500 0.0359 0.7106 152  
0.4083 200 0.7000 0.7500 0.0500 0.0359 0.5917 152  
0.5386 200 0.7000 0.7600 0.0500 0.0359 0.4614 152  
0.6673 200 0.7000 0.7700 0.0500 0.0359 0.3327 152  
0.7807 200 0.7000 0.7800 0.0500 0.0359 0.2193 152  
0.8696 200 0.7000 0.7900 0.0500 0.0359 0.1304 152  
0.9310 200 0.7000 0.8000 0.0500 0.0359 0.0690 152  
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Power ranges from 0.0675 for a true proportion of 0.71 to 0.9310 for a true proportion of 0.80. 
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Chapter 105 

Non-Inferiority & 
Superiority Tests 
for One Proportion 
Introduction 
This module provides power analysis and sample size calculation for non-inferiority and 
superiority tests in one-sample designs in which the outcome is binary. Users may choose from 
among six popular test statistics commonly used for running the hypothesis test.  

The details of sample size calculation for the one-sample design for binary outcomes are 
presented in the chapter Inequality Tests for One Proportion and they will not be duplicated here. 
Instead, this chapter focuses on those changes necessary for non-inferiority and superiority tests. 

Approximate sample size formulas for non-inferiority tests of a single proportion are presented in 
Chow et al. (2003) page 83. However, only large sample (normal approximation) results are 
given there. The results available in this module use exact calculations based on the enumeration 
of all possible values of the binomial distribution.  

Four Procedures Documented Here 
There are four procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, ratios of proportions, and odds ratios. Each 
of these options is listed separately on the menus.  

Example 
A non-inferiority test example will set the stage for the discussion of the terminology that 
follows. Suppose that the current treatment for a disease is effective 70% of the time. 
Unfortunately, this treatment is expensive and occasionally exhibits serious side-effects. A 
promising new treatment has been developed to the point where it can be tested. One of the first 
questions that must be answered is whether the new treatment is as good as the current treatment. 
In other words, do at least 70% of treated subjects respond to the new treatment?  

Because of the many benefits of the new treatment, clinicians are willing to adopt the new 
treatment even if it is slightly less effective than the current treatment. They must determine, 
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however, how much less effective the new treatment can be to still be adopted. Should it be 
adopted if 69% respond? 68%? 65%? 60%? There is a percentage below 70% at which the 
difference between the two treatments is no longer considered ignorable. After thoughtful 
discussion with several clinicians, it was decided that if a response of at least 63% was achieved, 
the new treatment would be adopted. The difference between these two percentages is called the 
margin of equivalence. The margin of equivalence in this example is 7%.  

The developers must design an experiment to test the hypothesis that the response rate of the new 
treatment is at least 0.63. The statistical hypothesis to be tested is 

H P0 0 6: .≤ 3  versus H P1 0 6: .> 3  

Notice that when the null hypothesis is rejected, the conclusion is that the response rate is at least 
0.63. Note that even though the response rate of the current treatment is 0.70, the hypothesis test 
is about a response rate of 0.63. Also notice that a rejection of the null hypothesis results in the 
conclusion of interest.  

Technical Details 
In the discussion that follows, let P represent the proportion responding as a success. That is, P is 
the actual probability of a success in a binomial experiment. Let PB represent the baseline 
proportion. In a non-inferiority experiment, the baseline proportion is the response rate of the 
current treatment. Furthermore, let P0 represent the response proportion that is tested in the null 
hypothesis, H0. The power of a test is computed at a specific value of the proportion. Let P1 
represent the proportion at which the power is computed.  

Let PE represent the smallest value of P that still results in the conclusion that the new treatment 
is noninferior to the current treatment. The statistical hypotheses that are tested are 

H P PE0: ≤  versus H P PE1: >  

There are three common methods of specifying the margin of equivalence. The most direct is to 
simply assign values for PB and PE. However, it is often more meaningful to identify PB and 
then specify PE implicitly by giving their difference, ratio, or odds ratio. Mathematically, the 
definitions of these parameterizations are  
 

Parameter Computation Hypotheses 
Difference  d PE PB0 = −  H P PB d H P PB d0 0 1: : 0≤ + > +vs  

Ratio r PE PB0 = /  ( ) (H P r PB H P r PB0 0 1 0: : )≤ >vs  

Odds Ratio o OddsE OddsB0 = /  APHAPH >≤ :  vs:0 1  

 

where 
( )( )

( )101
0

−+
=

oPB
PBoA . 
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Difference 
The difference is perhaps the most direct method of comparison between two proportions. It is 
easy to interpret and communicate. It gives the absolute impact of the treatment. However, there 
are subtle difficulties that can arise with its interpretation.  

One difficulty arises when the event of interest is rare. If a difference of 0.001 occurs when the 
baseline probability is 0.40, it would be dismissed as being trivial. That is, there is usually little 
interest in a treatment that only decreases the probability from 0.400 to 0.399. However, if the 
baseline probability of a disease is 0.002, a 0.001 decrease would represent a reduction of 50%. 
Thus, interpretation of the difference depends on the baseline probability of the event. As a rule 
of thumb, the difference is best suited for those cases in which 0.20 < P < 0.80. 

Note that if d0 < 0, the procedure is called a non-inferiority test while if d0 > 0 the procedure is 
called a superiority test.  

Non-Inferiority using a Difference 
The following example might help you understand the concept of a non-inferiority test. Suppose 
60% of patients respond to the current treatment method (PB = 0.60). If the response rate of the 
new treatment is no less than five percentage points worse (d0 = -0.05) than the existing 
treatment, it will be considered noninferior. Substituting these figures into the statistical 
hypotheses gives H d0 0: .≤ − 05  versus H d1 0: .> 05− . The relationship P0 = PB + d0  

gives H P0 0 5: .≤ 5  versus H1: P > 0.55. 

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is at least 55%.  

Superiority using a Difference 
The following example is intended to help you understand the concept of superiority. Suppose 
60% of patients respond to the current treatment method (PB = 0.60). If the response rate of the 
new treatment is at least ten percentage points better (d0 = 0.10), it will be considered to be 
superior to the existing treatment. Substituting these figures into the statistical hypotheses gives 
H d0 01: .≤ 0  versus H d1 01: .> 0 . The relationship P0 = PB + d0 gives H P0 0 7: .≤ 0 versus 
H P1 0 7: .> 0 . 

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is at least 0.70. That is, the conclusion of superiority is that the new treatment’s 
response rate is at least 0.10 more than that of the existing treatment. 

Ratio 
The ratio r0 = PE / PB gives the relative change in the probability of the response. Testing non-
inferiority and superiority use the same formulation H r r0: 0≤  versus H r r1 0: > . 

The only subtlety is that for non-inferiority tests r0 < 1 while for superiority tests r0 > 1.  

Non-Inferiority using a Ratio 
The following example might help you understand the concept of non-inferiority as defined by 
the ratio. Suppose that 60% of patients (PB = 0.60) respond to the current treatment method. If a 
new treatment decreases the response rate by no more than 10% (r0 = 0.90), it will be considered 
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to be noninferior to the standard treatment. Substituting these figures into the statistical 
hypotheses gives H r0 0 9: .≤ 0  versus H r1 0 9: .> 0 . The relationship P0 = (r0)(PB) 
gives H P0: ≤ 0 54.  versus H P1: .> 0 54 . 

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is at least 54%. That is, the conclusion of non-inferiority is that the new treatment’s 
response rate is no worse than 10% less than that of the standard treatment. 

Superiority using a Ratio 
The following example is intended to help you understand the concept of superiority as it applies 
to the ratio. Suppose that 60% of patients (PB = 0.60) respond to the current treatment method. If 
a new treatment increases the response rate by at least 10% (r0 = 1.10), it will be considered to be 
superior to the existing treatment. Substituting these figures into the statistical hypotheses 
gives H r0 11: .≤ 0  versus H r1 11: .> 0 . The relationship P0 = (r0)(PB) gives H P0 0 6: .≤ 6  
versus H P1: .> 0 66 . 

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is at least 66%. That is, the conclusion of superiority is that the new treatment’s 
response rate is at least 10% more than that of the existing treatment.  

Odds Ratio 
The odds ratio, o0 = (PE / (1 – PE)) / (PB / (1 – PB)), gives the relative change in the odds of the 
response. Testing non-inferiority and superiority use the same formulation H o o0: ≤ 0  versus 
H o o1: > 0 . The only difference is that for non-inferiority tests o0 <1, while for superiority tests 
o0 > 1.  

Power and Sample Size Calculation 
Historically, power and sample size calculations for a one-sample proportion test have been based 
on normal approximations to the binomial. However, with the speed of modern computers using 
the normal approximation is unnecessary, especially for small samples. Rather, the significance 
level and power can be computed using complete enumeration of all possible values of x, the 
number of successes in a sample of size n.  

This is done as follows.  

1. The critical value of the test is computed using standard techniques. 

2. For each possible value of x, the value of the test statistic (z test, t test, or exact test) is 
computed along with its associated probability of occurrence.  

3. The significance level and power are computed by summing the probabilities of 
occurrence for all values of the test statistic that are greater than (or less than) the critical 
value. Each probability of occurrence is calculated using P0 for the significance level and 
P1 for the power.  

Other variables such as the sample size are then found using an efficient search algorithm. 
Although this method is not as elegant as a closed-form solution, it is completely accurate.  
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Test Statistics 
The test statistics used are listed in the Inequality Tests for One Proportion chapter. They will not be 
repeated here. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs, go to the Procedure Window chapter. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and beta. This chapter covers four procedures, each of which has different options. 
This section documents options that are common to all four procedures. Later, unique options for 
each procedure will be documented.   

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for using the other parameters. The parameters 
that may be selected are Equivalence Value, Actual Value, n, Alpha, and Power and Beta. In most 
situations, you will select either Power and Beta or n. 

Select n when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation. 
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Note that because of the discrete nature of the binomial distribution, the alpha level rarely will be 
achieved exactly. 

A single value may be entered here or a range of values such as 0.05 to 0.2 by 0.05 may be 
entered. 

Sample Size 

n (Sample Size)  
Enter a value (or range of values) for the sample size n. This is the number of individuals sampled 
in the study. Values must be integers greater than one. 

You may a single value or a range of values such as 10, 50, 100 or 10 to 100 by 10. 

Effect Size 

PB (Baseline Proportion) 
Enter a value (or range of values) for the baseline proportion. In a non-inferiority study, this is the 
response rate of the standard (existing) treatment. Note that this is not the value of P0. Instead, 
this value is used in the calculation of P0. 

Proportions must be between zero and one. 

You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1.  

Test 

Higher Proportions Are 
This option specifies whether proportions represent successes or failures. 

• Better 
When proportions represent successes, the higher proportions are better. In this case, a non-
inferior treatment is one whose proportion is at least as high as the baseline. The alternative 
hypothesis of non-inferiority is H1: P > P0, where P0 is slightly less than PB. 

• Worse 
When proportions represent failures, the lower proportions are better. In this case, a 
noninferior treatment is one whose proportion is at least as low as the baseline or lower. The 
alternative hypothesis of non-inferiority is H1: P < P0, where P0 is slightly greater than PB. 

Test Type 
Specify the type of test that will be used in searching and reporting. Note that C.C. is an 
abbreviation for Continuity Correction. This refers to the adding or subtracting of 1/(2n) to (or 
from) the numerator of the z-value to bring the normal approximation closer to the binomial 
distribution. 

In most situations, you would select the Exact Test option. The other options are provided for 
comparative purposes. 
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N (Population Size)  
Enter the total number of items in the population from which the sample of n items is selected. 
Enter Infinite to signify an infinite population so that no correction factor is applied. An infinite 
population is one in which the number in the population is large and unknown. 

Note that N must be greater than n. 

When samples are drawn from a very large (infinite) population, calculations are based on the 
binomial distribution. 

When samples are drawn from a population of known size N, calculations are based on the 
hypergeometric distribution. 

Data Tab (Proportions) 
This section documents options that are used when the parameterization is given directly in terms 
of the proportions P0 and P1.  

Effect Size 

P0 (Equivalence Proportion) 
This option sets the smallest value which is still trivially different from PB by directly setting the 
value of P0. If ‘Higher Proportions Are’ is set to ‘Better’, specify a value of P0 that is less than 
PB for a non-inferiority test or a value of P0 that is greater than PB for a superiority test. If 
‘Higher Proportions Are’ is set to ‘Worse’, do the opposite. 

For example, if PB (baseline proportion) is 0.50, you might consider 0.49, 0.48, 0.47, and 0.46 to 
be close enough so that the fact that they are less than 0.50 can be overlooked. However, you 
might decide that if the value is 0.45 or less, the treatment is inferior. Thus, this value would be 
set to 0.45. 

Since this value is a proportion, it must be a positive value less than one. It cannot be equal to PB.  

P1 (Actual Proportion) 
This is the value of the proportion (P1) at which the power is calculated. The power calculations 
assume that this is the actual value of the proportion. For non-inferiority tests, this value is often 
set equal to PB. 

Proportions must be between zero and one.  

You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1.  

Data Tab (Differences) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P0. P0 is the value of the proportion assumed by the null hypothesis and P1 (or 
P) is the value of the proportion at which the power is calculated. Once P0 and the difference are 
given, the value of P1 is found by the formula: P1 = difference + P0. 
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Effect Size 

d0 (Equivalence Difference) 
This option sets the smallest value which is still trivially different from PB by setting the 
difference between P0 and PB. If ‘Higher Proportions Are’ is set to ‘Better’, specify a difference 
that is less than zero for a non-inferiority test or a difference greater than zero for a superiority 
test. If ‘Higher Proportions Are’ is set to ‘Worse’, do the opposite. 

For example, if PB (baseline proportion) is 0.50, you might consider -.01, -.02, or -.04 to be small 
enough so that the fact that P0 is less than 0.50 can be overlooked. However, you might decide 
that if the difference is -.05 or less, the treatment is inferior. Thus, this value would be set to -.05. 

Since this value is a difference between two proportions, it must be between -1 and 1.  

d1 (Actual Difference) 
This option specifies the value of P1 (the proportion at which the power is calculated) by 
specifying the difference between the two proportions, P1 and PB. This difference is used with 
PB to calculate the value of P1 using the formula, P1 = PB + Difference. For non-inferiority tests, 
this value is often set equal to zero. 

Differences must be between -1 and 1. 

You may enter a range of values such as .03 .05 .10 or .01 to .05 by .01.  

Data Tab (Ratios) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P0.  

Effect Size 

r0 (Equivalence Ratio) 
This option sets the smallest value which is still trivially different from PB by setting the ratio of 
P0 to PB. If ‘Higher Proportions Are’ is set to ‘Better’, specify a ratio that is less than one for a 
non-inferiority test or a ratio greater than one for a superiority test. If ‘Higher Proportions Are’ is 
set to ‘Worse’, do the opposite. 

For example, if PB (baseline proportion) is 0.50, you might consider ratios of 0.99, 0.98, or even 
0.96 to be small enough so that the fact that P0 is less than PB can be overlooked (the difference 
is trivial). However, you might decide that if the ratio is 0.95 or less, the treatment is inferior. 
Thus, this value would be set to 0.95. 

Since this value is a ratio between two proportions, it must be positive. Since it is a margin, it 
cannot be one. It cannot be so large that the calculated value of P0 is greater than one. 

r1 (Actual Ratio) 
This option specifies the value of P1 (the actual proportion) by specifying the ratio between the 
two proportions, P1 and PB. This ratio is used with PB to calculate the value of P1 using the 
formula, P1 = (PB)(Ratio). For non-inferiority tests, this value is often set equal to one.  

Ratios must greater than zero. Note that the ratios must be small enough so that P1 is less than 
one. 

You may enter a range of values such as .5 .6 .7 .8 or 1.25 to 2.0 by .25.  
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Data Tab (Odds Ratios) 
This section documents options that are used when the parameterization is in terms of the odds 
ratio, Odds1 / Odds0 where Odds1 = P1 / (1 – P1) and Odds0 = P0 / (1 – P0).  

Effect Size 

o0 (Equivalence Odds Ratio) 
This option sets the smallest value that is still trivially different from PB by setting the odds ratio 
of P0 and PB. If ‘Higher Proportions Are’ is set to ‘Better’, specify a ratio that is less than one for 
a non-inferiority test or a ratio greater than one for a superiority test. If ‘Higher Proportions Are’ 
is set to ‘Worse’, specify a ratio that is greater than one for a non-inferiority test or a ratio less 
than one for a superiority test. 

For example, if PB (baseline proportion) is 0.50, you might consider odds ratios of 0.99, 0.90, or 
even 0.81 to be small enough so that the fact that P0 is less than PB can be overlooked (the 
difference is trivial). However, you might decide that if the odds ratio is 0.80 or less, the 
treatment is inferior. Thus, this value would be set to 0.80. 

Since this value is a ratio between two odds, it must be positive. Since it is a margin, it cannot be 
one.  

o1 (Actual Odds Ratio) 
This option specifies the value of P1 (the actual proportion) by specifying the odds ratio between 
the two proportions, P1 and PB. This ratio is used with PB to calculate the value of P1. For non-
inferiority tests, this value is often set equal to one.  

Odds ratios must greater than zero.  

You may enter a range of values such as .5 .6 .7 .8 or 1.25 to 2.0 by .25.  

Iterations Tab 
The Iterations tab allows for specification of the maximum number of iterations to be used in 
searches. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. 
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Example 1 – Finding the Power 
Suppose 50% of patients with a certain type of cancer survive two years using the current 
treatment. The current treatment is expensive and has several severe side effects. A new treatment 
has fewer side effects and is less expensive. A non-inferiority trial is to be conducted to show that 
the two-year survival rate of the new treatment is as good as the current treatment. After serious 
consideration, the margin of non-inferiority is set at 5%. What power will be achieved by sample 
sizes of 50, 100, 200, 300, 500, or 800 and a significance level of 0.05? For comparative 
purposes, also calculate the power for a margin of non-inferiority of 10%. Assume that the true 
survival rate of the new treatment is the same as that of the current (baseline) treatment.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for One Proportion 
[Differences] procedure window by clicking on Proportions, then One Proportion, then Non-
Inferiority & Superiority Tests, then Specify using Differences. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example1 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power or Beta .........................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size).......................................50 100 200 300 500 800 
d0 (Equivalence Difference)....................-.10 -.05 
d1 (Actual Difference) .............................0 
PB (Baseline Proportion).........................0.50 
Higher Proportions Are............................Better 
Test Type ................................................Exact Test 
N (Population Size) .................................Infinite 

Reports Tab 
Show Numeric Reports ...........................Checked 
Show Comparative Reports ....................Not checked 
Show Definitions .....................................Checked 
Show Plots ..............................................Checked 
Show Comparative Plots.........................Not checked 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results when H0: P = P0 versus H1: P = P>P0 
Test Statistic: Exact Test 
 
  Equiv. Actual Baseline 
  Difference Difference Proportion Target Actual  Reject H0 
Power N (d0) (d1) (PB) Alpha Alpha Beta If R>=This 
0.3359 50 -0.1000 0.0000 0.5000 0.0500 0.0314 0.6641 27 
0.6178 100 -0.1000 0.0000 0.5000 0.0500 0.0423 0.3822 49 
0.8854 200 -0.1000 0.0000 0.5000 0.0500 0.0492 0.1146 92 
0.9633 300 -0.1000 0.0000 0.5000 0.0500 0.0443 0.0367 135 
0.9976 500 -0.1000 0.0000 0.5000 0.0500 0.0461 0.0024 219 
1.0000 800 -0.1000 0.0000 0.5000 0.0500 0.0453 0.0000 344 
0.1611 50 -0.0500 0.0000 0.5000 0.0500 0.0444 0.8389 29 
0.2421 100 -0.0500 0.0000 0.5000 0.0500 0.0441 0.7579 54 
0.3619 200 -0.0500 0.0000 0.5000 0.0500 0.0381 0.6381 103 
0.5230 300 -0.0500 0.0000 0.5000 0.0500 0.0465 0.4770 150 
0.7195 500 -0.0500 0.0000 0.5000 0.0500 0.0484 0.2805 244 
0.8783 800 -0.0500 0.0000 0.5000 0.0500 0.0476 0.1217 384 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the size of the sample drawn from the population. To conserve resources, it should be small. 
Equiv. is the maximum value that is still considered unimportant. 
Actual is the value of this parameter given the alternative hypothesis is true. 
PB is the baseline or standard value of the proportion. This is the value under the current treatment. 
d0 is the smallest difference from PB which is still considered as equivalent. 
d1 is the value of the difference under the alternative hypothesis. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
 
Summary Statements 
A sample size of 50 achieves 34% power to detect a difference (P0-PB) of -0.1000 using a 
one-sided binomial test. The target significance level is 0.0500. The actual significance level 
achieved by this test is 0.0314. These results assume a baseline proportion (PB) of 0.5000 and 
that the actual difference (P1-PB) is 0.0000. 
 

This report shows the values of each of the parameters, one scenario per row. Because of the 
discrete nature of the binomial distribution, the target alpha is usually greater than the actual 
alpha. Hence, the actual alpha is also shown.  

Power 
Power is the probability of concluding non-inferiority when the treatment is indeed noninferior. 

N 
This is the sample size. 

Equiv. Difference (or Proportion, Ratio, or Odds Ratio) 
This difference is the maximum difference from the baseline proportion PB that is still considered 
unimportant or trivial. This value is used to calculate P0.  

Actual Difference (or Proportion, Ratio, or Odds Ratio) 
The actual difference is difference between the true proportion, P1, and the baseline proportion, 
PB.   
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Baseline Proportion 
The baseline proportion is the response rate that is achieved by the current (standard) treatment. 

Target Alpha 
This is the target (set in the design) value of the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. That is, this is the probability of concluding non-
inferiority when in fact the new treatment is inferior. Because of the discreteness of the binomial 
distribution from which this value is calculated, the target value is seldom achieved exactly. 

Actual Alpha 
This is the actual value of alpha (see Target Alpha) that is achieved by the design. Note that lower 
values of alpha imply lower power. 

Beta 
Beta is the probability of accepting a false null hypothesis. It is the opposite of power. 

Reject H0 if R>=This 
The symbol R stands for the number of items with the characteristic of interest out of the n items 
sampled. For the scenario presented on the first line, an exact test does not exist for these 
parameters at the target alpha of 0.05. The closest that can be achieved is an alpha of 0.0314. In 
this case, we would reject the null hypothesis in any sample of size 50 in which the count of 
individuals with the characteristic of interest is greater than or equal to 27. 

Plots Section 
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This plot shows the relationship between power, sample size, and the trivial difference. Note that 
90% power is achieved with an n of about 200 when the trivial difference is -.10 and about 800 
when the trivial difference is -.05. 
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Example 2 – Finding the Sample Size 
Continuing from Example 1, suppose you want to find the exact sample size necessary to achieve 
90% power when the equivalence difference is -.05. Assume that an exact binomial test will be 
used. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for One Proportion 
[Differences] procedure window by clicking on Proportions, then One Proportion, then Non-
Inferiority & Superiority Tests, then Specify using Differences. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example2 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................n 
Power or Beta .........................................0.90 
Alpha .......................................................0.05 
n (Sample Size)....................................... Ignored since this is the Find setting 
d0 (Equivalence Difference)....................-.05 
d1 (Actual Difference) .............................0 
PB (Baseline Proportion).........................0.50 
Higher Proportions Are............................Better 
Test Type ................................................Exact Test 
N (Population Size) ................................. Infinite 

Reports Tab 
Show Numeric Reports ...........................Checked 
Show Comparative Reports ....................Not checked 
Show Definitions .....................................Not checked 
Show Plots ..............................................Not checked 
Show Comparative Plots.........................Not checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results when H0: P = P0 versus H1: P = P>P0 
Test Statistic: Exact Test 
 
  Equiv. Actual Baseline 
  Difference Difference Proportion Target Actual  Reject H0 
Power N (d0) (d1) (PB) Alpha Alpha Beta If R>=This 
0.9024 861 -0.0500 0.0000 0.5000 0.0500 0.0499 0.0976 412 
 

This report shows that a sample size of 861 will be necessary to achieve the design requirements.  
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Example 3 – Comparing Test Statistics 
Continuing Example 1, suppose the researchers want to investigate which of the five test statistics 
to use. This is an important question since choosing the wrong test statistic may increase the 
sample size, reduce power or inflate the actual alpha level. The differences in the characteristics 
of test statistics are most noticeable in small samples. Hence, the investigation done here is for 
sample sizes of 20 to 200 in steps of 20. The trivial difference will be set to -.10. All other 
settings are as given in Example 1. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for One Proportion 
[Differences] procedure window by clicking on Proportions, then One Proportion, then Non-
Inferiority & Superiority Tests, then Specify using Differences. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example3 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power or Beta .........................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size).......................................20 to 200 by 20 
d0 (Equivalence Difference)....................-.10 
d1 (Actual Difference) .............................0 
PB (Baseline Proportion).........................0.50 
Higher Proportions Are............................Better 
Test Type ................................................Exact Test 
N (Population Size) .................................Infinite 

Reports Tab 
Show Numeric Reports ...........................Not checked 
Show Comparative Reports ....................Checked 
Show Definitions .....................................Not checked 
Show Plots ..............................................Not checked 
Show Comparative Plots.........................Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Power Comparison for Methods of Testing H0: P = P0 versus H1: P > P0 
 
 Equiv. Actual Baseline  Exact Z-Test Z-Test Z-Test Z-Test  
 Diff. Diff. Prop. Target Test S(P0) S(P0)C S(P) S(P)C T-Test 
N (d0) (d1) (PB) Alpha Power Power Power Power Power Power 
20 -0.1000 0.0000 0.5000 0.0500 0.1316 0.2517 0.1316 0.2517 0.1316 0.2517 
40 -0.1000 0.0000 0.5000 0.0500 0.3179 0.3179 0.3179 0.3179 0.3179 0.3179 
60 -0.1000 0.0000 0.5000 0.0500 0.4487 0.4487 0.4487 0.4487 0.4487 0.4487 
80 -0.1000 0.0000 0.5000 0.0500 0.5445 0.5445 0.5445 0.5445 0.5445 0.5445 
100 -0.1000 0.0000 0.5000 0.0500 0.6178 0.6178 0.6178 0.6178 0.6178 0.6178 
120 -0.1000 0.0000 0.5000 0.0500 0.6759 0.7385 0.6759 0.7385 0.6759 0.6759 
140 -0.1000 0.0000 0.5000 0.0500 0.7229 0.7765 0.7229 0.7765 0.7229 0.7765 
160 -0.1000 0.0000 0.5000 0.0500 0.8077 0.8077 0.8077 0.8077 0.8077 0.8077 
180 -0.1000 0.0000 0.5000 0.0500 0.8337 0.8683 0.8337 0.8337 0.8337 0.8337 
200 -0.1000 0.0000 0.5000 0.0500 0.8854 0.8854 0.8854 0.8854 0.8556 0.8854 
 
Actual Alpha Comparison for Methods of Testing H0: P = P0 versus H1: P > P0 
 
 Equiv. Actual Baseline  Exact Z-Test Z-Test Z-Test Z-Test  
 Diff. Diff. Prop. Target Test S(P0) S(P0)C S(P) S(P)C T-Test 
N (d0) (d1) (PB) Alpha Alpha Alpha Alpha Alpha Alpha Alpha 
20 -0.1000 0.0000 0.5000 0.0500 0.0210 0.0565 0.0210 0.0565 0.0210 0.0565 
40 -0.1000 0.0000 0.5000 0.0500 0.0392 0.0392 0.0392 0.0392 0.0392 0.0392 
60 -0.1000 0.0000 0.5000 0.0500 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 
80 -0.1000 0.0000 0.5000 0.0500 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 
100 -0.1000 0.0000 0.5000 0.0500 0.0423 0.0423 0.0423 0.0423 0.0423 0.0423 
120 -0.1000 0.0000 0.5000 0.0500 0.0392 0.0575 0.0392 0.0575 0.0392 0.0392 
140 -0.1000 0.0000 0.5000 0.0500 0.0358 0.0514 0.0358 0.0514 0.0358 0.0514 
160 -0.1000 0.0000 0.5000 0.0500 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 
180 -0.1000 0.0000 0.5000 0.0500 0.0408 0.0558 0.0408 0.0408 0.0408 0.0408 
200 -0.1000 0.0000 0.5000 0.0500 0.0492 0.0492 0.0492 0.0492 0.0363 0.0492 
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The first numeric report shows the power for each test statistic. The second shows the actual 
alpha achieved by the design. 
An examination of the first report shows that the power is often different for at least one of the 
tests. Also notice that the exact test always has the minimum power in each row. This would lead 
us discard this test statistic. However, consider the second report which shows the actual alpha 
level (the target was 0.05) for each test. By inspecting corresponding entries in both tables, we 
see that whenever a test statistic achieves a better power than the exact test, it also yields an 
actual alpha level larger than the target alpha.  
For example, look at the powers for n = 20. The z test using s(p hat) has an unusually large power 
= 0.2517. This is a much larger power than the exact test’s value of 0.1316. However, note that 
the actual alpha for this test is 0.0560 which is larger than the target alpha of 0.05.  
We conclude that indeed, the exact test is consistently the best test since it always achieves a 
significance level that is less than the target value. 

Example 4 – Validation using Chow, Shao, and Wang 
The only appropriate example we have found is Chow, Shao, and Wang (2003) page 85, which 
gives the result of a sample size calculation using an asymptotic formula. They calculate a sample 
size of 22 when alpha = 0.05, beta = 0.20, PB = 0.30, Equiv. difference = -.10, and actual 
proportion = 0.50. As we shall see, PASS obtains a different answer.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for One Proportion 
[Differences] procedure window by clicking on Proportions, then One Proportion, then Non-
Inferiority & Superiority Tests, then Specify using Differences. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example4 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................n 
Power or Beta .........................................0.80 
Alpha .......................................................0.05 
n (Sample Size).......................................Ignored since this is the Find setting 
d0 (Equivalence Difference)....................-.10 
d1 (Actual Difference) .............................0.20 
PB (Baseline Proportion).........................0.30 
Higher Proportions Are............................Better 
Test Type ................................................Exact Test 
N (Population Size) .................................Infinite 

Reports Tab 
Show Numeric Reports ...........................Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

  Equiv. Actual Baseline 
  Difference Difference Proportion Target Actual  Reject H0 
Power N (d0) (d1) (PB) Alpha Alpha Beta If R>=This 
0.8338 17 -0.1000 0.5000 0.3000 0.0500 0.0377 0.1662 7 
 

PASS calculated a sample size of only 17 while Chow’s formula obtained 22. The difference 
occurs because PASS uses exact calculations based on the binomial distribution, while Chow et 
al. use a large-sample approximation based on the normal approximation to the binomial. To see 
that 17 is indeed the correct answer, enter the values into PASS’s one-sample proportion test. The 
necessary values are P0 = 0.20, P1 = 0.50, alpha = 0.05, and beta = 0.10. These values result in a 
sample size of 17. 
We have found that the approximate results are closer to the exact results when the sample sizes 
are over 200. For sample sizes less than 50, there can be significant error in the approximate 
formulas. 

Example 5 – Finding Power after an Experiment 
The proportion of successes of the current treatment is known to be 0.74 based on years of 
treatment use. Researchers have developed a new method of treatment which costs about half the 
current treatment price. Before the new treatment can be approved it must be shown that the 
success of the proposed treatment is not inferior to that of the current treatment. It is determined 
that use of the new treatment is justifiable if it is shown that it is effective more than 70% of the 
time. Sixty individuals are randomly selected to receive the new method of treatment. Forty-three 
(71.67%) of the 60 individuals responded positively to the treatment. The p-value for the test 
based on exact binomial probabilities is 0.4514. Because the researchers were unable to show the 
new treatment is non-inferior, they desire to know the power of the test. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for One Proportion 
[Differences] procedure window by clicking on Proportions, then One Proportion, then Non-
Inferiority & Superiority Tests, then Specify using Differences. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example5 
from the Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power or Beta .........................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size).......................................60 
d0 (Equivalence Difference)....................-.04 
d1 (Actual Difference) .............................0.00 
PB (Baseline Proportion).........................0.74 
Higher Proportions Are............................Better 
Test Type ................................................Exact Test 
N (Population Size) .................................Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for testing H0: P = P0 versus H1: P > P0 
Test Statistic: Exact Test 
 
  Equiv. Actual Baseline 
  Difference Difference Proportion Target Actual  Reject H0 
Power N (d0) (d1) (PB) Alpha Alpha Beta If R>=This 
0.1112 60 -0.0400 0.0000 0.7400 0.0500 0.0295 0.8888 49 
 

This report shows that the power for the test was only 0.1112.  

Example 6 – Finding Sample Size based on the Odds 
Ratio 
The odds for success of the current treatment is known be 4.31. A new treatment is developed to 
compete with the current treatment with respect to cost and reduction in side effects. It must be 
shown to be non-inferior to the current treatment. The researchers want to determine the sample 
size necessary to achieve 80% power in this test of non-inferiority. The researchers determine that 
the new treatment will be considered non-inferior if the odds for success are no less than 90% the 
odds for success of the current treatment. The baseline proportion is calculated as PB = 
odds/(1+odds) = 4.31/(1+4.31) = 0.8117. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for One Proportion 
[Odds Ratios] procedure window by clicking on Proportions, then One Proportion, then Non-
Inferiority & Superiority Tests, then Specify using Odds Ratios. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example6 
from the Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................n 
Power or Beta .........................................0.8 
Alpha .......................................................0.05 
n (Sample Size)....................................... Ignored since this is the Find setting 
o0 (Equivalence Odds Ratio) ..................0.9 
o1 (Actual Odds Ratio)............................1.0 
PB (Baseline Proportion).........................0.8117 
Higher Proportions Are............................Better 
Test Type ................................................Exact Test 
N (Population Size) ................................. Infinite 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for testing H0: P = P0 versus H1: P > P0 
Test Statistic: Exact Test 
 
  Equiv. Actual Baseline 
  Odds Ratio Odds Ratio Proportion Target Actual  Reject H0 
Power N (o0) (o1) (PB) Alpha Alpha Beta If R>=This 
0.8004 3547 0.9000 1.0000 0.8117 0.0500 0.0499 0.1996 2860 
 

A sample size of 3547 is required to show non-inferiority under these conditions. 
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Chapter 110 

Equivalence Tests 
for One Proportion 
Introduction 
This module provides power analysis and sample size calculation for equivalence tests in one-
sample designs in which the outcome is binary. Users may choose from among commonly-used 
test statistics.  

The details of sample size calculations for the one-sample design for binary outcomes are 
presented in the chapter entitled Inequality Tests for One Proportion and will not be repeated 
here. Instead, this chapter discusses those changes necessary for equivalence tests. 

Approximate sample size formulas for equivalence tests of a single proportion are presented in 
Chow et al. (2003) page 83. However, only large sample (normal approximation) results are 
given there. The results available in this module use exact calculations based on the enumeration 
of all possible values for the binomial distribution. 

Four Procedures Documented Here 
There are four procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, ratios of proportions, and odds ratios. Each 
of these options is listed separately on the menus.  

Example 
An equivalence test example will set the stage for the discussion of the terminology that follows. 
Suppose that the current treatment for a disease is effective 70% of the time. Unfortunately, this 
treatment is expensive and occasionally exhibits serious side-effects. A promising new treatment 
has been developed to the point where it can be tested. One of the questions that must be 
answered is whether the new treatment is equivalent to the current treatment. In other words, do 
about 70% of treated subjects respond to the new treatment?  

It is known that the new treatment will not have a response rate that is exactly the same as that of 
the standard treatment. After careful consideration, they decide that the margin of equivalence is 
plus or minus 10%. That is, if the response rate of the new treatment is between 60% and 80% it 
will be deemed equivalent to the standard treatment. 
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The developers must design an experiment to test the hypothesis that the response rate of the new 
treatment is within 10% of the standard (baseline) treatment. The statistical hypotheses to be 
tested are 

H P PB0 01: .− ≥  versus H P PB1 01: .− <  

Notice that when the null hypothesis is rejected the conclusion is that the response rate is between 
0.6 and 0.8.  

Technical Details 
In the discussion that follows, let P represent the proportion being investigated. That is, P is the 
actual probability of a success in a binomial experiment. Often, this proportion is a response rate, 
cure rate, or survival rate. Let PB represent the baseline proportion. In an equivalence trial, the 
baseline proportion is the response rate of the current (standard) treatment. Let PL represent the 
smallest value of P that still results in the conclusion that the new treatment is equivalent to the 
current treatment. Similarly, let PU represent the largest value of P that still results in the 
conclusion that the new treatment is equivalent to the current treatment. Note that PB will be 
between PL and PU. The power of a test is computed at a specific value of the proportion, P1. 

The statistical hypotheses that are tested are 

H P PL P PU0: ≤ ≥or  versus H PL P PU1: < <  

This unusual hypothesis test can be broken down into two, one-sided hypothesis tests (TOST) as 
follows 

H P PL0: ≤  versus H P PL1: >  

and 

H P PU0: ≥  versus H P PU1: <  

If both of these one-sided tests are rejected at significance level α , then equivalence can be 
concluded at significance level α . Note that we do not conduct the individual tests at α / 2 . 

There are three common methods of specifying the margin of equivalence. The most direct is to 
simply assign values for PL and PU. However, it is often more meaningful to identify PB and 
then specify PL and PU implicitly by giving a difference, ratio, or odds ratio. Mathematically, the 
definitions of these parameterizations are  
 

Parameter Computation Hypotheses 

Difference d PL P PU PB0 = − = B−   H d d H d d0 0 1: :≥ <vs 0

Ratio r
PL PB

PU PB0 1
= =

/
/   H r r H r r0 0 1: :≥ <vs 0

Odds Ratio o
OddsL OddsB

OddsU
OddsB

0 1
= =

/
  H o o H o o0 0 1: :≥ <vs 0
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where 

Difference d P PB= −  

Ratio  r
P PB P PB
PB P P PB

=
>
<

⎧
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⎩

/
/

if
if

Odds Ratio  o
Odds OddsB P PB
OddsB Odds P PB

=
>
<

⎧
⎨
⎩

/
/

if
if

Difference 
The difference is perhaps the most direct method of comparison between two proportions. It is 
easy to interpret and communicate. It gives the absolute impact of the treatment. However, there 
are subtle difficulties that can arise with its use.  

One difficulty arises when the event of interest is rare. If a difference of 0.001 occurs when the 
baseline probability is 0.40, it would be dismissed as being trivial. That is, there is usually little 
interest in a treatment that only decreases the probability from 0.400 to 0.399. However, if the 
baseline probability of a disease is 0.002, a 0.001 decrease would represent a reduction of 50%. 
Thus, interpretation of the difference depends on the baseline probability of the event. As a rule 
of thumb, the difference is best suited for those cases in which. 

Equivalence Test using a Difference 
The following example might be instructive. Suppose 60% of patients respond to the current 
treatment method (PB = 0.60). If the response rate of the new treatment is no less than five 
percentage points different (d0 = 0.05) from the existing treatment, it will be considered to be 
equivalent. Substituting these figures into the statistical hypotheses gives 

H d0 0 0: .≥ 5 versus H d1 0 0: . 5<  

where d = |P – PB|. 

The resulting joint hypotheses are 

H P0 0 5: . 5≤  versus H1: P > 0.55. 

and 

H P0 0 6: .≥ 5  versus H1: P < 0.65. 

In this example, when both null hypotheses are rejected, the concluded alternative is that the 
response rate is between 55% and 65%.  

Ratio 
The ratio r0 = PE / PB denotes the relative change in the probability of the response. Testing 
equivalence uses the hypotheses  

H r r0: 0≤  versus H r r1 0: >  

where r = P / PB if P > PB or r = PB / P if P < PB. 
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Equivalence Test using a Ratio 
The following example might help to understand the concept of equivalence as defined by the 
ratio. Suppose that 60% of patients (PB = 0.60) respond to the current treatment method. If a new 
treatment changes the response rate by no more than 10% (r0 = 1.1), it will be considered to be 
equivalent to the standard treatment. Substituting these figures into the statistical hypotheses 
gives 

H r0 1: ≥ 1.  versus H r1 1: .1<  

The relationship P0 = (r0)(PB) gives the two, one-sided, hypotheses 

H P0 0 5: .≤ 4  versus H P1 0 5: .> 4  

H P0 0 6: .≥ 6  versus H P1 0 6: . 6<  

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is between 54% and 66%.  

Odds Ratio 
The odds ratio, o0 = (PE / (1 – PE)) / (PB / (1 – PB)), gives the relative change in the odds of the 
response. Testing noninferiority and superiority use the same formulation, namely  

H o o0: 0≤  versus H o o1 0: >  

where o = Odds / OddsB if P > PB or o = OddsB / Odds if P < PB. 

Power and Sample Size Calculation 
Historically, power and sample size calculations for a one-sample proportion test have been based 
on normal approximations to the binomial. However, with the speed of modern computers, using 
the normal approximation is unnecessary, especially for small samples. Rather, the significance 
level and power can be computed using complete enumeration of all possible values of x, the 
number of successes in a sample of size n.  

This is done as follows.  

1. The critical value of the test is computed using standard techniques. 

2. For each possible value of x, the value of the test statistic (z test, t test, or exact test) is 
computed along with its associated probability of occurrence.  

3. The significance level and power are computed by summing the probabilities of 
occurrence for all values of the test statistic that are greater than (or less than) the critical 
value. Each probability of occurrence is calculated using P0 for the significance level and 
P1 for the power.  

Other variables such as the sample size are then found using an efficient search algorithm. 
Although this method is not as elegant as a closed-form solution, it is completely accurate.  
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Examples of Power Calculation for the Exact Test 
Suppose the baseline proportion, PB, is 0.50, the sample size is 10, and the target alpha level is 
0.05. A typical value for the equivalence difference is 0.05. However, because the example is for 
a small sample size, the equivalence difference will be set to 0.4 (which is, of course, a very 
unrealistic figure) for illustrative purposes. Calculate the power of this design to detect 
equivalence if the actual difference between the proportions is 0.10. 

The first step is to find the rejection region under the null hypothesis. In this example, the null 
hypothesis is H P0 0: .≤ 1 or H P0 0: > 9. and the alternative hypothesis is H P101 0 9: . .< <  

. This composite hypothesis breaks down into the following two, one-sided, 
simple hypotheses 
H1 01: . < <P 0 9.

1. H P0 0: ≤ 1.  versus H P1 0: .> 1 

2. H P0 0: ≥ 9.  versus H P1 0: .9<  

The rejection regions for the both tests are determined from the following table of cumulative 
binomial probabilities for N = 10. The first column of probabilities is for r greater than or equal to 
R while the second two columns of probabilities are for r less than or equal to R. 
 

Table of Binomial Probabilities for N = 10 and P = 0.1, 0.9, and 0.6  
  Reject  Reject Reject 
R Pr(r>=R |P=0.1)  Test1 Pr(r<=R |P=0.9) Test2 Both Pr(r<=R|P=0.6) 
0 1.0000  No 0.0000 Yes  No 0.0001 
1 0.6513  No 0.0000  Yes  No 0.0017 
2 0.2639  No 0.0000  Yes  No 0.0123 
3 0.0702  No 0.0000  Yes  No 0.0548 
4 0.0128  Yes 0.0001  Yes  Yes 0.1662 
5 0.0016  Yes 0.0016  Yes  Yes 0.3669 
6 0.0001  Yes 0.0128  Yes  Yes 0.6177 
7 0.0000  Yes 0.0702  No  No 0.8327 
8 0.0000  Yes 0.2639  No  No 0.9536 
9 0.0000  Yes 0.6513  No  No 0.9940 
10 0.0000  Yes 1.0000  No  No 1.0000 
 

The second column gives the value of alpha for the first test ( H P0 0: 1.≤  versus H P1 0: .> 1). 
The rejection region for this test is all values of R greater than or equal to 4. The fourth column 
gives the values of alpha for the second test. The rejection region for the second test is all values 
of R less than or equal to 6. The rejection region for both tests is those values of R values that 
result in rejection of both individual tests. These are the R values 4, 5, and 6. The power is 
computed using the final column of the table which gives cumulative binomial probabilities for P 
= 0.5 + 0.1 = 0.6. The power is probability for the cases 4, 5, and 6. It is calculated as 0.6177 – 
0.0548 = 0.5629. 
It is informative to consider what happens when the equivalence difference is reduced from 0.4 to 
0.2. The following table gives the appropriate cumulative binomial probabilities for this case.  
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Table of Binomial Probabilities for N = 10 and P = 0.3, 0.7, and 0.6  
  Reject  Reject Reject 
R Pr(r>=R |P=0.3)  Test1 Pr(r<=R |P=0.7) Test2 Both Pr(r<=R|P=0.6) 
0 1.0000  No 0.0000 Yes  No 0.0001 
1 0.9718  No 0.0001  Yes  No 0.0017 
2 0.8507  No 0.0016  Yes  No 0.0123 
3 0.6172  No 0.0106  Yes  No 0.0548 
4 0.3504  No 0.0473  Yes  No 0.1662 
5 0.1503  No 0.1503  No  No 0.3669 
6 0.0473  Yes 0.3504  No  No 0.6177 
7 0.0106  Yes 0.6172  No  No 0.8327 
8 0.0016  Yes 0.8507  No  No 0.9536 
9 0.0001  Yes 0.9718  No  No 0.9940 
10 0.0000  Yes 1.0000  No  No 1.0000 
 

The second column gives the value of alpha for the first test. The rejection region for this test is 
all values of R greater than or equal to 6. The fourth column gives the values of alpha for the 
second test. The rejection region for the second test is all values of R less than or equal to 4. The 
rejection region for both tests together is empty! There is no R for which both tests will be 
rejected. Hence, the alpha level and the power will both be 0.0. 

Examples of Power Calculation for the Z Test 
The following example illustrates how to calculate the power of an approximate z test. There are 
several z tests to choose from. We will use the following test.  

( )
z p P

P P
=

n
−
−

0
0 1 0 /

 

Calculating the rejection region for the z test is based on a table of normal probabilities. For the 
target alpha level of 0.05, the critical value is 1.6449. That is, the first hypothesis test that 
H P0 0: ≤ 1.  versus H P1 0: > 1.  is rejected if the resulting calculated z value is greater than 
1.6449. Similarly, the second hypothesis test that H P0 0: ≥ 9.  versus H P1 0: 9.<  is rejected 
when the calculated z value is less than -1.6449. The rejection regions for the both tests are shown 
in the following table of binomial probabilities for N = 10.  

 
Table Showing Both One-Sided Z Tests for N = 10 and P = 0.1, 0.9, and 0.6  
  Reject  Reject Reject 
R Z for P = 0.1  Test1 Z for P = 0.9 Test2 Both Pr(r<=R|P=0.6) 
0 -1.0541  No -9.4868 Yes  No 0.0001 
1 0.0000  No -8.4327  Yes  No 0.0017 
2 1.0541  No -7.3786  Yes  No 0.0123 
3 2.1082  Yes -6.3246  Yes  Yes 0.0548 
4 3.1623  Yes -5.2705  Yes  Yes 0.1662 
5 4.2164  Yes -4.2164  Yes  Yes 0.3669 
6 5.2705  Yes -3.1623  Yes  Yes 0.6177 
7 6.3246  Yes -2.1082  Yes  Yes 0.8327 
8 7.3786  Yes -1.0541  No  No 0.9536 
9 8.4327  Yes 0.0000  No  No 0.9940 
10 9.4868  Yes 1.0541  No  No 1.0000 
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Note that the null hypothesis is rejected for the equivalence test when R is 3, 4, 5, 6, and 7. The 
power is the probability of these values calculated using P = 0.60. It is calculated as 0.8327 – 
0.0123 = 0.8204. Notice that this is much larger than 0.5629 which was the power for the exact 
test. The reason for this discrepancy is that the approximate test is actually testing at a larger 
alpha than the target of 0.05. The actual alpha is the maximum of the two individual alphas. From 
the first table, we can see that the actual alpha for the first test is Pr(r>=3|P=0.1) = 0.0702. 
Similarly, the actual alpha for the second test is Pr(r<=7|P=0.9) = 0.0702. Hence the alpha level is 
0.0702. The actual alpha of the exact test was 0.0128.  

Test Statistics 
The test statistics used are given in the chapter entitled Inequality Tests for One Proportion. They 
will not be repeated here. 

Procedure Options 
This section describes the options that are specific to the one proportion equivalence procedures. 
These are located on the Data tab. To find out more about using the other tabs, go to the 
Procedure Window chapter. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and beta. This chapter covers four procedures, each of which has different options. 
This section documents options that are common to all four procedures. Later, unique options for 
each procedure will be documented.   

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Alpha, Power and Beta, and n. In most situations, you will select either 
Power and Beta or n. 

Select n when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 
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A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation. 

Note that because of the discrete nature of the binomial distribution, the alpha level rarely will be 
achieved exactly. 

A single value may be entered here or a range of values such as 0.05 to 0.2 by 0.05 may be 
entered. 

Sample Size 

n (Sample Size)  
Enter a value (or range of values) for the sample size n. This is the number of individuals sampled 
in the study. Values must be integers greater than one. 

You may enter a range such as 10, 50, 100 or 10 to 100 by 10. 

Effect Size 

PB (Baseline Proportion) 
Enter a value (or range of values) for the baseline proportion. In an equivalence study, this is the 
response rate of the standard (existing) treatment. Note that this is not the value of P0. Instead, 
this value is used in the calculation of P0. 

Proportions must be between zero and one.  

You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1. 

Test 

Test Type 
Specify the type of test that will be used in searching and reporting. Note that C.C. is an 
abbreviation for Continuity Correction. This refers to the adding or subtracting of 1/(2n) to (or 
from) the numerator of the z-value to bring the normal approximation closer to the binomial 
distribution. 

In most situations, you would select the ‘Exact Test’ option. The other options are provided for 
comparative purposes. 
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Data Tab (Proportions) 
This section documents options that are used when the parameterization is given directly in terms 
of the proportions PL, PU, PB, and P1.  

Effect Size 

P1 (Actual Proportion) 
This is the value of the proportion, P1, at which the power is calculated. The power calculations 
assume that this is the actual value of the proportion. For noninferiority tests, this value is often 
set equal to PB. 

Proportions must be between zero and one. You may enter a range of values such as 0.1 0.2 0.3 or 
0.1 to 0.9 by 0.1.  

Upper and Lower Equivalence Proportions 
These options set the smallest and largest values which are still to be considered trivially different 
from PB. Note that the lower proportion must be less than PB, and the upper proportion must be 
greater than PB. Since these values are proportions, they must be positive values less than one. 
They cannot be equal to PB.  

Data Tab (Differences) 
This section documents options that are used when the parameterization is in terms of the 
difference of two proportions. 

Effect Size 

d0 (Equivalence Difference) 
This option sets the smallest value which is still trivially different from PB by setting the 
magnitude of the difference between P0 and PB. For example, if PB (baseline proportion) is 0.50, 
you might consider differences of 0.01, 0.02, or 0.04 to be small enough so that the fact that P0 is 
different from 0.50 can be overlooked. However, you might decide that if the difference is 0.05 or 
more, the treatment is not equivalent. Thus, this value would be set to 0.05. 

Since this value is an absolute difference between two proportions, it must be between 0 and 1.  

d1 (Actual Difference) 
This option specifies the value of P1 (the actual proportion) by specifying the difference between 
the two proportions, P1 and PB. This difference is used with PB to calculate the value of P1 using 
the formula: P1 = PB + difference. For equivalence tests, this value is often set equal to zero. 

Differences must be between -1 and 1. 

You may enter a range of values such as .03 .05 .10 or .01 to .05 by .01.  
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Data Tab (Ratios) 
This section documents options that are used when the parameterization is in terms of the ratio of 
two proportions.  

Effect Size 

r0 (Equivalence Ratio) 
This option sets the value which is still trivially different from PB by setting the ratio between P0 
and PB. For P0 example, if PB (baseline proportion) is 0.50, you might consider ratios of 0.99, 
0.98, or even 0.96 to be small enough so that the fact that P0 is less than PB can be overlooked 
(the difference is trivial). However, you might decide that if the ratio is 0.95 or less, the treatment 
is not equivalent. Thus, this value would be set to 0.95. 

Since this value is a ratio between two proportions, it must be positive. Since it is a margin, it 
cannot be one. Also, it cannot be so large that the calculated value of P0 is greater than one. 

r1 (Actual Ratio) 
This option specifies the value of P1 (the actual proportion) by specifying the ratio between the 
two proportions, P1 and PB. This ratio is used with PB to calculate the value of P1 using the 
formula: P1 = (Ratio)(PB). For equivalence tests, this value is often set equal to one.  

Ratios must be greater than zero. Note that the ratios must be small enough so that P1 is less than 
one. 

You may enter a range of values such as .5 .6 .7 .8 or 1.25 to 2.0 by .25.  

Data Tab (Odds Ratios) 
This section documents options that are used when the parameterization is in terms of the odds 
ratios.  

Effect Size 

o0 (Equivalence Odds Ratio) 
This option sets the value which is still trivially different from PB by setting the odds ratio of P0 
and PB. For example, if PB (baseline proportion) is 0.50, you might consider odds ratios of 0.99, 
0.98, or even 0.96 to be small enough so that the fact that P0 is less than PB can be overlooked 
(the difference is trivial). However, you might decide that if the odds ratio is 0.80 or less, the 
treatment is inferior. Thus, this value would be set to 0.80. 

Since this value is a ratio between two odds, it must be positive. Because it is a margin, it cannot 
be one.  

o1 (Actual Odds Ratio) 
This option specifies the value of P1 (the actual proportion) by specifying the odds ratio between 
the two proportions, P1 and PB. This ratio is used with PB to calculate the value of P1. For 
noninferiority tests, this value is often set equal to one.  

Odds ratios must be greater than zero. You may enter a range of values such as .5 .6 .7 .8 or 1.25 
to 2.0 by .25.  
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Iterations Tab 
The Iterations tab allows for specification of the maximum number of iterations to be used in 
searches. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. 

Example 1 – Finding the Power 
Suppose 50% of patients with a certain type of cancer survive two years using the current 
treatment. The current treatment is expensive and has several severe side effects. A new treatment 
has fewer side effects and is less expensive. An equivalence trial is to be conducted to show that 
the two-year survival rate of the new treatment is the same as the current treatment. After serious 
consideration, the margin of equivalence is set at 5%. What power will be achieved by sample 
sizes of 50, 100, 200, 300, 500, or 800 and a significance level of 0.05? For comparative 
purposes, also calculate the power for margin of equivalence of 10%. Assume that the true 
survival rate of the new treatment is the same as that of the current (baseline) treatment.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for One Proportion [Differences] 
procedure window by clicking on Proportions, then One Proportion, then Equivalence Tests, 
then Specify using Differences. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example1 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size).......................................50 100 200 300 500 800 
d0 (Equivalence Difference)....................0.05 0.10 
d1 (Actual Difference) .............................0 
PB (Baseline Proportion).........................0.50 
Test Type ................................................Exact Test 

Reports Tab 
Show Numeric Reports ...........................Checked 
Show Comparative Reports ....................Not checked 
Show Definitions .....................................Checked 
Show Plots ..............................................Checked 
Show Comparative Plots.........................Not checked 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H0: Non-Equivalence versus H1: Equivalence 
Test Statistic: Exact Test 
 
   Lower Upper   
  Equiv. Equiv. Equiv. Actual Baseline    Reject H0 if 
  Diff. Prop. Prop. Diff. Prop. Target Actual  R1<=R<=R2 
Power N (d0) (P0L) (P0U) (d1) (PB) Alpha Alpha Beta (R1|R2) 
0.0000 50 0.0500 0.4500 0.5500 0.0000 0.5000 0.0500 0.0000 1.0000 29|21 
0.0000 100 0.0500 0.4500 0.5500 0.0000 0.5000 0.0500 0.0000 1.0000 54|46 
0.0000 200 0.0500 0.4500 0.5500 0.0000 0.5000 0.0500 0.0000 1.0000 103|97 
0.0460 300 0.0500 0.4500 0.5500 0.0000 0.5000 0.0500 0.0465 0.9540 150|150 
0.4390 500 0.0500 0.4500 0.5500 0.0000 0.5000 0.0500 0.0484 0.5610 244|256 
0.7567 800 0.0500 0.4500 0.5500 0.0000 0.5000 0.0500 0.0476 0.2433 384|416 
0.0000 50 0.1000 0.4000 0.6000 0.0000 0.5000 0.0500 0.0000 1.0000 27|23 
0.2356 100 0.1000 0.4000 0.6000 0.0000 0.5000 0.0500 0.0423 0.7644 49|51 
0.7708 200 0.1000 0.4000 0.6000 0.0000 0.5000 0.0500 0.0492 0.2292 92|108 
0.9267 300 0.1000 0.4000 0.6000 0.0000 0.5000 0.0500 0.0443 0.0733 135|165 
0.9952 500 0.1000 0.4000 0.6000 0.0000 0.5000 0.0500 0.0461 0.0048 219|281 
0.9999 800 0.1000 0.4000 0.6000 0.0000 0.5000 0.0500 0.0453 0.0001 344|456 
 
Report Definitions 
Power is the probability of concluding equivalence when the proportions are equivalent. 
N is the size of the sample drawn from the population. 
The equivalence difference is the maximum value of the difference that is still considered unimportant. 
The actual difference is the value of the difference under the alternative hypothesis. 
PB is the baseline or standard value of the proportion. This is the value under the current treatment. 
P0L and P0U are the limits between which an equivalent proportion must fall. 
d0 is the smallest absolute difference that is still considered equivalent. 
d1 is the value of the difference under the alternative hypothesis. 
Alpha is the probability of concluding equivalence when the proportions are non-equivalent. 
Beta is the probability concluding non-equivalence when the proportions are equivalent. 
 
Summary Statements 
A sample size of 50 achieves 0% power to detect a difference (P0-PB) of 0.0500 using a 
two-sided binomial test. The target significance level is 0.0500. The actual significance level 
achieved by this test is 0.0000. These results assume a baseline proportion (PB) of 0.5000 and 
that the actual difference (P1-PB) is 0.0000. 
 

This report shows the values of each of the parameters, one scenario per row. Because of the 
discrete nature of the binomial distribution, the target alpha is usually different than the actual 
alpha. Hence, the actual alpha is also shown.  

Power 
Power is the probability of concluding equivalence when the treatment is indeed equivalent. 

N 
This is the sample size. 

Equivalence Difference (or Proportion, Ratio, or Odds Ratio) 
The equivalence difference is the maximum difference from the baseline proportion, PB, that is 
still considered as unimportant or trivial. This value is used to calculate P0.  

Equivalence Upper and Lower Proportions 
If the true proportion is between these two limits, the treatment is considered to be equivalent to 
the baseline proportion. These are the bounds of equivalence.  
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Actual Difference (or Proportion, Ratio, or Odds Ratio) 
The actual difference is the difference between the actual proportion, P1, and the baseline 
proportion, PB.  

Baseline Proportion 
The baseline proportion, PB, is the response rate that is achieved by the current (standard) 
treatment. 

Target Alpha 
This is the target (set in the design) value of the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. That is, this is the probability of concluding equivalence 
when in fact the new treatment is not equivalent. Because of the discreteness of the binomial 
distribution from which this value is calculated, the target value is seldom achieved. 

Actual Alpha 
This is the actual value of alpha (see Target Alpha) that is achieved by the design. Note that low 
values of alpha reduce the power. 

Beta 
Beta is the probability of accepting a false null hypothesis. It is the opposite of power. 

Reject H0 if R1<=R<=R2 
This value provides the bounds between which equivalence is concluded. For example, if n is 50, 
then a value here of 29|31 means that the null hypothesis of non-equivalence is rejected when the 
number of items with the characteristic of interest is 29, 30, or 31.  
When the second number is less than the first as it is in the first line (29|21), the design can never 
reject the null hypothesis. These designs should never be used. 

Plots Section 
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This plot shows the relationship between power, sample size, and the trivial difference. Note that 
80% power is achieved with a sample size of about 210 when the trivial difference is 0.10 and 
over 800 when the trivial difference is 0.05. 
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Example 2 – Finding the Sample Size 
Continuing from Example1, suppose you want to find the exact sample size necessary to achieve 
90% power when the trivial difference is 0.05. Assume that an exact binomial test will be used.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for One Proportion [Differences] 
procedure window by clicking on Proportions, then One Proportion, then Equivalence Tests, 
then Specify using Differences. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example2 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................n 
Power ......................................................0.90 
Alpha .......................................................0.05 
n (Sample Size).......................................Ignored since this is the Find setting 
d0 (Equivalence Difference)....................0.05 
d1 (Actual Difference) .............................0 
PB (Baseline Proportion).........................0.50 
Test Type ................................................Exact Test 

Reports Tab 
Show Numeric Reports ...........................Checked 
Show Comparative Reports ....................Not checked 
Show Definitions .....................................Not checked 
Show Plots ..............................................Not checked 
Show Comparative Plots.........................Not checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results when H0: Non-Equivalence versus H1: Equivalence 
Test Statistic: Exact Test 
 
   Lower Upper   
  Equiv. Equiv. Equiv. Actual Baseline    Reject H0 if 
  Diff. Prop. Prop. Diff. Prop. Target Actual  R1<=R<=R2 
Power N (d0) (P0L) (P0U) (d1) (PB) Alpha Alpha Beta (R1|R2) 
0.9040 1092 0.0500 0.4500 0.5500 0.0000 0.5000 0.0500 0.0498 0.0960 519|573 
 

This report shows that a sample size of 1092 will be necessary to achieve the design 
requirements.  
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Example 3 – Comparing Test Statistics 
Continuing Example1, suppose the researchers want to investigate which of the five test statistics 
to use. This is an important question since choosing the wrong test statistic can increase sample 
size and reduce power. The differences in the characteristics of test statistics are most noticeable 
in small samples. Hence, the investigation done here is for sample sizes of 20 to 200 in steps of 
20. The trivial difference will be set to 0.10. All other settings are as given in Example 1. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for One Proportion [Differences] 
procedure window by clicking on Proportions, then One Proportion, then Equivalence Tests, 
then Specify using Differences. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example3 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size).......................................20 to 200 by 20 
d0 (Equivalence Difference)....................0.10 
d1 (Actual Difference) .............................0 
PB (Baseline Proportion).........................0.50 
Test Type ................................................Exact Test 

Reports Tab 
Show Numeric Reports ...........................Not checked 
Show Comparative Reports ....................Checked 
Show Definitions .....................................Not checked 
Show Plots ..............................................Not checked 
Show Comparative Plots.........................Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Power Comparison for Methods of Testing H0: Non-Equivalence versus H1: Equivalence 
 
 Equiv. Actual Baseline  Exact Z-Test Z-Test Z-Test Z-Test  
 Diff. Diff. Prop. Target Test S(P0) S(P0)C S(P) S(P)C T-Test 
N (d0) (d1) (PB) Alpha Power Power Power Power Power Power 
20 0.1000 0.0000 0.5000 0.0500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
40 0.1000 0.0000 0.5000 0.0500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
60 0.1000 0.0000 0.5000 0.0500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
80 0.1000 0.0000 0.5000 0.0500 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 
100 0.1000 0.0000 0.5000 0.0500 0.2356 0.2356 0.2356 0.2356 0.2356 0.2356 
120 0.1000 0.0000 0.5000 0.0500 0.3517 0.4770 0.3517 0.4770 0.3517 0.3517 
140 0.1000 0.0000 0.5000 0.0500 0.4457 0.5530 0.4457 0.5530 0.4457 0.5530 
160 0.1000 0.0000 0.5000 0.0500 0.6154 0.6154 0.6154 0.6154 0.6154 0.6154 
180 0.1000 0.0000 0.5000 0.0500 0.6674 0.7365 0.6674 0.6674 0.6674 0.6674 
200 0.1000 0.0000 0.5000 0.0500 0.7708 0.7708 0.7708 0.7708 0.7112 0.7708 
 
Actual Alpha Comparison for Methods of Testing H0: Non-Equivalence versus H1: Equivalence 
 
 Equiv. Actual Baseline  Exact Z-Test Z-Test Z-Test Z-Test  
 Diff. Diff. Prop. Target Test S(P0) S(P0)C S(P) S(P)C T-Test 
N (d0) (d1) (PB) Alpha Alpha Alpha Alpha Alpha Alpha Alpha 
20 0.1000 0.0000 0.5000 0.0500 0.0000 0.0565 0.0210 0.0565 0.0210 0.0565 
40 0.1000 0.0000 0.5000 0.0500 0.0000 0.0392 0.0392 0.0392 0.0392 0.0392 
60 0.1000 0.0000 0.5000 0.0500 0.0000 0.0445 0.0445 0.0445 0.0445 0.0445 
80 0.1000 0.0000 0.5000 0.0500 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 
100 0.1000 0.0000 0.5000 0.0500 0.0423 0.0423 0.0423 0.0423 0.0423 0.0423 
120 0.1000 0.0000 0.5000 0.0500 0.0392 0.0575 0.0392 0.0575 0.0392 0.0392 
140 0.1000 0.0000 0.5000 0.0500 0.0358 0.0514 0.0358 0.0514 0.0358 0.0514 
160 0.1000 0.0000 0.5000 0.0500 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 
180 0.1000 0.0000 0.5000 0.0500 0.0408 0.0558 0.0408 0.0408 0.0408 0.0408 
200 0.1000 0.0000 0.5000 0.0500 0.0492 0.0492 0.0492 0.0492 0.0363 0.0492 
          

Power vs n by Test with d0=0.1000 d1=0.0000
Alpha=0.05 PB=0.5000
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The first report shows the power for each test statistic. The second report shows the actual alpha 
achieved by the design. 
An examination of the first report shows that once non-zero powers are obtained, they are often 
different for at least one of the tests. Also notice that the exact test always has the minimum 
power in each row. This would lead us discard this test statistic. However, consider the second 
report which shows the actual alpha level (the target was 0.05) for each test. By inspecting 
corresponding entries in both tables, we see that whenever a test statistic achieves a better power 
than the exact test, it also yields an actual alpha level larger than the target alpha.  
For example, look at the powers for n = 120. The z test using s(P0) has an unusually large power 
= 0.4770. This is a much larger power than the exact test’s value of 0.3517. However, note that 
the actual alpha for this test is 0.0575 which is larger than the target alpha of 0.05 and the exact 
test’s alpha of 0.0392.  
We conclude that indeed, the exact test is consistently the best test since it always achieves a 
significance level that is less than the target value. 

Example 4 – Validation 
We could not find a worked example for this situation in the literature. Therefore, we will use the 
example that was worked ‘by hand’ earlier in this chapter to validate the program. In that 
example, the baseline proportion was 0.50, alpha was 0.05, n was 10, the actual difference was 
0.10, and the trivial difference was 0.40. The power was calculated to be 0.5629.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for One Proportion [Differences] 
procedure window by clicking on Proportions, then One Proportion, then Equivalence Tests, 
then Specify using Differences. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example4 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size).......................................10 
d0 (Equivalence Difference)....................0.40 
d1 (Actual Difference) .............................0.10 
PB (Baseline Proportion).........................0.50 
Test Type ................................................Exact Test 

Reports Tab 
Show Numeric Reports ...........................Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H0: Non-Equivalence versus H1: Equivalence 
Test Statistic: Exact Test 
 
   Lower Upper   
  Equiv. Equiv. Equiv. Actual Baseline    Reject H0 if 
  Diff. Prop. Prop. Diff. Prop. Target Actual  R1<=R<=R2 
Power N (d0) (P0L) (P0U) (d1) (PB) Alpha Alpha Beta (R1|R2) 
0.5630 10 0.4000 0.1000 0.9000 0.1000 0.5000 0.0500 0.0128 0.4370 4|6 
 

PASS has obtained the same answer within rounding error. 

Example 5 – Computing the Power after Completing the 
Experiment 
Researchers are testing a generic drug to determine if it is equivalent to the name-brand 
alternative.  Equivalence is declared if the success rate of the generic brand is no more than 10% 
from that of the name-brand drug. Suppose that the name-brand drug is known to have a success 
rate of 60%.  In a study of 500 individuals, they find that 265, or 53%, are successfully treated 
using the generic brand.  An equivalence test (exact test) with alpha = 0.05 failed to declare that 
the two drugs are equivalent. The researchers would now like to compute the power for actual 
differences ranging from 0 to 9%. 

Note that the power is not calculated solely at the difference observed in the study, 7%.  It is more 
informative to study a range of values with practical significance. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for One Proportion [Differences] 
procedure window by clicking on Proportions, then One Proportion, then Equivalence Tests, 
then Specify using Differences. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example5 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size).......................................500 
d0 (Equivalence Difference)....................0.10 
d1 (Actual Difference) .............................0.0 to 0.09 by 0.01 
PB (Baseline Proportion).........................0.60 
Test Type ................................................Exact Test 
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Reports Tab 
Show Numeric Reports ...........................Checked 
Show Comparative Reports ....................Not checked 
Show Definitions .....................................Not checked 
Show Plots ..............................................Checked 
Show Comparative Plots.........................Not checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Numeric Results when H0: Non-Equivalence versus H1: Equivalence 
Test Statistic: Exact Test 
 
   Lower Upper   
  Equiv. Equiv. Equiv. Actual Baseline    Reject H0 if 
  Diff. Prop. Prop. Diff. Prop. Target Actual  R1<=R<=R2 
Power N (d0) (P0L) (P0U) (d1) (PB) Alpha Alpha Beta (R1|R2) 
0.9965 500 0.1000 0.5000 0.7000 0.0000 0.6000 0.0500 0.0489 0.0035 269|332 
0.9940 500 0.1000 0.5000 0.7000 0.0100 0.6000 0.0500 0.0489 0.0060 269|332 
0.9815 500 0.1000 0.5000 0.7000 0.0200 0.6000 0.0500 0.0489 0.0185 269|332 
0.9482 500 0.1000 0.5000 0.7000 0.0300 0.6000 0.0500 0.0489 0.0518 269|332 
0.8783 500 0.1000 0.5000 0.7000 0.0400 0.6000 0.0500 0.0489 0.1217 269|332 
0.7583 500 0.1000 0.5000 0.7000 0.0500 0.6000 0.0500 0.0489 0.2417 269|332 
0.5914 500 0.1000 0.5000 0.7000 0.0600 0.6000 0.0500 0.0489 0.4086 269|332 
0.4041 500 0.1000 0.5000 0.7000 0.0700 0.6000 0.0500 0.0489 0.5959 269|332 
0.2352 500 0.1000 0.5000 0.7000 0.0800 0.6000 0.0500 0.0489 0.7648 269|332 
0.1139 500 0.1000 0.5000 0.7000 0.0900 0.6000 0.0500 0.0489 0.8861 269|332 
 

Power vs d1 with d0=0.1000 n=500 Alpha=0.05
PB=0.6000 Test=Exact

Po
w

er

d1

0.1

0.3

0.5

0.7

0.9

1.1

0.00 0.02 0.04 0.06 0.08 0.10

 
 

The range in power is quite large.  The power is relatively high and constant if the true difference 
is less than or equal to 4%, but it decreases rapidly as the differences increase from there. 
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Example 6 – Finding the Sample Size using Ratios 
Researchers would like to compare a new treatment to an existing standard treatment.  The new 
treatment will be deemed equivalent to the standard treatment if the response rate is changed by 
no more than 20%, hence, r = 1.20.  It is known that 60% of patients respond to the standard 
treatment.  If the researchers use the exact test and a significance level of 0.05, how large of a 
sample must they take to achieve 90% power if the actual ratio is 1.0? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for One Proportion [Ratios] procedure 
window by clicking on Proportions, then One Proportion, then Equivalence Tests, then 
Specify using Ratios. You may then follow along here by making the appropriate entries as listed 
below or load the completed template Example6 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................n 
Power ......................................................0.90 
Alpha .......................................................0.05 
n (Sample Size).......................................Ignored since this is the Find setting 
r0 (Equivalence Ratio).............................1.2 
r1 (Actual Ratio) ......................................1.0 
PB (Baseline Proportion).........................0.60 
Test Type ................................................Exact Test 

Reports Tab 
Show Numeric Reports ...........................Checked 
Show Comparative Reports ....................Not checked 
Show Definitions .....................................Not checked 
Show Plots ..............................................Checked 
Show Comparative Plots.........................Not checked 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results when H0: Non-Equivalence versus H1: Equivalence 
Test Statistic: Exact Test 
   Lower Upper   
  Equiv. Equiv. Equiv. Actual Baseline    Reject H0 if 
  Ratio Prop. Prop. Ratio Prop. Target Actual  R1<=R<=R2 
Power N (r0) (P0L) (P0U) (r1) (PB) Alpha Alpha Beta (R1|R2) 
0.9014 228 1.2000 0.5000 0.7200 1.0000 0.6000 0.0500 0.0488 0.0986 127|152 
 

They must sample 228 individuals to achieve just over 90% power for an actual ratio of 1.0 and 
equivalence ratio of 1.20. 
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Chapter 115 

Confidence 
Intervals for One 
Proportion 
Introduction 
This routine calculates the sample size necessary to achieve a specified interval width or distance 
from the sample proportion to the confidence limit at a stated confidence level for a confidence 
interval for one proportion.  

Caution: This procedure assumes that the proportion of the future sample will be the same as the 
proportion that is specified. If the sample proportion is different from the one specified when 
running this procedure, the interval width may be narrower or wider than specified.  

Technical Details 
Many methods have been devised for computing confidence intervals for a single proportion. 
Five of these methods are available in this procedure. The five confidence interval methods are 

1. Exact (Clopper-Pearson)  

2. Score (Wilson) 

3. Score with continuity correction 

4. Simple Asymptotic 

5. Simple Asymptotic with continuity correction 

For a comparison of methods, see Newcombe (1998a). 
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Confidence Interval Formulas 
For each of the following methods, let p be the population proportion, and let r represent the 
number of successes from a sample of size N. Let Nrp /ˆ = . 

Exact (Clopper-Pearson) 
Using a mathematical relationship (see Fleiss et al (2003), p. 25) between the F distribution and 
the cumulative binomial distribution, the lower and upper confidence limits of a 100(1-α)% exact 
confidence interval for the true proportion p are given by 
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One-sided limits may be obtained by replacing α/2 by α. 

Score (Wilson) 
The Wilson Score confidence interval, which is based on inverting the z-test for a single 
proportion, is calculated using 
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One-sided limits may be obtained by replacing α/2 by α. 

Score with Continuity Correction 
The Score confidence interval with continuity correction is based on inverting the z-test for a 
single proportion with continuity correction. The 100(1-α)% limits are calculated by 
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Upper Limit = 
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One-sided limits may be obtained by replacing α/2 by α. 

Simple Asymptotic 
The simple asymptotic formula is based on the normal approximation to the binomial distribution. 
The approximation is close only for very large sample sizes. The 100(1-α)% confidence limits are 
given by 

( )
n

ppzp
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−
± −α  

One-sided limits may be obtained by replacing α/2 by α. 
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Simple Asymptotic with Continuity Correction 
This formula is identical to the previous one, but with continuity correction. The 100(1-α)% 
confidence limits are 
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One-sided limits may be obtained by replacing α/2 by α. 

For two-sided intervals, the distance from the sample proportion to each of the limits may be 
different. Thus, instead of specifying the distance to the limits we specify the width of the interval, 
W.  

The basic equation for determining sample size for a two-sided interval when W has been specified 
is 

LUW −=  

For one-sided intervals, the distance from the sample proportion to limit, D, is specified. 

The basic equation for determining sample size for a one-sided upper limit when D has been 
specified is 

pUD ˆ−=  

 

The basic equation for determining sample size for a one-sided lower limit when D has been 
specified is 

LpD −= ˆ  

 

Each of these equations can be solved for any of the unknown quantities in terms of the others. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of samples of  n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population proportion is 1 – 
α. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  

Confidence 

Confidence Level 
The confidence level, 1 - α, has the following interpretation. If thousands of samples of n items are 
drawn from a population using simple random sampling and a confidence interval is calculated for 
each sample, the proportion of those intervals that will include the true population proportion is 1 – 
α. 

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 

Sample Size 

N (Sample Size) 
Enter one or more values for the sample size. This is the number of individuals selected at 
random from the population to be in the study. 

You can enter a single value or a range of values. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a two-sided confidence interval, an interval that 
has only an upper limit, or an interval that has only a lower limit. 

Precision 

Confidence Interval Width (Two-Sided) 
This is the distance from the lower confidence limit to the upper confidence limit. 

You can enter a single value or a list of values. The value(s) must be between 0 and 1.  
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Distance from P to Limit (One-Sided) 
This is the distance from the sample proportion to the lower or upper limit of the confidence 
interval, depending on whether the Interval Type is set to Lower Limit or Upper Limit. 

You can enter a single value or a list of values. The value(s) must be between 0 and 1.  

Standard Deviation 

P (Proportion) 
Enter an estimate of the proportion. The sample size and width calculations assume that the value 
entered here is the proportion estimate that is obtained from the sample. If the sample proportion 
is different from the one specified here, the width may be narrower or wider than specified. 

You can enter a range of values such as .1 .2 .3 or .1 to .5 by .1.  

Confidence Interval Method 

Confidence Interval Formula 
Specify the formula to be in used in calculation of confidence intervals. 

• Exact (Clopper-Pearson) 
The exact formula uses the binomial probabilities directly. 

• Score (Wilson) 
This formula is based on inverting a critical ratio test. 

• Score (Continuity Correction) 
This formula is based on inverting a critical ratio test with continuity correction. 

• Simple Asymptotic 
The simple asymptotic formula is based on the normal approximation to the binomial. 

• Simple Asymptotic (Continuity Correction) 
This formula is based on the normal approximation to the binomial with continuity 
correction.  

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example 1 – Calculating Sample Size 
Suppose a study is planned in which the researcher wishes to construct a two-sided 95% exact 
(Clopper-Pearson) confidence interval for the population proportion such that the width of the 
interval is no wider than 0.06. The anticipated proportion estimate is 0.3, but a range of values 
from 0.1 to 0.5 will be included to determine the effect of the proportion estimate on necessary 
sample size. Instead of examining only the interval width of 0.06, widths of 0.04 and 0.10 will 
also be considered.  
The goal is to determine the necessary sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Proportion procedure window 
by clicking on Confidence Intervals, then Proportions, then One Proportion. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..0.04 0.06 0.10 
P (Proportion)..........................................0.1 to 0.5 by 0.1 
Confidence Interval Formula...................Exact (Clopper-Pearson) 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for One Proportion 
Confidence Interval Formula: Exact (Clopper-Pearson) 
 
 Sample       
Confidence Size Target Actual Proportion Lower Upper Width if 
Level (N) Width Width (P) Limit Limit P = 0.5 
0.950 914 0.040 0.040 0.100 0.081 0.121 0.066 
0.950 1585 0.040 0.040 0.200 0.181 0.221 0.050 
0.950 2065 0.040 0.040 0.300 0.280 0.320 0.044 
0.950 2353 0.040 0.040 0.400 0.380 0.420 0.041 
0.950 2449 0.040 0.040 0.500 0.480 0.520 0.040 
0.950 417 0.060 0.060 0.100 0.073 0.133 0.098 
0.950 715 0.060 0.060 0.200 0.171 0.231 0.075 
0.950 928 0.060 0.060 0.300 0.271 0.331 0.065 
0.950 1056 0.060 0.060 0.400 0.370 0.430 0.061 
0.950 1098 0.060 0.060 0.500 0.470 0.530 0.060 
0.950 158 0.100 0.100 0.100 0.058 0.158 0.161 
0.950 264 0.100 0.100 0.200 0.153 0.253 0.124 
0.950 341 0.100 0.100 0.300 0.252 0.352 0.109 
0.950 387 0.100 0.100 0.400 0.351 0.451 0.102 
0.950 402 0.100 0.100 0.500 0.450 0.550 0.100 
 
References 
Fleiss, J. L., Levin, B., Paik, M.C. 2003. Statistical Methods for Rates and Proportions. Third Edition. John 
     Wiley & Sons. New York. 
Newcombe, R. G. 1998. 'Two-Sided Confidence Intervals for the Single Proportion: Comparison of Seven Methods.' 
     Statistics in Medicine, 17, pp. 857-872. 
 
Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the population proportion. 
N is the size of the sample drawn from the population. 
Width is the distance from the lower limit to the upper limit. 
Target Width is the value of the width that is entered into the procedure. 
Actual Width is the value of the width that is obtained from the procedure. 
Proportion (P) is the assumed sample proportion. 
Lower Limit is the lower limit of the confidence interval. 
Upper Limit is the upper limit of the confidence interval. 
Width if P = 0.5 is the maximum width for a confidence interval with sample size N. 
 
Summary Statements 
A sample size of 914 produces a two-sided 95% confidence interval with a width equal to 0.040 
when the sample proportion is 0.100. 
 

This report shows the calculated sample size for each of the scenarios.  
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Plots Section 
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This plot shows the sample size versus the sample proportion for the three confidence interval 
widths. 
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Example 2 – Validation using Fleiss, Levin, and Paik 
Fleiss, Levin, and Paik (2003), pages 22-23, give an example of a calculation for an exact 
(Clopper-Pearson) one-sided lower limit confidence interval for a single proportion when the 
confidence level is 95%, the sample proportion is 0.92, and the distance from the lower limit to 
the sample proportion is 0.15104. The necessary sample size is 25.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Proportion procedure window 
by clicking on Confidence Intervals, then Proportions, then One Proportion. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Lower Limit 
Distance from P to Limit (One-Sided) .....0.15104 
P (Proportion)..........................................0.92 
Confidence Interval Formula...................Exact (Clopper-Pearson) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

  Target Actual    Distance 
 Sample Distance Distance    from P to 
Confidence Size from P to from P to Proportion Lower Upper Limit if 
Level (N) Lower Limit Lower Limit (P) Limit Limit P = 0.5 
0.950 25 0.151 0.151 0.920 0.769 1 0.177 
 

PASS also calculated the necessary sample size to be 25.  
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Example 3 – Validation using Newcombe 
Newcombe (1998a), pages 860-861, gives an example of a calculation for a two-sided confidence 
interval for a single proportion for each of the methods when the confidence level is 95%. Here 
we validate the score method with continuity correction. The sample proportion is 0.034483, and 
the interval width is 0.1945. The necessary sample size is 29. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Proportion procedure window 
by clicking on Confidence Intervals, then Proportions, then One Proportion. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..0.1945 
P (Proportion)..........................................0.034483 
Confidence Interval Formula...................Score (Contin. Correction) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

 Sample       
Confidence Size Target Actual Proportion Lower Upper Width if 
Level (N) Width Width (P) Limit Limit P = 0.5 
0.950 29 0.195 0.194 0.034 0.002 0.196 0.372 
 

PASS also calculated the necessary sample size to be 29.  
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Example 4 – Zero Events, Validation using Lachin 
Lachin (2000), page 19, gives an example of a calculation for a one-sided upper limit exact 
confidence interval for a single proportion when the confidence level is 95%, the sample 
proportion is 0, and the upper bound is 0.01. The necessary sample size is 299. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for One Proportion procedure window 
by clicking on Confidence Intervals, then Proportions, then One Proportion. You may then 
follow along here by making the appropriate entries as listed below or load the completed 
template Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Confidence Level ....................................0.95 
N (Sample Size) ......................................Ignored since this is the Find setting 
Interval Type ...........................................Upper Limit 
Distance from P to Limit (One-Sided) .....0.01 
P (Proportion)..........................................0 
Confidence Interval Formula...................Exact (Clopper-Pearson) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

  Target Actual    Distance 
 Sample Distance Distance    from P to 
Confidence Size from P to from P to Proportion Lower Upper Limit if 
Level (N) Upper Limit Upper Limit (P) Limit Limit P = 0.5 
0.950 299 0.010 0.010 0.000 0 0.010 0.049 
 

PASS also calculated the necessary sample size to be 299.  



115-12  Confidence Intervals for One Proportion 

 



  120-1 

Chapter 120 

Single-Stage 
Phase II Clinical 
Trials 
Introduction 
Phase II clinical trials determine whether a drug or regimen has sufficient activity against disease 
to warrant more extensive study and development. In a single-stage design, a single group of 
patients is studied. Usually, investigators will know the response rate of other drugs against the 
disease. Unless the current drug can be shown to be significantly more effective, its use will not 
be pursued.  

This module finds designs that meet the error rate (alpha and beta) criterion and minimize the 
sample size when an exact test of proportions is used. The algorithm, discussed by A’Hern 
(2001), is an exact version of the algorithm of Fleming (1982).  

Technical Details 
Phase I clinical trials are designed to provide information about the maximum tolerated dose 
levels of a treatment. They consist of three to six patients at each dose level and provide little 
information about the effectiveness of the treatment.  

Phase II trials obtain initial estimates of the degree of treatment activity. A patient’s response 
may be measured by the decrease in the size of a tumor. For example, a patient may be 
considered to have responded to treatment if the tumor shrinks by 50% or more. There is no 
control group in these designs. Rather, the purpose of the trial is to determine if the drug shows 
enough activity against disease to warrant a full-scale, phase III clinical trial. 

Let P0 be the largest response proportion that, if true, clearly implies that the treatment does not 
warrant further study. P0 is sometimes called the response rate of a poor treatment. For example, 
for a new anti-tumor drug, this may be set to 0.10. 

Let P1 be the smallest response proportion that, if true, clearly implies that the treatment does 
warrant further study. P1 is sometimes called the response rate of a good treatment. For example, 
for a new anti-tumor drug, this may be set to 0.30. 

A statistical test of hypothesis may be conducted to test the null hypothesis that P P≤ 0 versus 
the alternative hypothesis that  (P is the true proportion responding to the treatment in the P P≥ 1



120-2  Single-Stage Phase II Clinical Trials 

population). Let α be the probability of rejecting the null hypothesis when it is true. Let β  be the 
probability of rejecting the alternative hypothesis when it is true. 

A single-stage phase II design can be represented by two numbers: N and R. N is the sample size. R 
is the critical value. If R or fewer responses occur in the N  patients, the drug is rejected.  The design 
is found by searching for the minimum value of N for which a value for R can be found such that 
the following two error rate constraints are met: 

( )Pr | , ,reject P R N0 1≥ − α  

and 

( )Pr | , ,reject P R N1 ≤ β  

Limiting the Range of the Search 
Because of the discrete nature of the binomial distribution by which these error rates are 
calculated, there is no closed-formed solution and so a search among possible values of N must be 
conducted. In order to speed up the search, only values of N between 0.8F and 4F are considered. 
F is the sample size based on the normal approximation to the binomial, suggested by Fleming 
(1982). 

Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data tab. To find out more about using the other tabs, go to the 
Procedure Window chapter. 

Data Tab 

Error Rates 

Power or Beta 
Power is the probability of rejecting the null hypothesis that the proportion responding to the 
treatment is less than or equal to P0 when this hypothesis is false. That is, Power = Pr(rejecting 
P<=P0|P>=P1). 

Beta is the probability of not rejecting the hypothesis that the proportion responding to the 
treatment is less than or equal to P0 when this hypothesis is false. That is, Beta = Pr(not rejecting 
P<=P0|P>=P1). 

The common range of power is 0.6 to 0.999 (Beta = 0.001 to 0.4). Popular values for power are 
0.80 and 0.90 (Beta = 0.1 and 0.2). 

Alpha 
Alpha is the probability of rejecting the hypothesis that the proportion responding to the treatment 
is less than or equal to P0 when this hypothesis is actually true. That is, Alpha = Pr(Rejecting 
P<=P0 | P<=P0). 

The range of Alpha is 0.001 to 0.25. Popular values are 0.05 and 0.10. 
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Effect Size 

P0 (Maximum Response Rate of a Poor Treatment) 
Enter one or more response proportions of a poor drug. If the true proportion responding to the 
treatment is less than this amount, study of the treatment will not be recommended. 

This value must be less than P1 and greater than zero. 

P1 (Minimum Response Rate of a Good Treatment) 
Enter one or more response proportions of a good drug. If the true proportion responding to the 
treatment is greater than or equal to this amount, study of the treatment can be recommended.  

This value must be greater than P0 and less than one.  

Example 1 – Validation using A’Hern 
A’Hern (2001) presents tables of sample sizes for various values of the design parameters. Setting 
alpha = 0.05, beta = 0.20, P0 = 0.05, and P1 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, A’Hern 
finds the corresponding sampling plans to be (using the notation R+1/N) 14/169, 4/27, 3/14, 2/7, 
2/5, 2/4, 2/4, 1/1, and 1/1. This would be set up as follows.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Single-Stage Phase II Clinical Trials procedure window by 
clicking on Proportions, then One Proportion with Multiple Stages or Looks (Phase II 
Clinical Trials), then Single-Stage Designs. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Power ......................................................0.80 
Alpha .......................................................0.05 
P0 ............................................................0.05 
P1 ............................................................ .1 .2 .3 .4 .5 .6 .7 .8 .9 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Single Stage Design for Testing H0: P <= P0 versus H1: P >= P1 
 
    Cut-Off  Actual Actual 
P0 P1 Alpha Beta R + 1 N Alpha Beta 
0.050 0.100 0.050 0.200 14 169 0.045 0.194 
0.050 0.200 0.050 0.200 4 27 0.044 0.182 
0.050 0.300 0.050 0.200 3 14 0.030 0.161 
0.050 0.400 0.050 0.200 2 7 0.044 0.159 
0.050 0.500 0.050 0.200 2 5 0.023 0.188 
0.050 0.600 0.050 0.200 2 4 0.014 0.179 
0.050 0.700 0.050 0.200 2 4 0.014 0.084 
0.050 0.800 0.050 0.200 1 1 0.050 0.200 
0.050 0.900 0.050 0.200 1 1 0.050 0.100 
 
Report Definitions 
P0 is the maximum response proportion of a poor drug. 
P1 is the minimum response proportion of a good drug. 
N is the sample size. 
If the number of responses >= R+1, P0 is rejected. 
If the number of responses <= R, P1 is rejected. 
Alpha is the probability of rejecting that P<=P0 when this is true. 
Beta is the probability of rejecting that P>=P1 when this is true. 
 
Summary Statements 
A study requires 169 subjects to decide whether the proportion responding, P, is less than or 
equal to 0.050 or greater than or equal to 0.100. If the number of responses is 14 or more, the 
hypothesis that P <= 0.050 is rejected with a target error rate of 0.050 and an actual error 
rate of 0.045. If the number of responses is 13 or less, the hypothesis that P >= 0.100 is 
rejected with a target error rate of 0.200 and an actual error rate of 0.194. 
 

Note that the designs match those of A’Hern (2001) exactly.  
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Chapter 125 

Two-Stage Phase II 
Clinical Trials 
Introduction 
Phase II clinical trials determine whether a drug or regimen has sufficient activity against disease 
to warrant more extensive study and development. In a two-stage design, the patients are divided 
into two groups or stages. At the completion of the first stage, an interim analysis is made to 
determine if the second stage should be conducted. If the number of patients responding is greater 
than a certain amount, the second stage is conducted. Otherwise, it is not.  

This module finds designs that meet the error rate (alpha and beta) criterion and minimize the 
expected sample size. The algorithm is discussed in Simon (1989). Extending Simon’s work, our 
algorithm allows the investigation of near-optimal designs that may have other useful properties.  

Technical Details 
Phase I clinical trials are designed to provide information about the maximum tolerated dose 
levels of a treatment. They consist of three to six patients at each dose level and provide little 
information about the effectiveness of the treatment.  

Phase II trials obtain initial estimates of the degree of treatment activity. A patient’s response 
may be measured by the decrease in the size of a tumor. For example, a patient may be 
considered to have responded to treatment if the tumor shrinks by 50% or more. There is no 
control group in these designs. Rather, the purpose of the trial is to determine if the drug shows 
enough activity against disease to warrant a full-scale, phase III clinical trial. 

Let P0 be the largest response proportion which, if true, clearly implies that the treatment does 
not warrant further study. P0 is sometimes called the response rate of a poor treatment. For a new 
anti-tumor drug, this may be set to 0.10. 

Let P1 be the smallest response proportion which, if true, clearly implies that the treatment does 
warrant further study. P1 is sometimes called the response rate of a good treatment. For a new 
anti-tumor drug, this may be set to 0.30. 

A statistical test of hypothesis may be conducted to test the null hypothesis that P P≤ 0 versus 
the alternative hypothesis that  (P is the true proportion responding to the treatment in the 
population). Let 

P P≥ 1
α be the probability of rejecting the null hypothesis when it is true. Let β  be the 

probability of rejecting the alternative hypothesis when it is true. 

A phase II design can be represented by four numbers: N1, R1, N, and R. N1 is the sample size in 
the first stage. R1 is the critical value in the first stage. If R1 or fewer responses occur in the N1 
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patients, the drug is rejected. N is the combined sample size for both the first and second stages. R is 
the critical value in the combined sample. If R or fewer of the N patients respond, the drug is 
rejected. 

The expected (or average) sample size of this design is 

( )( )E N N PET N NE( ) = + − −1 1 1  

where PET is the probability of early termination of the study. 

The probability of rejecting a drug with success probability P can be found using the binomial 
distribution. The formulation is 

( ) ( ) ( )
( )

( )Pr | , , , , | , | , | ,
min ,

reject P N R R N B R P N b X P N B R X P N N
X R

N R

1 1 1 1 1 1
1 1

1

= + −
= +
∑ −  

where 

( ) ( ) ( )b X P N N
X N X

P PX N X| , !
! !

=
−

− −1  

( ) (B X P N b R P N
r

X

| , | ,=
=
∑

0
)  

The two error rate constraints are 

( )Pr | , , , ,reject P N R R N0 1 1 1≥ −α  

and 

( )Pr | , , , ,reject P N R R N1 1 1 ≤ β  

Optimum Design 
The optimum design minimizes the average sample size, E(N), while meeting the error rate 
constraints. This design is found through an exhaustive search of all possible designs. This search 
may take several minutes to complete. 

Designs Other Than Optimal 
The optimal design minimizes the average sample size. There are examples where a less-than 
optimal design may be more desirable. For example, suppose the optimal design were N1 = 5 and 
N = 25. This design is poor because only 5 patients are obtained during the first stage, but 20 are 
needed during the second stage. Most researchers would rather have more balance in the sample 
sizes of the two stages. Because of this, the actual optimal design may be rejected on other 
grounds. 

Design Flexibility 
Dealing with sequential designs is complicated. It may be difficult to achieve exactly the number 
of patients proscribed for each phase. However, it should be remembered that the validity of the 
probability statements depends on the sample size requirements being met exactly. This is 
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because the interpretation of an error rate probability statement is for repeated studies conducted 
in exactly the same way. We envision that if many studies of the same drug are conducted using 
the specific sampling plan N1, R1, N, R when P = P0, a proportion α of them will be falsely 
terminated due to chance occurrences. 

The point is, the interpretation of the error rates is for a large number of identical studies in which 
the sampling plan is identical and as proscribed. If the sampling plan is allowed to vary, this 
interpretation is invalid. Of course, the degree of possible error in interpretation depends on the 
degree to which the sampling plan is changed. We recognize that when dealing with human 
subjects, flexibility must be maintained. However, the scientist must also recognize that when the 
sampling plan is changed, the exact probability statements can no longer be calculated. 

Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data tab. To find out more about using the other tabs, go to the 
Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Designs 

Designs to Display 
This parameter specifies which designs are displayed. Since several thousand designs may be 
considered during the search for the optimum, it is important to limit the number of designs 
reported on. 

The options are: 

• All designs 
All designs considered are output. This option should only be used in special cases in which a 
small number of designs are tested. Otherwise, hundreds of pages of output will be generated. 

• Only designs that meet alpha & beta constraints 
Only designs that meet the alpha and beta constraints are shown. This allows you to consider 
many near optimal designs which may be selected on grounds other than expected sample 
size. 

• Optimum designs only  
Only the optimum design, the minimax design, and the single stage design are displayed. 
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Error Rates 

Power or Beta 
Power is the probability of rejecting the null hypothesis that the proportion responding to the 
treatment is less than or equal to P0 when this hypothesis is false. That is, Power = Pr(rejecting 
P<=P0|P>=P1). 

Beta is the probability of not rejecting the hypothesis that the proportion responding to the 
treatment is less than or equal to P0 when this hypothesis is false. That is, Beta = Pr(not rejecting 
P<=P0|P>=P1). 

The common range of power is 0.6 to 0.999 (Beta = 0.001 to 0.4). Popular values for power are 
0.80 and 0.90 (Beta = 0.1 and 0.2). 

Alpha 
Alpha is the probability of rejecting the hypothesis that the proportion responding to the treatment 
is less than or equal to P0 when this hypothesis is actually true. That is, Alpha = Pr(Rejecting 
P<=P0 | P<=P0). 

The range of Alpha is 0.001 to 0.25. Popular values are 0.05 and 0.10. 

Effect Size 

P0 (Poor) 
This is the response proportion of a poor drug. If the true proportion responding to the treatment  
is less than this amount, study of the treatment would not be recommended. 

This value must be less than P1 and greater than zero. 

Only one value can be entered. 

P1 (Good) 
This is the response proportion of a good drug. If the true proportion responding to the treatment 
is greater than or equal to this amount, study of the treatment would be recommended.  

This value must be greater than P0 and less than one.  

Only one value can be entered. 

Search Parameters – N (Combined 
Sample Size) 

Min 
N is the combined sample size of the two stages of the design. This parameter sets the minimum 
value of N that is used during the search. The optimum value of N must be between N Min and N 
Max or it will not be found. 

The keyword MIN indicates that the value used is the minimum of the smallest sample size from 
a single stage design and MIN2 where MIN2 is calculated using  

MIN p p p p z z
p p
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Since it is unlikely that the two stage sample size will be less MIN, this provides a reasonable 
starting point for a search for N. However, experience has shown that you should use a small 
number such as 2 to insure that you obtain the optimum. 

You can also enter a value like MIN-x where x is a positive integer. This will cause the search to 
begin x units below the MIN.  

The problem here is that this procedure may take a long time to run. Specifying a good starting 
value significantly reduces the running time. 

Examples of valid entries are  

2, 10, 20, MIN, MIN-1, MIN-15. 

Max 
N is the combined sample size of the two stages of the design. This parameter sets the maximum 
value of N used during the search. The optimum value of N should be between N Min and N Max 
or it will not be found. 

The keyword BEST+X indicates that the search should try at least X units above the latest 
optimum value of N. For example, suppose the N Min is set at 10. The search algorithm begins at 
10, and then continues by examining 11, 12, and so. Suppose that the search finds a candidate 
optimum at N = 13. To make sure that 13 is the optimum, the search continues on from 13 to 
13+X (if, for example, X = 5, this value is 18). If no new optimum designs are found, the design at 
N = 13 is selected.  

When using this option, X should be set large enough to guarantee that the true optimum can be 
found, but small enough so that the search does not take hours to complete. Our experience is that 
X should be greater than or equal to 8. 

Examples of valid entries are for this parameter are: 

20 

30 

BEST+8 

BEST 8 (the plus sign is optional) 

BEST 3 

Best 4 (capitalization is not necessary) 

Step 
This parameter sets the step size in the search for N. Usually, you would enter 1 here. 
Occasionally, you may want to increase the step size during the initial part of your search to 
speed up convergence. Once you have determined a likely range, you can tighten up the search 
boundaries and reset this value to 1. 

Search Parameters – R (Rejection 
Number) 

Min  
R is the treatment rejection number for the combined samples. If the total number of patients 
responding to the treatment is not greater than R, the treatment is deemed unworthy of further 
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study. R Min sets the lower boundary for R during the search for the optimum design. The 
optimum design must have an R value between R Min and R Max. 

The recommended value for this parameter is zero. Its range is from zero to N. 

Max 
R is the rejection number for the combined samples. If the total number of patients responding to 
the treatment is not greater than R, the treatment is deemed unworthy of further study. 

R Max sets the upper boundary for R during the search for the optimum design. The optimum 
design must have an R value between R Min and R Max. 

Since the upper value is N and N is also a varying parameter, you can set this parameter to MAX 
or MAX-X (replacing X with an appropriate integer like 1, 2, or 3). This causes the maximum 
value of R to be set to the current value of N-X during each iteration of the search. 

Step 
This parameter sets the step size in the search for R. Usually, you would enter 1 here. 
Occasionally, you may want to increase the step size during the initial part of your search to 
speed up convergence. Once you have determined a likely range, you can tighten up the search 
boundaries and reset this value to 1. 

Search Parameters – N1 (First Stage 
Sample Size) 

Min 
N1 is the sample size of the first stage. This value sets the minimum value of N1 that is used 
during the search. The optimum value must be between N1 Min and N1 Max or it will not be 
found.  

Although, in theory, the sample first stage design may have only 1, 2, or 3 patients, you may want 
to ignore such designs from consideration by setting this value to 4 or 5. 

The actual range of this parameter is from 1 to N. 

Max 
N1 is the sample size of the first stage of the design. This parameter sets the maximum value of 
N1 used during the search. The optimum value of N1 should be between N Min and N Max or it 
will not be found. Although, in theory, the sample first stage design may have N-3, N-2, or N-1 
patients, you may want to ignore such designs from consideration by setting this value to a 
smaller number.  

Since the upper value is N-1 and N is also a varying parameter, you can set this parameter to 
MAX or MAX-X (replacing X with an appropriate value like 1 or 2). This causes the maximum 
value of N1 to be set to the current value of N-X. 

Examples: 

10 

20 

MAX 

Max-2 

Max-4 
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Step 
This parameter sets the step size in the search for N1. Usually, you would enter a 1 here. 
Occasionally, you may want to increase the step size during the initial part of your search to 
speed up convergence. Once you have determined a likely range, you can tighten up the search 
boundaries and reset this value to 1. 

Search Parameters – R1 (First Stage 
Rejection Number) 

Min 
R1 is the drug rejection number for the first stage. If the number of patients responding to the 
treatment in the first stage is not greater than R1, the treatment is deemed unworthy of further 
study. This parameter sets the lower boundary for R1 during the search for the optimum design. 
The optimum design must have an R1 value between R Min and R Max. 

The recommended value for this parameter is zero. Its range is from zero to N1. 

Max 
R1 is the rejection number for the first stage. If the number of patients responding to the treatment 
in the first stage is not greater than R1, the treatment is deemed unworthy of further study. This 
parameter sets the upper boundary for R1 in the search for the optimum design.  

Since the upper value is N1 and N1 is a varying parameter, you can set this parameter to MAX or 
MAX-X (replacing X with an integer like 1,2, or 3). This causes the maximum value of R1 to be 
set to the current value of N1-X. 

The valid range of R1 is between zero and N1. 

Step 
This parameter sets the step size in the search for R1. Usually, you would enter a 1 here. 
Occasionally, you may want to increase the step size during the initial part of your search to 
speed up convergence. Once you have determined a likely range, you can tighten up the search 
boundaries and reset this value to 1. 

Iterations Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example 1 – Calculating the Power 
Suppose a design is wanted for the case Alpha = 0.05, Beta = 0.20, P0 = 0.05, and P1 = 0.25. 
This would be set up as follows:  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Two-Stage Phase II Clinical Trials procedure window by 
clicking on Proportions, then One Proportion with Multiple Stages or Looks (Phase II 
Clinical Trials), then Two-Stage Designs. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Designs to Display ..................................Optimum designs only 
Power ......................................................0.80 
Alpha .......................................................0.05 
P0 (Poor) .................................................0.05 
P1 (Good)................................................0.25 
N Min .......................................................Min-1 
N Max......................................................Best+8 
N Step .....................................................1 
R Min .......................................................0 
R Max......................................................Max-3 
R Step .....................................................1 
N1 Min.....................................................1 
N1 Max....................................................Max-4 
N1 Step ...................................................1 
R1 Min.....................................................0 
R1 Max....................................................Max-1 
R1 Step ...................................................1 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Possible Designs For P0=0.050, P1=0.250, Alpha=0.050, Beta=0.200 
        Constraints  
N1 R1 PET N R Ave N Alpha Beta Satisfied  
16 2 0.000 16 2 16.00 0.043 0.197 Single Stage  
12 0 0.540 16 2 13.84 0.043 0.199 Minimax  
9 0 0.630 17 2 11.96 0.047 0.188 Optimum  
 
Report Definitions 
N1 is the sample size in the first stage. 
R1 is the drug rejection number in the first stage. 
PET is the probability of early termination of the study. 
N is the combined sample size of both stages. 
R is the combined drug rejection number after both stages. 
Ave N is the average sample size if this design is repeated many times. 
Alpha is the probability of rejecting that P<=P0 when this is true. 
Beta is the probability of rejecting that P>=P1 when this is true. 
P0 is the response proportion of a poor drug. 
P1 is the response proportion of a good drug. 
 
Summary Statements 
The optimal two-stage design to test the null hypothesis that P<=0.050 versus the alternative 
that P>=0.250 has an expected sample size of 11.96 and a probability of early termination of 
0.630. If the drug is actually not effective, there is a 0.047 probability of concluding that 
it is (the target for this value was 0.050). If the drug is actually effective, there is a 
0.188 probability of concluding that it is not (the target for this value was 0.200). After 
testing the drug on 9 patients in the first stage, the trial will be terminated if 0 respond. 
If the trial goes on to the second stage, a total of 17 patients will be studied. If the total 
number responding is less than or equal to 2, the drug is rejected. 
 

This report shows three designs. The first is the smallest single stage design. The second is the 
Minmax solution. This is the design with the smallest total sample size (N). The third is the 
optimum design—the one that minimizes the average sample size. 
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Example 2 – Validation using Simon 
Simon (1989) page 4 in his Table 1 presents designs for several scenarios. The first row of the 
table sets P0 to 0.05, P1 to 0.25, Alpha to 0.10, and Beta to 0.10. The optimal design is N1 = 9, 
R1 = 0, N = 24, and R = 2. The minimax design is N1 = 13, R1 = 0, N = 20, and R = 2. We will 
now run this example through PASS.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Two-Stage Phase II Clinical Trials procedure window by 
clicking on Proportions, then One Proportion with Multiple Stages or Looks (Phase II 
Clinical Trials), then Two-Stage Designs. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example2 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Which Designs ........................................Optimum designs only 
Power ......................................................0.90 
Alpha .......................................................0.10 
P0 (Poor) .................................................0.05 
P1 (Good)................................................0.25 
N Min .......................................................Min-1 
N Max......................................................Best+8 
N Step .....................................................1 
R Min .......................................................0 
R Max......................................................Max-3 
R Step .....................................................1 
N1 Min.....................................................1 
N1 Max....................................................Max-4 
N1 Step ...................................................1 
R1 Min.....................................................0 
R1 Max....................................................Max-1 
R1 Step ...................................................1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Possible Designs For P0=0.050, P1=0.250, Alpha=0.050, Beta=0.200 
        Constraints  
N1 R1 PET N R Ave N Alpha Beta Satisfied  
20 2 0.000 20 2 20.00 0.075 0.091 Single Stage  
13 0 0.513 20 2 16.41 0.074 0.097 Minimax  
9 0 0.630 24 2 14.55 0.093 0.097 Optimum  
 

PASS has calculated exactly the same optimal design and minimax design. 
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Chapter 130 

Three-Stage  
Phase II Clinical 
Trials 
Introduction 
Phase II clinical trials determine whether a drug or regimen has sufficient activity against disease 
to warrant more extensive study and development. In a three-stage design, the patients are divided 
into three groups or stages. At the completion of the first stage, an interim analysis is made to 
determine if the second stage should be conducted. If the number of patients responding is greater 
than a certain amount, the second stage is conducted. Otherwise, it is not. A similar interim 
analysis is conducted at the end of the second stage.  

This module finds designs that meet the error rate (alpha and beta) criterion and minimize the 
expected sample size. The formulation is given in Chen (1997). Extending Chen’s work, our 
algorithm allows the investigation of near-optimal designs that may have other useful properties.  

Technical Details 
Phase I clinical trials are designed to provide information about the maximum tolerated dose 
levels of a treatment. They consist of three to six patients at each dose level and provide little 
information about the effectiveness of the treatment.  

Phase II trials obtain initial estimates of the degree of treatment activity. A patient’s response 
may be measured by the decrease in the size of a tumor. For example, a patient may be 
considered to have responded to treatment if the tumor shrinks by 50% or more. There is no 
control group in these designs. Rather, the purpose of the trial is to determine if the drug shows 
enough activity against disease to warrant a full-scale, phase III clinical trial. 

Let P0 be the largest response proportion which, if true, clearly implies that the treatment does 
not warrant further study. P0 is sometimes called the response rate of a poor treatment. For a new 
anti-tumor drug, this may be set to 0.10. 

Let P1 be the smallest response proportion which, if true, clearly implies that the treatment does 
warrant further study. P1 is sometimes called the response rate of a good treatment. For a new 
anti-tumor drug, this may be set to 0.30. 
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P PA statistical test of hypothesis may be conducted to test the null hypothesis that ≤ 0 versus 
the alternative hypothesis that P P≥ 1 (P is the true proportion responding to the treatment in the 
population). Let α be the probability of rejecting the null hypothesis when it is true. Let β  be the 
probability of rejecting the alternative hypothesis when it is true. 

A three-stage phase II design can be represented by six numbers: R1, N1, R2, N2, R3 and N3. N1 
is the sample size in the first stage. R1 is the critical value in the first stage. If R1 or fewer 
responses occur in the N1 patients, the drug is rejected. N2 is the total sample size of stages one 
and two. R2 is the critical value in the second stage. If R2 or fewer responses occur in the N2 
patients, the drug is rejected. N3 is the combined sample size of all three stages. R3 is the critical 
value in the combined sample. If R3 or fewer of the N3 patients respond, the drug is rejected. 

The expected (or average) sample size of this design is 

( )( ) ( )( )E N N PET N N PET N NE( ) = + − − + − −1 1 1 2 1 1 2 3 2  

where PET1 is the probability of early termination of the study after stage one and PET2 is the 
probability of early termination after stage two. 

The probability of rejecting a drug with success proportion P can be found using the binomial 
distribution. The formulation is 

( )Pr | , , , , , ,reject P N R R N R N PET PET PET1 1 2 2 3 3 1 2 3= + +  

where 

( )PET B R P N1 1= | , 1  
 

( )
( )

( )PET b X P N B R X P N N
X R

N R

2 1 1 2 1 2
1 1 1

1 2

= −
= +
∑ | , | ,

min ,

1−  

 

( )
( )

( ) ( )
( )

PET b X P N b X P N N B R X X P N N
X R

N R

X R X

N N R X

3 1 1 2 2 1 3 1 2 3
1 1 1

1 3

2 2 1 1

3 2 3 1

= − −
= + = + −

− −

∑ ∑| , | , | ,
min , min ,

2− −  

 

( ) ( ) ( )b X P N N
X N X

P PX N X| , !
! !

=
−

− −1  

 

( ) (B X P N b R P N
r

X

| , | ,=
=
∑

0
)  

The two error rate constraints are 

( )Pr | , , , , , ,reject P N R R N R N0 1 1 2 2 3 3 1≥ − α  

and 

( )Pr | , , , , , ,reject P N R R N R N1 1 1 2 2 3 3 ≤ β  



Three-Stage Phase II Clinical Trials  130-3 

Optimum Design 
The optimum design minimizes the average sample size, E(N), while meeting the error rate 
constraints. This design is found through an exhaustive search of all possible designs. This search 
may take several minutes to complete. 

Designs Other Than Optimal 
The optimal design minimizes the average sample size. There are examples where a less-than 
optimal design may be more desirable. For example, suppose the optimal design were N1 = 5, N2 
= 25, and N3 = 26. This design is poor because the bulk of the subjects are tested in the second 
phase. Most researchers would rather have more balance in the sample sizes of the three stages. 
For reasons like this, the actual optimal design may be replaced by another, sub-optimal, design. 

Design Flexibility 
Dealing with sequential designs is complicated. It may be difficult to achieve exactly the number 
of patients proscribed for each phase. However, it should be remembered that the validity of the 
probability statements depends on the sample size requirements being met exactly. This is 
because the interpretation of an error rate probability statement is for repeated studies conducted 
in exactly the same way. We envision that if many studies of the same drug are conducted using 
the specific sampling plan when P = P0, a proportion α of them will be falsely terminated due to 
chance occurrences. 

The point is, the interpretation of the error rates is for a large number of identical studies in which 
the sampling plan is identical and as proscribed. If the sampling plan is allowed to vary, this 
interpretation is invalid. Of course, the degree of possible error in interpretation depends on the 
degree to which the sampling plan is changed. We recognize that when dealing with human 
subjects, flexibility must be maintained. However, the researcher must also recognize that when 
the sampling plan is changed, the exact probability statements can no longer be calculated. 

Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data tab. To find out more about using the other tabs, go to the 
Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Designs 

Designs to Display 
This parameter controls which designs are displayed. Since several thousand designs may be 
considered during the search for the optimum, it is important to limit the number of designs 
reported on. 
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The options are: 

• All designs 
All designs considered are output. This option should only be used in special cases in which a 
small number of designs are tested. Otherwise, hundreds of pages of output will be generated. 

• Only designs that meet alpha & beta constraints 
Only designs that meet the alpha and beta constraints are shown. This allows you to consider 
many near optimal designs which may be selected on grounds other than expected sample 
size. 

• Optimum designs only  
Only the optimum design, the minimax design, and the single stage design are displayed. 

Error Rates 

Power or Beta 
Power is the probability of rejecting the null hypothesis that the proportion responding to the 
treatment is less than or equal to P0 when this hypothesis is false. That is, Power = Pr(rejecting 
P<=P0|P>=P1). 

Beta is the probability of not rejecting the hypothesis that the proportion responding to the 
treatment is less than or equal to P0 when this hypothesis is false. That is, Beta = Pr(not rejecting 
P<=P0|P>=P1). 

The common range of power is 0.6 to 0.999 (Beta = 0.001 to 0.4). Popular values for power are 
0.80 and 0.90 (Beta = 0.1 and 0.2). 

Alpha 
Alpha is the probability of rejecting the hypothesis that the proportion responding to the treatment 
is less than or equal to P0 when this hypothesis is actually true. That is, Alpha = Pr(Rejecting 
P<=P0 | P<=P0). 

The range of Alpha is 0.001 to 0.25. Popular values are 0.05 and 0.10. 

Effect Size 

P0 (Poor) 
This is the response proportion of a poor drug. If the true proportion responding to the treatment  
is less than this amount, study of the treatment would not be recommended. 

This value must be less than P1 and greater than zero. 

Only one value can be entered. 

P1 (Good) 
This is the response proportion of a good drug. If the true proportion responding to the treatment 
is greater than or equal to this amount, study of the treatment would be recommended.  

This value must be greater than P0 and less than one.  

Only one value can be entered. 
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Search Parameters – N (Combined 
Sample Size) 

Min 
N is the combined sample size of the three stages of the design. This parameter sets the minimum 
value of N3 that is used during the search. The optimum value of N3 must be between N Min and 
N Max or it will not be found. 

The keyword MIN indicates that the value used is the minimum of the smallest sample size from 
a single stage design and MIN2 where MIN2 is calculated using  

MIN p p p p z z
p p

2 = +
−
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2

2
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2
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Since it is unlikely that the three stage sample size will be less MIN, this provides a reasonable 
starting point for a search for N. You can also enter a value like MIN-x where x is a positive 
integer. This will cause the search to begin x units below the MIN.  

This procedure may take a long time to run. Specifying a good starting value significantly reduces 
the running time. 

Examples of valid entries are 

2, 10, 20, MIN, MIN-1, MIN-15. 

Max 
N is the combined sample size of the three stages of the design. This parameter sets the maximum 
value of N3 used during the search. The optimum value of N3 should be between N Min and N 
Max or it will not be found. 

The keyword BEST+X indicates that the search should try at least X units above the latest 
optimum value of N3. For example, suppose the N Min is set at 10. The search algorithm begins 
at 10, and then continues by examining 11, 12, and so. Suppose that the search finds a candidate 
optimum at N = 13. To make sure that 13 is the optimum, the search continues on from 13 to 
13+X (if, for example, X = 5, this value is 18). If no new optimum designs are found, the design at 
N3 = 13 is selected.  

When using this option, X should be set large enough to guarantee that the true optimum can be 
found, but small enough so that the search does not take hours to complete. Our experience 
indicates that X should be greater than or equal to 8. 

Examples of valid entries for this parameter are: 

20 

30 

BEST+8 

BEST 8 (the plus sign is optional) 

BEST 3 

Best 4 (capitalization is not necessary) 
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Step 
This parameter sets the step size in the search for N. Usually, you would enter 1 here. 
Occasionally, you may want to increase the step size during the initial part of your search to 
speed up convergence. Once you have determined a likely range, you can tighten up the search 
boundaries and reset this value to 1. 

Search Parameters – R (Rejection 
Number) 

Step 
This parameter sets the step size in the search for R. Usually, you would enter 1 here. 
Occasionally, you may want to increase the step size during the initial part of your search to 
speed up convergence. Once you have determined a likely range, you can tighten up the search 
boundaries and reset this value to 1. 

Search Parameters – M1 (First Stage 
Sample Size) 

Min 
M1 is the sample size in the first stage. Thus, M1=N1.This option sets a minimum value for M1 
so that designs with a very small value are not considered. For example, if N3=100, you might 
want to only consider designs with at least M1=25. You can enter either an actual amount (no 
percent sign) or a percentage of N3. If you enter '%' after the value, the value is taken to mean a 
percentage of N3. For example, suppose that N3=50. Then the entry of 30% would result in 
M1=15. However, if you did not enter the '%', M1=30. 

Note that it up to you to enter meaningful values. For example, you would not want to enter 
values for M1-Min, M2-Min, and M3-Min that total to more than 100% because no designs 
would be considered. 

Step 
This parameter sets the step size in the search for M1. Usually, you would enter a 1 here. 
Occasionally, you may want to increase the step size during the initial part of your search to 
speed up convergence. Once you have determined a likely range, you can tighten up the search 
boundaries and reset this value to 1. 

Search Parameters – M2 (Second 
Stage Sample Size) 

Min 
M2 is the number of subjects added in the second stage. Thus, M2 = N2 - N1 and 
M1+M2+M3=N3. This option sets a minimum value for M2 so that designs with a very small 
value are not considered. For example, if N3=100, you might want to only consider designs with 
at least M2=25. You can enter either an actual amount (no percent sign) or a percentage of N3. If 
you enter '%' after the value, the value is taken to mean a percentage of N3. For example, suppose 
that N3=50. Then the entry of 30% would result in M2=15. However, if you did not enter the '%', 
M2=30. 
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Note that it up to you to enter meaningful values. For example, you would not want to enter 
values for M1-Min, M2-Min, and M3-Min that total to more than 100% because no designs 
would be considered. 

Step 
This parameter sets the step size in the search for M2. Usually, you would enter a 1 here. 
Occasionally, you may want to increase the step size during the initial part of your search to 
speed up convergence. Once you have determined a likely range, you can tighten up the search 
boundaries and reset this value to 1. 

Search Parameters – M3 (Third Stage 
Sample Size) 

Min 

M3 is the number of subjects added in the third stage. Thus, M3 = N3 - N2 and M1+M2+M3=N3. 
This option sets a minimum value for M3 so that designs with a very small value are not 
considered. For example, if N3=100, you might want to only consider designs with at least 
M3=25. You can enter either an actual amount (no percent sign) or a percentage of N3. If you 
enter '%' after the value, the value is taken to mean a percentage of N3. For example, suppose that 
N3=50. Then the entry of 30% would result in M3=15. However, if you did not enter the '%', 
M3=30. 

Note that it up to you to enter meaningful values. For example, you would not want to enter 
values for M1-Min, M2-Min, and M3-Min that total to more than 100% because no designs 
would be considered. 

Iterations Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the results 
are left blank. A value of 500 is recommended. 
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Example 1 – Calculating the Power and Validation using 
Chen 
Chen (1997) provides the minimax and optimum design for the case Alpha = 0.05, Beta = 0.20, 
P0 = 0.05, and P1 = 0.25. The optimum design is 0/8, 1/13, and 2/19. The minimax design is 
0/12, 1/15, and 2/16.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Three-Stage Phase II Clinical Trials procedure window by 
clicking on Proportions, then One Proportion with Multiple Stages or Looks (Phase II 
Clinical Trials), then Three -Stage Designs. You may then follow along here by making the 
appropriate entries as listed below or load the completed template Example1 from the Template 
tab on the procedure window. 

Option Value 
Data Tab 
Designs to Display ..................................Optimum designs only 
Power ......................................................0.80 
Alpha .......................................................0.05 
P0 (Poor) .................................................0.05 
P1 (Good)................................................0.25 
N Min .......................................................Min 
N Max......................................................Best+2 
 
Note that the search may take several minutes to run, depending on the speed of your computer. 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Possible Designs For P0=0.050, P1=0.250, Alpha=0.050, Beta=0.200 
Stage 1 Stage 2 Stage 3  Stage 1 Overall   Constraints  
R1/N1 R2/N2 R3/N3 Ave N Pet P0 Pet P0 Alpha Beta Satisfied  
2/16 2/16 2/16 16.00 0.000 0.000 0.043 0.197 Single Stage  
0/12 1/15 2/16 13.55 0.833 0.869 0.043 0.199 Minimax  
0/8 1/13 2/19 10.41 0.663 0.880 0.049 0.195 Optimum  
 
Report Definitions 
N1 is the sample size in the first stage. 
R1 is the drug rejection number in the first stage. 
N2 is the sample size in the first and second stages. 
R2 is the drug rejection number in the second stage. 
N3 is the combined sample size of all three stages. 
R3 is the drug rejection number in the third stage. 
Stage 1 PET P0 is the probability of early termination at the first stage. 
Stage 2 PET P0 is the probability of early termination at the second stage. 
Ave N is the average sample size if this design is repeated many times. 
Alpha is the probability of rejecting that P<=P0 when this is true. 
Beta is the probability of rejecting that P>=P1 when this is true. 
P0 is the response proportion of a poor drug. 
P1 is the response proportion of a good drug. 
 

This report shows three designs. The first is the smallest single stage design. The second is the 
Minmax solution. This is the design with the smallest total sample size (N). The third is the 
optimum design—the one that minimizes the average sample size. 
Note that PASS matches the results of Chen. 
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Chapter 135 

Post-Marketing 
Surveillance 
Introduction 
Post-marketing surveillance refers to the search for adverse reactions to drugs that have been 
cleared for general use. Two types of study designs are often used: the cohort study and the case-
control study. In a cohort design, a large group of treated patients are studied to determine the 
frequency of any adverse reactions. In a case-control study, patients who have experienced the 
adverse reaction are matched with other treated patients who have not.  

Technical Details 
This section presents the formulas used to calculate sample size and power in four situations. The 
theory and formulas provided by Machin et al. (1997) are used. 

Design Type 1 – Cohort Study, No Background Incidence of 
Adverse Reactions 
Let the anticipated incidence rate of adverse reactions be R0, the number of occurrences of a 
particular adverse reaction be A, the number of patients be N, and the probability that you will not 
find A reactions in the sample of N patients be β . If R0 is small, the occurrence of an adverse 
reaction may be assumed to follow the Poisson distribution. If this is the case, the relationship 
among the above parameters is 
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Using numerical search techniques, PASS is able to solve any one of these parameters in terms of 
the others. 
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Design Type 2 – Cohort Study, Known Background Incidence of 
Adverse Reactions 
Let the anticipated incidence rate of adverse reactions be R0, let the additional incidence rate 
caused by the drug be D, and let the number of patients be N. For a given significance level 
α and power 1− β , the relationship between these parameters is 

z D N z R
R D1

1 0
0−

−=
−
+β

α  

Design Type 3 – Cohort Study, Unknown Background Incidence 
of Adverse Reactions 
A control group is needed when the background incidence rate is not known. In post-marketing 
surveillance studies, the control group is usually made up of untreated individuals. Let the 
anticipated incidence rate of adverse reactions be R0, let the additional incidence rate caused by 
the drug be D, let the number of patients be N, and let the number of control patients for each 
treated patient be M. Thus the number of control patients is NM. For a given significance level 
α and power 1− β , the relationship between these parameters is 
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Design Type 4 – Matched Case-Control Study 
A case-control design involves identifying a group of patients that have experienced the reaction 
of interest and then obtaining matched control patients that have not experienced the reaction. 

Let the anticipated incidence rate of adverse reactions be R0, let the additional incidence rate 
caused by the drug be D, let the number of patients be N, and let the number of control patients 
matched with each treated patient be M. For a given significance level α and power 1− β , the 
relationship between these parameters is 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data and Iterations tabs. To find out more about using the other tabs, 
go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Design 

Design Type 
This parameter specifies which of the four possible designs is to be analyzed. 

The possible designs are: 

• [1] Cohort - No Background Incidence 
This is a cohort design in which the adverse effect does not occur except when caused by the 
drug. 

• [2] Cohort - Known Background Incidence 
This is a cohort design. The adverse effect can occur without being related to the drug. The 
incidence rate of the adverse effect is known. 

• [3] Cohort - Unknown Background Incidence 
This is a cohort design. Although the adverse effect can occur, its incidence rate is not 
known. A control group must be followed to determine the background incidence rate. 

• [4] Matched Case-Control Study 
One or more control patients is matched with each case patient. All of these patients are in the 
study. This is different from design type 3 in that the controls are matched with the cases. In 
design type 3, no matching is done. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  
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Error Rates 

Power or Beta 
This option specifies one or more values for  power or beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

If your only interest is in determining the appropriate sample size for a confidence interval, set 
power or beta to 0.5. 

Note that the interpretation of Power or Beta is a little different when the Design Type is 1. 

Alpha 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values between 0.001 and 0.100 are most common. The value of 0.05 is often a standard. This 
means that about one test in twenty will falsely reject the null hypothesis. Although 0.05 is a 
standard value, you should pick a value for alpha that represents the risk of a type-I error you are 
willing to take in your experimental situation. 

Note that you can enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.05 by 0.01. 

Sample Size 

N (Patients) 
This is the number of patients in the cohort being studied. In the case-control designs, this is the 
number of cases. For case-control studies, the total number of patients in the study is N(1+M) 
where M is the number of control patients per case patient. 

M (Controls Per Case) 
This is the number of control patients for each case patient. For case-control studies, the total 
number of patients in the study is N(1+M) where N is the number of case patients. 

Effect Size – Incidence Rates 

R0 (Incidence Rate) 
This is the background incidence rate of the adverse reaction. This is the rate that occurs in the 
population without the drug being monitored. Since this is an incidence rate, and hence a 
proportion, it should be less than one. Also, this value plus D must be less than one. 

D (Additional Incidence Rate) 
This is the additional incidence rate of the adverse reaction that can be attributed to the drug 
being studied. Since this is a rate, it should not be greater than one. Also, this value plus R0 
should be less than one. 
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Effect Size – Occurrences 

A (Number of Occurrences) 
This is the number of occurrences of the adverse reaction of interest in the N patients being 
monitored. Sometimes, a single drug-related adverse reaction (such as death) might be enough to 
make the drug unacceptable. The acceptable range is one or greater. 

Test 

One-Sided 
This option lets you designate whether the test will be one-sided (checked) or two-sided 
(unchecked). When the two-sided box is indicated, the alpha value is simply divided by two.  

Iterations Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Iterative Precision 
When a search is made for the precision value, this is the cutoff value used to terminate the 
search. In most cases, a value of 0.0001 will be more than sufficient. 
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Example 1 – Calculating the Power 
Suppose 1 in 10,000 people receiving a certain drug are expected to have an irregular heart beat. 
A researcher decides that if the irregular heart beat occurs in three patients, the drug will have to 
be withdrawn. Study the sample size necessary to achieve 99% probability of success.  
In order to do this, sample sizes between 1000 and 21,000 will be considered.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Post-Marketing Surveillance procedure window by clicking 
on Incidence Rates, then Post-Marketing Surveillance. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example1 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Design Type ............................................[1] Cohort - No Background Incidence 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored 
Alpha .......................................................Ignored 
N (Patients) .............................................1000 to 21000 by 4000 
M (Controls Per Case) ............................Ignored 
R0 (Background Incidence Rate)............Ignored  
D (Additional Incidence Rate) .................0.0001 
A (Number of Occurrences) ....................1 2 3 

Reports Tab 
Incidence Rate Decimals ........................5 



Post-Marketing Surveillance  135-7 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results  (Cohort Study with No Background Incidence) 
 
  Additional Number of 
 Sample Incidence Occurrences 
Power Size (N) Rate (D) (A) Beta 
0.09516 1000 0.00010 1 0.90484 
0.00468 1000 0.00010 2 0.99532 
0.00015 1000 0.00010 3 0.99985 
0.39347 5000 0.00010 1 0.60653 
0.09020 5000 0.00010 2 0.90980 
0.01439 5000 0.00010 3 0.98561 
0.59343 9000 0.00010 1 0.40657 
0.22752 9000 0.00010 2 0.77248 
. . . . . 
. . . . . 
. . . . . 
(output continues) 
 
Report Definitions 
Power is 1 - Beta. 
N is the number of patients monitored. 
D is the expected incidence rate of adverse reactions. 
A is the number of adverse reactions. 
Beta is the probability that A reactions will not be found in the N patients. 
 
Summary Statements 
In a cohort study with no background incidence of a particular adverse reaction, the 
probability that 1 or more adverse reactions will not occur in a sample of 1000 patients with 
an anticipated incidence rate of 0.00 is 0.90484. The power of this study is 10%. 
 

This report shows the calculated sample size for each of the scenarios.  

Plots Section 
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This plot shows the power versus the sample size for three values of A. 



135-8  Post-Marketing Surveillance 

Example 2 – Validation using Machin 
Machin et al. (1997) page 147 give an example of a cohort design with no background incidence 
in which N is 30000, incidence is 0.0001, and A is 1 or 2. When A is 1, the power is 95%. When A 
is 2, the power is 80%. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Post-Marketing Surveillance procedure window by clicking 
on Incidence Rates, then Post-Marketing Surveillance. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example2 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Design Type ............................................[1] Cohort - No Background Incidence 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored 
Alpha .......................................................Ignored 
N (Patients) .............................................30000 
M (Controls Per Case) ............................Ignored 
R0 (Background Incidence Rate)............Ignored  
D (Additional Incidence Rate) .................0.0001 
A (Number of Occurrences) ....................1 2 

Reports Tab 
Incidence Rate Decimals ........................5 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results  (Cohort Study with No Background Incidence) 
 
  Additional Number of 
 Sample Incidence Occurrences 
Power Size (N) Rate (D) (A) Beta 
0.95021 30000 0.00010 1 0.04979 
0.80085 30000 0.00010 2 0.19915 
 

PASS has calculated the same power values as did Machin et al (1997). 
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Example 3 – Validation using Machin 
Machin et al. (1997) page 148 give an example of a cohort design with unknown background 
incidence in which N is 8500, R0 is 0.01, D is 0.005, and A is 1. The power is 90%. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Post-Marketing Surveillance procedure window by clicking 
on Incidence Rates, then Post-Marketing Surveillance. You may then follow along here by 
making the appropriate entries as listed below or load the completed template Example3 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Design Type ............................................[3] Cohort - Unknown Background Incidence 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored 
Alpha .......................................................0.05 
N (Patients) .............................................8500 
M (Controls Per Case) ............................1 
R0 (Background Incidence Rate)............0.01 
D (Additional Incidence Rate) .................0.005 
A (Number of Occurrences) .................... Ignored 

Reports Tab 
Incidence Rate Decimals ........................5 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results  (Cohort Study with No Background Incidence) 
 
 
  Controls Background Additional  
 Sample Per Incidence Incidence One-Sided 
Power Size (N) Case (M) Rate (R0) Rate (D) Alpha Beta 
0.90136 8500 1 0.01000 0.00500 0.05000 0.09864 
 

PASS has calculated the same power value as did Machin et al (1997). 
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Chapter 150 

Inequality Tests 
for Two Correlated 
Proportions 
(McNemar Test) 
Introduction 
McNemar’s test compares the proportions for two correlated dichotomous variables. These two 
variables may be two responses on a single individual or two responses from a matched pair (as 
in matched case-control studies).  

This procedure is similar to the Matched Case-Control procedure also available in PASS. It 
differs from that procedure in three basic ways: 

1.  The results are calculated exactly using an unconditional formula rather than using 
conditional, normal approximations to the binomial. 

2.  It only deals with the case of a matched pair: one case and one control (the Matched 
Case-Control procedure lets you match several controls with each case). 

3.  It is based directly on the 2-by-2 contingency table. 

To fix these ideas, consider the following fictitious data concerning the relationship between 
smoking and lung cancer. Suppose that a sample of N = 100 cases of identical twins in which 
only one twin has lung cancer is selected for further study. The twin with lung cancer is the case. 
The other twin serves as the control. Each pair of twins is surveyed to determine if they smoke 
tobacco. The results are summarized in the following two-way table: 
 

 No Lung Cancer Twin (Control) 

Lung Cancer Twin (Case) Smokes = Yes Smokes = No 
Smokes = Yes 16 21 
Smokes = No 4 59 
 

There is a basic difference between this table and the more common two-way table. In the 
matched-paired case, the count represents the number of pairs, not the number of individuals. 
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The investigator wishes to compare the proportion of cases that smoke with the proportion of 
controls that smoke. The proportion of controls who smoke is (16+4)/100 = 0.20. The proportion 
of cases who smoke is (16+21)/100 = 0.37.  

Dividing each of the entries in the table by N gives the proportions: 
 

 No Lung Cancer Twin (Control) 

Lung Cancer Twin (Case) Smokes = Yes Smokes = No  Total 
Smokes = Yes 0.16 0.21 0.37 
Smokes = No 0.04 0.59 0.63 
Total 0.20 0.80 0.63 
 

Symbolically, this table is represented as: 
 

 No Lung Cancer Twin (Control) 

Lung Cancer Twin (Case) Smokes = Yes Smokes = No Total 
Smokes = Yes P11 P10 Pt 
Smokes = No P01 P00 1-Pt 
Total Ps 1-Ps 1 
 

Formally, the hypothesis of interest is that Pt equals Ps. A little algebra shows that Pt = Ps is 
equivalent to P10 = P01, since P11 is common to both. Thus, the null hypothesis of McNemar’s 
test is P10 = P01 and the alternative is that they are unequal. The alternative hypothesis may be 
one-sided (such as P10>P01) or two-sided (P10≠ P01). 

The null hypothesis may also be stated in terms of the odds ratio as OR = 1. The odds ratio is 
computed differently in the matched pairs case. The formula is: 

OR P
P

=
12
21

 

Notice that the values of P11 and P00 are not used in these hypotheses. It turns out that their 
individual values are not needed, but their sum is. 

For this example, the odds ratio is computed as 21/4 = 5.25.  

Technical Details 
Consider the matched-pairs table again: 
 

 Controls 

Cases Yes No Total 
Yes P11 P10 Pt 
No P01 P00 1-Pt 
Total Ps 1-Ps 1 
 

Pairs with the same response from cases and controls (Yes-Yes and No-No) are called concordant 
pairs. Pairs with different responses (Yes-No and No-Yes) are call discordant pairs. McNemar’s 
test statistic is the estimated odds ratio:  
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Mc =  P
P

10
01

 

The sample size problem thus reduces to a study of how many Yes-No’s and No-Yes’s are 
needed. Once this has been determined, the overall sample size is found be estimating the 
proportion of discordant pairs and inflating the sample size appropriately. 

Some power analysis programs follow an approximate procedure. Since the McNemar statistic 
follows the binomial probability distribution for a fixed number of discordant pairs, they use 
formulas that use the normal approximation to the binomial and then adjust the sample size 
depending on the proportion of discordant pairs, PD=P10+P01. This is called the conditional 
procedure.  

One such approximate formula is given by Machin, Campbell, Fayers, and Pinol (1997). 
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where s is the number of sides to the test (one or two), OR P
P

=
10
01

, , and alpha 

and beta are the usual error rate probabilities. 

PD P P= +10 01

However, Schork and Williams (1980) published a formula which provides the exact results for 
the unconditional case. This is the formulation that is used in PASS. 
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where  

PD = P10+P01 

D = P10-P01 

N is total of all four cells (N11+N12+N21+N22) 

r is the smallest integer for which 
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Difference or Odds Ratio 
The formula given above is parameterized in terms of the difference. This formula is also used 
when odds ratios are specified. The program simply converts the OR value into its corresponding 
D value. 

Discussion 
The exact algorithm works for N < 2000. Above 2000, computing time goes up and the algorithm 
has numerical problems. PASS lets you select either the exact, or the approximate, solutions. We 



150-4  Inequality Tests for Two Correlated Proportions (McNemar Test) 

have found that the approximate solution tends to use a sample size that is about 10% less than 
the exact solution. 

Because of the lengthy computer time necessary to compute the exact answer when N > 1500, we 
suggest that you use the approximate formula to begin with and then revert to the exact formula 
when you are ready for your final results. This is based on the value of N specified in the 'Use 
Approximations if N >' box of the Options tab. 

Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data and Options tabs. To find out more about using the other tabs, go 
to the Procedure Window chapter. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and beta. This chapter covers two procedures, which have different options. This 
section documents options that are common to both procedures. Later, unique options for each 
procedure will be documented.   

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Odds Ratio, Difference, N, Alpha, and Power and Beta. Under most 
situations, you will select either Power and Beta to calculate power or N to calculate sample size. 

The program is set up to evaluate power directly. For the other parameters, a search is made using 
an iterative procedure until an appropriate value is found. Two solutions can often be found when 
searching for the Odds Ratio or the Difference. You may specify the region in which you want the 
solution to be searched for. For example, you may search for an odds ratio either above or below 
one. Also note that the parameter selected must match the procedure you are using. For example, 
if you are searching for the odds ratio, you must be in the odds ratio window. 

Note that the value selected here always appears as the vertical axis on the charts. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

If your only interest is in determining the appropriate sample size for a confidence interval, set 
power or beta to 0.5. 
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Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when a true null hypothesis is rejected.  

Sample Size 

N (Number of Pairs) 
Enter a value (or range of values) for the sample size, N, the number of pairs in the study. 

You may enter a range of values such as 100,200,300 or 200 to 400 by 50. 

Effect Size 

Proportion Discordant (P10+P01) 
This is the proportion of discordant pairs (P10 + P01). This value will be difficult to specify 
unless you have previous studies that give you some idea of what to expect. When you have no 
idea, Machin, Campbell, Fayers, and Pinol (1997) suggest the following strategy. Estimate values 
of Pt and Ps. Calculate the proportion of discordant pairs using the approximation 

( ) ( )PtPsPsPtPD −+−= 11  

This approximation assumes that the two responses are independent in each subject, which will 
usually not be true. However, it may be the only way of determining a ball park value for this 
parameter. 

Test 

Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. A one-sided hypothesis uses an inequality as 
in P10 > P01 or Odds Ratio > 1. A two-sided hypothesis states that the proportions are not equal 
without specifying which is greater. If you do not have any special reason to do otherwise, you 
should use the two-sided option.  

Data Tab (Differences) 
This section documents options that are used when the parameterization is in terms of the 
difference, P10 - P01. 

Effect Size 

Difference (P10-P01) 
The difference, P10-P01, is a popular parameter to specify because it comes directly from the 
alternative hypothesis that Pt not equal Ps. If Pt and Ps are not equal, the obvious question is, by 
how much? The answer is, by P10-P01 since Pt-Ps = (P11+P10)-(P11+P01) = P10-P01. Hence, 
this is a value that may easily be set.  

The range of values is between -1 and 1. You may enter a list of value list 0.1, 0.15, 0.2 or 0.05 to 
0.20 by 0.05. 
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Data Tab (Odds Ratios) 
This section documents options that are used when the parameterization is in terms of the odds 
ratio, P10 / P01. 

Effect Size 

Odds Ratio (P10/P01) 
The odds ratio is a popular parameter to specify because of its simple interpretability and close 
relationship to the relative risk. An odds ratio of 2.0 means that the odds of the numerator 
variable is twice the odds of the denominator variable. Note that several values of P10 and P01 
can yield the same odds ratio. For example, 0.2/0.1 and 0.4/0.2 both have an odds ratio of 2.0, but 
are based on very different values of P10 and P01. Under the null hypothesis, the odds ratio is 
one. Only positive values are allowed. 

You may enter a list of values like 1.5,2.0,3.0 or 1.2 to 2.4 by 0.2. 

Options Tab 
This tab sets a couple of options used in the iterative procedures and approximations. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Approximations 

Use Approximations if N is greater than 
Below this value of N, the exact power calculation formula based on the binomial is used. Above 
this value of N, the approximate formula based on the normal approximation to the binomial is 
used. The exact formula suffers from numerical problems when N is greater than 2000. On the 
other hand, the approximate formula tends to underestimate the N necessary to achieve a certain 
beta value by about 5%. 

You control which formula is used by setting this value. 
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Example 1 – Calculating Power using Odds Ratios 
This example will show how to calculate the power of a retrospective study for several sample 
sizes and odds ratio values. Suppose that a matched case-control study is to be run in which the 
odds ratios might be 1.5, 2.5, or 3.5; PD is 0.3, N = 50 to 300 by 50; alpha is 0.05; and beta is to 
be calculated.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Correlated Proportions 
(McNemar Test) [Odds Ratios] procedure window by clicking on Proportions, then Two 
Correlated (Paired) Proportions, then Inequality Tests, then Specify using Odds Ratios 
(McNemar Test). You may then follow along here by making the appropriate entries as listed 
below or load the completed template Example1 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Number of Pairs) ................................50 to 200 by 50 
Odds Ratio ..............................................1.5 2.0 2.5 
Proportion Discordant .............................0.3 
Alternative Hypothesis ............................Two-Sided 

Options Tab 
Use Approximations if N > ......................1500 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Test 
    Difference Proportion Odds   
Power N P10 P01 (P10-P01) Discordant Ratio Alpha Beta 
0.07467 50 0.180 0.120 0.060 0.300 1.500 0.05000 0.92533 
0.14214 100 0.180 0.120 0.060 0.300 1.500 0.05000 0.85786 
0.22451 150 0.180 0.120 0.060 0.300 1.500 0.05000 0.77549 
0.29790 200 0.180 0.120 0.060 0.300 1.500 0.05000 0.70210 
0.17849 50 0.200 0.100 0.100 0.300 2.000 0.05000 0.82151 
0.37305 100 0.200 0.100 0.100 0.300 2.000 0.05000 0.62695 
0.56457 150 0.200 0.100 0.100 0.300 2.000 0.05000 0.43543 
0.70340 200 0.200 0.100 0.100 0.300 2.000 0.05000 0.29660 
0.29601 50 0.214 0.086 0.129 0.300 2.500 0.05000 0.70399 
0.59122 100 0.214 0.086 0.129 0.300 2.500 0.05000 0.40878 
0.80105 150 0.214 0.086 0.129 0.300 2.500 0.05000 0.19895 
0.90751 200 0.214 0.086 0.129 0.300 2.500 0.05000 0.09249 
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Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the number of pairs in the sample. 
P10 is the proportion of pairs in cell 1,2 of the 2x2 table. 
P01 is the proportion of pairs in cell 2,1 of the 2x2 table. 
Difference is the difference between proportions parameter under the alternative hypothesis. 
Proportion Discordant' is the total of P10 and P01. 
Odds Ratio is the value of this parameter under the alternative hypothesis. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
 
Summary Statements 
A sample size of 50 pairs achieves 7% power to detect an odds ratio of 1.500 using a two-sided 
McNemar test with a significance level of 0.05000. The odds ratio is equivalent to a difference 
between two paired proportions of 0.060 which occurs when the proportion in cell 1,2 is 0.180 
and the proportion in cell 2,1 is 0.120. The proportion of discordant pairs is 0.300. 
 

This report shows the power for each of the scenarios.  

Plot Section 
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This plot shows the power versus the sample size for the three odds ratios. 
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Example 2 – Validation using Schork and Williams 
Schork and Williams (1980) page 354 present a table of sample sizes for various combinations of 
the other parameters. When the difference is 0.2, the proportion discordant is 0.7, the power is 
80%, and the one-sided significance level is 0.025, the sample size is 144.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Correlated Proportions 
(McNemar Test) [Differences] procedure window by clicking on Proportions, then Two 
Correlated (Paired) Proportions, then Inequality Tests, then Specify using Differences 
(McNemar Test). You may then follow along here by making the appropriate entries as listed 
below or load the completed template Example2 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.025 
N (Number of Pairs) ................................144 
Difference................................................0.2 
Proportion Discordant .............................0.7 
Alternative Hypothesis ............................One-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Test 
    Difference Proportion Odds   
Power N P10 P01 (P10-P01) Discordant Ratio Alpha Beta 
0.80092 144 0.450 0.250 0.200 0.700 1.800 0.02500 0.19908 
 

PASS has also found the power to be about 80%.  
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Chapter 155 

Inequality Tests 
for Two Correlated 
Proportions in a 
Matched Case-
Control Design 
Introduction 
A 2-by-M case-control study investigates a risk factor relevant to the development of a disease. A 
population of case patients with a disease and control patients without the disease is considered. 
Some of these patients have had exposure to a risk factor of interest. A random sample of N case 
patients is selected. Patients are stratified by the levels of a confounding variable (such as age, 
gender, etc.). For each selected case patient, a random sample of M matched control patients is 
drawn from the same strata (group). An estimate of the odds ratio, OR, of developing the disease 
in exposed and unexposed patients who have equal values of the confounding variable is desired. 
This odds ratio is assumed to be constant across all levels of the confounding variables.  

To fix these ideas, consider the following fictitious data concerning the relationship between 
smoking and lung cancer. Suppose that a sample of N = 100 cases of identical twins in which 
only one twin has lung cancer is selected. The second twin serves as the control. Each pair of 
twins is surveyed to determine if either, both, or none smoke tobacco. The results are summarized 
in the following two-way table: 
 

 No Lung Cancer Twin (Control) 

Lung Cancer Twin (Case) Smokes = Yes Smokes = No 
Smokes = Yes 16 21 
Smokes = No 4 59 
 

Note that the values in this table are counts of pairs, not individuals. The proportion of controls 
who smoke is (16+4)/100 = 0.20. The proportion of cases who smoke is (16+21)/100 = 0.37. The 
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odds ratio is 21/4 = 5.25. That is, the twin who smoked is 5.25 times more likely to have lung 
cancer than the twin who did not.  

This procedure is similar to the McNemar procedure also available in PASS. It differs from that 
procedure in three basic ways: 

1.  The results are based on the normal approximation to the binomial. 

2.  This procedure lets you have multiple controls for each case. The McNemar procedure 
only allows one control per case. 

3.  The input parameters are different. 

Technical Details 
The following results summarize the article by Dupont (1988) upon which this module is based. 
The probabilities that the data fall into various categories are: 

1. The probability that a case patient was exposed to the risk factor is . p1

2. The probability that a control patient was exposed to the risk factor is . p0

3. The probability that a case patient was not exposed to the risk factor is q p1 11= − . 

4. The probability that a control patient was not exposed to the risk factor is . q p0 01= −

The odds ratio, OR, is defined as 

OR =  p q
p q

1 1/
/0 0  

Assume that you use a  test for the null hypothesis that OR = 1, that is, that . Such a 
test is given by Breslow and Day (1980). 

χ 2 p p0 = 1

0

j

Let  if the  sampled case patient was or was not exposed, respectively. Let 
 if the corresponding first matched control patient was or was not exposed. Let 

. For example,  is the probability that the case patient was exposed 
to the risk factor while the corresponding first control patient was not. The relationships between 
these probabilities are 

x ork =1
y or= 1 0
p xk= =Pr

k th

yk

k

ij ( )i =and p10

1 11 10p  =  p p+  

and 

0 11 01p  =  p p+  

Define φ  to be the correlation between  and . It can be shown that xk yk

φ =  p p p p
p q p q

11 00 10 01

1 1 0 0

−
 

A little algebra will show that 

11 1 0 1 1 0 0p  =  p p + p q p qφ  



Inequality Tests for Two Correlated Proportions in a Matched Case-Control Design  155-3 

10 1 0 1 1 0 0p  =  p q - p q p qφ  

01 1 0 1 1 0 0p  =  q p - p q p qφ  

00 1 0 1 1 0 0p  =  q q + p q p qφ  

0
11

1
+p  =  p

p  

0
01

1
-p  =  p

q  

0 0+ +q  =  - p1  

0 0- -q  =  - p1  
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M
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p q + q
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k
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1

1 0 01
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Let  represent the number of matched sets of subjects in which the case patient was (i = 1) or 
was not (i = 0) exposed and j of the M control subjects were exposed. Let 

nij

y =  n
m=

M

m
1

1 1∑ −,
 

be the number of discordant sets in which the case patient was exposed and let 

T   n nm m m= +−1 1 0, ,  
be the number of sets in which m subjects were exposed. The expected value of  is .  Tm Ntm

Let 

( )
( )OR

m=

M
me  =  

mt OR
m OR + M - m+1 1∑

 

( )( )
( )( )OR

m=

M
mv  =  

mt OR M - m

m OR M - m1
2

1

1
∑

+

+ +
 

Dupont (1988) provides the following formula relating α β φ, , , , , ,p OR N M0 and . 

( ) ( )1 11 2 1 1 2−
− −⎛

⎝
⎜

⎞

⎠
⎟ + −

− +⎛

⎝
⎜

⎞

⎠
⎟β

ν ν
α α =  

N e e z v N e e z vOR

OR

OR

OR

Φ Φ/ / 1

 
This equation may be used to make power and sample size calculations. 
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Estimating the Sample Control Exposure Probability 
To calculate power and sample size, a value for the probability that a sample control patient was 
exposed to the risk factor (  must be estimated. Remember that the control sample is not a 
random sample of the population. Instead, it is matched to a random sample of case patients. 
Hence, the sample does not necessarily provide an unbiased estimate of . Care should be taken 
to provide an accurate estimate of the probability that a matched control patient was exposed, not 
the probability that someone was exposed in the general population. However, when there is little 
association between the confounding (matching) variable and the exposure variable in the control 
population, the baseline probability of the exposure variable may be used.  

)p0

p0

Estimating the Correlation, Φ 
Previous matched 2-by-2 contingency tables can be used to estimate φ  using the relationship 

φ χ
= u

N

2

 

where 

( )χu
N n n n n

n n n n
2 00 11 01 10

2

0 1 0 1

=
−

• • • •

 

When no previous data are available about φ, Dupont (1988) suggests using a value of 0.2 rather 
than 0. 

Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data tab. To find out more about using the other tabs, go to the 
Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Odds Ratio, Probability Exposed, Correlation, N, M, Alpha, and Power 
and Beta. Under most situations, you will select either Power and Beta for a power analysis or N 
for sample size determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run. 
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Error Rates 

Power or Beta 
ifies one or more values for power or for beta (depending on the chosen setting). 
bability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 

f a type-II error, which occurs when a false null hypothesis is not rejected. 

ccurs 
e null hypothesis is rejected. In this procedure, the test is two-sided. 

d one. Historically, the value of 0.05 has been used for alpha. 

 your 

This option spec
Power is the pro
is the probability o

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error o
when a tru

Values must be between zero an
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in
experimental situation. 

A single value may be entered here or a range of values such as 0.05 to 0.2 by 0.05 may be 
entered. 

Sample Size 

N (Number of Case Patients) 
se patients to be sampled. This is the number of pairs. Since there are M 
case patient, the total number of patients is N (M + 1).Values of one or greater 

he data. 

 is N (M + 1). Values of one or greater are allowed here. 

The number of ca
controls for each 
are allowed here.  

M (Number of Controls per Case) 
The number of control patients matched with each case patient. When M is one, McNemar’s test 
is used to analyze t

The total number of patients in the study

Effect Size 

P0 (Probability that a Control is Exposed) 
e of the probability that a sample control patient is exposed to the risk factor. 

risk factor, you can use the baseline rate of 
n. 

ili

tio of the disease odds of 
ividuals not exposed to the risk 

factor. 

Specify the valu
If the matching variables are independent of the 

 p0 , 

exposure to the risk factor in the general populatio

Since this is a probab ty, it must be between zero and one. 

You can enter a list of values separated by commas or blanks. 

OR (Odds Ratio) 
This option sets the value of the odds ratio, OR, which is the ra
individuals exposed to the risk factor to the disease odds of ind
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For example, an odds ratio of 2.0 means that subjects exposed to the risk factor are twice as likely 

sis 
e odds ratio is one. You should use a value that will be of interest to others, such as 1.5 

independence between exposure rates for case and 
lete independence is unrealistic, so when no other information is 

2. 

  

of developing the disease as are unexposed subjects. 

A value greater than one is usually used. The value must be greater than zero. The null hypothe
is that th
or 2.0. 

You can enter a list of values. 

Phi (Correlation between Case and Control) 
This is the correlation for exposure between a case subject and the first of the corresponding 
control subjects. A value of zero here indicates 
controls. Often, assuming comp
available, Dupont (1988) suggests using a value of 0.

Correlations can range between -1 and 1. However, only positive correlations should be used.

Example 1 – Calculating Power  
This example will show how to calculate the power of a retrospective study for several sample 
sizes and odds ratios.  

 which the odds ratios of interest are 1.5, 
 100 150 200, alpha = 0.05, and power is 

Suppose that a matched case-control study is to be run in
2.5, or 3.5, P0 = 0.6, correlation = 0.2, M = 1, N = 25 50
to be found. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Correlated Proportions in a 
Matched Case-Control Design procedure window by clicking on Proportions, then Two 

d (Paired) Proportions, then Inequality Tests, then Matched Case-Control Designs. Correlate
You may then follow along here by making the appropriate entries as listed below or load the 
completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha ..... .0.05 .................................................

tients)....................................25 50 100 150 200 N (Case Pa
M (Controls Per Case) ............................1 
P0 (Prob Control Exposed) .....................0.6 

.5  3.5 OR (Odds Ratio) .....................................1.5  2
Phi (Correlation of Case and Control).....0.2 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
 Cases Controls Per Odds Ratio Probability Correlation   
Power (N) Case (M) (OR) Exposed (P0) (Phi) Alpha Beta 
0.08863 25 1 1.50 0.60000 0.20000 0.05000 0.91137 
0.13364 50 1 1.50 0.60000 0.20000 0.05000 0.86636 
0.22622 100 1 1.50 0.60000 0.20000 0.05000 0.77378 
0.31832 150 1 1.50 0.60000 0.20000 0.05000 0.68168 
0.40652 200 1 1.50 0.60000 0.20000 0.05000 0.59348 
0.23067 25 1 2.50 0.60000 0.20000 0.05000 0.76933 
0.44278 50 1 2.50 0.60000 0.20000 0.05000 0.55722 
0.75646 100 1 2.50 0.60000 0.20000 0.05000 0.24354 
0.90966 150 1 2.50 0.60000 0.20000 0.05000 0.09034 
0.97004 200 1 2.50 0.60000 0.20000 0.05000 0.02996 
0.36379 25 1 3.50 0.60000 0.20000 0.05000 0.63621 
0.68570 50 1 3.50 0.60000 0.20000 0.05000 0.31430 
0.95159 100 1 3.50 0.60000 0.20000 0.05000 0.04841 
0.99482 150 1 3.50 0.60000 0.20000 0.05000 0.00518 
0.99956 200 1 3.50 0.60000 0.20000 0.05000 0.00044 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the size of the sample drawn from the treatment (case) group. 
M is the number of matching control patients drawn for each case patient. 
OR is the odds ratio of for subjects exposed to the risk factor. 
P0 is the probability of exposure among sampled control patients. 
Phi is the correlation of exposure between matched individuals. 
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 

 
Summary Statements 
In a matched case-control study, the probability of exposure among sampled control patients is 
0.60000 and the correlation coefficient for exposure between matched case and control patents 
is 0.20000. A sample of 25 case patients is obtained. For each case patient, a matching sample 
of 1 control patient(s) is also obtained. This sample of 50 patients achieves 9% power to 
detect an odds ratio of 1.50 versus the alternative of equal odds using a Chi-Square test with 
a 0.05000 significance level. 
 

This report shows the power for each of the scenarios.  

Plots Section 
 

 

Power vs N by OR with P0=0.60 Phi=0.20 M=1
Alpha=0.05 M.C.C. Test
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This plot shows the power versus the sample size for the three odds ratios. 
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Example 2 – Calculating Sample Size  
Suppose that a matched case-control study is planned to study the relationship between smoking 
and a certain kind of cancer. Researchers want to have a sample large enough to detect an odds 
ratio of 2.0. During the power analysis, the researchers also want to calculate the required sample 
size for odds ratios of 1.5 and 2.5. 

The probability that a sampled control (non-cancer) patient smokes is estimated at 0.3. The 
correlation of smoking between cases and controls is 0.2. The researchers want samples sizes 
large enough to achieve 80% power at the 0.05 significance levels. In an effort to reduce the 
number of cancer patients that must be enrolled, the researchers want to try several values for the 
number of controls per case between 1 and 20. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Correlated Proportions in a 
Matched Case-Control Design procedure window by clicking on Proportions, then Two 
Correlated (Paired) Proportions, then Inequality Tests, then Matched Case-Control Designs. 
You may then follow along here by making the appropriate entries as listed below or load the 
completed template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Cases) 
Power ......................................................0.80 
Alpha .......................................................0.05 
N (Case Patients)....................................Ignored since this is the Find setting 
M (Controls Per Case) ............................1 2 3 4 5 10 20 
P0 (Prob Control Exposed) .....................0.3 
OR (Odds Ratio) .....................................1.5 2.0 2.5 
Phi (Correlation of Case and Control).....0.2 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results 
 Cases Controls Per Odds Ratio Probability Correlation   
Power (N) Case (M) (OR) Exposed (P0) (Phi) Alpha Beta 
0.80064 539 1 1.50 0.30000 0.20000 0.05000 0.19936 
0.80021 378 2 1.50 0.30000 0.20000 0.05000 0.19979 
0.80025 324 3 1.50 0.30000 0.20000 0.05000 0.19975 
0.80038 297 4 1.50 0.30000 0.20000 0.05000 0.19962 
0.80076 281 5 1.50 0.30000 0.20000 0.05000 0.19924 
0.80009 248 10 1.50 0.30000 0.20000 0.05000 0.19991 
0.80044 232 20 1.50 0.30000 0.20000 0.05000 0.19956 
0.80100 180 1 2.00 0.30000 0.20000 0.05000 0.19900 
0.80249 127 2 2.00 0.30000 0.20000 0.05000 0.19751 
0.80077 108 3 2.00 0.30000 0.20000 0.05000 0.19923 
0.80220 99 4 2.00 0.30000 0.20000 0.05000 0.19780 
0.80087 93 5 2.00 0.30000 0.20000 0.05000 0.19913 
0.80261 82 10 2.00 0.30000 0.20000 0.05000 0.19739 
0.80125 76 20 2.00 0.30000 0.20000 0.05000 0.19875 
0.80156 102 1 2.50 0.30000 0.20000 0.05000 0.19844 
0.80262 72 2 2.50 0.30000 0.20000 0.05000 0.19738 
0.80028 61 3 2.50 0.30000 0.20000 0.05000 0.19972 
0.80327 56 4 2.50 0.30000 0.20000 0.05000 0.19673 
0.80559 53 5 2.50 0.30000 0.20000 0.05000 0.19441 
0.80351 46 10 2.50 0.30000 0.20000 0.05000 0.19649 
0.80672 43 20 2.50 0.30000 0.20000 0.05000 0.19328 
 

N vs M by OR with P0=0.30 Phi=0.20 Alpha=0.05
Power=0.81 M.C.C. Test
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This report shows the sample size for each of the scenarios. Notice that the required number of 
cancer patients (N) drops off drastically as more controls are added. However, using more than 
five controls seems to only moderately reduce the sample size necessary sample size. 

Also notice that the difference in sample size is much larger when moving from an odds ratio of 
2.0 to 1.5 than from 2.5 to 2.0. 
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Example 3 – Validation using Dupont  
The formulas used in this module were given in Dupont (1988). He gives an example on page 
1164 of the article in which P0 is 0.6, Phi is 0.2, OR is 3.0, alpha is 0.05, and beta is 0.2. Dupont 
finds the sample size for M  = 1 to be 80 and for M = 3 to be 50.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Correlated Proportions in a 
Matched Case-Control Design procedure window by clicking on Proportions, then Two 
Correlated (Paired) Proportions, then Inequality Tests, then Matched Case-Control Designs. 
You may then follow along here by making the appropriate entries as listed below or load the 
completed template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Cases) 
Power ......................................................0.80 
Alpha .......................................................0.05 
N (Case Patients)....................................Ignored since this is the Find setting 
M (Controls Per Case) ............................1 3 
P0 (Prob Control Exposed) .....................0.6 
OR (Odds Ratio) .....................................3.0 
Phi (Correlation of Case and Control).....0.2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
 Cases Controls Per Odds Ratio Probability Correlation   
Power (N) Case (M) (OR) Exposed (P0) (Phi) Alpha Beta 
0.80149 80 1 3.00 0.60000 0.20000 0.05000 0.19851 
0.80052 50 3 3.00 0.60000 0.20000 0.05000 0.19948 
 

Note that values of 80 and 50 for N agree exactly with Dupont. 
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Chapter 160 

Non-Inferiority 
Tests for Two 
Correlated 
Proportions 
Introduction 
These modules compute power and sample size for non-inferiority tests in which two 
dichotomous responses are measured on each subject. When one is interested in showing that the 
true proportions are different, the data are often analyzed with McNemar’s test. However, we are 
interested in showing non-inferiority rather than difference. For example, suppose a diagnostic 
procedure is accurate, but is expensive to apply or has serious side effects. A replacement 
procedure is sought which is no less accurate, but is less expensive or has fewer side effects. In 
this case, we are not interested in showing that the two diagnostic procedures are different, but 
rather that the second is no worse than the first. Non-inferiority tests were designed for this 
situation.  

These tests are often divided into two categories: equivalence (two-sided) tests and non-
inferiority (one-sided) tests. Here, the term equivalence tests means that we want to show that two 
diagnostic procedures are equivalent—that is, their accuracy is about the same. This requires a 
two-sided hypothesis test. On the other hand, non-inferiority tests are used when we want to show 
that a new (experimental) procedure is no worse than the existing (reference or gold-standard) 
one. This requires a one-sided hypothesis test. The procedures discussed in this chapter deal with 
the non-inferiority (one-sided) case. 

Technical Details 
The results of a study in which two dichotomous responses are measured on each subject can be 
displayed in a 2-by-2 table in which one response is shown across the columns and the other is 
shown down the rows. In the discussion to follow, the columns of the table represent the standard 
(reference or control) response and the rows represent the treatment (experimental) response. The 
outcome probabilities can be classified into the following table. 
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Experimental Standard Diagnosis
Diagnosis Yes No Total

Yes
No

Total

p p
p p
P P

T

T

S S

11 10

01 00 1
1 1

−
−

P
P

 
 

In this table, . That is, the first subscript represents the response of the new, 
experimental procedure while the second subscript represents the response of the standard 
procedure. Thus,  represents the proportion having a negative treatment response and a 
positive standard response.  

p pij Treatment Standard= ,

p01

Sensitivity, Specificity, and Prevalence 
To aid in interpretation, analysts have developed a few proportions that summarize the table. 
Three of the most popular ratios are sensitivity, specificity, and prevalence.  

Sensitivity 
Sensitivity is the proportion of subjects with a positive standard response who also have a 
positive experimental response. In terms of proportions from a 2-by-2 table,  

Sensitivity = ( )p p p p11 01 11 11/ / P+ = S  

Specificity 
Specificity is the proportion of subjects with a negative standard response who also have a 
negative experimental response. In terms of proportions from a 2-by-2 table,  

Specificity = ( )p p p00 10 00/ +  

Prevalence 
Prevalence is the overall proportion of individuals with the disease (or feature of interest). In 
terms of proportions from a 2-by-2 table,  

Prevalence =  PS

Table Probabilities 
The outcome counts from a sample of n subjects can be classified into the following table. 
 

Experimental Standard Diagnosis
Diagnosis Yes No Total

Yes
No

Total

n n
n n n
n n n

T

T

S S

11 10

01 00 −
−

 

n
n

n
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Note that  is the number of matches (concordant pairs) and  is the number of 
discordant pairs. 

The hypothesis of interest concerns the two marginal probabilities  and  represents the 
accuracy or success of the standard test and  represents the accuracy or success of the new, 
experimental test. Non-inferiority is defi s , or the 
relative risk ratio, , of th i

s

n n11 00+ n n10 01+

PT

of either the difference, 
ons. The choice between 

PS . PS

D

PT

ned in term
ese two proport

D P P= −T S

 and R will R P P= T S/
usually lead to different sample sizes to achieve the same power. 

Non-Inferiority Hypotheses using Difference  
This section is based on Liu, Hsueh, Hsieh an  Chen (2002). Refer to that paper for complete 
details.  

The null and alternative hypotheses of non-inferiority in terms of the difference are 

DPPH

d

EST −≤−:   versus  PPH0 EST D−>−:1  

To demonstrate non-inferiority, one desires to reject the null hypothes
the experimental treatment is not worse than the standard by as much or m

is and thus conclude that 
ore than . In the 

 be difficult. It should  meaningful so that clinicians are willing to conclude 
a statistical 

perspective, should be less than the effect, if known, of the standard treatme pared to 

 DE

nt com

context of the preceding statement, DE  is defined to be positive. The choice of an appropriate 
D  mayE

that the experimental treatment is acceptable if the difference is less than DE . From 
be clinically

DE  
placebo. 

Liu et al. (2002) discuss the RMLE-based (score) method for constructing these confidence 
intervals. This method is based on (developed by, described by) Nam (1997). 

Asymptotic Tests 
An asymptotic test is given by 

Z   D D c nD

d nD
L

−$ $σ α2

where 

zE E=
+

=
+

≥
$

 

$D  n n nT S= − =
n n n n

n
−10 01  

 is the standard normal deviate having 

d  n n= +10 01  
c  n n= −10 01  

and zα α  in the right tail.  

An estimate of σ̂  based on the RMLE-based (score) procedure of Nam (1997) uses the estimates 

~ ~ ~
, ,σ L

L Lp p D
n

=
+ −10 01
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 E
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where 

~
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Power Formula 
The power when the actual difference is  can be evaluated exactly using the multinomial 
distribution. However, when the sample size is above a user-set level, we use a normal 
approximation to this distribution which

DA

 leads to 
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Non-Inferiority Hypotheses using Ratios 

( ) (a D D p DL A E= − − − +1 2 01  

( )b D D pL E E= +1 01  

The following is based on Nam (2002). We refer you to this paper for the 
complete details of which we will only provide a brief summary here.  

When , the statistical hypotheses of non-equivalence are 

E

 and Blackwelder 

RE <1

H P P RT S0: / ≤ versus EH P P RT S1: / >  
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Test Statistics 
The test statistic for an asymptotic test based on constrained maximum likelihood for large n
given by 

 is 

( ) ( )
( )

Z R   
n P R PE

=
−$ $
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R pE pE +~ ~
10 01

 

where 

( ) ( )
( )

~
$ $ $ $ $ $ $

p
P R P p P R P R p pE E E

10

2
10

2 2
10 012 4

=
− + + + − +T S T S

 
R RE E

2

2 1+

)( )(~ ~ $p R p R pE E01 10 001 1= − − −  

$ , $ , $ , $p n
n

p n
n

P n n
n

P n n
n

01
10

10 10 11 01 11= = =
+ +

=01 T S  

Power Formula 
The power when the true value of the relative risk ratio is  can be evaluated exactly using the 
multinomial distribution. When n is large, we use a normal approximation to the multinomial 
distribution which leads to 
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Nuisance Parameter 
Unfortunately, the 2-by-2 table includes four parameters and , but the power 
specifications above only specify two parameters:  and eter is 

p p p11 10 01, , ,
DA  or RA

p00

. A third paramPS
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defined implicitly since the sum of the four parameters is one. One parameter, known as a 
nuisance parameter, remains unaccounted for. This parameter mu addressed to fully specify 
the problem. This fourth parameter can be specified by specifying any one of the following: 

 or the sensitivity of the experimental response, 

lue for the nuisance parameter since
fter the study is conducted. Because of this, we suggest 

for a range of values of the nuisance paramete
the results are to its value. 

st be 

p p p p11 10 01 00, , ,

It may
not be even approxim

, p p p p10 01 11 00+ +, ,

 be difficult to specify a reasonable va
ately known until a

ple size 
sitive 

p P11 / S . 

 its value may 

r. This will that you calculate power or sam
allow you to determine how sen

Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data and Options tabs. To find out more about using the other tabs, go 
to the Procedure Window chapter. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sam
sizes, alpha, a o procedures which have different options. This

on to both procedures. Later, unique options for each 

ple 
 nd power. This chapter covers tw

section documents options that are comm
procedure will be documented.   

Solve For 

Find (Solve For) 
This option sp for from the other parameters. The param

.  
ecifies the parameter to be solved eters 

that may be selected are Power and Beta or N

Error Rates 

Power or Beta 
This option specifies one or more values 

y of rejecting a false null h
 of a type-II erro

you fai

y be entered here or a range of valu

for power or for beta (depending on the 
Power is the probabilit ypothesis, and is equal to one minus Beta. Beta 

ity r, which occurs when a false null hypothesis is not rejected. 
l to conclude non-inferiority when in fact it is true. 

A single value ma es such as 0.8 to 0.95 by 0.05 may

chosen setting). 

 

 be 

is the probabil
Here, a type-II error occurs when 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

entered.  
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Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 

e 
ority. 

when a true null hypothesis is rejected. Here, a type-I error occurs when you falsely conclud
non-inferi

Sample Size 

N (Sample Size) 
Enter a value for the sample size. This value must be greater than two. You may enter a range of 
values such as 10 to100 by 10.  

ndard Proportion Effect Size – Sta

Ps (Standard Proportion) 
This is the proportion of yes’s (or successes), , when subjects received the standard treatment. 
This value or a good estimate is often available from previous studies. 

lank spaces. For example, you could enter ‘0.50 0.60 
including, 0 and 1 are permitted. 

 PS

You may enter a set of values separated by b
0.70’. Values between, but not 

Effect Size – Nuisance Parameter 

Nuisance Parameter Type 
Enter the type of nuisance parameter here. Unfortunately, the 2-by-2 table cannot be completely 
specified by using only the parameters Ps and Da or Ps and Ra. One other parameter must be 

 a ‘nuisance’ parameter. It will be assumed to be a 
ilable. This option lets you specify which 

l cases, the value you specify is a proportion. 

The proportion of subjects that are negative on both tests. 

• 
roportion of subjects that are negative on the treatment, but positive on the standard. 

• 
The proportion of subjects that are positive on the treatment, but negative on the standard. 

• 
The proportion of matches (concordant pairs). 

• 
tion of non-matches (discordant pairs). 

specified. This additional parameter is called
known quantity. Several possible choices are ava
parameter you want to use. In al

• P11  
The proportion of subjects that are positive on both tests. 

• P00 

P01  
The p

P10  

P11+P00  

P01+P10  
The propor
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• P11/Ps  
The sensitivity. 

Nuisance Parameter Value 
Enter the value of the nuisance parameter that you specified in the ‘Nuisance Parameter Type’ 
box. T tion, so it must be between 0 and 1.  his value is a propor

Data Tab (Differences) 
This section documents options that are used when the parameterization is in terms of the 

e of P1 assumed by the null hypothesis and P1.1 is the value 
ted. Once P2, D0, and D1 are given, the values of P1.1 and 

difference, P1 – P2. P1.0 is the valu
of P1 at which the power is calcula
P1.0 can be calculated. 

Effect Size – Differences 

|De| (Equivalence Difference) 
ference between the standard and treatment proportions that will 

r to ensure that De is positive, the difference is 
T

De is the maximum allowable dif
still result in the conclusion of equivalence. In orde

D P PE S= −computed in reverse order. That is, . This parameter is only used when the Test 

here. Typical
ve |Da| < D e. 

Statistic option is set to ‘Difference’. 

Only positive values can be entered  values for this difference are 0.05, 0.10, and 
0.20. For two-sided tests, you must ha e. For one-sided tests, you must have Da > -D

Da (Actual Difference) 
Da is the actual difference between the treatment and standard proportions D P PA T S= − . Da may 
be positive, negative, or (usually
is set to ‘Difference’. 

) zero. This parameter is only used when the Test Statistic option 

For two-sided tests, you must have |Da| < De. For one-sided tests, you must have Da > -De. 

Data Tab (Ratios) 
This section documents options that are used when the parameterization is in terms of the ratio, 

 P1 assumed by the null hypothesis and P1.1 is the value of P1 at 
are given, the values of P1.0 and P1.1 can be 

P1 / P2. P1.0 is the value of
which the power is calculated. Once P2, R0, and R1 
calculated. 

Effect Size – Ratios 

Re (Equivalence Ratio) 
the relative risk ratio, , that will still result in the conclusion of 

ce and non-inferiority trials use a value that is less than one. Typical 
r 0.9. 

c optio

 ST PP /Re is the minimum size of 
equivalence. Both equivalen
values for this ratio are 0.8 o

This parameter is only used when the Test Statisti n is set to ‘Ratio’. 
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Ra (Actual Ratio) 
Enter a value for Ra, the actual relative risk ratio . This value is used to generate the value 
of  using the formula . Often this value is set equal to one, but this is not necessary. 

ST PP /
PT P P RaT S=

Options Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Approximations 

Use Approximations if N is greater than 
Specify the maximum value of N (sample size) for which you would like an exact power 
calculation based on the multinomial distribution. Sample sizes greater than this value will use 
the asymptotic approximation given in the documentation. The exact calculation of the 
multinomial distribution becomes very time consuming for N > 200. For most cases, when N > 
200, the difference between the exact and approximate calculations is small. For N > 200, the 
length of time needed to calculate the exact answer may become prohibitive. However, as the 
speed of computers increases, it will become faster and easier to calculate the exact power for 
larger values of N. 

If you want all calculations to use exact results, enter ‘1000’ here. 

If you want all calculations to use the quick approximations, enter ‘1’ here. 
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Example 1 – Finding Power 
A clinical trial will be conducted to show that a non-invasive MRI test is not inferior to the 
invasive CTAP reference test. Historical data suggest that the CTAP test is 80% accurate. After 
careful discussion, the researchers decide that if the MRI test is 75% accurate or better, it will be 
considered non-inferior. They decide to use a difference test statistic. Thus, the equivalence 
difference is 0.05. They want to study the power for various sample sizes between 20 and 1000 at 
the 5% significance level.   

They use P01 as the nuisance parameter and look at two values: 0.05 and 0.10. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for Two Correlated Proportions 
[Differences] procedure window by clicking on Proportions, then Two Correlated (Paired) 
Proportions, then Non-Inferiority Tests, then Specify using Differences. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................20 100 200 300 450 600 800 1000 
|De| (Equivalence Difference) .................0.05 
Da (Actual Difference).............................0.00 
Ps (Standard Proportion) ........................0.80 
Nuisance Parameter Type ......................P01 
Nuisance Parameter Value .....................0.05 0.10 

Axes/Legend/Grid Tab 
Vertical Axis Range.................................User 
Minimum..................................................0 
Maximum.................................................1 
Number of Tickmarks ..............................10 

Options Tab 
Use Approximations if N is >...................100 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for a Non-Inferiority (One-Sided) Test of a Difference 
 
 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Difference Difference Proportion Proportion Parameter 
Power (N) (De) (Da) (Pt) (Ps) (P01) Alpha Beta 
0.22938 20 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.77062 
0.13717 20 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.86283 
0.43625 100 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.56375 
0.28895 100 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.71105 
0.67771 200 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.32229 
. . . . . . . . . 
. . . . . . . . . 
. . . . . . . . . 
(report continues) 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the number of subjects, the sample size. 
De is the maximum difference between the two proportions that is still called 'equivalent'. 
Da is the actual difference between Pt and Ps. That is, Da = Pt-Ps. 
Pt is the response proportion to the treatment (experimental or new) test. 
Ps is the response proportion to the standard (reference or old) test. 
The Nuisance Parameter is a value that is needed, but is not a direct part of the hypothesis. 
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 
 
Summary Statements 
A sample size of 20 subjects achieves 23% power at a 5% significance level using a one-sided 
equivalence test of correlated proportions when the standard proportion is 0.80000, the maximum 
allowable difference between these proportions that still results in equivalence (the range of 
equivalence) is 0.05000, and the actual difference of the proportions is 0.00000. 

 
This report shows the power for the indicated scenarios. All of the columns are defined in the 
‘Report Definitions’ section. 

Plots Section 
  

Power vs N by P01 with Ps=0.80 De=0.05 Da=0.00
Alpha=0.05 1-Sided Equiv Test
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This plot shows the power versus the sample size for the two values of P01. In this example, we 
see that the value of the nuisance parameter has a large effect on the calculated sample size. 
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Example 2 – Finding Sample Size 
Continuing with Example1, the analysts want to determine the exact sample size necessary to 
achieve 90% power for both values of the nuisance parameter.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for Two Correlated Proportions 
[Differences] procedure window by clicking on Proportions, then Two Correlated (Paired) 
Proportions, then Non-Inferiority Tests, then Specify using Differences. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Sample Size (N) 
Power ......................................................0.90 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
|De| (Equivalence Difference) .................0.05 
Da (Actual Difference).............................0.00 
Ps (Standard Proportion) ........................0.80 
Nuisance Parameter Type ......................P01 
Nuisance Parameter Value .....................0.05 0.10 

Options Tab 
Use Approximations if N is >...................100 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for a Non-Inferiority (One-Sided) Test of a Difference 
 
 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Difference Difference Proportion Proportion Parameter 
Power (N) (De) (Da) (Pt) (Ps) (P01) Alpha Beta 
0.90026 374 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.09974 
0.90014 699 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.09986 

 
This report shows that the sample size required nearly doubles when P01 is changed from 0.05 to 
0.10. 
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Example 3 – Validation using Liu 
Liu et al. (2002) give an example in which P01 is 0.05, P10 is 0.05, Da is 0.00, De is 0.05, the 
significance level is 0.025, and the power is 80%. From their Table III, the sample size is 350. 

In this example, the value of Ps is arbitrary. We set it at 0.50.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for Two Correlated Proportions 
[Differences] procedure window by clicking on Proportions, then Two Correlated (Paired) 
Proportions, then Non-Inferiority Tests, then Specify using Differences. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Sample Size (N) 
Power ......................................................0.80 
Alpha .......................................................0.025 
N (Sample Size) ......................................Ignored since this is the Find setting 
|De| (Equivalence Difference) .................0.05 
Da (Actual Difference).............................0.00 
Ps (Standard Proportion) ........................0.50 
Nuisance Parameter Type ......................P01 
Nuisance Parameter Value .....................0.05 

Options Tab 
Use Approximations if N is >...................100 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for a Non-Inferiority (One-Sided) Test of a Difference 
 
 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Difference Difference Proportion Proportion Parameter 
Power (N) (De) (Da) (Pt) (Ps) (P01) Alpha Beta 
0.80046 350 0.05000 0.00000 0.50000 0.50000 0.05000 0.02500 0.19954 

 

The calculated sample size of 350 matches the results of Liu et al. (2002). 
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Example 4 – Validation using Nam and Blackwelder 
Nam and Blackwelder (2002) give an example in which Ps is 0.80, P10 is 0.05, Ra is 1.00, Re is 
0.80, the significance level is 0.05, and the power is 80%. From their Table III, the sample size is 
34.  

Note that their calculations use the approximate formula, so we will set the value of ‘Use 
Approximations if N is greater than’ to ‘1’ so that only the approximate formula is used.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for Two Correlated Proportions 
[Ratios] procedure window by clicking on Proportions, then Two Correlated (Paired) 
Proportions, then Non-Inferiority Tests, then Specify using Ratios. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example4 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Sample Size (N) 
Power ......................................................0.80 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
Re (Equivalence Ratio) ...........................0.80 
Ra (Actual Ratio).....................................1.00 
Ps (Standard Proportion) ........................0.80 
Nuisance Parameter Type ......................P10 
Nuisance Parameter Value .....................0.05 

Options Tab 
Use Approximations if N is >...................1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for a Non-Inferiority (One-Sided) Test of a Ratio 
 
 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Ratio Ratio Proportion Proportion Parameter 
Power (N) (Re) (Ra) (Pt) (Ps) (P10) Alpha Beta 
0.80050 34 0.80 1.00 0.80000 0.80000 0.05000 0.05000 0.19950 

 

The calculated sample size of 34 matches the results of Nam and Blackwelder (2002). 



Non-Inferiority Tests for Two Correlated Proportions  160-15 

Example 5 – Finding Sample Size for a Non-Inferiority 
Test 
Researchers have developed a new treatment for migraine headaches which is less expensive than 
a current standard. The researchers need to show that the proportion of individuals who respond 
to the new treatment is not inferior to the standard treatment. They want to determine the 
minimum number of subjects required to achieve 90% power for the test of non-inferiority. The 
new treatment will be considered non-inferior if its success rate is no less than 90% of the success 
rate of the standard, which is about 0.65. The sample size required is evaluated for various values 
(0.3 to 0.9) of the nuisance parameter: P11/Ps = sensitivity. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority Tests for Two Correlated Proportions 
[Ratios] procedure window by clicking on Proportions, then Two Correlated (Paired) 
Proportions, then Non-Inferiority Tests, then Specify using Ratios. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example5 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find .........................................................Sample Size (N) 
Power ......................................................0.90 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting 
Re (Equivalence Ratio) ...........................0.95 
Ra (Actual Ratio).....................................1.0 
Ps (Standard Proportion) ........................0.65 
Nuisance Parameter Type ......................P11/Ps (Sensitivity) 
Nuisance Parameter Value .....................0.3 to 0.9 by 0.1 

Options Tab 
Use Approximations if N is >...................1 
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Output 
Click the Run button to perform the calculations and generate the following output. 

 
Numeric Results for a Non-Inferiority (One-Sided) Test of a Ratio 
 
 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Ratio Ratio Proportion Proportion Parameter 
Power (N) (Re) (Ra) (Pt) (Ps) (P11/Ps) Alpha Beta 
 13 0.95 1.00 0.65000 0.65000 0.30000 0.05000  
 13 0.95 1.00 0.65000 0.65000 0.40000 0.05000  
0.90004 5013 0.95 1.00 0.65000 0.65000 0.50000 0.05000 0.09996 
0.90001 4013 0.95 1.00 0.65000 0.65000 0.60000 0.05000 0.09999 
0.90004 3015 0.95 1.00 0.65000 0.65000 0.70000 0.05000 0.09996 
0.90011 2020 0.95 1.00 0.65000 0.65000 0.80000 0.05000 0.09989 
0.90016 1035 0.95 1.00 0.65000 0.65000 0.90000 0.05000 0.09984 

 

These scenarios require a large sample size. In fact, the first two rows are blank because the 
sample size is so large it can’t be determined. 
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Chapter 165 

Equivalence Tests 
for Two Correlated 
Proportions 
Introduction 
The two procedures described in this chapter compute power and sample size for testing 
equivalence using differences or ratios in designs in which two dichotomous responses are 
measured on each subject. Each of these options is listed separately on the menus.  

When one is interested in showing that two correlated proportions are different, the data are often 
analyzed with McNemar’s test. However, the procedures discussed here are interested in showing 
equivalence rather than difference. For example, suppose a diagnostic procedure is accurate, but 
is expensive to apply or has serious side effects. A replacement procedure may be sought which is 
equally accurate, but is less expensive or has fewer side effects. In this case, we are not interested 
in showing that the two diagnostic procedures are different, but rather that they are the same. 
Equivalence tests were designed for this situation.  

These tests are often divided into two categories: equivalence (two-sided) tests and non-
inferiority (one-sided) tests. Here, the term equivalence tests means that we want to show that two 
diagnostic procedures are equivalent—that is, their accuracy is about the same. This requires a 
two-sided hypothesis test. On the other hand, non-inferiority tests are used when we want to show 
that a new (experimental) procedure is no worse than the existing (reference or gold-standard) 
one. This requires a one-sided hypothesis test. 

Technical Details 
The results of a study in which two dichotomous responses are measured on each subject can be 
displayed in a 2-by-2 table in which one response is shown across the columns and the other is 
shown down the rows. In the discussion to follow, the columns of the table represent the standard 
(reference or control) response and the rows represent the treatment (experimental) response. The 
outcome probabilities can be classified into the following table. 
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Experimental Standard Diagnosis
Diagnosis Yes No Total

Yes
No

Total

p p
p p
P P

T

T

S S

11 10

01 00 1
1 1

−
−

P
P

 

 

In this table, . That is, the first subscript represents the response of the new, 
experimental procedure while the second subscript represents the response of the standard 
procedure. Thus,  represents the proportion having a negative treatment response and a 
positive standard response.  

p pij Treatment Standard= ,

p01

Sensitivity, Specificity, and Prevalence 
To aid in interpretation, analysts have developed a few proportions that summarize the table. 
Three of the most popular ratios are sensitivity, specificity, and prevalence.  

Sensitivity 
Sensitivity is the proportion of subjects with a positive standard response who also have a 
positive experimental response. In terms of proportions from the 2-by-2 table,  

Sensitivity = ( )p p p p11 01 11 11/ / P+ = S  

Specificity 
Specificity is the proportion of subjects with a negative standard response who also have a 
negative experimental response. In terms of proportions from the 2-by-2 table,  

Specificity = ( )p p p00 10 00/ +  

Prevalence 
Prevalence is the overall proportion of individuals with the disease (or feature of interest). In 
terms of proportions from the 2-by-2 table,  

Prevalence =  PS

Table Probabilities 
The outcome counts from a sample of n subjects can be classified into the following table. 
 

Experimental Standard Diagnosis
Diagnosis Yes No Total

Yes
No

Total

n n
n n n
n n n

T

T

S S

11 10

01 00 −
−

 n
n

n
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Note that  is the number of matches (concordant pairs) and  is the number of 
discordant pairs. 

The hypothesis of interest concerns the two marginal probabilities  and  represents the 
accuracy or success of the standard test and  represents the accuracy or success of the new, 
experimental test. Equivalence is defined in terms of either the difference, , or the 
elative risk ratio, , of th i  will 

n n11 00+ n n10 01+

PT

ons. The choice between 

PS . PS

D P
D

PT

ese two proport
P= −T S

 and R R P P= T S/r
usually lead to different sample sizes to achieve the same power. 

Equivalence Hypotheses using Differences 
This section is based on Liu, Hsueh, Hsieh an  Chen (2002). We refer you to that paper for 
complete details.  

The hypotheses of equivalence in terms of the difference are 

H P P D H P P D H: :or versus− ≥

d

ED P P DE E E0 0 1:T S T S T S− ≤ − − < − <  

These hypotheses can be decomposed into two sets of one-sided hy

H P P D H P P: :versus−

potheses  

DL E L E0 1T S T S≤ − − > −  

and 

H P P D H PU E U0 1: :T S versus P DT S− ≥ E− <  

α  is conducted by computing a The hypothesis test of equivalence with type I error rate 
( )100 1 2− α % confidence interval for P PT S−  and determining if this interval is wholly 

ween  and mmended by 
regulatory agencies. 

t al. (2002) discuss the RMLE-based (score) method for constructing these confidence 
intervals. This method is based on (developed by, described by) Nam (1997). 

mptot

contained bet − DE DE . This confidence interval approach is often reco

Liu e

Asy ic Tests 
An asymptotic test for testing H L  versus H L1  is given by 0

Z   D D c nD

d nD
L

−$ $σ α2
 zE E=

+
=

+
≥

$

where 

$D  n n nT S= − =
n n n n

n
−10 01

 

 is the standard normal deviate having 

d  n n= +10 01  

c  n n= −10 01  

and zα α  in the right tail.  

Similarly, an asymptotic test for testing H0U versus H1U  is given by 
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Z   D D c nD

d nD
zU

E E=
−

=
−

−
≤ −

$

$ $σ α2
. 

Equivalence is concluded if both the tests on ZL and ZU are rejected. 

An estimate of σ̂  based on the RMLE-based (score) procedure of Nam (1997) uses the estimates 

~ ~ ~
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2
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~ ~ ~
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Note that the ICH E9 guideline (see Lewis (1999)) suggests using a significance level of α / 2  
when testing this hypothesis. 

Power Formula 
The power when the actual difference is  can be evaluated exactly using the multinomial 
distribution. However, when the sample size is above a user-set level, we use a normal 
approximation to this distribution which leads to 
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Equivalence Hypotheses using Ratios 
RE <1For the two-sided (equivalence) case when , the statistical hypotheses are 

EH P P R P P R H R P P RE E E0 11 1: / / / : / /T S T S T Sor versus≤ ≥ < <  

These can be decomposed into two sets of one-sided hypotheses  

H P P R H P P RL E L E0 1: / : /T S T Sversus≤ >  

and 

EH P P R H P P RU E U0 11 1: / / : / /T S T Sversus≥ <  

Note that the first set of one-sided hypotheses, H0L versus H1L, is referred to as the hypotheses of 
non-inferiority. 

The following is based on Nam and Blackwelder (2002). We refer you to this paper for the 
complete details of which we will only provide a brief summary here.  
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Test Statistics 
The test statistic for an asymptotic test based on constrained maximum likelihood for large n is 
given by 
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Note that the above applies to a one-sided test. When using a two-sided test, we calculate both 
 and  using the above formula. 

Power Formula 
The power of the one-sided procedure when the true value of the relative risk ratio is  can be 
evaluated exactly using the multinomial distribution. When n is large, we use a normal 
approximation to the multinomial distri leads to 
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Nuisance Parameter 
Unfortunately, the 2-by-2 table includes four parameters p p p, , , and p , but the power 11 10 01

DA  or RA

ters is one. One parameter, known as a 
eter must be 

ing any 

00

. A third param

addressed to 
h

specifications above only specify two parameters:  and eter is 
defined implicitly since the sum of the four param
nuisance parameter, remains unaccounted for. This param fully specify 
the problem. This fourth parameter can be specified by specify one of t e following: 

PS

e

p p11 10, p p01 00, , , p p p p10 01 11 00+ +, ,  or the sensitivit ental response, 

It may be difficult to specify a reasonable value for the nuisance parameter since its value may 
not be even approximately known until after the study is conducted. Because of this, we suggest 
that you calculate power or sample size for a range of values of the nuisance parameter. This will 
allow you to determine how sensitive the results are to its value. 

Procedure Options 

y of the experim p P11 / S . 

This section describes the options that are unique to this procedure. These are located on the 

such as /Legend/ e, go to the Procedure Window chapter. 

mon Options) 

panels associated with the Data and Options tabs. To find out more about using the other tabs 
 Axes Grid, Plot Text, or Templat

Data Tab (Com
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and power. This chapter covers two procedures which have different option
section documents options that are common to both procedure

s. This 
s. Later, unique options for each 

procedure will be documented.   

 For Solve

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Power and Beta or N.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when ou fail to conclude equivalence when in 
fact it is true. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

y



165-8  Equivalence Tests for Two Correlated Proportions 

Alpha (Significance Level) 
This option specifies one or more values for the probabilit
when a true null hypothesis is rejected. Here, a type-I erro  you lsely conclude 
equivalence.  

Sample Size 

y of a type-I error. A type-I error occurs 
r occurs when  fa

N (Sample Size) 
f Enter a value for the sample size. This value must be greater than two. You may enter a range o

values such as 10 to100 by 10.  

Effect Size – Standard Proportion 

Ps (Standard Proportion) 
successes), , when subjects received the standard treatment. 

), 

You may enter a set of values separated by blank spaces. For example, you could enter 0.50 0.60 
d 1 are permitted. 

 PSThis is the proportion of yes’s (or 
This value or a good estimate is often available from previous studies.  

Note that this value does not matter when the Nuisance Parameter Type is set to 'P01' (or 'P10'
as long as it is greater than P01 (or P10). 

0.70. Values between, but not including, 0 an

Effect Size – Nuisance Parameter 

Nuisance Parameter Type 
Enter the type of nuisance parameter here. Unfortunately, the 2-by-2 table cannot be completely 
specified by using only the parameters Ps and Da or Ps and Ra. One other parameter must be 

s additional parameter is called a ‘nuisance’ parameter. It will be assumed to be a 
ty. Several possible choices are available. This option lets you specify which 

to use. In all cases, the value you specify is a proportion. 

The proportion of subjects that are positive on both tests. 

 of subjects that are negative on both tests. 

roportion of matches (concordant pairs). 

• P01+P10  
The proportion of non-matches (discordant pairs). 

specified. Thi
known quanti
parameter you want 

• P11  

• P00 
The proportion

• P01  
The proportion of subjects that are negative on the treatment, but positive on the standard. 

• P10  
The proportion of subjects that are positive on the treatment, but negative on the standard. 

• P11+P00  
The p
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• P11/Ps  
The sensitivity. 

Nuisance Parameter Value 
Enter the value of the nuisance parameter that you specified in the ‘Nuisance Parameter Type’ 

tion, so it must be between 0 and 1.  box. This value is a propor

Data Tab (Differences) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value 

, D0, and D1 are given, the values of P1.1 and of P1 at which the power is calculated. Once P2
P1.0 can be calculated. 

Effect Size – Differences 

|De| (Equivalence Difference) 
De is the maximum allowable difference between the standard and treatment proportions that wil
still result in the conclusion of equivalenc

l 
e. In order to ensure that De is positive, the difference is 

computed in reverse order. That is, D P PE S T= − . This parameter is only used when the Test 
Statistic option is set to Difference. 

Only positive values can be entered here. Typical values for this difference are 0.05, 0.10, and 
| < De. For one-sided tests, you must have Da > -De. 

 

 

b (Ratios) 

0.20. For two-sided tests, you must have |Da

Da (Actual Difference) 
Da is the actual difference between the treatment and standard proportions D P PA T S= − . Da may
be positive, negative, or (usually) zero. This parameter is only used when the Test Statistic option 
is set to Difference. 

For two-sided tests, you must have |Da| < De. For one-sided tests, you must have Da > -De.

Data Ta
This section docum ms of the ratio, 

is the value of P1 assumed by the null hypothesis and P1.1 is the value of P1 at 
whi  the values of P1.0 and P1.1 can be 
calc

Eff

ents options that are used when the parameterization is in ter
P1 / P2. P1.0 

ch the power is calculated. Once P2, R0, and R1 are given,
ulated. 

ect Size – Ratios 

Re (Equivalence Ratio) 
Re i of 
equivalence. Both equivalence and non-inferiority trials use a value that is less than one. Typical 

atio are 0.8 or 0.9. 

Thi option is set to Ratio. 

s the minimum size of the relative risk ratio, ST PP / , that will still result in the conclusion 

values for this r

s parameter is only used when the Test Statistic 
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Ra (Actual Ratio) 

Enter a value for Ra, the actual relative risk ratio . This value is used to generate the value 
. Often this value is set equal to one, but this is not necessary. 

P PT S/
of PT  using the formula P PT S= Ra

This parameter is only used when the Test Statistic option is set to Ratio. 

Options Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
before the search for the criterion of interest 

umber of iterations is reached without convergence, the criterion 
Specify the maximum number of iterations allowed 
is aborted. When the maximum n
is left blank. A value of 500 is recommended. 

Approximations 

Use Approximations if N is gre
Specify the maximum value of N (sa

ater than 
mple size) for which you would like an exact power 

mes very time consuming for N > 200. For most cases, when N > 
 the exact and approximate calculations is small. For N > 200, the 

e. However, a

If you want all calculations to use the quick approximations, enter ‘1’ here. 

calculation based on the multinomial distribution. Sample sizes greater than this value will use 
the asymptotic approximation given in the documentation. The exact calculation of the 
multinomial distribution beco
200, the difference between
length of time needed to calculate the exact answer may become prohibitiv s the 
speed of computers increases, it will become faster and easier to calculate the exact power for 
larger values of N. 

If you want all calculations to use exact results, enter ‘1000’ here. 
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Example 1 – Finding Power 
A clinical trial will be conducted to show that a non-invasive MRI test is equivalent to the 
inv ive CTAP reference rical data suggest that the CTAP test is 80% accurate. After as  test. Histo

tage points of the 
atistic. Thus, the 

equivalence difference is 0.05. They want to study the power for various sample sizes between 20 
significance level. They decide to use the approximate power calculations, so 
proximations if N is greater than' option of the Options tab to 2. 

05 and 0.10.   

careful discussion, the researchers decide that if the MRI test is five percen
CTAP, it will be considered equivalent. They decide to use a difference test st

and 1000 at the 5% 
they set the 'Use Ap

They use P01 as the nuisance parameter and look at two values: 0.

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Correlated Proportions 
[Differences] procedure window by clicking on Proportions, then Two Correlated (Paired) 
Proportions, then Equivalence Tests, then Specify using Differences. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 

emplate tab on the procedure window. Example1 from the T

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N (Sample Size) ......................................20 100 200 300 450 600 800 1000 
|De| (Equivalence Difference) .................0.05 
Da (Actual Difference).............................0.00 
Ps (Standard Proportion) ........................0.80 

Options Tab 
Use Approximations if N is >...................2 

Nuisance Parameter Type ......................P01 
Nuisance Parameter Value .....................0.05 0.10 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for an Equivalence (Two-Sided) Test of a Difference 
 
 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Difference Difference Proportion Proportion Parameter 
Power (N) (De) (Da) (Pt) (Ps) (P01) Alpha Beta 
0.00000 20 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 1.00000 
0.00000 20 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 1.00000 
0.00000 100 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 1.00000 
0.00000 100 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 1.00000 
0.35542 200 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.64458 
0.00000 200 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 1.00000 
. . . . . . . . . 
. . . . . . . . . 
. . . . . . . . . 
(report continues) 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the number of subjects, the sample size. 
De is the proportions maximum difference between the two  that is still called 'equivalent'. 
Da is the hat is, Da  actual difference between Pt and Ps. T = Pt-Ps. 
Pt is the response proportion to the treatment (experimental or new) test. 
Ps is the response proportion to the standard (reference or old) test. 
The Nuisance Parameter is a value that is needed, but is not a direct part of the hypothesis. 
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 
 
Summary Statements 
A sample size of 20 subjects achieves 0% power at a 5% significance level using a two-sided 
equivalence test of correlated proportions when the standard proportion is 0.80000, the maximum 
allowable difference between these proportions that still results in equivalence (the range of 
equivalence) is 0.05000, and the actual difference of the proportions is 0.00000. 

 
This report shows the power for the indicated scenarios. All of the columns are defined in the 
‘Report Definitions’ section. 

Plots Section 
 

Power vs N by P01 with Ps=0.80 De=0.05 Da=0.00
Alpha=0.05 2-Sided Equiv Test

0.05

0.10

Po
w

er

P0
1

N

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000

  
 
This plot shows the power versus the sample size for the two values of P01. In this example, we 
see that the value of the nuisance parameter has a large effect on the calculated sample size. 
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Example 2 – Finding Sample Size 
Continuing with Example1, the analysts want to determine the exact sample size necessary to 
achieve 90% power for both values of the nuisance parameter.  

Setup 
T . First, from 
th
[D
P
al h
E

O

his section presents the values of each of the parameters needed to run this example
e PASS Home window, load the Equivalence Tests for Two Correlated Proportions 

 p eifferences] rocedur  window by clicking on Proportions, then Two Correlated (Paired) 
roportions, then Equivalence Tests, then Specify using Differences. You may then follow 
ong here by making t e appropriate entries as listed below or load the completed template 
xample2 from the Template tab on the procedure window. 

ption Value 
D
F Sample Size (N) 
P ...................................0.90 
A
N ing 
|D
D
P
N
Nuisance Parameter Value .....................0.05 0.10 

O
U

ata Tab 
ind (Solve For) ......................................
ower ...................
lpha .......................................................0.05 
 (Sample Size) ......................................Ignored since this is the Find sett
e| (Equivalence Difference) .................0.05 
a (Actual Difference).............................0.00 
s (Standard Proportion) ........................0.80 
uisance Parameter Type ......................P01 

ptions Tab 
se Approximations if N is >...................2 

Output 
Click the Run button to perform the calculations and generate the following output. 

ts N meric Resulu
 

Numeric Results for an Equivalence (Two-Sided) Test of a Difference 
 
 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Difference Difference Proportion Proportion Parameter 
Power (N) (De) (Da) (Pt) (Ps) (P01) Alpha Beta 
0.90019 468 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.09981 
0.90002 881 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.09998 

 
This report shows that the sample size required nearly doubles when P01 is changed from 0.05 to 
0.10. 
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Example 3 – Validation using Liu 
Liu et al. (2002) page 238 give a table of power values for sample sizes of 50, 100, and 200 wh
the significance level is 0.05. From this table, we find that when

en 
 P01 is 0.10, P10 is 0.10, Da = 

P01 - P10 = 0.00, and De is 0.10, and the three power values are 0.026, 0.417, and 0.861 for the 
'RMLE-based Without CC' (this is the case we use).   

lculations, they round the z value to 1.64. This corresponds to an alpha value of 

l 

column head 

In their ca
0.0505025835. So that our results match, we will use this value for alpha rather than 0.05. 

In this example, the value of Ps is not used. We set it at 0.50. Also, we set the ‘Use 
Approximations if N is greater than’ value of the Options tab to 200 so that the exact values wil
be calculated. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 

wo Correlated Proportions 
n Proportions, then Two Correlated (Paired) 
ecify using Differences. You may then follow 

plate 
du e window. 

the PASS Home window, load the Equivalence Tests for T
[Differences] procedure window by clicking o
Proportions, then Equivalence Tests, then Sp
along here by making the appropriate entries as listed below or load the completed tem

rExample3 from the Template tab on the proce

Option Value 

 Beta 
ce this is the Find setting 

..........................................0.0505025835 
 100 200 

|De| (Equivalence Difference) .................0.1 
.............................0.0 

d Proportion) ........................0.5 

Nuisance Parameter Type ......................P01 
alue .....................0.1 

Output 

Data Tab 
Find (Solve For) ......................................Power and
Power ......................................................Ignored sin
Alpha .............
N (Sample Size) ......................................50

Da (Actual Difference)
Ps (Standar
Max N Using Exact Power ......................200 

Nuisance Parameter V

Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for an Equivalence (Two-Sided) Test of a Difference 
 
 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Difference Difference Proportion Proportion Parameter 
Power (N) (De) (Da) (Pt) (Ps) (P01) Alpha Beta 
0.02614 50 0.10000 0.00000 0.50000 0.50000 0.10000 0.05050 0.97386 
0.41741 100 0.10000 0.00000 0.50000 0.50000 0.10000 0.05050 0.58259 
0.86080 200 0.10000 0.00000 0.50000 0.50000 0.10000 0.05050 0.13920 
 

As you can see, the values computed by PASS match the results of Liu et al. (2002). 
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Example 4 – Finding Power Following an Experiment 
An experiment involving a single group of 57 subjects was run to show that a new treatment was 
equivalent to a previously used standard. Historically, the standard treatment has had a 48% 
success rate. The new treatment is known to have similar side effects to the standard, but is much
less expensive. The treatments were to be considered equivalent if th

 
e success rate of the new 

nts 
ents are 

t the new treatment. The proportion responding to the new treatment is (18+9)/57 
= 0.4737. The proportion responding to the standard is (18+10)/57 = 0.4912. The difference is 

wer than the threshold for equivalence, but the resulting p-value was 0.3358, indicating 
atments could not be deemed equivalent at the 0.05 level. Note that McNemar’s test 

t they 

used in the power 
n. The experiment gave a valu  10/28 = 0.36. The power of the experiment is 
or all values of P01 less than 0.10. We calculate the power for a variety of nuisance 

itor its effect. Because it is in fact 
ied actual 

treatment is within 10% of the success rate of the standard.  

To compare the new and standard treatments, each of the 57 subjects received both treatme
with a washout period between them. Thus, the proportions based on the two treatm
correlated. Of the 57 subjects, 18 responded to both treatments, 20 did not respond to either 
treatment, 9 responded to the new treatment but not the standard, and 10 responded to the 
standard but no

0.0175, lo
the two tre
only uses the discordant pairs, so the effective size of this study is really only 9 + 10 = 19, 
although 57 subjects were investigated. The researchers want to know the power of the tes
used. 

It may be the inclination of the researchers to use the observed difference in proportions for 
calculating power. The p-value, however, is based on the maximum allowable difference for 
equivalence, which is 10% of 0.48, or 0.048. This is the number that should be 
calculatio e of P01 of
near zero f
parameter values (P01 = 0.01, 0.03, 0.05, and 0.10) to mon
believed that the success rates are equivalent for the two treatments, the specif
difference is set to 0. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 

ce Tests for Two Correlated Proportions 
Proportions, then Two Correlated (Paired) 

ecify using Differences. You may then follow 
as listed below or load the completed template 

Example4 from the Template tab on the procedure window. 

the PASS Home window, load the Equivalen
[Differences] procedure window by clicking on 
Proportions, then Equivalence Tests, then Sp
along here by making the appropriate entries 

Option Value 

Find (Solve For) ......................................Power and Beta 
............................ Ignored since this is the Find setting 
............................0.05 

|De| (Equivalence Differenc
D
P ..
N
N

Use Approximations if N is >...................200 

Data Tab 

Power ..........................
Alpha ...........................
N (Sample Size) ......................................57 

e) .................0.048 
a (Actual Difference).............................0.00 
s (Standard Proportion) ......................0.48 
uisance Parameter Type ......................P01 
uisance Parameter Value .....................0.01 0.03 0.05 0.10 

Options Tab 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for an Equivalence (Two-Sided) Test of a Difference 
 

 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Difference Difference Proportion Proportion Parameter 
Power (N) (De) (Da) (Pt) (Ps) (P01) Alpha Beta 
0.31614 57 0.04800 0.00000 0.48000 0.48000 0.01000 0.05000 0.68386 
0.02940 57 0.04800 0.00000 0.48000 0.48000 0.03000 0.05000 0.97060 
0.00247 57 0.04800 0.00000 0.48000 0.48000 0.05000 0.05000 0.99753 
0.00000 57 0.04800 0.00000 0.48000 0.48000 0.10000 0.05000 1.00000 

 

Note that there is no power for value of P01 greater than 0.05. This is probably due to the low 
number of discordant pairs. 
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Chapter 200 

Inequality Tests 
for Two 
Proportions 
Introduction 
This module computes power and sample size for hypothesis tests of the difference, ratio, or odds 
ratio of two independent proportions. The test statistics analyzed by this procedure assume that 
the difference between the two proportions is zero or their ratio is one under the null hypothesis. 
The non-null (offset) case is discussed in another procedure. This procedure computes and 
compares the power achieved by each of several test statistics that have been proposed. 

For example, suppose you want to compare two methods for treating cancer. Your experimental 
design might be as follows. Select a sample of patients and randomly assign half to one method 
and half to the other. After five years, determine the proportion surviving in each group and test 
whether the difference in the proportions is significantly different from zero.  

The power calculations assume that random samples are drawn from two separate populations.  

Four Procedures Documented Here 
There are four procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, ratios of proportions, and odds ratios. Each 
of these options is listed separately on the menus.  

Technical Details  
Suppose you have two populations from which dichotomous (binary) responses will be recorded. 
The probability (or risk) of obtaining the event of interest in population 1 (the treatment group) is 

 and in population 2 (the control group) is . The corresponding failure proportions are given 
by  and q p .  
p1 p2

q p1 11= − 2 21= −

The assumption is made that the responses from each group follow a binomial distribution. This 
means that the event probability, , is the same for all subjects within the group and that the 
response from one subject is independent of that of any other subject. 

pi
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Random samples of m and n individuals are obtained from these two populations. The data from 
these samples can be displayed in a 2-by-2 contingency table as follows 
 

Group Success Failure Total 
Treatment a c m 

Control b d n 

Total s f N 
 

The following alternative notation is also used. 
 

Group Success Failure Total 
Treatment    x11 x12 n1

Control    x21 x22 n2

Total   N m1 m2

The binomial proportions  and  are estimated from these data using the formulae p1 p2

$p a
m

x
n1
11

1

= =  and $p b
n

x
n2

21

2

= =  

Comparing Two Proportions  
When analyzing studies such as this, one usually wants to compare the two binomial 
probabilities, and . Common measures for comparing these quantities are the difference and 
the ratio. If the binomial probabilities are expressed in terms of odds rather than probabilities, 
another common measure is the odds ratio. Mathematically, these comparison parameters are 

p1 p2

 

Parameter Computation 
Difference  δ = −p p1 2  

Risk Ratio φ = p p1 2/  

Odds Ratio 
( )
( )

ψ =
−
−

=
p p
p p

p q
p q

1 1

2 2

1 2

2 1

1
1

/
/

 

 

The tests analyzed by this routine are for the null case. This refers to the values of the above 
parameters under the null hypothesis. In the null case, the difference is zero and the ratios are one 
under the null hypothesis. In the non-null case, discussed in another chapter, the difference is 
some value other than zero and the ratios are some value other than one. The non-null case often 
appears in equivalence and non-inferiority testing.  
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Hypothesis Tests 
Several statistical tests have been developed for testing the inequality of two proportions. For 
large samples, the powers of the various tests are about the same. However, for small samples, the 
differences in the powers can be quite large. Hence, it is important to base the power analysis on 
the test statistic that will be used to analyze the data. If you have not selected a test statistic, you 
may wish to determine which one offers the best power in your situation. No single test is the 
champion in every situation, so you must compare the powers of the various tests to determine 
which to use.  

Difference  
The (risk) difference,δ = −p p1 2 , is perhaps the most direct measure for comparing two 
proportions. Three sets of statistical hypotheses can be formulated: 

1.  versus H p p0 1 2 0: − = H p p1 1 2 0: − ≠ ; this is often called the two-tailed test. 
2.  versus H p p0 1 2 0: − ≤ H p p1 1 2 0: − > ; this is often called the upper-tailed test. 
3.  versus H p p0 1 2 0: − ≥ H p p1 1 2 0: − < ; this is often called the lower-tailed test. 

 

The traditional approach for testing these hypotheses has been to use the Pearson chi-square test 
for large samples, the Yates chi-square for intermediate sample sizes, and the Fisher Exact test for 
small samples. Recently, some authors have begun questioning this solution. For example, based 
on exact enumeration, Upton (1982) and D’Agostino (1988) conclude that the Fisher Exact test 
and Yates test should never be used.  

Ratio  
The (risk) ratio,φ = p p1 / 2 , is often preferred to the difference when the baseline proportion is 
small (less than 0.1) or large (greater than 0.9) because it expresses the difference as a percentage 
rather than an amount. In this null case, the null hypothesized ratio of proportions,φ0 , is one. 
Three sets of statistical hypotheses can be formulated: 

1. H p p0 1 2 0: / = φ  versus H p p1 1 2 0: / ≠ φ ; this is often called the two-tailed test. 
2. H p p0 1 2 0: / ≤ φ  versus H p p1 1 2 0: / > φ ; this is often called the upper-tailed test. 
3. H p p0 1 2 0: / ≥ φ  versus H p p1 1 2 0: / < φ ; this is often called the lower-tailed test. 

 

Odds Ratio  

The odds ratio,
( )
( )

ψ = =
−
−

=
o
o

p p
p p

p q
p q

1

2

1 1

2 2

1 2

2 1

1
1

/
/

, is sometimes used to compare the two 

proportions because of its statistical properties and because some experimental designs require its 
use. In this null case, the null hypothesized odds ratio,ψ 0 , is one. Three sets of statistical 
hypotheses can be formulated:  

1. H0: 0ψ ψ=  versus H1: 0ψ ψ≠ ; this is often called the two-tailed test. 
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2. H0: 0ψ ψ≤  versus H1: 0ψ ψ> ; this is often called the upper-tailed test. 
3. H0: 0ψ ψ≥  versus H1: 0ψ ψ< ; this is often called the lower-tailed test. 

Power Calculation 
The power for a test statistic that is based on the normal approximation can be computed exactly 
using two binomial distributions. The following steps are taken to compute the power of such a 
test.  

1.  Find the critical value (or values in the case of a two-sided test) using the standard normal 
distribution. The critical value, , is that value of z that leaves exactly the target value 
of alpha in the appropriate tail of the normal distribution. For example, for an upper-tailed 
test with a target alpha of 0.05, the critical value is 1.645.  

zcritical

2.  Compute the value of the test statistic, , for every combination of  and . Note that 
 ranges from 0 to n , and  ranges from 0 to . A small value (around 0.0001) can 

be added to the zero cell counts to avoid numerical problems that occur when the cell value 
is zero. 

zt x11 x21

x11 1 x21 n2

3. If z z , the combination is in the rejection region. Call all combinations of  
and  that lead to a rejection the set A. 

t critical>
x21

x11

4. Compute the power for given values of  and  as p1 p2

1 1

11
1 1

2

21
2 2

11 1 11 21 2 21− =
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟− −∑β

n
x

p q
n
x

p qx n x x n x

A

 

5. Compute the actual value of alpha achieved by the design by substituting  for   p2 p1

α* =
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟− −∑

n
x

p q
n
x

p qx n x x n x

A

1

11
1 1

2

21
1 1

11 1 11 21 2 21  

When the values of  and  are large (say over 200), these formulas may take a little time to 
evaluate. In this case, a large sample approximation may be used. 

n1 n2

Test Statistics 
The various test statistics that are available in this routine are listed next.  

Fisher’s Exact Test 
The most useful reference we found for power analysis of Fisher’s Exact test was in the StatXact 
5 (2001) documentation. The material present here is summarized from Section 26.3 (pages 866 – 
870) of the StatXact-5 documentation. In this case, the test statistic is 

T

n
x

n
x

N
m

= −

⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ln

1

1

2

2  
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The null distribution of T is based on the hypergeometric distribution. It is given by 

( )
( )

Pr | ,T t m H

n
x

n
x

N
m⎝

⎜
⎠
⎟

⎣
⎢

⎦
⎥

A m

≥ =

⎛
⎝
⎜

⎞
⎠
⎟

⎞
⎠
⎟

⎛ ⎞

⎡
⎢
⎢
⎢

⎤
⎥
⎥
⎥∑0

1

1

2

2  

where 

⎛
⎝
⎜

( ) { }A m x x x x m T t= + = ≥all  pairs such that given1 2 1 2, ,  
Conditional on m, the critical value, , is the smallest value of t such that  αt

( )Pr | ,T t m H≥ ≤α α0  
The power is defined as  

where  

)

( ) ( )1 1− = ≥
=
∑β αP m T t m HPr | ,  

0m

N

( ) ( ) ( )
( ) (

( )
( )

Pr | ,
, , , ,

, , , ,,

T t m H
b x n p b x n p

b x n p b x n p
A m

A m T t

≥ =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥∑∑

≥
α

α

1
1 1 1 2 2 2

1 1 1 2 2 2

 

( ) ( )
( ) (

P m x x m H

b x n p b x n p

= + =

=

Pr |

, , , ,
1 2 1

1 1 1 2 2 2  )

When either group’s sample size is greater than the Maximum N1 or N2 limit, an approximation 
is used based on the pooled, continuity orrected Chi-Square test. 

Chi-Square Test (Pooled and Unpooled) 
This test statistic was first proposed by Karl Pearson in 1900. Although this test is usually 

Both pooled and unpooled versions of this test have been discussed in the statistical literature. 
rror is estimated. In the pooled version, the 

r. In 

( ) ( )b x n p
n
x

p px n x, , =
⎛
⎝
⎜
⎞
⎠
⎟ − −1

 

 c

expressed directly as a Chi-Square statistic, it is expressed here as a z statistic so that it can be 
more easily used for one-sided hypothesis testing.   

The pooling refers to the way in which the standard e
two proportions are averaged, and only one proportion is used to estimate the standard erro
the unpooled version, the two proportions are used separately. 

The formula for the test statistic is  

z p p
t

D

=
−$ $

$
1 2

σ
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Pooled Version 

( )$ $ $σD p p
n n

= − +
⎛
⎝
⎜

⎞
⎠
⎟1 1 1

1 2

 

$
$ $

p n p n p
n n

=
+
+

1 1 2 2

1 2  

Unpooled Version 

( ) ( )
$

$ $ $ $
σD

p p
n

p p
n

=
−

+
−1 1

1

2 2

2

1 1
 

Power 
The power of this test is computed using the enumeration procedure described above. For large 
sample sizes, the following approximation is used. 

case of a two-sided test) using the standard normal 1. Find the critical value (or values in the 
distribution. The critical value is that value of z that leaves exactly the target value of 
alpha in the tail.  

2. Use the normal approximation to binomial distribution to compute binomial probabilities, 
Compute the power using 

1− 1 1

1 2

1 2

1 1

1

2 2

2

< +
⎝
⎜

⎠
⎟ +

−

+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

αr Z z pq
n n

p p
p q
n

p q
n

 

where 

=
⎛ ⎞

⎜ ⎟
β P

p n p n p
n n

=
+
+

1 1 2 2

1 2   
q p= −1  

Chi-Square Test with Continuity Correction  
Frank Yates is credited with proposing a correction to the Pearson Chi-Square test for the lack of 
continuity in the binomial distribution. However, the correction was in common use when he 

he 
eraged, and only one proportion is used to estimate the standard error. In 

proposed it in 1922.  

Both pooled and unpooled versions of this test have been discussed in the statistical literature. 
The pooling refers to the way in which the standard error is estimated. In the pooled version, t
two proportions are av
the unpooled version, the two proportions are used separately. 

The continuity corrected z-test is  

( )p p F
n n

− + +
⎛
⎝
⎜

⎞
$ $1 2 2

1 1

z
D

=
⎠
⎟

$
1 2

σ
 

where F is -1 for lower-tailed, 1 for upper-tailed, and both -1 and 1 for two-sided hypotheses.  
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Pooled Version 

( )$ $ $σD p p
n n

= − +
⎛
⎝
⎜

⎞
⎠
⎟1 1 1

1 2

 

$
$ $n p n p

=p
n n
+
+1 2  

Unpooled Version 

1 1 2 2

( ) ( )
$

$ $ $ $
σD

p p
n

p p
n

=
−

+
−1 1

1

2 2

2

1 1
 

Power 
s computed using the enumeration procedure described for the z-test 

above. For large samples, approximate results based on the normal approximation to the binomial 
are used.  

onal Mantel Haenszel Test  

The power of this test i

Conditi
The conditional Mantel Haenszel test, see Lachin (2000) page 40, is based on the index 
frequency, x11 , from the 2x2 table. The formula for the z-statistic is 

( )
( )

z
x E x

V xc

=
−11 11

11

 

where  

( )E x n m1 1

N11 =
 

( ) ( )
V x n n m m

N Nc 11
1 2 1 2
2 1

=
−  

Power 
The power of this test is computed using the enumeration procedure described above.  

Likelihood Ratio Test 
In 1935, Wilks showed that the following quantity has a chi-square distribution with one degree 

m. Using this test statistic to compare proportions is presented, among other places, in of freedo
Upton (1982). The likelihood ratio test statistic is computed as 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

a a b b c c d d

N N s s f f m m n n

+ + + +

− − − −

⎡ ⎤
⎥
⎥

ln ln ln ln

ln ln ln ln ln
LR = ⎢

⎢
2
⎣ ⎦  

Power 
The power of this test is computed using the enumeration procedure described above. When large 
sample results are needed, the results for the z test are used. 
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T-Test 
Based on a study of the behavior of several tests, D’Agostino (1988) and Upton (1982) proposed 
using the usual two-sample t-test for testing whether two proportions are equal. One substitutes a 
‘1’ for a success and a ‘0’ for a failure in the usual, two-sample t-test formula. The test statistic is 

 as computed

( ) ( )
t ad bc N

N nac mbdN − = −
−
+

⎛

⎝
⎜

⎞

⎠
⎟2

2
1
2

 

which can be compared to the t distribution with N-2 degrees of freedom. 

Power 
The power of this test is computed using the enumeration procedure described above, except that 
the t tables are used instead of the standard normal tables.  

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 

chapter. Template, go to the Procedure Window 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and power. This chapter covers four procedures, each of which has different options. 
This section documents options that are common to all four procedures. Later, unique options for 
each procedure will be documented.   

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for using the other parameters. The parameters 

elected are P1, Power and Beta, N1, and N2. Under most situations, you will select 
nd Beta or N1. 

 want to calculate the sample size needed to achieve a given power and alpha 

that may be s
either Power a

Select N1 when you
level.  

Select Power and Beta when you want to calculate the power of an experiment.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal 
proportions when in fact they are different. 
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Values must be 
power. Now, 0.90 (Beta = 0.10) is also c

between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
ommonly used. 

r occurs 
his procedure, a type-I error occurs when you reject 

lue of 0.05 has been used for alpha. 
ick a 

experimental situation.  

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I erro
when a true null hypothesis is rejected. For t
the null hypothesis of equal proportions when in fact they are equal. 

Values must be between zero and one. Historically, the va
This means that about one test in twenty will falsely reject the null hypothesis. You should p
value for alpha that represents the risk of a type-I error you are willing to take in your 

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. You may enter a range of 
values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 

 enter a range of values such as 10 to 100 by 10.  

N2 = [R(N1)] 

cation Ratio, and [Y] is the first integer greater than or equal to Y. 

e (or range of values) for R, the allocation ratio between samples. This value is only 
 set to Use R. 

When used, ], where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Eff

value of N1. You may

• Use R 
When Use R is entered here, N2 is calculated using the formula  

where R is the Sample Allo
For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a valu
used when N2 is

N2 is calculated from N1 using the N1)formula: N2= [R(

ect Size 

P2 (Control Group Proportion) 
 

You may enter a range of values such as 0.1,0.2,0.3 or 0.1 to 0.9 by 0.1. 

Specify the value of p2 , the control, baseline, or standard group’s proportion. The null hypothesis
is that the two proportions, p1 and p2 , are both equal to this value.  

Since these values are proportions, values must be between zero and one. 
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Test 

Test Type 
Specify which test statistic will be used in searching and reporting. 

Note that ‘C.C.’ is an abbreviation for Continuity Correction. This refers to the adding or 
e normal subtracting 2/(N1+N2) to (or from) the numerator of the z-value to bring th

approximation closer to the binomial distribution. 

Data Tab (Proportions) 
This section documents options that are used when the parameterization is in terms of the values 

oportions, P1 and P2. P1 is the value of the P1 at which the power is calculated. of the two pr

Effect Size 

P1 (Treatment Group Proportion |H1) 
This is the value of P1 under the alternative hypothesis, H1. The power calculations assume that 

h as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1.  

this is the actual value of this proportion. 

You may enter a range of values suc

Note that values must be between zero and one and cannot be equal to P2.  

Test 

H1 (Alternative Hypothesis) 
This option specifies the type of alternative hypothesis. The null hypothesis is H0: P1 = P2. 

One-Sided (H1:P1<P2) refers to a one-sided test in which the alternative hypothesis is of the 

pothesis is of the 

refers to a two-sided test in which the alternative hypothesis is of the type H1: 
2. Here ‘<>’ means unequal. 

is enters into power calculations by specifying the rejection 

form H1: P1<P2. 

One-Sided (H1:P1>P2) refers to a one-sided test in which the alternative hy
form H1: P1>P2. 

Two-Sided 
P1<>P

Note that the alternative hypothes
region of the hypothesis test. Its accuracy is critical. 



Inequality Tests for Two Proportions  200-11 

Data Tab (Differences) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P2. P1 is the value of the group 1 proportion at which the power is calculated. 
Once P2 and D1 are given, the value of P1 can be calculated. 

Effect Size 

D1 (Difference|H1 = P1-P2) 
This option specifies the difference between the two proportions under the alternative hypothesis, 
H1. This difference is used with P2 to calculate the value of P1 using the formula: P1 = D1 + P2. 
Differences must be between -1 and 1. They cannot take on the values -1, 0, or 1. 

The power calculations assume that P1 is the actual value of the proportion in group 1 (the 
experimental or treatment group). 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

Test 

Alternative Hypothesis (H1) 
This option specifies the type of alternative hypothesis. The null hypothesis is H0: P1 = P2. 

One-Sided (H1:D1<0) refers to a one-sided test in which the alternative hypothesis is of the form 
H1: D1<0. 

One-Sided (H1:D1>0) refers to a one-sided test in which the alternative hypothesis is of the form 
H1: D1>0. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: D1<>0. 
Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 

Data Tab (Ratios) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P2. P1 is the value of the group 1 proportion at which the power is calculated. Once P2 and 
R1 are given, the value of P1 can be calculated. 

Effect Size 

R1 (Ratio|H1 = P2/P1) 
This option specifies the ratio between the two proportions, P1 and P2. This ratio is used with P2 
to calculate the value of P1 at which the power is calculated using the formula: P1=(R1) x (P2). 
The power calculations assume that P1 is the actual value of the proportion in group 1, which is 
the experimental, or treatment, group. 

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25. Ratios must greater 
than zero. They cannot take on the value of one. 
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Test 

Alternative Hypothesis (H1) 
This option specifies the type of alternative hypothesis. The null hypothesis is H0: P1 = P2. 

One-Sided (H1:R1<1) refers to a one-sided test in which the alternative hypothesis is of the form 
H1: R1<1. 

One-Sided (H1:R1>1) refers to a one-sided test in which the alternative hypothesis is of the form 
H1: R1>1. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: R1<>1, 
Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 

Data Tab (Odds Ratios) 
This section documents options that are used when the parameterization is in terms of the odds 
ratios. Note that the odds are defined as O2 = P2 / (1 – P2) and O1 = P1 / (1 – P1). Once P2 and 
OR1 are given, the value of P1 can be calculated.  

Effect Size 

OR1 (Odds Ratio|H1 = O1/O2) 
This option specifies the odds ratio of the two proportions, P1 and P2. This odds ratio is used 
with P2 to calculate the value of P1. The power calculations assume that P1 is the actual value of 
the proportion in group 1, which is the experimental, or treatment, group. 

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25. Odds ratios must 
greater than zero. They cannot take on the value of one. 

Test 

Alternative Hypothesis (H1) 
This option specifies the type of alternative hypothesis. The null hypothesis is H0: P1 = P2. 

One-Sided (H1:OR1<1) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: P1<P2, H1: D1<0, H1: R1<1, or H1: OR1<1. 

One-Sided (H1: OR1>1) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: P1>P2, H1: D1>0, H1: R1>1, or H1: OR1>1. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: 
OR1<>1. Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 
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Options Tab 
The Options tab contains various limits and options. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. A value of at least 500 is recommended. 

Zero Counts 

Zero Count Adjustment Method 
Zero cell counts often cause calculation problems. To compensate for this, a small value (called 
the Zero Count Adjustment Value) can be added either to all cells or to all cells with zero counts. 
This option specifies whether you want to use the adjustment and which type of adjustment you 
want to use. We recommend that you use the option Add to zero cells only. 

Zero cell values often do not occur in practice. However, since power calculations are based on 
total enumeration, they will occur in power and sample size estimation. 

Adding a small value is controversial, but can be necessary for computational considerations. 
Statisticians have recommended adding various fractions to zero counts. We have found that 
adding 0.0001 seems to work well.  

Zero Count Adjustment Value 
Zero cell counts cause many calculation problems when computing power or sample size. To 
compensate for this, a small value may be added either to all cells or to all zero cells. This value 
indicates the amount that is added. We have found that 0.0001 works well. 

Be warned that the value of the ratio and the odds ratio will be affected by the amount specified 
here! 

Exact Test Options 

Maximum N1 or N2 for Exact Calculations 
When either N1 or N2 is above this amount, power calculations are based on the normal 
approximation to the binomial. In this case, the actual value of alpha is not calculated. Currently, 
for three-gigahertz computers, a value near 200 is reasonable. As computers increase in speed, 
this number may be increased. 

Calculate Exact Test Results 
When checked, the power of Fisher’s Exact Test will be calculated for the comparative reports, 
even if the ‘Test Statistic’ option is not set to Fisher’s Exact Test. 

This option is provided because calculations for Fisher's Exact Test can become lengthy for large 
sample sizes. 
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Example 1 – Finding Power 
A study is being designed to study the effectiveness of a new treatment. Historically, the standard 
treatment has enjoyed a 60% cure rate. Researchers want to compute the power of the two-sided 
z-test at group sample sizes ranging from 50 to 650 for detecting differences of 0.05 and 0.10 in 
the cure rate at the 0.05 significance level.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions [Differences] 
procedure window by clicking on Proportions, then Two Independent Proportions, then 
Inequality Tests, then Specify using Differences. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example1 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................50 to 650 by 100 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
D1 (Difference|H1 = P1 – P2) .................0.05 0.10 
P2 (Control Group Proportion) ................0.6 
H1 (Alternative Hypothesis) ....................Two-Sided 
Test Type ................................................Z Test (Pooled) 

Options Tab 
Maximum N1 or N2 Exact .......................400 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2=0. H1: P1-P2<>D1. Test Statistic: Z test with pooled variance  
 
 Sample Sample Prop|H1 Prop      
 Size Size Grp 1 or Grp 2 or Diff Diff    
 Grp 1 Grp 2 Trtmnt Control if H0 if H1 Target Actual  
Power N1 N2 P1 P2 D0 D1 Alpha Alpha Beta 
0.08173 50 50 0.65000 0.60000 0.00000 0.05000 0.05000 0.05239 0.91827 
0.14469 150 150 0.65000 0.60000 0.00000 0.05000 0.05000 0.05173 0.85531 
0.20852 250 250 0.65000 0.60000 0.00000 0.05000 0.05000 0.04981 0.79148 
0.27586 350 350 0.65000 0.60000 0.00000 0.05000 0.05000 0.04946 0.72414 
0.34064 450 450 0.65000 0.60000 0.00000 0.05000 0.05000  0.65936 
0.40234 550 550 0.65000 0.60000 0.00000 0.05000 0.05000  0.59766 
0.46095 650 650 0.65000 0.60000 0.00000 0.05000 0.05000  0.53905 
0.18042 50 50 0.70000 0.60000 0.00000 0.10000 0.05000 0.05239 0.81958 
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0.43968 150 150 0.70000 0.60000 0.00000 0.10000 0.05000 0.05173 0.56032 
0.65180 250 250 0.70000 0.60000 0.00000 0.10000 0.05000 0.04981 0.34820 
0.79585 350 350 0.70000 0.60000 0.00000 0.10000 0.05000 0.04946 0.20415 
0.88326 450 450 0.70000 0.60000 0.00000 0.10000 0.05000  0.11674 
0.93640 550 550 0.70000 0.60000 0.00000 0.10000 0.05000  0.06360 
0.96636 650 650 0.70000 0.60000 0.00000 0.10000 0.05000  0.03364 
 
Note: exact results based on the binomial were only made when both N1 and N2 were less than 400. 
 
Report Definitions 
'Power' is the probability of rejecting a false null hypothesis. It should be close to one. 
'N1 and N2' are the sizes of the samples drawn from the corresponding populations. 
'P1' is the proportion for group one under H1. This is the treatment or experimental group. 
'P2' is the proportion for group two. This is the standard, reference, or control group 
'D1: Diff. if H1' is the difference P1 – P2 assuming the alternative hypothesis. 
'Target Alpha' is the probability of rejecting a true null hypothesis that was desired. 
'Actual Alpha' is the value of alpha that is actually achieved. 
'Beta' is the probability of accepting a false null hypothesis. 
 
Summary Statements 
Group sample sizes of 50 in group one and 50 in group two achieve 8% power to detect a 
difference between the group proportions of 0.05000. The proportion in group one (the treatment 
group) is assumed to be 0.60000 under the null hypothesis and 0.65000 under the alternative 
hypothesis. The proportion in group two (the control group) is 0.60000. The test statistic used 
is the two-sided Z test . The significance level of the test was targeted at 0.05000. The 
significance level actually achieved by this design is 0.05239. 
 

This report shows the values of each of the parameters, one scenario per row. Note that the actual 
alpha value is blank for sample sizes greater than 400, which was the limit set for exact 
computation. 

The values from this table are plotted in the chart below. 

Plots Section 
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Example 2 – Finding the Sample Size 
A clinical trial is being designed to test effectiveness of new drug in reducing mortality. Suppose 
the current cure rate during the first year is 0.44. The sample size should be large enough to detect 
a difference in the cure rate of 0.10. Assuming the test statistic is a two-sided z-test with a 
significance level of 0.05, what sample size will be necessary to achieve 90% power? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions [Differences] 
procedure window by clicking on Proportions, then Two Independent Proportions, then 
Inequality Tests, then Specify using Differences. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example2 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.90 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
D1 (Difference|H1 = P1 – P2) .................0.10 
P2 (Control Group Proportion) ................0.44 
H1 (Alternative Hypothesis) ....................Two-Sided 
Test Type ................................................Z Test (Pooled) 

Options Tab 
Maximum N1 or N2 Exact .......................100 (Set low for a rapid search.) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2=0. H1: P1-P2<>D1. Test Statistic: Z test with pooled variance  
 
 Sample Sample Prop|H1 Prop      
 Size Size Grp 1 or Grp 2 or Diff Diff    
 Grp 1 Grp 2 Trtmnt Control if H0 if H1 Target Actual  
Power N1 N2 P1 P2 D0 D1 Alpha Alpha Beta 
0.90050 524 524 0.54000 0.44000 0.00000 0.10000 0.05000  0.09950 
 

The required sample size is 524 per group. These results use the large sample approximation. As 
an exercise, reset the Maximum N1 or N2 Exact parameter to 600 so that exact results can be 
calculated. When this is done, the sample size is 521—not much of a difference from the 524 that 
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was found by approximate methods. The actual alpha is 0.04930 which is very close to the target 
of 0.05. 

Example 3 – Comparing the Power of Several Test 
Statistics 
Researchers want to determine which of the eight test statistics to adopt using the comparative 
reports and charts that PASS produces. They want to detect a difference of 0.20 when the 
response rate of the control group is 0.30. The significance level is 0.05. They want to study 
sample sizes from 10 to 100. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions [Differences] 
procedure window by clicking on Proportions, then Two Independent Proportions, then 
Inequality Tests, then Specify using Differences. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example3 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................10 to 100 by 10 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
D1 (Difference|H1 = P1 – P2) .................0.2 
P2 (Control Group Proportion) ................0.3 
H1 (Alternative Hypothesis) ....................Two-Sided 
Test Type ................................................Z Test (Pooled) 

Reports Tab 
Show Numeric Report .............................Not checked 
Show Comparative Reports ....................Checked 
Show Definitions .....................................Not checked 
Show Plots ..............................................Not checked 
Show Comparative Plots.........................Checked 
Number of Summary Statements............0 

Options Tab 
Maximum N1 or N2 Exact .......................400 
Calculate Exact Test Results ..................Checked 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Power Comparison of Tests Based on the Difference: P1 – P2 
H0: P1-P2=0. H1: P1-P2<>D1.  
    Exact Z(P) Z(UnP) Z(P) Z(UnP) Mantel Like. T  
   Target Test Test Test cc Test cc Test Hnzl. Ratio Test  
N1/N2 P1 P2 Alpha Power Power Power Power Power Power Power Power  
10/10 0.5000 0.3000 0.0500 0.0547 0.1275 0.2215 0.0547 0.1215 0.1275 0.1629 0.1275  
20/20 0.5000 0.3000 0.0500 0.1632 0.2452 0.3167 0.1419 0.2067 0.2452 0.2452 0.2452  
30/30 0.5000 0.3000 0.0500 0.2594 0.3511 0.3604 0.2594 0.2708 0.3511 0.3604 0.3511  
40/40 0.5000 0.3000 0.0500 0.3683 0.4581 0.4612 0.3683 0.3728 0.4581 0.4612 0.4581  
50/50 0.5000 0.3000 0.0500 0.4635 0.5455 0.5481 0.4635 0.4671 0.5455 0.5455 0.5455  
60/60 0.5000 0.3000 0.0500 0.5424 0.6177 0.6214 0.5424 0.5501 0.6157 0.6177 0.6157  
70/70 0.5000 0.3000 0.0500 0.6138 0.6771 0.6815 0.6101 0.6195 0.6771 0.6771 0.6771  
80/80 0.5000 0.3000 0.0500 0.6773 0.7310 0.7435 0.6773 0.6917 0.7310 0.7368 0.7310  
90/90 0.5000 0.3000 0.0500 0.7485 0.7930 0.8036 0.7485 0.7589 0.7882 0.7969 0.7930  
100/100 0.5000 0.3000 0.0500 0.7924 0.8320 0.8328 0.7924 0.7942 0.8316 0.8320 0.8316  
 
Actual Alpha Comparison of Tests Based on the Difference: P1 - P2 
H0: P1-P2=0. H1: P1-P2=D1<>0. 
    Exact Z(P) Z(UnP) Z(P) Z(UnP) Mantel Like. T  
   Target Test Test Test cc Test cc Test Hnzl. Ratio Test  
N1/N2 P1 P2 Alpha Alpha Alpha Alpha Alpha Alpha Alpha Alpha Alpha  
10/10 0.5000 0.3000 0.0500 0.0119 0.0371 0.0949 0.0119 0.0258 0.0371 0.0771 0.0371  
20/20 0.5000 0.3000 0.0500 0.0248 0.0533 0.0686 0.0214 0.0267 0.0533 0.0534 0.0533  
30/30 0.5000 0.3000 0.0500 0.0261 0.0487 0.0583 0.0261 0.0321 0.0487 0.0583 0.0487  
40/40 0.5000 0.3000 0.0500 0.0282 0.0484 0.0541 0.0276 0.0317 0.0484 0.0541 0.0484  
50/50 0.5000 0.3000 0.0500 0.0307 0.0498 0.0554 0.0307 0.0334 0.0498 0.0498 0.0498  
60/60 0.5000 0.3000 0.0500 0.0308 0.0525 0.0552 0.0308 0.0353 0.0483 0.0525 0.0491  
70/70 0.5000 0.3000 0.0500 0.0330 0.0516 0.0549 0.0318 0.0348 0.0516 0.0516 0.0516  
80/80 0.5000 0.3000 0.0500 0.0331 0.0513 0.0518 0.0331 0.0350 0.0493 0.0516 0.0493  
90/90 0.5000 0.3000 0.0500 0.0344 0.0497 0.0525 0.0344 0.0365 0.0497 0.0500 0.0497  
100/100 0.5000 0.3000 0.0500 0.0348 0.0510 0.0529 0.0348 0.0373 0.0494 0.0517 0.0494  

 

Power vs N1 by Test with D1=0.20 P2=0.30 A=0.05
N2=N1 2-Sided Test
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It is interesting to note that the power of Fisher’s Exact Test and the z-test with continuity 
correction are consistently lower than the other tests. This occurs because the actual alpha 
achieved by these tests is much lower than that of the other tests. An interesting finding of this 
short study was that the regular t-test performed better than the more popular z-test.  
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Example 4 – Validation using Fleiss with Equal Sample 
Sizes 
Fleiss (2003), page 74, presents a sample size study in which P1 = 0.7, P2 = 0.6, alpha = 0.01, 
and beta = 0.05. Assuming two-sided testing and equal sample allocation, Fleiss finds the 
necessary sample size to be 827 in each group. The calculations of Fleiss (2003) included an 
adjustment for continuity correction. This continuity correction is not necessary here when exact 
calculations are made. However, when the sample size is large enough so that approximate 
calculations are used, the continuity correction must be applied to obtain the same results. This is 
done by setting the Test Statistic to ‘Z Test C.C.’. Note that this adjustment is used here to keep 
our results identical to those of Fleiss (2003). In practice, this adjustment is not recommended 
because it reduces the power and the actual alpha of the test procedure.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions [Differences] 
procedure window by clicking on Proportions, then Two Independent Proportions, then 
Inequality Tests, then Specify using Differences. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example4 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.95 
Alpha .......................................................0.01 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
D1 (Difference|H1 = P1 – P2) .................0.10 
P2 (Control Group Proportion) ................0.60 
H1 (Alternative Hypothesis) ....................Two-Sided 
Test Type ................................................Z Test C.C. (Pooled) 

Options Tab 
Maximum N1 or N2 Exact .......................100 (Set low for a rapid search.) 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2=0. H1: P1-P2<>D1. Test Statistic: Z test with continuity correction and pooled variance 
 
 Sample Sample Prop|H1 Prop      
 Size Size Grp 1 or Grp 2 or Diff Diff    
 Grp 1 Grp 2 Trtmnt Control if H0 if H1 Target Actual  
Power N1 N2 P1 P2 D0 D1 Alpha Alpha Beta 
0.95025 827 827 0.70000 0.60000 0.00000 0.10000 0.01000  0.04975 
 

PASS found the required sample size to be 827 which corresponds to Fleiss.  

Example 5 – Validation using Fleiss with Unequal 
Sample Sizes 
Fleiss (2003), pages 76-77, presents a sample size study in which P1 = 0.25, P2 = 0.40, alpha = 
0.01, and beta = 0.05. Assuming two-sided testing with half as many in the second group as the 
first, Fleiss finds the sample sizes to be 530 in the first group and 265 in the second. 

Note that half as many in the second group is achieved by setting R to 0.5. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions [Differences] 
procedure window by clicking on Proportions, then Two Independent Proportions, then 
Inequality Tests, then Specify using Differences. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example5 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.95 
Alpha .......................................................0.01 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................0.5 
D1 (Difference|H1 = P1 – P2) .................-0.15 
P2 (Control Group Proportion) ................0.40 
H1 (Alternative Hypothesis) ....................Two-Sided 
Test Type ................................................Z Test C.C. (Pooled) 

Options Tab 
Maximum N1 or N2 Exact .......................100 (Set low for a rapid search.) 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P2 - P1 
H0: P2-P1=0. H1: P2-P1<>D1. Test Statistic: Z test with continuity correction and pooled variance 
 
 Sample Sample Prop|H1 Prop      
 Size Size Grp 1 or Grp 2 or Diff Diff    
 Grp 1 Grp 2 Trtmnt Control if H0 if H1 Target Actual  
Power N1 N2 P1 P2 D0 D1 Alpha Alpha Beta 
0.95066 531 266 0.25000 0.40000 0.00000 -0.15000 0.01000  0.04934 
 

PASS found the required sample sizes to be 531 and 266 which nearly corresponds to Fleiss’s 
results. Fleiss computed 530 instead of 531. The number 531 is correct because the power for 530 
is slightly less than the required 0.95. 

Example 6 – Determining the Power after Completing an 
Experiment 
A study has just been completed aimed at determining the effectiveness of a new treatment for 
cancer.  Because of the cost of administering the new treatment, they would adopt the new 
treatment only if the difference between the proportion cured by the new treatment and that cured 
by the standard treatment is at least 0.10.  The researchers enrolled 200 cancer patients in the 
study (100 for each treatment) and found that 51% were cured by the standard treatment, while 
62% were cured by the new treatment.  These results, however, showed no statistically significant 
difference based on the pooled z-test with continuity correction and alpha = 0.05.  Therefore, the 
researchers want to compute the power of this test for detecting a difference of 0.10 for standard 
treatment proportions ranging from 0.40 to 0.60. 

Note that the power was not exclusively computed at the observed sample proportion for the 
standard treatment group, 0.51.  It is more informative to compute the power for a range of likely 
values suggested by historical evidence.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions [Differences] 
procedure window by clicking on Proportions, then Two Independent Proportions, then 
Inequality Tests, then Specify using Differences. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example6 from the 
Template tab on the procedure window. 
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Option Value 

Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................100 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
D1 (Difference|H1 = P1 – P2) .................0.10 
P2 (Control Group Proportion) ................0.40 to 0.60 by 0.04 
H1 (Alternative Hypothesis) ....................Two-Sided 
Test Type ................................................Z Test C.C. (Pooled) 

Options Tab 
Maximum N1 or N2 Exact .......................400 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Tests Based on the Difference: P1 - P2 
H0: P1-P2=0. H1: P1-P2=D1<>0. Test Statistic: Z test with continuity correction and pooled variance 
 
 Sample Sample Prop|H1 Prop      
 Size Size Grp 1 or Grp 2 or Diff Diff    
 Grp 1 Grp 2 Trtmnt Control if H0 if H1 Target Actual  
Power N1 N2 P1 P2 D0 D1 Alpha Alpha Beta 
0.26090 100 100 0.50000 0.40000 0.00000 0.10000 0.05000 0.03628 0.73910 
0.26194 100 100 0.54000 0.44000 0.00000 0.10000 0.05000 0.03861 0.73806 
0.26159 100 100 0.58000 0.48000 0.00000 0.10000 0.05000 0.03988 0.73841 
0.25988 100 100 0.62000 0.52000 0.00000 0.10000 0.05000 0.03988 0.74012 
0.25785 100 100 0.66000 0.56000 0.00000 0.10000 0.05000 0.03861 0.74215 
0.26266 100 100 0.70000 0.60000 0.00000 0.10000 0.05000 0.03628 0.73734 
 

This report shows the values of each of the parameters, one scenario per row.  The power over the 
entire range of the likely standard treatment proportions is relatively constant at 0.26. 
The values from this table are plotted in the chart below. 
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Plots Section 
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It is evident from these results that the test performed by the researchers had very low power to 
detect a difference of 0.10 with the sample size used.  The power is only 0.26 for a large range of 
standard treatment proportions.  Note that the fluctuation in power is related to the value of alpha. 

Example 7 – Finding the Sample Size using Ratios 
Researchers would like to design an experiment to compare the infection rate of a rare disease 
among two populations.  More specifically, they would like to determine how many subjects they 
need to sample from each population to determine if the disease rate in population 1 is at least 
three times that of population 2 with 80% power.  Suppose that the researchers are confident from 
previous studies that the infection rate in population 2 is 0.025.  The researchers plan to use the 
likelihood ratio test and alpha = 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions [Ratios] procedure 
window by clicking on Proportions, then Two Independent Proportions, then Inequality 
Tests, then Specify using Ratios. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example7 from the Template tab on the 
procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.80 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
R1 (Ratio|H1 = P1 / P2) ..........................3 
P2 (Control Group Proportion) ................0.025 
H1 (Alternative Hypothesis) ....................Two-Sided 
Test Type ................................................Likelihood Ratio Test 

Options Tab 
Maximum N1 or N2 Exact .......................100 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Tests Based on the Ratio: P1 / P2 
H0: P1/P2=1. H1: P1/P2=R1<>1. Test Statistic: Likelihood Ratio test 
 
 Sample Sample Prop|H1 Prop      
 Size Size Grp 1 or Grp 2 or Ratio Ratio    
 Grp 1 Grp 2 Trtmnt Control if H0 if H1 Target Actual  
Power N1 N2 P1 P2 R0 R1 Alpha Alpha Beta 
0.8012 298 298 0.0750 0.0250 1.000 3.000 0.0500  0.1988 

 
The researchers must sample 298 individuals from each population to achieve 80% power to 
detect a ratio of 3.0. 
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Chapter 201 

Inequality Tests 
for Two 
Proportions in a 
Repeated 
Measures Design 
Introduction 
This module calculates the power for testing the time-averaged difference (TAD) between two 
proportions in a repeated measures design. A repeated measures design is one in which subjects 
are observed repeatedly over time. Measurements may be taken at pre-determined intervals (e.g. 
weekly or at specified time points following the administration of a particular treatment), or at 
random times with variable intervals between repeated measurements.   

This type of time-averaged difference analysis is often used when the outcome to be measured 
varies with time. For example, suppose that you want to compare two treatment groups based on 
a certain binary response variable such as the presence (or absence) of a disease. The disease 
status may change over time, depending on various factors unrelated to the treatment. The 
precision of the experiment is increased by taking multiple measurements from each individual 
and comparing the time-averaged difference in proportions between the two groups. Care must be 
taken in the analysis because of the correlation that is introduced when several measurements are 
taken from the same individual. The covariance structure may take on several forms depending 
on the nature of the experiment and the subjects involved. This procedure allows you to calculate 
sample sizes and power using four different covariance patterns: Compound Symmetry, AR(1), 
Banded(1), and Simple. 

This procedure can be used to calculate sample size and power for tests of pairwise contrasts in a 
mixed models analysis of repeated measures data. Mixed models analysis of repeated measures 
data is also employed to provide more flexibility in covariance specification and a greater degree 
of robustness in the presence of missing data, provided that the data can be assumed to be missing 
at random.   
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Two Procedures Documented Here 
There are two procedures that use the program module described in this chapter. These 
procedures are identical except for the type of parameterization. The parameterization can be in 
terms of proportions or odds ratios. Each of these options is listed separately on the menus.  

Technical Details 

Two Test Statistics 
This routine has the capability of calculating power and sample size for testing time-averaged 
difference in proportions based on two different test statistics. The first test statistic is presented 
in Liu and Wu (2005) and Diggle et al. (1994). The test statistic is based on the difference in 
proportions:  
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The second type of test statistic, presented in Brown and Prescott (2006), has application to 
mixed models analysis of repeated measures data where there aren’t any random effects other 
than the subjects themselves, and is based on the difference in proportions defined on the logit 
link scale: 
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Testing the Time-Averaged Difference between Two Proportions 

Theory and Notation  
The following derivation is based on the results in Liu and Wu (2005). For a study with n1 
subjects in group 1, having success proportion p1, and n2 subjects in group 2, having success 
proportion p2 (for a total of N subjects), each measured m times, the time-averaged difference (d 
= p1 – p2) in proportions between the two groups can be estimated using the following model: 

mjNixxyxyE ijijijijij ,,1 ;,,1,)|1Pr()|( 10 LL ==+=== ββ , 
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where 

ijy  is the jth binary response from subject i, 

0β  is the model intercept, 

1β  is the treatment effect or the time-averaged difference in proportions between groups 1 
and 2 (i.e. d=1β ), 

ijx  is a binary group assignment variable, which is equal to 1 if the ith subject is in group 1 
and equal to 0 if the ith subject is in group 2. 

The proportions used to find the difference might be expressed directly as p1 and p2, or indirectly 
as p2 and an odds ratio  
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The proportion from group 1 can then be computed as 
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Accounting for the relationship between repeated measurements, the model presented above can 
be written in matrix form as 

βXy ')|( iii xE = , 

where 

( '21 imiii yyy L=y ) 1 is an ×m  vector of responses from subject i, 
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β  is the vector of model parameters.  

We can stack the data in a single vector and matrix form as follows: 
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and the model for the N equations can be compressed into one as 
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with  
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as the covariance (or variance-covariance) matrix.  

Model Estimation 
With , then estimates of the regression coefficients from the above regression model are 
given as 
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Since the data are binary, the variance term  depends on the proportions p1 and  p2 . Under the 
null hypothesis, H0, the estimate of is 
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The estimated variance of  under the null hypothesis is 1β̂
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and the estimated variance of  under the alternative hypothesis is  1β̂

[ ]11
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,11 )ˆ'(ˆˆ)|ˆvar(
11

−−== XRXσσβ β HH s , 

where [A]11 denotes the lower right-hand element of a 2 × 2 matrix, A. 

Hypothesis Test 
A two-sided test of the null hypothesis that the time-averaged difference in proportions is equal to 
zero is equivalent to the test of 0: 10 =βH  vs. 0: 11 ≠βH . Similarly, the upper and lower one-
sided tests are 0: 10 ≤βH  vs. 0: 11 >βH  and 0: 10 ≥βH  vs. 0: 11 <βH , respectively. The test 
can be carried out using the test statistic 
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Power Calculations 
Sample sizes for repeated measures studies are often calculated as if a simple trial with no 
repeated measures was planned, which results in a higher calculated sample size than would be 
found if the correlation between repeated measures were taken into consideration. With an idea of 
the correct covariance structure, and an estimate of the within-patient correlation, you can get a 
better estimate of the power and sample size necessary to achieve your objectives. If you have no 
indication of the correct covariance structure for the experiment, then the compound symmetry 
(program default) is likely to be adequate. If you have no previous estimate of the within-patient 
correlation, then Brown and Prescott (2006) suggest using a conservative prediction of the 
correlation, i.e. a higher correlation than anticipated. 

For a two-sided test where it is assumed that d > 0 (without loss of generality), 
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where Φ() is the standard normal density function, and α and β are the probabilities of type I and 
type II error, respectively. For a one-sided test, α is used in place of α/2. 

Testing Two Proportions using the Time-Averaged Difference 
defined on the Logit Link Scale (Testing Pairwise Contrasts of 
Fixed Effects in Mixed Models) 

Mixed Models Theory and Notation 
The following derivation is based on the results in Brown and Prescott (2006) and Liu and Wu 
(2005). A generalized linear mixed model incorporates both fixed and random effects. Fixed 
effects are those effects in the model whose values are assumed constant, or unchanging. Random 
effects are those effects in the model that are assumed to have arisen from a distribution, resulting 
in another source of random variation other than residual variation. For an experiment with N 
subjects, p fixed effect parameters, and q random effect parameters, the generalized linear mixed 
model can be expressed using matrix notation as 

Niiii ,,1, L=+= εμy  

where 

iy  is an  vector of responses for subject i, 1×in

iμ  is an  vector of expected means for subject i, and is linked to the model parameters by a 
link function, g: 
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where 

iπ  is the probability of success from a bernoulli distribution for individual i, 

iX  is an , full-rank design matrix of fixed effects for subject i, pni ×

β  is a  vector of fixed effects parameters, 1×p

iZ  is an  design matrix of the random effects for subject i, qni ×

iu  is a  vector of random effects for subject i which has means of zero and scaled 
covariance matrix G, 

1×q

iε  is an  vector of errors for subject i with zero mean and scaled covariance . 1×in iΣ
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We can stack the data in a single vector and matrix form as follows: 

)',,,(
)',,,(

)',,,(
)',,,(
)',,,(

21

21

1

21

21

21

N

N

N

N

N

N

εεεε
uuuu
Z00
00
00Z

Z

XXXX
μμμμ
yyyy

K

K

O

L

K

K

=
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

=
=
=

 

and the mixed model for the N equations can be compressed into one as 
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R is the correlation matrix defined on the linear scale. 

Mixed Models Estimation 
In order to fit the generalized linear mixed model, a pseudo-variable z must be introduced to 
transform y onto the linear scale. More specifically, 
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If 0ZGZ ='  (which is the case when no random effects are included in the model), then  
2/12/1 −−= RBBVz . 

Estimates of the variance components are found using maximum likelihood (ML) or 
restricted/residual maximum likelihood (REML) methods. The fixed effects are then estimated as 

yVXXVXβ zz
111 ˆ')ˆ'(ˆ −−−=  

with the variance estimated as 
11 )ˆ'()ˆvar( −−= XVXβ z  

These estimation equations are nearly identical to the TAD estimation equations presented earlier, 
except for the fact that  may contain more than two parameters, i.e. a parameter for each fixed 
effect being modeled. In the TAD model presented above, 

β

1β  represents the difference between 
two treatment proportions. In the generalized mixed model formulation presented here, 1β , 2β , 
etc. represent individual proportions defined on the logit link scale.  

Testing Fixed Effects 
Significance tests for fixed or random effects can be done using tests based on the t distribution. 
We can define tests of fixed and random effects as contrasts  

0βLC == ˆ' , 

respectively. For example, in a trial containing three treatments A, B, and C, a pairwise 
comparison of treatments A and C is given by the contrast 

CAAC ββ ˆˆˆ)1010(ˆ' −=−== ββLC , 

where the first term in β is the intercept term, and the other three terms are the treatment effects.  

For a single comparison, the Wald test statistic is given by  
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where  and  ( ) are estimated treatment effects defined on the logit link scale and  
and  are the proportions from groups j and h, respectively. 
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Since the data are binary,  depends on the proportions pj and ph. Under the null 

hypothesis, H0, the estimate of is 
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In practice, the test is often performed using software containing generalized linear models 
capability, such as SAS® PROC GLIMMIX or SAS® PROC GENMOD with a REPEATED 
statement. The test of the difference in proportions is generated with an estimation statement such 
as 

ESTIMATE 'A-C' treat 1 0 -1;  or  LSMEANS treat/ PDIFF; 

The latter statement would produce tests of all pairwise comparisons of the levels of the treatment 
variable, defined on the logit link scale. The former would only test the difference between 
groups A and C. Of course, these comparison statements must be used in conjunction with 
appropriate model and class statements. 

Power Calculations 
Sample sizes for repeated measures studies are often calculated as if a simple trial with no 
repeated measures was planned, which results in a higher calculated sample size than would be 
found if the correlation between repeated measures were taken into consideration. With an idea of 
the correct covariance structure, and an estimate of the within-patient correlation, you can get a 
better estimate of the power and sample size necessary to achieve your objectives. If you have no 
indication of the correct covariance structure for the experiment, then the compound symmetry 
(program default) is likely to be adequate. If you have no previous estimate of the within-patient 
correlation, then Brown and Prescott (2006) suggest using a conservative prediction of the 
correlation, i.e. a higher correlation than anticipated. 
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For a two-sided test where it is assumed that  (without loss of generality), 0ˆˆ >− hj ββ
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where Φ() is the standard normal density function, and α and β are the probabilities of type I and 
type II error, respectively. For a one-sided test, α is used in place of α/2. 

Covariance Patterns 
In a repeated measures design with N subjects, each measured m times, observations from a 
single subject may be correlated and a pattern for their covariance is specified. In this case, V will 
have a block-diagonal form and can be written as 
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where Vi are  covariance matrices corresponding to the ith subject.The 0's represent 
matrices of zeros giving zero covariances for observations on different subjects. This 

routine allows the specification of four different covariance matrix types: Compound Symmetry, 
AR(1), Banded(1), and Simple. 
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mm×



Inequality Tests for Two Proportions in a Repeated Measures Design  201-11 

Compound Symmetry 
A compound symmetry covariance model assumes that all covariances are equal, and all 
variances on the diagonal are equal. That is 
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where  and )var(2
ijy=σ ρ  is the correlation between observations on the same subject.  

AR(1) 
An AR(1) (autoregressive order 1) covariance model assumes that all variances on the diagonal 
are equal and that covariances t time periods apart are equal to . That is tρσ 2
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where  and )var(2
ijy=σ ρ  is the correlation between observations on the same subject.  

Banded(1) 
A Banded(1) (banded order 1) covariance model assumes that all variances on the diagonal are 
equal, covariances for observations one time period apart are equal to , and covariances for 
measurements greater than one time period apart are equal to zero. That is 
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where  and )var(2
ijy=σ ρ  is the correlation between observations on the same subject. 
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Simple 
A simple covariance model assumes that all variances on the diagonal are equal and that all 
covariances are equal to zero. That is 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and power. This chapter covers two procedures, each of which has different options. 
This section documents options that are common to both procedures. Later, unique options for 
each procedure will be documented. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for. When you choose to solve for n, the program 
searches for the lowest sample size that meets the alpha and beta criterion you have specified for 
each of the terms. The "solve for" parameter is displayed on the vertical axis of the plot. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 
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Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size – Group 2 Proportion 

P2 (Group 2 Proportion) 
Enter a value for P2, the baseline proportion, or the proportion of “successes” from group 2. You 
may enter a single value or a range of values such as 0.1 0.2 0.3 or 0.1 to 0.3 by 0.05. The items 
in the list may be separated with commas or blanks. 

Effect Size – Repeated Measurements 

M (Number of Time Points) 
Enter a value for the number of time points (repeated measurements) for which each subject will 
be observed. You may enter a single value or a range of values such as '3 5 7' or '2 to 8 by 1'. The 
items in the list may be separated with commas or blanks. 
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Effect Size – Covariance Structure 

Covariance Type 
Select the within-subject covariance structure that will be used in the mixed models analysis. The 
options are: 

• Compound Symmetry 
All variances on the diagonal of the within-subject variance-covariance matrix are equal to 

, and all covariances are equal to . 2σ 2ρσ

• AR(1) 
All variances on the diagonal of the within-subject variance-covariance matrix are equal to 

, and the covariance between observations t time periods apart is . 2σ 2σρ t

• Banded(1) 
All variances on the diagonal of the within-subject variance-covariance matrix are equal 
to , and the covariance between observations one time period apart is . Covariances 
between observations more than one time period apart are equal to zero. 

2σ 2ρσ

• Simple 

All variances are equal to , and all covariances are equal to zero. 2σ

Rho (Autocorrelation) 
Enter a value for the correlation between observations on the same subject. When no previous 
estimate of the within-patient correlation is available, you should use a conservative prediction of 
the correlation, i.e. a correlation that is higher than anticipated. You may enter a single value or a 
range of values such as 0.5 0.6 0.7 or 0.4 to 0.9 by 0.1. The items in the list may be separated with 
commas or blanks. 

Test 

Test Statistic Based On 
This option specifies the type of test statistic for which power is calculated. This routine has the 
capability of calculating power and sample size for testing time-averaged differences for binary 
data based on two different test statistics. The options are as follows:  

• Difference: P1-P2 
This option calculates the power for the test statistic based on the difference in proportions: 

)ˆˆvar(
ˆˆ

21

21

pp
ppz
−

−
= . 

• Log(OR): logit(P1)-logit(P2) 
This option calculates the power for the test statistic based on the difference defined on the 
logit link scale: 
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Alternative Hypothesis 
This option specifies the alternative hypothesis. This implicitly specifies the direction of the 
hypothesis test. The null hypothesis is always 0: 10 =βH . 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 

Possible selections are: 

• One-Sided 
This option yields a one-tailed test. Use it for testing the alternative hypotheses 0: 11 >βH  or 

0: 11 <βH . 

• Two-Sided 
This is the most common selection. It yields the two-tailed test. Use this option when you are 
testing whether the means are different, but you do not want to specify beforehand which 
mean is larger. 

Data Tab (Odds Ratios) 

Effect Size – Odds Ratio to Detect 

OR (Odds Ratio|H1) 
Enter a value for the odds ratio for that is to be detected. If you know the expected proportions for 
the two treatment groups but do not know the odds ratio, click on the “OR” button to the right to 
calculate the corresponding odds ratio. The odds ratio is used along with P2 to calculate P1 using 
the formula: P1 = (OR*P2)/(1 - P2 + OR*P2). You may enter a single value or a range of values 
such as 1.5 2 2.5 or 1.5 to 2 by 0.1. The items in the list may be separated with commas or blanks. 

Data Tab (Proportions) 

Effect Size – Proportions 

P1 (Group 1 Proportion|H1) 
Enter a value for the proportion of 'successes' in group 1 under the alternative hypothesis. If you 
know the expected odds ratio for the two treatment groups, click on the 'P' button to the right to 
calculate the corresponding proportions. You may enter a single value or a range of values such 
as 0.1 0.2 0.3 or 0.1 to 0.5 by 0.1. The items in the list may be separated with commas or blanks. 
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Example 1 – Determining Power 
A study is being planned to determine the efficacy of a prophylactic treatment for the common 
cold. The study will follow a treatment group and placebo control group through the winter to 
determine if there is an overall difference between the two treatment groups in the proportion of 
patients who get sick. Subjects will take the treatment (or placebo) once daily throughout the 
duration of the study. The study will be conducted from September to April with scheduled, 
monthly visits (beginning in October) to determine the patient's disease status (present or absent). 
Therefore, a total of seven responses will be observed for each patient.  Previous studies have 
indicated a baseline disease rate of 60% for the common cold. The researchers want to be able to 
detect a treatment to control odds ratio of 0.5 (an odds ratio of 0.5 corresponds to a treatment 
group proportion of 0.4285714). A compound-symmetry covariance pattern with autocorrelation 
of 0.5 is assumed to be adequate. The test will be conducted using a mixed models analysis with 
an alpha level of 0.05.   

What power does the study achieve over a range of possible sample sizes? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions in a Repeated 
Measures Design procedure window by clicking on Proportions, then Repeated Measures 
Designs, then Tests for Two Proportions in a Repeated Measures Design using Proportions 
or Tests for Two Proportions in a Repeated Measures Design using Odds Ratios. You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find .........................................................Power and Beta  
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1............................................................10 to 100 by 10 
N2............................................................Use R 
R..............................................................1.0 
OR1 (If using Odds Ratios) .....................0.5 
P1 (If using Proportions) .........................0.4285714 
P2............................................................0.6 
M .............................................................7 
Covariance Type .....................................Compound Symmetry 
Rho..........................................................0.5 
Test Statistic Based on ...........................Log(OR): logit(P1)-logit(P2) 
Alternative Hypothesis ............................Two-Sided 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
 Numeric Results 
 Test Statistic Based on Log(OR): logit(P1) - logit(P2). 
 Two-Sided Test. Null Hypothesis: OR = 1. Alternative Hypothesis: OR <> 1. 
 Covariance Type = Compound Symmetry 
 
  Group 1 Group 2        
  Sample Sample Time Group 1 Group 2 Odds Auto   
  Size Size Points Prop. Prop. Ratio Corr.   
 Power (N1) (N2) (M) (P1) (P2) (OR1) (Rho) Alpha Beta 
 0.17843 10 10 7 0.429 0.600 0.500 0.500 0.050 0.82157 
 0.30742 20 20 7 0.429 0.600 0.500 0.500 0.050 0.69258 
 0.42768 30 30 7 0.429 0.600 0.500 0.500 0.050 0.57232 
 0.53515 40 40 7 0.429 0.600 0.500 0.500 0.050 0.46485 
 0.62800 50 50 7 0.429 0.600 0.500 0.500 0.050 0.37200 
 0.70610 60 60 7 0.429 0.600 0.500 0.500 0.050 0.29390 
 0.77040 70 70 7 0.429 0.600 0.500 0.500 0.050 0.22960 
 0.82241 80 80 7 0.429 0.600 0.500 0.500 0.050 0.17759 
 0.86386 90 90 7 0.429 0.600 0.500 0.500 0.050 0.13614 
 0.89646 100 100 7 0.429 0.600 0.500 0.500 0.050 0.10354 
 
 References 
 Brown, H., Prescott, R., 2006. Applied Mixed Models in Medicine. 2nd ed. John Wiley & Sons Ltd. Chichester, 
 West Sussex, England. 
 Liu, H. and Wu, T., 2005. 'Sample Size Calculation and Power Analysis of Time-Averaged Difference.' Journal of 
 Modern Applied Statistical Methods, Vol. 4, No. 2, pages 434-445. 
 Diggle, P.J., Liang, K.Y., and Zeger, S.L., 1994. Analysis of Longitudinal Data. Oxford University Press. New 
 York, New York. Chapter 2. 
 
 Report Definitions 
 Power is the probability of rejecting a false null hypothesis. It should be close to one. 
 N1 and N2 are the number of subjects in groups 1 and 2, respectively. 
 M is the number of time points (repeated measurements) at which each subject is observed. 
 P1 and P2 are the proportions from groups 1 and 2, respectively. 
 OR1 is the odds ratio ((P1/(1-P1))/(P2/(1-P2))) to be detected. 
 Rho is the correlation between observations on the same subject. 
 Alpha is the probability of rejecting a true null hypothesis. It should be small. 
 Beta is the probability of accepting a false null hypothesis. It should be small. 
 
 Summary Statements 
 Group sample sizes of 10 and 10 achieve 18% power to detect an odds ratio of 0.500 in a design 
 with 7 repeated measurements having a Compound Symmetry covariance structure when the 
 proportion from group 2 is 0.600, the correlation between observations on the same subject is 
 0.500, and the alpha level is 0.050. 
 

This report gives the power for each value of the other parameters. 

Power 
This is the computed power for detecting the time-averaged difference between the two group 
means. 

Group 1 Sample Size (N1) 
The value of N1 is the number of subjects in group 1. 

Group 2 Sample Size (N2) 
The value of N2 is the number of subjects in group 2. 
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Time Points (M) 
This is the number of repeated measurements taken. 

Group 1 Prop (P1) & Group 2 Prop (P2) 
These are the proportions of successes in groups 1 and 2, respectively. 

Odds Ratio (OR1) 
This is the value of the odds ratio under the alternative hypothesis. 

Autocorr. (Rho) 
This is the correlation between observations from the same subject. 

Alpha 
Alpha is the significance level of the test. 

Beta 
Beta is the probability of failing to reject the null hypothesis when the alternative hypothesis is 
true. 

Plots Section 
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The chart shows the relationship between power and N1 when the other parameters in the design 
are held constant.  
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Example 2 – Finding the Sample Size 
Continuing with Example 1, the researchers want to determine the exact sample size necessary to 
achieve at least 80% power.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions in a Repeated 
Measures Design procedure window by clicking on Proportions, then Repeated Measures 
Designs, then Tests for Two Proportions in a Repeated Measures Design using Proportions 
or Tests for Two Proportions in a Repeated Measures Design using Odds Ratios. You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find .........................................................N1 
Power ......................................................0.8 
Alpha .......................................................0.05 
N1............................................................Ignored since this is the Find setting 
N2............................................................Use R 
R..............................................................1.0 
OR1 (If using Odds Ratios) .....................0.5 
P1 (If using Proportions) .........................0.4285714 
P2............................................................0.6 
M .............................................................7 
Covariance Type .....................................Compound Symmetry 
Rho..........................................................0.5 
Test Statistic Based on ...........................Log(OR): logit(P1)-logit(P2) 
Alternative Hypothesis ............................Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

  Group 1 Group 2        
  Sample Sample Time Group 1 Group 2 Odds Auto   
  Size Size Points Prop. Prop. Ratio Corr.   
 Power (N1) (N2) (M) (P1) (P2) (OR1) (Rho) Alpha Beta 
 0.80297 76 76 7 0.429 0.600 0.500 0.500 0.050 0.19703 
 

A group sample size of 76 is required to achieve at least 80% power. 
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Example 3 – Varying the Odds Ratio 
Continuing with Examples 1 and 2, the researchers want to evaluate the impact on power of 
varying the odds ratio from 0.4 to 0.8. In the output to follow, we only display the plots. You may 
want to display the numeric reports as well, but we do not here in order to save space.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions in a Repeated 
Measures Design [Odds Ratio] procedure window by clicking on Proportions, then Repeated 
Measures Designs, then Tests for Two Proportions in a Repeated Measures Design using 
Odds Ratios. You may then follow along here by making the appropriate entries as listed below 
or load the completed template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find .........................................................Power and Beta  
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 ...........................................................10 to 100 by 10 
N2 ...........................................................Use R 
R .............................................................1.0 
OR1.........................................................0.4 to 0.8 by 0.1 
P2 ...........................................................0.6 
M .............................................................7 
Covariance Type .....................................Compound Symmetry 
Rho..........................................................0.5 
Test Statistic Based on ...........................Log(OR): logit(P1)-logit(P2) 
Alternative Hypothesis ............................Two-Sided 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Plots Section 
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This chart shows how the power depends on odds ratio, OR1, as well as the group sample size 
N1. 

Example 4 – Varying the Proportions 
Continuing with Examples 1 and 2, the researchers want to evaluate the impact on power of 
varying the group 1 proportion from 0.2 to 0.5. In the output to follow, we only display the plots. 
You may want to display the numeric reports as well, but we do not here in order to save space.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions in a Repeated 
Measures Design [Proportions] procedure window by clicking on Proportions, then Repeated 
Measures Designs, then Tests for Two Proportions in a Repeated Measures Design using 
Proportions. You may then follow along here by making the appropriate entries as listed below 
or load the completed template Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find .........................................................Beta & Power  
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 ...........................................................10 to 100 by 10 
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Data Tab (continued) 
N2 ...........................................................Use R 
R .............................................................1.0 
P1............................................................0.2 to 0.5 by 0.1 
P2 ...........................................................0.6 
M .............................................................7 
Covariance Type .....................................Compound Symmetry 
Rho..........................................................0.5 
Test Statistic Based on ...........................Log(OR): logit(P1)-logit(P2) 
Alternative Hypothesis ............................Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Plots Section 
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This chart shows how the power depends on the proportion, P1, as well as the group sample size 
N1. 
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Example 5 – Impact of the Number of Repeated 
Measurements 
Continuing with Example 2, the researchers want to study the impact on the sample size if they 
changing the number of measurements made on each individual. Their experimental protocol 
calls for seven measurements. They want to see the impact of taking twice that many 
measurements. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions in a Repeated 
Measures Design procedure window by clicking on Proportions, then Repeated Measures 
Designs, then Tests for Two Proportions in a Repeated Measures Design using Proportions 
or Tests for Two Proportions in a Repeated Measures Design using Odds Ratios. You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example5 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find .........................................................N1  
Power ......................................................0.8 
Alpha .......................................................0.05 
N1............................................................Ignored since this is the Find setting 
N2............................................................Use R 
R..............................................................1.0 
OR1 (If using Odds Ratios) .....................0.5 
P1 (If using Proportions) .........................0.4285714 
P2 ...........................................................0.6 
M .............................................................7 14 
Covariance Type .....................................Compound Symmetry 
Rho..........................................................0.5 
Test Statistic Based on ...........................Log(OR): logit(P1)-logit(P2) 
Alternative Hypothesis ............................Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
  Group 1 Group 2        
  Sample Sample Time Group 1 Group 2 Odds Auto   
  Size Size Points Prop. Prop. Ratio Corr.   
 Power (N1) (N2) (M) (P1) (P2) (OR1) (Rho) Alpha Beta 
 0.80297 76 76 7 0.429 0.600 0.500 0.500 0.050 0.19703 
 0.80161 71 71 14 0.429 0.600 0.500 0.500 0.050 0.19839 
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Doubling the number of repeated measurements per individual decreases the group sample size 
by 5. This reduction in sample size may not justify the additional seven trips to the clinic for each 
subject. 

Example 6 – Validation using Diggle et al. (1994) 
Diggle et al. (1994) pages 31 and 32 present an example of calculating the sample size for a TAD 
study. They calculate the group sample sizes for the cases where the difference in proportions 
(P1-P2) ranges from 0.1 to 0.3, ρ ranges from 0.2 to 0.8, alpha = 0.05, p2 = 0.5, M = 3, and power 
= 0.8. Note that Diggle et al (1994) uses a one-sided test and the test statistic based on the 
difference in proportions.   
To calculate the sample sizes using the odds ratio specification, we must first convert the 
differences to odds ratios using the formula: 
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Differences of 0.1, 0.2, and 0.3 with P2 = 0.5 correspond to odds ratios of 1.5, 2.333, and 4.0, 
respectively. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions in a Repeated 
Measures Design procedure window by clicking on Proportions, then Repeated Measures 
Designs, then Tests for Two Proportions in a Repeated Measures Design using Proportions 
or Tests for Two Proportions in a Repeated Measures Design using Odds Ratios. You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example6 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find .........................................................N1  
Power ......................................................0.8 
Alpha .......................................................0.05 
N1 ...........................................................Ignored since this is the Find setting 
N2 ...........................................................Use R 
R .............................................................1.0 
OR1 (If using Odds Ratios) .....................1.5 2.333 4 
P1 (If using Proportions) .........................0.6 0.7 0.8 
P2 ...........................................................0.5 
M .............................................................3 
Covariance Type .....................................Compound Symmetry 
Rho..........................................................0.2 0.5 0.8 
Test Statistic Based on ...........................Difference: P1-P2 
Alternative Hypothesis ............................One-Sided 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
  Group 1 Group 2        
  Sample Sample Time Group 1 Group 2 Odds Auto   
  Size Size Points Prop. Prop. Ratio Corr.   
 Power (N1) (N2) (M) (P1) (P2) (OR1) (Rho) Alpha Beta 
 0.80164 143 143 3 0.600 0.500 1.500 0.200 0.050 0.19836 
 0.80116 204 204 3 0.600 0.500 1.500 0.500 0.050 0.19884 
 0.80089 265 265 3 0.600 0.500 1.500 0.800 0.050 0.19911 
 0.80870 35 35 3 0.700 0.500 2.333 0.200 0.050 0.19130 
 0.80163 49 49 3 0.700 0.500 2.333 0.500 0.050 0.19837 
 0.80329 64 64 3 0.700 0.500 2.333 0.800 0.050 0.19671 
 0.82213 15 15 3 0.800 0.500 4.000 0.200 0.050 0.17787 
 0.81509 21 21 3 0.800 0.500 4.000 0.500 0.050 0.18491 
 0.81120 27 27 3 0.800 0.500 4.000 0.800 0.050 0.18880 
 

The sample sizes calculated by PASS match the results of Diggle et al. (1994) exactly. 

Example 7 – Validation using Brown and Prescott (2006) 
Brown and Prescott (2006) page 270 presents an example of calculating the sample size for a 
future study. They calculate the group sample size to be 85 for a future study involving four post-
treatment visits to detect a doubling of the odds ratio (i.e., OR1 = 2) at the 5% significance level 
with 80% power. They assume an autocorrelation of 0.5, and an expected rate of positives 
((P1+P2)/2) of 0.4.  
We can calculate the corresponding values of P1, P2, and OR for use in PASS by solving the 
following system of equations for P1 and P2: 
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The solution to these equations occurs when P1 = 0.482255312124 and P2 = 0.317744687876. 
The decimal places are kept to make the solution exact. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions in a Repeated 
Measures Design procedure window by clicking on Proportions, then Repeated Measures 
Designs, then Tests for Two Proportions in a Repeated Measures Design using Proportions 
or Tests for Two Proportions in a Repeated Measures Design using Odds Ratios. You may 
then follow along here by making the appropriate entries as listed below or load the completed 
template Example7 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find .........................................................N1  
Power ......................................................0.8 
Alpha .......................................................0.05 
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Data Tab (continued) 
N1 ...........................................................Ignored since this is the Find setting 
N2 ...........................................................Use R 
R .............................................................1.0 
OR1 (If using Odds Ratios) .....................2.0 
P1 (If using Proportions) .........................0.482255312124 
P2 ...........................................................0.317744687876 
M .............................................................4 
Covariance Type .....................................Compound Symmetry 
Rho..........................................................0.5 
Test Statistic Based on ...........................Log(OR): logit(P1)-logit(P2) 
Alternative Hypothesis ............................Two-Sided 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
  Group 1 Group 2        
  Sample Sample Time Group 1 Group 2 Odds Auto   
  Size Size Points Prop. Prop. Ratio Corr.   
 Power (N1) (N2) (M) (P1) (P2) (OR1) (Rho) Alpha Beta 
 0.80080 86 86 4 0.482 0.318 2.000 0.500 0.050 0.19920 
 

The sample size of 86 calculated by PASS matches the results of Brown and Prescott (2006). The 
slight difference is due to rounding. Calculation of the sample size presented by Brown and 
Prescott (2006) on page 270 results in a value of 85.025337, which they round down to 85. Note 
that the numerical formula has a typographical error: the denominator term should be (4 × .6932), 
not (4 × .693)2 (see the formula on page 269 of Brown and Prescott (2006)). 
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Chapter 205 

Inequality Tests 
for Two 
Proportions 
(Offset Null 
Hypothesis) 
Introduction 
This module computes power and sample size for hypothesis tests of the difference, ratio, or odds 
ratio of two independent proportions. The word 'offset' in the chapter title indicates that the 
difference being tested in the null hypothesis is not zero (or that the ratio is not one). The non-
offset case is available in another procedure. This procedure compares the power achieved by 
each of several test statistics.  

The power calculations assume that independent, random samples are drawn from two 
populations.  

Four Procedures Documented Here 
There are four procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, ratios of proportions, and odds ratios. Each 
of these options is listed separately on the menus.  

Technical Details  
Suppose you have two populations from which dichotomous (binary) responses will be recorded. 
The probability (or risk) of obtaining the event of interest in population 1 (the treatment group) is 
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p1  and in population 2 (the control group) is . The corresponding failure proportions are given 
by  and q p .  

p2

q p1 11= − 2 21= −

An assumption is made that the responses from each group follow a binomial distribution. This 
means that the event probability, , is the same for all subjects within the group and that the 
response from one subject is independent of that of any other subject. 

pi

Random samples of m and n individuals are obtained from these two populations. The data from 
these samples can be displayed in a 2-by-2 contingency table as follows 

Group Success Failure Total 
Treatment a c m 
Control b d n 
Total s f N 
 
The following alternative notation is sometimes used. 
 

Group Success Failure Total 
Treatment    x11 x12 n1

Control    x21 x22 n2

Total   N m1 m2

The binomial proportions,  and , are estimated from these data using the formulae p1 p2

$p a
m

x
n1
11

1

= =  and $p b
n

x
n2

21

2

= =  

Comparing Two Proportions  
When analyzing studies such as this, you usually want to compare the two binomial 
probabilities, and . The most direct method of comparing these quantities is to calculate their 
difference or their ratio. If the binomial probability is expressed in terms of odds rather than 
probability, another measure is the odds ratio. Mathematically, these comparison parameters are 

p1 p2

 

Parameter Computation 
Difference  δ = −p p1 2  

Risk Ratio φ = p p1 2/  

Odds Ratio 
( )
( )

ψ =
−
−

=
p p
p p

p q
p q

1 1

2 2

1 2

2 1

1
1

/
/  

 

The choice of which of these measures is used might seem arbitrary, but it is not. Not only will 
the interpretation be different, but, for small sample sizes, the powers of tests based on different 
parameters will be different. The non-null case is commonly used in equivalence and non-
inferiority testing. 
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Difference 
The (risk) difference, δ = −p p1 2 ,is perhaps the most direct method of comparison between the 
two event probabilities. This parameter is easy to interpret and communicate. It gives the absolute 
impact of the treatment. However, there are subtle difficulties that can arise with its 
interpretation.  

One interpretation difficulty occurs when the event of interest is rare. If a difference of 0.001 
were reported for an event with a baseline probability of 0.40, we would probably dismiss this as 
being of little importance. That is, there usually little interest in a treatment that decreases the 
probability from 0.400 to 0.399. However, if the baseline probability of a disease was 0.002 and 
0.001 was the decrease in the disease probability, this would represent a reduction of 50%. Thus 
we see that interpretation depends on the baseline probability of the event. 

A similar situation occurs when the amount of possible difference is considered. Consider two 
events, one with a baseline event rate of 0.40 and the other with a rate of 0.02. What is the 
maximum decrease that can occur? Obviously, the first event rate can be decreased by an absolute 
amount of 0.40, while the second can only be decreased by a maximum of 0.02. 

So, although creating the simple difference is a useful method of comparison, care must be taken 
that it is appropriate for the situation.  

Ratio 
The (risk) ratio, φ = p p1 / 2 , gives the relative change in the disease risk due to the application of 
the treatment. This parameter is also direct and easy to interpret. To compare this with the 
difference, consider a treatment that reduces the risk of disease from 0.1437 to 0.0793. One 
should consider which single number is more enlightening, the fact that the absolute risk of 
disease has been decreased by 0.0644, or the fact that risk of disease in the treatment group is 
only 55.18% of that in the control group. In many cases, the percentage (risk ratio) communicates 
the impact of the treatment better than the absolute change. 

Perhaps the biggest drawback to this parameter is that it cannot be calculated in one of the most 
common experimental designs, the case-control study. Another drawback is that the odds ratio 
occurs directly in the likelihood equations and as a parameter in logistic regression.   

Odds Ratio 
Chances are usually communicated as long-term proportions or probabilities. In betting, chances 
are often given as odds. For example, the odds of a horse winning a race might be set at 10-to-1 
or 3-to-2. Odds can easily be translated into probability. An odds of 3-to-2 means that the event is 
expected to occur three out of five times. That is, an odds of 3-to-2 (1.5) translates to a 
probability of winning of 0.60. 

The odds of an event are calculated by dividing the event risk by the non-event risk. Thus, in our 
case of two populations, the odds are 

o p
p1

1

11
=

−
 and o p

p2
2

21
=

−
 

For example, if  is 0.60, the odds are 0.60/0.40 = 1.5. Rather than represent the odds as a 
decimal amount, it is re-scaled into whole numbers. Instead of saying the odds are 1.5-to-1, we 
say they are 3-to-2. 

p1
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Another way to compare proportions is to compute the ratio of their odds. The odds ratio of two 
events is 

( )
( )

ψ = =
−
−

=
o
o

p p
p p

p q
p q

1

2

1 1

2 2

1 2

2 1

1
1

/
/

 

Although the odds ratio is more complicated to interpret than the risk ratio, it is often the 
parameter of choice. One reason for this is the fact that the odds ratio can be accurately estimated 
from case-control studies, while the risk ratio cannot. Also, the odds ratio is the basis of logistic 
regression (used to study the influence of risk factors). Furthermore, the odds ratio is the natural 
parameter in the conditional likelihood of the two-group, binomial-response design. Finally, when 
the baseline event rates are rare, the odds ratio provides a close approximation to the risk ratio 
since, in this case, 1 , so that 11− ≈ −p 2p

( )
( )

ψ φ= =
−
−

≈ =
o
o

p p
p p

p
p

1

2

1 1

2 2

1

2

1
1

/
/

 

Hypothesis Tests 
Although several statistical tests are available for testing the inequality of two proportions, only a 
few can be generalized to the non-null case. No single test is the champion in every situation, so 
one should compare the powers of the various tests to determine which to use. 

Difference  
The (risk) difference, δ = −p p1 2 , is perhaps the most direct method for comparing two 
proportions. Three sets of statistical hypotheses can be formulated: 

1. H p p0 1 2 0: − = δ  versus H p p1 1 2 0: − ≠ δ ; this is often called the two-tailed test. 
2. H p p0 1 2 0: − ≤ δ  versus H p p1 1 2 0: − > δ ; this is often called the upper-tailed test. 
3. H p p0 1 2 0: − ≥ δ  versus H p p1 1 2 0: − < δ ; this is often called the lower-tailed test. 

Ratio  
The (risk) ratio, φ = p p1 / 2 , is often preferred as a comparison parameter because it expresses 
the difference as a percentage rather than an amount. Three sets of statistical hypotheses can be 
formulated: 

1. H p p0 1 2 0: / = φ  versus H p p1 1 2 0: / ≠ φ ; this is often called the two-tailed test. 
2. H p p0 1 2 0: / ≤ φ  versus H p p1 1 2 0: / > φ ; this is often called the upper-tailed test. 
3. H p p0 1 2 0: / ≥ φ  versus H p p1 1 2 0: / < φ ; this is often called the lower-tailed test. 
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Odds Ratio  
The odds ratio, ( )[ ] ( )[ ]ψ = − −p p p p1 1 21 1/ / / 2

0

, is sometimes used as the comparison because 
of its statistical properties and because some convenient experimental designs only allow it to be 
estimated. Three sets of statistical hypotheses can be formulated: 

1. H0:ψ ψ=  versus H1: 0ψ ψ≠ ; this is often called the two-tailed test. 
2. H0: 0ψ ψ≤  versus H1: 0ψ ψ> ; this is often called the upper-tailed test. 
3. H0: 0ψ ψ≥  versus H1: 0ψ ψ< ; this is often called the lower-tailed test. 

Power Calculation 
The power for a test statistic that is based on the normal approximation can be computed exactly 
using two binomial distributions. The following steps are taken to compute the power of such a 
test.  

1.  Find the critical value (or values in the case of a two-sided test) using the standard normal 
distribution. The critical value, , is that value of z that leaves exactly the target value 
of alpha in the appropriate tail of the normal distribution. For example, for an upper-tailed 
test with a target alpha of 0.05, the critical value is 1.645.  

zcritical

2.  Compute the value of the test statistic, , for every combination of  and . Note that 
 ranges from 0 to n , and  ranges from 0 to . A small value (around 0.0001) can 

be added to the zero cell counts to avoid numerical problems that occur when the cell value 
is zero. 

zt x11 x21

x11 1 x21 n2

3. If z z , the combination is in the rejection region. Call all combinations of  
and  that lead to a rejection the set A. 

t critical>
x21

x11

4. Compute the power for given values of  and  as p1 p2

1 1

11
1 1

2

21
2 2

11 1 11 21 2 21− =
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟− −∑β

n
x

p q
n
x

p qx n x x n x

A

 

5. Compute the actual value of alpha achieved by the design by substituting  for  to 
obtain  

p2 p1

α* =
⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟ + + − −∑

n
x

n
x

p qx x n n x x

A

1

11

2

21
2 2

11 21 1 2 11 21  

Asymptotic Approximations 
When the values of  and  are large (say over 200), these formulas often take a long time to 
evaluate. In this case, a large sample approximation is used. The large sample approximation is 
made by replacing the values of  and  in the z values with the corresponding values of  
and  under the alternative hypothesis and then computing the results based on the normal 
distribution. Note that in large samples, the Farrington and Manning statistic is substituted for the 
Gart and Nam statistic. Also, for large samples, the results for the odds ratio have not (to our 
knowledge) been published. In this case, we substitute the calculations based on the ratio. 

n1 n2

$p1 $p2 p1

p2
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Test Statistics 
Several test statistics have been proposed for testing whether the difference, ratio, or odds ratio 
are different from a specified value. The main difference among the several test statistics is in the 
formula used to compute the standard error used in the denominator. These tests are based on the 
following z-test  

z p p c
t =

− − −$ $

$
1 2 0δ

σ
 

The constant, c, represents a continuity correction that is applied in some cases. When the 
continuity correction is not used, c is zero. In power calculations, the values of  and  are not 
known. The corresponding values of  and  under the alternative hypothesis are reasonable 
substitutes. 

$p1 $p2

p1 p2

Following is a list of the test statistics available in PASS. The availability of several test statistics 
begs the question of which test statistic you should use. The answer is simple: you should use the 
test statistic that you will use to analyze your data. You may choose a method because it is a 
standard in your industry, because it seems to have better statistical properties, or because your 
statistical package calculates it. Whatever your reasons for selecting a certain test statistic, you 
should use the same test statistic during power or sample calculations. 

Z Test (Pooled) 
This test was first proposed by Karl Pearson in 1900. Although this test is usually expressed 
directly as a chi-square statistic, it is expressed here as a z statistic so that it can be more easily 
used for one-sided hypothesis testing. The proportions are pooled (averaged) in computing the 
standard error. The formula for the test statistic is  

z p p
t =

− −$ $

$
1 2

1

0δ
σ

 

where  

( )$σ1
1 2

1 1 1
= − +

⎛
⎝
⎜

⎞
⎠
⎟p p

n n
 

p n p n p
n n

=
+
+

1 1 2 2

1 2

$ $

 

Z Test (Unpooled) 
This test statistic does not pool the two proportions in computing the standard error.  

z p p
t =

− −$ $

$
1 2

2

0δ
σ

 

where  

( ) ( )
$

$ $ $ $
σ2

1 1

1

2 2

2

1 1
=

−
+

−p p
n

p p
n  
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Z Test with Continuity Correction (Pooled)  
This test is the same as Z Test (Pooled), except that a continuity correction is used. Recall that in 
the null case, the continuity correction makes the results closer to those of Fisher’s Exact test. 

z
p p F

n n
t =

− − + +
⎛
⎝
⎜

⎞
⎠
⎟$ $

$

1 2 0
1 2

1

2
1 1δ

σ
 

( )$σ1
1 2

1 1 1
= − +

⎛
⎝
⎜

⎞
⎠
⎟p p

n n
 

p n p n p
n n

=
+
+

1 1 2 2

1 2

$ $
 

where F is -1 for lower-tailed, 1 for upper-tailed, and both -1 and 1 for two-sided hypotheses. 

Z Test with Continuity Correction (Unpooled)  
This test is the same as the Z Test (Unpooled), except that a continuity correction is used. Recall 
that in the null case, the continuity correction makes the results closer to those of Fisher’s Exact 
test. 

z
p p F

n n
t =

− − − +
⎛
⎝
⎜

⎞
⎠
⎟$ $

$

1 2 0
1 2

2

2
1 1δ

σ
 

( ) ( )
$

$ $ $ $
σ2

1 1

1

2 2

2

1 1
=

−
+

−p p
n

p p
n

 

where F is -1 for lower-tailed, 1 for upper-tailed, and both -1 and 1 for two-sided hypotheses. 

T-Test of Difference 
Based on a detailed, comparative study of the behavior of several tests, D’Agostino (1988) and 
Upton (1982) proposed using the usual two-sample t-test for testing whether the two proportions 
are equal. One substitutes a ‘1’ for a success and a ‘0’ for a failure in the usual, two-sample t-test 
formula.  

Miettinen and Nurminen’s Likelihood Score Test of the Difference 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the difference is equal 
to a specified, non-zero, value,δ0 . The regular MLE’s,  and , are used in the numerator of 
the score statistic while MLE’s 

$p1 $p2
~p1  and ~p2 , constrained so that ~ ~p p1 2 0− = δ , are used in the 

denominator. A correction factor of N/(N-1) is applied to make the variance estimate less biased. 
The significance level of the test statistic is based on the asymptotic normality of the score 
statistic.  



205-8  Inequality Tests for Two Proportions (Offset Null Hypothesis) 

The formula for computing this test statistic is 

z p p
MND

MND

=
− −$ $

$
1 2 0δ
σ

 

where 

$
~ ~ ~ ~

σ MND
p q
n

p q
n

N
N

= +
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

1 1

1

2 2

2 1
 

~ ~p p1 2= + 0δ  

( )~ cosp B A L
L2
2

3

2
3

= −
 

A C
B

= + ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣⎢
⎤

⎦⎥
−1

3
1

3π cos
 

( )B C L
L

L
L

= −sign 2
2

3

1

39 3  

C L
L

L L
L

L
L

= − +2
3

3
3

1 2

3
2

0

327 6 2  

( )L x0 21 0 01= −δ δ  

[ ]L N N x M1 2 0 21 02= − − + 1δ δ  

( )L N N N M2 2 0= + − − 1δ  
L N3 =  

Miettinen and Nurminen’s Likelihood Score Test of the Ratio 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the ratio is equal to a 
specified value,φ0 . The regular MLE’s,  and , are used in the numerator of the score 
statistic while MLE’s 

$p1 $p2
~p1  and ~p2 , constrained so that ~ / ~p p1 2 0= φ , are used in the denominator. 

A correction factor of N/(N-1) is applied to make the variance estimate less biased. The 
significance level of the test statistic is based on the asymptotic normality of the score statistic.  

The formula for computing the test statistic is 

z p p

p q
n

p q
n

N
N

MNR =
−

+
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

$ / $
~ ~ ~ ~

1 2 0

1 1

1
0
2 2 2

2 1

φ

φ
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where 
~ ~p p1 2= 0φ  

~p B B AC
A2

2 4
2

=
− − −

 
A N= φ0  

[ ]B N x N x= − + + +1 0 11 2 21 0φ φ  
C M= 1  

Miettinen and Nurminen’s Likelihood Score Test of the Odds Ratio 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the odds ratio is equal 
to a specified value,ψ 0

$p2

. Because the approach they used with the difference and ratio does not 
easily extend to the odds ratio, they used a score statistic approach for the odds ratio. The regular 
MLE’s are  and . The constrained MLE’s are $p1

~p1  and ~p2 . These estimates are constrained 
so that ~ψ ψ= 0 . A correction factor of N/(N-1) is applied to make the variance estimate less 
biased. The significance level of the test statistic is based on the asymptotic normality of the score 
statistic.  

The formula for computing the test statistic is 

( ) ( )
z

p p
p q

p p
p q

N p q N p q
N

N

MNO =

−
−

−

+
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

$ ~
~ ~

$ ~
~ ~

~ ~ ~ ~

1 1

1 1

2 2

2 2

2 1 1 2 2 2

1 1
1

 

where 

( )
~ ~

~p p
p1

2 0

2 01 1
=

+ −
ψ
ψ ,

~p B B AC
A2

2 4
2

=
− + −

, 

( )A N= −2 0 1ψ , ( )B N N M= + − −1 0 2 1 0 1ψ ψ , C M= − 1  

Farrington and Manning’s Likelihood Score Test of the Difference 
Farrington and Manning (1990) proposed a test statistic for testing whether the difference is equal 
to a specified value,δ0 . The regular MLE’s,  and , are used in the numerator of the score 
statistic while MLE’s 

$p1 $p2
~p1  and ~p2 , constrained so that ~ ~p p1 2 0− = δ , are used in the denominator. 

The significance level of the test statistic is based on the asymptotic normality of the score 
statistic.  
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The formula for computing the test statistic is 

z p p

p q
n

p q
n

FMD =
− −

+
⎛
⎝
⎜

⎞
⎠
⎟

$ $

~ ~ ~ ~
1 2 0

1 1

1

2 2

2

δ
 

where the estimates,  and ~p1
~p2 , are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 

Farrington and Manning’s Likelihood Score Test of the Ratio 
Farrington and Manning (1990) proposed a test statistic for testing whether the ratio is equal to a 
specified value,φ0 . The regular MLE’s,  and , are used in the numerator of the score 
statistic while MLE’s 

$p1 $p2
~p1  and ~p2 , constrained so that ~ / ~p p1 2 0= φ , are used in the denominator. 

A correction factor of N/(N-1) is applied to increase the variance estimate. The significance level 
of the test statistic is based on the asymptotic normality of the score statistic.  

The formula for computing the test statistic is 

z p p

p q
n

p q
n

FMR =
−

+
⎛
⎝
⎜

⎞
⎠
⎟

$ / $
~ ~ ~ ~

1 2 0

1 1

1
0
2 2 2

2

φ

φ

 

where the estimates, ~p1  and ~p2 , are computed as in the corresponding test of Miettinen and 
Nurminen (1985) given above. 

Farrington and Manning’s Likelihood Score Test of the Odds Ratio 
Farrington and Manning (1990) indicate that the Miettinen and Nurminen statistic may be 
modified by removing the factor N/(N-1). 

The formula for computing this test statistic is 

( ) ( )
z

p p
p q

p p
p q

N p q N p q

FMO =

−
−

−

+
⎛
⎝
⎜

⎞
⎠
⎟
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~ ~

$ ~
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2 2

2 1 1 2 2 2

1 1
 

where the estimates,  and ~p1
~p2 , are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 

Gart and Nam’s Likelihood Score Test of the Difference 
Gart and Nam (1990), page 638, proposed a modification to the Farrington and Manning (1988) 
difference test that corrected for skewness. Let ( )zFMD δ  stand for the Farrington and Manning 
difference test statistic described above. The skewness corrected test statistic, , is the 
appropriate solution to the quadratic equation 

zGND

( ) ( ) ( )( )− + − + + =~ ~γ δz z zGND GND FMD
2 1 0γ  
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where 

( ) ( ) ( )~
~ ~ ~ ~ ~ ~ ~ ~ ~/

γ
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⎜

⎞
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Gart and Nam’s Likelihood Score Test of the Ratio 
Gart and Nam (1988), page 329, proposed a modification to the Farrington and Manning (1988) 
ratio test that corrected for skewness. Let ( )zFMR φ  stand for the Farrington and Manning ratio 
test statistic described above. The skewness corrected test statistic, , is the appropriate 
solution to the quadratic equation 

zGNR

( ) ( ) ( )( )− + − + + =~ ~ϕ φz z zGNR GNR FMR
2 1 0ϕ  

where 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and power. This chapter covers four procedures, each of which has different options. 
This section documents options that are common to all four procedures. Later, unique options for 
each procedure will be documented.   

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for using the other parameters. The parameters 
that may be selected are P1.1, Alpha, Power and Beta, N1, and N2. Under most situations, you 
will select either Power and Beta or N1. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level. 

Select Power and Beta when you want to calculate the power of an experiment.  
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal 
proportions when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. For this procedure, a type-I error occurs when you reject 
the null hypothesis of equal proportions when in fact they are equal. 

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. You may enter a range of 
values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10.  

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio, and [Y] is the first integer greater than or equal to Y. 
For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2= [R(N1)], where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 
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Effect Size – Control (Group 2) 

P2 (Control Group Proportion) 
Specify the value of P2, the control, baseline, or standard group’s proportion. The null hypothesis 
is that the two proportions differ by a specified amount. Since P2 is a proportion, these values 
must be between zero and one. 

You may enter a range of values such as 0.1,0.2,0.3 or 0.1 to 0.9 by 0.1. 

Test 

Test Type 
Specify which test statistic is used in searching and reporting. 

Note that C.C. is an abbreviation for Continuity Correction. This refers to the adding or 
subtracting 1/(2n) to (or from) the numerator of the z-value to bring the normal approximation 
closer to the binomial distribution. 

Data Tab (Proportions) 
This section documents options that are used when the parameterization is in terms of the values 
of the two proportions, P1 and P2. P1.0 is the value of the P1 assumed by the null hypothesis and 
P1.1 is the value of P1 at which the power is calculated. 

Effect Size – Treatment (Group 1) 

P1.0 (Group 1 Proportion|H0) 
This option specifies the value of the group 1 proportion given the null hypothesis. The power 
calculations assume that P1.0 is the value of the P1 under the null hypothesis. In this non-null 
case, the value of P1.0 is not equal to P2 as it is in the null case. 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

Proportions must be between zero and one. They cannot take on the values zero or one.  

P1.1 (Group 1 Proportion|H1) 
This is the value of P1 under the alternative hypothesis. It is written P1.1. The power calculations 
assume that this is the actual value of this proportion. 

You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1.  

Note that values must be between zero and one.  

Test 

H1 (Alternative Hypothesis) 
This option specifies whether a one-sided or two-sided hypothesis is analyzed.  

One-Sided (H1: P1<P2) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: P1<P2. 

One-Sided (H1:D1>D0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: P1>P2. 
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Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: 
P1<>P2+D0. Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 

Data Tab (Differences) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value 
of P1 at which the power is calculated. Once P2, D0, and D1 are given, the values of P1.1 and 
P1.0 can be calculated. 

Effect Size – Differences 

D0 (Difference|H0 = P1.0 – P2) 
This option specifies the difference between the two proportions given in the null hypothesis, H0. 
This difference is used with P2 to calculate the value of P1.0 using the formula: P1.0 = P2 + D0. 
Note that P1.0 here means the value of P1 under H0. 

Differences must be between -1 and 1. They cannot take on the values -1, 0, or 1. 

The power calculations use P1.0 as the value of the proportion in group 1 (the experimental or 
treatment group) under the null hypothesis. In this non-null case, the value of P1.0 is not equal to 
P2 as it is in the null case. 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

D1 (Difference|H0 = P1.1 – P2) 
This option specifies the difference between the P1.1 and P2. This difference is used with P2 to 
calculate the value of P1.1 using the formula: P1.1 = D1 + P2. Note that P1.1 here means the 
value of P1 under H1. Differences must be between -1 and 1. They cannot take on the values -1 
or 1. 

The power calculations assume that P1.1 is the actual value of the proportion in group 1 
(experimental or treatment group). 

This option is only used if you are specifying Differences. 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

Test 

H1 (Alternative Hypothesis) 
This option specifies whether a one-sided or two-sided hypothesis is analyzed.  

One-Sided (H1:D1<D0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: D1<D0. 

One-Sided (H1:D1>D0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: D1>D0. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: 
D1<>D0. Here ‘<>’ means unequal. 
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Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 

Data Tab (Ratios) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of P1 at 
which the power is calculated. Once P2, R0, and R1 are given, the values of P1.0 and P1.1 can be 
calculated. 

Effect Size – Ratios 

R0 (Ratio|H0 = P1.0 / P2) 
This option specifies the ratio between the group 1 proportion under the null hypothesis P1.0 and 
P2. This ratio is used with P2 to calculate the value of P1.0 using the formula: P1.0 = R0 x P2. 
The power calculations assume that P1.0 is the value of the P1 under the null hypothesis. In this 
non-null case, the value of P1.0 is not equal to P2 as it is in the null case. 

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25.  

Ratios must greater than zero. 

R1 (Ratio|H1 = P1.1 / P2) 
This option specifies the ratio of P1.1 and P2, where P1.1 is the proportion in group 1 under the 
alternative hypothesis. This ratio is used with P2 to calculate the value of P1.1 using the formula: 
P1.1 = R1 x P2.The power calculations assume that P1.1 is the actual value of the proportion in 
group 1 (experimental or treatment group). 

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25.  

Ratios must greater than zero. They cannot take on the value of one. 

Test 

H1 (Alternative Hypothesis) 
This option specifies whether a one-sided or two-sided hypothesis is analyzed.  

One-Sided (H1:R1<R0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: R1<R0. 

One-Sided (H1:R1>R0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: R1>R0. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: 
R1<>R0. Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 
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Data Tab (Odds Ratios) 
This section documents options that are used when the parameterization is in terms of the odds 
ratios, O1.1 / O2 and O1.0 / O2. Note that the odds are defined as O2 = P2 / (1 – P2), O1.0 = P1.0 
/ (1 – P1.0), etc. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of 
P1 at which the power is calculated. Once P2, OR0, and OR1 are given, the values of P1.1 and 
P1.0 can be calculated.  

Effect Size – Odds Ratios 

OR0 (Odds Ratio|H0 = O1.0 / O2) 
This option specifies the odds ratio between the group 1 proportion under the null hypothesis and 
the proportion in group 2. This value is used with P2 to calculate the value of P1.0. The power 
calculations assume that P1.0 is the value of the P1 under the null hypothesis. In this non-null 
case, the value of P1.0 is not equal to P2 as it is in the null case. 

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25.  

Odds ratios must greater than zero. 

OR1 (Odds Ratio|H1 = O1.1 / O2) 
This option specifies the odds ratio of the two proportions P1.1 and P2. This odds ratio is used 
with P2 to calculate the value of P1.1. The power calculations assume that P1.1 is the actual value 
of the proportion in group 1, which is the experimental, or treatment, group. 

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25. Odds ratios must 
greater than zero.  

Test 

H1 (Alternative Hypothesis) 
This option specifies whether a one-sided or two-sided hypothesis is analyzed.  

One-Sided (H1: OR1<OR0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: OR1<OR0. 

One-Sided (H1: OR1>OR0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: OR1>OR0. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: 
OR1<>OR0. Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 
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Options Tab 
The Options tab contains various limits and options. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. A value of at least 500 is recommended. 

Zero Counts 

Zero Count Adjustment Method 
Zero cell counts often cause calculation problems. To compensate for this, a small value (called 
the Zero Count Adjustment Value) can be added either to all cells or to all cells with zero counts. 
This option specifies whether you want to use the adjustment and which type of adjustment you 
want to use. We recommend that you use the option ‘Add to zero cells only’. 

Zero cell values often do not occur in practice. However, since power calculations are based on 
total enumeration, they will occur in power and sample size estimation. 

Adding a small value is controversial, but can be necessary for computational considerations. 
Statisticians have recommended adding various fractions to zero counts.. We have found that 
adding 0.0001 seems to work well. 

Zero Count Adjustment Value 
Zero cell counts cause many calculation problems when computing power or sample size. To 
compensate for this, a small value may be added either to all cells or to all zero cells. This value 
indicates the amount that is added. We have found that 0.0001 works well. 

Be warned that the value of the ratio and the odds ratio will be affected by the amount specified 
here! 

Exact Test Options 

Maximum N1 or N2 for Exact Calculations 
When either N1 or N2 is above this amount, power calculations are based on the normal 
approximation to the binomial. In this case, the actual value of alpha is not calculated. Currently, 
for three-gigahertz computers, a value near 200 is reasonable. As computers increase in speed, 
this number may be increased. 
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Example 1 – Finding Power 
A study is being designed to study the effectiveness of a new treatment. Historically, the standard 
treatment has enjoyed a 60% cure rate. The new treatment reduces the seriousness of certain side 
effects that occur with the standard treatment. Thus, the new treatment will be adopted even if it 
is slightly less effective than the standard treatment. The researchers will recommend adoption of 
the new treatment if it has a cure rate of at least 55%.   

The researchers plan to use the Farrington and Manning likelihood score test statistic to analyze 
the data. They want to study the power of the one-sided Farrington and Manning test at group 
sample sizes ranging from 50 to 2000 for detecting a difference significantly greater than -0.05 
when the actual cure rate of the new treatment ranges from 57% to 70%. The significance level 
will be 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions (Offset Null 
Hypothesis) [Differences] procedure window by clicking on Proportions, then Two 
Independent Proportions, then Inequality Tests (Offset Null Hypothesis), then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................50 100 250 500 1000 1500 2000 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
D0 (Difference|H0 = P1.0 – P2) ..............-0.05 
D1 (Difference|H1 = P1.1 – P2) ..............-0.03 0.00 0.05 0.10 
P2 (Control Group Proportion) ................0.6 
H1 (Alternative Hypothesis) ....................One-Sided (H1:D1>D0) 
Test Type ................................................Likelihood Score (Farr. & Mann.) 
Options Tab 
Maximum N1 or N2 Exact .......................300 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample Prop Prop|H0 Prop|H1      
 Size Size Grp 2 or Grp 1 or Grp 1 or Diff Diff    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.0778 50 50 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0500 0.0527 0.9222 
0.0865 100 100 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0500 0.0499 0.9135 
0.1189 250 250 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0500 0.0516 0.8811 
0.1583 500 500 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0500  0.8417 
0.2310 1000 1000 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0500  0.7690 
0.2976 1500 1500 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0500  0.7024 
0.3596 2000 2000 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0500  0.6404 
Report continues … 
 
Note: exact results based on the binomial were only calculated when both N1 and N2 were less than 300. 
 
Report Definitions 
'H0' as an abbreviation for the NULL hypothesis. This is the hypothesis being evaluated by the statistical test. 
'H1' as an abbreviation for the ALTERNATIVE hypothesis. This hypothesis gives the 'true' parameter values. 
'Power' is the probability of rejecting a false null hypothesis. It should be close to one. 
'N1 and N2' are the sizes of the samples drawn from the corresponding populations. 
'P2' is the proportion for group two. This is the standard, reference, baseline, or control group. 
'P1.0' is the proportion for group one (treatment group) assuming the null hypothesis (H0).  
'P1.1' is the proportion for group one (treatment group) assuming the alternative hypothesis (H1).  
'D0: Diff|H0' is the difference P1 – P2 assuming the null hypothesis (H0). 
'D1: Diff|H1' is the difference P1 – P2 assuming the alternative hypothesis (H1). 
'Target Alpha' is the probability of rejecting a true null hypothesis that was desired. 
'Actual Alpha' is the value of alpha that is actually achieved. 
'Beta' is the probability of accepting a false H0. Beta = 1 - Power. 
 
Summary Statements 
Group sample sizes of 50 in group one and 50 in group two achieve 8% power to detect a 
difference between the group proportions of -0.0300. The proportion in group two is 0.6000. The 
proportion in group one is assumed to be 0.5500 under the null hypothesis and 0.5700 under the 
alternative hypothesis. The test statistic used is the one-sided Score test (Farrington & 
Manning). The significance level of the test was targeted at 0.0500. The significance level 
actually achieved by this design is 0.0527. 
 

This report shows the values of each of the parameters, one scenario per row. Note that the actual 
alpha value is blank for sample sizes greater than 300, which was the limit set for exact 
computation.  

Most of the report columns have obvious interpretations. Those that may not be obvious are 
presented here. 

Prop Grp 2 or Control P2 
This is the value of P2, the proportion responding positively in the control group. 

Prop|H0 Grp 1 or Trtmnt P1.0 
This is the value of P1.0, the proportion responding positively in the treatment group as specified 
by the null hypothesis. The difference between this value and P2 is the value specified by the null 
hypothesis. 
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Prop|H1 Grp 1 or Trtmnt P1.1 
This is the value of P1.1, the proportion responding positively in the treatment group as specified 
by the alternative hypothesis. The difference between this value and P2 is the value specified by 
the alternative hypothesis. 

Diff if H0 D0 
This is the value of D0, the difference between proportions under the null hypothesis. 

Diff if H1 D1 
This is the value of D1, the difference between proportions under the alternative hypothesis. 

Target Alpha 
This is the value of alpha that was targeted by the design. Note that the target alpha is not usually 
achieved exactly. 

Actual Alpha 
This is the value of alpha that was actually achieved by this design. Note that since the limit on 
exact calculations was set to 300, and since this value is calculated exactly, it is not shown for 
values of N1 greater than 300.  

The difference between the Target Alpha and the Actual Alpha is caused by the discrete nature of 
the binomial distribution and the use of the normal approximation to the binomial in determining 
the critical value of the test statistic. 

Plots Section 
 

 

Power vs N1 by D1 with P2=0.60 A=0.05 N2=N1
D0=-0.05 1-Sided LS FM Test

-0.0300

0.0000

0.0500

0.1000

P
ow

er

D
1

N1

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000

 
 
The values from the table are displayed in the above chart. This chart gives us a quick look at the 
sample size that will be required for various values of D1. 
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Example 2 – Finding the Sample Size 
Continuing with the scenario given in Example 1, the researchers want to determine the sample 
size needed to achieve 80% power for each value of D1. To cut down on the runtime, they decide 
to look at approximate values whenever N1 is greater than 100.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions (Offset Null 
Hypothesis) [Differences] procedure window by clicking on Proportions, then Two 
Independent Proportions, then Inequality Tests (Offset Null Hypothesis), then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.80 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
D0 (Difference|H0 = P1.0 – P2) .............. -0.05 
D1 (Difference|H1 = P1.1 – P2) ..............-0.03 0.00 0.05 0.10 
P2 (Control Group Proportion) ................0.6 
H1 (Alternative Hypothesis) ....................One-Sided (H1:D1>D0) 
Test Type ................................................Likelihood Score (Farr. & Mann.) 
Options Tab 
Maximum N1 or N2 Exact .......................100 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample Prop Prop|H0 Prop|H1      
 Size Size Grp 2 or Grp 1 or Grp 1 or Diff Diff    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.8000 7491 7491 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0500  0.2000 
0.8002 1186 1186 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500  0.1998 
0.8008 290 290 0.6000 0.5500 0.6500 -0.0500 0.0500 0.0500  0.1992 
0.8011 125 125 0.6000 0.5500 0.7000 -0.0500 0.1000 0.0500  0.1989 

 

The required sample size will depend a great deal on the value of D1. The researchers should 
spend time determining the most accurate value for D1.  
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Example 3 – Comparing the Power of Several Test 
Statistics 
Continuing with Example 1, the researchers want to determine which of the eight possible test 
statistics to adopt by using the comparative reports and charts that PASS produces. They decide 
to compare the powers and actual alphas for various sample sizes between 50 and 200 when D1 is 
0.05.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions (Offset Null 
Hypothesis) [Differences] procedure window by clicking on Proportions, then Two 
Independent Proportions, then Inequality Tests (Offset Null Hypothesis), then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................50 100 150 200 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
D0 (Difference|H0 = P1.0 – P2) ..............-0.05 
D1 (Difference|H1 = P1.1 – P2) ..............0.05 
P2 (Control Group Proportion) ................0.6 
H1 (Alternative Hypothesis) ....................One-Sided (H1:D1>D0) 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Reports Tab 
Show Numeric Report .............................Not checked 
Show Comparative Reports ....................Checked 
Show Definitions .....................................Not checked 
Show Plots ..............................................Not checked 
Show Comparative Plots.........................Checked 
Number of Summary Statements............0 

Options Tab 
Maximum N1 or N2 Exact .......................300 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Power Comparison of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0.  
    Z(P) Z(UnP) Z(P) Z(UnP) T F.M. M.N. G.N.  
   Target Test Test CC Test CC Test Test Score Score Score  
N1/N2 P2 P1.1 Alpha Power Power Power Power Power Power Power Power  
50/50 0.6000 0.6500 0.0500 0.2720 0.2720 0.2064 0.2096 0.2694 0.2720 0.2694 0.2720  
100/100 0.6000 0.6500 0.0500 0.4207 0.4248 0.3663 0.3663 0.4178 0.4207 0.4207 0.4207  
150/150 0.6000 0.6500 0.0500 0.5540 0.5540 0.5054 0.5054 0.5519 0.5540 0.5519 0.5519  
200/200 0.6000 0.6500 0.0500 0.6654 0.6683 0.6286 0.6286 0.6624 0.6683 0.6654 0.6654  
 
Actual Alpha Comparison of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0.  
    Z(P) Z(UnP) Z(P) Z(UnP) T F.M. M.N. G.N.  
   Target Test Test CC Test CC Test Test Score Score Score  
N1/N2 P2 P1.1 Alpha Alpha Alpha Alpha Alpha Alpha Alpha Alpha Alpha  
50/50 0.6000 0.6500 0.0500 0.0527 0.0527 0.0342 0.0343 0.0526 0.0527 0.0526 0.0527  
100/100 0.6000 0.6500 0.0500 0.0499 0.0500 0.0369 0.0369 0.0499 0.0499 0.0499 0.0499  
150/150 0.6000 0.6500 0.0500 0.0509 0.0509 0.0398 0.0398 0.0509 0.0509 0.0509 0.0509  
200/200 0.6000 0.6500 0.0500 0.0479 0.0482 0.0387 0.0387 0.0477 0.0482 0.0479 0.0479  
 

Power vs N1 by Test with D1=0.05 P2=0.60 A=0.05
N2=N1 D0=-0.05 1-Sided Test
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It is interesting to note that the powers of the continuity-corrected test statistics are consistently 
lower than the other tests. This occurs because the actual alpha achieved by these tests is lower 
than for the other tests.  
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Example 4 – Validation using Machin et al. with Equal 
Sample Sizes 
Machin et al. (1997), page 106, present a sample size study in which P2 = 0.5, D0 = -0.2, D1=0, 
one-sided alpha = 0.1, and beta = 0.2. Using the Farrington and Manning test statistic, they found 
the sample size to be 55 in each group.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions (Offset Null 
Hypothesis) [Differences] procedure window by clicking on Proportions, then Two 
Independent Proportions, then Inequality Tests (Offset Null Hypothesis), then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.80 
Alpha .......................................................0.10 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
D0 (Difference|H0 = P1.0 – P2) ..............-0.2 
D1 (Difference|H1 = P1.1 – P2) ..............0 
P2 (Control Group Proportion) ................0.50 
H1 (Alternative Hypothesis) ....................One-Sided (H1:D1>D0) 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Options Tab 
Maximum N1 or N2 Exact .......................2 (Set low for a rapid search.) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample    Sample Prop Prop|H0 Prop|H1     
 Size Size Grp 2 or Grp 1 or Grp 1 or Diff Diff    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.8001 55 55 0.5000 0.3000 0.5000 -0.2000 0.0000 0.1000  0.1999 
 

PASS found the required sample size to be 55, which corresponds to the results of Machin et al.  
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Example 5 – Validation using Farrington and Manning 
Farrington and Manning (1990), page 1451, present a sample size study in which P2 = 0.05, D0 = 
0.2, D1=0.35, one-sided alpha = 0.05, and beta = 0.20. Using the Farrington and Manning test 
statistic, they found the sample size to be 80 in each group. They mention that the true power is 
0.813. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions (Offset Null 
Hypothesis) [Differences] procedure window by clicking on Proportions, then Two 
Independent Proportions, then Inequality Tests (Offset Null Hypothesis), then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example5 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.80 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
D0 (Difference|H0 = P1.0 – P2) ..............0.2 
D1 (Difference|H1 = P1.1 – P2) ..............0.35 
P2 (Control Group Proportion) ................0.05 
H1 (Alternative Hypothesis) ....................One-Sided (H1:D1>D0) 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Options Tab 
Maximum N1 or N2 Exact .......................2 (Set low for a rapid search.) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample    Sample Prop Prop|H0 Prop|H1     
 Size Size Grp 2 or Grp 1 or Grp 1 or Diff Diff    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.8007 80 80 0.0500 0.2500 0.4000 0.2000 0.3500 0.0500  0.1993 
 

PASS also calculated the required sample size to be 80.  



205-26  Inequality Tests for Two Proportions (Offset Null Hypothesis) 

Next, to calculate the exact power for this sample size, we make the following changes to the 
template. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
N1 (Sample Size Group 1) ......................80 

Options Tab 
Maximum N1 or N2 Exact .......................300 (Set >80 to force exact calculation.) 

Numeric Results 
 
Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P2-P1<=D0. H1: P2-P1=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample    Sample Prop Prop|H0 Prop|H1     
 Size Size Grp 2 or Grp 1 or Grp 1 or Diff Diff    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.8132 80 80 0.0500 0.2500 0.4000 0.2000 0.3500 0.0500 0.0553 0.1868 
 

PASS also calculated the exact power to be 0.813.  

Example 6 – Validation of Risk Ratio Calculations using 
Blackwelder 
Blackwelder (1993), page 695, presents a table of power values for several scenarios using the 
risk ratio. The second line of the table presents the results for the following scenario: P2 = 0.04, 
R0 = 0.3, R1=0.1, N1=N2=1044, one-sided alpha = 0.05, and beta = 0.20. Using the Farrington 
and Manning likelihood-score test statistic, he found the exact power to be 0.812, the exact alpha 
to be 0.044, and, using the asymptotic formula, the approximate power to be 0.794. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions (Offset Null 
Hypothesis) [Ratios] procedure window by clicking on Proportions, then Two Independent 
Proportions, then Inequality Tests (Offset Null Hypothesis), then Specify using Ratios. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example6 from the Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................1044 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
R0 (Ratio|H0 = P1.0/P2) .........................0.3 
R1 (Ratio|H1 = P1.1/P2) .........................0.1 
P2 (Control Group Proportion) ................0.04 
H1 (Alternative Hypothesis) ....................One-Sided (H1:R1<R0) 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Options Tab 
Maximum N1 or N2 Exact .......................2000 (Set high for exact results.) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Tests Based on the Ratio: P1 / P2 
H0: P1/P2>=R0. H1: P1/P2=R1<R0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample Prop Prop|H0 Prop|H1      
 Size Size Grp 2 or Grp 1 or Grp 1 or Ratio Ratio    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 R0 R1 Alpha Alpha Beta 
0.8118 1044 1044 0.0400 0.0120 0.0040 0.300 0.100 0.0500 0.0444 0.1882 
 

PASS also calculated the exact power to be 0.812 and the actual alpha to be 0.044, after rounding.  

Next, to calculate the asymptotic power, we make the following changes to the template. 

Option Value 
Options Tab 
Maximum N1 or N2 Exact .......................2 (Set < 1044 to force asymptotic calculation.) 

Numeric Results 
 
Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1/P2>=R0. H1: P1/P2=R1<R0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample Prop Prop|H0 Prop|H1      
 Size Size Grp 2 or Grp 1 or Grp 1 or Ratio Ratio    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 R0 R1 Alpha Alpha Beta 
0.7937 1044 1044 0.0400 0.0120 0.0040 0.300 0.100 0.0500  0.2063 
 

PASS also calculated the asymptotic power to be 0.794.  
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Example 7 – Finding the Power after Completing an 
Experiment 
Researchers are studying the effectiveness of a new treatment for cancer. Historically, the 
standard treatment has enjoyed a 52% cure rate. The new experimental treatment is believed to be 
better, but it costs much more to administer. After weighing cost versus effectiveness, the 
researchers decided that they will adopt the new treatment if the cure rate is at least 59%. They 
conduct a study in which 200 patients are given the new treatment, and 200 are given the standard 
regimen. They find that 66% are cured by the new treatment, while 52% are cured by the standard 
treatment. The Farrington and Manning likelihood score test, however, indicates that the results 
are not statistically significant for alpha = 0.05. They now desire to compute the power for a 
range of alternative values. 

Note that a range of alternatives is used in computing the power instead of the actual difference 
from the study. The power should be computed at values representing practically significant 
differences from the null value. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions (Offset Null 
Hypothesis) [Differences] procedure window by clicking on Proportions, then Two 
Independent Proportions, then Inequality Tests (Offset Null Hypothesis), then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example7 from the Template tab on the procedure window. 
Option Value 

Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................200 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
D0 (Difference|H0 = P1.0 – P2) ..............0.07 
D1 (Difference|H1 = P1.1 – P2) ..............0.08 to 0.20 by 0.02 
P2 (Control Group Proportion) ................0.52 
H1 (Alternative Hypothesis) ....................One-Sided (H1:D1>D0) 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Options Tab 
Maximum N1 or N2 Exact .......................200 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results of Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample Prop Prop|H0 Prop|H1      
 Size Size Grp 2 or Grp 1 or Grp 1 or Diff Diff    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.0715 200 200 0.5200 0.5900 0.6000 0.0700 0.0800 0.0500 0.0479 0.9285 
0.1446 200 200 0.5200 0.5900 0.6200 0.0700 0.1000 0.0500 0.0479 0.8554 
0.2581 200 200 0.5200 0.5900 0.6400 0.0700 0.1200 0.0500 0.0479 0.7419 
0.4089 200 200 0.5200 0.5900 0.6600 0.0700 0.1400 0.0500 0.0479 0.5911 
0.5783 200 200 0.5200 0.5900 0.6800 0.0700 0.1600 0.0500 0.0479 0.4217 
0.7368 200 200 0.5200 0.5900 0.7000 0.0700 0.1800 0.0500 0.0479 0.2632 
0.8591 200 200 0.5200 0.5900 0.7200 0.0700 0.2000 0.0500 0.0479 0.1409 
 
Note: exact results based on the binomial were only calculated when both N1 and N2 were less than 200. 
 

Power vs D1 with P2=0.52 A=0.05 N1=200 N2=N1
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The power depends a great deal on the value of D1 for this sample size.  It is evident that the 
power is quite low for the majority of alternative values studied. 
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Example 8 – Finding the Sample Size using Ratios 
A study is being designed to determine the effectiveness of a new treatment.  Researchers would 
like to know how large of a sample is needed for comparison of the two treatments.  The standard 
treatment has a success rate of 65%.  The researchers will adopt the new treatment, which has 
fewer side effects, if the success rate is at least 90% of the rate for the standard treatment, i.e. P1 
= 0.9 x P2 or P1/P2 = 0.9.  They would like to calculate the sample sizes necessary to achieve 
80%, 85%, 90%, and 95% power for the case where the true ratio between the two proportions is 
1.1 and alpha = 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions (Offset Null 
Hypothesis) [Ratios] procedure window by clicking on Proportions, then Two Independent 
Proportions, then Inequality Tests (Offset Null Hypothesis), then Specify using Ratios. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example8 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.8 0.85 0.9 0.95 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
R0 (Ratio|H0 = P1.0/P2) .........................0.9 
R1 (Ratio|H1 = P1.1/P2) .........................1.1 
P2 (Control Group Proportion) ................0.65 
H1 (Alternative Hypothesis) ....................One-Sided (H1:R1>R0) 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Options Tab 
Maximum N1 or N2 Exact .......................300 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Ratio: P1 / P2 
H0: P1/P2<=R0. H1: P1/P2=R1>R0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample Prop Prop|H0 Prop|H1      
 Size Size Grp 2 or Grp 1 or Grp 1 or Ratio Ratio    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 R0 R1 Alpha Alpha Beta 
0.9506 252 252 0.6500 0.5850 0.7150 0.900 1.100 0.0500 0.0503 0.0494 
0.9013 199 199 0.6500 0.5850 0.7150 0.900 1.100 0.0500 0.0508 0.0987 
0.8504 167 167 0.6500 0.5850 0.7150 0.900 1.100 0.0500 0.0507 0.1496 
0.8048 145 145 0.6500 0.5850 0.7150 0.900 1.100 0.0500 0.0499 0.1952 
 
Note: exact results based on the binomial were only calculated when both N1 and N2 were less than 300. 
 

N1 vs Power with R1=1.10 P2=0.65 A=0.05 N2=N1
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Necessary sample sizes range from 145 for 80% power to 252 for 95% power for detecting a ratio 
of 1.1. 
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Chapter 210 

Non-Inferiority & 
Superiority Tests 
for Two 
Proportions 
Introduction 
This module provides power analysis and sample size calculation for non-inferiority and 
superiority tests in two-sample designs in which the outcome is binary. Users may choose from 
among eight popular test statistics commonly used for running the hypothesis test. 

The power calculations assume that independent, random samples are drawn from two 
populations.  

Four Procedures Documented Here 
There are four procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, ratios of proportions, and odds ratios. Each 
of these options is listed separately on the menus.  

Example 
A non-inferiority test example will set the stage for the discussion of the terminology that 
follows. Suppose that the current treatment for a disease works 70% of the time. Unfortunately, 
this treatment is expensive and occasionally exhibits serious side-effects. A promising new 
treatment has been developed to the point where it can be tested. One of the first questions that 
must be answered is whether the new treatment is as good as the current treatment. In other 
words, do at least 70% of treated subjects respond to the new treatment?  

Because of the many benefits of the new treatment, clinicians are willing to adopt the new 
treatment even if it is slightly less effective than the current treatment. They must determine, 
however, how much less effective the new treatment can be and still be adopted. Should it be 
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adopted if 69% respond? 68%? 65%? 60%? There is a percentage below 70% at which the 
difference between the two treatments is no longer considered ignorable. After thoughtful 
discussion with several clinicians, it was decided that if a response of at least 63% were achieved, 
the new treatment would be adopted. The difference between these two percentages is called the 
margin of equivalence. The margin of equivalence in this example is 7%.  

The developers must design an experiment to test the hypothesis that the response rate of the new 
treatment is at least 0.63. The statistical hypothesis to be tested is 

H p p0 1 2 0 07: .− ≤ −  versus H p p1 1 2 0 07: .− > −  

Notice that when the null hypothesis is rejected, the conclusion is that the response rate is at least 
0.63. Note that even though the response rate of the current treatment is 0.70, the hypothesis test 
is about a response rate of 0.63. Also notice that a rejection of the null hypothesis results in the 
conclusion of interest.  

Technical Details  
The details of sample size calculation for the two-sample design for binary outcomes are 
presented in the chapter “Two Proportions Non-Null Case,” and they will not be duplicated here. 
Instead, this chapter only discusses those changes necessary for non-inferiority and superiority 
tests. 

Approximate sample size formulas for non-inferiority tests of two proportions are presented in 
Chow et al. (2003), page 90. Only large sample (normal approximation) results are given there. 
The results available in this module use exact calculations based on the enumeration of all 
possible values in the binomial distribution. 

Suppose you have two populations from which dichotomous (binary) responses will be recorded. 
Assume without loss of generality that the higher proportions are better. The probability (or risk) 
of cure in population 1 (the treatment group) is  and in population 2 (the reference group) 
is . Random samples of and individuals are obtained from these two populations. The 
data from these samples can be displayed in a 2-by-2 contingency table as follows 

p1

p2 n1 n2

 

Group Success Failure Total 
Treatment    x11 x12 n1

Control    x21 x22 n2

Totals   N m1 m2
 

The binomial proportions,  and , are estimated from these data using the formulae p1 p2

$p a
m

x
n1
11

1

= =  and $p b
n

x
n2

21

2

= =  

Let  represent the group 1 proportion tested by the null hypothesis, . The power of a test is 
computed at a specific value of the proportion which we will call . Let 

p1 0. H0

p11. δ  represent the 
smallest difference (margin of equivalence) between the two proportions that still results in the 
conclusion that the new treatment is not inferior to the current treatment. For a non-inferiority 
test, δ < 0.  The set of statistical hypotheses that are tested is 

H0 1 0 2: .p p− ≤ δ  versus H1 1 0 2: .p p− > δ  
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which can be rearranged to give 

H0 1 0 2: .p p≤ +δ  versus H1 1 0 2: .p p> +δ  

There are three common methods of specifying the margin of equivalence. The most direct is to 
simply give values for  and . However, it is often more meaningful to give  and then 
specify  implicitly by specifying the difference, ratio, or odds ratio. Mathematically, the 
definitions of these parameterizations are  

p2 p1 0. p2

p1 0.

 

Parameter Computation Hypotheses 
Difference  δ = −p p1 0 2.  H vs. H0 1 0 2 0 1 1 0 2 0 0 0: :. .p p p p ,− ≤ − > <δ δ δ  

Ratio φ = p p1 0 2. /  H vs. H0 1 2 0 1 1 2 0 0 1: / : / ,p p p p≤ > <φ φ φ  

Odds Ratio ψ = Odds Odds1 0 2. /  H versus H0 1 0 2 0 1 1 0 2 0 0 1: / : / ,. .o o o o≤ > <ψ ψ ψ  

Difference 
The difference is perhaps the most direct method of comparison between two proportions. It is 
easy to interpret and communicate. It gives the absolute impact of the treatment. However, there 
are subtle difficulties that can arise with its interpretation.  

One difficulty arises when the event of interest is rare. If a difference of 0.001 occurs when the 
baseline probability is 0.40, it would be dismissed as being trivial. However, if the baseline 
probably of a disease is 0.002, a 0.001 decrease would represent a reduction of 50%. Thus 
interpretation of the difference depends on the baseline probability of the event.  

Note that if δ < 0 , the procedure is called a non-inferiority test while if δ > 0  the procedure is 
called a superiority test.  

Non-Inferiority using a Difference 
The following example might help you understand the concept of a non-inferiority test. Suppose 
60% of patients respond to the current treatment method ( )p2 0 60= . . If the response rate of the 
new treatment is no less than 5 percentage points worse ( )δ = −0 05.  than the existing treatment, 
it will be considered to be noninferior. Substituting these figures into the statistical hypotheses 
gives 

H0 0 05: .δ ≤ −  versus H1 0 05: .δ > −  

Using the relationship 

p p1 0 2. = +δ  

gives 

H p0 1 0 0 55: . .≤  versus  H p1 1 0 0 55: .. >

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is at least 55%, which means that the new treatment is not inferior to the current 
treatment. 
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Superiority using a Difference 
The following example is intended to help you understand the concept of a superiority test. 
Suppose 60% of patients respond to the current treatment method ( )p2 0 60= . . If the response 
rate of the new treatment is at least 10 percentage points better ( )δ = 010. , it will be considered to 
be superior to the existing treatment. Substituting these figures into the statistical hypotheses 
gives 

H0 010: .δ ≤  versus H1 010: .δ >  

Using the relationship 

p p1 0 2. = +δ  

gives 

H p0 1 0 0 70: .. ≤  versus  H p1 1 0 0 70: .. >

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is at least 0.70. That is, the conclusion of superiority is that the new treatment’s 
response rate is at least 0.10 more than that of the existing treatment. 

Ratio 
The ratio,φ = p p1 0 2. / , gives the relative change in the probability of the response. Testing non-
inferiority and superiority use the formulation  

H p p0 1 0 2 0: /. ≤ φ  versus H p p1 1 0 2 0: /. > φ  

The only subtlety is that for non-inferiority tests φ0 1< , while for superiority testsφ0 1> .  

Non-Inferiority using a Ratio 
The following example might help you understand the concept of non-inferiority as defined by 
the ratio. Suppose that 60% of patients ( )p2 0 60= .  respond to the current treatment method. If a 
new treatment decreases the response rate by no more than 10% ( )φ0 0 90= . , it will be 
considered to be noninferior to the standard treatment. Substituting these figures into the 
statistical hypotheses gives 

H0 0 90: .φ ≤  versus H1 0 90: .φ >  

Using the relationship 

p p1 0 0 2. = φ  

gives 

H p0 1 0 0 54: .. ≤  versus  H p1 1 0 0 54: .. >

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is at least 54%. That is, the conclusion of non-inferiority is that the new treatment’s 
response rate is no worse than 10% less than that of the standard treatment. 
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Odds Ratio 
The odds ratio, ( )( ) ( )( )ψ = − −p p p p1 0 1 0 2 21 1. ./ / / , gives the relative change in the odds of the 
response. Testing non-inferiority and superiority use the same formulation  

H0: 0ψ ψ≤  versus H1 0:ψ ψ>  

The only difference is that for non-inferiority tests ψ 0 1< , while for superiority testsψ 0 1> .  

A Note on Setting the Significance Level, Alpha 
Setting the significance level has always been somewhat arbitrary. For planning purposes, the 
standard has become to set alpha to 0.05 for two-sided tests. Almost universally, when someone 
states that a result is statistically significant, they mean statistically significant at the 0.05 level.  

Although 0.05 may be the standard for two-sided tests, it is not always the standard for one-sided 
tests, such as non-inferiority tests. Statisticians often recommend that the alpha level for one-
sided tests be set at 0.025 since this is the amount put in each tail of a two-sided test. 

Power Calculation 
The power for a test statistic that is based on the normal approximation can be computed exactly 
using two binomial distributions. The following steps are taken to compute the power of these 
tests.  

1.  Find the critical value using the standard normal distribution. The critical value, , is 
that value of z that leaves exactly the target value of alpha in the appropriate tail of the 
normal distribution.  

zcritical

2.  Compute the value of the test statistic, , for every combination of  and . Note that 
 ranges from 0 to n , and  ranges from 0 to . A small value (around 0.0001) can 

be added to the zero-cell counts to avoid numerical problems that occur when the cell value 
is zero. 

zt x11 x21

x11 1 x21 n2

3. If z z , the combination is in the rejection region. Call all combinations of  
and  that lead to a rejection the set A. 

t critical>
x21

x11

4. Compute the power for given values of  and  as p11. p2

1 1

11
11 11

2

21
2 2

11 1 11 21 2 21− =
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟− −∑β

n
x

p q
n
x

p qx n x x n x

A
. .  

5. Compute the actual value of alpha achieved by the design by substituting  for  to 
obtain  

p2 p11.

α* =
⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟ + + − −∑

n
x

n
x

p qx x n n x x

A

1

11

2

21
2 2

11 21 1 2 11 21  
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Asymptotic Approximations 
When the values of  and  are large (say over 200), these formulas often take a long time to 
evaluate. In this case, a large sample approximation can be used. The large sample approximation 
is made by replacing the values of  and  in the z statistic with the corresponding values of 

 and , and then computing the results based on the normal distribution. Note that in large 
samples, the Farrington and Manning statistic is substituted for the Gart and Nam statistic. Also, 
for large samples, the results for the odds ratio have not (to our knowledge) been published. In 
this case, we substitute the calculations based on the ratio formulation. 

n1 n2

$p1 $p2

p11. p2

Test Statistics 
Several test statistics have been proposed for testing whether the difference, ratio, or odds ratio 
are different from a specified value. The main difference among the several test statistics is in the 
formula used to compute the standard error used in the denominator. These tests are based on the 
following z-test  

z p p c
t =

− − −$ $

$
1 2 0δ

σ
 

The constant, c, represents a continuity correction that is applied in some cases. When the 
continuity correction is not used, c is zero. In power calculations, the values of  and  are not 
known. The corresponding values of  and  may be reasonable substitutes. 

$p1 $p2

p11. p2

Following is a list of the test statistics available in PASS. The availability of several test statistics 
begs the question of which test statistic one should use. The answer is simple: one should use the 
test statistic that will be used to analyze the data. You may choose a method because it is a 
standard in your industry, because it seems to have better statistical properties, or because your 
statistical package calculates it. Whatever your reasons for selecting a certain test statistic, you 
should use the same test statistic when doing the analysis after the data have been collected. 

Z Test (Pooled) 
This test was first proposed by Karl Pearson in 1900. Although this test is usually expressed 
directly as a chi-square statistic, it is expressed here as a z statistic so that it can be more easily 
used for one-sided hypothesis testing. The proportions are pooled (averaged) in computing the 
standard error. The formula for the test statistic is  

z p p
t =

− −$ $

$
1 2

1

0δ
σ

 

where  

( )$σ1
1 2

1 1 1
= − +

⎛
⎝
⎜

⎞
⎠
⎟p p

n n
 

p n p n p
n n

=
+
+

1 1 2 2

1 2

$ $
 



Non-Inferiority & Superiority Tests for Two Proportions  210-7 

Z Test (Unpooled) 
This test statistic does not pool the two proportions in computing the standard error.  

z p p
t =

− −$ $

$
1 2

2

0δ
σ

 

where  

( ) ( )
$

$ $ $ $
σ2

1 1

1

2 2

2

1 1
=

−
+

−p p
n

p p
n  

Z Test with Continuity Correction (Pooled)  
This test is the same as Z Test (Pooled), except that a continuity correction is used. Remember 
that in the null case, the continuity correction makes the results closer to those of Fisher’s Exact 
test. 

z
p p F

n n
t =

− − + +
⎛
⎝
⎜

⎞
⎠
⎟$ $

$

1 2 0
1 2

1

2
1 1δ

σ
 

( )$σ1
1 2

1 1 1
= − +

⎛
⎝
⎜

⎞
⎠
⎟p p

n n
 

p n p n p
n n

=
+
+

1 1 2 2

1 2

$ $
 

where F is -1 for lower-tailed hypotheses and 1 for upper-tailed hypotheses. 

Z Test with Continuity Correction (Unpooled)  
This test is the same as the Z Test (Unpooled), except that a continuity correction is used. 
Remember that in the null case, the continuity correction makes the results closer to those of 
Fisher’s Exact test. 

z
p p F

n n
t =

− − − +
⎛
⎝
⎜

⎞
⎠
⎟$ $

$

1 2 0
1 2

2

2
1 1δ

σ
 

( ) ( )
$

$ $ $ $
σ2

1 1

1

2 2

2

1 1
=

−
+

−p p
n

p p
n

 

where F is -1 for lower-tailed hypotheses and 1 for upper-tailed hypotheses. 

T-Test of Difference 
Because of a detailed, comparative study of the behavior of several tests, D’Agostino (1988) and 
Upton (1982) proposed using the usual two-sample t-test for testing whether the two proportions 
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are equal. One substitutes a ‘1’ for a success and a ‘0’ for a failure in the usual, two-sample t-test 
formula.  

Miettinen and Nurminen’s Likelihood Score Test of the Difference 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the difference is equal 
to a specified, non-zero, value,δ0

~p1

. The regular MLE’s,  and , are used in the numerator of 
the score statistic while MLE’s  and 

$p1 $p2
~p2 , constrained so that ~ ~p p1 2 0− = δ , are used in the 

denominator. A correction factor of N/(N-1) is applied to make the variance estimate less biased. 
The significance level of the test statistic is based on the asymptotic normality of the score 
statistic. The formula for computing this test statistic is 

z p p
MND

MND

=
− −$ $

$
1 2 0δ
σ

 

where 

$
~ ~ ~ ~

σ MND
p q
n

p q
n

N
N
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⎛
⎝
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⎞
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⎟

−
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1 1

1

2 2

2 1
 

~ ~p p1 2= + 0δ  

( )~ cosp B A L
L1
2

3

2
3

= −
 

A C
B

= + ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣⎢
⎤

⎦⎥
−1

3
1

3π cos
 

( )B C L
L

L
L

= −sign 2
2

3

1

39 3  

C L
L

L L
L

L
L

= − +2
3

3
3

1 2

3
2

0

327 6 2  

( )L x0 21 0 01= −δ δ  

[ ]L N N x M1 2 0 21 02= − − + 1δ δ  

( )L N N N M2 2 0= + − − 1δ  
L N3 =  

Miettinen and Nurminen’s Likelihood Score Test of the Ratio 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the ratio is equal to a 
specified valueφ0 . The regular MLE’s,  and , are used in the numerator of the score statistic 
while MLE’s 

$p1 $p2
~p1  and ~p2 , constrained so that ~ / ~p p1 2 0= φ , are used in the denominator. A 

correction factor of N/(N-1) is applied to make the variance estimate less biased. The significance 
level of the test statistic is based on the asymptotic normality of the score statistic.  
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The formula for computing the test statistic is 

z p p

p q
n

p q
n

N
N

MNR =
−

+
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

$ / $
~ ~ ~ ~

1 2 0

1 1

1
0
2 2 2

2 1

φ

φ

 

where 
~ ~p p1 2= 0φ  

~p B B AC
A2

2 4
2

=
− − −

 
A N= φ0  

[ ]B N x N x= − + + +1 0 11 2 21 0φ φ  
C M= 1  

Miettinen and Nurminen’s Likelihood Score Test of the Odds Ratio 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the odds ratio is equal 
to a specified value,ψ 0

$p2

. Because the approach they used with the difference and ratio does not 
easily extend to the odds ratio, they used a score statistic approach for the odds ratio. The regular 
MLE’s are  and . The constrained MLE’s are $p1

~p1  and ~p2 . These estimates are constrained 
so that ~ψ ψ= 0 . A correction factor of N/(N-1) is applied to make the variance estimate less 
biased. The significance level of the test statistic is based on the asymptotic normality of the score 
statistic.  

The formula for computing the test statistic is 

( ) ( )
z

p p
p q

p p
p q

N p q N p q
N

N
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−
−
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where 

( )
~ ~

~p p
p1

2 0

2 01 1
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ψ
ψ  
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A2

2 4
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=
− + −

 

( )A N= −2 0 1ψ  

( )B N N M= + − −1 0 2 1 0 1ψ ψ  
C M= − 1  
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Farrington and Manning’s Likelihood Score Test of the Difference 
Farrington and Manning (1990) proposed a test statistic for testing whether the difference is equal 
to a specified valueδ0 . The regular MLE’s,  and , are used in the numerator of the score 
statistic while MLE’s 

$p1 $p2
~p1  and ~p2 , constrained so that ~ ~p p1 2 0− = δ , are used in the denominator. 

The significance level of the test statistic is based on the asymptotic normality of the score 
statistic.  

The formula for computing the test statistic is 

z p p

p q
n

p q
n

FMD =
− −

+
⎛
⎝
⎜

⎞
⎠
⎟

$ $

~ ~ ~ ~
1 2 0

1 1

1

2 2

2

δ
 

where the estimates  and ~p1
~p2  are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 

Farrington and Manning’s Likelihood Score Test of the Ratio 
Farrington and Manning (1990) proposed a test statistic for testing whether the ratio is equal to a 
specified valueφ0 . The regular MLE’s,  and , are used in the numerator of the score 
statistic while MLE’s 

$p1 $p2
~p1  and ~p2 , constrained so that ~ / ~p p1 2 0= φ , are used in the denominator. 

A correction factor of N/(N-1) is applied to increase the variance estimate. The significance level 
of the test statistic is based on the asymptotic normality of the score statistic.  

The formula for computing the test statistic is 

z p p

p q
n

p q
n

FMR =
−

+
⎛
⎝
⎜

⎞
⎠
⎟

$ / $
~ ~ ~ ~

1 2 0

1 1

1
0
2 2 2

2

φ

φ

 

where the estimates ~p1  and ~p2  are computed as in the corresponding test of Miettinen and 
Nurminen (1985) given above. 

Farrington and Manning’s Likelihood Score Test of the Odds Ratio 
Farrington and Manning (1990) indicate that the Miettinen and Nurminen statistic may be 
modified by removing the factor N/(N-1). 

The formula for computing this test statistic is 

( ) ( )
z

p p
p q

p p
p q

N p q N p q
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−
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+
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2 2
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2 1 1 2 2 2

1 1
 

where the estimates  and ~p1
~p2  are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 
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Gart and Nam’s Likelihood Score Test of the Difference 
Gart and Nam (1990), page 638, proposed a modification to the Farrington and Manning (1988) 
difference test that corrects for skewness. Let ( )zFMD δ  stand for the Farrington and Manning 
difference test statistic described above. The skewness corrected test statistic, , is the 
appropriate solution to the quadratic equation 

zGND

( ) ( ) ( )( )− + − + + =~ ~γ δz z zGND GND FMD
2 1 0γ   

where 
( ) ( ) ( )~
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Gart and Nam’s Likelihood Score Test of the Ratio 
Gart and Nam (1988), page 329, proposed a modification to the Farrington and Manning (1988) 
ratio test that corrects for skewness. Let ( )zFMR φ  stand for the Farrington and Manning ratio test 
statistic described above. The skewness corrected test statistic, , is the appropriate solution to 
the quadratic equation 

zGNR
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and power. This chapter covers four procedures, each of which has different options. 
This section documents options that are common to all four procedures. Later, unique options for 
each procedure will be documented.   
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Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for using the other parameters. The parameters 
that may be selected are P1.1, Alpha, Power and Beta, N1, and N2. Under most situations, you 
will select either Power and Beta or N1. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level. 

Select Power and Beta when you want to calculate the power of an experiment.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. You may enter a range of 
values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio, and [Y] is the first integer greater than or equal to Y. 
For example, if you want N1 = N2, select Use R and set R = 1. 
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R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2= [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size – Reference (Group 2) 

P2 (Reference Group Proportion) 
Specify the value of , the reference, baseline, or control group’s proportion. The null 
hypothesis is that the two proportions differ by no more than a specified amount. Since P2 is a 
proportion, these values must be between 0 and 1. 

p2

You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1. 

Test 

Higher Proportions Are 
This option specifies whether proportions represent successes (better) or failures (worse). 

• Better (Successes) 
When proportions represent successes, higher proportions are better. A noninferior treatment 
is one whose proportion is at least almost as high as that of the reference group.  

For testing non-inferiority, D0 is negative, R0 is less than 1, and OR0 is less than 1. For 
testing superiority, D0 is positive, R0 is greater than 1, and OR0 is greater than 1.  

• Worse (Failures) 
When proportions represent failures, lower proportions are better. A noninferior treatment is 
one whose proportion is at most almost as low as that of the reference group.  

For testing non-inferiority, D0 is positive, R0 is greater than 1, and OR0 is greater than 1. For 
testing superiority, D0 is negative, R0 is less than 1, and OR0 is less than 1.  

Test Type 
Specify which test statistic is used in searching and reporting. Although the pooled z-test is 
commonly shown in elementary statistics books, the likelihood score test is arguably the best 
choice. 

Note that C.C. is an abbreviation for Continuity Correction. This refers to the adding or 
subtracting 1/(2n) to (or from) the numerator of the z-value to bring the normal approximation 
closer to the binomial distribution. 
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Data Tab (Proportions) 
This section documents options that are used when the parameterization is in terms of the values 
of the two proportions, P1 and P2. P1.0 is the value of the P1 assumed by the null hypothesis and 
P1.1 is the value of P1 at which the power is calculated. 

Effect Size – Treatment (Group 1) 

P1.0 (Equivalence Proportion) 
This option allows you to specify the value P1.0 directly. This is that value of treatment group’s 
proportion above which the treatment group is considered noninferior to the reference group.  

When Higher Proportions Are is set to Better, the trivial proportion is the smallest value of P1 for 
which the treatment group is declared noninferior to the reference group. In this case, P1.0 should 
be less than P2 for non-inferiority tests and greater than P2 for superiority tests. The reverse is the 
case when Higher Proportions Are is set to Worse.  

Proportions must be between 0 and 1. They cannot take on the values 0 or 1. This value should 
not be set to exactly the value of P2. 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

P1.1 (Actual Proportion) 
This option specifies the value of P1.1 which is the value of the treatment proportion at which the 
power is to be calculated. Proportions must be between 0 and 1. They cannot take on the values 0 
or 1.  

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01. 

Data Tab (Differences) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value 
of P1 at which the power is calculated. Once P2, D0, and D1 are given, the values of P1.1 and 
P1.0 can be calculated. 

Effect Size – Differences 

D0 (Equivalence Difference) 
This option specifies the trivial difference (often called the margin of error) between P1.0 (the 
value of P1 under H0) and P2. This difference is used with P2 to calculate the value of P1.0 using 
the formula: P1.0 = P2 + D0.  

When Higher Proportions Are is set to Better, the trivial difference is that amount by which P1 
can be less than P2 and still have the treatment group declared noninferior to the reference group. 
In this case, D0 should be negative for non-inferiority tests and positive for superiority tests. 

The reverse is the case when Higher Proportions Are is set to worse.  

You may enter a range of values such as -.03 -.05 -.10 or -.05 to -.01 by .01. Differences must be 
between -1 and 1. D0 cannot take on the values -1, 0, or 1. 
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D1 (Actual Difference) 
This option specifies the actual difference between P1.1 (the actual value of P1) and P2. This is 
the value of the difference at which the power is calculated. In non-inferiority trials, this 
difference is often set to 0. 

The power calculations assume that P1.1 is the actual value of the proportion in group 1 
(experimental or treatment group). This difference is used with P2 to calculate the value of P1 
using the formula: P1.1 = D1 + P2.  

You may enter a range of values such as -.05 0 .5 or -.05 to .05 by .02. Actual differences must be 
between -1 and 1. They cannot take on the values -1 or 1. 

Data Tab (Ratios) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of P1 at 
which the power is calculated. Once P2, R0, and R1 are given, the values of P1.0 and P1.1 can be 
calculated. 

Effect Size – Ratios 

R0 (Equivalence Ratio) 
This option specifies the trivial ratio (also called the Relative Margin of Equivalence) between 
P1.0 and P2. The power calculations assume that P1.0 is the value of the P1 under the null 
hypothesis. This value is used with P2 to calculate the value of P1.0 using the formula: P1.0 = R0 
x P2.  

When Higher Proportions Are is set to Better, the trivial ratio is the relative amount by which P1 
can be less than P2 and still have the treatment group declared noninferior to the reference group. 
In this case, R0 should be less than one for non-inferiority tests and greater than 1 for superiority 
tests. The reverse is the case when Higher Proportions Are is set to Worse.  

Ratios must be positive. R0 cannot take on the value of 1. You may enter a range of values such 
as 0.95 .97 .99 or .91 to .99 by .02.  

R1 (Actual Ratio) 
This option specifies the ratio of P1.1 and P2, where P1.1 is the actual proportion in the treatment 
group. The power calculations assume that P1.1 is the actual value of the proportion in group 1. 
This difference is used with P2 to calculate the value of P1 using the formula: P1.1 = R1 x P2. In 
non-inferiority trials, this ratio is often set to 1. 

Ratios must be positive. You may enter a range of values such as 0.95 1 1.05 or 0.9 to 1.9 by 
0.02.  
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Data Tab (Odds Ratios) 
This section documents options that are used when the parameterization is in terms of the odds 
ratios, O1.1 / O2 and O1.0 / O2. Note that the odds are defined as O2 = P2 / (1 – P2), O1.0 = P1.0 
/ (1 – P1.0), etc. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of 
P1 at which the power is calculated. Once P2, OR0, and OR1 are given, the values of P1.1 and 
P1.0 can be calculated.  

Effect Size – Odds Ratios 

OR0 (Equivalence Odds Ratio) 
This option specifies the trivial odds ratio between P1.0 and P2. The power calculations assume 
that P1.0 is the value of the P1 under the null hypothesis. OR0 is used with P2 to calculate the 
value of P1.0.  

When Higher Proportions Are is set to Better, the trivial odds ratio implicitly gives the amount 
by which P1 can be less than P2 and still have the treatment group declared noninferior to the 
reference group. In this case, OR0 should be less than 1 for non-inferiority tests and greater than 
1 for superiority tests. The reverse is the case when Higher Proportions Are is set to Worse.  

Odds ratios must be positive. OR0 cannot take on the value of 1. 

You may enter a range of values such as 0.95 0.97 0.99 or 0.91 to 0.99 by 0.02.  

OR1 (Actual Odds Ratio) 
This option specifies the odds ratio of P1.1 and P2, where P1.1 is the actual proportion in the 
treatment group. The power calculations assume that P1.1 is the actual value of the proportion in 
group 1. This value is used with P2 to calculate the value of P1. In non-inferiority trials, this odds 
ratio is often set to 1. 

Odds ratios must be positive. You may enter a range of values such as 0.95 1 1.05 or 0.9 to 1 by 
0.02.  

Options Tab 
The Options tab contains various limits and options. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. A value of at least 500 is recommended. 

Zero Counts 

Zero Count Adjustment Method 
Zero cell counts cause many calculation problems. To compensate for this, a small value (called 
the Zero Count Adjustment Value) can be added either to all cells or to all cells with zero counts. 
This option specifies whether you want to use the adjustment and which type of adjustment you 
want to use. We recommend that you use the option ‘Add to zero cells only.’ 
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Zero cell values often do not occur in practice. However, since power calculations are based on 
total enumeration, they will occur in power and sample size estimation. 

Adding a small value is controversial, but can be necessary for computational considerations. 
Statisticians have recommended adding various fractions to zero counts. We have found that 
adding 0.0001 seems to work well. 

Zero Count Adjustment Value 
Zero cell counts cause many calculation problems when computing power or sample size. To 
compensate for this, a small value may be added either to all cells or to all zero cells. This is the 
amount that is added. We have found that 0.0001 works well. 

Be warned that the value of the ratio and the odds ratio will be affected by the amount specified 
here! 

Exact Test Options 

Maximum N1 or N2 for Exact Calculations 
When either N1 or N2 is above this amount, power calculations are based on the normal 
approximation to the binomial. In this case, the actual value of alpha is not calculated. Currently, 
for three-gigahertz computers, a value near 200 is reasonable. As computers get faster, this 
number may be increased. 

Example 1 – Finding Power 
A study is being designed to establish the non-inferiority of a new treatment compared to the 
current treatment. Historically, the current treatment has enjoyed a 60% cure rate. The new 
treatment reduces the seriousness of certain side effects that occur with the current treatment. 
Thus, the new treatment will be adopted even if it is slightly less effective than the current 
treatment. The researchers will recommend adoption of the new treatment if it has a cure rate of 
at least 55%.  

The researchers plan to use the Farrington and Manning likelihood score test statistic to analyze 
the data that will be (or has been) obtained. They want to study the power of the Farrington and 
Manning test at group sample sizes ranging from 50 to 500 for detecting a difference of -0.05 
when the actual cure rate of the new treatment ranges from 57% to 70%. The significance level 
will be 0.025. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Proportions 
[Differences] procedure window by clicking on Proportions, then Two Independent 
Proportions, then Non-Inferiority & Superiority Tests, then Specify using Differences. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example1 from the Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.025 
N1 (Sample Size Group 1) ......................50 to 500 by 50 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
D0 (Equivalence Difference) ...................-0.05 
D1 (Actual Difference).............................-0.03 0.00 0.05 0.10 
P2 (Reference Group Proportion) ...........0.6 
Higher Proportions Are............................Better 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Options Tab 
Maximum N1 or N2 Exact .......................300 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Non-Inferiority Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample  Equiv. Actual Equiv. Actual    
 Size Size Grp 2 Grp 1 Grp 1 Margin Margin    
 Grp 1 Grp 2 Prop Prop Prop Diff Diff Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.0380 50 50 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250 0.0236 0.9620 
0.0494 100 100 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250 0.0267 0.9506 
0.0525 150 150 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250 0.0241 0.9475 
0.0588 200 200 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250 0.0244 0.9412 
0.0650 250 250 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250 0.0241 0.9350 
0.0735 300 300 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250 0.0261 0.9265 
0.0776 350 350 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250  0.9224 
0.0832 400 400 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250  0.9168 
0.0886 450 450 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250  0.9114 
Report continues … 
 
Note: exact results based on the binomial were only calculated when both N1 and N2 were less than 300. 
 
Report Definitions 
'Power' is the probability of rejecting a false null hypothesis. It should be close to one. 
'N1 and N2' are the sizes of the samples drawn from the corresponding groups. 
'P2' is the response rate for group two which is the standard, reference, baseline, or control group. 
'P1.0' is the smallest treatment-group response rate that still yields a non-inferiority conclusion.  
'P1.1' is the treatment-group response rate at which the power is calculated.  
'D0' is the non-inferiority margin. It is the difference P1-P2 assuming H0. 
'D1' is the actual difference, P1-P2, at which the power is calculated. 
'Target Alpha' is the probability of rejecting a true null hypothesis that was desired. 
'Actual Alpha' is the value of alpha that is actually achieved. 
'Beta' is the probability of accepting a false H0. Beta = 1 - Power. 
'Grp 1' refers to Group 1 which is the treatment or experimental group. 
'Grp 2' refers to Group 2 which is the reference, standard, or control group. 
' Equiv.' refers to a small amount that is not of practical importance. 
'Actual' refers to the true value at which the power is computed. 
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Summary Statements 
Sample sizes of 50 in group one and 50 in group two achieve 4% power to detect a 
non-inferiority margin difference between the group proportions of -0.0500. The reference group 
proportion is 0.6000. The treatment group proportion is assumed to be 0.5500 under the null 
hypothesis of inferiority. The power was computed at for the case when the actual treatment 
group proportion is 0.5700. The test statistic used is the one-sided Score test (Farrington & 
Manning). The significance level of the test was targeted at 0.0250. The significance level 
actually achieved by this design is 0.0236. 
 

This report shows the values of each of the parameters, one scenario per row. Note that the actual 
alpha value is blank for sample sizes greater than 300, which was the limit set for exact 
computation.  

Most of the report columns have obvious interpretations. Those that may not be obvious are 
presented here. Note that the discussion below assumes that higher response rates are better and 
that non-inferiority testing (rather than superiority testing) is planned. 

Prop Grp 2 P2 
This is the value of P2, the response rate in the control group. 

Equiv. Grp 1 Prop P1.0 
This is the value of P1.0, the response rate of the treatment group, as specified by the null 
hypothesis of inferiority. Values of P1 less than this amount are considered different from P2. 
Values of P1 greater than this are considered noninferior to the reference group. The difference 
between this value and P2 is the value of the null hypothesis. 

Actual Grp 1 Prop P1.1 
This is the value of P1.1, the response rate of the treatment group, at which the power is 
computed. This is the value of P1 under the alternative hypothesis. The difference between this 
value and P2 is the value of the alternative hypothesis. 

Equiv. Margin Diff D0 
This is the value of D0, the difference between the two group proportions under the null 
hypothesis. This value is often called the margin of non-inferiority.  

Actual Margin Diff D1 
This is the value of D1, the difference between the two group proportions at which the power is 
computed. This is the value of the difference under the alternative hypothesis. 

Target Alpha 
This is the value of alpha that was targeted by the design. Note that the target alpha is not usually 
achieved exactly. For one-sided tests, this value should usually be 0.025. 

Actual Alpha 
This is the value of alpha that was actually achieved by this design. Note that since the limit on 
exact calculations was set to 300, and since this value is calculated exactly, it is not shown for 
values of N1 greater than 300.  

The difference between the Target Alpha and the Actual Alpha is caused by the discrete nature of 
the binomial distribution and the use of the normal approximation to the binomial in determining 
the critical value of the test statistic. 
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Plots Section 
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The values from the table are displayed in the above chart. This chart gives us a quick look at the 
sample size that will be required for various values of D1. 

Example 2 – Finding the Sample Size 
Continuing with the scenario given in Example 1, the researchers want to determine the sample 
size necessary for each value of D1 to achieve a power of 0.80. To cut down on the runtime, they 
decide to look at approximate values whenever N1 is greater than 100.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Proportions 
[Differences] procedure window by clicking on Proportions, then Two Independent 
Proportions, then Non-Inferiority & Superiority Tests, then Specify using Differences. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example2 from the Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.8 
Alpha .......................................................0.025 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
D0 (Equivalence Difference) ...................-0.05 
D1 (Actual Difference).............................-0.03 0.00 0.05 0.10 
P2 (Reference Group Proportion) ...........0.6 
Higher Proportions Are............................Better 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Options Tab 
Maximum N1 or N2 Exact .......................100 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Non-Inferiority Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample  Equiv. Actual Equiv. Actual    
 Size Size Prop Grp 1 Grp 1 Margin Margin    
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.8000 9509 9509 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250  0.2000 
0.8001 1505 1505 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0250  0.1999 
0.8008 368 368 0.6000 0.5500 0.6500 -0.0500 0.0500 0.0250  0.1992 
0.8019 159 159 0.6000 0.5500 0.7000 -0.0500 0.1000 0.0250  0.1981 

 

The required sample size will depend a great deal on the value of D1. Any effort spent 
determining an accurate value for D1 will be worthwhile.  
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Example 3 – Comparing the Power of Several Test 
Statistics 
Continuing with Example 1, the researchers want to determine which of the eight possible test 
statistics to adopt by using the comparative reports and charts that PASS produces. They decide 
to compare the powers and actual alphas for various sample sizes between 50 and 200 when D1 is 
0.1. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Proportions 
[Differences] procedure window by clicking on Proportions, then Two Independent 
Proportions, then Non-Inferiority & Superiority Tests, then Specify using Differences. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.025 
N1 (Sample Size Group 1) ......................50 100 150 200 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
D0 (Equivalence Difference) ...................-0.05 
D1 (Actual Difference).............................0.10 
P2 (Reference Group Proportion) ...........0.6 
Higher Proportions Are............................Better 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Reports Tab 
Show Numeric Report .............................Not checked 
Show Comparative Reports ....................Checked 
Show Definitions .....................................Not checked 
Show Plots ..............................................Not checked 
Show Comparative Plots.........................Checked 
Number of Summary Statements............0 

Options Tab 
Maximum N1 or N2 Exact .......................300 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Power Comparison of Non-Inferiority Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0.  
    Z(P) Z(UnP) Z(P) Z(UnP) T F.M. M.N. G.N.  
   Target Test Test CC Test CC Test Test Score Score Score  
N1/N2 P2 P1 Alpha Power Power Power Power Power Power Power Power  
50/50 0.6000 0.7000 0.0250 0.3581 0.3670 0.2782 0.2945 0.3464 0.3581 0.3464 0.3581  
100/100 0.6000 0.7000 0.0250 0.6030 0.6088 0.5474 0.5475 0.5982 0.6030 0.6030 0.6030  
150/150 0.6000 0.7000 0.0250 0.7821 0.7837 0.7453 0.7474 0.7821 0.7837 0.7821 0.7821  
200/200 0.6000 0.7000 0.0250 0.8849 0.8857 0.8635 0.8638 0.8849 0.8857 0.8849 0.8849  
 
Actual Alpha Comparison of Non-Inferiority Tests Based on the Difference: P1 – P2 
H0: P2-P1<=D0. H1: P2-P1=D1>D0.  
    Z(P) Z(UnP) Z(P) Z(UnP) T F.M. M.N. G.N.  
   Target Test Test CC Test CC Test Test Score Score Score  
N1/N2 P1 P2 Alpha Alpha Alpha Alpha Alpha Alpha Alpha Alpha Alpha  
50/50 0.6000 0.7000 0.0250 0.0236 0.0253 0.0140 0.0161 0.0225 0.0236 0.0225 0.0236  
100/100 0.6000 0.7000 0.0250 0.0267 0.0267 0.0190 0.0190 0.0266 0.0267 0.0267 0.0267  
150/150 0.6000 0.7000 0.0250 0.0239 0.0241 0.0181 0.0183 0.0239 0.0241 0.0239 0.0239  
200/200 0.6000 0.7000 0.0250 0.0243 0.0244 0.0191 0.0191 0.0243 0.0244 0.0243 0.0243 
 
 

Power vs N1 by Test with D1=0.10 P2=0.60 A=0.03
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It is interesting to note that the powers of the continuity-corrected test statistics are consistently 
lower than the other tests. This occurs because the actual alpha achieved by these tests is lower 
than for the other tests. An interesting finding of this example is that the regular t-test performed 
about as well as the z-test.  
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Example 4 – Validation using Machin with Equal Sample 
Sizes 
Machin et al. (1997), page 106, present a sample size study in which P2 = 0.5, D0 = -0.2, D1=0, 
one-sided alpha = 0.1, and beta = 0.2. Using the Farrington and Manning test statistic, they found 
the sample size to be 55 in each group.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Proportions 
[Differences] procedure window by clicking on Proportions, then Two Independent 
Proportions, then Non-Inferiority & Superiority Tests, then Specify using Differences. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.8 
Alpha .......................................................0.1 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
D0 (Equivalence Difference) ...................-0.2 
D1 (Actual Difference).............................0.0 
P2 (Reference Group Proportion) ...........0.5 
Higher Proportions Are............................Better 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Options Tab 
Maximum N1 or N2 Exact .......................2 (Set low for a rapid search.) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Non-Inferiority Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample  Equiv. Actual Equiv. Actual    
 Size Size Prop Grp 1 Grp 1 Margin Margin    
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.8001 55 55 0.5000 0.3000 0.5000 -0.2000 0.0000 0.1000  0.1999 
 

PASS found the required sample size to be 55 which corresponds to Machin.  
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Example 5 – Validation of a Superiority Test using 
Farrington and Manning 
Farrington and Manning (1990), page 1451, present a sample size study for a superiority test in 
which P2 = 0.05, D0 = 0.2, D1=0.35, one-sided alpha = 0.05, and beta = 0.20. Using the 
Farrington and Manning test statistic, they found the sample size to be 80 in each group. They 
mention that the true power is 0.813. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Proportions 
[Differences] procedure window by clicking on Proportions, then Two Independent 
Proportions, then Non-Inferiority & Superiority Tests, then Specify using Differences. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example5 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.80 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
D0 (Equivalence Difference) ...................0.2 
D1 (Actual Difference).............................0.35 
P2 (Reference Group Proportion) ...........0.05 
Higher Proportions Are............................Better 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Options Tab 
Maximum N1 or N2 Exact .......................2 (Set low for a rapid search.) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Non-Inferiority Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample  Equiv. Actual Equiv. Actual    
 Size Size Prop Grp 1 Grp 1 Margin Margin    
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.8007 80 80 0.0500 0.2500 0.4000 0.2000 0.3500 0.0500  0.1993 
 

PASS also calculated the required sample size to be 80.  



210-26  Non-Inferiority & Superiority Tests for Two Proportions 

Next, to calculate the exact power for this sample size, we make the following changes to the 
template. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
N1 (Sample Size Group 1) ......................80 

Options Tab 
Maximum N1 or N2 Exact .......................200 (Set >80 to force exact calculation.) 

Numeric Results 
 
Numeric Results of Non-Inferiority Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample  Equiv. Actual Equiv. Actual    
 Size Size Prop Grp 1 Grp 1 Margin Margin    
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.8132 80 80 0.0500 0.2500 0.4000 0.2000 0.3500 0.0500 0.0553 0.1993 
 

PASS also calculated the exact power to be 0.813.  

Example 6 – Validation of Risk Ratio Calculations using 
Blackwelder 
Blackwelder (1993), page 695, presents a table of power values for several scenarios using the 
risk ratio. The second line of the table presents the results for the following scenario: P2 = 0.04, 
R0 = 0.3, R1=0.1, N1=N2=1044, one-sided alpha = 0.05, and beta = 0.20. Using the Farrington 
and Manning likelihood-score test statistic, he found the exact power to be 0.812, the exact alpha 
to be 0.044, and, using the asymptotic formula, the approximate power to be 0.794. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Proportions 
[Ratios] procedure window by clicking on Proportions, then Two Independent Proportions, 
then Non-Inferiority & Superiority Tests, then Specify using Ratios. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example6 from the Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................1044 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
R0 (Equivalence Ratio) ...........................0.3 
R1 (Actual Ratio).....................................0.1 
P2 (Reference Group Proportion) ...........0.04 
Higher Proportions Are............................Worse 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Options Tab 
Maximum N1 or N2 Exact .......................2000 (Set high for exact results.) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Non-Inferiority Tests Based on the Difference: P1 / P2 
H0: P1/P2>=R0. H1: P1/P2=R1<R0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample  Equiv. Actual Equiv. Actual    
 Size Size Prop Grp 1 Grp 1 Margin Margin    
 Grp 1 Grp 2 Grp 2 Prop Prop Ratio Ratio Target Actual  
Power N1 N2 P2 P1.0 P1.1 R0 R1 Alpha Alpha Beta 
0.8118 1044 1044 0.0400 0.0120 0.0040 0.300 0.100 0.0500 0.0444 0.1882 
 

PASS also calculated the power to be 0.812 and the actual alpha to be 0.044, within rounding.  

Next, to calculate the asymptotic power, we make the following changes to the template. 

Option Value 
Options Tab 
Maximum N1 or N2 Exact .......................2 (Set < 1044 to force asymptotic calculation.) 

Numeric Results 
 
Numeric Results of Non-Inferiority Tests Based on the Difference: P1 / P2 
H0: P1/P2>=R0. H1: P1/P2=R1<R0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample  Equiv. Actual Equiv. Actual    
 Size Size Prop Grp 1 Grp 1 Margin Margin    
 Grp 1 Grp 2 Grp 2 Prop Prop Ratio Ratio Target Actual  
Power N1 N2 P2 P1.0 P1.1 R0 R1 Alpha Alpha Beta 
0.7937 1044 1044 0.0400 0.0120 0.0040 0.300 0.100 0.0500  0.2063 
 

PASS also calculated the power to be 0.794.  
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Example 7 – Finding Power following an Experiment 
In an effort to show a new treatment non-inferior to the current standard, researchers randomly 
assigned 80 subjects to each treatment. The new treatment was to be considered non-inferior if 
the odds ratio (treatment to standard) was at least 0.80. Using the Farrington and Manning 
Likelihood Score test, non-inferiority could not be concluded. The researchers now want to see 
the power of the test. The control proportion was 0.625. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Proportions 
[Odds Ratios] procedure window by clicking on Proportions, then Two Independent 
Proportions, then Non-Inferiority & Superiority Tests, then Specify using Odds Ratios. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example7 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................80 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
OR0 (Equivalence Odds Ratio)...............0.80 
OR1 (Actual Odds Ratio) ........................1.0 
P2 (Reference Group Proportion) ...........0.625 
Higher Proportions Are............................Better 
Test Type ................................................Likelihood Score (Farr. & Mann.) 
 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
 Numeric Results for Non-Inferiority Tests Based on the Odds Ratio: O1 / O2 
 H0: O1/O2<=OR0. H1: O1/O2=OR1>OR0. Test Statistic: Score test (Farrington & Manning) 
 
  Sample Sample  Equiv. Actual Equiv. Actual    
  Size Size Grp 2 Grp 1 Grp 1 Margin Margin    
  Grp 1 Grp 2 Prop Prop Prop O.R. O.R. Target Actual  
 Power N1 N2 P2 P1.0 P1.1 OR0 OR1 Alpha Alpha Beta 
 0.1845 80 80 0.6250 0.5714 0.6250 0.800 1.000 0.0500 0.0571 0.8155 
 

The power of a test with 80 receiving each treatment is only 0.1801. 
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Example 8 – Finding True Proportion Difference 
Researchers have developed a new treatment with minimal side effects compared to the standard 
treatment. The researchers are limited by the number of subjects (140 per group) they can use to 
show the new treatment is non-inferior. The new treatment will be deemed non-inferior if it is at 
least 0.10 below the success rate of the standard treatment. The standard treatment has a success 
rate of about 0.75. The researchers want to know how much more successful the new treatment 
must be (in truth) to yield a test which has 90% power. The test statistic used will be the pooled Z 
test. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Proportions 
[Differences] procedure window by clicking on Proportions, then Two Independent 
Proportions, then Non-Inferiority & Superiority Tests, then Specify using Differences. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example8 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................P1.1 (Search>P1.0) 
Power ......................................................0.90 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................140 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
D0 (Equivalence Difference) ...................-0.10 
D1 (Actual Difference)............................. Ignored since this is the Find setting 
P2 (Reference Group Proportion) ...........0.75 
Higher Proportions Are............................Better 
Test Type ................................................Z Test (Pooled) 

Options Tab 
Maximum N1 or N2 Exact .......................500 (Set high for exact results.) 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Z test (pooled) 
 
 Sample Sample  Equiv. Actual Equiv. Actual    
 Size Size Grp 2 Grp 1 Grp 1 Margin Margin    
 Grp 1 Grp 2 Prop Prop Prop Diff Diff Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha    Beta 
0.9000 140 140 0.7500 0.6500 0.7961 -0.1000 0.0461 0.0500 0.0505 0.1000 

 

With 140 subjects in each group, the new treatment must have a success rate 0.0464 higher than 
the current treatment (or about 0.7964) to have 90% power in the test of non-inferiority. 
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Chapter 215 

Equivalence Tests 
for Two 
Proportions 
Introduction 
This module provides power analysis and sample size calculation for equivalence tests in two-
sample designs in which the outcome is binary. Users may choose from among eight popular test 
statistics commonly used for running the hypothesis test.  

The power calculations assume that independent, random samples are drawn from two 
populations.  

Four Procedures Documented Here 
There are four procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, ratios of proportions, and odds ratios. Each 
of these options is listed separately on the menus.  

Example 
An equivalence test example will set the stage for the discussion of the terminology that follows. 
Suppose that the response rate of the standard treatment of a disease is 0.70. Unfortunately, this 
treatment is expensive and occasionally exhibits serious side-effects. A promising new treatment 
has been developed to the point where it can be tested. One of the first questions that must be 
answered is whether the new treatment is therapeutically equivalent to the standard treatment.  

Because of the many benefits of the new treatment, clinicians are willing to adopt the new 
treatment even if its effectiveness is slightly different from the standard. After thoughtful 
discussion with several clinicians, it is decided that if the response rate of the new treatment is 
between 0.63 and 0.77, the new treatment would be adopted. The margin of equivalence is 0.07.  

The developers must design an experiment to test the hypothesis that the response rate of the new 
treatment does not differ from that of the standard treatment by more than 0.07. The statistical 
hypothesis to be tested is 

H p p0 1 2 0 07: .− ≥  versus H p p1 1 2 0 07: .− <  
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Technical Details  
The details of sample size calculation for the two-sample design for binary outcomes are 
presented in the chapter entitled “Two Proportion Non-Null Case,” and they will not be 
duplicated here. Instead, this chapter only discusses those changes necessary for equivalence 
tests.  

Approximate sample size formulas for equivalence tests of two proportions are presented in 
Chow et al. (2003), page 88. Only large sample (normal approximation) results are given there. 
The results available in this module use exact calculations based on the enumeration of all 
possible values in the binomial distribution. 

Suppose you have two populations from which dichotomous (binary) responses will be recorded. 
Assume without loss of generality that higher proportions are better. The probability (or risk) of 
cure in group 1 (the treatment group) is  and in group 2 (the reference group) is . Random 
samples of and individuals are obtained from these two groups. The data from these 
samples can be displayed in a 2-by-2 contingency table as follows 

p1 p2

n1 n2

 

Group Success Failure Total 
Treatment a c m 
Control b d n 
Totals s f N 
 

The following alternative notation is also used. 

Group Success Failure Total 
Treatment    x11 x12 n1

Control    x21 x22 n2

Totals   N m1 m2

The binomial proportions  and  are estimated from these data using the formulae p1 p2

$p a
m

x
n1
11

1

= =  and $p b
n

x
n2

21

2

= =  

Let  represent the group 1 proportion tested by the null hypothesis . The power of a test is 
computed at a specific value of the proportion which we will call . Let 

p1 0. H0

p11. δ  represent the 
smallest difference (margin of equivalence) between the two proportions that still results in the 
conclusion that the new treatment is equivalent to the current treatment. The set of statistical 
hypotheses that are tested is 

H0 1 0 2: .p p− ≥ δ  versus H1 1 0 2: .p p− < δ  

These hypotheses can be rearranged to give 

H or0 1 0 2 1 0 2: . .p p p pL U− ≤ − ≥δ δ  versus H1 1 0 2: .δ δL Up p≤ − ≤  

This composite hypothesis can be reduced to two one-sided hypotheses as follows 

H0 1 0 2L Lp p: . − ≤ δ  versus H1 1 0L L p p: . 2δ ≤ −  

H0 1 0 2U Up p: . − ≥ δ  versus H1 1 0U U p p: . 2δ ≥ −  
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There are three common methods of specifying the margin of equivalence. The most direct is to 
simply give values for   and . However, it is often more meaningful to give  and then 
specify  implicitly by reporting the difference, ratio, or odds ratio. Mathematically, the 
definitions of these parameterizations are  

p2 p1 0. p2

p1 0.

 

Parameter Computation Alternative Hypotheses 
Difference  δ = −p p1 0 2.  H1 1 0 2: .δ δL Up p≤ − ≤  

Ratio φ = p p1 0 2. /  H1 1 0 2: /.φ φL Up p≤ ≤  

Odds Ratio ψ = Odds Odds1 0 2. /  H1 1 0 2: /.ψ ψL Uo o≤ ≤  

Difference 
The difference is perhaps the most direct method of comparison between two proportions. It is 
easy to interpret and communicate. It gives the absolute impact of the treatment. However, there 
are subtle difficulties that can arise with its interpretation.  

One difficulty arises when the event of interest is rare. If a difference of 0.001 occurs when the 
baseline probability is 0.40, it would be dismissed as being trivial. However, if the baseline 
probability of a disease is 0.002, a 0.001 decrease would represent a reduction of 50%. Thus 
interpretation of the difference depends on the baseline probability of the event.  

Note that δL < 0  and δU > 0 . Usually, δ δL U= − . 

Equivalence using a Difference 
The following example might help you understand the concept of an equivalence test. Suppose 
60% of patients respond to the current treatment method ( )p2 0 60= . . If the response rate of the 
new treatment is no less than five percentage points better or worse than the existing treatment, it 
will be considered to be equivalent. Substituting these figures into the statistical hypotheses gives 

H or0 1 0 2 1 0 20 05 0 05: .. .p p p p− ≤ − .− ≥  versus H1 1 0 20 05 0 05: . ..− ≤ − ≤p p  

Using the relationship 

p p1 0 2. = +δ  

gives 

H or0 1 0 1 00 55 0 65: .. .p p≤ ≥ .  versus H1 1 00 55 0 65: . ..≤ ≤p  

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is between 0.55 and 0.65.  

Ratio 
The ratio,φ = p p1 0 2. / , gives the relative change in the probability of the response. Testing 
equivalence uses the formulation  

H or0 1 0 2 1 0 2: / /. .p p p pL U≤ ≥φ φ  versus H1 1 0 2: /.φ φL Up p≤ ≤  

φL < 1 andφU > 1. Usually, φ φL U= 1 / . The only subtlety is that for equivalence tests 
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Equivalence using a Ratio 
The following example might help you understand the concept of equivalence as defined by the 
ratio. Suppose that 60% of patients ( )p2 0 60= .  respond to the current treatment method. If the 

these figure
response rate of a new treatment is within 10% of 0.60, it will be considered to be equivalent to 
the standard treatment. Substituting s into the statistical hypotheses gives 

H or0 1 0 2 1 0 20 9 11: / . / .. .p p p p≤ ≥  versus H1 1 0 20 9 11: . / ..≤ ≤p p  

Using the relationship 

p p1 0 0 2. = φ  

gives 

H or0 1 0 1 00 54 0 66: . .. .p p≤ ≥  versus H1 1 00 54 0 66: . ..≤ ≤p  

Odds Ratio 
The odds ratio, ( )( ) ( )( )ψ = − −p p p p1 0 1 0 2 21 1. ./ / / , gives the relative change in the odds (o) of 

ng equivalence use the formulation  

U≥

the response. Testi

H or0 1 0 2 1 0 2: / /. .o o o oL≤ψ ψ  versus H1 1 0 2: /.ψ ψL Uo o≤ ≤  

The only subtlety is that for equivalence tests ψ < 1  aL ndψU > 1 . Usually, ψ ψL U= 1 / . 

Power Calculation 
The power for a test statistic that is based on the normal approximation can be computed exactly 

ons. The following steps are taken to compute the power of these 

 
 are chosen as that value of z that leaves exactly the target value of alpha in the 

2.  Co e that 
m 0 to . A sm 0001) can 

d cu n e 

3. 
 that lead to a rejection the set A. 

pute wer for

5. Compute the actual value of alpha achieved by the design by subs and  for 
 to obtain  

using two binomial distributi
tests.  

1.  Find the critical values using the standard normal distribution. The critical values zL  and
zU

appropriate tail of the normal distribution.  

mpute the value of the test statistic zt  for every combination of x11  and x21 . Not
x11  ranges from 0 to n1 , and x21  ranges fro n2 all value (around 0.
be added to the zero-cell counts to avoi  numerical problems that oc r whe the cell valu
is zero. 

If z zt L>  and z zt U< , the combination is in the rejection region. Call all combinations of 
x11  and x21

4. Com the po  given values of p11.  and p2  as 

⎛ ⎞n
1 1

11
11

2

21

1 11− =
⎝
⎜

⎠
⎟

⎠
⎟− −∑β

x
p q .11 2 2

11 21 2 21
⎛
⎝
⎜

⎞n
x

p qx n x x n x

A
.  

tituting p L1 0. p U1 0.

p11.
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α x n x x n xn n⎛ ⎞ ⎛ ⎞− −∑ 1 2
L L L

A x
p q

x
p q=

⎝
⎜

⎠
⎟

⎝
⎜

⎠
⎟

11
1 0 1 0

21
2 2

11 1 11 21 2 21
. .  

and 

The value of alpha is then computed as the maximum of

αU U
x

U
n x x n x

A

n
x

p q
n
x

p q=
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟− −∑ 1

11
1 0 1 0

2

21
2 2

11 1 11 21 2 21
. .  

αL andαU . 

Asymptotic Approximations 
When the values of  and  are large (say over 200), these formulas take a long time to 

pproximation can be used. The large sample approximation 
 and  in the z statistic with the corresponding values of 

this  w

n1 n2

evaluate. In this case, a large sample a
is made by replacing the values of $p1 2

p11.  and p2  and then computing the results based on the normal distribution. Note that in large 
samples, the Farrington and Manning statistic is substituted for the Gart and Nam statistic. Also, 
for large samples, the results for the odds ratio have not (to our knowledge) been published. In 

 case, e substitute the calculations which are based on the ratio hypotheses. 

Test Statistics 

$p

Several test statistics have been proposed for testing whether the difference, ratio, or odds ratio 
cified value. The main difference among the several test statistics is in the 
te the standard error used in the denominator. These tests are based on the 

are different from a spe
formula used to compu
following z-test  

z p p c
t =

− − −$ $

$
1 2 0δ

σ
 

The constant, c, represents a continuity correction that is applied in some cases. When the 
continuity correction is not used, c is zero. In power calculations, the values of  and  are not 
known. The corresponding values of  and  can be reasonable substitutes. 

er  st
c o ou e should use the 

$p1 $p2

p11. 2

Following is a list of the test statistics available in PASS. The availability of sev al test atistics 
begs the question of which test statisti ne sh ld use. The answer is simple: 

p

on
test statistic that will be used to analyze the data. use it is a 

 

directly as a chi-square statistic, it is expressed here as a z statistic so that it can be more easily 
pothesis testing. The proportions are pooled (averaged) in computing the 

 You may choose a method beca
standard in your industry, because it seems to have better statistical properties, or because your 
statistical package calculates it. Whatever your reasons for selecting a certain test statistic, you 
should use the same test statistic when doing the analysis after the data have been collected.

Z Test (Pooled) 
This test was first proposed by Karl Pearson in 1900. Although this test is usually expressed 

used for one-sided hy
standard error. The formula for the test statistic is  

z p p
t =

− −$ $

$
1 2 0

1

δ
σ
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where  

( )$σ1
1 2

1 1 1
= − +

⎛
⎝
⎜

⎞
⎠
⎟p p

n n
 

p n p n p
n n

=
+
+

1 1 2 2

1 2

$ $

 

Z Test (Unpooled) 
This test statistic does not pool the two proportions in computing the standard error.  

z p p
t =

− −$ $

$
1 2

2

0δ
σ

 

where  

( ) ( )
$

$ $ $ $
σ2

1 1

1

2 2

2

1 1
=

−
+

−p p
n

p p
n

 

Z Test with Continuity Correction (Pooled)  
This test is the same as Z Test (Pooled), except that a continuity correction is used. Remember 
that in the null case, the continuity correction makes the results closer to those of Fisher’s Exact 
test. 

z
p p F

n n
t =

− − + +
⎛
⎝
⎜

⎞
⎠
⎟$ $

$

1 2 0
1 2

1

2
1 1δ

σ
 

( )$σ1
1 2

1 1 1
= − +

⎛
⎝
⎜

⎞
⎠
⎟p p

n n
 

p n p n p
n n

=
+
+

1 1 2 2

1 2

$ $
 

where F is -1 for lower-tailed hypotheses and 1 for upper-tailed hypotheses. 

Z Test with Continuity Correction (Unpooled)  
This test is the same as the Z Test (Unpooled), except that a continuity correction is used. 
Remember that in the null case, the continuity correction makes the results closer to those of 
Fisher’s Exact test. 

z
p p F

n n
t =

− − − +
⎛
⎝
⎜

⎞
⎠
⎟$ $

$

1 2 0
1 2

2

2
1 1δ

σ
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( ) ( )
$

$ $ $ $
σ2

1 1

1

2 2

2

1 1
=

−
+

−p p
n

p p
n

 

where F is -1 for lower-tailed h upper-tailed hypotheses. 

T-Test of Difference 
Because of a detailed, comparative study of the behavior of several tests, D’Agostino (1988) and 
Upton (1982) proposed using the usual two-sample t-test for testing whether the two proportions 

s a ‘1’ for a success and a ‘0’ for a failure in the usual, two-sample t-test 

Miettinen and Nurminen’s Likelihood Score Test of the Difference 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the difference is equal 

ified, non-zero, value,

ypotheses and 1 for 

are equal. One substitute
formula.  

δ0

s 
to a spec . The regular MLE’s,  and , are used in the numerator of 
the score statistic while MLE’

$p1 $p2
~p1  and ~p2 , constrained so that ~ ~p p1 2 0− = δ , are used in the 

denominator. A correction factor of N N-1) is applied to make the variance estimate less biased. 
The significance level of the test statistic is based on the asymptotic normality of the score 
statistic.  

/(

The formula for computing this test statistic is 

z p p
MND

MND

=
− −$ $

$
1 2 0δ
σ

 

where 

$
~ ~ ~ ~

σ MND
p q
n

p q
n

N
N

= +
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

1 1

1

2 2

2 1
 

~ ~p p1 2= + 0δ  

( )~ cosp B A L
L1
2

3

2
3

= −
 

A C
B⎝ ⎠⎣⎢ ⎦⎥3 3

 
= + ⎛

⎜
⎞
⎟

⎡ ⎤−1 1π cos

( )B C L
L

L
L

= −sign 2 1

9 3

2

3 3  

C L L L L
= −2

3

L L L
+

3
3

2

3
2

0

327 6 2  

1

( )L x0 21 0 01= −δ δ  

[ ]L N N x M1 2 0 21 02= − − 1+δ δ  
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( )L N N N M2 2 0= + − − 1δ  
L N3 =  

Miettinen and Nurminen’s Likelihood Score Test of the Ratio 
985) proposed a test statistic for testing whether the ratio is equal to a Miettinen and Nurminen (1

specified value,φ0 . The regular MLE’s, $p1  and $p2 , are used in the numerator of the score 
statistic while MLE’s ~p1  and ~p2 , constrained so that ~ / ~p p1 2 0= φ , are used in the denominator. 
A correction factor of N/(N-1) is applied to make the variance estimate less biased. The 
significance level of the test statistic is based on the asymptotic normality of the score statistic.  

The formula for computing the test statistic is 

z p p

p q
n

p q
n

N
N

MNR =
−

+
⎛ ⎞

⎠
⎟

−
⎛
⎝⎜

⎞
⎟

$ / $
~ ~ ~ ~

1 2 0

1 1

1
0
2 2

2⎝
⎜ ⎠

2

1

φ

φ

 

where 
~ ~p = p1 2 0φ  

~p B B AC
A2

2 4
2

=
− − −

 
A N= φ0  

[ ]B N x N x= − + + +1 0 11 2 21 0φ φ  
C M= 1  

Miettinen and Nurminen’s Likelihood Score Test of the Odds Ratio 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the odds ratio is equal 
to a specified value,ψ 0

to the odds ratio, the
$p2

. Because the approach they used with the difference and ratio does not 
easily extend y used a score statistic approach for the odds ratio. The regular 
MLE’s are  and . The constrained MLE’s are $p1

~p1  and ~p2 . These estimates are constrained 
so that ~ψ ψ= 0 . A correction factor of N/(N-1) is applied to make the variance estimate less 
biased. The significance level of the test statistic is based on the asymptotic normality of the score 
statistic. The formula for computing the test statistic is 

( ) ( )
z

p p
p q

p p
p q

N p q N p q
N

N

MNO =

−
−

−

+
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

$ ~
~ ~

$ ~
~ ~

~ ~ ~ ~

1 1

1 1

2 2

2 2

2 1 1 2 2 2

1 1
1
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where 

( )
~ ~

~p p
p1

2 0

2 01 1
=

+ −
ψ
ψ  

~p B B AC2 4
=
− + −

A2 2  

( )A N= −2 0 1ψ  

( )B N N M= + − −1 0 2 1 0 1ψ ψ  
C M= − 1  

Farrington and Manning’s Likelihood Score Test of the Difference 
Farrington and Manning (1990) proposed a test statistic for testing whether the difference is equal 
to a specified value,δ0 . The regular MLE’s,  and , are used in the numerator of the score 
statistic while MLE’s 

$p1 $p2
~p1  and ~p2 , constrained so that ~ ~p p1 2 0− = δ , are used in the denominator. 

nificance level of the test statistic is based on the asymptotic normality of the score 
statistic.  

The formula for computing the test statistic is 

The sig

z p p

p q
n

p q
n

FMD =
− −

+
⎛
⎝
⎜

⎞
⎠
⎟

$ $

~ ~ ~ ~
1 2 0

1 1

1

2 2

2

δ
 

where the estimates  and  ~p1
~p2  are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 

Farrington and Manning’s Likelihood Score Test of the Ratio 
Farrington and Manning (1990) proposed a test statistic for testing whether the ratio is equal to a 
specified value,φ0 . The regular MLE’s, $p1  and $p2 , are used in the numerator of the score 
statistic while MLE’s ~p1  and ~p2 , constrained so that ~ / ~p p1 2 0= φ , are used in the denominator. 
A correction factor of N/(N-1) is applied to increase the variance estimate. The significance level 
of the test statistic is based on the asymptotic normality of the score statistic.  

The formula for computing the test statistic is 

z p p

p q
n

p q
n

FMR =
−

+
⎛
⎝
⎜

⎞
⎠
⎟

$ / $
~ ~ ~ ~

1 2 0

1 1

1
0
2 2 2

2

φ

φ

 

where the estimates ~p1  and ~p2  are computed as in the corresponding test of Miettinen and 
Nurminen (1985) given above. 
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Farrington and Manning’s Likelihood Score Test of the Odds Ratio 
Farrington and Manning (1990) indicate that the Miettinen and Nurminen statistic may be 
modified by removing the factor N/(N-1). 

The formula for computing this test statistic is 

( ) ( )
z

p p
p q

p p
p q

N p q N p q

FMO =

−
−

−

+
⎛
⎝
⎜

⎞
⎠
⎟

$ ~
~ ~

$ ~
~ ~

~ ~ ~ ~

1 1

1 1

2 2

2 2

2 1 1 2 2 2

1 1
 

where the esti ates  and  ~p1
~p2m  are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 

odification to t  
Gart and Nam’s Likelihood Score Test of the Difference 
Gart and Nam (1990), page 638, proposed a m he Farrington and Manning (1988)
difference test that corrects for skewness. Let ( )zFMD δ  stand for th

e solution to the quadratic equation 

e Farrington and Manning 
difference test statistic described above. The skewness-corrected test statistic, zGND , is the 
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Gart and Nam’s Likelihood Score Test of the Ratio 
1988) Gart and Nam (1988), page 329, proposed a modification to the Farrington and Manning (

ratio test that corrects for skewness. Let ( )z φ  stand for the Farrington and Manning ratio test 
 

FMR

statistic described above. The skewness-corrected test statistic, zGNR , is the appropriate solution to
the quadratic equation 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 

r tabs such as Axes/Legend/Grid, Plot Text, or 
. 

Data Tab (Common Options) 

Data tab. To find out more about using the othe
Template, go to the Procedure Window chapter

The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and power. This chapter covers four procedures, each of which has different options. 
This section documents options that are common to all four procedures. Later, unique options for 

Solve For 

each procedure will be documented.   

Find (Solve For) 
This option specifies the parameter to be solve  for s ng the other parameters. The parameters 
that may be selected are P1.1, Alpha, Power an N1, and N2. Under most situations, you
will select either Power and Beta or N1. 

Select N1 when you want to calculate the samp

d  u i
d Beta,  

le size needed to achieve a given power and alpha 
level.  

Power and Beta when you want to calculate the power of an experiment.  

Error Rates 

Select 

Power or Beta 
ending on the chosen setting). 

 

n you fa

 zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of unequal proportions when in fact they are not equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

This option specifies one or more values for power or for beta (dep
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs whe il to reject the null hypothesis of unequal 
proportions when in fact they are equivalent. 

Values must be between

entered
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Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. You may enter a range of 
values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
ple size of group 2 or enter Use R to base N2 on the 

N2 = [R(N1)] 

s the Sample Allocation Ratio, and [Y] is the first integer greater than or equal to Y. 
you want N1 = N2, select Use R and set R = 1. 

 

greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Effect Size – Reference (Group 2) 

Enter a value (or range of values) for the sam
value of N1. You may enter a range of values such as 10 to 100 by 10.  

• Use R 
When Use R is entered here, N2 is calculated using the formula  

where R i
For example, if 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2= [R(N1)] where [Y] is the next 
integer 

P2 (Reference Group Proportion) 
of P2, the reference, baseline, or control group’s proportion. The null Specify the value 

hypothesis is that the two proportions differ by no more than a specified amount. Since P2 is a 
proportion, these values must be between 0 and 1. 

You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1. 

Test 

Test Type 
Specify which test statistic is used in searching and reporting. Although the pooled z-test is 
commonly shown in elementary statistics books, the likelihood score test is arguably the bes
choice. 

t 

 for Continuity Correction. This refers to the adding or Note that C.C. is an abbreviation
subtracting 1/(2n) to (or from) the numerator of the z-value to bring the normal approximation 
closer to the binomial distribution. 
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Data Tab (Proportion) 
This section documents options that are used when the parameterization is in terms of the values 

nd of the two proportions, P1 and P2. P1.0 is the value of the P1 assumed by the null hypothesis a
P1.1 is the value of P1 at which the power is calculated. 

Effect Size – Equivalence Proportions 

P1.0U & P1.0L (Upper & Lower Equivalence Proportion) 
Specify the 
two groups 

margin of equivalence directly by giving the upper and lower bounds of P1.0. The 
are assumed to be equivalent when P1.0 is between these values. Thus, P1.0U should 

be g

Note that the values of P1.0U and P1.0L are hus, the first values of P1.0U and 
P1.0

You 05 by 0.01.  

d 1. They cannot take on the values 0 or 1. These values should 

reater than P2 and P1.0L should be less than P2. 

 used in pairs. T
L are used together, then the second values of each are used, and so on.   

 may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.

Proportions must be between 0 an
surround P2. 

Effect Size – Actual Proportion 

P1.1 (Actual Proportion) 
This option specifies the value of P1.1, which is 
the power is to be calculated. Proportions mu

the value of the treatment proportion at which 
st be between 0 and 1. They cannot take on the 

values 0 or 1.  

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01. 

Data Tab (Difference) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value 

t which the power is calculated. Once P2, D0, and D1 are given, the values of P1.1 and 
alculated. 

of P1 a
P1.0 can be c

Effect Size – Equivalence Differences 

D0.U & D0.L (Upper & Lower Equivalence Difference) 
elow 

ce 
ference is not considered to be large enough to be of practical 

importance.  

The values of D0.U must be positive and the values of D0.L must be negative. D0.L can be set to 
‘-D0.U,’ which is usually what is desired. 

The power calculations assume that P1.0 is the value of P1 under the null hypothesis. This value 
is used with P2 to calculate the value of P1.0 using the formula: P1.0U = D0.U + P2. 

You may enter a range of values for D0.U such as .03 .05 .10 or .05 to .20 by .05. 

Specify the margin of equivalence by specifying the largest distance above (D0.U) and b
(D0.L) P2 which will still result in the conclusion of equivalence. As long as the actual differen
is between these two values, the dif
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Note that if you enter values for D
of D0.U. Thus, the first values of D

0.L (other than '-D0.U'), they are used in pairs with the values 
0.U and D0.L are used together, then the second values of 

D0.L must be between -1 and 0. D0.U must be between 0 and 1. Neither can take on the values    

each are used, and so on.   

RANGE: 

-1, 0, or 1. 

Effect Size – Actual Difference 

D1 (Actual Difference) 
This option specifies the actual difference between P1.1 (the actual value of P1) and P2. This is 

e 

roup 1 
 true value of 

r a range of values such as -.05 0 .5 or -.05 to .05 by .02. Actual differences must be 
between -1 and 1. They cannot take on the values -1 or 1. 

the value of the difference at which the power is calculated. In equivalence trials, this differenc
is often set to 0. 

The power calculations assume that P1.1 is the actual value of the proportion in g
(experimental or treatment group). This difference is used with P2 to calculate the
P1 using the formula: P1.1 = D1 + P2.  

You may ente

Data Tab (Ratio) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of P1 at 
which the power is calculated. Once P2, R0, and R1 are given, the values of P1.0 and P1.1 can be 

Ratios 

calculated. 

Effect Size – Equivalence 

R0.U & R0.L (Upper & Lower Equivalence Ratio) 
Specify the margin of equivalence by specifying the largest ratio (P1/P2) above (R0.U) and below
(R0.L) 1 which will still result in the conclusion of equivalence. As long as the actual ratio is 
between these two value

 

s, the difference between the proportions is not considered to be large 
enough to be of practical importance.  

must be less than 1. R0.L can 
be set to ‘1/R0.U,’ which is often desired. 

e 

u enter values for R0.L (other than '1/R0.U'), they are used in pairs with the values 

The values of R0.U must be greater than 1 and the values of R0.L 

The power calculations assume that P1.0 is the value of P1 under the null hypothesis. This valu
is used with P2 to calculate the value of P1.0 using the formula: P1.0U = R0.U x P2. 

You may enter a range of values for R0.U such as 1.1 1.5 1.8 or 1.1 to 2.1 by 0.2. 

Note that if yo
of R0.U. Thus, the first values of R0.U and R0.L are used together, then the second values of 
each are used, and so on.   

R0.L must be between 0 and 1. R0.U must be greater than 1. Neither can take on the value 1.  
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Effect Size – Actual Ratio 

R1 (Actual Ratio) 
This option specifies the ratio of P1.1 and P2, where P1.1 is the actual proportion in the treatment 

 trials, this ratio is often set to 1. 

Ratios must be positive. You may enter a range of values such as 0.95 1 1.05 or 0.9 to 1.9 by 

group. The power calculations assume that P1.1 is the actual value of the proportion in group 1. 
This difference is used with P2 to calculate the value of P1 using the formula: P1.1 = R1 x P2. In 
equivalence

0.02.  

Data Tab (Odds Ratio) 
This section documents options that are used when the parameterization is in terms of the odds 
ratios, O1.1 / O2 and O1.0 / O2. Note that the odds are defined as O2 = P2 / (1 – P2), O1.0 = P1.0 

lue of / (1 – P1.0), etc. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the va
P1 at which the power is calculated. Once P2, OR0, and OR1 are given, the values of P1.1 and 
P1.0 can be calculated.  

Effect Size – Equivalence Odds 
Ratios 

r & Lower Equivalence Odds Ratio) 
 

atio 

portance.  

The values of OR0.U must be greater than 1 and the values of OR0.L must be less than 1. OR0.L 
ired. 

e P1 under the null hypothesis. This 

 of OR0.U and OR0.L are used together, next the second 

ust be greater than 1. Neither can take on the value 1.  

OR0.U & OR0.L (Uppe
Specify the margin of equivalence by specifying the largest odds ratio above (OR0.U) and below
(OR0.L) 1 which will still result in the conclusion of equivalence. As long as the actual odds r
is between these two values, the difference between the proportions is not large enough to be of 
practical im

can be set to ‘1/OR0.U,’ which is often des

The power calculations assume that P1.0 is the value of th
value is used with P2 to calculate the value of P1.0. 

You may enter a range of values for OR0.U such as 1.1 1.5 1.8 or 1.1 to 2.1 by 0.2. 

Note that if you enter values for OR0.L (other than '1/OR0.U'), they are used in pairs with the 
values of OR0.U. Thus, the first values
values of each are used, and so on.   

OR0.L must be between 0 and 1. OR0.U m

Effect Size – Actual Odds Ratio 

OR1 (Actual Odds Ratio) 
This option specifies the odds ratio of P1.1 and P2, where P1.1 is the actual proportion in the 
treatment group. The power calculations assume that P1.1 is the actual value of the proportion
group 1. This value is used 

 in 
with P2 to calculate the value of P1. In equivalence trials, this odds 

Odds ratios must be positive. You may enter a range of values such as 0.95 1 1.05 or 0.9 to 1.9 by 
0.02.  

ratio is often set to 1. 
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Options Tab 
The Options tab contains various limits and options. 

Maximum Iterations 

Maximum Iterations Before Search Termination 

. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. A value of at least 500 is recommended. 

Specify the maximum number of iterations before the search for the criterion of interest is 
aborted

Zero Counts 

Zero Count Adjustment Method 
Zero cell counts cause many calculation problems. To compensate for this, a small value (called 
the Zero Count Adjustment Value) can be added either to all cells or to all cells with zero counts
This option specifies whe

. 
ther you want to use the adjustment and which type of adjustment you 

want to use. We recommend that you use the option ‘Add to zero cells only.’ 

tice. However, since power calculations are based on 
ple size estimation. 

utational considerations. 
nts. We have found that 

many calculation problems when computing power or sample size. To 

 

Zero cell values often do not occur in prac
total enumeration, they will occur in power and sam

Adding a small value is controversial, but can be necessary for comp
Statisticians have recommended adding various fractions to zero cou
adding 0.0001 seems to work well.  

Zero Count Adjustment Value 
Zero cell counts cause 
compensate for this, a small value may be added either to all cells or to all zero cells. This value 
indicates the amount that is added. We have found that 0.0001 works well. 

Be warned that the value of the ratio and the odds ratio will be affected by the amount specified
here!  

Exact Test Options 

Maximum N1 or N2 for Exact Calculations 
When either N1 or N2 is above this amount, power calculations are based on the normal 

actual value of alpha is not calculated. Currently, for three-gigahertz computers, a value near 200 
ber may be increased. 

approximation to the binomial. When the normal approximation to the binomial is used, the 

is reasonable. As computers increase in speed, this num
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Example 1 – Finding Power 
A study is being designed to establish the equivalence of a new treatment compared to the current 
treatment. Historically, the current treatment has enjoyed a 50% cure rate. The new treatment 

ertain side effects that occur with the current treatment. Thus, the new 
ven if it is slightly less effective than the current treatment. The 

n 15% of the 

n and Manning test at group sample sizes 
ranging from 50 to 500 for detecting a difference inside 15% when the actual cure rate of the new 

rom 50% to 60%. The significance level will be 0.05. 

reduces the seriousness of c
treatment will be adopted e
researchers will recommend adoption of the new treatment if its cure rate is withi
standard treatment.  

The researchers plan to use the Farrington and Manning likelihood score test statistic to analyze 
the data. They want to study the power of the Farringto

treatment ranges f

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Proportions [Differences] 
procedure window by clicking on Proportions, then Two Independent Proportions, then 

 Equivalence Tests, then Specify using Differences. You may then follow along here by making
the appropriate entries as listed below or load the completed template Example1 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................
Power ...............................................

Power and Beta 
....... Ignored since this is the Find setting 

pper Equivalence Difference).....0.15 
D0.L (Lower Equivalence Difference) ..... -D0.U 

.......................0.00 0.05 0.10 
ortion) ...........0.5 

d Score (Farr. & Mann.) 

Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................50 to 500 by 50 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
D0.U (U

D1 (Actual Difference)......
P2 (Reference Group Prop
Test Type ................................................Likelihoo

Options Tab 
Maximum N1 or N2 Exact .......................100 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
Test Statistic: Score test (Farrington & Manning) 
 
    Lower Upper Lower Upper    
 Sample Sample  Equiv. Equiv. Equiv. Equiv. Actual   
 Size Size Prop Grp 1 Grp 1 Margin Margin Margin   
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Diff Target Actual 
Power N1 N2 P2 P1.0L P1.0U D0.L D0.U D1 Alpha Alpha 
0.0000 50 50 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500 0.0515 
0.3793 100 100 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500 0.0489 
0.6689 150 150 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500  
0.8305 200 200 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500  
0.9160 250 250 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500  
0.9594 300 300 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500  
0.9808 350 350 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500  
0.9911 400 400 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500  
Report continues … 
 
Note: exact results based on the binomial were only calculated when both N1 and N2 were less than 100. 
 
Report Definitions 
'Power' is  hypothesis the probability of rejecting a false null . It should be close to one. 
'Power' is nce when e the probability of concluding equivale quivalence is correct. 
'Beta' is the probability of accepting a false H0. Beta = 1 - Power. 
'N1 and N2' are the sizes of the samples drawn from the corresponding groups. 
'P2' is the response rate for group two which is the standard, reference, baseline, or control group. 
'P1.0L' is the smallest treatment-group response rate that still yields an equivalence conclusion.  
'P1.0U' is the largest treatment-group response rate that still yields an equivalence conclusion.  
'D0.L' is the lowest difference that still results in the conclusion of equivalence. 
'D0.U' is the highest difference that still results in the conclusion of equivalence. 
'D1' is the actual difference, P1-P2, at which the power is calculated. 
'Target Alpha' is the probability of rejecting a true null hypothesis that was desired. 
'Actual Alpha' is the value of alpha that is actually achieved. Only available for exact results. 
'Grp 1' refers to Group 1 which is the treatment or experimental group. 
'Grp 2' refers to Group 2 which is the reference, standard, or control group. 
' Equiv.' refers to a small amount that is not of practical importance. 
'Actual' refers to the true value at which the power is computed. 
 
Summary Statements 
Sample sizes of 50 in the treatment group and 50 in the reference group achieve 0% power to 
detect equivalence. The margin of equivalence, given in terms of the difference, extends from 
-0.1500 to 0.1500. The actual difference is 0.0000. The reference group proportion is 0.5000. 
The calculations assume that two, one-sided likelihood score (Farrington & Manning) tests are 
used. Although the significance level is targeted at 0.0500, the level actually achieved is 
0.0515. 
 

This report shows the values of each of the parameters, one scenario per row. Note that the actual 
alpha value is blank for sample sizes greater than 100, which was the limit set for exact 
computation.  

Most of the report columns have obvious interpretations. Those that may not be obvious are 
presented here.  

Prop Grp 2 P2 
This is the value of P2, the response rate in the control group. 



Equivalence Tests for Two Proportions  215-19 

Lower & Upper Equiv. Grp 1 Prop: P1.0L & P1.0U 

ed equivalent 
to P2.  

iv. Margin Diff: D0.L & D0.U 
T  rates. Values of the difference 
ou

Actual Margin
T s th d hic e po  is 
co puted. 

T ph
T va a ally 
ac xa or

A ph
T a
exact cal o 100, and since this value is calculated exactly, it is not shown for 
va

The difference between the Target Alpha and the Actual Alpha is caused by the discrete nature of 
th  binomial in determining 
th

P

These are the margin of equivalence for the response rate of the treatment group as specified by 
the null hypothesis of non-equivalence. Values of P1 inside these limits are consider

Lower & Upper Equ
hese set the margin of equivalence for the difference in response
tside these limits are considered non-equivalent.  

 Diff D1 
his i e value of D1, the rence between the two group proportions at w h th weriffe
m This is the value of the difference under the alternative hypothesis. 

arget Al a 
his is the lue of lpha that was targeted by the design. Note that the target alpha is  usu not
hieved e ctly. F  two-sided tests, this value will usually be 0.05. 

ctual Al a 
his is the lue of lpha that was actually achieved by this design. Note that since the limit on va

culations was set t
lues of N1 greater than 100.  

e binomial distribution and the use of the normal approximation to the
e critical value of the test statistic. 

lots Section 
 

Power vs N1 by D1 with P2=0.50 A=0.05 N2=N1
D0.U=0.15 T=LS FM Test
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The values from the table are displayed in the above chart. This chart gives us a quick look at the 
sample size that will be required for various values of D1. 
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Example 2 – Finding the Sample Size 
Continuing with the scenario given in Example 1, the researchers want to determine the sample 
size necessary for each value of D1 to achieve a power of 0.80. To cut down on the runtime, they 
decide to look at approximate values whenever N1 is greater than 100.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 

g here by making 
ntries as listed below or load the completed template Example2 from the 

the PASS Home window, load the Equivalence Tests for Two Proportions [Differences] 
procedure window by clicking on Proportions, then Two Independent Proportions, then 
Equivalence Tests, then Specify using Differences. You may then follow alon
the appropriate e
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.80 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting. 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
D0.U (Upper Equivalence Difference).....0.15 
D0.L (Lower Equivalence Difference) .....-D0.U 

ce).............................0.00 0.05 0.10 
2 (Reference Group Proportion) ...........0.5 

Test Type ................................................Likelihood Score (Farr. & Mann.) 

Options Tab 
Maximum N1 or N2 Exact .......................100 

Output 

D1 (Actual Differen
P

Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
Test Statistic: Score test (Farrington & Manning) 
 
    Lower Upper Lower Upper    
 Sample Sample  Equiv. Equiv. Equiv. Equiv. Actual   
 Size Size Prop Grp 1 Grp 1 Margin Margin Margin   
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Diff Target Actual 
Power N1 N2 P2 P1.0L P1.0U D0.L D0.U D1 Alpha Alpha 
0.8003 188 188 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500  
0.8001 304 304 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0500 0.0500  
0.8001 1202 1202 0.5000 0.3500 0.6500 -0.1500 0.1500 0.1000 0  .0500 

 

The required sample size will depend a great deal on the value of D1. Any effort spent 
determining an accurate value for D1 will be worthwhile.  
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Example 3 – Comparing the Power of Several Test 
Statistics 
Continuing with Example 1, the researchers want to determine which of the eight possible test 
statistics to adopt by using the comparative reports and charts that PASS produces. They decide 
to compare the powers and actual alphas for various sample sizes between 50 and 200 when D1 is 
0.1.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Proportions [Differences] 
procedure window by clicking on Proportions, then Two Independent Proportions, then
Equivalence Tests, then Specify using D

 
ifferences. You may then follow along here by making 

priate entries as listed below or load the completed template Example3 from the 
ab on the procedure window. 

the appro
Template t

Option Value 

r and Beta 

 200 by 50 
 

 

 Group Proportion) ...........0.5 
ihood Score (Farr. & Mann.) 

Reports Tab 
ric Report .............................Not checked 
arative Reports ....................Checked 

Show Plots ..............................................Not checked 
ts.........................Checked 
tatements............0 

O
M

Data Tab 
Find (Solve For) ......................................Powe
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................50 to
N2 (Sample Size Group 2) ......................Use R
R (Sample Allocation Ratio)....................1.0 
D0.U (Upper Equivalence Difference).....0.15 
D0.L (Lower Equivalence Difference) ..... -D0.U
D1 (Actual Difference).............................0.10 
P2 (Reference
Test Type ................................................Likel

Show Nume
Show Comp
Show Definitions .....................................Not checked 

Show Comparative Plo
umber of Summary SN

ptions Tab 
aximum N1 or N2 Exact .......................300 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Power Comparison of Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
  Upper           
  Equiv.  Z(P) Z(UnP) Z(P) Z(UnP) T F.M. M.N. G.N.  
  Margin Target Test Test CC Test CC Test Test Score Score Score  
N1/N2 P2 D0.U Alpha Power Power Power Power Power Power Power Power  
50/50 0.5000 0.1500 0.0500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
100/100 0.5000 0.1500 0.0500 0.1494 0.1494 0.1047 0.1047 0.1493 0.1495 0.1494 0.1494  
150/150 0.5000 0.1500 0.0500 0.2208 0.2208 0.1863 0.1863 0.2208 0.2208 0.2208 0.2208  
200/200 0.5000 0.1500 0.0500 0.2552 0.2553 0.2238 0.2239 0.2552 0.2566 0.2566 0.2560  
 
Actual Alpha Comparison of Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
  Upper           
  Equiv.  Z(P) Z(UnP) Z(P) Z(UnP) T F.M. M.N. G.N.  
 Test CC  Margin Target Test Test CC Test Test Score Score Score  
N1/N2 Alpha P2 D0.U Alpha Alpha Alpha Alpha Alpha Alpha Alpha Alpha  
50/50 0.5000 0.1500 0.0500 0.0515 0.0515 0.0334 0.0334 0.0514 0.0515 0.0515 0.0515  
100/100 0.5000 0.1500 0.0500 0.0486 0.0486 0.0358 0.0358 0.0485 0.0489 0.0487 0.0487  
150/150 0.5000 0.1500 0.0500 0.0495 0.0495 0.0386 0.0386 0.0495 0.0495 0.0495 0.0495  
200/200 0.5000 0.1500 0.0500 0.0465 0.0468 0.0376 0.0378 0.0465 0.0488 0.0488 0.0481  
 
 

Power vs N1 by Test with D1=0.
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It is interesting to note that the powers of the continuity-corrected test statistics are consistently 
lower than the other tests. This occurs because the actual alpha achieved by these tests is lower 
than for the other tests. An interesting finding of this example is that the regular t-test performed 
about as well as the z-test.  
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Example 4 – Validation using Chow with Equal Sample 
Sizes 
Chow et al. (2003), page 91, present a sam
-0.2, D1 = 0.05, alpha = 0.05, and b

ple size study in which P2 = 0.75, D0.U = 0.2, D0.L =  
eta = 0.2. Using the pooled Z test statistic, they found the 

a

Setup 

s mple size to be 96 in each group.  

T
th
pr
E
th ample4 from the 
T

Option

his sectio resents the values of each of the parameters needed to run this example. First, from n p
e PASS Home window, load the Equivalence Tests for Two Proportions [Differences] 
ocedure window by clicking on Proportions, then Two Independent Proportions, then 
quivalence Tests, then Specify using Differences. You may then follow along here by making 
e appropriate entries as listed below or load the completed template Ex
emplate tab on the procedure window. 

 Value 
D
F
P
A
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting. 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
D0.U (Upper Equivalence Difference).....0.2 
D0.L (Lower Equivalence Difference) ..... -D0.U 
D1 (Actual Difference).............................0.05 
P2 (Reference Group Proportion) ...........0.75 
Test Type ................................................Z Test (Pooled) 

Options Tab 
Maximum N1 or N2 Exact .......................2 (Set low for a rapid search.) 

Output 

ata Tab 
ind (Solve For) ......................................N1 
ower ......................................................0.80 
lpha .......................................................0.05 

Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
Test Statistic: Z test (pooled) 
 
    Lower Upper Lower Upper    
 Sample Sample  Equiv. Equiv. Equiv. Equiv. Actual   
 Size Size Prop Grp 1 Grp 1 Margin Margin Margin   
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Diff Target Actual 
Power N1 N2 P2 P1.0L P1.0U D0.L D0.U D1 Alpha Alpha 
0.8028 98 98 0.7500 0.5500 0.9500 -0.2000 0.2000 0.0500 0.0500  
 

PASS found the required sample size to be 98 which is slightly larger than the 96 that Chow 
obtained. This is mainly due to the rounding to two decimal places that Chow did in this example. 
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We used the exact option in PASS and obtained N1 = 99. Thus, PASS was indeed closer than w
Chow.  

as 

Example 5 – Validation using Tuber-Bitter with Equal 
Sample Sizes 
Tuber-Bitter et al. (2000), page 1271, present a sample size study in which P2 = 0.1; D0.U = 0.01, 

0.L = -D0.U; D1 = 0.0; alpha = 0.05; and beta = 0.1. Using the pooled Z test 0.02, 0.03; D
statistic, they found the sample sizes to be 19484, 4871, and 2165 in each group.  

Setup 
This section presents the values of each of the parameters needed to run this example. First
the PASS Home window, load the Equiv

, from 
alence Tests for Two Proportions [Differences] 

e window by clicking on Propo hen Two Independent Proportions, then 
nce Tests, then Specify using Differences. You may then follow along here by making 

iate entries as listed below or load the completed template Example5 from the 

procedur rtions, t
Equivale
the appropr
Template tab on the procedure window. 

Option Value 

 
 since this is the Find setting. 

 

2) 

P2 (Reference Group Proportion) ...........0.1 
..............................................Z Test (Pooled) 

Data Tab 
Find (Solve For) ......................................N1 

 Power ......................................................0.90
Alpha .......................................................0.05
N1 (Sample Size Group 1) ......................Ignored
N2 (Sample Size Group 2) ......................Use R
R (Sample Allocation Ratio) ....................1.0 
Specify Treatment Proportion using........Differences (P1-P

lence Difference)..... .01 .02 .03 D0.U (Upper Equiva
D0.L (Lower Equivalence Difference) .....-D0.U 
D1 (Actual Difference).............................0.0 

Test Type ..

Options Tab 
Maximum N1 or N2 Exact .......................2 (Set low for a rapid search.) 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
Test Statistic: Z test (pooled) 
 
    Lower Upper Lower Upper    
 Sample Sample  Trivial Trivial Trivial Trivial Actual   
 Size Size Prop Grp 1 Grp 1 Margin Margin Margin   
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Diff Target Actual 
Power N1 N2 P2 P1.0L P1.0U D0.L D0.U D1 Alpha Alpha 
0.9000 19480 19480 0.1000 0.0900 0.1100 -0.0100 0.0100 0.0000 0.0500  
0.9000 4870 4870 0.1000 0.0800 0.1200 -0.0200 0.0200 0.0000 0.0500  
0.9001 2165 2165 0.1000 0.0700 0.1300 -0.0300 0.0300 0.0000 0.0500  
 

PASS found the required sample sizes to within rounding error of Tuber-Bitter.  

Example 6 – Computing the Power after Completing an 
Experiment 
Researchers are testing a generic drug to determine if it is equivalent to the name-brand 

ess rate of the generic brand is no more than 5% 
ith 1000 individuals in each group, they find that 

, respond to 
clare that the two 

 like to compute the power for actual differences 

rence observed in the study, 77.4%.  In fact, the 
he proposed equivalence difference, 5%. It would 

 for a difference larger than the equivalence 
s smaller than or equal to the 

Setup 

alternative.  Equivalence is declared if the succ
from that of the name-brand drug.  In a study w
774, or 77.4%, are successfully treated using the name-brand drug, and 700, or 70%

) with alpha = 0.05 failed to dethe generic drug.  An equivalence test (exact test
nowdrugs are equivalent. The researchers would 

ranging from 0 to 4%.  Suppose that the true value for the response rate for the name-brand drug 
is 77%. 

Note that the power is not calculated at the diffe
 tdifference observed in the study is larger than

make no sense to perform a power calculation
difference.  It is more informative to study a range of value
equivalence difference.   

This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Proportions [Differences] 
procedure window by clicking on Proportions, then Two Independent Proportions, then 
Equivalence Tests, then Specify using Differences. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example6 from the 
Template tab on the procedure window. 
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Option Value 

Ignored since this is the Find setting 
............................Likelihood Score (Farr. & Mann.) 

D0.U (Upper Equiva
D
D ....................0.00 to 0.04 by 0.01 
P nce G
N1 (Samp
N2 (Sample
R
A

O a

Output 

Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................
Test Type ....................

lence Difference).....0.05 
0.L (Lower Equivalence Difference) .....-D0.U 
1 (Actual Difference).........
2 (Refere roup Proportion) ...........0.77 

le Size Group 1) ......................1000 
 Size roup 2 .......... ......Use R  G ) . .....

..............................................................1.0 
lpha .......................................................0.05 

ptions T b 
Maximum N1 or N2 Exact .......................100 

Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
Test Statistic: Score test (Farrington & Manning) 
 
    Lower Upper Lower Upper    
 Sample Sample  Trivial Trivial Trivial Trivial Actual   
 Size Size Prop Grp 1 Grp 1 Margin Margin Margin   
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Diff Target Actual 
Power N1 N2 P2 P1.0L P1.0U D0.L D0.U D1 Alpha Alpha 
0.6875 1000 1000 0.7700 0.7200 0.8200 -0.0500 0.0500 0.0000 0.0500  
0.6313 1000 1000 0.7700 0.7200 0.8200 -0.0500 0.0500 0.0100 0.0500  
0.4731 1000 1000 0.7700 0.7200 0.8200 -0.0500 0.0500 0.0200 0.0500  
0.2857 1000 1000 0.7700 0.7200 0.8200 -0.0500 0.0500 0.0300 0.0500  
0.1362 1000 1000 0.7700 0.7200 0.8200 -0.0500 0.0500 0.0400 0.0500  
 
Note: exact results based on the binomial were only calculated when both N1 and N2 were less than 100. 

 

The power of the test ranges from 68.75% if the true difference is actually 0.0% to 13.62% if the 
ence is 4%. true differ
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Exam  Sample 7 – Finding the ple Size using Proportions 
A study is being designed to prove the equivalence of a new drug to the current standard.  The 

o produce.  The 
en 78% and 92%.  

ess rates ranging 
a significance level of 0.05 using the Farrington 

current drug is effective in 85% of cases.  The new drug, however, is cheaper t
enew drug will be deemed equivalent to the standard if its success rate is betw

 or 90% power for actual succWhat sample sizes are necessary to obtain 80%
from 80% to 90%?  The researchers will test at 
and Manning likelihood score test. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 

e Tests for Two Proportions [Proportions] 
, then Two Independent Proportions, then 

ests, then Specify using Proportions. You may then follow along here by making 
the completed template Example7 from the 

Template tab on the procedure window. 

the PASS Home window, load the Equivalenc
procedure window by clicking on Proportions
Equivalence T
the appropriate entries as listed below or load 

Option Value 

Power ......................................................0.80 0.90 
............................0.05 

1 etting 
N
R
P er E
P1.0L (Lower Equivalence Prop)
P1.1 (Actua
P
T .. .

O a
M N

Data Tab 
Find (Solve For) ......................................N1 

Alpha ...........................
N  (Sample Size Group 1) ...................... Ignored since this is the Find s

2 (Sample Size Group 2) ......................Use R 
 (Sample Allocation Ratio)....................1.0 
1.0U (Upp quivalence Prop)............0.92 

............0.78 
l Proportion)..........................0  to 0 y 0.80 .90 b .02 

2 (Reference Group Proportion) ...........0.85 
est Type ............ .................................Likelihood Score (Farr. & Mann.) 

ptions T b 
aximum 1 or N2 Exact .......................100 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 

Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
Test Statistic: Score test (Farrington & Manning) 
 
    Lower Upper Lower Upper    
 Sample Sample  Equiv. Equiv. Equiv. Equiv. Actual   
 Size Size Prop Grp 1 Grp 1 Margin Margin Margin   
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Diff Target Actual 
Power N1 N2 P2 P1.0L P1.0U D0.L D0.U D1 Alpha Alpha 
0.9000 6166 6166 0.8500 0.7800 0.9200 -0.0700 0.0700 -0.0500 0.0500  
0.8001 4453 4453 0.8500 0.7800 0.9200 -0.0700 0.0700 -0.0500 0.0500  
0.9000 1480 1480 0.8500 0.7800 0.9200 -0.0700 0.0700 -0.0300 0.0500  
0.8002 1070 1070 0.8500 0.7800 0.9200 -0.0700 0.0700 -0.0300 0.0500  
0.9001 655 655 0.8500 0.7800 0.9200 -0.0700 0.0700 -0.0100 0.0500  
0.8008 503 503 0.8500 0.7800 0.9200 -0.0700 0.0700 -0.0100 0.0500  
0.9004 622 622 0.8500 0.7800 0.9200 -0.0700 0.0700 0.0100 0.0500  
0.8004  0.9200477 477 0.8500 0.7800  -0.0700 0.0700 0.0100 0.0500  
0.9002  0.92001261 1261 0.8500 0.7800  -0.0700 0.0700 0.0300 0.0500  
0.8002 912 912 0.8500 0.7800 0.9200 -0.0700 0.0700 0.0300 0.0500  
0.9000 4685 4685 0.8500 0.7800 0.9200  -0.0700 0.0700 0.0500 0.0500  
0.8000 3386 3386 0.8500 0.7800 0.9200 -0.0700 0.0700 0.0500 0.0500  
 
Note: exact results based on the binomial were only calculated when both N1 and N2 were less than 100. 
 
 

N1 vs P1.1 by Power with P2=0.85 A=0.05 N2=N1
 TestP1.0=0.92 T=LS FM
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It is evident from these results that the sample sizes required to achieve 80% and 90% power 
depend a great deal on the actual value of the success rate, P1.1. 
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Chapter 216 

Confidence 
Intervals for Two 
Proportions 
Introduction 
This routine calculates the group sample sizes necessary to achieve a specified interval width of 
the difference, ratio, or odds ratio of two independent proportions.  

Caution: These procedures assume that the proportions obtained from future samples will be the 
same as the proportions that are specified. If the sample proportions are different from those 
specified when running these procedures, the interval width may be narrower or wider than 
specified.  

Four Procedures Documented Here 
There are four procedures in the menus described in this chapter. These procedures are very 
similar except for the type of parameterization. The parameterization can be in terms of 
proportions, differences in proportions, ratios of proportions, and odds ratios.  

Technical Details 
A background of the comparison of two proportions is given, followed by details of the 
confidence interval methods available in this procedure. 

Comparing Two Proportions  
Suppose you have two populations from which dichotomous (binary) responses will be recorded. 
The probability (or risk) of obtaining the event of interest in population 1 (the treatment group) is 

 and in population 2 (the control group) is . The corresponding failure proportions are given 
by  and .  

1p 2p

11 1 pq −= 22 1 pq −=

The assumption is made that the responses from each group follow a binomial distribution. This 
means that the event probability  is the same for all subjects within a population and that the 
responses from one subject to the next are independent of one another. 

pi
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Random samples of m and n individuals are obtained from these two populations. The data from 
these samples can be displayed in a 2-by-2 contingency table as follows 
 

 Success Failure Total 
Population 1 a c m 

Population 2 b d n 

Totals s f N 
 

The following alternative notation is sometimes used: 
 

 Success Failure Total 
Population 1    x11 x12 n1

Population 2    x21 x22 n2

Totals   N m1 m2

 

The binomial proportions  and  are estimated from these data using the formulae 1p p2

$p a
m

x
n1
11

1

= =  and $p b
n

x
n2

21

2

= =  

When analyzing studies such as these, you usually want to compare the two binomial 
probabilities  and . The most direct methods of comparing these quantities are to calculate 
their difference or their ratio. If the binomial probability is expressed in terms of odds rather than 
probability, another measure is the odds ratio. Mathematically, these comparison parameters are 

1p 2p

 

Parameter Computation 

Difference  21 pp −=δ  

Risk Ratio 21 / pp=φ  

Odds Ratio 
12

21

22

11

/
/

qp
qp

qp
qp

==ψ  

 

The choice of which of these measures is used might at seem arbitrary, but it is important. Not 
only is their interpretation different, but, for small sample sizes, the coverage probabilities may be 
different. 

Difference 
The (risk) difference 21 pp −=δ  is perhaps the most direct method of comparison between the 
two event probabilities. This parameter is easy to interpret and communicate. It gives the absolute 
impact of the treatment. However, there are subtle difficulties that can arise with its 
interpretation.  

One interpretation difficulty occurs when the event of interest is rare. If a difference of 0.001 
were reported for an event with a baseline probability of 0.40, we would probability dismiss this 
as being of little importance. That is, there usually little interest in a treatment that decreases the 
probability from 0.400 to 0.399. However, if the baseline probably of a disease was 0.002 and 
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0.001 was the decrease in the disease probability, this would represent a reduction of 50%. Thus 
we see that interpretation depends on the baseline probability of the event. 

A similar situation occurs when the amount of possible difference is considered. Consider two 
events, one with a baseline event rate of 0.40 and the other with a rate of 0.02. What is the 
maximum decrease that can occur? Obviously, the first event rate can be decreased by an absolute 
amount of 0.40 which the second can only be decreased by a maximum of 0.02. 

So, although creating the simple difference is a useful method of comparison, care must be taken 
that it fits the situation.  

Ratio 
The (risk) ratio 21 / pp=φ  gives the relative change in the disease risk due to the application of 
the treatment. This parameter is also direct and easy to interpret. To compare this with the 
difference, consider a treatment that reduces the risk of disease for 0.1437 to 0.0793. Which 
single number is most enlightening, the fact that the absolute risk of disease has been decreased 
by 0.0644, or the fact that risk of disease in the treatment group is only 55.18% of that in the 
control group? In many cases, the percentage (risk ratio) communicates the impact of the 
treatment better than the absolute change. 

Perhaps the biggest drawback to this parameter is that it cannot be calculated in one of the most 
common experimental designs: the case-control study.   

Odds Ratio 
Chances are usually communicated as long-term proportions or probabilities. In betting, chances 
are often given as odds. For example, the odds of a horse winning a race might be set at 10-to-1 
or 3-to-2. How do you translate from odds to probability? An odds of 3-to-2 means that the event 
will occur three out of five times. That is, an odds of 3-to-2 (1.5) translates to a probability of 
winning of 0.60. 

The odds of an event are calculated by dividing the event risk by the non-event risk. Thus, in our 
case of two populations, the odds are 

o p
p1

1

11
=

−
 and o p

p2
2

21
=

−
 

For example, if  is 0.60, the odds are 0.60/0.4 = 1.5. Rather than represent the odds as a 
decimal amount, it is re-scaled into whole numbers. Thus, instead of saying the odds are 1.5-to-1, 
we say they are 3-to-2. 

1p

Another way to compare proportions is to compute the ratio of their odds. The odds ratio of two 
events is 

2

2

1

1

2

1

1

1

p
p

p
p

o
o

−

−
=

=ψ
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Although the odds ratio is more complicated to interpret than the risk ratio, it is often the 
parameter of choice. Reasons for this include the fact that the odds ratio can be accurately 
estimated from case-control studies, while the risk ratio cannot. Also, the odds ratio is the basis of 
logistic regression (used to study the influence of risk factors). Furthermore, the odds ratio is the 
natural parameter in the conditional likelihood of the two-group, binomial-response design. 
Finally, when the baseline event-rates are rare, the odds ratio provides a close approximation to 
the risk ratio since, in this case, 21 11 pp −≈− , so that 

φψ =≈

−

−
=

2

1

2

2

1

1

1

1
p
p

p
p

p
p

 

Confidence Intervals for the Difference 
Many methods have been devised for computing confidence intervals for the difference between 
two proportions δ = −p p1 2 . Seven of these methods are available in the Confidence Intervals 
for Two Proportions [Proportions] using Proportions and Confidence Intervals for Two 
Proportions [Differences] procedures. The seven confidence interval methods are 

1. Score (Farrington and Manning)  

2. Score (Miettinen and Nurminen) 

3. Score with Correction for Skewness (Gart and Nam) 

4. Score (Wilson) 

5. Score with Continuity Correction (Wilson) 

6. Chi-Square with Continuity Correction (Yates) 

7. Chi-Square (Pearson) 

Newcombe (1998b) conducted a comparative evaluation of eleven confidence interval methods. 
He recommended that the modified Wilson score method be used instead of the Pearson Chi-
Square or the Yate’s Corrected Chi-Square. Beal (1987) found that the Score methods performed 
very well. The lower L and upper U limits of these intervals are computed as follows. Note that, 
unless otherwise stated, z z= α / 2  is the appropriate percentile from the standard normal 
distribution.  
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C.I. for Difference: Farrington and Manning’s Score 
Farrington and Manning (1990) proposed a test statistic for testing whether the difference is equal 
to a specified valueδ0 . The regular MLE’s  and are used in the numerator of the score 
statistic while MLE’s  and 

$p1 $p2

1
~p ~p2  constrained so that 021

~~ δ=− pp are used in the denominator. 
The significance level of the test statistic is based on the asymptotic normality of the score 
statistic.  

The test statistic formula is 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−−
=

2

22

1

11

021

~~~~
ˆˆ

n
qp

n
qp

ppzFMD
δ   

where the estimates  and ~p1
~p2  are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given as 

021
~~ δ+= pp  
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( )00210 1 δδ −= xL  

[ ] 1021021 2 MxNNL +−−= δδ  

( ) 1022 MNNNL −−+= δ  

NL =3  

Farrington and Manning (1990) proposed inverting their score test to find the confidence interval. 
The lower limit is found by solving 

2/αzzFMD =  

and the upper limit is the solution of 

2/αzzFMD −=  
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C.I. for Difference: Miettinen and Nurminen’s Score 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the difference is equal 
to a specified valueδ0 . The regular MLE’s  and are used in the numerator of the score 
statistic while MLE’s 

$p1 $p2
~p1  and ~p2  constrained so that ~ ~p p1 2 0− = δ are used in the denominator. A 

correction factor of N/(N-1) is applied to make the variance estimate less biased. The significance 
level of the test statistic is based on the asymptotic normality of the score statistic.  

The formula for computing this test statistic is 
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Miettinen and Nurminen (1985) proposed inverting their score test to find the confidence interval. 
The lower limit is found by solving 

z zMND = α / 2  

and the upper limit is the solution of 

z zMND = − α / 2  
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C.I. for Difference: Gart and Nam’s Score 
Gart and Nam (1990) page 638 proposed a modification to the Farrington and Manning (1990) 
difference test that corrected for skewness. Let ( )zFM δ  stand for the Farrington and Manning 
difference test statistic described above. The skewness corrected test statistic is the 
appropriate solution to the quadratic equation 

zGN

( ) ( ) ( )( )− + − + + =~ ~γ δz z zGND GND FMD
2 1 0γ  

where 
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Gart and Nam (1988) proposed inverting their score test to find the confidence interval. The 
lower limit is found by solving 

2/αzzGND =  

and the upper limit is the solution of 

2/αzzGND −=  

C.I. for Difference: Wilson’s Score as Modified by Newcombe (with and 
without Continuity Correction) 
For details, see Newcombe (1998b), page 876.  

BppL −−= 21 ˆˆ  
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( ) 01ˆ 22
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−
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n
ppzpp  



216-8  Confidence Intervals for Two Proportions 

C.I. for Difference: Yate’s Chi-Square with Continuity Correction 
For details, see Newcombe (1998b), page 875. 
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C.I. for Difference: Pearson’s Chi-Square 
For details, see Newcombe (1998b), page 875. 
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For each of the seven methods, one-sided intervals may be obtained by replacing α/2 by α. 

For two-sided intervals, the distance from the difference in sample proportions to each of the limits 
may be different. Thus, instead of specifying the distance to the limits we specify the width of the 
interval, W.  

The basic equation for determining sample size for a two-sided interval when W has been specified 
is 

LUW −=  

For one-sided intervals, the distance from the variance ratio to limit, D, is specified. 

The basic equation for determining sample size for a one-sided upper limit when D has been 
specified is 

( )21 ppUD ˆˆ −−=  

The basic equation for determining sample size for a one-sided lower limit when D has been 
specified is 

( ) LppD −−= 21 ˆˆ  

Each of these equations can be solved for any of the unknown quantities in terms of the others. 
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Confidence Intervals for the Ratio (Relative Risk) 
Many methods have been devised for computing confidence intervals for the ratio (relative risk) 
of two proportions 21 / pp=φ . Six of these methods are available in the Confidence Intervals for 
Two Proportions [Ratios] procedure. The six confidence interval methods are 

1. Score (Farrington and Manning)  

2. Score (Miettinen and Nurminen) 

3. Score with Correction for Skewness (Gart and Nam) 

4. Logarithm (Katz) 

5. Logarithm + 1/2 (Walter) 

6. Fleiss 

C.I. for Ratio: Farrington and Manning’s Score 
Farrington and Manning (1990) proposed a test statistic for testing whether the ratio is equal to a 
specified valueφ0 . The regular MLE’s  and are used in the numerator of the score statistic 
while MLE’s 

$p1 $p2
~p1  and ~p2  constrained so that ~ / ~p p1 2 0= φ are used in the denominator. A 

correction factor of N/(N-1) is applied to increase the variance estimate. The significance level of 
the test statistic is based on the asymptotic normality of the score statistic.  

Here is the formula for computing the test 
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as in the test of Miettinen and Nurminen (1985). 

Farrington and Manning (1990) proposed inverting their score test to find the confidence interval. 
The lower limit is found by solving 

2/αzzFMR =  

and the upper limit is the solution of 

2/αzzFMR −=  
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C.I. for Ratio: Miettinen and Nurminen’s Score 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the ratio is equal to a 
specified valueφ0 . The regular MLE’s  and are used in the numerator of the score statistic 
while MLE’s 

$p1 $p2
~p1  and ~p2  constrained so that ~ / ~p p1 2 0= φ are used in the denominator. A 

correction factor of N/(N-1) is applied to make the variance estimate less biased. The significance 
level of the test statistic is based on the asymptotic normality of the score statistic.  

Here is the formula for computing the test 
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Miettinen and Nurminen (1985) proposed inverting their score test to find the confidence interval. 
The lower limit is found by solving 

z zMNR = α / 2  

and the upper limit is the solution of 

z zMNR = − α / 2  

C.I. for Ratio: Gart and Nam’s Score 
Gart and Nam (1988) page 329 proposed a modification to the Farrington and Manning (1988) 
ratio test that corrected for skewness. Let ( )zFM φ  stand for the Farrington and Manning ratio test 
statistic described above. The skewness corrected test statistic is the appropriate solution to 
the quadratic equation 

zGN
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Gart and Nam (1988) proposed inverting their score test to find the confidence interval. The 
lower limit is found by solving 

z zGNR = α / 2  

and the upper limit is the solution of 

z zGNR = − α / 2  

C.I. for Ratio: Logarithm (Katz) 
This was one of the first methods proposed for computing confidence intervals for risk ratios.  

For details, see Gart and Nam (1988), page 324. 
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C.I. for Ratio: Logarithm (Walters) 
For details, see Gart and Nam (1988), page 324.  
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C.I. for Odds Ratio and Relative Risk: Iterated Method of Fleiss 
Fleiss (1981) presents an improved confidence interval for the odds ratio and relative risk. This 
method forms the confidence interval as all those value of the odds ratio which would not be 
rejected by a chi-square hypothesis test. Fleiss gives the following details about how to construct 
this confidence interval. To compute the lower limit, do the following.  

1. For a trial value of ψ , compute the quantities X, Y, W, F, U, and V using the formulas 

( ) ( snsmX −++= )ψ  
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 Finally, use the updating equation below to calculate a new value for the odds ratio using 
the updating equation 

( ) ( )
V
Fkk −=+ ψψ 1  

2.  Continue iterating until the value of F is arbitrarily close to zero. 

The upper limit is found by substituting + 1
2   for − 1

2  in the formulas for F and V. 
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Confidence limits for the relative risk can be calculated using the expected counts A, B, C, and D 
from the last iteration of the above procedure. The lower limit of the relative risk  
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Confidence Intervals for the Odds Ratio 
Many methods have been devised for computing confidence intervals for the odds ratio of two 
proportions  
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Eight of these methods are available in the Confidence Intervals for Two Proportions [Odds 
Ratios] procedure. The eight confidence interval methods are 

1. Exact (Conditional) 

2. Score (Farrington and Manning)  

3. Score (Miettinen and Nurminen) 

4. Fleiss 

5. Logarithm 

6. Mantel-Haenszel 

7. Simple 

8. Simple + 1/2 

C.I. for Odds Ratio: Conditional Exact 
The conditional exact confidence interval of the odds ratio is calculated using the noncentral 
hypergeometric distribution as given in Sahai and Khurshid (1995). That is, a ( )100 1−α %  
confidence interval is found by searching for ψ L  and ψU  such that 
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where 

( )111 ,0max nmk −=  and  ( )112 ,min mnk =

Farrington and Manning’s Test of the Odds Ratio 
Farrington and Manning (1990) developed a test statistic similar to that of Miettinen and 
Nurminen but with the factor N/(N-1) removed. 

The formula for computing this test statistic is 
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where the estimates ~p1  and ~p2  are computed as in the corresponding test of Miettinen and 
Nurminen (1985) as 

( )1~1

~~
02

02
1 −+
=

ψ
ψ

p
pp  

A
ACBBp

2
4~

2

2
−+−

=  

( )102 −= ψNA  

( )101201 −−+= ψψ MNNB  

1MC −=  

Farrington and Manning (1990) proposed inverting their score test to find the confidence interval. 
The lower limit is found by solving 

2/αzzFMO =  

and the upper limit is the solution of 

2/αzzFMO −=  
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C.I. for Odds Ratio: Miettinen and Nurminen 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the odds ratio is equal 
to a specified valueψ 0

$p2

. Because the approach they used with the difference and ratio does not 
easily extend to the odds ratio, they used a score statistic approach for the odds ratio. The regular 
MLE’s  are  and . The constrained MLE’s are $p1

~p1  and ~p2 , These estimates are constrained 
so that ~ψ ψ= 0 . A correction factor of N/(N-1) is applied to make the variance estimate less 
biased. The significance level of the test statistic is based on the asymptotic normality of the score 
statistic.  

The formula for computing the test statistic is 
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Miettinen and Nurminen (1985) proposed inverting their score test to find the confidence interval. 
The lower limit is found by solving 

2/αzzMNO =  

and the upper limit is the solution of 

2/αzzMNO −=  
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C.I. for Odds Ratio: Iterated Method of Fleiss 
Fleiss (1981) presents an improve confidence interval for the odds ratio. This method forms the 
confidence interval as all those value of the odds ratio which would not be rejected by a chi-
square hypothesis test. Fleiss gives the following details about how to construct this confidence 
interval. To compute the lower limit, do the following.  

1. For a trial value of ψ , compute the quantities X, Y, W, F, U, and V using the formulas 
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 Finally, use the updating equation below to calculate a new value for the odds ratio using 
the updating equation 

( ) ( )
V
Fkk −=+ ψψ 1  

2. Continue iterating until the value of F is arbitrarily close to zero. 

The upper limit is found by substituting + 1
2   for − 1

2  in the formulas for F and V. 

Confidence limits for the relative risk can be calculated using the expected counts A, B, C, and D 
from the last iteration of the above procedure. The lower limit of the relative risk  
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C.I. for Odds Ratio: Mantel-Haenszel 
The common estimate of the logarithm of the odds ratio is used to create this estimator. That is 

( ) ⎟
⎠
⎞

⎜
⎝
⎛=

bc
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The standard error of this estimator is estimated using the Robins, Breslow, Greenland (1986) 
estimator which performs well in most situations. The standard error is given by 
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The confidence limits are calculated as 
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( ) ( )( )( )$ exp ln $ ln $/ψ ψ αupper z se= + −1 2 ψ  

C.I. for Odds Ratio: Simple, Simple + ½, and Logarithm 
The simple estimate of the odds ratio uses the formula 

bc
ad

qp
qp

=

=
12

21

ˆˆ
ˆˆ

ψ̂

 

The standard error of this estimator is estimated by 

( )
dcba

se 1111ˆˆ +++=ψψ  

Problems occur if any one of the quantities a, b, c, or d are zero. To correct this problem, many 
authors recommend adding one-half to each cell count so that a zero cannot occur. Now, the 
formulas become 
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and 
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The distribution of these direct estimates of the odds ratio do not converge to normality as fast as 
does their logarithm, so the logarithm of the odds ratio is used to form confidence intervals. The 
formula for the standard error of the log odds ratio is 
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A ( )%1100 α−  confidence interval for the log odds ratio is formed using the standard normal 
distribution as follows 

( )( )LsezLlower ′−′= − 2/1expˆ αψ  

( )( )LsezLupper ′+′= − 2/1expˆ αψ  

See Fleiss et al (2003) for more details. 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of random samples of 
size n1 and n2 are drawn from populations 1 and 2, respectively, and a confidence interval for the 
true difference/ratio/odds ratio of proportions is calculated for each pair of samples, the proportion 
of those intervals that will include the true difference/ratio/odds ratio of proportions is 1 – α. 

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab (Common Options) 
This chapter covers four procedures, each of which has different options. This section documents 
options that are common to all four procedures. Following this section, the unique options for 
each procedure (proportions, differences, ratios, and odds ratios) will be documented. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters.  
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Confidence 

Confidence Level 
The confidence level, 1 – α, has the following interpretation. If thousands of random samples of 
size n1 and n2 are drawn from populations 1 and 2, respectively, and a confidence interval for the 
true difference/ratio/odds ratio of proportions is calculated for each pair of samples, the proportion 
of those intervals that will include the true difference/ratio/odds ratio of proportions is 1 – α.  

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90, 0.95 or 0.90 to 0.99 by 0.01. 

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2 = [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

One-Sided or Two-Sided Interval 

Interval Type 
Specify whether the interval to be used will be a two-sided confidence interval, an interval that 
has only an upper limit, or an interval that has only a lower limit. 
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Data Tab (Proportions) 
This section documents options that are used when the parameterization is in terms of the values 
of the two sample proportions, P1 and P2. The corresponding procedure is Confidence Intervals 
for the Difference between Two Proportions using Proportions. 

Precision 

Confidence Interval Width (Two-Sided) 
This is the distance from the lower confidence limit to the upper confidence limit.  

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Distance from Diff to Limit (One-Sided) 
This is the distance from the difference in sample proportions to the lower or upper limit of the 
confidence interval, depending on whether the Interval Type is set to Lower Limit or Upper 
Limit. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Proportions (Difference = P1 – P2) 

P1 (Proportion Group 1) 
Enter an estimate of the proportion for group 1. The sample size and width calculations assume 
that the value entered here is the proportion estimate that is obtained from the sample. If the 
sample proportion is different from the one specified here, the width may be narrower or wider 
than specified. 

The value(s) must be between 0.0001 and 0.9999. 

You can enter a range of values such as .1 .2 .3 or .1 to .5 by .1.  

P2 (Proportion Group 2) 
Enter an estimate of the proportion for group 2. The sample size and width calculations assume 
that the value entered here is the proportion estimate that is obtained from the sample. If the 
sample proportion is different from the one specified here, the width may be narrower or wider 
than specified. 

The value(s) must be between 0.0001 and 0.9999. 

You can enter a range of values such as .1 .2 .3 or .1 to .5 by .1. 

Confidence Interval Method 

Confidence Interval Formula 
Specify the formula to be in used in calculation of confidence intervals. 

• Score (Farrington & Manning) 
This formula is based on inverting Farrington and Manning's score test. 

• Score (Miettinen & Nurminen) 
This formula is based on inverting Miettinen and Nurminen's score test. 
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• Score w/ Skewness (Gart & Nam) 
This formula is based on inverting Gart and Nam's score test, with a correction for skewness. 

• Score (Wilson) 
This formula is based one the Wilson score method for a single proportion, without continuity 
correction. 

• Score (Wilson C.C.) 
This formula is based one the Wilson score method for a single proportion, with continuity 
correction. 

• Chi-Square C.C. (Yates) 
This is the commonly used simple asymptotic method, with continuity correction. 

• Chi-Square (Pearson) 
This is the commonly used simple asymptotic method, without continuity correction.  

Data Tab (Differences) 
This section documents options that are used when the parameterization is in terms of the 
difference in sample proportions and the value of the second sample proportion, P2. The 
corresponding procedure is Confidence Intervals for the Difference between Two Proportions 
using Differences. 

Precision 

Confidence Interval Width (Two-Sided) 
This is the distance from the lower confidence limit to the upper confidence limit.  

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Distance from Diff to Limit (One-Sided) 
This is the distance from the difference in sample proportions to the lower or upper limit of the 
confidence interval, depending on whether the Interval Type is set to Lower Limit or Upper 
Limit. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Proportions (Difference = P1 – P2) 

Difference in Sample Proportions 
Enter an estimate of the difference between sample proportion 1 and sample proportion 2. The 
sample size and width calculations assume that the value entered here is the difference estimate 
that is obtained from the sample. If the sample difference is different from the one specified here, 
the width may be narrower or wider than specified. 

The value(s) must be between -1 and 1, and such that P1 = Difference + P2 is between 0.0001 and 
0.9999. 

You can enter a range of values such as .1 .2 .3 or .1 to .5 by .1.  
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P2 (Proportion Group 2) 
Enter an estimate of the proportion for group 2. The sample size and width calculations assume 
that the value entered here is the proportion estimate that is obtained from the sample. If the 
sample proportion is different from the one specified here, the width may be narrower or wider 
than specified. 

The value(s) must be between 0.0001 and 0.9999. 

You can enter a range of values such as .1 .2 .3 or .1 to .5 by .1.  

Confidence Interval Method 

Confidence Interval Formula 
Specify the formula to be in used in calculation of confidence intervals. 

• Score (Farrington & Manning) 
This formula is based on inverting Farrington and Manning's score test. 

• Score (Miettinen & Nurminen) 
This formula is based on inverting Miettinen and Nurminen's score test. 

• Score w/ Skewness (Gart & Nam) 
This formula is based on inverting Gart and Nam's score test, with a correction for skewness. 

• Score (Wilson) 
This formula is based one the Wilson score method for a single proportion, without continuity 
correction. 

• Score (Wilson C.C.) 
This formula is based one the Wilson score method for a single proportion, with continuity 
correction. 

• Chi-Square C.C. (Yates) 
This is the commonly used simple asymptotic method, with continuity correction. 

• Chi-Square (Pearson) 
This is the commonly used simple asymptotic method, without continuity correction.  
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Data Tab (Ratios) 
This section documents options that are used when the parameterization is in terms of the ratio of 
sample proportions and the value of the second sample proportion, P2. The corresponding 
procedure is Confidence Intervals for the Difference between Two Proportions using Ratios. 

Precision 

Confidence Interval Width (Two-Sided) 
This is the distance from the lower confidence limit to the upper confidence limit.  

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Distance from Ratio to Limit (One-Sided) 
This is the distance from the ratio of sample proportions to the lower or upper limit of the 
confidence interval, depending on whether the Interval Type is set to Lower Limit or Upper 
Limit. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Proportions (Ratio = P1/P2) 

Ratio of Sample Proportions 
Enter an estimate of the ratio of sample proportion 1 to sample proportion 2. The sample size and 
width calculations assume that the value entered here is the ratio estimate that is obtained from 
the samples. If the sample ratio is different from the one specified here, the width may be 
narrower or wider than specified. 

The value(s) must be greater than 0, and such that P1 = Ratio * P2 is between 0.0001 and 0.9999. 

You can enter a range of values such as .7 .8 .9 or .5 to .9 by .1.  

P2 (Proportion Group 2) 
Enter an estimate of the proportion for group 2. The sample size and width calculations assume 
that the value entered here is the proportion estimate that is obtained from the sample. If the 
sample proportion is different from the one specified here, the width may be narrower or wider 
than specified. 

The value(s) must be between 0.0001 and 0.9999. 

You can enter a range of values such as .1 .2 .3 or .1 to .5 by .1.  

Confidence Interval Method 

Confidence Interval Formula 
Specify the formula to be in used in calculation of confidence intervals. 

• Score (Farrington & Manning) 
This formula is based on inverting Farrington and Manning's score test. 

• Score (Miettinen & Nurminen) 
This formula is based on inverting Miettinen and Nurminen's score test. 
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• Score w/ Skewness (Gart & Nam) 
This formula is based on inverting Gart and Nam's score test, with a correction for skewness. 

• Logarithm (Katz) 
This formula is based on the asymptotic normality of log(P1/P2). 

• Logarithm + 1/2 (Walter) 
This formula is based on the asymptotic normality of log(P1/P2), but 1/2 is used as an 
adjustment. 

• Fleiss 
This is an iterative method that was developed for the odds ratio and adapted to the 
proportion ratio. 

Data Tab (Odds Ratios) 
This section documents options that are used when the parameterization is in terms of the odds 
ratio and the value of the second sample proportion, P2. The corresponding procedure is 
Confidence Intervals for the Difference between Two Proportions using Odds Ratios. 

Precision 

Confidence Interval Width (Two-Sided) 
This is the distance from the lower confidence limit to the upper confidence limit.  

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Distance from OR to Limit (One-Sided) 
This is the distance from the odds ratio to the lower or upper limit of the confidence interval, 
depending on whether the Interval Type is set to Lower Limit or Upper Limit. 

You can enter a single value or a list of values. The value(s) must be greater than zero.  

Proportions (OR = O1/O2) 

Odds Ratio 
Enter an estimate of the sample odds ratio (O1/O2). The sample size and width calculations 
assume that the value entered here is the odds ratio estimate that is obtained from the samples. If 
the sample odds ratio is different from the one specified here, the width may be narrower or wider 
than specified. 

The value(s) must be greater than 0. 

You can enter a range of values such as .7 .8 .9 or .5 to .9 by .1.  

P2 (Proportion Group 2) 
Enter an estimate of the proportion for group 2. The sample size and width calculations assume 
that the value entered here is the proportion estimate that is obtained from the sample. If the 
sample proportion is different from the one specified here, the width may be narrower or wider 
than specified. 
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The value(s) must be between 0.0001 and 0.9999. 

You can enter a range of values such as .1 .2 .3 or .1 to .5 by .1.  

Confidence Interval Method 

Confidence Interval Formula 
Specify the formula to be in used in calculation of confidence intervals. 

• Exact (Conditional) 
This conditional exact confidence interval formula is calculated using the non-central 
hypergeometric distribution. 

• Score (Farrington & Manning) 
This formula is based on inverting Farrington and Manning's score test. 

• Score (Miettinen & Nurminen) 
This formula is based on inverting Miettinen and Nurminen's score test. 

• Fleiss 
This iterative method forms the confidence interval as all those value of the odds ratio which 
would not be rejected by a chi-square hypothesis test. 

• Logarithm 
This formula is similar to SIMPLE + 1/2, but with the logarithm of the odds ratio. 

• Mantel- Haenszel 
This formula is based on the Mantel-Haenszel formula for the odds ratio. 

• Simple 
This uses the simple odds ratio formula and large sample standard error estimate. 

• Simple + 1/2 
This uses the simple odds ratio formula and large sample standard error estimate, but with 1/2 
added to frequencies as a bias reduction device. 

Iterations Tab 
This tab sets an option used in the iterative procedures. 

Maximum Iterations  

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 



216-26  Confidence Intervals for Two Proportions 

Example 1 – Calculating Sample Size using Proportions 
Suppose a study is planned in which the researcher wishes to construct a two-sided 95% 
confidence interval for the difference in proportions such that the width of the interval is no wider 
than 0.1. The confidence interval method to be used is the Yates chi-square simple asymptotic 
method with continuity correction. The confidence level is set at 0.95, but 0.99 is included for 
comparative purposes. The proportion estimates to be used are 0.6 for Group 1, and 0.4 for Group 
2. Instead of examining only the interval width of 0.1, a series of widths from 0.05 to 0.3 will also 
be considered.  
The goal is to determine the necessary sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for Two Proportions [Proportions] 
procedure window by clicking on Confidence Intervals, then Proportions, then Two 
Proportions using Proportions. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example1 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Confidence Level ....................................0.95 0.99 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..0.05 to 0.30 by 0.05 
P1 ............................................................0.6 
P2 ............................................................0.4 
Confidence Interval Formula...................Chi-Square C.C. (Yates) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for the Difference in Proportions 
Confidence Interval Method: Chi-Square - Simple Asymptotic with Continuity Correction (Yates) 
 
Confidence   Allocation Target Actual    Lower Upper 
Level N1 N2 Ratio Width Width P1 P2 P1 - P2 Limit Limit 
0.950 3030 3030 1.000 0.050 0.050 0.60 0.40 0.20 0.18 0.22 
0.950 778 778 1.000 0.100 0.100 0.60 0.40 0.20 0.15 0.25 
0.950 354 354 1.000 0.150 0.150 0.60 0.40 0.20 0.13 0.27 
0.950 204 204 1.000 0.200 0.200 0.60 0.40 0.20 0.10 0.30 
0.950 134 134 1.000 0.250 0.250 0.60 0.40 0.20 0.08 0.32 
0.950 95 95 1.000 0.300 0.300 0.60 0.40 0.20 0.05 0.35 
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0.990 5176 5176 1.000 0.050 0.050 0.60 0.40 0.20 0.18 0.22 
0.990 1314 1314 1.000 0.100 0.100 0.60 0.40 0.20 0.15 0.25 
0.990 593 593 1.000 0.150 0.150 0.60 0.40 0.20 0.13 0.27 
0.990 339 339 1.000 0.200 0.200 0.60 0.40 0.20 0.10 0.30 
0.990 220 220 1.000 0.250 0.250 0.60 0.40 0.20 0.08 0.32 
0.990 155 155 1.000 0.300 0.300 0.60 0.40 0.20 0.05 0.35 
 
References 
Newcombe, R. G. 1998. 'Interval Estimation for the Difference Between Independent Proportions: Comparison of 
     Eleven Methods.' Statistics in Medicine, 17, pp. 873-890. 
Fleiss, J. L., Levin, B., Paik, M.C. 2003. Statistical Methods for Rates and Proportions. Third Edition. John 
     Wiley & Sons. New York. 
 
Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the true difference in proportions. 
N1 and N2 are the sample sizes drawn from the two populations. 
Allocation Ratio is the ratio of the sample sizes, N2/N1. 
Width is the distance from the lower limit to the upper limit. 
Target Width is the value of the width that is entered into the procedure. 
Actual Width is the value of the width that is obtained from the procedure. 
P1 and P2 are the assumed sample proportions upon which the width calculations are based. 
P1 - P2 is the difference in sample proportions. 
Lower Limit and Upper Limit are the lower and upper limits of the confidence interval for the true difference 
     in proportions (Population Proportion 1 - Population Proportion 2). 
 
Summary Statements 
Group sample sizes of 3030 and 3030 produce a two-sided 95% confidence interval for the 
difference in population proportions with a width that is equal to 0.050 when the estimated 
sample proportion 1 is 0.60 and the estimated sample proportion 2 is 0.40. 
 

This report shows the calculated sample sizes for each of the scenarios.  

Plots Section 
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This plot shows the group sample size versus the confidence interval width for the two 
confidence levels. 
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Example 2 – Validation (Proportions and Differences) 
using Newcombe 
Newcombe (1998b) page 877 gives an example of a calculation for a confidence interval for the 
difference in proportions when the confidence level is 95%, the sample proportions are 0.9 and 
0.3, and the interval width is 0.6790 for the Chi-Square (Pearson) method, 0.8395 for the Chi-
Square C.C. (Yates) method, 0.67064 for the Score (Miettinen and Nurminen) method, 0.6385 for 
the Score (Wilson) method, and 0.7374 for the Score C.C. (Wilson) method. The necessary 
sample size in each case is 10 per group.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for Two Proportions [Proportions] 
procedure window by clicking on Confidence Intervals, then Proportions, then Two 
Proportions using Proportions. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example2 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Confidence Level ....................................0.95 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..Varies (0.6790, 0.8395, 0.67064, 0.6385, 0.7374) 
P1 ............................................................0.9 
P2 ............................................................0.3 
Confidence Interval Formula...................Varies [Chi-Square (Pearson), Chi-Square C.C. 

(Yates), Score (Miettinen & Nurminen), Score 
(Wilson), Score C.C. (Wilson)] 

Output 
Click the Run button to perform the calculations and generate the following output. 

Chi-Square (Pearson) 
 

Confidence   Allocation Target Actual    Lower Upper 
Level N1 N2 Ratio Width Width P1 P2 P1 - P2 Limit Limit 
0.950 10 10 1.000 0.6790 0.6790 0.9000 0.3000 0.6000 0.2605 0.9395 
 

PASS also calculated the necessary sample size to be 10 per group.  
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Chi-Square C.C. (Yates) 
 

Confidence   Allocation Target Actual    Lower Upper 
Level N1 N2 Ratio Width Width P1 P2 P1 - P2 Limit Limit 
0.950 10 10 1.000 0.8395 0.8395 0.9000 0.3000 0.6000 0.1605 1.0000 
 

PASS also calculated the necessary sample size to be 10 per group.  

Score (Miettinen & Nurminen) 
 

Confidence   Allocation Target Actual    Lower Upper 
Level N1 N2 Ratio Width Width P1 P2 P1 - P2 Limit Limit 
0.950 10 10 1.000 0.6706 0.6706 0.9000 0.3000 0.6000 0.1700 0.8406 
 

PASS also calculated the necessary sample size to be 10 per group.  

Score (Wilson) 
 

Confidence   Allocation Target Actual    Lower Upper 
Level N1 N2 Ratio Width Width P1 P2 P1 - P2 Limit Limit 
0.950 10 10 1.000 0.6385 0.6385 0.9000 0.3000 0.6000 0.1705 0.8090 
 

PASS also calculated the necessary sample size to be 10 per group.  

Score C.C. (Wilson) 
 

Confidence   Allocation Target Actual    Lower Upper 
Level N1 N2 Ratio Width Width P1 P2 P1 - P2 Limit Limit 
0.950 10 10 1.000 0.7374 0.7374 0.9000 0.3000 0.6000 0.1013 0.8387 
 

PASS also calculated the necessary sample size to be 10 per group.  



216-30  Confidence Intervals for Two Proportions 

Example 3 – Validation (Proportions and Differences) 
using Gart and Nam 
Gart and Nam (1990) page 640 give an example of a calculation for a confidence interval for the 
difference in proportions when the confidence level is 95%, the sample proportions are 0.28 and 
0.08, and the interval width is 0.4281 for the Score (Gart and Nam) method. The necessary 
sample size in each case is 25 per group. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for Two Proportions [Proportions] 
procedure window by clicking on Confidence Intervals, then Proportions, then Two 
Proportions using Proportions. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example3 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Confidence Level ....................................0.95 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..0.4281 
P1 ............................................................0.28 
P2 ............................................................0.08 
Confidence Interval Formula...................Score w/Skewness (Gart & Nam) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Confidence   Allocation Target Actual    Lower Upper 
Level N1 N2 Ratio Width Width P1 P2 P1 - P2 Limit Limit 
0.950 25 25 1.000 0.4281 0.4281 0.2800 0.0800 0.2000 -0.0143 0.4137 
 

PASS also calculated the necessary sample size to be 25 per group.  



Confidence Intervals for Two Proportions  216-31 

Example 4 – Calculating Sample Size using Differences 
Suppose a study is planned in which the researcher wishes to construct a two-sided 95% 
confidence interval for the difference in proportions such that the width of the interval is no wider 
than 0.1. The confidence interval method to be used is the Yates chi-square simple asymptotic 
method with continuity correction. The confidence level is set at 0.95, but 0.99 is included for 
comparative purposes. The difference estimate to be used is 0.05, and the estimate for proportion 
2 is 0.3. Instead of examining only the interval width of 0.1, a series of widths from 0.05 to 0.3 
will also be considered. 
The goal is to determine the necessary sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for Two Proportions [Differences] 
procedure window by clicking on Confidence Intervals, then Proportions, then Two 
Proportions using Differences. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example4 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Confidence Level ....................................0.95 0.99 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..0.05 to 0.30 by 0.05 
Difference in Sample Proportions ...........0.05 
P2 ............................................................0.3 
Confidence Interval Formula...................Chi-Square C.C. (Yates) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for the Difference in Proportions 
Confidence Interval Method: Chi-Square - Simple Asymptotic with Continuity Correction (Yates) 
 
Confidence   Allocation Target Actual    Lower Upper 
Level N1 N2 Ratio Width Width P1 P2 P1 - P2 Limit Limit 
0.950 2769 2769 1.000 0.050 0.050 0.35 0.30 0.05 0.03 0.07 
0.950 712 712 1.000 0.100 0.100 0.35 0.30 0.05 0.00 0.10 
0.950 325 325 1.000 0.150 0.150 0.35 0.30 0.05 -0.02 0.12 
0.950 188 188 1.000 0.200 0.200 0.35 0.30 0.05 -0.05 0.15 
0.950 124 124 1.000 0.250 0.249 0.35 0.30 0.05 -0.07 0.17 
0.950 88 88 1.000 0.300 0.299 0.35 0.30 0.05 -0.10 0.20 
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0.990 4725 4725 1.000 0.050 0.050 0.35 0.30 0.05 0.03 0.07 
0.990 1201 1201 1.000 0.100 0.100 0.35 0.30 0.05 0.00 0.10 
0.990 543 543 1.000 0.150 0.150 0.35 0.30 0.05 -0.02 0.12 
0.990 310 310 1.000 0.200 0.200 0.35 0.30 0.05 -0.05 0.15 
0.990 202 202 1.000 0.250 0.250 0.35 0.30 0.05 -0.07 0.17 
0.990 143 143 1.000 0.300 0.299 0.35 0.30 0.05 -0.10 0.20 
 
References 
Newcombe, R. G. 1998. 'Interval Estimation for the Difference Between Independent Proportions: Comparison of 
     Eleven Methods.' Statistics in Medicine, 17, pp. 873-890. 
Fleiss, J. L., Levin, B., Paik, M.C. 2003. Statistical Methods for Rates and Proportions. Third Edition. John 
     Wiley & Sons. New York. 
 
Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the true difference in proportions. 
N1 and N2 are the sample sizes drawn from the two populations. 
Allocation Ratio is the ratio of the sample sizes, N2/N1. 
Width is the distance from the lower limit to the upper limit. 
Target Width is the value of the width that is entered into the procedure. 
Actual Width is the value of the width that is obtained from the procedure. 
P1 and P2 are the assumed sample proportions upon which the width calculations are based. 
P1 - P2 is the difference in sample proportions. 
Lower Limit and Upper Limit are the lower and upper limits of the confidence interval for the true difference 
     in proportions (Population Proportion 1 - Population Proportion 2). 
 
Summary Statements 
Group sample sizes of 2769 and 2769 produce a two-sided 95% confidence interval for the 
difference in population proportions with a width that is equal to 0.050 when the estimated 
sample proportion 1 is 0.35, the estimated sample proportion 2 is 0.30, and the difference in 
sample proportions is 0.05. 
 

This report shows the calculated sample sizes for each of the scenarios.  

Plots Section 
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This plot shows the group sample size versus the confidence interval width for the two 
confidence levels. 

Validation using Differences 
The validation for the procedure Confidence Intervals for the Difference between Two 
Proportions using Differences is shown in Examples 2 and 3, which is the validation for the 
proportion specification.  
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Example 5 – Calculating Sample Size using Ratios 
Suppose a study is planned in which the researcher wishes to construct a two-sided 95% 
confidence interval for the ratio of proportions such that the width of the interval is no wider than 
0.2. The confidence interval method to be used is the Logarithm (Katz) method. The confidence 
level is set at 0.95, but 0.99 is included for comparative purposes. The ratio estimate to be used is 
1.2, and the estimate for proportion 2 is 0.6. Instead of examining only the interval width of 0.2, a 
series of widths from 0.1 to 0.3 will also be considered.  
The goal is to determine the necessary sample size. 
 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for Two Proportions [Ratios] 
procedure window by clicking on Confidence Intervals, then Proportions, then Two 
Proportions using Ratios. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example5 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Confidence Level ....................................0.95 0.99 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..0.10 to 0.30 by 0.05 
Ratio of Sample Proportions ...................1.2 
P2 ............................................................0.6 
Confidence Interval Formula...................Logarithm (Katz) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for the Ratio of Proportions 
Confidence Interval Method: Logarithm (Katz) 
 
Confidence   Allocation Target Actual    Lower Upper 
Level N1 N2 Ratio Width Width P1 P2 P1/P2 Limit Limit 
0.950 2337 2337 1.000 0.100 0.100 0.72 0.60 1.20 1.15 1.25 
0.950 1040 1040 1.000 0.150 0.150 0.72 0.60 1.20 1.13 1.28 
0.950 586 586 1.000 0.200 0.200 0.72 0.60 1.20 1.10 1.30 
0.950 376 376 1.000 0.250 0.250 0.72 0.60 1.20 1.08 1.33 
0.950 261 261 1.000 0.300 0.300 0.72 0.60 1.20 1.06 1.36 
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0.990 4037 4037 1.000 0.100 0.100 0.72 0.60 1.20 1.15 1.25 
0.990 1796 1796 1.000 0.150 0.150 0.72 0.60 1.20 1.13 1.28 
0.990 1011 1011 1.000 0.200 0.200 0.72 0.60 1.20 1.10 1.30 
0.990 648 648 1.000 0.250 0.250 0.72 0.60 1.20 1.08 1.33 
0.990 451 451 1.000 0.300 0.300 0.72 0.60 1.20 1.06 1.36 
 
References 
Gart, John J. and Nam, Jun-mo. 1988. 'Approximate Interval Estimation of the Ratio of Binomial Parameters: A 
     Review and Corrections for Skewness.' Biometrics, Volume 44, 323-338. 
Koopman, P. A. R. 1984. 'Confidence Intervals for the Ratio of Two Binomial Proportions.' Biometrics, Volume 
     40, Issue 2, 513-517. 
Katz, D., Baptista, J., Azen, S. P., and Pike, M. C. 1978. 'Obtaining Confidence Intervals for the Risk Ratio 
     in Cohort Studies.' Biometrics, Volume 34, 469-474. 
 
Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the true ratio of proportions. 
N1 and N2 are the sample sizes drawn from the two populations. 
Allocation Ratio is the ratio of the sample sizes, N2/N1. 
Width is the distance from the lower limit to the upper limit. 
Target Width is the value of the width that is entered into the procedure. 
Actual Width is the value of the width that is obtained from the procedure. 
P1 and P2 are the assumed sample proportions upon which the width calculations are based. 
P1/P2 is the ratio of sample proportions. 
Lower Limit and Upper Limit are the lower and upper limits of the confidence interval for the true ratio of 
     proportions (Population Proportion 1 / Population Proportion 2). 
 
Summary Statements 
Group sample sizes of 2337 and 2337 produce a two-sided 95% confidence interval for the ratio 
of population proportions with a width that is equal to 0.100 when the estimated sample 
proportion 1 is 0.72, the estimated sample proportion 2 is 0.60, and the ratio of the sample 
proportions is 1.20. 
 

This report shows the calculated sample sizes for each of the scenarios.  

Plots Section 
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This plot shows the group sample size versus the confidence interval width for the two 
confidence levels. 
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Example 6 – Validation (Ratios) using Gart and Nam 
Gart and Nam (1988) page 331 give an example (Example 2) of a calculation for a confidence 
interval for the ratio of proportions when the confidence level is 95%, the sample proportion ratio 
is 2 and the sample proportion 2 is 0.3, the sample size for group 2 is 20, and the interval width is 
3.437 for the Logarithm + 1/2 (Walter) method, 3.751 for the Score (Farrington and Manning) 
method, and 4.133 for the Score w/Skewness (Gart and Nam) method. The necessary sample size 
for group 1 in each case is 10. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for Two Proportions procedure 
window by clicking on Confidence Intervals, then Proportions, then Two Proportions. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example6 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Confidence Level ....................................0.95 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................20 
R (Sample Allocation Ratio).................... Ignored 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..Varies (3.437, 3.751, 4.133) 
Ratio of Sample Proportions ...................2 
P2 ............................................................0.3 
Confidence Interval Formula...................Varies [Logarithm + 1/2 (Walter), Score (Farrington 

and Manning), Score w/Skewness (Gart and Nam)] 

Output 
Click the Run button to perform the calculations and generate the following output. 

Logarithm + 1/2 (Walter) 
 

Confidence   Allocation Target Actual    Lower Upper 
Level N1 N2 Ratio Width Width P1 P2 P1/P2 Limit Limit 
0.950 10 20 2.000 3.437 3.431 0.60 0.30 2.00 0.88 4.31 
 

PASS also calculated the necessary sample size for group 1 to be 10.  

Score (Farrington and Manning) 
 

Confidence   Allocation Target Actual    Lower Upper 
Level N1 N2 Ratio Width Width P1 P2 P1/P2 Limit Limit 
0.950 10 20 2.000 3.751 3.751 0.60 0.30 2.00 0.84 4.59 
 

PASS also calculated the necessary sample size for group 1 to be 10.  
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Score w/Skewness (Gart and Nam) 
 

Confidence   Allocation Target Actual    Lower Upper 
Level N1 N2 Ratio Width Width P1 P2 P1/P2 Limit Limit 
0.950 2337 2337 1.000 0.100 0.100 0.72 0.60 1.20 1.15 1.25 
 

PASS also calculated the necessary sample size for group 1 to be 10.  

Example 7 – Validation (Ratios) using Katz et al 
Katz et al (1978) pages 472-473 give an example of a calculation for a lower limit confidence 
interval for the ratio of proportions when the confidence level is 97.5%, the sample proportion 
ratio is 1.596078 and the sample proportion 2 is 0.153153, the sample size for group 2 is 111, and 
the distance from the ratio to the limit is 0.6223 for the Logarithm (Katz) method. The necessary 
sample size for group 1 is 225. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for Two Proportions procedure 
window by clicking on Confidence Intervals, then Proportions, then Two Proportions. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example7 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Confidence Level ....................................0.975 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................111 
R (Sample Allocation Ratio) ....................Ignored 
Interval Type ...........................................Lower Limit 
Distance to from Ratio to Limit ................0.6223 
Ratio of Sample Proportions ...................1.596078 
P2 ............................................................0.153153 
Confidence Interval Formula...................Logarithm (Katz) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Logarithm (Katz) 
 

Confidence   Allocation Target Actual    Lower Upper 
Level N1 N2 Ratio Width Width P1 P2 P1/P2 Limit Limit 
0.975 225 111 0.493 0.622 0.622 0.24 0.15 1.60 0.97 Inf 
 

PASS also calculated the necessary sample size for group 1 to be 225.  
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Example 8 – Calculating Sample Size using Odds Ratios 
Suppose a study is planned in which the researcher wishes to construct a two-sided 95% 
confidence interval for the odds ratio such that the width of the interval is no wider than 0.5. The 
confidence interval method to be used is the Logarithm method. The confidence level is set at 
0.95, but 0.99 is included for comparative purposes. The odds ratio estimate to be used is 1.5, and 
the estimate for proportion 2 is 0.4. Instead of examining only the interval width of 0.5, a series of 
widths from 0.1 to 1.0 will also be considered. 
The goal is to determine the necessary sample size. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for Two Proportions [Odds Ratios] 
procedure window by clicking on Confidence Intervals, then Proportions, then Two 
Proportions using Odds Ratios. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example8 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Confidence Level ....................................0.95 0.99 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..0.1 to 1.0 by 0.1 
Odds Ratio ..............................................1.5 
P2 ............................................................0.4 
Confidence Interval Formula...................Logarithm 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Confidence Intervals for the Odds Ratio 
Confidence Interval Method: Logarithm 
        Odds   
Confidence   Allocation Target Actual   Ratio Lower Upper 
Level N1 N2 Ratio Width Width P1 P2 O1/O2 Limit Limit 
0.950 28244 28244 1.000 0.100 0.100 0.50 0.40 1.50 1.45 1.55 
0.950 7068 7068 1.000 0.200 0.200 0.50 0.40 1.50 1.40 1.60 
0.950 3146 3146 1.000 0.300 0.300 0.50 0.40 1.50 1.36 1.66 
0.950 1774 1774 1.000 0.400 0.400 0.50 0.40 1.50 1.31 1.71 
0.950 1138 1138 1.000 0.500 0.500 0.50 0.40 1.50 1.27 1.77 
0.950 793 793 1.000 0.600 0.600 0.50 0.40 1.50 1.23 1.83 
0.950 585 585 1.000 0.700 0.700 0.50 0.40 1.50 1.19 1.89 
0.950 450 450 1.000 0.800 0.800 0.50 0.40 1.50 1.15 1.95 
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0.950 358 358 1.000 0.900 0.899 0.50 0.40 1.50 1.11 2.01 
0.950 291 291 1.000 1.000 1.000 0.50 0.40 1.50 1.08 2.08 
0.990 48783 48783 1.000 0.100 0.100 0.50 0.40 1.50 1.45 1.55 
0.990 12208 12208 1.000 0.200 0.200 0.50 0.40 1.50 1.40 1.60 
0.990 5435 5435 1.000 0.300 0.300 0.50 0.40 1.50 1.36 1.66 
0.990 3065 3065 1.000 0.400 0.400 0.50 0.40 1.50 1.31 1.71 
0.990 1967 1967 1.000 0.500 0.500 0.50 0.40 1.50 1.27 1.77 
0.990 1371 1371 1.000 0.600 0.600 0.50 0.40 1.50 1.23 1.83 
0.990 1012 1012 1.000 0.700 0.700 0.50 0.40 1.50 1.19 1.89 
0.990 778 778 1.000 0.800 0.800 0.50 0.40 1.50 1.15 1.95 
0.990 618 618 1.000 0.900 0.900 0.50 0.40 1.50 1.12 2.02 
0.990 504 504 1.000 1.000 0.999 0.50 0.40 1.50 1.08 2.08 
 
References 
Fleiss, J. L., Levin, B., Paik, M.C. 2003. Statistical Methods for Rates and Proportions. Third Edition. John 
     Wiley & Sons. New York. 
 
Report Definitions 
Confidence level is the proportion of confidence intervals (constructed with this same confidence level, 
     sample size, etc.) that would contain the true odds ratio. 
N1 and N2 are the sample sizes drawn from the two populations. 
Allocation Ratio is the ratio of the sample sizes, N2/N1. 
Width is the distance from the lower limit to the upper limit. 
Target Width is the value of the width that is entered into the procedure. 
Actual Width is the value of the width that is obtained from the procedure. 
P1 and P2 are the assumed sample proportions upon which the width calculations are based. 
Odds Ratio O1/O2 is the sample odds ratio. 
Lower Limit and Upper Limit are the lower and upper limits of the confidence interval for the true odds ratio 
     (Population Odds 1 / Population Odds 2). 
 
Summary Statements 
Group sample sizes of 28244 and 28244 produce a two-sided 95% confidence interval for the 
population odds ratio with a width that is equal to 0.100 when the estimated sample proportion 
1 is 0.50, the estimated sample proportion 2 is 0.40, and the sample odds ratio is 1.50. 
 

This report shows the calculated sample sizes for each of the scenarios.  

Plots Section 
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This plot shows the group sample size versus the confidence interval width for the two 
confidence levels. 



Confidence Intervals for Two Proportions  216-39 

Example 9 – Validation (Odds Ratios) using Fleiss et al 
Fleiss et al (2003) pages 117, 119 give an example of a calculation for a confidence interval for 
the odds ratio when the confidence level is 95%, the sample odds ratio is 2.25 and the sample 
proportion 2 is 0.1, the sample size for group 2 is 150, and the interval width is 4.387 for the 
Logarithm method, and 4.980 for the Fleiss method. The necessary sample size for group 1 in 
each case is 50. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Confidence Intervals for Two Proportions [Odds Ratios] 
procedure window by clicking on Confidence Intervals, then Proportions, then Two 
Proportions using Odds Ratios. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example9 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Confidence Level ....................................0.95 
N1 (Sample Size Group 1) ...................... Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................150 
R (Sample Allocation Ratio).................... Ignored 
Interval Type ...........................................Two-Sided 
Confidence Interval Width (Two-Sided) ..Varies (4.387, 4.980) 
Odds Ratio ..............................................2.25 
P2 ............................................................0.1 
Confidence Interval Formula...................Varies (Logarithm, Fleiss) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Logarithm 
 

        Odds   
Confidence   Allocation Target Actual   Ratio Lower Upper 
Level N1 N2 Ratio Width Width P1 P2 O1/O2 Limit Limit 
0.950 50 150 3.000 4.387 4.387 0.20 0.10 2.25 0.96 5.35 
 

PASS also calculated the necessary sample size for group 1 to be 50.  
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Fleiss 
 

        Odds   
Confidence   Allocation Target Actual   Ratio Lower Upper 
Level N1 N2 Ratio Width Width P1 P2 O1/O2 Limit Limit 
0.950 50 150 3.000 4.980 4.980 0.20 0.10 2.25 0.86 5.84 
 

PASS also calculated the necessary sample size for group 1 to be 50.  
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Chapter 220 

Group-Sequential 
Tests for Two 
Proportions 
Introduction 
Clinical trials are longitudinal. They accumulate data sequentially through time. The participants 
cannot be enrolled and randomized on the same day. Instead, they are enrolled as they enter the 
study. It may take several years to enroll enough patients to meet sample size requirements. 
Because clinical trials are long term studies, it is in the interest of both the participants and the 
researchers to monitor the accumulating information for early convincing evidence of either harm 
or benefit. This permits early termination of the trial.  

Group sequential methods allow statistical tests to be performed on accumulating data while a 
phase III clinical trial is ongoing. Statistical theory and practical experience with these designs 
have shown that making four or five interim analyses is almost as effective in detecting large 
differences between treatment groups as performing a new analysis after each new data value. 
Besides saving time and resources, such a strategy can reduce the experimental subject’s 
exposure to an inferior treatment and make superior treatments available sooner.  

When repeated significance testing occurs on the same data, adjustments have to be made to the 
hypothesis testing procedure to maintain overall significance and power levels. The landmark 
paper of Lan & DeMets (1983) provided the theory behind the alpha spending function approach 
to group sequential testing. This paper built upon the earlier work of Armitage, McPherson, & 
Rowe (1969), Pocock (1977), and O’Brien & Fleming (1979). PASS implements the methods 
given in Reboussin, DeMets, Kim, & Lan (1992) to calculate the power and sample sizes of 
various group sequential designs. 

This module calculates sample size and power for group sequential designs used to compare two 
group proportions. Other modules perform similar analyses for the comparison of means and 
survival functions. The program allows you to vary the number and times of interim tests, the 
type of alpha spending function, and the test boundaries. It also gives you complete flexibility in 
solving for power, significance level, sample size, or effect size. The results are displayed in both 
numeric reports and informative graphics.  
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Technical Details 
Suppose the means of two samples of N1 and N2 individuals will be compared at various stages 
of a trial using the  statistic: zk
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The subscript k indicates that the computations use all data that are available at the time of the kth 
interim analysis or kth  look (k goes from 1 to K). This formula computes the standard z-test that is 
assumed to be normally distributed.  

Spending Functions 
Lan and DeMets (1983) introduced alpha spending functions, ( )α τ , that determine a set of 
boundaries for the sequence of test statistics . These boundaries are the 
critical values of the sequential hypothesis tests. That is, after each interim test, the trial is 
continued as long as 

b b bK1 2, , ,L z z1 2 zK, , ,L

z bk < k . When z bk ≥ k , the hypothesis of equal means is rejected and the 
trial is stopped early.  

The time argumentτ either represents the proportion of elapsed time to the maximum duration of 
the trial or the proportion of the sample that has been collected. When elapsed time is being used 
it is referred to as calendar time. When time is measured in terms of the sample, it is referred to 
as information time. Since it is a proportion,τ can only vary between zero and one. 

Alpha spending functions have the characteristics: 
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α α
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The last characteristic guarantees a fixed α  level when the trial is complete. That is,  

( ) ( )Pr z b or z b or or z bk k1 1 2 2≥ ≥ ≥ =L α τ  

This methodology is very flexible since neither the times nor the number of analyses must be 
specified in advance. Only the functional form of ( )α τ  must be specified.  

PASS provides five popular spending functions plus the ability to enter and analyze your own 
boundaries. These are calculated as follows: 
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4.  Alpha * time^1.5     ατ 3 2/  
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5.  Alpha * time^2      ατ 2
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6.  User Supplied 

A custom set of boundaries may be entered. 

The O’Brien-Fleming boundaries are commonly used because they do not significantly increase 
the overall sample size and because they are conservative early in the trial. Conservative in the 
sense that the proportions must be extremely different before statistical significance is indicated. 
The Pocock boundaries are nearly equal for all times. The Alpha*t boundaries use equal amounts 
of alpha when the looks are equally spaced. You can enter your own set of boundaries using the 
User Supplied option. 

Theory 
A detailed account of the methodology is contained in Lan & DeMets (1983), DeMets & Lan 
(1984), Lan & Zucker (1993), and DeMets & Lan (1994). The theoretical basis of the method will 
be presented here.  

Group sequential procedures for interim analysis are based on their equivalence to discrete 
boundary crossing of a Brownian motion process with drift parameter θ . The test statistics  

follow the multivariate normal distribution with means 

zk

θ τ k  and, for j k≤ , covariances 

τ τk / j . The drift parameter is related to the parameters of the z-test through the equation 
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Hence, the algorithm is as follows: 

1.  Compute boundary values based on a specified spending function and alpha value. 

2.  Calculate the drift parameter based on those boundary values and a specified power 
value. 

3.  Use the drift parameter and the above equation to calculate the appropriate sample size. 

Procedure Tabs 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Bnd Plot Axes, and Options tabs. To find out more about using 
the other tabs such as Axes/Legend/Grid, Plot Text, or Template, go to the Procedure Window 
chapter. 

Data Tab 
The Data tab contains the parameters associated with the z-test such as the proportions, sample 
sizes, alpha, and beta. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are P1, P2, Alpha, Power and Beta, N1 or N2. Under most situations, you 
will select either Power and Beta or N1. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal 
proportions when in fact they are different. 
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Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. For this procedure, a type-I error occurs when you reject 
the null hypothesis of equal proportions when in fact they are equal. 

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N2 is calculated using the formula  

N2 = [R N1] 

where R is the Sample Allocation Ratio and [Y] is the first integer greater than or equal to Y. 
For example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R. 

When used, N2 is calculated from N1 using the formula: N2=[R N1] where [Y] is the next integer 
greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Test 

Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. When a two-sided hypothesis is selected, the 
value of alpha is halved. Everything else remains the same. 

Note that the accepted procedure is to use Two-Sided unless you can justify using a one-sided 
test.  
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Continuity Correction 
Specify whether to use the Continuity Correction. This option applies an adjustment to the sample 
sizes that is recommend by Fleiss(1981) page 45 to make the alpha and beta values more 
accurate. The formula for the adjustment is 
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Effect Size 

P1 (Proportion in Group 1) 
Enter value(s) for the response proportion in the first group under both hypotheses and the 
response proportion of the second group under the null hypothesis of equal proportions. The 
values must be between zero and one. 

You may enter a range of values such as 0.1, 0.2, 0.3 or 0.1 to 0.9 by 0.2. 

P2 (Proportion in Group 2) 
Enter value(s) for the response proportion of the second group under the alternative hypothesis. 
You may enter a range of values such as 0.1, 0.2, 0.3 or 0.1 to 0.9 by 0.2. 

Look Details 
This box contains the parameters associated with Group Sequential Design such as the type of 
spending function, the times, and so on. 

Number of Looks 
This is the number of interim analyses (including the final analysis). For example, a five here 
means that four interim analyses will be run in addition to the final analysis. 

Boundary Truncation 
You can truncate the boundary values at a specified value. For example, you might decide that no 
boundaries should be larger than 4.0. If you want to implement a boundary limit, enter the value 
here. 

If you do not want a boundary limit, enter None here. 

Spending Function 
Specify which alpha spending function to use. The most popular is the O'Brien-Fleming boundary 
that makes early tests very conservative. Select User Specified if you want to enter your own set 
of boundaries. 

Max Time 
This is the total running time of the trial. It is used to convert the values in the Times box to 
fractions. The units (months or years) do not matter, as long as they are consistent with those 
entered in the Times box. 

For example, suppose Max Time = 3 and Times = 1, 2, 3. Interim analyses would be assumed to 
have occurred at 0.33, 0.67, and 1.00. 
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Times 
Enter a list of time values here at which the interim analyses will occur. These values are scaled 
according to the value of the Max Time option. 

For example, suppose a 48-month trial calls for interim analyses at 12, 24, 36, and 48 months. 
You could set Max Time to 48 and enter 12,24,36,48 here or you could set Max Time to 1.0 and 
enter 0.25,0.50,0.75,1.00 here.  

The number of times entered here must match the value of the Number of Looks. 

• Equally Spaced 
If you are planning to conduct the interim analyses at equally spaced points in time, you can 
enter Equally Spaced and the program will generate the appropriate time values for you. 

Informations 
You can weight the interim analyses on the amount of information obtained at each time point 
rather than on actual calendar time. If you would like to do this, enter the information amounts 
here. Usually, these values are the sample sizes obtained up to the time of the analysis.  

For example, you might enter 50, 76, 103, 150 to indicate that 50 individuals where included in 
the first interim analysis, 76 in the second, and so on. 

Upper and Lower Boundaries (Spending = User) 
If the Spending Function is set to User Supplied you can enter a set of lower test boundaries, one 
for each interim analysis. The lower boundaries should be negative and the upper boundaries 
should be positive. Typical entries are 4,3,3,3,2 and 4,3,2,2,2. 

• Symmetric 
If you only want to enter the upper boundaries and have them copied with a change in sign to 
the lower boundaries, enter Symmetric for the lower boundaries. 

Bnd Plot Axes Tab 
The Bnd Plot Axes tab, short for Boundary Plot Axes tab, allows the axes of the spending 
function plots to be set separately from those of the power plots. The options are identical to those 
of the Axes tab. 

Options Tab 
The Options tab controls the convergence of the various iterative algorithms used in the 
calculations. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations to be run before the search for the criterion of interest 
(Alpha, Beta, etc.) is aborted. When the maximum number of iterations is reached without 
convergence, the criterion is left blank.  

Recommended: 500 (or more). 
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Maximum Iterations (Lan-Demets algorithm) 
This is the maximum number of iterations used in the Lan-DeMets algorithm during its search 
routine. We recommend a value of at least 200. 

Tolerance 

Probability Tolerance 
During the calculation of the probabilities associated with a set of boundary values, probabilities 
less than this are assumed to be zero. 

We suggest a value of 0.00000000001. 

Power Tolerance 
This is the convergence level for the search for the spending function values that achieve a certain 
power. Once the iteration changes are less than this amount, convergence is assumed. We suggest 
a value of 0.0000001. 

If the search is too time consuming, you might try increasing this value. 

Alpha Tolerance 
This is the convergence level for the search for a given alpha value. Once the changes in the 
computed alpha value are less than this amount, convergence is assumed and iterations stop. We 
suggest a value of 0.0001. 

This option is only used when you are searching for alpha. 

If the search is too time consuming, you can try increasing this value. 

Example 1 – Finding the Sample Size 
A clinical trial is to be conducted over a two-year period to compare the proportion response of a 
new treatment to that of the current treatment. The current response proportion is 0.53. Although 
the researchers do not know the true proportion of patients that will survive with the new 
treatment, they would like to examine the power that is achieved if the proportion under the new 
treatment is 0.63. In order to compare the sample size requirements for different effect sizes, it is 
also of interest to compute the sample size at response rates of 0.60, 0.65, 0.70, and 0.75.  

Testing will be done at the 0.05 significance level and the power should be set to 0.90. A total of 
four tests are going to be performed on the data as they are obtained. The O’Brien-Fleming 
boundaries will be used.  

Find the necessary sample sizes and test boundaries assuming equal sample sizes per arm and 
two-sided hypothesis tests. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group Sequential Tests for Two Proportions procedure 
window by clicking on Group-Sequential Tests, then Two Proportions. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example1 from the Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.90 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Alternative Hypothesis ............................Two-Sided 
Continuity Correction...............................Checked 
P1 (Proportion in Group 1) ......................0.53 
P2 (Proportion in Group 2) ......................0.60, 0.63, 0.65, 0.70, 0.75 
Number of Looks.....................................4 
Spending Function ..................................O’Brien-Fleming 
Times.......................................................Equally Spaced 
Max Time.................................................2 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Proportions. Continuity Correction Applied. 
 
Power N1 N2 Alpha Beta P1 P2 
0.900168 1102 1102 0.050000 0.099832 0.53 0.60 
0.900930 542 542 0.050000 0.099070 0.53 0.63 
0.900408 376 376 0.050000 0.099592 0.53 0.65 
0.901093 187 187 0.050000 0.098907 0.53 0.70 
0.903126 111 111 0.050000 0.096874 0.53 0.75 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. Power should be close to one. 
N1 and N2 are the number of items sampled from groups 1 and 2. 
Alpha is the probability of rejecting a true null hypothesis in at least one of the sequential tests. 
Beta is the probability of accepting a false null hypothesis at the conclusion of all tests. 
P1 is the value of both proportions under the null hypothesis. 
P2 is the proportion in group two under the alternative hypothesis. 
 
Summary Statements 
Sample sizes of 1102 and 1102 achieve 90% power to detect a difference of 0.07 between the 
group proportions of 0.53 and 0.60 at a significance level (alpha) of 0.0500 using a two-sided 
z-test with continuity correction. These results assume that 4 sequential tests are made using the O'Brien-Fleming 
spending function to determine the test boundaries. 
 

This report shows the values of each of the parameters, one scenario per row. Note that 542 
participants in each arm of the study are required to meet the 90% power requirement when the 
proportion is 0.63. 
The values from this table are in the chart below. Note that this plot actually occurs further down 
in the report. 
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Plots Section 
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This plot shows that a large increase in sample size is necessary when the detectable proportion in 
group two is less than 0.63. 

Details Section 
 
Details when Spending = O'Brien-Fleming, N1 = 542, N2 =542, P1 = 0.53, P2 = 0.63, Continuity Correction. 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.50 -4.33263 4.33263 0.000015 0.000015 0.000015 0.003525 0.003525  
2 1.00 -2.96311 2.96311 0.003045 0.003036 0.003051 0.255573 0.259098  
3 1.50 -2.35902 2.35902 0.018323 0.016248 0.019299 0.427801 0.686899  
4 2.00 -2.01406 2.01406 0.044003 0.030701 0.050000 0.214031 0.900930  
Drift 3.27640 
 

This report shows information about the individual interim tests. One report is generated for each 
scenario. 

Look 
These are the sequence numbers of the interim tests. 

Time 
These are the time points at which the interim tests are conducted. Since the Max Time was set to 
2 (for two years), these time values are in years. Hence, the first interim test is at half a year, the 
second at one year, and so on. 

We could have set Max Time to 24 so that the time scale was in months. 

Lower and Upper Boundary 
These are the test boundaries. If the computed value of the test statistic z is between these values, 
the trial should continue. Otherwise, the trial can be stopped.  
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Nominal Alpha 
This is the value of alpha for these boundaries if they were used for a single, standalone, test. 
Hence, this is the significance level that must be found for this look in a standard statistical 
package that does not adjust for multiple looks. 

Inc Alpha 
This is the amount of alpha that is spent by this interim test. It is close to, but not equal to, the 
value of alpha that would be achieved if only a single test was conducted. For example, if we 
lookup the third value, 2.35902, in normal probability tables, we find that this corresponds to a 
(two-sided) alpha of 0.018323. However, the entry is 0.016248. The difference is due to the 
correction that must be made for multiple tests. 

Total Alpha 
This is the total amount of alpha that is used up to and including the current test.  

Inc Power 
These are the amounts that are added to the total power at each interim test. They are often called 
the exit probabilities because they give the probability that significance is found and the trial is 
stopped, given the alternative hypothesis.  

Total Power 
These are the cumulative power values. They are also the cumulative exit probabilities. That is, 
they are the probability that the trial is stopped at or before the corresponding time. 

Drift 
This is the value of the Brownian motion drift parameter. 

Boundary Plots 
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This plot shows the interim boundaries for each look. This plot shows very dramatically that the 
results must be extremely significant at early looks, but that they are near the single test boundary 
(1.96 and -1.96) at the last look. 
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Example 2 – Finding the Power 
Continuing the scenario began in Example1, the researcher wishes to calculate the power of the 
design at sample sizes 200, 400, 600, 800, 1000. Testing will be done at the 0.01, 0.05, 0.10 
significance levels and the overall power will be set to 0.10. Find the power of these sample sizes 
and test boundaries assuming equal sample sizes per arm and two-sided hypothesis tests. 

Proceeding as in Example1, we decide to translate the mean and standard deviation into a percent 
of mean scale. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group Sequential Tests for Two Proportions procedure 
window by clicking on Group-Sequential Tests, then Two Proportions. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.01, 0.05, 0.10 
N1 (Sample Size Group 1) ......................200 to 1000 by 200 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Alternative Hypothesis ............................Two-Sided 
Continuity Correction...............................Checked 
P1 (Proportion in Group 1)......................0.53 
P2 (Proportion in Group 2)......................0.63 
Number of Looks.....................................4 
Spending Function ..................................O’Brien-Fleming 
Times.......................................................Equally Spaced 
Max Time ................................................2 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results and Plots 
 
Numeric Results for Two-Sided Test of Proportions. Continuity Correction Applied. 
 
Power N1 N2 Alpha Beta P1 P2 
0.254797 200 200 0.010000 0.745203 0.53 0.63 
0.581920 400 400 0.010000 0.418080 0.53 0.63 
0.805679 600 600 0.010000 0.194321 0.53 0.63 
0.920951 800 800 0.010000 0.079049 0.53 0.63 
0.970898 1000 1000 0.010000 0.029102 0.53 0.63 
0.478378 200 200 0.050000 0.521622 0.53 0.63 
0.790815 400 400 0.050000 0.209185 0.53 0.63 
0.928267 600 600 0.050000 0.071733 0.53 0.63 
0.977859 800 800 0.050000 0.022141 0.53 0.63 
0.993673 1000 1000 0.050000 0.006327 0.53 0.63 
0.599827 200 200 0.100000 0.400173 0.53 0.63 
0.867330 400 400 0.100000 0.132670 0.53 0.63 
0.961331 600 600 0.100000 0.038669 0.53 0.63 
0.989659 800 800 0.100000 0.010341 0.53 0.63 
0.997396 1000 1000 0.100000 0.002604 0.53 0.63 
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These data show the power for various sample sizes and alphas. It is interesting to note that once 
the sample size is greater than 700, the value of alpha makes little difference on the value of 
power. 
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Example 3 – Effect of Number of Looks 
Continuing with examples one and two, it is interesting to determine the impact of the number of 
looks on power. PASS allows only one value for the Number of Looks parameter per run, so it 
will be necessary to run several analyses. To conduct this study, set alpha to 0.05, N1 to 500, and 
leave the other parameters as before. Run the analysis with Number of Looks equal to 1, 2, 3, 4, 
6, 8, 10, and 20. Record the power for each run. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group Sequential Tests for Two Proportions procedure 
window by clicking on Group-Sequential Tests, then Two Proportions. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................500 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio)....................1.0 
Alternative Hypothesis ............................Two-Sided 
Continuity Correction...............................Unchecked 
P1 (Proportion in Group 1)......................0.53 
P2 (Proportion in Group 2)...................... .63 
Number of Looks.....................................1 (Also run with 2, 3, 4, 6, 8, 10, and 20) 
Spending Function ..................................O’Brien-Fleming 
Times.......................................................Equally Spaced 
Max Time ................................................2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Proportions 
 
Power N1 N2 Alpha Beta P1 P2 Looks 
0.893174 500 500 0.050000 0.106826 0.53 0.63 1 
0.892118 500 500 0.050000 0.107882 0.53 0.63 2 
0.889620 500 500 0.050000 0.110380 0.53 0.63 3 
0.887691 500 500 0.050000 0.112309 0.53 0.63 4 
0.885125 500 500 0.050000 0.114875 0.53 0.63 6 
0.883535 500 500 0.050000 0.116465 0.53 0.63 8 
0.882456 500 500 0.050001 0.117544 0.53 0.63 10 
0.879929 500 500 0.050001 0.120071 0.53 0.63 20 
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This analysis shows how little the number of looks impacts the power of the design. The power of 
a study with no interim looks is 0.893174. When twenty interim looks are made, the power falls 
to 0.879929—a very small change. 

Example 4 – Studying a Boundary Set 
Continuing with the previous examples, suppose that you are presented with a set of boundaries 
and want to find the quality of the design (as measured by alpha and power). This is easy to do 
with PASS. Suppose that the analysis is to be run with five interim looks at equally spaced time 
points. The upper boundaries to be studied are 3.5, 3.5, 3.0, 2.5, 2.0. The lower boundaries are 
symmetric. The analysis would be run as follows. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group Sequential Tests for Two Proportions procedure 
window by clicking on Group-Sequential Tests, then Two Proportions. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 (will be calculated from boundaries) 
N1 (Sample Size Group 1) ......................500 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Alternative Hypothesis ............................Two-Sided 
Continuity Correction...............................Checked 
P1 (Proportion in Group 1) ......................0.53 
P2 (Proportion in Group 2) ......................0.63 
Number of Looks.....................................5 
Spending Function ..................................User Supplied 
Times.......................................................Equally Spaced 
Lower Boundaries ...................................Symmetric 
Upper Boundaries ...................................3.5, 3.5, 3.0, 2.5, 2.0 
Max Time.................................................2 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Proportions 
 

 Power N1 N2 Alpha Beta P1 P2 
 0.887792 500 500 0.048157 0.112208 0.53 0.63 
 

Details when Spending = User Supplied, N1 = 500, N2 =500, P1 = 0.53, P2 = 0.63 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.40 -3.50000 3.50000 0.000465 0.000465 0.000465 0.018094 0.018094  
2 0.80 -3.50000 3.50000 0.000465 0.000408 0.000874 0.054010 0.072105  
3 1.20 -3.00000 3.00000 0.002700 0.002410 0.003284 0.219472 0.291577  
4 1.60 -2.50000 2.50000 0.012419 0.010331 0.013615 0.335232 0.626809  
5 2.00 -2.00000 2.00000 0.045500 0.034542 0.048157 0.248848 0.875657  
Drift 3.14209 
 

The power for this design is about 0.88. This value depends on both the boundaries and the 
sample size. The alpha level is about 0.048. This value only depends on the boundaries. 

Example 5 – Validation using O’Brien-Fleming 
Boundaries 
Reboussin (1992) presents an example for binomial distributed data for a design with two-sided 
O’Brien-Fleming boundaries, looks = 5, alpha = 0.05, beta = 0.10, P1 = 0.1100, P2 = 0.0825. 
They compute a drift of 3.28 and a sample size of 2381.78 per group. The upper boundaries are: 
4.8769, 3.3569, 2.6803, 2.2898, 2.0310.  

To test that PASS provides the same result, enter the following. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Group Sequential Tests for Two Proportions procedure 
window by clicking on Group-Sequential Tests, then Two Proportions. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example5 from the Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................N1 
Power ......................................................0.90 
Alpha .......................................................0.05 
N1 (Sample Size Group 1) ......................Ignored since this is the Find setting 
N2 (Sample Size Group 2) ......................Use R 
R (Sample Allocation Ratio) ....................1.0 
Alternative Hypothesis ............................Two-Sided 
Continuity Correction...............................Not checked 
P1 (Proportion in Group 1) ......................0.1100 
P2 (Proportion in Group 2) ......................0.0825 
Number of Looks.....................................5 
Spending Function ..................................O’Brien-Fleming 
Times.......................................................Equally Spaced 
Max Time.................................................1 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Proportions 
 
Power N1 N2 Alpha Beta P1 P2 
0.900105 2474 2474 0.050000 0.099895 0.1100 0.0825 
 
Details when Spending = O'Brien-Fleming, N1 = 2468, N2 =2468, P1 = 0.1100, P2 = 0.0825 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.20 -4.87688 4.87688 0.000001 0.000001 0.000001 0.000324 0.000324  
2 0.40 -3.35695 3.35695 0.000788 0.000787 0.000788 0.099454 0.099778  
3 0.60 -2.68026 2.68026 0.007357 0.006828 0.007616 0.346699 0.446477  
4 0.80 -2.28979 2.28979 0.022034 0.016807 0.024424 0.299644 0.746120  
5 1.00 -2.03100 2.03100 0.042255 0.025576 0.050000 0.153985 0.900105  
Drift 3.27939 
 

The difference in the sample sizes (2474 versus 2382) is due to rounding errors in the Reboussin 
article. Reboussin rounds from four-digits to three-digits, which caused a large difference. PASS 
uses more accurate routines.  

To see that the results are equal to within rounding error, we will compute the sample size using 
Reboussin’s results, but with more decimal places in the intermediate steps. They had 
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When we compute this without rounding, we get 
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A sample size of 2474 is the result obtained in PASS. 
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Chapter 225 

Inequality Tests 
for Two 
Proportions in a 
Stratified Design 
(Cochran/Mantel-
Haenszel Test) 
Introduction 
In a stratified design, the subjects are selected from two or more strata which are formed from 
important covariates such as gender, income level, or marital status. The number of subjects in 
each of the two groups in each strata is set (fixed) by the design. A separate 2-by-2 table is 
formed for each stratum. Although response rates may vary among strata, hypotheses about the 
overall odds ratio can be tested the Cochran-Mantel-Haenszel test. This module allows you to 
determine power and sample size for such a study.  

Technical Details 
This procedure is based on the results of Woolson, Bean, and Rojas (1986) which were extended 
to include a continuity correction by Nam (1992). For more details, consult those articles or 
chapter 4 in Lachin (2000). We will now briefly summarize these results. 

Suppose you are interested in comparing the disease response rates of two groups (treatment and 
control). Further suppose that response rate is known to be related to another covariate (such as 
age, race, or gender). It is often desirable to remove the covariate’s impact from the comparison 
of the two proportions. This is accomplished by stratifying on the covariate and forming 
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hypotheses about a common odds ratio across all strata. Data from such a stratified design may be 
analyzed by the Cochran-Mantel-Haenszel test. 

There are two versions of the Cochran-Mantel-Haenszel test: one that is continuity corrected and 
one that is not. The continuity-corrected test is more commonly used.  

The computation of the test statistic is as follows. Suppose there are J strata. The result of each 2-
by-2 table may be summarized as follows. 
 

 Groups 

 Group 1 Group 2  
Response Treatment Control Total 
Yes    x x j2j1 x j.

No   n xj j1 1− n xj j2 2− N xj j− .  
Total    n j1 n j2 N j
 

where j = 1, 2, …, J and . N N j
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In the sequel, it is assumed that the strata odds ratios are all equal. That is, it is assumed that 
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If values for the odds ratio under the null hypothesis ( )ψ 0 , under the alternative hypothesis ( )ψ1 , 

and  are specified, values for  under the null hypothesis p j2 p j1 ( )p j1 0  and the alternative 

hypothesis can be calculated as follows (p j1 1)
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Assuming a common odds ratio across all strata of ψ  (that is, assumingψ ψ ψ ψ1 2= = =L J ), 
hypotheses of the form H0: 0ψ ψ≤  versus H :1 0ψ ψ>  may be tested using Cochran’s U 
statistic (Woolson et al. 1986, page 928) 
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The value U  is commonly used to form the Cochran-Mantel-Haenszel statistic. U  is an 
extension of this statistic which allows 

0 G

ψ 0 1≠ .  

The calculation of the asymptotically normal test statistic, , may or may not include a continuity 
correction factor depending on whether the parameter cc is set to 1/2 or 0. The formula for  
is 
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The name Cochran-Mantel-Haenszel test actually refers to two tests: the Cochran test and the the 
Mantel-Haenszel test. The difference is between these test is that Cochran’s test uses  to 
estimate the unconditional variance assuming that the group sample sizes are fixed, while the 

(v UG0 )

Mantel-Haenszel test replaces ( )v UG0  with an estimate of the conditional variance of U 
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assuming that both row and col arginals are fixed. Asymptotically the two variances
equivalent, so the test is often called the Cochran-Mantel-Haenszel statistic. 

umn m  are 

Power Calculations 
The asymptotic power of zCMH  for testing a one-sided hypothesis of the form H0 0:ψ ψ≤  versus 
H1 0:ψ ψ>  is 
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Note that Woolson et al. (1986) and Nam (1992) give results for the usual case when ψ 0 1= . The 
above results are our extension to the important case when ψ 0 1≠ . We could not find hed 
results for this case, so we have made this extension. When ed results become available, 
we will adopt those results. If you have 

 publis
publish

ψ 0 1≠ , you must use UG , rather than U0 , in the 
calculation of the test statistic. 

Similar calculations may also be made for testing the other one-sided hypothesis H0 0:ψ ψ≥  
versus H1 0:ψ ψ<  and the two-sided hypothesis H0 0:ψ ψ=  versus H1: 0ψ ψ≠ . 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data 1 and Data 2 tabs. To find out more about using the other tabs such as Axes/Legend/Grid, 
Plot Text, or Template, go to the Procedure Window chapter. 

Data 1 and Data 2 Tabs 
The Data tabs contain most of the parameters and options of interest for this procedure. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for using the other parameters. The parameters 
that may be selected are OR1, Alpha, Power and Beta, or N. In most cases, you will select either 
Power and Beta or N. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal 
proportions when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. For this procedure, a type-I error occurs when you reject 
the null hypothesis of equal proportions when in fact they are equal. 

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

M (Sample Size Multiplier) 
M and the values of R1 and R2 are used to calculate the group sample sizes within each strata 
using the formulas N1 = M x R1 and N2 = M x R2. The total sample size, N, is found by 
summing N1 and N2 across all strata. Note that fractional values for N, N1, and N2 will usually 
result. In practice these values are rounded up to the next integer value. 

One or more values, separated by blanks or commas, may be entered. A separate analysis is 
performed for each value. 

Using M as the Group Size 
To use M as the sample size in each group, the values of R1 and R2 must each be set to one. 

Using M as the Strata Size 
To use M as the sample size in each strata, the values of R1 and R2 must sum to one within each 
strata. For example, suppose M = 30 and R1 = R2 = 0.5. The values of N1 and N2, the group 
sample sizes within a stratum, will be 0.5 x 30 = 15. Thus, the total sample size within the strata 
is 15 + 15 = 30. 

Using M as Total Sample Size 
To use M as the total sample size across all strata, the values of R1 and R2 must sum to one 
across all values. Note that the resulting value of N may not exactly equal M because of rounding. 

For example, suppose there are three strata with R1 = 0.1, 0.2, and 0.2 and R2 = 0.1, 0.3, and 0.1. 
(Note that these values sum to one.) If M were 100, then the values of N1 would be 10, 20, and 
20 and the values of N2 would be 10, 30, and 10. These sum to 100, the value of M. 

Effect Size 

OR1 (Odds Ratio|H1) 
This option specifies the odds ratio of the two proportions P1 and P2 at which the power is to be 
computed. This odds ratio is used to specify the size of the difference between the two 
proportions at which the power is calculated.  

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25.  

Odds ratios must greater than zero.  

OR0 (Odds Ratio|H0) 
Specify the odds ratio under the null hypothesis, H0. For each strata, this value is used with the 
value of Pr(Success) to calculate the probability of obtaining a success in group one (the 
treatment group) assuming the null hypothesis. In the standard Cochran-Mantel-Haenszel test, 
this value is assumed to be (and should be entered as) one. If you enter a value other than one, 
your data analysis should use the more general test statistic. 

Note that OR0 must be greater than zero and cannot be equal to OR1.  
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Test 

Alternative Hypothesis (H1) 
This option specifies whether a one-sided or two-sided hypothesis is analyzed.  

One-Sided (H1: OR1 < OR0) refers to a one-sided test in which the alternative hypothesis is of 
the form H1: OR1 < OR0. 

One-Sided (H1: OR1 > OR0) refers to a one-sided test in which the alternative hypothesis is of 
the form H1: OR1 > OR0. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: OR1 
<> OR0. Here ‘<>’ means ‘is not equal to’ or ‘is less than or greater than’. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 

Continuity Correction 
Specify whether to use the Continuity Correction. When selected, a continuity correction is made 
that is recommend by Fleiss et al. (2003) to make the alpha and beta values achieved by the test 
more accurate. 

Strata Information 

Strata 
This option specifies the number of strata specified on this line. Usually, you will enter a '1' to 
specify a single stratum, or you will enter a '0' to ignore this line. However, this option lets you 
specify several strata at once. 

The total number of strata is equal to the sum of these values. 

R1 = N1 / M, R2 = N2 / M 
R1 and R2 are used to obtain the sample sizes in groups 1 (treatment) and 2 (control) within a 
strata using the formulas N1 = R1 x M and N2 = R2 x M. The only limitation on R1 and R2 is 
that they are positive (non-zero) values. See the comments under M for more information. 

Note that only a single value may be entered for this parameter—you cannot enter several values. 

Pr(Success) 
This is the baseline probability of a successful response. This value is used with OR1 to calculate 
the probability of a success in group 1 (the treatment or numerator group).  

Since this value is a probability, it must be between zero and one. 

Note that only one value may be entered here. 
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Example 1 – Finding Power  
Nam (1992) discusses a case-control study investigating the possible association between 
chlorinated water and colon cancer among males in Iowa. Since age is known to affect colon 
cancer rates, the population is stratified into four age groups with weights of 10%, 40%, 35%, and 
15%. An equal number of cases and controls will be selected in each age-group. Prior studies had 
shown the probability of chlorinated water exposure among non-cancer subjects was 0.75, 0.70, 
0.65, and 0.60, respectively, among the four age groups. The significance level is set to 0.05. The 
investigators want to consider various total sample sizes from 50 to 500. They also want to 
consider odds ratios of 2 and 3.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions in a Stratified Design 
(Cochran/Mantel-Haenszel Test) procedure window by clicking on Proportions, then Two 
Independent Proportions, then Inequality Tests, then Stratified Designs (Cochran/Mantel-
Haenszel Test). You may then follow along here by making the appropriate entries as listed 
below or load the completed template Example1 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting  
Alpha .......................................................0.05 
M (Sample Size Multiplier) ......................50 to 500 by 50 
OR0 (Odds Ratio | H0)............................1 
OR1 (Odds Ratio | H1)............................2  3 
H1 (Alternative Hypothesis) ....................One-Sided (H1:OR1>OR0) 
Continuity Correction...............................Checked 
Strata(1) ..................................................1 
R1(1) .......................................................0.05 (half of 10%) 
R2(1) .......................................................R1 
Pr(Success)(1) ........................................0.75 
Strata(2) ..................................................1 
R1(2) .......................................................0.20 (half of 40%) 
R2(2) .......................................................R1 
Pr(Success)(2) ........................................0.70 
Strata(3) ..................................................1 
R1(3) .......................................................0.175 (half of 35%) 
R2(3) .......................................................R1 
Pr(Success)(3) ........................................0.65 
Strata(4) ..................................................1 
R1(4) .......................................................0.075 (half of 15%) 
R2(4) .......................................................R1 
Pr(Success)(4) ........................................0.60 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Cochran-Mantel-Haenszel Test of an Odds Ratio 
H0: OR1=OR0. H1: OR1>OR0. Test: Continuity-Corrected Z-Test. 
 
 Total Sample Sample Sample H0 Actual   
 Sample Size Size of Size of Odds Odds Signif.  
 Size Multiplier Group 1 Group 2 Ratio Ratio Level  
Power (N) (M) (N1) (N2) (OR0) (OR1) Alpha Beta 
0.1783 50 50.000 25 25 1.000 2.000 0.0500 0.8217 
0.3505 100 100.000 50 50 1.000 2.000 0.0500 0.6495 
0.4992 150 150.000 75 75 1.000 2.000 0.0500 0.5008 
0.6215 200 200.000 100 100 1.000 2.000 0.0500 0.3785 
0.7186 250 250.000 125 125 1.000 2.000 0.0500 0.2814 
0.7937 300 300.000 150 150 1.000 2.000 0.0500 0.2063 
0.8506 350 350.000 175 175 1.000 2.000 0.0500 0.1494 
0.8929 400 400.000 200 200 1.000 2.000 0.0500 0.1071 
0.9239 450 450.000 225 225 1.000 2.000 0.0500 0.0761 
0.9464 500 500.000 250 250 1.000 2.000 0.0500 0.0536 
0.3356 50 50.000 25 25 1.000 3.000 0.0500 0.6644 
0.6337 100 100.000 50 50 1.000 3.000 0.0500 0.3663 
0.8151 150 150.000 75 75 1.000 3.000 0.0500 0.1849 
0.9121 200 200.000 100 100 1.000 3.000 0.0500 0.0879 
0.9601 250 250.000 125 125 1.000 3.000 0.0500 0.0399 
0.9825 300 300.000 150 150 1.000 3.000 0.0500 0.0175 
0.9925 350 350.000 175 175 1.000 3.000 0.0500 0.0075 
0.9969 400 400.000 200 200 1.000 3.000 0.0500 0.0031 
0.9987 450 450.000 225 225 1.000 3.000 0.0500 0.0013 
0.9995 500 500.000 250 250 1.000 3.000 0.0500 0.0005 
 
Report Definitions 
'Power' is the probability of rejecting a false null hypothesis. It should be close to one. 
'N' is the total sample size summed across all groups and strata. 
'M' is the factor by which the values of R1 and R2 are multiplied. 
'N1 and N2' are the sample sizes from groups 1 and 2 summed across all strata. 
'OR0' is the odds ratio [P1/(1-P1)] / [P2/(1-P2)] assuming the null hypothesis (H0). 
'OR1' is the value of the odds ratio at which the power is computed. 
'Alpha' is the probability of rejecting a true null hypothesis. 
'Beta' is the probability of accepting a false null hypothesis. 
In a treatment vs. control design, the treatment group is 1 and the control group is 2. 
 
 
Summary Statements 
A stratified design, which divides the sample among 4 strata, is analyzed using the one-sided, 
Cochran-Mantel-Haenszel test. Sample sizes, summed across all strata, of 25 in group 1 
(treatment group) and 25 in group 2 (control group) achieve 18% power to reject the odds ratio 
set by the null hypothesis of 1.000 when the odds ratio is actually 2.000. The significance 
level of the test was set at 0.0500. 
 

Sample Sizes: N, N1, and N2 
The value of N is the sum of N1 and N2. The values of N1 and N2 are found by summing the 
individual strata-group sample sizes. These are found by multiplying R1 and R2 by M.  

Note that this multiplication will usually result in fractional sample sizes across the strata. As a 
practical matter, we recommend rounding each fractional value up to the next integer when 
implementing a given design. 
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Strata-Detail Report 
 

Strata-Detail Report 
 
 Proportion Proportion Proportion   Strata 
Number of Total of this of this Group 1 Group 2 Probability 
of Sample in Strata in Strata in Multiplier Multiplier of 
Strata each Strata Group 1 Group 2 (R1) (R2) Success 
1 0.1000 0.5000 0.5000 0.050 0.050 0.7500 
1 0.4000 0.5000 0.5000 0.200 0.200 0.7000 
1 0.3500 0.5000 0.5000 0.175 0.175 0.6500 
1 0.1500 0.5000 0.5000 0.075 0.075 0.6000 
 

This report shows the values of the individual, strata-level parameters that were used. These 
parameters are the same for all rows of the Numerical Results Report (shown above), so they are 
only displayed once. 

Plots Section 
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The values from the Numerical Results Report are displayed in this scatter plot. This chart 
provides a quick view of the power that is achieved for various sample sizes. 
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Example 2 – Validation using Nam  
To validate the procedure, we will compare PASS’s results to those on page 392 of Nam (1992). 
Most of the settings in this example are the same as those of Example 1, except that the power is 
90% and the odds ratio is 3. Nam (1992) found the necessary sample sizes to be 192 for the 
corrected test and 171 for the uncorrected test.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions in a Stratified Design 
(Cochran/Mantel-Haenszel Test) procedure window by clicking on Proportions, then Two 
Independent Proportions, then Inequality Tests, then Stratified Designs (Cochran/Mantel-
Haenszel Test). You may then follow along here by making the appropriate entries as listed 
below or load the completed template Example2a or Example 2b from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N (Sample Size) 
Power ......................................................0.90  
Alpha .......................................................0.05 
M (Sample Size Multiplier) ...................... Ignored since this is the Find setting 
OR0 (Odds Ratio | H0)............................1 
OR1 (Odds Ratio | H1)............................3 
H1 (Alternative Hypothesis) ....................One-Sided (H1:OR1>OR0) 
Continuity Correction...............................Checked 
Strata(1) ..................................................1 
R1(1) .......................................................0.05 (half of 10%) 
R2(1) .......................................................R1 
Pr(Success)(1) ........................................0.75 
Strata(2) ..................................................1 
R1(2) .......................................................0.20 (half of 40%) 
R2(2) .......................................................R1 
Pr(Success)(2) ........................................0.70 
Strata(3) ..................................................1 
R1(3) .......................................................0.175 (half of 35%) 
R2(3) .......................................................R1 
Pr(Success)(3) ........................................0.65 
Strata(4) ..................................................1 
R1(4) .......................................................0.075 (half of 15%) 
R2(4) .......................................................R1 
Pr(Success)(4) ........................................0.60 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Cochran-Mantel-Haenszel Test of an Odds Ratio 
H0: OR1=OR0. H1: OR1>OR0. Test: Continuity-Corrected Z-Test. 
 
 Total Sample Sample Sample H0 Actual   
 Sample Size Size of Size of Odds Odds Signif.  
 Size Multiplier Group 1 Group 2 Ratio Ratio Level  
Power (N) (M) (N1) (N2) (OR0) (OR1) Alpha Beta 
0.9000 192 191.538 96 96 1.000 3.000 0.0500 0.1000 
 

 
The value of 192 agrees exactly with that of Nam (1992).  

If you uncheck the Continuity Correction option and rerun the analysis, you will get the following 
results. 

Numeric Results – No Continuity Correction 
 
Numeric Results of Cochran-Mantel-Haenszel Test of an Odds Ratio 
H0: OR1=OR0. H1: OR1>OR0. Test: Uncorrected Z-Test. 
 
 Total Sample Sample Sample H0 Actual   
 Sample Size Size of Size of Odds Odds Signif.  
 Size Multiplier Group 1 Group 2 Ratio Ratio Level  
Power (N) (M) (N1) (N2) (OR0) (OR1) Alpha Beta 
0.9000 171 170.741 85 85 1.000 3.000 0.0500 0.1000 
 

The value of 171 agrees exactly with that of Nam (1992).  
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Example 3 – Finding Power of a Completed Experiment  
Suppose you want to find the power for a completed experiment in which the individual strata 
sample sizes are known. In this example there are three strata with success probabilities 0.72, 
0.66, and 0.69. The sample sizes for the treatment group in each stratum are 102, 113, and 97. 
The sample sizes for the control group in each stratum are 98, 110, and 114. The experiment was 
designed to detect an odds ratio of at least 1.5 with alpha equal to 0.05 for a one-sided test.  

To calculate the power in this situation, we set M to 1 and enter the sample sizes directly into R1 
and R2. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions in a Stratified Design 
(Cochran/Mantel-Haenszel Test) procedure window by clicking on Proportions, then Two 
Independent Proportions, then Inequality Tests, then Stratified Designs (Cochran/Mantel-
Haenszel Test). You may then follow along here by making the appropriate entries as listed 
below or load the completed template Example3 from the Template tab on the procedure 
window. 
 
Option Value 

 
 For) ......................................Power and Beta 

 the Find setting  

 
-Sided (H1:OR1>OR0) 

2 

 

3 

 
 

Data Tab
Find (Solve
Power ...................................................... Ignored since this is
Alpha .......................................................0.05 
M (Sample Size Multiplier) ......................1 
OR0 (Odds Ratio | H0)............................1 
OR1 (Odds Ratio | H1)............................1.5
H1 (Alternative Hypothesis) ....................One
Continuity Correction...............................Checked 
Strata(1) ..................................................1 
R1(1) .......................................................10
R2(1) .......................................................98 
Pr(Success)(1) ........................................0.72
Strata(2) ..................................................1 
R1(2) .......................................................11
R2(2) .......................................................110 
Pr(Success)(2) ........................................0.66 
Strata(3) ..................................................1 
R1(3) .......................................................97
R2(3) .......................................................114
Pr(Success)(3) ........................................0.69 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Cochran-Mantel-Haenszel Test of an Odds Ratio 
H0: OR1=OR0. H1: OR1>OR0. Test: Continuity-Corrected Z-Test. 
 
 Total Sample Sample Sample H0 Actual   
 Sample Size Size of Size of Odds Odds Signif.  
 Size Multiplier Group 1 Group 2 Ratio Ratio Level  
Power (N) (M) (N1) (N2) (OR0) (OR1) Alpha Beta 
0.6980 634 1.000 312 322 1.000 1.500 0.0500 0.3020 
 

The power to detect an odds ratio of 1.5 is only 0.6980 in this experiment. 
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Chapter 230 

Inequality Tests 
for Two 
Proportions in a 
Cluster-
Randomized 
Design 
Introduction 
A cluster (group) randomized design is one in which whole units, or clusters, of subjects are 
randomized to the groups rather than the individual subjects in those clusters. However, the 
conclusions of the study concern individual subjects rather than the clusters. Examples of clusters 
are families, school classes, neighborhoods, and hospital wards.  

Cluster-randomized designs are often adopted when there is a high risk of contamination if cluster 
members were randomized individually. For example, it may be difficult for an instructor to use 
two methods of teaching individuals in the same class. The price of randomizing by clusters is a 
loss of efficiency--the number of subjects needed to obtain a certain level of precision in a 
cluster-randomized trial is usually much larger than the number needed when the subjects are 
randomized individually. Hence, the standard methods of sample size estimation cannot be used. 

Three Procedures Documented Here 
There are three procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, or ratios of proportions. Each of these 
options is listed separately on the menus.  
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Technical Details 
Our formulation comes from Donner and Klar (2000). Denote a binary observation by where 
g = 1 or 2 is the group, k = 1, 2, …,  is a cluster within group g, and m = 1, 2, …,  is an 
individual in cluster k of group g. The results that follow assume an equal number of individuals per 
cluster. When the number of subjects from cluster to cluster are about the same, the power and 
sample size values should be fairly accurate. In these cases, the average number of subjects per 
cluster can be used.  

Ygkm

K g Mg

The statistical hypothesis that is tested concerns the difference between the two group proportions, 
 and . When necessary, we assume that group 1 is the treatment group and group 2 is the 

control group. With a simple modification, all of the large-sample sample size formulas that are 
listed in the module for testing two proportions can be used here. When the individual subjects 
are randomly assigned to one of the two groups, the variance of the sample proportion is 
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When the randomization is by clusters of subjects, the variance of the sample proportion is 
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The factor  is called the inflation factor. The Greek letter( )[1 1+ −mg ρ] ρ  is used to represent the 

intracluster correlation coefficient (ICC). This correlation may be thought of as the simple 
correlation between any two subjects within the same cluster. If we stipulate that ρ  is positive, it 
may also be interpreted as the proportion of total variability that is attributable to differences 
between clusters. This value is critical to the sample size calculation. 

All of the asymptotic formulas that were used in comparing two proportions may be used with 
cluster-randomized designs as well, as long as an adjustment is made for the inflation factor. The 
basic form of the z-test becomes 
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The quantities ~p1  and ~p2  are the maximum likelihood estimates constrained by ~ ~p p1 2− = 0δ . 
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Power Calculations 
A large sample approximation may be used that is most accurate when the values of  and  
are large. The large approximation is made by replacing the values of  and  in the z statistic 
with the corresponding values of  and  under the alternative hypothesis, and then 
computing the results based on the normal distribution.  

n1 n2

$p1 $p2

p1 p2

Note that in this case, exact calculations are not possible. 

Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data and Iterations/Zeroes tabs. To find out more about using the other 
tabs such as Axes/Legend/Grid, Plot Text, or Template, go to the Procedure Window chapter. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and power. This chapter covers three procedures, each of which has different 
options. This section documents options that are common to all three procedures. Later, unique 
options for each procedure will be documented.   

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for using the other parameters. The parameters 
that may be selected are P1.1, Alpha, Power and Beta, K1, and M1. Under most situations, you 
will select either Power and Beta or K1. 

Select K1 when you want to calculate the sample size needed to achieve a given power and alpha 
level. 

Select Power and Beta when you want to calculate the power of an experiment.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal 
proportions when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  



230-4  Inequality Tests for Two Proportions in a Cluster-Randomized Design 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. For this procedure, a type-I error occurs when you reject 
the null hypothesis of equal proportions when in fact they are equal. 

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size – Treatment (Group 1) 

K1 (Clusters Group 1) 
Enter a value (or range of values) for the number of clusters in this group. You may enter a range 
of values such as 10 to 20 by 2. The sample size for this group is equal to the number of clusters 
times the number of subjects per cluster. 

M1 (Items Group 1) 
This is the average number of items (subjects) per cluster in group one. This value must be a 
positive number that is at least one. You can use a list of values such as 100 150 200. 

Sample Size – Control (Group 2) 

K2 (Clusters Group 2) 
This is the number of clusters in group two. The sample size for this group is equal to the number 
of clusters times the number of subjects per cluster. This value must be a positive number.  

If you simply want a multiple of the value for group one, you would enter the multiple followed 
by K1, with no blanks. If you want to use K1 directly, you do not have to premultiply by 1. For 
example, all of the following are valid entries:10 K1 2K1 0.5K1. 

You can use a list of values such as 10 20 30 or K1 2K1 3K1. 

M2 (Items Group 2) 
This is the average number of items (subjects) per cluster in group two. This value must be at 
least one. 

If you simply want a multiple of the value for group one, you would enter the multiple followed 
by M1, with no blanks. If you want to use M1 directly, you do not have to premultiply by 1. For 
example, all of the following are valid entries: 10  M1 2M1 0.5M1. 

You can use a list of values such as 10 20 30 or M1 2M1 3M1. 

Effect Size – Control (Group 2) 

P2 (Control Group Proportion) 
Specify the value of , the control, baseline, or standard group’s proportion. The null hypothesis 
is that the two proportions differ by a specified amount (See Specify Group 1 Proportion using 
below).  

p2

Since is a proportion, these values must be between zero and one. p2
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You may enter a range of values such as 0.1,0.2,0.3 or 0.1 to 0.9 by 0.1. 

Effect Size – Intracluster Correlation 

ICC (Intracluster Correlation) 
Enter a value (or range of values) for the intracluster correlation. This correlation may be thought 
of as the simple correlation between any two observations in the same cluster. It may also be 
thought of as the proportion of total variance in the observations that can be attributed to difference 
between clusters. 

Although the actual range for this value is from zero to one, typical values range from 0.002 to 
0.05. 

Test 

Test Type 
Specify which test statistic is used in searching and reporting. We recommend the likelihood 
score test. 

Data Tab (Proportions) 
This section documents options that are used when the parameterization is in terms of the values 
of the two proportions, P1 and P2. P1.0 is the value of the P1 assumed by the null hypothesis and 
P1.1 is the value of P1 at which the power is calculated. 

Effect Size – Treatment (Group 1) 

P1.0 (Group 1 Proportion |H0) 
This option specifies the value of the group 1 proportion given the null hypothesis. The power 
calculations assume that P1.0 is the value of P2 under the null hypothesis. In this non-null case, 
the value of P1.0 is not equal to P2 as it is in the null case. 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

Proportions must be between zero and one. They cannot take on the values zero or one.  

P1.1 (Group 1 Proportion |H1) 
This is the value of P1 under the alternative hypothesis. It is written P1.1. The power calculations 
assume that this is the actual value of the proportion. 

You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1.  

Note that values must be between zero and one.  

Test 

Alternative Hypothesis (H1) 
This option specifies whether a one-sided or two-sided hypothesis is analyzed.  

One-Sided (H1: P1<P2) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: P1<P2. 
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One-Sided (H1:D1>D0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: P1>P2. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: 
P1<>P2+D0. Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 

Data Tab (Differences) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value 
of P1 at which the power is calculated. Once P2, D0, and D1 are given, the values of P1.1 and 
P1.0 can be calculated. 

Effect Size – Differences 

D0 (Difference|H0 = P1.0 – P2) 
This option specifies the difference between the two proportions given in the null hypothesis, H0. 
This difference is used with P2 to calculate the value of P1.0 using the formula: P1.0 = P2 + D0. 
Note that P1.0 here means the value of P1 under H0. 

Differences must be between -1 and 1. They cannot take on the values -1, 0, or 1. 

The power calculations use P1.0 as the value of the proportion in group 2 (the experimental or 
treatment group) under the null hypothesis. In the non-null case, the value of P1.0 is not equal to 
P2 as it is in the null case. 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

D1 (Difference|H1 = P1.1 – P2) 
This option specifies the difference between P1.1 and P2. This difference is used with P2 to 
calculate the value of P1.1 using the formula: P1.1 = D1 + P2. Note that P1.1 here means the 
value of P1 under H1. Differences must be between -1 and 1. They cannot take on the values -1 
or 1. 

The power calculations assume that P1.1 is the actual value of the proportion in group 2 
(experimental or treatment group). 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

Test 

Alternative Hypothesis (H1) 
This option specifies whether a one-sided or two-sided hypothesis is analyzed.  

One-Sided (H1:D1<D0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: D1<D0. 

One-Sided (H1:D1>D0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: D1>D0. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: 
D1<>D0. Here ‘<>’ means unequal. 
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Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 

Data Tab (Ratios) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of P1 at 
which the power is calculated. Once P2, R0, and R1 are given, the values of P1.0 and P1.1 can be 
calculated. 

Effect Size – Ratios 

R0 (Ratio|H0 = P1.0 / P2) 
This option specifies the ratio between the group 1 proportion under the null hypothesis, P1.0, 
and P2. This ratio is used with P2 to calculate the value of P1.0 using the formula: P1.0 = R0 x 
P2. The power calculations assume that P1.0 is the value of the P1 under the null hypothesis. In 
this non-null case, the value of P1.0 is not equal to P2 as it is in the null case. 

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25.  

Ratios must be greater than zero. 

R1 (Ratio|H1 =  P1.1 / P2) 
This option specifies the ratio of P1.1 and P2, where P1.1 is the proportion in group 1 under the 
alternative hypothesis. This ratio is used with P2 to calculate the value of P1.1 using the formula: 
P1.1 = R1 x P2.The power calculations assume that P1.1 is the actual value of the proportion in 
group 1 (experimental or treatment group). 

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25.  

Ratios must be greater than zero. They cannot take on the value of one. 

Test 

Alternative Hypothesis (H1) 
This option specifies whether a one-sided or two-sided hypothesis is analyzed.  

One-Sided (H1:R1<R0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: R1<R0. 

One-Sided (H1:R1>R0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: R1>R0. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: 
R1<>R0. Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 
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Iterations/Zeroes Tab 
The Iterations/Zeroes tab contains various limits and options. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. A value of at least 500 is recommended. 

Zero Counts 

Zero Count Adjustment Method 
Zero cell counts often cause calculation problems. To compensate for this, a small value (called 
the Zero Count Adjustment Value) can be added either to all cells or to all cells with zero counts. 
This option specifies whether you want to use the adjustment and which type of adjustment you 
want to use. We recommend that you use the option Add to zero cells only. 

Zero cell values often do not occur in practice. However, since power calculations are based on 
total enumeration, they will occur in power and sample size estimation. 

Adding a small value is controversial, but can be necessary for computational considerations. 
Statisticians have recommended adding various fractions to zero counts. We have found that 
adding 0.0001 seems to work well.  

Zero Count Adjustment Value 
Zero cell counts cause many calculation problems when computing power or sample size. To 
compensate for this, a small value may be added either to all cells or to all zero cells. This is the 
amount that is added. We have found that 0.0001 works well. 

Be warned that the values of the ratio and the odds ratio will be affected by the amount specified 
here! 
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Example 1 – Finding Power  
Two competing physical therapy treatments have been available for several years but have not yet 
been compared as to their effectiveness. The comparison of the two treatments is complicated by 
the sampling method that will be used. Instead of randomly assigning individuals to treatments, 
the researchers will randomly select two groups of physical therapists. The first group will be 
selected from those who use treatment 1. The second group will be selected from those who use 
treatment 2. The researchers will then follow up on the success or failure of the treatment for 
multiple patients of each physical therapist. The success rate of treatment 2 is known to be about 
0.44. The researchers want to examine effect of the number of physical therapists used in each 
group and the number of patients for each physical therapist on the power of the test. They wish 
to determine the power if the treatments are at least 0.07 apart in proportion. They plan to use the 
Farrington and Manning likelihood score test statistic to analyze the data. Based on similar 
studies, the intracluster correlation is estimated to be 0.02.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions in a Cluster-
Randomized Design [Differences] procedure window by clicking on Proportions, then Two 
Proportions from a Cluster-Randomized Design, then Inequality Tests, then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
K1 (Clusters Per Group 1).......................10 15 20 25 
M1 (Items Per Cluster in Group 1) ..........10 to 50 by 10 
K2 (Clusters Per Group 2).......................K1 
M2 (Items Per Cluster in Group 2) ..........M1 
D0 (Difference|H0 = P1.0 – P2) ..............0.0 
D1 (Difference|H1 = P1.1 – P2) ..............0.07 
P2 (Group 2 Proportion)..........................0.44 
ICC (Intracluster Correlation) ..................0.02 
H1 (Alternative Hypothesis) ....................Two-Sided 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Axes/Legend/Grid Tab 
Horizontal Axis Parameter ......................K1 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 - P2 
H0: P1-P2=D0. H1: P1-P2=D1<>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra- Prop Prop|H0 Prop|H1     
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 or Grp 1 or Diff Diff   
 Items Items Corr. Control Trtmnt Trtmnt if H0 if H1   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha Beta 
0.1491 10/10 10/10 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.8509 
0.2219 10/20 10/20 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.7781 
0.2763 10/30 10/30 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.7237 
0.3179 10/40 10/40 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.6821 
0.3506 10/50 10/50 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.6494 
0.2013 15/10 15/10 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.7987 
0.3096 15/20 15/20 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.6904 
0.3871 15/30 15/30 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.6129 
0.4452 15/40 15/40 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.5548 
0.4879 15/50 15/50 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.5121 
0.2522 20/10 20/10 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.7478 
0.3927 20/20 20/20 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.6073 
0.4889 20/30 20/30 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.5111 
0.5569 20/40 20/40 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.4431 
0.6066 20/50 20/50 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.3934 
0.3025 25/10 25/10 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.6975 
0.4715 25/20 25/20 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.5285 
0.5796 25/30 25/30 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.4204 
0.6520 25/40 25/40 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.3480 
0.7030 25/50 25/50 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.2970 
 
Report Definitions 
H0 is an abbreviation for the NULL hypothesis. This is the hypothesis being evaluated by the statistical test. 
H1 is an abbreviation for the ALTERNATIVE hypothesis. This hypothesis gives the 'true' parameter values. 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
K1 & K2 are the number of clusters in groups 1 & 2, respectively. 
M1 & M2 are the average number of items (subjects) per cluster in groups 1 & 2, respectively. 
ICC is the intracluster correlation. 
P2 is the proportion for group two. This is the standard, reference, baseline, or control group. 
P1.0 is the proportion for group one (treatment group) assuming the null hypothesis (H0). 
P1.1 is the proportion for group one (treatment group) assuming the alternative hypothesis (H1). 
D0: Diff|H0 is the difference P1 - P2 assuming the null hypothesis (H0). 
D1: Diff|H1 is the difference P1 - P2 assuming the alternative hypothesis (H1). 
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false H0. Beta = 1 - Power. 
 
Summary Statements 
Sample sizes of 100 in group one and 100 in group two, which were obtained by sampling 10 
clusters with 10 subjects each in group one and 10 clusters with 10 subjects each in group two, 
achieve 15% power to detect a difference between the group proportions of 0.0700. The group two 
proportion is 0.4400. The group one proportion is assumed to be 0.4400 under the null 
hypothesis and 0.5100 under the alternative hypothesis. The test statistic used is the 
two-sided Score test (Farrington & Manning). The significance level of the test was 0.0500. 
 

Group 1 Clusters/Items: K1/M1 
This line gives the value of K1, the number of clusters in group 1, followed by M1, the number of 
items per cluster in this group. The total number of items sampled in group 1 is N1 = K1 x M1. 

Group 2 Clusters/Items: K2/M2 
This line gives the value of K2, the number of clusters in group 2, followed by M2, the number of 
items per cluster in this group. The total number of items sampled in group 2 is N2 = K2 x M2. 
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Intracluster Corr.: ICC 
This is the value of the intracluster correlation coefficient, ICC. 

Prop Grp 2 or Control: P2 
This is the value of P2, the proportion responding positively in the control group. 

Prop|H0 Grp 1 or Trtmnt: P1.0 
This is the value of P1.0, the proportion responding positively in the treatment group as specified 
by the null hypothesis. The difference between this value and P2 is the value used in the null 
hypothesis. 

Prop|H1 Grp 1 or Trtmnt: P1.1 
This is the value of P1.1, the proportion responding positively in the treatment group as specified 
by the alternative hypothesis. The difference between this value and P2 is the value used in the 
alternative hypothesis. 

Diff if H0: D0 
This is the value of D0, the difference between proportions under the null hypothesis. 

Alpha 
This is the value of alpha (significance level) that was targeted by the design.  

Beta 
This is the value of beta, which is the probability of not rejecting a false null hypothesis. 

Plots Section 
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The values from the table are displayed on the above chart. This chart gives us a quick look at the 
power that is achieved for various combinations of cluster size and numbers of clusters. 
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Example 2 – Finding Sample Size  
Continuing with Example1, the maximum number of therapists the researchers hope to use is 25 
for each treatment. They decide to determine how many patients each therapist would have to 
treat to achieve 90% power if the maximum number of therapists is used. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions in a Cluster-
Randomized Design [Differences] procedure window by clicking on Proportions, then Two 
Proportions from a Cluster-Randomized Design, then Inequality Tests, then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................M1 
Power ......................................................0.90 
Alpha .......................................................0.05 
K1 (Clusters Per Group 1).......................25 
M1 (Items Per Cluster in Group 1) ..........Ignored since this is the Find setting 
K2 (Clusters Per Group 2).......................K1 
M2 (Items Per Cluster in Group 2) ..........M1 
D0 (Difference|H0 = P1.0 – P2) ..............0.0 
D1 (Difference|H1 = P1.1 – P2) ..............0.07 
P2 (Group 2 Proportion)..........................0.44 
ICC (Intracluster Correlation) ..................0.02 
H1 (Alternative Hypothesis) ....................Two-Sided 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 - P2 
H0: P1-P2=D0. H1: P1-P2=D1<>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra- Prop Prop|H0 Prop|H1     
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 or Grp 1 or Diff Diff   
 Items Items Corr. Control Trtmnt Trtmnt if H0 if H1   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha    Beta 
0.9002 25/286 25/286 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.0998 

 

To achieve 90% power, each therapist would need to be evaluated on 286 patients. 
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Example 3 – Finding Power (Non-Inferiority) 
A study is being designed to study the effectiveness of a new treatment. Historically, the standard 
treatment has enjoyed a 60% cure rate. The new treatment reduces the seriousness of certain side 
effects that occur with the standard treatment. Thus, the new treatment will be adopted even if it 
is slightly less effective than the standard treatment. The researchers will recommend adoption of 
the new treatment if it has a cure rate of at least 55%.  

The researchers will recruit patients from various hospitals. All patients at a particular hospital 
will receive the same treatment. They anticipate an average of 100 patients per hospital. 

The researchers plan to use the Farrington and Manning likelihood score test statistic to analyze 
the data. They want to study the power of the one-sided Farrington and Manning test at group 
cluster sizes ranging from 2 to 10 for detecting a difference of -0.05 when the actual cure rate of 
the new treatment ranges from 60% to 66%. The significance level will be 0.05. Based on similar 
studies, they estimate the intracluster correlation to be 0.002. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions in a Cluster-
Randomized Design [Differences] procedure window by clicking on Proportions, then Two 
Proportions from a Cluster-Randomized Design, then Inequality Tests, then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
K1 (Clusters Per Group 1).......................2 4 6 8 10 
M1 (Items Per Cluster in Group 1) ..........100 
K2 (Clusters Per Group 2).......................K1 
M2 (Items Per Cluster in Group 2) ..........M1 
D0 (Difference|H0 = P1.0 – P2) .............. -0.05 
D1 (Difference|H1 = P1.1 – P2) ..............0 .02 .04 .06 
P2 (Group 2 Proportion)..........................0.6 
ICC (Intracluster Correlation) ..................0.002 
H1 (Alternative Hypothesis) ....................One-Sided (H1:D1>D0) 
Test Type ................................................Likelihood Score (Farr. & Mann.) 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra- Prop Prop|H0 Prop|H1     
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 or Grp 1 or Diff Diff   
 Items Items Corr. Control Trtmnt Trtmnt if H0 if H1   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha Beta 
0.2387 2/100 2/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.7613 
0.3729 4/100 4/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.6271 
0.4889 6/100 6/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.5111 
0.5879 8/100 8/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.4121 
0.6709 10/100 10/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.3291 
. . . . . . . . . . . 
. . . . . . . . . . . 
. . . . . . . . . . . 
 
Summary Statements 
Sample sizes of 200 in group one and 200 in group two, which were obtained by sampling 2 
clusters with 100 subjects each in group one and 2 clusters with 100 subjects each in group 
two, achieve 24% power to detect a difference between the group proportions of 0.0000. The 
group two proportion is 0.6000. The group one proportion is assumed to be 0.5500 under the null 
hypothesis and 0.6000 under the alternative hypothesis. The test statistic used is the 
one-sided Score test (Farrington & Manning). The significance level of the test was 0.0500. 
 

This report shows the values of each of the parameters, one scenario per row. Most of the report 
columns have obvious interpretations. Those that may not be obvious are presented here. 

Plots Section 
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The values from the table are displayed on the above chart. This chart gives us a quick look at the 
sample size that will be required for various values of D1. 
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Example 4 – Finding the Sample Size (Non-Inferiority) 
Continuing with the scenario given in Example 3, the researchers want to determine the number 
of clusters necessary for each value of D1 when the target power is set to 0.80.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions in a Cluster-
Randomized Design [Differences] procedure window by clicking on Proportions, then Two 
Proportions from a Cluster-Randomized Design, then Inequality Tests, then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................K1 
Power ......................................................0.80 
Alpha .......................................................0.05 
K1 (Clusters Per Group 1)....................... Ignored since this is the Find setting 
M1 (Items Per Cluster in Group 1) ..........100 
K2 (Clusters Per Group 2).......................K1 
M2 (Items Per Cluster in Group 2) ..........M1 
D0 (Difference|H0 = P1.0 – P2) .............. -0.05 
D1 (Difference|H1 = P1.1 – P2) ..............0 .02 .04 .06 
P2 (Group 2 Proportion)..........................0.6 
ICC (Intracluster Correlation) ..................0.002 
H1 (Alternative Hypothesis) ....................One-Sided (H1:D1>D0) 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra- Prop Prop|H0 Prop|H1     
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 or Grp 1 or Diff Diff   
 Items Items Corr. Control Trtmnt Trtmnt if H0 if H1   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha Beta 
0.8190 15/100 15/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.1810 
0.8364 8/100 8/100 0.0020 0.6000 0.5500 0.6200 -0.0500 0.0200 0.0500 0.1636 
0.8503 5/100 5/100 0.0020 0.6000 0.5500 0.6400 -0.0500 0.0400 0.0500 0.1497 
0.8186 3/100 3/100 0.0020 0.6000 0.5500 0.6600 -0.0500 0.0600 0.0500 0.1814 

 

The required sample size depends a great deal on the value of D1. The researchers should spend 
time determining the most appropriate value for D1.  
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Example 5 – Investigating the Impact of the Intracluster 
Correlation 
Continuing with the scenario given in Example 4, the researchers, having decided that the most 
appropriate value of D1 is 0.02, now want to investigate the effect of the intracluster correlation 
on the sample size. From values found in other studies, they believe the ICC will be somewhere 
between 0.001 and 0.009.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions in a Cluster-
Randomized Design [Differences] procedure window by clicking on Proportions, then Two 
Proportions from a Cluster-Randomized Design, then Inequality Tests, then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example5 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................K1 
Power ......................................................0.80 
Alpha .......................................................0.05 
K1 (Clusters Per Group 1).......................Ignored since this is the Find setting 
M1 (Items Per Cluster in Group 1) ..........100 
K2 (Clusters Per Group 2).......................K1 
M2 (Items Per Cluster in Group 2) ..........M1 
D0 (Difference|H0 = P1.0 – P2) ..............-0.05 
D1 (Difference|H1 = P1.1 – P2) ..............0.02 
P2 (Group 2 Proportion)..........................0.6 
ICC (Intracluster Correlation) ..................0.001 to 0.009 by 0.002 
H1 (Alternative Hypothesis) ....................One-Sided (H1:D1>D0) 
Test Type ................................................Likelihood Score (Farr. & Mann.) 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra- Prop Prop|H0 Prop|H1     
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 or Grp 1 or Diff Diff   
 Items Items Corr. Control Trtmnt Trtmnt if H0 if H1   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha Beta 
0.8207 7/100 7/100 0.0010 0.6000 0.5500 0.6200 -0.0500 0.0200 0.0500 0.1793 
0.8099 8/100 8/100 0.0030 0.6000 0.5500 0.6200 -0.0500 0.0200 0.0500 0.1901 
0.8020 9/100 9/100 0.0050 0.6000 0.5500 0.6200 -0.0500 0.0200 0.0500 0.1980 
0.8275 11/100 11/100 0.0070 0.6000 0.5500 0.6200 -0.0500 0.0200 0.0500 0.1725 
0.8197 12/100 12/100 0.0090 0.6000 0.5500 0.6200 -0.0500 0.0200 0.0500 0.1803 

 

This chart shows that the necessary sample size almost doubles when the ICC is changed from 
0.001 to 0.009. The researchers decide to obtain a narrower range for the value of ICC.  

Example 6 – Validation using Donner and Klar 
Donner and Klar (2000), page 63, present a sample size study in which P2 = 0.06, D1 = -0.02, 
D0=0, ICC = 0.01, M1=M2=100, two-sided alpha = 0.05, and beta = 0.20. Using the pooled z test 
statistic, they found the number of subjects to be 3698 in each group, which they round off to 38 
clusters per group.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two Proportions in a Cluster-
Randomized Design [Differences] procedure window by clicking on Proportions, then Two 
Proportions from a Cluster-Randomized Design, then Inequality Tests, then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example6 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................K1 
Power ......................................................0.80 
Alpha .......................................................0.05 
K1 (Clusters Per Group 1)....................... Ignored since this is the Find setting 
M1 (Items Per Cluster in Group 1) ..........100 
K2 (Clusters Per Group 2).......................K1 
M2 (Items Per Cluster in Group 2) ..........M1 
D0 (Difference|H0 = P1.0 – P2) ..............0.0 
D1 (Difference|H1 = P1.1 – P2) ..............-0.02 
P2 (Group 2 Proportion)..........................0.06 
ICC (Intracluster Correlation) ..................0.01 
H1 (Alternative Hypothesis) ....................Two-Sided 
Test Type ................................................Z test (pooled) 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2=D0. H1: P1-P2=D1<>D0. Test Statistic: Z test (pooled) 
 
 Group 1 Group 2 Intra- Prop Prop|H0 Prop|H1     
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 or Grp 1 or Diff Diff   
 Items Items Corr. Control Trtmnt Trtmnt if H0 if H1   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha Beta 
0.8097 38/100 38/100 0.0100 0.0600 0.0600 0.0400 0.0000 -0.0200 0.0500 0.1903 

 

PASS has also found the required sample size to be 38 clusters. 
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Chapter 235 

Non-Inferiority & 
Superiority Tests 
for Two 
Proportions in a 
Cluster-
Randomized 
Design 
Introduction 
This module provides power analysis and sample size calculation for non-inferiority and 
superiority tests in two-sample, cluster-randomized designs in which the outcome is binary.  

Three Procedures Documented Here 
There are four procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, or ratios of proportions. Each of these 
options is listed separately on the menus.  
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Technical Details 
The methods contained in this module are identical to those discussed in the chapter “Inequality 
Tests for Two Proportions in a Cluster-Randomized Design.” The input and output has simply 
been reformatted in a manner that is convenient for non-inferiority testing. A complete review of 
non-inferiority testing is given in the chapter “Non-Inferiority & Superiority Tests for Two 
Proportions.” We refer you to these two chapters for complete technical details on the methods 
used in this module.  

Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data and Iterations/Zeroes tabs. To find out more about using the other 
tabs such as Axes/Legend/Grid, Plot Text, or Template, go to the Procedure Window chapter. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and beta. This chapter covers three procedures, each of which has different options. 
This section documents options that are common to all three procedures. Later, unique options for 
each procedure will be documented.   

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for using the other parameters. The parameters 
that may be selected are P1.1, Alpha, Power and Beta, K1, M1, or ICC. Under most situations, 
you will select either Power and Beta or K1. 

Select K1 when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  
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Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size – Treatment (Group 1) 

K1 (Clusters Group 1) 
Enter a value (or range of values) for the number of clusters in group one. You may enter a range 
of values such as 10 to 20 by 2. The sample size for this group is equal to the number of clusters 
times the number of subjects per cluster. 

M1 (Items Group 1) 
This is the average number of items (subjects) per cluster in group one. This value must be a 
positive number that is at least 1. You can use a list of values such as 100 150 200. 

Sample Size – Control (Group 2) 

K2 (Clusters Group 2) 
This is the number of clusters in group two. The sample size for this group is equal to the number 
of clusters times the number of subjects per cluster. This value must be a positive number.  

If you simply want a multiple of the value for group one, you would enter the multiple followed 
by K1, with no blanks. If you want to use K1 directly, you do not have to pre-multiply by 1. For 
example, all of the following are valid entries:10 K1 2K1 0.5K1. 

You can use a list of values such as 10 20 30 or K1 2K1 3K1. 

M2 (Items per Cluster in Group 2) 
This is the number of items (subjects) per cluster in group two. This value must be a positive 
number.  

If you simply want a multiple of the value for group one, you would enter the multiple followed 
by M1, with no blanks. If you want to use M1 directly, you do not have to pre-multiply by 1. For 
example, all of the following are valid entries: 10 M1 2M1 0.5M1. 

You can use a list of values such as 10 20 30 or M1 2M1 3M1. 

Effect Size – Control (Group 2) 

P2 (Group 2 Proportion) 
Specify the value of , the control, baseline, or standard group’s proportion. The null hypothesis 
is that the two proportions differ by a specified amount (See Specify Group 1 Proportion using 
below).  

p2

Since is a proportion, these values must be between 0 and 1. p2
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You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1. 

Effect Size – Intracluster Correlation 

ICC (Intracluster Correlation) 
Enter a value (or range of values) for the intracluster correlation. This correlation may be thought 
of as the simple correlation between any two observations in the same cluster. It may also be 
thought of as the proportion of total variance in the observations that can be attributed to difference 
between clusters.  

Although the actual range for this value is between 0 to 1, typical values range from 0.002 to 
0.05. 

Test 

Higher Proportions Are 
This option specifies whether proportions represent successes (better) or failures (worse). 

• Better (Successes) 
When proportions represent successes, higher proportions are better. A noninferior treatment 
is one whose proportion is at least almost as high as that of the reference group.  

For testing non-inferiority, D0 is negative, and R0 is less than one. For testing superiority, D0 
is positive and R0 is greater than one.  

• Worse (Failures) 
When proportions represent failures, lower proportions are better. A noninferior treatment is 
one whose proportion is at most almost as low as that of the reference group.  

For testing non-inferiority, D0 is positive and R0 is greater than one. For testing superiority, 
D0 is negative, and R0 is less than one.  

Test Type 
Specify which test statistic is used in searching and reporting. We recommend the likelihood 
score test. 

Data Tab (Proportions) 
This section documents options that are used when the parameterization is in terms of the values 
of the two proportions, P1 and P2. P1.0 is the value of the P1 assumed by the null hypothesis and 
P1.1 is the value of P1 at which the power is calculated. 

Effect Size – Treatment (Group 1) 

P1.0 (Equivalence Proportion) 
This option allows you to specify the value P1.0 directly. This is the value of the treatment 
group’s proportion above which the treatment group is considered noninferior to the reference 
group. This option is only used for Proportions. 
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When Higher Proportions Are is set to Better, the trivial proportion is the smallest value of P1 for 
which the treatment group is declared noninferior to the reference group. In this case, P1.0 should 
be less than P2 for non-inferiority tests and greater than P2 for superiority tests. The reverse is the 
case when Higher Proportions Are is set to Worse.  

Proportions must be between 0 and 1. They cannot take on the values 0 or 1. This value should 
not be set to exactly the value of P2. 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

P1.1 (Actual Proportion) 
This option specifies the value of P1.1, the value of the treatment proportion at which the power 
is to be calculated. It is only used for Proportions. Proportions must be between 0 and 1. They 
cannot take on the values 0 or 1.  

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

Data Tab (Differences) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value 
of P1 at which the power is calculated. Once P2, D0, and D1 are given, the values of P1.1 and 
P1.0 can be calculated. 

Effect Size – Differences 

D0 (Equivalence Difference) 
This option specifies the trivial difference (often called the margin of error) between P1.0 (the 
value of P1 under H0) and P2. This difference is used with P2 to calculate the value of P1.0 using 
the formula: P1.0 = P2 + D0. It is only used for Differences. 

When Higher Proportions Are is set to Better, the trivial difference is that amount that P1 can be 
less than P2 and still have the treatment group declared noninferior to the reference group. In this 
case, D0 should be negative for non-inferiority tests and positive for superiority tests. 

The reverse is the case when Higher Proportions Are is set to worse.  

You may enter a range of values such as -.03 -.05 -.10 or -.05 to -.01 by .01.  Differences must be 
between -1 and 1. D0 cannot take on the values -1, 0, or 1. 

D1 (Actual Difference) 
This option specifies the actual difference between P1.1 (the actual value of P1) and P2. This is 
the value of the difference at which the power is calculated. In non-inferiority trials, this 
difference is often set to zero. 

The power calculations assume that P1.1 is the actual value of the proportion in group 1 
(experimental or treatment group). This difference is used with P2 to calculate the value of P1.1 
using the formula: P1.1 = D1 + P2.  

You may enter a range of values such as -.05 0 .5 or -.05 to .05 by .02. Actual differences must be 
between -1 and 1. They cannot take on the values -1 or 1. 

This option is only used for Differences. 
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Data Tab (Ratios) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of P1 at 
which the power is calculated. Once P2, R0, and R1 are given, the values of P1.0 and P1.1 can be 
calculated. 

Effect Size – Ratios 

R0 (Equivalence Ratio) 
This option specifies the trivial ratio (also called the Relative Margin of Equivalence) between 
P1.0 and P2. The power calculations assume that P1.0 is the value of P1 under the null 
hypothesis. This value is used with P2 to calculate the value of P1.0 using the formula: P1.0 = R0 
x P2. This option is only used for Ratios. 

When Higher Proportions Are is set to Better, the trivial ratio is the relative amount by which P1 
can be less than P2 and still have the treatment group declared noninferior to the reference group. 
In this case, R0 should be less than 1 for non-inferiority tests and greater than 1 for superiority 
tests. The reverse is the case when ‘Higher Proportions Are’ is set to ‘Worse’. In this case, R0 
should be less than 1 for non-inferiority tests and greater than 1 for superiority tests. The reverse 
is the case when Higher Proportions Are is set to Worse. 

Ratios must be positive. R0 cannot take on the value of 1. 

You may enter a range of values such as 0.95 .97 .99 or .91 to .99 by .02.  

R1 (Actual Ratio) 
This option specifies the ratio of P1.1 and P2, where P1.1 is the actual proportion in the treatment 
group. The power calculations assume that P1.1 is the actual value of the proportion in group one. 
This difference is used with P2 to calculate the value of P1.1 using the formula: P1.1 = R1 x P2. 
In non-inferiority trials, this ratio is often set to 1. 

This option is only used for Ratios. 

Ratios must be positive. You may enter a range of values such as 0.95 1 1.05 or 0.9 to 1.9 by 
0.02.  

Iterations/Zeroes Tab 
The Iterations/Zeroes tab contains various limits and options. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. A value of at least 500 is recommended. 



Non-Inferiority & Superiority of Two Proportions in a Cluster-Randomized Design  235-7 

Zero Counts 

Zero Count Adjustment Method 
Zero cell counts often cause calculation problems. To compensate for this, a small value (called 
the Zero Count Adjustment Value) can be added either to all cells or to all cells with zero counts. 
This option specifies whether you want to use the adjustment and which type of adjustment you 
want to use. We recommend that you use the option Add to zero cells only. 

Zero cell values often do not occur in practice. However, since power calculations are based on 
total enumeration, they will occur in power and sample size estimation. 

Adding a small value is controversial, but can be necessary for computational considerations. 
Statisticians have recommended adding various fractions to zero counts. We have found that 
adding 0.0001 seems to work well.  

Zero Count Adjustment Value 
Zero cell counts cause many calculation problems when computing power or sample size. To 
compensate for this, a small value may be added either to all cells or to all zero cells. This value 
indicates the amount that is added. We have found that 0.0001 works well. 

Be warned that the value of the ratio and the odds ratio will be affected by the amount specified 
here! 

Example 1 – Finding Power 
A study is being designed to study the effectiveness of a new treatment. Historically, the standard 
treatment has enjoyed a 60% cure rate. The new treatment reduces the seriousness of certain side 
effects that occur with the standard treatment. Thus, the new treatment will be adopted even if it 
is slightly less effective than the standard treatment. The researchers will recommend adoption of 
the new treatment if it has a cure rate of at least 55%. That is, the margin of inferiority is -5%. 

The researchers will recruit patients from various hospitals. All patients at a particular hospital 
will receive the same treatment. They anticipate an average of 100 patients per hospital. Based on 
similar studies, they estimate the intracluster correlation to be 0.002. 

The researchers plan to use the Farrington and Manning likelihood score test statistic to analyze 
the data. They want to study the power of the one-sided Farrington and Manning test at group 
cluster sizes ranging from 2 to 10 for detecting a difference of -0.05 when the actual cure rate of 
the new treatment ranges from 60% to 66%. The significance level will be 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Proportions 
in a Cluster-Randomized Design [Differences] procedure window by clicking on Proportions, 
then Two Proportions from a Cluster-Randomized Design, then Non-Inferiority & 
Superiority Tests, then Specify using Differences. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example1 from the 
Template tab on the procedure window. 
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Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
K1 (Clusters Per Group 1).......................2 4 6 8 10 
M1 (Items Per Cluster in Group 1) ..........100 
K2 (Clusters Per Group 2).......................K1 
M2 (Items Per Cluster in Group 2) ..........M1 
D0 (Equivalence Difference) ...................-0.05 
D1 (Actual Difference).............................0 .02 .04 .06 
P2 (Group 2 Proportion)..........................0.6 
ICC (Intracluster Correlation) ..................0.002 
Higher Proportions Are............................Better 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra-  Equiv. Actual Equiv. Actual   
 Clusters/ Clusters/ Cluster Grp 2 Grp 1  Grp 1 Margin Margin   
 Items Items Corr. Prop Prop Prop Diff Diff   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha Beta 
0.2387 2/100 2/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.7613 
0.3729 4/100 4/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.6271 
0.4889 6/100 6/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.5111 
0.5879 8/100 8/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.4121 
0.6709 10/100 10/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.3291 
. . . . . . . . . . . 
. . . . . . . . . . . 
. . . . . . . . . . . 
 
Summary Statements 
Sample sizes of 200 in group one and 200 in group two, which were obtained by sampling 2 
clusters with 100 subjects each in group one and 2 clusters with 100 subjects each in group 
two, achieve 24% power to detect a non-inferiority margin difference between the group 
proportions of -0.0500. The group two proportion is 0.6000. The group one proportion is assumed 
to be 0.5500 under the null hypothesis and 0.6000 under the alternative hypothesis. The test 
statistic used is the one-sided Score test (Farrington & Manning). The significance level of 
the test was 0.0500. 
 

This report shows the values of each of the parameters, one scenario per row. Most of the report 
columns have obvious interpretations. Those that may not be obvious are presented here. 

Group 1 Clusters/Items: K1/M1 
This line gives the value of K1, the number of clusters in group 1, followed by M1, the number of 
items per cluster in this group. The total number of items sampled in group 1 is N1 = K1 x M1. 
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Group 2 Clusters/Items: K2/M2 
This line gives the value of K2, the number of clusters in group 2, followed by M2, the number of 
items per cluster in this group. The total number of items sampled in group 2 is N2 = K2 x M2. 

Intracluster Corr.: ICC 
This is the value of the intracluster correlation coefficient, ICC. 

Prop Grp 2: P2 
This is the value of P2, the proportion responding positively in the control group. 

Equiv. Grp 1 Prop P1.0 
This is the value of P1.0, the response rate of the treatment group, as specified by the null 
hypothesis of inferiority. Values of P1 less than this amount are considered different from P2. 
Values of P1 greater than this are considered noninferior to the reference group. The difference 
between this value and P2 is the value of the null hypothesis. 

Actual Grp 1 Prop P1.1 
This is the value of P1.1, the response rate of the treatment group, at which the power is 
computed. This is the value of P1 under the alternative hypothesis. The difference between this 
value and P2 is the value of the alternative hypothesis. 

Equiv. Margin Diff D0 
This is the value of D0, the difference between the two group proportions under the null 
hypothesis. This value is often called the margin of non-inferiority.  

Actual Margin Diff D1 
This is the value of D1, the difference between the two group proportions at which the power is 
computed. This is the value of the difference under the alternative hypothesis. 

Alpha 
This is the value of alpha (significance level) that was targeted by the design.  

Beta 
This is the value of beta, which is the probability of not rejecting a false null hypothesis. 

Plots Section 
 

 

Pwr vs K1 by D1 with P2=0.60 A=0.05 M1=100
D0=-0.05 ICC=0.002 K2=K1 M2=M1 T=LS

0.0000

0.0200

0.0400

0.0600

P
w

r

D
1

K1

0.2

0.4

0.6

0.8

1.0

1 3 5 7 9 11

 
 



235-10  Non-Inferiority & Superiority of Two Proportions in a Cluster-Randomized Design 

The values from the table are displayed on the above chart. This chart gives us a quick look at the 
sample sizes that will be required for various values of D1. 

Example 2 – Finding the Sample Size (Number of 
Clusters) 
Continuing with the scenario given in Example 1, the researchers want to determine the number 
of clusters necessary for each value of D1 when the target power is set to 0.80. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Proportions 
in a Cluster-Randomized Design [Differences] procedure window by clicking on Proportions, 
then Two Proportions from a Cluster-Randomized Design, then Non-Inferiority & 
Superiority Tests, then Specify using Differences. You may then follow along here by making 
the appropriate entries as listed below or load the completed template Example2 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................K1 
Power ......................................................0.80 
Alpha .......................................................0.05 
K1 (Clusters Per Group 1).......................Ignored since this is the Find setting 
M1 (Items Per Cluster in Group 1) ..........100 
K2 (Clusters Per Group 2).......................K1 
M2 (Items Per Cluster in Group 2) ..........M1 
D0 (Equivalence Difference) ...................-0.05 
D1 (Actual Difference).............................0 .02 .04 .06 
P2 (Group 2 Proportion)..........................0.6 
ICC (Intracluster Correlation) ..................0.002 
Higher Proportions Are............................Better 
Test Type ................................................Likelihood Score (Farr. & Mann.) 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra-  Equiv. Actual Equiv. Actual   
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 Grp 1 Margin Margin   
 Items Items Corr. Prop Prop Prop Diff Diff   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha Beta 
0.8190 15/100 15/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.1810 
0.8364 8/100 8/100 0.0020 0.6000 0.5500 0.6200 -0.0500 0.0200 0.0500 0.1636 
0.8503 5/100 5/100 0.0020 0.6000 0.5500 0.6400 -0.0500 0.0400 0.0500 0.1497 
0.8186 3/100 3/100 0.0020 0.6000 0.5500 0.6600 -0.0500 0.0600 0.0500 0.1814 

 

The required sample size depends a great deal on the value of D1. The researchers should spend 
time determining the most appropriate value for D1.  

Example 3 – Validation 
We could not find an example of this type of analysis in the literature. Therefore, we will validate 
the procedure by comparing the results to those given in Example 3 in the chapter “Inequality 
Tests of Two Proportions in a Cluster-Randomized Design,” since both modules should give 
identical results. Validation can be accomplished by running Example 1 in this chapter and 
Example 3 in that chapter. If you do this, you will see that both procedures give the same results.  

Example 4 – Finding Power after an Experiment 
A group of researchers want to show that a new, less expensive treatment works at least as well as 
the current treatment. They believe, in fact, that the new treatment is about 0.10 higher in 
proportion of success. One hundred patients at each of 10 randomly chosen hospitals were given 
the current treatment. One hundred patients at each of 10 randomly chosen hospitals were given 
the new treatment. It was agreed before the experiment that the new treatment needed to be no 
less than 0.05 in proportion of success below the current treatment to be considered noninferior. 
The proportion of patients responding to the current treatment was 821/1000 = 0.821. The 
proportion of patients responding to the new treatment was 819/1000 = 0.819. This result did not 
show significant noninferiority at the 0.05 level. The researchers want to know the power of their 
noninferiority test. They decide to use the intracluster correlation coefficient estimated from the 
data, which was 0.0068. Although the observed difference in proportions is 0.819 – 0.821 = -
0.002, the trivial difference is still -0.05. This value is used in the power calculation. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Proportions 
in a Cluster-Randomized Design [Differences] procedure window by clicking on Proportions, 
then Two Proportions from a Cluster-Randomized Design, then Non-Inferiority & 
Superiority Tests, then Specify using Differences. You may then follow along here by making 
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the appropriate entries as listed below or load the completed template Example4 from the 
Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
K1 (Clusters Per Group 1).......................10 
M1 (Items Per Cluster in Group 1) ..........100  
K2 (Clusters Per Group 2).......................K1 
M2 (Items Per Cluster in Group 2) ..........M1 
D0 (Equivalence Difference) ...................-0.05 
D1 (Actual Difference).............................0.0 0.10 
P2 (Group 2 Proportion)..........................0.821 
ICC (Intracluster Correlation) ..................0.0068 
Higher Proportions Are............................Better 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Non-Inferiority Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra-  Equiv. Actual Equiv. Actual   
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 Grp 1 Margin Margin   
 Items Items Corr. Prop Prop Prop Diff Diff   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha Beta 
0.7272 10/100 10/100 0.0068 0.8210 0.7710 0.8210 -0.0500 0.0000 0.0500 0.2728 
1.0000 10/100 10/100 0.0068 0.8210 0.7710 0.9210 -0.0500 0.1000 0.0500 0.0000 
 

If indeed the new treatment were 0.10 higher in proportion of success, the power for showing 
noninferiority would be 1.0000. If the true proportions are the same, the power would be 0.7272. 
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Example 5 – Finding Sample Size (Individuals within 
Clusters) 
An agency would like to show the proportion of success of a new treatment is no less than that of 
the current treatment. Thirty doctors are available for the study. Fifteen will be randomly chosen 
to be trained to administer the new treatment. The remaining fifteen will continue to administer 
the current treatment. The new treatment will be considered noninferior if the the proportion of 
success is at least 90% of the current treatment success. The agency would like to know the 
number of patients that need to be treated by each doctor to achieve 80% power for the 
noninferiority test. Various values for the intracluster correlation coefficient will be use since its 
true value is unknown. It is expected that the two treatments will have a success rate near 0.65. 
Alpha is set at 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Non-Inferiority & Superiority Tests for Two Proportions 
in a Cluster-Randomized Design [Ratios] procedure window by clicking on Proportions, then 
Two Proportions from a Cluster-Randomized Design, then Non-Inferiority & Superiority 
Tests, then Specify using Ratios. You may then follow along here by making the appropriate 
entries as listed below or load the completed template Example5 from the Template tab on the 
procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................M1 
Power ......................................................0.80 
Alpha .......................................................0.05 
K1 (Clusters Per Group 1).......................15 
M1 (Items Per Cluster in Group 1) .......... Ignored since this is the find setting 
K2 (Clusters Per Group 2).......................K1 
M2 (Items Per Cluster in Group 2) ..........M1 
R0 (Equivalence Ratio) ...........................0.90 
R1 (Actual Ratio).....................................1.0 
P2 (Group 2 Proportion)..........................0.65 
ICC (Intracluster Correlation) ..................0.001 to 0.01 by 0.001 
Higher Proportions Are............................Better 
Test Type ................................................Likelihood Score (Farr. & Mann.) 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Tests Based on the Ratio: P1 / P2 
H0: P1/P2<=R0. H1: P1/P2=R1>R0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra-  Trivial Actual Trivial Actual   
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 Grp 1 Margin Margin   
 Items Items Corr. Prop Prop Prop Ratio Ratio   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 R0 R1 Alpha Beta 
0.8011 15/42 15/42 0.0010 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1989 
0.8023 15/44 15/44 0.0020 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1977 
0.8023 15/46 15/46 0.0030 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1977 
0.8017 15/48 15/48 0.0040 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1983 
0.8045 15/51 15/51 0.0050 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1955 
0.8011 15/53 15/53 0.0060 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1989 
0.8017 15/56 15/56 0.0070 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1983 
0.8005 15/59 15/59 0.0080 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1995 
0.8017 15/63 15/63 0.0090 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1983 
0.8011 15/67 15/67 0.0100 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1989 

 

Plots Section 
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The number of patients that should be seen by each doctor ranges from 42 to 67, depending on 
the intracluster correlation coefficient. 
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Chapter 240 

Equivalence Tests 
for Two 
Proportions in a 
Cluster-
Randomized 
Design 
Introduction 
This module provides power analysis and sample size calculation for equivalence tests in two-
sample, cluster-randomized designs in which the outcome is binary.  

Three Procedures Documented Here 
There are three procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, or ratios of proportions. Each of these 
options is listed separately on the menus.  

Technical Details 
The methods contained in this module are identical to those discussed in the chapter entitled 
“Inequality Tests for Two Proportions in a Cluster-Randomized Design.” The input and output 
has simply been reformatted in a manner that is convenient for equivalence testing. A complete 
review of equivalence testing is given in the chapter “Equivalence Tests for Two Proportions.” 
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We refer you to these two chapters for complete technical details on the methods used in this 
module.  

Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data and Iterations/Zeroes tabs. To find out more about using the other 
tabs such as Axes/Legend/Grid, Plot Text, or Template, go to the Procedure Window chapter. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and power. This chapter covers three procedures, each of which has different 
options. This section documents options that are common to all three procedures. Later, unique 
options for each procedure will be documented.   

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are P1.1, Alpha, Power and Beta, K1, M1, or ICC. Under most situations, 
you will select either Power and Beta or K1. 

Select K1 when you want to calculate the sample size needed to achieve a given power and alpha 
level. 

Select Power and Beta when you want to calculate the power of an experiment.  

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  
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You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size – Treatment (Group 1) 

K1 (Clusters Group 1) 
Enter a value (or range of values) for the number of clusters in this group. You may enter a range 
of values such as 10 to 20 by 2. The sample size for this group is equal to the number of clusters 
times the number of subjects per cluster. 

M1 (Items Group 1) 
This is the average number of items (subjects) per cluster in group one. This value must be a 
positive number that is at least 1. You can use a list of values such as 100 150 200. 

Sample Size – Control (Group 2) 

K2 (Clusters Group 2) 
This is the number of clusters in group two. The sample size for this group is equal to the number 
of clusters times the number of subjects per cluster. This value must be a positive number.  

If you simply want a multiple of the value for group one, you would enter the multiple followed 
by K1, with no blanks. If you want to use K1 directly, you do not have to pre-multiply by 1. For 
example, all of the following are valid entries: 10 K1 2K1 0.5K1. 

You can use a list of values such as 10 20 30 or K1 2K1 3K1. 

M2 (Items per Cluster in Group 2) 
This is the number of items (subjects) per cluster in group two. This value must be a positive 
number.  

If you simply want a multiple of the value for group one, you would enter the multiple followed 
by M1, with no blanks. If you want to use M1 directly, you do not have to pre-multiply by 1. For 
example, all of the following are valid entries: 10  M1 2M1 0.5M1. 

You can use a list of values such as 10 20 30 or M1 2M1 3M1. 

Effect Size – Control (Group 2) 

P2 (Control Group Proportion) 
Specify the value of P2, the control, baseline, or standard group’s proportion. The null hypothesis 
is that the two proportions differ by a specified amount (See Specify Group 1 Proportion using 
below).  

Since P2 is a proportion, these values must be between 0 and 1. 

You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1. 

Effect Size – Intracluster Correlation 

ICC (Intracluster Correlation) 
Enter a value (or range of values) for the intracluster correlation. This correlation may be thought 
of as the simple correlation between any two observations in the same cluster. It may also be 
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thought of as the proportion of total variance in the observations that can be attributed to difference 
between clusters. 

Although the actual range for this value is from 0 to 1, typical values range from 0.002 to 0.05. 

Test 

Test Type 
Specify which test statistic is used in searching and reporting. We recommend the likelihood 
score test. 

Data Tab (Proportion) 
This section documents options that are used when the parameterization is in terms of the values 
of the two proportions, P1 and P2. P1.0 is the value of the P1 assumed by the null hypothesis and 
P1.1 is the value of P1 at which the power is calculated. 

Effect Size – Equivalence Proportions 
(Group 1) 

P1.0U & P1.0L (Upper & Lower Equivalence Proportions) 
Specify the margin of equivalence directly by giving the upper and lower bounds of P1.0. The 
two groups are assumed to be equivalent when P1.0 is between these values. Thus, P1.0U should 
be greater than P2 and P1.0L should be less than P2. 

This option is only used for Proportions. 

Note that the values of P1.0U and P1.0L are used in pairs. Thus, the first values of P1.0U and 
P1.0L are used together, and then the second values of each are used, and so on.   

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

Proportions must be between 0 and 1. They cannot take on the values 0 or 1. These values should 
surround P2. 

Effect Size – Actual Proportion 
(Group 1) 

P1.1 (Actual Proportion) 
This option specifies the value of P1.1, which is the value of the treatment proportion at which 
the power is to be calculated. It is only used for Proportions. Proportions must be between 0 and 
1. They cannot take on the values 0 or 1.  

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01. 
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Data Tab (Difference) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value 
of P1 at which the power is calculated. Once P2, D0, and D1 are given, the values of P1.1 and 
P1.0 can be calculated. 

Effect Size – Equivalence Differences 

D0.U & D0.L (Upper & Lower Equivalence Difference) 
Specify the margin of equivalence by specifying the largest distance above (D0.U) and below 
(D0.L) P2 which will still result in the conclusion of equivalence. As long as the actual difference 
is between these two values, the difference is not large enough to be of practical importance.  

The values of D0.U must be positive and the values of D0.L must be negative. D0.L can be set to 
‘-D0.U,’ which is usually what is desired. 

The power calculations assume that P1.0 is the value of the P1 under the null hypothesis. This 
value is used with P2 to calculate the value of P1.0 using the formula: P1.0U = D0.U + P2. 

This option is only used for Differences. 

You may enter a range of values for D0.U such as .03 .05 .10 or .05 to .20 by .05. 

Note that if you enter values for D0.L (other than '-D0.U'), they are used in pairs with the values 
of D0.U. Thus, the first values of D0.U and D0.L are used together, then the second values of 
each are used, and so on.   

RANGE: 

D0.L must be between -1 and 0. D0.U must be between 0 and 1. Neither can take on the values    
-1, 0, or 1. 

Effect Size – Actual Difference 

D1 (Actual Difference) 
This option specifies the actual difference between P1.1 (the actual value of P1) and P2. This is 
the value of the difference at which the power is calculated. In equivalence trials, this difference 
is often set to zero. 

The power calculations assume that P1.1 is the actual value of the proportion in group 1 
(experimental or treatment group). This difference is used with P2 to calculate the true value of 
P1 using the formula: P1.1 = D1 + P2.  

You may enter a range of values such as -.05 0 .5 or -.05 to .05 by .02. Actual differences must be 
between -1 and 1. They cannot take on the values -1 or 1. 

This option is only used for Differences. 
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Data Tab (Ratio) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of P1 at 
which the power is calculated. Once P2, R0, and R1 are given, the values of P1.0 and P1.1 can be 
calculated. 

Effect Size – Equivalence Ratios 

R0.U & R0.L (Upper & Lower Equivalence Ratio) 
Specify the margin of equivalence by specifying the largest ratio (P1/P2) above (R0.U), and 
below (R0.L), which will still result in the conclusion of equivalence. As long as the actual ratio 
is between these two values, the difference between the proportions is not said to be large enough 
to be of practical importance.  

The values of R0.U must be greater than 1 and the values of R0.L must be less than 1. R0.L can 
be set to ‘1/R0.U’, which is most often desired. 

The power calculations assume that P1.0 is the value of the P1 under the null hypothesis. This 
value is used with P2 to calculate the value of P1.0 using the formula: P1.0U = R0.U x P2. 

This option is only used for Ratios. 

You may enter a range of values for R0.U such as 1.1 1.5 1.8 or 1.1 to 2.1 by 0.2. 

Note that if you enter values for R0.L (other than ‘1/R0.U’), they are used in pairs with the values 
of R0.U. Thus, the first values of R0.U and R0.L are used together, then the second values of 
each are used, and so on.   

R0.L must be between 0 and 1. R0.U must be greater than 1. Neither can take on the value 1.  

Effect Size – Actual Ratio 

R1 (Actual Ratio) 
This option specifies the ratio of P1.1 and P2, where P1.1 is the actual proportion in the treatment 
group. The power calculations assume that P1.1 is the actual value of the proportion in group 1. 
This difference is used with P2 to calculate the value of P1 using the formula: P1.1 = R1 x P2. In 
equivalence trials, this ratio is often set to 1. 

This option is only used for Ratios. 

Ratios must be positive. You may enter a range of values such as 0.95 1 1.05 or 0.9 to 1.9 by 
0.02.  
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Iterations/Zeroes Tab 
The Iterations/Zeroes tab contains various limits and options. 

Maximum Iterations 

Maximum Iterations Before Search Termination 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. A value of at least 500 is recommended. 

Zero Counts 

Zero Count Adjustment Method 
Zero cell counts often cause calculation problems. To compensate for this, a small value (called 
the Zero Count Adjustment Value) can be added either to all cells or to all cells with zero counts. 
This option specifies whether you want to use the adjustment and which type of adjustment you 
want to use. We recommend that you use the option Add to zero cells only. 

Zero cell values often do not occur in practice. However, since power calculations are based on 
total enumeration, they will occur in power and sample size estimation. 

Adding a small value is controversial, but can be necessary for computational considerations. 
Statisticians have recommended adding various fractions to zero counts. We have found that 
adding 0.0001 seems to work well.  

Zero Count Adjustment Value 
Zero cell counts cause many calculation problems when computing power or sample size. To 
compensate for this, a small value may be added either to all cells or to all zero cells. This value 
indicates the amount that is added. We have found that 0.0001 works well. 

Be warned that the value of the ratio and the odds ratio will be affected by the amount specified 
here! 
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Example 1 – Finding Power 
A study is being designed to establish the equivalence of a new treatment compared to the current 
treatment. Historically, the standard treatment has enjoyed a 60% cure rate. The new treatment 
reduces the seriousness of certain side effects that occur with the standard treatment. Thus, the 
new treatment will be adopted even if it is slightly less effective than the standard treatment. The 
researchers will recommend adoption of the new treatment if its cure rate is within 0.15 of the 
standard treatment.  

The researchers will recruit patients from various hospitals. All patients at a particular hospital 
will receive the same treatment. They anticipate enlisting an average of 50 patients per hospital. 
Based on similar studies, they estimate the intracluster correlation to be 0.002. 

The researchers plan to use the Farrington and Manning likelihood score test statistic to analyze 
the data. They want to study the power of the two, one-sided tests proposed by Farrington and 
Manning when the number of clusters per groups ranges from 2 to 10. They want to investigate 
the behavior of this test when the actual cure rate of the new treatment ranges from 60% to 66%. 
The significance level will be 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Proportions in a Cluster-
Randomized Design [Differences] procedure window by clicking on Proportions, then Two 
Proportions from a Cluster-Randomized Design, then Equivalence Tests, then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
K1 (Clusters Per Group 1).......................2 4 6 8 10 
M1 (Items Per Cluster in Group 1) ..........50 
K2 (Clusters Per Group 2).......................K1 
M2 (Items Per Cluster in Group 2) ..........M1 
D0.U (Upper Equivalence Difference).....0.15 
D0.L (Lower Equivalence Difference) .....-D0.U 
D1 (Difference|H1 = P1.1 – P2) ..............0 .03 .06 
P2 (Group 2 Proportion)..........................0.6 
ICC (Intracluster Correlation) ..................0.002 
Test Type ................................................Likelihood Score (Farr. & Mann.) 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0L or P1-P2>=D0U. H1: D0L<P1-P2=D1<D0U. 
Test Statistic: Score tests 
 
     Lower Upper Lower Upper   
 Group 1 Group 2 Intra-  Equiv. Equiv. Equiv. Equiv. Actual  
 Clusters/ Clusters/ Cluster Prop Grp 1 Grp 1 Margin Margin Margin  
 Items Items Corr. Grp 2 Prop Prop Diff Diff Diff  
Power K1/M1 K2/M2 ICC P2 P1.0L P1.0U D0.L D0.U D1 Alpha Beta  
0.3459 2/50 2/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0000 0.0500 0.6541  
0.8065 4/50 4/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0000 0.0500 0.1935  
0.9494 6/50 6/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0000 0.0500 0.0506  
0.9879 8/50 8/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0000 0.0500 0.0121  
0.9973 10/50 10/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0000 0.0500 0.0027  
0.3279 2/50 2/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0300 0.0500 0.6721  
. . . . . . . . . . . 
. . . . . . . . . . . 
. . . . . . . . . . . 
 
Summary Statements 
Sample sizes of 100 in group one and 100 in group two, which were obtained by sampling 2 
clusters with 50 subjects each in group one and 2 clusters with 50 subjects each in group two, 
achieve 33% power to detect equivalence. The margin of equivalence, given in terms of the 
difference between the proportions, extends from -0.1500 to 0.1500. The actual difference 
between the proportions is 0.0000. The group two proportion is 0.6000. The calculations assume 
that two, one-sided z tests (unpooled) were used. The significance level of the test was 
0.0500. 
 

This report shows the values of each of the parameters, one scenario per row. Most of the report 
columns have obvious interpretations. Those that may not be obvious are presented here. 

Group 1 Clusters/Items: K1/M1 
This line gives the value of K1, the number of clusters in group 1, followed by M1, the number of 
items per cluster in this group. The total number of items sampled in group 1 is N1 = K1 x M1. 

Group 2 Clusters/Items: K2/M2 
This line gives the value of K2, the number of clusters in group 2, followed by M2, the number of 
items per cluster in this group. The total number of items sampled in group 2 is N2 = K2 x M2. 

Intracluster Corr.: ICC 
This is the value of the intracluster correlation coefficient, ICC. 

Prop Grp 2: P2 
This is the value of P2, the proportion responding positively in the control group. 

Lower & Upper Equiv. Grp 1 Prop: P1.0L & P1.0U 
These are the margin of equivalence for the response rate of the treatment group, as specified by 
the null hypothesis of non-equivalence. Values of P1 inside these limits are considered equivalent 
to P2.  
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Lower & Upper Equiv. Margin Diff: D0.L & D0.U 
These set the margin of equivalence for the different in response rates. Values of the difference 
outside these limits are considered non-equivalent.  

Actual Margin Diff D1 
This is the value of D1, the difference between the two group proportions at which the power is 
computed. This is the value of the difference under the alternative hypothesis. 

Alpha 
This is the value of alpha (significance level) that was targeted by the design.  

Beta 
This is the value of beta, which is the probability of not rejecting a false null hypothesis. 

Plots Section 
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The values from the table are displayed on the above chart. This chart gives us a quick look at the 
sample size that will be required for various values of D1. 
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Example 2 – Finding the Sample Size (Number of 
Clusters) 
Continuing with the scenario given in Example 1, the researchers want to determine the number 
of clusters necessary for each value of D1 when the target power is set to 0.80.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Proportions in a Cluster-
Randomized Design [Differences] procedure window by clicking on Proportions, then Two 
Proportions from a Cluster-Randomized Design, then Equivalence Tests, then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................K1 
Power ......................................................0.80 
Alpha .......................................................0.05 
K1 (Clusters Per Group 1)....................... Ignored since this is the Find setting 
M1 (Items Per Cluster in Group 1) ..........50 
K2 (Clusters Per Group 2).......................K1 
M2 (Items Per Cluster in Group 2) ..........M1 
D0.U (Upper Equivalence Difference).....0.15 
D0.L (Lower Equivalence Difference) ..... -D0.U 
D1 (Difference|H1 = P1.1 – P2) ..............0 .03 .06 
P2 (Group 2 Proportion)..........................0.6 
ICC (Intracluster Correlation) ..................0.002 
Test Type ................................................Likelihood Score (Farr. & Mann.) 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0L or P1-P2>=D0U. H1: D0L<P1-P2=D1<D0U. 
Test Statistic: Score tests 
 
     Lower Upper Lower Upper   
 Group 1 Group 2 Intra-  Equiv. Equiv. Equiv. Equiv. Actual  
 Clusters/ Clusters/ Cluster Prop Grp 1 Grp 1 Margin Margin Margin  
 Items Items Corr. Grp 2 Prop Prop Diff Diff Diff  
Power K1/M1 K2/M2 ICC P2 P1.0L P1.0U D0.L D0.U D1 Alpha Beta  
0.8065 4/50 4/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0000 0.0500 0.1935  
0.8324 5/50 5/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0300 0.0500 0.1676  
0.8137 8/50 8/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0600 0.0500 0.1863  

 

The required sample size depends a great deal on the value of D1. The researchers should spend 
time determining the most appropriate value for D1.  

Example 3 – Validation 
We could not find an example of this type of analysis in the literature. Therefore, we will validate 
the procedure by comparing the results to those given in the chapter entitled “Equivalence Tests 
for Two Proportions,” since both modules should give identical results for the same sample sizes 
when the ICC is set to zero. We ran the case when N1 = N2 = 200, P2 = 0.6, D0.U = 0.15, D1 = 
0, and Alpha = 0.05. In this module, set M1 = 1 and set K1 = 200. Both program modules 
calculated the power to be 0.8482 in this case.  

Example 4 – Finding Power after an Experiment 
Individuals promoting a new, more expensive treatment claim that it achieves better results than 
the current treatment without citing statistical evidence. A group of researchers attempted to show 
the claim was false through a study involving 12 hospitals. Two hundred patients at each of 6 
randomly chosen hospitals were given the current treatment. Two hundred patients at each of the 
remaining 6 hospitals were given the new treatment. It was agreed before the experiment that if a 
difference of less than 0.05 in proportion of success could be shown, the two treatments would be 
deemed equivalent. The proportion of patients responding properly to the current treatment was 
540/1200 = 0.450. The proportion of patients responding properly to the new treatment was 
570/1200 = 0.475. This result did not show significant equivalence at the 0.05 level. The 
researchers want to know the power of their equivalence test. They decide to use the intracluster 
correlation coefficient estimated from the data, which was 0.0043. Although the observed 
difference in proportions is 0.475 – 0.450 = 0.025, the equivalence difference is still 0.05. This 
value is used in the power calculation. 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Proportions in a Cluster-
Randomized Design [Differences] procedure window by clicking on Proportions, then Two 
Proportions from a Cluster-Randomized Design, then Equivalence Tests, then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
K1 (Clusters Per Group 1).......................6 
M1 (Items Per Cluster in Group 1) ..........200 
K2 (Clusters Per Group 2).......................K1 
M2 (Items Per Cluster in Group 2) ..........M1 
D0.U (Upper Equivalence Difference).....0.05 
D0.L (Lower Equivalence Difference) ..... -D0.U 
D1 (Difference|H1 = P1.1 – P2) ..............0.0 
P2 (Group 2 Proportion)..........................0.45 
ICC (Intracluster Correlation) ..................0.0043 
Test Type ................................................Likelihood Score (Farr. & Mann.) 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

 Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
 H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
 Test Statistic: Score tests 
  
      Lower Upper Lower Upper   
  Group 1 Group 2 Intra-  Equiv. Equiv. Equiv. Equiv. Actual  
  Clusters/ Clusters/ Cluster Prop Grp 1 Grp 1 Margin Margin Margin  
  Items Items Corr. Grp 2 Prop Prop Diff Diff Diff  
 Power K1/M1 K2/M2 ICC P2 P1.0L P1.0U D0.L D0.U D1 Alpha Beta
 0.1309 6/200 6/200 0.0043 0.4500 0.4000 0.5000 -0.0500 0.0500 0.0000 0.0500 0.8691

 

The power of the test of equivalence was only 0.1309. 



240-14  Equivalence Tests for Two Proportions in a Cluster-Randomized Design 

Example 5 – Finding Sample Size (Individuals within 
Clusters) 
An agency would like to show the proportion of success is the same for two treatments. Eight 
doctors are available for the study. Four will be randomly chosen to be trained to administer 
treatment 1. The remaining four will administer treatment 2. The treatments will be considered 
equivalent if the the proportion of success of treatment 1 is within 0.10 of treatment 2 success. 
The agency would like to know the number of patients that need to be treated by each doctor to 
achieve 80% power for the equivalence test. Various values for the intracluster correlation 
coefficient will be use since its true value is unknown. It is expected that the two treatments will 
have a success rate near 0.70. Alpha is set at 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Equivalence Tests for Two Proportions in a Cluster-
Randomized Design [Differences] procedure window by clicking on Proportions, then Two 
Proportions from a Cluster-Randomized Design, then Equivalence Tests, then Specify using 
Differences. You may then follow along here by making the appropriate entries as listed below or 
load the completed template Example5 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................M1 
Power ......................................................0.80 
Alpha .......................................................0.05 
K1 (Clusters Per Group 1).......................4 
M1 (Items Per Cluster in Group 1) ..........Ignored since this is the find setting 
K2 (Clusters Per Group 2).......................K1 
M2 (Items Per Cluster in Group 2) ..........M1 
D0.U (Upper Equivalence Difference).....0.10 
D0.L (Lower Equivalence Difference) .....-D0.U 
D1 (Difference|H1 = P1.1 – P2) ..............0.0 
P2 (Group 2 Proportion)..........................0.70 
ICC (Intracluster Correlation) ..................0.001 to 0.01 by 0.001 
Test Type ................................................Likelihood Score (Farr. & Mann.) 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
Test Statistic: Score tests 
 
     Lower Upper Lower Upper   
 Group 1 Group 2 Intra-  Equiv. Equiv. Equiv. Equiv. Actual  
 Clusters/ Clusters/ Cluster Prop Grp 1 Grp 1 Margin Margin Margin  
 Items Items Corr. Grp 2 Prop Prop Diff Diff Diff  
Power K1/M1 K2/M2 ICC P2 P1.0L P1.0U D0.L D0.U D1 Alpha Beta 
0.8028 4/99 4/99 0.0010 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1972 
0.8042 4/110 4/110 0.0020 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1958 
0.8028 4/123 4/123 0.0030 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1972 
0.8014 4/140 4/140 0.0040 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1986 
0.8014 4/162 4/162 0.0050 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1986 
0.8014 4/194 4/194 0.0060 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1986 
0.8014 4/240 4/240 0.0070 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1986 
0.8014 4/316 4/316 0.0080 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1986 
0.8014 4/463 4/463 0.0090 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1986 
0.8014 4/867 4/867 0.0100 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1986 
 

Plots Section 
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The number of patients needed to be treated by each doctor ranges from 99 to 867 depending on 
the value of the intracluster correlation coefficient. 
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Chapter 250 

Chi-Square Tests 
for Multiple 
Proportions 
Introduction 
The Chi-square test is often used to test whether sets of frequencies or proportions follow certain 
patterns. The two most common instances are tests of goodness of fit using multinomial tables 
and tests of independence in contingency tables.  

The Chi-square goodness of fit test is used to test whether the distribution of a set of data follows 
a particular pattern. For example, the goodness-of-fit Chi-square may be used to test whether a set 
of values follow the normal distribution or whether the proportions of Democrats, Republicans, 
and other parties are equal to a certain set of values, say 0.4, 0.4, and 0.2.  

The Chi-square test for independence in a contingency table is the most common Chi-square test. 
Here individuals (people, animals, or things) are classified by two (nominal or ordinal) 
classification variables into a two-way, contingency table. This table contains the counts of the 
number of individuals in each combination of the row categories and column categories. The Chi-
square test determines if there is dependence (association) between the two classification 
variables. Hence, many surveys are analyzed with Chi-square tests. 

The following table is an example of data arranged in a two-way contingency table. The rows of 
the table represent the stated political party of a respondent. The columns represent the 
respondent’s answer to a question about whether they favor a certain proposition. The body of the 
table represents the number of individuals that fall into each cell (category). Note that the 
opinions of 311 individuals are recorded in this table. 
 

(Count)      Favor Proposition A 

Political Party Yes No 
Democrats 86 21 
Republican 54 59 
Others 34 57 
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The table below presents the row percentages for each category.  
 

 (Row Percentage)      Favor Proposition A 

Political Party Yes No 
Democrats 80.4 19.6 
Republican 47.8 52.2 
Others 37.4 62.6 
 

The Chi-square statistic tests whether the percentage of Yes responses remains constant across the 
three political parties. Notice that 80% of the Democrats said Yes, while only 37% of those in the 
Other category chose Yes. The Chi-square value for the above table is 5.59, which is statistically 
significant. Obviously, there is quite a shift in response pattern on this item across political 
parties.  

Effect Size 
We begin by defining what we will call the effect size. For each cell of a table containing m cells, 
suppose there are two proportions considered: one specified by a null hypothesis and the other 
specified by an alternative hypothesis. Often, the proportions specified by the alternative 
hypothesis are those occurring in the data. Define  to be the proportion in cell i under the null 
hypothesis and  to be the proportion in cell i under the alternative hypothesis. The effect size, 
w, is calculated using the formula 
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The formula for computing the Chi-square value, is  χ 2,
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where N is the total count in all the cells. Hence, the relationship between w and  is χ 2

χ 2 2 =  Nw  

Note that when you are dealing with a contingency table, the cell index, i, is often replaced by 
two indices, one representing columns and the other representing rows.  

The effect size, w, was used by Cohen (1988) because it does not depend on the sample size. He 
sets a small value of w at 0.1, a medium value at 0.3, and a large value at 0.5. Although these are 
rather arbitrary settings, they are useful for planning purposes. 
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Chi-Square Effect Size Estimator 
PASS provides a special module to aid in finding an appropriate value for w called the Chi-
Square Effect Size Estimator. This module may be loaded by pressing the CS button near the W 
(Effect Size) box or from the menus by selecting PASS and then Other. 

You will find that as values are typed into the body of the table, the value of the effect size 
(shown at the bottom in the box labeled Effect Size - W) is also changed. Using this utility 
program, you can quickly determine the impact of table configurations on the value of w. 
For example, suppose the cell proportions under the null and alternative hypotheses are as 
follows: 

Cell 1 2 3 4 

0ip  0.25 0.25 0.25 0.25 (Null: Equal distribution across the four cells.) 

1ip  0.40 0.20 0.20 0.20 (Alternative: cell 1 has twice the probability as the rest.) 

To calculate w, first create the differences (ignoring the signs since the differences will be 
squared 

|Diff| 0.15 0.05 0.05 0.05 

Next, square the differences 

Diff^2 0.0225 0.0025 0.0025 0.0025 

Divide by the null 

X^2 0.09 0.01 0.01 0.01 

When these are summed, the result is 0.12. Taking the square of 0.12 gives the value of w as 
0.3464. 

As an experiment, load the Chi-Square Effect Size Estimator and enter these values on the 
Multinomial Test window. Enter the  values in the column labeled Data Values and 
the values in1 the column marked Hypothesized Proportions. Check that the value of w is 
0.3464. Next, change the Data Values to 4,2,2,2 and the Hypothesized Proportions to 1,1,1,1. 
Check that the value of w is still the same. 

0ip

1ip

Calculating the Power 
The power is calculated as follows:  

1. Find xα such that ( )1 2− =χ ααx df , where ( )χ α
2 x df is the area to the left of x under a 

Chi-square distribution with df degrees of freedom.  

2. Power = 1 , where  is the left-tail area of the noncentral Chi-square 
distribution with k degrees of freedom and noncentrality parameter 

2− ′χ λdf , ′χ λk ,
2

λ . Note that 
. λ = Nw2
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Procedure Options 
This section describes the options that are specific to the one proportion equivalence procedures. 
These are located on the Data tab. To find out more about using the other tabs, go to the 
Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are W, DF, N, Alpha, and Power and Beta. Under most situations, you will 
select either Power and Beta for a power analysis or N for sample size determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal row 
proportions when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. For this procedure, a type-I error occurs when you reject 
the null hypothesis of equal row (or column) proportions when in fact they are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 
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Sample Size 

N (Sample Size) 
This option specifies the number of individuals whose responses are recorded in the table. This 
number should be greater than or equal to the number of cells in the table. 

Effect Size 

W (Effect Size) 
This is the value of w, the effect size. If you have Chi-square values that you want to analyze, use 
the following formula to transform them to w’s: 

w
N

=
χ 2

 

Remember that a small value of w is 0.1, a medium value is 0.3, and a large value is 0.5. 

Test 

DF (Degrees of Freedom) 
This options specifies the degrees of freedom of the Chi-square test. For a test of independence in 
a contingency table, the degrees of freedom is (R-1)(C-1) where R is the number of rows and C is 
the number of columns. For example, for a 3-by-4 table, DF = (3-1)(4-1) = 6.  

In a goodness of fit test, the degrees of freedom is the number of cells minus one. You may have 
to further adjust it for every distributional parameter that is estimated from the data. For example, 
suppose a Chi-square goodness-of-fit will be used to test the adequacy of the normality 
assumption on a set of 300 observations. Two parameters, the mean and variance, are estimated 
from the data. Suppose the data are categorized into six categories. DF = 6 - 2 - 1 = 3. 
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Example 1 – Finding the Power for an Existing 
Contingency Table 
This example will compute the power of the Chi-square test of independence of the data in the 
contingency table that was discussed at the beginning of this chapter. If you would like to follow 
along, load the Chi-Square Effect Size Estimator window, select the Contingency Table tab, enter 
86, 54, 34 in the first column and 21, 59, 57 in the second column. The results are Chi-square =  
41.708829, DF = 2, N = 311, and W = 0.366213.  

We will compute the power when alpha = 0.01, 0.05, and 0.10. For evaluation purposes, we will 
compute the power when N = 20, 50, 100, and 200 as well as at 311. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Chi-Square Tests for Multiple Proportions procedure 
window by clicking on Proportions, then Multiple Proportions, then Chi-Square Tests. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting. 
Alpha .......................................................0.01  0.05  0.10 
N (Sample Size) ......................................20 50 100 200 311 
W (Effect Size) ........................................0.366213 
DF (Degrees of Freedom).......................2 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
 
Power N W Chi-Square DF Alpha Beta 
0.12127 20 0.3662 2.6822 2 0.01000 0.87873 
0.29104 20 0.3662 2.6822 2 0.05000 0.70896 
0.41007 20 0.3662 2.6822 2 0.10000 0.58993 
0.39621 50 0.3662 6.7056 2 0.01000 0.60379 
0.63538 50 0.3662 6.7056 2 0.05000 0.36462 
0.74622 50 0.3662 6.7056 2 0.10000 0.25378 
0.78214 100 0.3662 13.4112 2 0.01000 0.21786 
0.91678 100 0.3662 13.4112 2 0.05000 0.08322 
0.95512 100 0.3662 13.4112 2 0.10000 0.04488 
0.98840 200 0.3662 26.8224 2 0.01000 0.01160 
0.99795 200 0.3662 26.8224 2 0.05000 0.00205 
0.99927 200 0.3662 26.8224 2 0.10000 0.00073 
0.99980 311 0.3662 41.7088 2 0.01000 0.00020 
0.99998 311 0.3662 41.7088 2 0.05000 0.00002 
1.00000 311 0.3662 41.7088 2 0.10000 0.00000 
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Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the size of the sample drawn from the population. To conserve resources, it should be small. 
W is the effect size--a measure of the magnitude of the Chi-Square that is to be detected. 
DF is the degrees of freedom of the Chi-Square distribution. 
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 
 
Summary Statements 
A sample size of 20 achieves 12% power to detect an effect size (W) of 0.3662 using a 2 degrees 
of freedom Chi-Square Test with a significance level (alpha) of 0.01000. 
 

This report shows the values of each of the parameters, one scenario per row. The definitions of 
each column are given in the Report Definitions section. 
Note that in this particular example, a reasonable power of about 0.80 is reached for all values of 
alpha once the sample size is greater than 100. 

The values from this table are plotted in the chart below.  

Plots Section 
 

 

Power vs N by Alpha with W=0.3662 DF=2 Chi2 Test
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This plot shows the relationship between sample size, power, and alpha.  
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Example 2 – Finding the Sample Size 
A survey is being planned that will contain several questions with three possible answers: agree, 
neutral, disagree. The researchers are planning to analyze the questionnaires using Chi-square 
tests of independence in two-way contingency tables. How many respondents are needed to detect 
small (w = 0.1), medium (w = 0.3), or large (w = 0.5) effects if all hypothesis testing will be done 
at the 0.05 significance level? 

Since the researchers are planning for 3-by-3 tables, DF = (3 - 1)(3 - 1) = 4. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Chi-Square Tests for Multiple Proportions procedure 
window by clicking on Proportions, then Multiple Proportions, then Chi-Square Tests. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.80 0.90 
Alpha .......................................................0.05 
N (Sample Size) ......................................Ignored since this is the Find setting. 
W (Effect Size) ........................................0.1 0.3 0.5 
DF (Degrees of Freedom).......................4 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
 
Power N W Chi-Square DF Alpha Beta 
0.90010 1541 0.1000 15.4100 4 0.05000 0.09990 
0.80018 1194 0.1000 11.9400 4 0.05000 0.19982 
0.90157 172 0.3000 15.4800 4 0.05000 0.09843 
0.80130 133 0.3000 11.9700 4 0.05000 0.19870 
0.90198 62 0.5000 15.5000 4 0.05000 0.09802 
0.80243 48 0.5000 12.0000 4 0.05000 0.19757 
 

This report shows that for 80% power, 1194 (about 1200) respondents are needed to detect small 
effects, 133 respondents are needed to detect medium effects, and 48 respondents are needed to 
detect large effects. 
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Example 3 – Validation using Cohen 
Cohen (1988) page 251 presents an example in which W = 0.30 and 0.40, N = 140, alpha = 0.01, 
and DF = 2. He gives the power as 0.75 for W = 0.3 and 0.97 for W = 0.4.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Chi-Square Tests for Multiple Proportions procedure 
window by clicking on Proportions, then Multiple Proportions, then Chi-Square Tests. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting. 
Alpha .......................................................0.01 
N (Sample Size) ......................................140 
W (Effect Size) ........................................0.3 0.4 
DF (Degrees of Freedom).......................2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
 
Power N W Chi-Square DF Alpha Beta 
0.74841 140 0.3000 12.6000 2 0.01000 0.25159 
0.96641 140 0.4000 22.4000 2 0.01000 0.03359 
 

PASS matches Cohen’s power values of 0.75 and 0.97. 
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Example 4 – Finding the Sample Size for a Normality 
Goodness-of-Fit Test 
A researcher is planning a study to determine if the distribution of scores on a certain test is 
normal. He plans to divide the test scores from his sample into five intervals of equal probability 
under the normal distribution using the sample mean and sample variance. After experimenting 
with the Chi-Square Effect Size Estimator, he decides that he must be able to detect a departure 
from normality of w = 0.20. He sets his significance level at 0.10 so that he will be lenient in his 
rejection of normality. He decides to focus on a power of 0.80. How large of a sample size will 
the researcher need? 

The value of DF = 5 - 2 - 1 = 2, since there are five intervals and two parameters, mean and 
variance, are used. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Chi-Square Tests for Multiple Proportions procedure 
window by clicking on Proportions, then Multiple Proportions, then Chi-Square Tests. You 
may then follow along here by making the appropriate entries as listed below or load the 
completed template Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N 
Power ......................................................0.80 
Alpha .......................................................0.10 
N (Sample Size) ......................................Ignored since this is the Find setting. 
W (Effect Size) ........................................0.20 
DF (Degrees of Freedom).......................2 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
 
Power N W Chi-Square DF Alpha Beta 
0.80046 193 0.2000 7.7200 2 0.10000 0.19954 
 

This report shows that for 80% power, 193 observations are needed. 
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Chapter 255 

Cochran-Armitage 
Test for Trend in 
Proportions 
Introduction 
This module computes power and sample size for the Cochran-Armitage test for a linear trend in 
proportions based on the results in Nam (1987). Asymptotic and exact power calculations for the 
uncorrected and continuity-corrected tests are available. The results assume that the proportions 
follow a linear trend on the logistic scale, with X being the covariate (or dose) variable, and that 
random samples are drawn from k separate populations. 

Technical Details  
Suppose we have k independent binomial variates , with response probabilities  based on 
samples of size  at covariate (or dose) levels , for i = 1, 2, …, k, where 
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If we assume that the probability of response follows a linear trend on the logistic scale, then 
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Hypothesis Tests 
The Cochran-Armitage test can be used to test the following hypotheses: 

One-Sided (Increasing Trend) kpppH === ...: 210    vs.   kpppH <<< ...: 211  

One-Sided (Decreasing Trend) kpppH === ...: 210    vs.    kpppH >>> ...: 211

Two-Sided    kpppH === ...: 210    vs.   kpppH <<< ...: 211    
               or   kppp >>> ...21

One-Sided Test of Increasing Linear Trend in Proportions 

Continuity-Corrected Test 
Nam (1987) presents the following continuity-corrected asymptotic test statistic for detecting an 
increasing linear trend in proportions 
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The factor is the continuity correction. If the covariates  are equally-spaced then  2/Δ ix

ii xx −=Δ +1  for all i < k 

or the interval between adjacent covariates. PASS computes Δ  for unequally-spaced covariates 
as 
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For the case of unequally-spaced covariates, Nam (1987) has this to say, “For unequally spaced 
doses, no constant correction is adequate for all outcomes.” Therefore, we caution against the use 
of the continuity-corrected test statistic in the case of unequally-spaced covariates. 

The test rejects H0 if , where  is the value that leaves 1 – α in the upper tail of the 
standard normal distribution. 

α−≥ 1.. zz cc α−1z

Uncorrected Test 
The uncorrected test statistic is equivalent to the corrected test statistic except that ,  0=Δ
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The test rejects H0 if , where  is the value that leaves 1 – α in the upper tail of the 
standard normal distribution. 

α−≥ 1zz α−1z
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One-Sided Test of Decreasing Linear Trend in Proportions 

Continuity-Corrected Test 
Nam (1987) presents a continuity-corrected asymptotic test statistic for detecting an increasing 
linear trend in proportions. The continuity-corrected test statistic for a decreasing trend is the 
same as that for an increasing trend, except that 2/Δ is added in the numerator instead of 
subtracted 
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The factor is defined the same as in the case of a test for increasing trend, and the caution about 
the use of the continuity-corrected test statistic in the case of unequally-spaced covariates also 
applies here. 

Δ

The test rejects H0 if , where  is the value that leaves α in the lower tail of the 
standard normal distribution. 

αzz cc ≤.. αz

Uncorrected Test 
The uncorrected test statistic is equivalent to the corrected test statistic except that ,  0=Δ
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The test rejects H0 if , where  is the value that leaves α in the lower tail of the standard 
normal distribution. 

αzz ≤ αz

Two-Sided Test for Linear Trend in Proportions 

Continuity-Corrected Test 
Nam (1987) presents a continuity-corrected asymptotic test statistic for detecting an increasing 
linear trend in proportions. A two-sided test statistic utilizes a combination of the upper- and 
lower-tailed test statistics. 
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The factor is defined the same as in the case of a test for increasing trend, and the caution about 
the use of the continuity-corrected test statistic in the case of unequally-spaced covariates also 
applies here. 

Δ

The test rejects H0 if  or if 2/1.. α−≥ zz Ucc 2/.. αzz Lcc ≤ . 
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Uncorrected Test 
The uncorrected test statistic is the same as the corrected test statistic except that , which 
reduces the upper- and lower-tailed statistics to a single test statistic 

0=Δ
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The test rejects H0 if 2/1 α−≥ zz . 

Exact Power Calculations 
The power for the previous test statistics that are based on the normal approximation can be 
computed exactly using the binomial distribution. The following steps are taken to compute exact 
power.  

One-Sided Test of Increasing Linear Trend in Proportions 
1. Find the critical value using the standard normal distribution. The critical value, zcritical , is 

that value of z that leaves exactly the target value of alpha in the upper tail of the normal 
distribution. For example, for an upper-tailed test (increasing trend) with a target alpha of 
0.05, the critical value is 1.645.  

2. Compute the value of the test statistic, zt , for every y, where ),...,,( 21 kyyy=y . Note that 

1y  ranges from 0 to n1 , 2y  ranges from 0 to n2 , and so on. The test statistic zt  can be 
either the corrected or uncorrected test statistic. 

3. If criticalt z , the combination is in the rejection region. Call all y that lead to a rejection 
the set A. 

z ≥

4. Compute the power for given values of ),...,,( 21 kppp=p  as 
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When the values of  are large (say over 50) or k is large (say over 5), these formulas may take a 
little time to evaluate. In this case, a large sample approximation may be used. 

in

One-Sided Test of Decreasing Linear Trend in Proportions 
1. Find the critical value using the standard normal distribution. The critical value, zcritical , is 

that value of z that leaves exactly the target value of alpha in the upper tail of the normal 
distribution. For example, for a lower-tailed test (decreasing trend) with a target alpha of 
0.05, the critical value is 1.645.  

2. Compute the value of the test statistic, zt , for every y, where ),...,,( 21 kyyy=y . Note that 

1y  ranges from 0 to n1 , 2y  ranges from 0 to n2 , and so on. The test statistic zt  can be 
either the corrected or uncorrected test statistic. 
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3. If critical , the combination is in the rejection region. Call all y that lead to a 
rejection the set A. 

t zz −≤

4. Compute the power for given values of ),...,,( 21 kppp=p  as 
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When the values of  are large (say over 50) or k is large (say over 5), these formulas may take a 
little time to evaluate. In this case, a large sample approximation may be used. 

in

Two-Sided Test of Linear Trend in Proportions 
1. Find the critical value using the standard normal distribution. The critical value, zcritical , is 

that value of z that leaves exactly alpha/2 in the upper tail of the normal distribution. For 
example, for a two-sided test with a target alpha of 0.05, the critical value is 1.96.  

2. Compute the value of the test statistics, Uz  and Lz , for every y, where ),..., . 
Note that 1y  ranges from 0 to n1 , 2y  ranges from 0 to n2 , and so on. The test statistics 

Uz  and Lz  can be either the corrected or uncorrected test statistics. In the case of the 
uncorrected test, LU zz = . 

,( 21 kyyy=y

3. If critical  or critical , the combination is in the rejection region. Call all y that 
lead to a rejection the set A. 

U zz ≥ L zz −≤

4. Compute the power for given values of ),...,,( 21 kppp=p  as 
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When the values of  are large (say over 50) or k is large (say over 5), these formulas may take a 
little time to evaluate. In this case, a large sample approximation may be used. 

in

Approximate Power Calculation 
The power for the Cochran-Armitage test can be computed quickly using the normal 
approximation to the binomial distribution. The following steps are taken to compute 
approximate power.  

One-Sided Test of Increasing Linear Trend in Proportions 
1. Find the critical value using the standard normal distribution. The critical value, zcritical , is 

that value of z that leaves exactly the target value of alpha in the upper tail of the normal 
distribution. For example, for an upper-tailed test with a target alpha of 0.05, the critical 
value is 1.645.  

2. For a one-sided test of the alternative hypothesis that ip  is a monotone increasing 
function of ix , compute the power for given values of ),...,,( 21 kppp=p  as 
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The power for the uncorrected test is computed with 0=Δ . 

One-Sided Test of Decreasing Linear Trend in Proportions 
1. Find the critical value using the standard normal distribution. The critical value, zcritical , is 

that value of z that leaves exactly the target value of alpha in the upper tail of the normal 
distribution. For example, for a lower-tailed test with a target alpha of 0.05, the critical 
value is 1.645.  

2. For a one-sided test of the alternative hypothesis that ip  is a monotone decreasing 
function of ix , compute the power for given values of ),...,,( 21 kppp=p  as 
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The power for the uncorrected test is computed with 0=Δ . 
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Two-Sided Test of Linear Trend in Proportions 
1. Find the critical value using the standard normal distribution. The critical value, zcritical , is 

that value of z that leaves exactly alpha/2 in the upper tail of the normal distribution. For 
example, for a two-tailed test with a target alpha of 0.05, the critical value is 1.96.  

2. For a two-sided test of the alternative hypothesis that ip  is a monotone decreasing or 
increasing function of ix , compute the power for given values of ),...,  as ,( 21 kppp=p

( ) ( )
( ) ( )LU

criticalLcriticalU

uu

HzzHzz
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1
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where  is the cumulative normal distribution and  and  are as defined 
previously. The power for the uncorrected test is computed with . 

()Φ Uu Lu
0=Δ

Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Power and Beta or n (Group Sample Size). 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected. In 
this procedure, a type-II error occurs when you fail to reject the null hypothesis of equal means 
when in fact the means are different. 

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered. 
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Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. In this procedure, a type-I error occurs when you reject 
the null hypothesis of equal means when in fact the means are equal.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size / Groups – Sample Size 
Multiplier 

n (Sample Size Multiplier) 
This is the base, per group, sample size. One or more values, separated by blanks or commas, 
may be entered. A separate analysis is performed for each value listed here. 

The group samples sizes are determined by multiplying this number by each of the Group Sample 
Size Pattern numbers. If the Group Sample Size Pattern numbers are represented by m1, m2,…, mk 
and this value is represented by n, the group sample sizes n1, n2, ..., nk are calculated as follows: 

n1=[n(m1)] 

n2=[n(m2)] 

n3=[n(m3)] 

etc. 

where the operator, [X] means the next integer after X, e.g. [3.1]=4. 

For example, suppose there are three groups and the Group Sample Size Pattern is set to 1,2,3. If 
n is 5, the resulting sample sizes will be 5, 10, and 15. If n is 50, the resulting group sample sizes 
will be 50, 100, and 150. If n is set to 2,4,6,8,10, five sets of group sample sizes will be generated 
and an analysis run for each. These sets are: 

2 4 6 
4 8 12 
6 12 18 
8 16 24 
10 20 30 

As a second example, suppose there are three groups and the Group Sample Size Pattern is 
0.2,0.3,0.5. When the fractional Pattern values sum to one, N can be interpreted as the total 
sample size of all groups and the Pattern values as the proportion of the total in each group.  

If N is 10, the three group sample sizes would be 2, 3, and 5. 

If N is 20, the three group sample sizes would be 4, 6, and 10. 

If N is 12, the three group sample sizes would be 

(0.2)12 = 2.4 which is rounded up to the next whole integer, 3. 

(0.3)12 = 3.6 which is rounded up to the next whole integer, 4. 

(0.5)12 = 6.  
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Note that in this case, 3+4+6 does not equal N (which is 12). This can happen because of 
rounding. 

Sample Size / Groups – Groups 

k (Number of Groups) 
This is the number of groups being compared. Thus, it is the number of proportions and X values 
(or covariates). It must be greater than or equal to two.  

The Cochran-Armitage method tests for a trend in proportions among these groups. 

Note that the number of values used in the P (Proportions), X Values, and Group Sample Size 
Pattern boxes are all controlled by this number. 

Group Sample Size Pattern 
A set of positive, numeric values, one for each group, is entered here. The sample size of group i 
is found by multiplying the ith number from this list times the value of n and rounding up to the 
next whole number. The number of values must match the number of groups, k. When too few 
numbers are entered, 1’s are added. When too many numbers are entered, the extras are ignored.  

• Equal 
If all sample sizes are to be equal, enter Equal here and the desired sample size in n. A set of 
k 1's will be used. This will result in n1 = n2 = n3 = n. That is, all sample sizes are equal to n.  

Effect Size – Proportions 

P (Proportions) 
Specify two or more proportions. These are the alternative proportions for the Cochran-Armitage 
test of trend. The proportions should be strictly increasing or decreasing (depending on the 
alternative hypothesis) and all values should be greater than zero and less than one. The number 
of proportions entered should equal the value of k, the number of groups. If the number of 
proportions entered is less than k, the last proportion is repeated. If the number is greater than k, 
the extra proportions are ignored.  

Several sets of proportions can be entered by using the PASS spreadsheet. To launch the 
spreadsheet, click on the “Spreadsheet” button above the box. To select columns from the 
spreadsheet, click on the button with the arrow pointing down to the right. Specify the column (or 
columns) to be used by beginning your entry with an equals sign, e.g. enter =C1-C3. 

List Input 
Specify a single set of proportions as a list. For example, with three groups you might enter 0.1 
0.2 0.3. 

Spreadsheet Column Input 
Specify more than one set of proportions using the column input syntax  

=[column 1] [column 2] etc.  

For example, if you have three proportion sets stored in the spreadsheet in columns C1, C2, and 
C3, you would enter =C1 C2 C3 in the P (Proportions) box. 
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Each column in the spreadsheet corresponds to a single set of proportions. Missing cells are not 
allowed. The number of proportions entered in each column should equal the value of k. If the 
number of proportions entered is less than k, the last proportion is repeated. If the number is 
greater than k, the extra proportions are ignored. 

Effect Size – X’s (Covariate or Dose 
Values) 

Equally-Spaced X Values 
Check this box if the x’s (covariates or doses) are equally spaced. It is not necessary to specify the 
individual x’s if they are equally spaced, e.g. x value sets of 0, 1, 2 and 10, 20, 30 yield the same 
results. 

If the covariates or doses are not equally spaced (e.g. x's = 1, 3, 7), you should enter the 
individual values in the box below after unchecking this option. The continuity correction factor 

 and the power calculation then depend on the actual values entered. 2/Δ

X Values 
Enter a list of x values if the covariates are unequally spaced (e.g. x's = 1, 3, 7). The values should 
be strictly increasing. The continuity correction factor 2/Δ  and the power calculation then 
depend on the actual values entered here. The factor Δ  is calculated as the average difference 
between adjacent x values. 

If the “Equally-Spaced X Values” option is checked, these values are ignored. 

Test 

Test Type 
Specify which type of test will be used in all searching and reporting. 

The continuity correction refers to adding or subtracting 2/Δ  from the numerator of the z-value 
to bring the normal approximation closer to the binomial distribution. The factor  is calculated 
as the average difference between adjacent x values. 

Δ

If the x's are equally-spaced,  is equal to the difference between adjacent x's Δ

ii xx −=Δ +1  for all i < k. 

In the case of unequally-spaced x's, Nam (1987) states, “For unequally spaced doses, no constant 
correction is adequate for all outcomes.” Therefore, we recommend using the continuity-
corrected test in the case of equally-spaced x's, but caution against its use in the case of 
unequally-spaced x's. 

Alternative Hypothesis (H1) 
Specify the alternative hypothesis of the test. Since the null hypothesis is the opposite, specifying 
the alternative is all that is needed. The alternative hypothesis determines how the alternative 
proportions, P (Proportions), should be entered. Usually, the two-sided option is selected. 

For a one-sided alternative hypothesis test of increasing trend, the proportions should be strictly 
increasing, e.g. 0.1 0.2 0.3.  
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For a one-sided alternative hypothesis test of decreasing trend, the proportions should be strictly 
decreasing, e.g. 0.5 0.4 0.3.  

For a two-sided test, the proportions can be either increasing or decreasing. 

Exact Power Calculation 

Maximum Group Sample Size for Exact Power Calculations 
When all group sample sizes are less than or equal to this amount and the product of all group 
sample sizes is less than the Max Group Size Product for Exact Power Calculations, exact power 
calculations using the binomial distribution are made. Otherwise, the normal approximation to the 
binomial is used for calculating power. 

Large values for this option can greatly increase the time required to calculate the power, 
especially when searching for sample size or when k is large. For larger sample sizes, the power 
based on the normal approximation is very close to the exact power. We recommend keeping this 
value less than 50. 

Maximum Group Sample Size Product for Exact Power Calculations 
When the product of all group sample sizes is less than this amount and all individual group 
sample sizes are less than the Maximum Group Sample Size for Exact Power Calculations, exact 
power calculations using the binomial distribution are made. Otherwise, the normal 
approximation to the binomial is used for calculating power. 

This option is used to reduce computing time and to avoid running out of memory in the case of 
large sample sizes and/or large k. Raising this value will increase computing time. 

Large values for this option can greatly increase the time required to calculate the power, 
especially when searching for sample size or when k is large. For larger sample sizes, the power 
based normal approximation is very close to the exact power. We recommend keeping this value 
less than 10 million when solving for power and beta and less than 1 million when solving for 
sample size. 
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Example 1 – Finding the Power 
An experiment is being designed to determine if there exists a dose-response relationship for a 
particular drug. Researchers will administer the drug at three dose levels: control (no drug), low, 
and high. The low dose is exactly half of the high dose, so the dosage structure is equally spaced. 
They expect to find response proportions of 0.05, 0.15, and 0.25 corresponding to the three doses, 
control, low, and high, respectively. A two-sided test with an alpha level of 0.05 will be used 
along with the continuity-corrected Cochran-Armitage test. They wish to compute the power for 
conducting the study with equal-sized groups ranging from 30 to 70 subjects in size.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Cochran-Armitage Test for Trend in Proportions 
procedure window by clicking on Proportions, then Multiple Proportions, then Cochran-
Armitage Test for Trend. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example1a from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................30 to 70 by 5 
k (Number of Groups) .............................3 
Group Sample Size Pattern ....................Equal 
P (Proportions) ........................................0.05 0.15 0.25 
Equally-Spaced X Values........................Checked 
Test Type ................................................Z test with continuity correction 
Alternative Hypothesis (H1) ....................Two-Sided 
Max Grp Sample Size for Exact Power...20 
Max Grp Size Product for Exact Power ..1000000 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
Test Type = Two-sided Z test with continuity correction. Correction Factor = 0.5. 
H0: P1 = P2 = ... = Pk. H1: Increasing or Decreasing Trend. 
Equally-Spaced X Values. 
 
 Average  Total    
Power n k N Alpha Beta Proportions 
0.51187 30.00 3 90 0.05000 0.48813 0.05, 0.15, 0.25 
0.58893 35.00 3 105 0.05000 0.41107 0.05, 0.15, 0.25 
0.65710 40.00 3 120 0.05000 0.34290 0.05, 0.15, 0.25 
0.71640 45.00 3 135 0.05000 0.28360 0.05, 0.15, 0.25 
0.76724 50.00 3 150 0.05000 0.23276 0.05, 0.15, 0.25 
0.81029 55.00 3 165 0.05000 0.18971 0.05, 0.15, 0.25 
0.84635 60.00 3 180 0.05000 0.15365 0.05, 0.15, 0.25 
0.87629 65.00 3 195 0.05000 0.12371 0.05, 0.15, 0.25 
0.90093 70.00 3 210 0.05000 0.09907 0.05, 0.15, 0.25 
 
References 
Nam, J. 1987. 'A Simple Approximation for Calculating Sample Sizes for Detecting Linear Trend in Proportions'. 
     Biometrics 43, 701-705. 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
Average n is the average oup sample size. gr
k is the number of groups. 
Total N is the total sample size of all groups combined. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
Proportions lists the set of proportions used. The number of proportions is equal to k. 
 
Summary Statements 
In a Cochran-Armitage test for trend in proportions, sample sizes of 30, 30, and 30 are 
obtained from 3 groups with equally-spaced X values and proportions equal to 0.05, 0.15, and 
0.25, respectively. The total sample of 90 subjects achieves 51% power to detect a linear trend 
using a two-sided Z test with continuity correction and a significance level of 0.05000. 

 

This report shows the numeric results of this power study. Following are the definitions of the 
columns of the report. 

Power 
The probability of rejecting a false null hypothesis. 

Average n 
The average of the group sample sizes. 

k 
The number of groups. 

Total N 
The total sample size of the study. 

Alpha 
The probability of rejecting a true null hypothesis. This is often called the significance level. 
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Beta 
The probability of accepting a false null hypothesis. 

Proportions 
The alternative proportions used to calculate the power. 

Detailed Results Report 
 
Details when Power = 0.51187 and Alpha = 0.05000 
 
 Sample Percent   
 Size Ni of Proportion  
Group (Ni) Total N (Pi)  
1 30 33.33 0.05   
2 30 33.33 0.15   
3 30 33.33 0.25   
ALL 90 100.00   
 
Details when Power = 0.58893 and Alpha = 0.05000 
 
 Sample Percent   
 Size Ni of Proportion  
Group (Ni) Total N (Pi)  
1 35 33.33 0.05   
2 35 33.33 0.15   
3 35 33.33 0.25   
ALL 105 100.00 
 
(More Reports Follow) 
    

This report shows the details of each row of the previous report. 

Group 
The number of the group shown on this line. The last line, labeled ALL, gives the total sample 
size for the scenario. 

Ni 
This is the sample size of each group. This column is especially useful when the sample sizes are 
unequal. 

Percent Ni of Total Ni 
This is the percentage of the total sample that is allocated to each group. 

Pi 
This is the value of the hypothesized proportion. 
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Plots Section 
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This plot gives a visual presentation to the results in the Numeric Report. We can quickly see the 
impact on the power of increasing the sample size. 
When you create one of these plots, it is important to use trial and error to find an appropriate 
range for the horizontal variable so that you have results with both low and high power. 

Exact Power Calculation 
You can calculate the exact power for this scenario by setting the maximum group sample size for 
exact power calculations to 70. You can do this yourself or load the completed template 
Example1b from the Template tab on the procedure window. 
 

Numeric Results 
Test Type = Two-sided Z test with continuity correction. Correction Factor = 0.5. 
H0: P1 = P2 = ... = Pk. H1: Increasing or Decreasing Trend. 
Equally-Spaced X Values. 
 
 Average  Total    
Power n k N Alpha Beta Proportions 
0.51173* 30.00 3 90 0.05000 0.48827 0.05, 0.15, 0.25 
0.60387* 35.00 3 105 0.05000 0.39613 0.05, 0.15, 0.25 
0.67534* 40.00 3 120 0.05000 0.32466 0.05, 0.15, 0.25 
0.74067* 45.00 3 135 0.05000 0.25933 0.05, 0.15, 0.25 
0.78352* 50.00 3 150 0.05000 0.21648 0.05, 0.15, 0.25 
0.83170* 55.00 3 165 0.05000 0.16830 0.05, 0.15, 0.25 
0.86462* 60.00 3 180 0.05000 0.13538 0.05, 0.15, 0.25 
0.89489* 65.00 3 195 0.05000 0.10511 0.05, 0.15, 0.25 
0.91511* 70.00 3 210 0.05000 0.08489 0.05, 0.15, 0.25 
 
* Values in this row are based on exact power calculations. Exact power was calculated for 
  scenarios in which the largest group sample size is less than or equal to 70 and the product 
  of all group samples sizes is less than or equal to 1000000. 

 

This report indicates that all power values were calculated exactly based on the binomial 
distribution. The approximate power values calculated earlier are very close to these values. 
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Example 2 – Finding the Sample Size 
Continuing with the last example, we will determine how large the sample size would need to be 
to have the power at least 0.95 with an alpha level of 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Cochran-Armitage Test for Trend in Proportions 
procedure window by clicking on Proportions, then Multiple Proportions, then Cochran-
Armitage Test for Trend. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example2 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................n (Group Sample Size) 
Power ......................................................0.95 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................Ignored since this is the Find setting 
k (Number of Groups) .............................3 
Group Sample Size Pattern ....................Equal 
P (Proportions) ........................................0.05 0.15 0.25 
Equally-Spaced X Values........................Checked 
Test Type ................................................Z test with continuity correction 
Alternative Hypothesis (H1) ....................Two-Sided 
Max Grp Sample Size for Exact Power...20 
Max Grp Size Product for Exact Power ..1000000 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
Test Type = Two-sided Z test with continuity correction. Correction Factor = 0.5. 
H0: P1 = P2 = ... = Pk. H1: Increasing or Decreasing Trend. 
Equally-Spaced X Values. 
 
 Average  Total    
Power n k N Alpha Beta Proportions 
0.95054 85.00 3 255 0.05000 0.04946 0.05, 0.15, 0.25 

 

The required sample size is 85 per group or 255 subjects. 
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Example 3 – Calculating Power with Unequal Group 
Sample Sizes 
Continuing with the last example, consider the impact of allowing the group sample sizes to be 
unequal. Suppose we have twice as many control subjects receiving no drug as subjects at the low 
and high dose levels. What is the power for group sample sizes of 120, 60, and 60? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Cochran-Armitage Test for Trend in Proportions 
procedure window by clicking on Proportions, then Multiple Proportions, then Cochran-
Armitage Test for Trend. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example3 from the Template tab on the procedure 
window. 

Pay particular attention to how the sample size parameters were changed. The sample size 
multiplier, n, was set to 1 so that it is essentially ignored. The Group Sample Size Pattern contains 
the three sample sizes.  

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ...................................................... Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................1 
k (Number of Groups) .............................3 
Group Sample Size Pattern ....................120 60 60 
P (Proportions) ........................................0.05 0.15 0.25 
Equally-Spaced X Values .......................Checked 
Test Type ................................................Z test with continuity correction 
Alternative Hypothesis (H1) ....................Two-Sided 
Max Grp Sample Size for Exact Power...20 
Max Grp Size Product for Exact Power ..1000000 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
Test Type = Two-sided Z test with continuity correction. Correction Factor = 0.5. 
H0: P1 = P2 = ... = Pk. H1: Increasing or Decreasing Trend. 
Equally-Spaced X Values. 
 
 Average  Total    
Power n k N Alpha Beta Proportions 
0.95196 80.00 3 240 0.05000 0.04804 0.05, 0.15, 0.25 
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Details when Power = 0.95196 and Alpha = 0.05000 
 
 Sample Percent   
 Size Ni of Proportion  
Group (Ni) Total N (Pi)  
1 120 50.00 0.05   
2 60 25.00 0.15   
3 60 25.00 0.25   
ALL 240 100.00   
 

Group sample sizes of 120, 60, and 60 yield just over 95% power. The total sample size of 240 
for 95% power for this scenario is actually less than the total of 255 from Example 2, where equal 
group sample sizes were used.  

Example 4 – Calculating Power with Unequally-Spaced X 
Values 
Continuing with Example 1, consider the impact of using unequally-spaced dose levels: 0, 2, and 
5. Because the doses are not equally spaced, we will use the uncorrected z test for power 
calculations. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Cochran-Armitage Test for Trend in Proportions 
procedure window by clicking on Proportions, then Multiple Proportions, then Cochran-
Armitage Test for Trend. You may then follow along here by making the appropriate entries as 
listed below or load the completed template Example4 from the Template tab on the procedure 
window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.05 
n (Sample Size Multiplier) .......................30 to 70 by 5 
k (Number of Groups) .............................3 
Group Sample Size Pattern ....................Equal 
P (Proportions) ........................................0.05 0.15 0.25 
Equally-Spaced X Values........................Unchecked 
X Values..................................................0 2 5 
Test Type ................................................Z test 
Alternative Hypothesis (H1) ....................Two-Sided 
Max Grp Sample Size for Exact Power...20 
Max Grp Size Product for Exact Power ..1000000 



Cochran-Armitage Test for Trend in Proportions  255-19 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
Test Type = Two-sided Z test. 
 H0: P1 = P2 = ... = Pk. H1: Increasing or Decreasing Trend. 
X Values = 0.0, 2.0, 5.0. 
 
 Average  Total    
Power n k N Alpha Beta Proportions 
0.57754 30.00 3 90 0.05000 0.42246 0.05, 0.15, 0.25 
0.64383 35.00 3 105 0.05000 0.35617 0.05, 0.15, 0.25 
0.70190 40.00 3 120 0.05000 0.29810 0.05, 0.15, 0.25 
0.75214 45.00 3 135 0.05000 0.24786 0.05, 0.15, 0.25 
0.79514 50.00 3 150 0.05000 0.20486 0.05, 0.15, 0.25 
0.83161 55.00 3 165 0.05000 0.16839 0.05, 0.15, 0.25 
0.86229 60.00 3 180 0.05000 0.13771 0.05, 0.15, 0.25 
0.88790 65.00 3 195 0.05000 0.11210 0.05, 0.15, 0.25 
0.90915 70.00 3 210 0.05000 0.09085 0.05, 0.15, 0.25 

 

The power values are quite different from those calculated with the continuity-corrected z test 
when the dose-spacing is equal. Of course, the covariate spacing you use will likely depend on 
more factors than the achievable power.  

Example 5 – Validation of Sample Size Calculations with 
Approximate Power using Nam 
Nam (1987) page 703 presents a table of calculated sample sizes with three equally-spaced doses 
and equal group sample sizes using the one-sided continuity-corrected z test for an increasing 
trend in proportions. Sample size is calculated for various proportion sets, alpha levels of 0.05 
and 0.025, and power values of 0.5, 0.7, and 0.9. The table based on approximate power 
calculations is given below.  
 Specified Nominal Power 
    Alternative __________________________________________________________  
    Proportion  .50 .70 .90 

 p0 p1 p2 α = .025   α = .05 α = .025 α = .05 α = .025 α = .05 
.05 .10 .15 79 58 120 94 197 162 
.10 .15 .20 108 79 167 129 276 226 
.20 .25 .30 154 111 241 186 402 329 
.30 .35 .40 185 133 290 223 486 398 
 

.05 .15 .25 29 22 44 34 70 58 

.10 .20 .30 36 26 54 42 87 72 

.20 .30 .40 45 33 69 54 113 93 

.30 .40 .50 51 37 78 61 129 106 
 

.05 .25 .45 11 9 16 13 25 21 

.10 .30 .50 12 9 18 14 28 23 

.20 .40 .60 14 10 20 16 32 26 

.30 .50 .70 14 11 21 17 33 28 
 
This example will replicate these results. 
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Setup 
This section presents the values of each of the parameters needed to run this example. First, you 
will need to open the Nam Validation Proportions.S0 dataset by selecting Tools, then 
Spreadsheet from the PASS Home window menus. On the Spreadsheet window, select File, then 
Open from the menus. Navigate to the Data folder that is located in your documents folder and 
select Nam Validation Proportions.S0. Once the dataset is loaded, go back to the PASS Home 
window and load the Cochran-Armitage Test for Trend in Proportions procedure window by 
clicking on Proportions, then Multiple Proportions, then Cochran-Armitage Test for Trend. 
You may then follow along here by making the appropriate entries as listed below or load the 
completed template Example5 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................n (Group Sample Size) 
Power ......................................................0.5 0.7 0.9 
Alpha .......................................................0.025 0.05 
n (Sample Size Multiplier) .......................Ignored since this is the Find setting 
k (Number of Groups) .............................3 
Group Sample Size Pattern ....................Equal 
P (Proportions) ........................................=C1-C12 
Equally-Spaced X Values........................Checked 
Test Type ................................................Z test with continuity correction 
Alternative Hypothesis (H1) ....................One-Sided (Increasing Trend) 
Max Grp Sample Size for Exact Power...0 
Max Grp Size Product for Exact Power ..1000000 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
Test Type = One-sided Z test with continuity correction. Correction Factor = 0.5. 
H0: P1 = P2 = ... = Pk. H1: P1 < P2 < ... < Pk. 
Equally-Spaced X Values. 
 
 Average  Total    
Power n k N Alpha Beta Proportions 
0.90012 197.00 3 591 0.02500 0.09988 0.05, 0.10, 0.15 
0.70301 121.00 3 363 0.02500 0.29699 0.05, 0.10, 0.15 
0.50098 79.00 3 237 0.02500 0.49902 0.05, 0.10, 0.15 
0.90150 163.00 3 489 0.05000 0.09850 0.05, 0.10, 0.15 
0.70061 94.00 3 282 0.05000 0.29939 0.05, 0.10, 0.15 
0.50493 59.00 3 177 0.05000 0.49507 0.05, 0.10, 0.15 
0.90025 276.00 3 828 0.02500 0.09975 0.10, 0.15, 0.20 
0.70115 167.00 3 501 0.02500 0.29885 0.10, 0.15, 0.20 
0.50110 108.00 3 324 0.02500 0.49890 0.10, 0.15, 0.20 
0.90073 227.00 3 681 0.05000 0.09927 0.10, 0.15, 0.20 
0.70244 130.00 3 390 0.05000 0.29756 0.10, 0.15, 0.20 
0.50156 79.00 3 237 0.05000 0.49844 0.10, 0.15, 0.20 
0.90008 402.00 3 1206 0.02500 0.09992 0.20, 0.25, 0.30 
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0.70057 241.00 3 723 0.02500 0.29943 0.20, 0.25, 0.30 
0.50029 154.00 3 462 0.02500 0.49971 0.20, 0.25, 0.30 
0.90065 330.00 3 990 0.05000 0.09935 0.20, 0.25, 0.30 
0.70052 186.00 3 558 0.05000 0.29948 0.20, 0.25, 0.30 
0.50249 112.00 3 336 0.05000 0.49751 0.20, 0.25, 0.30 
0.90003 486.00 3 1458 0.02500 0.09997 0.30, 0.35, 0.40 
0.70141 291.00 3 873 0.02500 0.29859 0.30, 0.35, 0.40 
0.50078 185.00 3 555 0.02500 0.49922 0.30, 0.35, 0.40 
0.90019 398.00 3 1194 0.05000 0.09981 0.30, 0.35, 0.40 
0.70102 224.00 3 672 0.05000 0.29898 0.30, 0.35, 0.40 
0.50023 133.00 3 399 0.05000 0.49977 0.30, 0.35, 0.40 
0.90093 70.00 3 210 0.02500 0.09907 0.05, 0.15, 0.25 
0.70523 44.00 3 132 0.02500 0.29477 0.05, 0.15, 0.25 
0.51187 30.00 3 90 0.02500 0.48813 0.05, 0.15, 0.25 
0.90203 58.00 3 174 0.05000 0.09797 0.05, 0.15, 0.25 
0.70988 35.00 3 105 0.05000 0.29012 0.05, 0.15, 0.25 
0.50072 22.00 3 66 0.05000 0.49928 0.05, 0.15, 0.25 
0.90039 87.00 3 261 0.02500 0.09961 0.10, 0.20, 0.30 
0.70361 54.00 3 162 0.02500 0.29639 0.10, 0.20, 0.30 
0.50579 36.00 3 108 0.02500 0.49421 0.10, 0.20, 0.30 
0.90182 72.00 3 216 0.05000 0.09818 0.10, 0.20, 0.30 
0.70083 42.00 3 126 0.05000 0.29917 0.10, 0.20, 0.30 
0.50913 27.00 3 81 0.05000 0.49087 0.10, 0.20, 0.30 
0.90216 114.00 3 342 0.02500 0.09784 0.20, 0.30, 0.40 
0.70640 70.00 3 210 0.02500 0.29360 0.20, 0.30, 0.40 
0.50791 46.00 3 138 0.02500 0.49209 0.20, 0.30, 0.40 
0.90010 93.00 3 279 0.05000 0.09990 0.20, 0.30, 0.40 
0.70220 54.00 3 162 0.05000 0.29780 0.20, 0.30, 0.40 
0.50912 34.00 3 102 0.05000 0.49088 0.20, 0.30, 0.40 
0.90012 129.00 3 387 0.02500 0.09988 0.30, 0.40, 0.50 
0.70399 79.00 3 237 0.02500 0.29601 0.30, 0.40, 0.50 
0.50022 51.00 3 153 0.02500 0.49978 0.30, 0.40, 0.50 
0.90046 106.00 3 318 0.05000 0.09954 0.30, 0.40, 0.50 
0.70142 61.00 3 183 0.05000 0.29858 0.30, 0.40, 0.50 
0.50717 38.00 3 114 0.05000 0.49283 0.30, 0.40, 0.50 
0.90119 25.00 3 75 0.02500 0.09881 0.05, 0.25, 0.45 
0.72689 17.00 3 51 0.02500 0.27311 0.05, 0.25, 0.45 
0.53014 12.00 3 36 0.02500 0.46986 0.05, 0.25, 0.45 
0.90649 21.00 3 63 0.05000 0.09351 0.05, 0.25, 0.45 
0.70730 13.00 3 39 0.05000 0.29270 0.05, 0.25, 0.45 
0.51914 9.00 3 27 0.05000 0.48086 0.05, 0.25, 0.45 
0.90139 28.00 3 84 0.02500 0.09861 0.10, 0.30, 0.50 
0.70192 18.00 3 54 0.02500 0.29808 0.10, 0.30, 0.50 
0.52280 13.00 3 39 0.02500 0.47720 0.10, 0.30, 0.50 
0.90025 23.00 3 69 0.05000 0.09975 0.10, 0.30, 0.50 
0.72817 15.00 3 45 0.05000 0.27183 0.10, 0.30, 0.50 
0.52790 10.00 3 30 0.05000 0.47210 0.10, 0.30, 0.50 
0.90163 32.00 3 96 0.02500 0.09837 0.20, 0.40, 0.60 
0.71861 21.00 3 63 0.02500 0.28139 0.20, 0.40, 0.60 
0.50324 14.00 3 42 0.02500 0.49676 0.20, 0.40, 0.60 
0.90863 27.00 3 81 0.05000 0.09137 0.20, 0.40, 0.60 
0.70206 16.00 3 48 0.05000 0.29794 0.20, 0.40, 0.60 
0.52289 11.00 3 33 0.05000 0.47711 0.20, 0.40, 0.60 
0.90793 34.00 3 102 0.02500 0.09207 0.30, 0.50, 0.70 
0.72308 22.00 3 66 0.02500 0.27692 0.30, 0.50, 0.70 
0.52104 15.00 3 45 0.02500 0.47896 0.30, 0.50, 0.70 
0.90750 28.00 3 84 0.05000 0.09250 0.30, 0.50, 0.70 
0.71329 17.00 3 51 0.05000 0.28671 0.30, 0.50, 0.70 
0.50788 11.00 3 33 0.05000 0.49212 0.30, 0.50, 0.70 
 

The sample sizes calculated by PASS match those of Nam (1987). In many cases, PASS reports a 
sample size that is one greater than that reported Nam (1987). This difference is due to rounding. 
Nam (1987) rounds some power values up when they are actually slightly lower than the nominal 
value. PASS does not round power values up when computing the sample size. All sample sizes 
result in at least the nominal power. 
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Example 6 – Validation of Exact Power Calculations 
using Nam 
Nam (1987) page 703 presents a table of calculated sample sizes with three equally-spaced doses 
and equal group sample sizes using the one-sided continuity-corrected z test for an increasing 
trend in proportions. Sample size is calculated for various proportion sets, alpha levels of 0.05 
and 0.025, and power values of 0.5, 0.7, and 0.9. The table of calculated sample sizes is given in 
Example 5. Nam (1987) further calculates the exact power for scenarios in which the resulting 
sample size is less than or equal to 50. The results are given below.  
 Specified Nominal Power 
    Alternative ___________________________________________________________  
    Proportion  .50 .70 .90 

 p0 p1 p2 α = .025   α = .05 α = .025 α = .05 α = .025 α = .05 
.05 .15 .25 29 (.51)   22 (.51) 44 (.73) 34 (.71)   
.10 .20 .30 36 (.52) 26 (.50)  42 (.71)   
.20 .30 .40 45 (.50) 33 (.51)     
.30 .40 .50  37 (.49)     
 

.05 .25 .45 11 (.50) 9 (.57) 16 (.71) 13 (.71) 25 (.92) 21 (.91) 

.10 .30 .50 12 (.50) 9 (.54) 18 (.72) 14 (.71) 28 (.91) 23 (.91) 

.20 .40 .60 14 (.53) 10 (.47) 20 (.71) 16 (.69) 32 (.90) 26 (.89) 

.30 .50 .70 14 (.53) 11 (.50) 21 (.69) 17 (.69) 33 (.90) 28 (.91) 
 
This example will replicate the results in bold type. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, you 
will need to open the Nam Validation Proportions.S0 dataset by selecting Tools, then 
Spreadsheet from the PASS Home window menus. On the Spreadsheet window, select File, then 
Open from the menus. Navigate to the Data folder that is located in your documents folder and 
select Nam Validation Proportions.S0. Once the dataset is loaded, go back to the PASS Home 
window and load the Cochran-Armitage Test for Trend in Proportions procedure window by 
clicking on Proportions, then Multiple Proportions, then Cochran-Armitage Test for Trend. 
You may then follow along here by making the appropriate entries as listed below or load the 
completed template Example6 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find setting 
Alpha .......................................................0.025 
n (Sample Size Multiplier) .......................14 
k (Number of Groups) .............................3 
Group Sample Size Pattern ....................Equal 
P (Proportions) ........................................=C11-C12 
Equally-Spaced X Values........................Checked 
Test Type ................................................Z test with continuity correction 
Alternative Hypothesis (H1) ....................One-Sided (Increasing Trend) 
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Data Tab (continued) 
Max Grp Sample Size for Exact Power...50 
Max Grp Size Product for Exact Power ..1000000 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
Test Type = One-sided Z test with continuity correction. Correction Factor = 0.5. 
H0: P1 = P2 = ... = Pk. H1: P1 < P2 < ... < Pk. 
Equally-Spaced X Values. 
 
 Average  Total    
Power n k N Alpha Beta Proportions 
0.53000* 14.00 3 42 0.02500 0.47000 0.20, 0.40, 0.60 
0.52761* 14.00 3 42 0.02500 0.47239 0.30, 0.50, 0.70 
 
* Values in this row are based on exact power calculations. Exact power was calculated for 
  scenarios in which the largest group sample size is less than or equal to 50 and the product 
  of all group samples sizes is less than or equal to 1000000. 
 

The exact power values calculated by PASS match those calculated in Nam (1987) exactly if you 
round to two decimal places. Group sample sizes of 14 results in power of 0.53 for both 
scenarios. If you replicate the other scenarios in the table, you will find that the PASS results for 
exact power match Nam (1987) after rounding to two decimal places. 
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Chapter 260 

Inequality Tests 
for One ROC 
Curve 
Introduction 
Receiver operating characteristic (ROC) curves are used to assess the accuracy of a diagnostic 
test. The technique is used when you have a criterion variable which will be used to make a yes or 
no decision based on the value of this variable. The area under the ROC curve (AUC) is a popular 
summary index of an ROC curve.  

This module computes power and sample size when a new diagnostic test is compared to an 
existing (gold) standard. Two approaches are available: the approach of Hanley and McNeil 
(1982) is used when the criterion variable is continuous and the approach of Obuchowski and 
McClish (1997) is used when the criterion variable is a discrete rating scale. 

Technical Details 
In the following, we suppose that we have two groups of patients, those with a condition of 
interest (the positive group) and those without it (the negative group). This classification may be 
known from extensive diagnosis or based on the value of another diagnostic test. The diagnostic 
test of interest is performed on each patient and the resulting test value is recorded. At each 
specified cutoff value of the criterion variable, the true positive rate (TPR) and the false positive 
rate (FPR) are calculated. A plot of the TPR versus the FPR allows you study the consequences of 
using various cutoff values. This plot is called the ROC curve. 

It should be noted that TPR is similar to the statistical power of the diagnostic test at a particular 
cutoff value of the criterion variable. Similarly, FPR is an estimate of the probability that the 
diagnostic test results in a type I (alpha) error. Thus the ROC curve may be interpreted as a plot 
of the diagnostic test’s power versus it’s significance level at various possible criterion cutoff 
values.  

Users of ROC curves have developed special names for TPR and FPR. They call TPR the 
sensitivity of the test and 1 - FPR the specificity of the test. Statisticians will be more familiar 
with using the word power instead of sensitivity and the phrase ‘1 - alpha’ instead of specificity.  

An ROC curve may be summarized by the area under it (AUC). This area has an additional 
interpretation. Suppose that a rater is asked to study two subjects, one that is actually disease 
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positive and one that is disease negative. The AUC is equal to the probability that the rater will 
give the disease positive subject a higher score than the disease negative subject. That is, the 
AUC is the probability that the rater will correctly order the two subjects as to which is more 
likely to have the disease. 

Several methods of computing the AUC have been proposed. One method uses the trapezoidal 
rule to calculate the AUC directly. Another method, called the binormal model, computes the area 
by fitting two normal distributions to the data.  

The Binormal Model 
Let X denote the distribution of the criterion variable for negative (normal) patients and Y denote 
the distribution of the criterion variable for positive (diseased) patients. It is assumed that 

( )X ~ ,N μ σ− −
2  

and 

( )Y ~ ,N μ σ+ +
2  

For a particular cutoff value of the criterion variable, c, the true positive rate is given by 
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where ( )Φ z  is the cumulative normal distribution. 

Similarly, the false positive rate is given by 
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The ROC curve is thus the curve traced out by the functions 
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The area under the ROC curve, AUC, is defined as 

( ) ( )
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Maximum likelihood estimates of A and B can be computed and used to compute AUC. The 
variances and covariance of these MLE’s can be estimated from Fisher’s information matrix. 

Define Δ = −θ θ0 1  to be the difference in the accuracies (AUC’s) of two diagnostic tests. A 
hypothesis test of whether the two AUC’s are different amounts to testing whether . The test 
statistic for this test is  

Δ = 0
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where  is the variance of  under the null hypothesis of equality. The above test statistic 

gives the following formulae for computing sample size or power 
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Rating Data 
For a criterion variable yielding a discrete rating, Obuchowski (1998) recommends 
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The value of A can be found as 

( )A B= +−Φ 1 21θ  

For the most conservative results, Obuchowski (1998) recommends setting B = 1, so that  

( )A = −Φ 1 2θ  

Continuous Data 
For a criterion variable yielding a continuous result, Obuchowski (1998) suggests that the following 
formula of Hanley and McNeil (1983) is more appropriate 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Axes/Legend/Grid, Plot Text, or 
Template, go to the Procedure Window chapter. 

Data Tab 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N+ when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run. 

Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01.  

Sample Size 

N+ (Size of Positive Group) 
Specify the number of patients, that is, the sample size, in the positive (abnormal or diseased) 
group. Note that these values are ignored when you are solving for N+. You may enter a range of 
values such as 10 to 100 by 10. 
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N- (Size of Negative Group) 
Specify the number of patients, that is, the sample size, in the negative (normal) group. Enter Use 
R to base N- on the value of N+. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N- is calculated using the formula  

N- = [R(N+)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N+ = N-, enter Use R here and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N- is set to Use R.  

When used, N- is calculated from N+ using the formula: N- = [R(N+)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N- = N+. 

Effect Size – Area Under the Curve 

AUC0 (Area Under Curve|H0) 
Specify one or more values of the AUC for the diagnostic test. The range of values is from 0.5 
(indicative of a test useless in diagnosis) to 1.0 (indicative of a test that is perfect in diagnosis). 

Since the AUC may include a portion of the ROC curve that is not of interest because the FPR 
values are unrealistic, you may be interested in only a portion of the area. In this case, you can 
specify a range of FPR values for which the area is to be calculated. Unfortunately, the definition 
of the area becomes more difficult. When analyzing the whole ROC curve, the area is known to 
be between 0.50 and 1.0. Following the suggestion of Obuchowski and McClish (1997), the 
following transformation is applied so that the values of AUC remain between 0.5 and 1.0. 

AUC AUC
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Thus, when a partial range is entered for FPR1 and FPR2, the values entered here are assumed to 
be AUC' and are translated to AUC using the above formulas. 

AUC1 (Area Under Curve|H1) 
Specify one or more values of AUC under the alternative hypothesis. The range of values is from 
0.5 (indicative of a test useless in diagnosis) to 1.0 (indicative of a test that is perfect in 
diagnosis). Note that, as discussed above, this is the value of AUC’ when a partial area is being 
analyzed. 
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Effect Size – False Positive Rate 
Limits 

Lower FPR 
This option specifies the lower (left) limit of the false positive rate (FPR) for which the area is to 
be computed. If the area under the whole ROC curve is wanted, set this value to 0.0. If the partial 
area is wanted, set this value to the desired left limit.  

Note that the range of possible values is 0.0 <= Lower FPR < Upper FPR <= 1.0 

Upper FPR 
This option specifies the upper (right) limit of the false positive rate (FPR). If the area under the 
whole ROC curve is wanted, set this value to 1.0. If the partial area is wanted, set this value to the 
desired right limit. 

Note that the range of possible values is 0.0 <= Lower FPR < Upper FPR <= 1.0 

Effect Size – Type of Data 

Type of Data 
Specify the type of data that will be collected from the tests. The formulas for the variance are 
determined by this option. Possible types are: 

• Continuous 
The test results are from a continuum of possible values. The Hanley and McNeil (1983) 
variance formulas are used. Note that this option does not allow a partial range of FPR values 
to be analyzed. 

• Discrete 
The test results are from a small set of rating values such as 1, 2, 3, 4, 5. The Obuchowski & 
McClish (1997) variance formulas are used. 

B (SD Ratio = SD-/SD+) 
B is the ratio of the standard deviation of the negative group to the positive group (SD-/SD+) for 
the diagnostic test. That is, assuming the binormal model 

B = −

+

σ
σ

 

Note that this parameter is ignored for continuous data. 

Although B can be any positive number, typical values are between 0.3 and 3.0. Obuchowski 
suggests that if the value of B is not known, a value of 1.0 is used since this will result in a 
conservative (extra large) sample size. She reports that in her experience, typical values are much 
less than 1.0, often near 0.3. 

Test 

Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. When a two-sided test is selected, the value of 
alpha is divided by two.  
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Note that most researchers assume that, unless stated otherwise, all statistical tests are two-sided. 
If you use a one-sided test, you should clearly state and justify this in all reports. 

Example 1 – Calculating Power  
An investigator wants to study the accuracy of a diagnostic test which yields measurements on a 
rating scale from 1 to 5. Historically, such tests have had an AUC of 0.80. The investigator wants 
to investigate three alternative AUC values: 0.825, 0.850, and 0.900. A two-sided test is planned 
with a significance level of 0.05. Since no other information is available, B is set to 1.0. The 
investigator would like to achieve a power of 90% in the study. Patients without the disease under 
study are about twice as frequent as patients with the disease. The investigator wants to see 
results for a sample size of up to 6000 patients.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One ROC Curve procedure window by 
clicking on Diagnostic Tests (ROC Curves), then One ROC Curve. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example1 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Beta and Power 
Power ......................................................Ignored since this is the Find Setting 
Alpha .......................................................0.05 
N+ (Size of Positive Group) ....................20 50 100 250 500 1000 2000 
N- (Size of Negative Group)....................Use R 
R (Sample Allocation Ratio) ....................2 
AUC0 (Area Under Curve|H0).................0.80 
AUC1 (Area Under Curve|H1).................0.825 0.85 0.90 
Lower FPR ..............................................0.00 
Upper FPR ..............................................1.00 
Type of Data............................................Discrete (Ratings) 
B (SD Ratio = SD-/SD+)..........................1.0 
Alternative Hypothesis ............................Two-Sided Test 

Axes/Legend/Grid Tab 
Vertical Range.........................................User 
Minimum..................................................0 
Maximum.................................................1 
Number of Tick Marks .............................10 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Report 
 

Numeric Results for Testing AUC0 = AUC1 with Discrete (Rating) Data  
Test Type = Two-Sided.  FPR1 = 0.0.  FPR2 = 1.0.  B = 1.000.  Allocation Ratio = 2.000.  
 
Power N+ N- AUC0' AUC1' Diff' AUC0 AUC1 Diff Alpha Beta 
0.0481 20 40 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.9519 
0.0739 50 100 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.9261 
0.1146 100 200 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.8854 
0.2365 250 500 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.7635 
0.4321 500 1000 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.5679 
0.7264 1000 2000 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.2736 
0.9550 2000 4000 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.0450 
0.0870 20 40 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.9130 
0.1834 50 100 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.8166 
0.3491 100 200 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.6509 
0.7369 250 500 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.2631 
0.9629 500 1000 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.0371 
0.9997 1000 2000 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.0003 
1.0000 2000 4000 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.0000 
0.2489 20 40 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.7511 
0.6563 50 100 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.3437 
0.9474 100 200 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0526 
1.0000 250 500 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0000 
1.0000 500 1000 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0000 
1.0000 1000 2000 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0000 
1.0000 2000 4000 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0000 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N+ is the sample size from the positive (diseased) population. 
N- is the sample size from the negative (non-diseased) population. 
Alloc Ratio is the Sample Allocation Ratio (R = N- / N+). 
AUC0' is the adjusted area under the ROC curve under the null hypothesis. 
AUC1' is the adjusted area under the ROC curve under the alternative hypothesis. 
Diff' is AUC1' - AUC0'. This is the adjusted difference to be detected. 
AUC0 is the actual area under the ROC curve under the null hypothesis. 
AUC1 is the actual area under the ROC curve under the alternative hypothesis. 
Diff is AUC1 - AUC0. This is the difference to be detected. 
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 
FPR1, FPR2 are the lower and upper bounds on the false positive rates. 
B is the ratio of the standard deviations of the negative and positive groups. 
 
Summary Statements 
A sample of 20 from the positive group and 40 from the negative group achieve 5% power to 
detect a difference of 0.0250 between the area under the ROC curve (AUC) under the null 
hypothesis of 0.8000 and an AUC under the alternative hypothesis of 0.8250 using a two-sided 
z-test at a significance level of 0.0500. The data are discrete (rating scale) responses. The 
AUC is computed between false positive rates of 0.000 and 1.000. The ratio of the standard 
deviation of the responses in the negative group to the standard deviation of the responses in 
the positive group is 1.000. 
 

This report shows the power for each of the sample sizes. Most of the definitions are standard. 
However, a special explanation must be given for AUC and AUC’. 

AUC’ 
This is the adjusted area under the curve. A rescaling, discussed earlier, has been applied so that 
the minimum area is 0.5 and the maximum area is 1.0.  
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AUC 
This is the actual area under the curve. This value will equal the adjusted area when the FPR 
range is set from 0.0 to 1.0. Otherwise, these values will be different. 

Plot Section 
 

 

Power vs N+ by A1 with A0=0.80 Alpha=0.05
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This plot shows the power versus the sample size for the three values of AUC1. 

Example 2 – Calculating Sample Size  
Continuing on with Example1, the investigator wants to know the exact sample size needed for 
each of the three values of AUC2. The investigator wants to look at the Numeric Report. The 
panel from Example1 is modified as follows. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One ROC Curve procedure window by 
clicking on Diagnostic Tests (ROC Curves), then One ROC Curve. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example2 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N+ 

Reports Tab 
Show Definitions .....................................Unchecked 
Show Plots ..............................................Unchecked 
Number of Summary Statements............0 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Report 
 
Numeric Results for Testing AUC0 = AUC1 with Discrete (Rating) Data  
Test Type = Two-Sided.  FPR1 = 0.0.  FPR2 = 1.0.  B = 1.000.  Allocation Ratio = 2.000.  
 
Power N+ N- AUC0' AUC1' Diff' AUC0 AUC1 Diff Alpha Beta 
0.9001 1582 3164 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.0999 
0.9007 381 762 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.0993 
0.9024 85 170 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0976 
 

This report shows the sample size needed to achieve 90% power for each value of AUC1.  

Example 3 – Partial Area under Curve 
Continuing on with Example 2, the investigator knows that FPR values between 0.0 and 0.20 are 
the only values of interest. Hence, he wants to investigate the sample size needed when the FPR 
range is confined to this range. 

The panel from Example 2 is modified as follows.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One ROC Curve procedure window by 
clicking on Diagnostic Tests (ROC Curves), then One ROC Curve. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example3 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Upper FPR ..............................................0.20 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing AUC0 = AUC1 with Discrete (Rating) Data  
Test Type = Two-Sided.  FPR1 = 0.0.  FPR2 = 0.200.  B = 1.000. Allocation Ratio = 2.000.  
 
Power N+ N- AUC0' AUC1' Diff' AUC0 AUC1 Diff Alpha Beta 
0.9001 2663 5326 0.8000 0.8250 0.0250 0.1280 0.1370 0.0090 0.0500 0.0999 
0.9002 645 1290 0.8000 0.8500 0.0500 0.1280 0.1460 0.0180 0.0500 0.0998 
0.9013 144 288 0.8000 0.9000 0.1000 0.1280 0.1640 0.0360 0.0500 0.0987 
 

Note that the necessary sample size has almost doubled. 
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Example 4 – Validation using Obuchowski  
The formulas used in this module were given in Obuchowski and McClish (1997). On page 1538, 
they provide an example which will be duplicated here. The study investigated the accuracy of 
MRI for detecting abnormalities in patients with symptomatic knees. In order to do this, they 
wanted to know the sample size that would be needed to construct a 95% confidence interval so 
that the length of the confidence interval is no more than 0.10.  

The measure of diagnostic accuracy is the AUC from an FPR of 0.0 to an FPR of 1.0. The 
allocation ratio is 1.5. B = 1.0. The value of A is found to be 1.2. This translates to an AUC0 of 
0.7995. The value of AUC1 = AUC0 + 0.10 / 2, where 0.10 is the maximum length of the 
confidence interval. A two-tailed confidence interval is envisioned in which alpha is 0.05. In 
order to find the sample size of a confidence interval, the power is set to 50%. In their article, 
they found N+ = 161 and N- = 242. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for One ROC Curve procedure window by 
clicking on Diagnostic Tests (ROC Curves), then One ROC Curve. You may then follow along 
here by making the appropriate entries as listed below or load the completed template Example4 
from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N+ 
Power ......................................................0.50 
Alpha .......................................................0.05 
N+ (Size of Positive Group) ....................Ignored since this is the Find Setting 
N- (Size of Negative Group)....................Use R 
R (Sample Allocation Ratio) ....................1.5 
AUC0 (Area Under Curve|H0).................0.7995 
AUC1 (Area Under Curve|H1).................0.8495 
Lower FPR ..............................................0.00 
Upper FPR ..............................................1.00 
Type of Data............................................Discrete (Ratings) 
B (SD Ratio = SD-/SD+)..........................1 
Alternative Hypothesis ............................Two-Sided Test 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing AUC0 = AUC1 with Discrete (Rating) Data  
Test Type = Two-Sided.  FPR1 = 0.0.  FPR2 = 0.200.  B1 = 1.000.  B2 = 1.000.  Allocation Ratio = 2.000.  
 
Power N+ N- AUC1' AUC2' Diff' AUC1 AUC2 Diff Alpha Beta 
0.5026 162 243 0.7995 0.8495 0.0500 0.7995 0.8495 0.0500 0.0500 0.4974 
 

Note that the sample sizes of 162 and 243 are within one of the results of Obuchowski. The 
difference occurs because their values of 161 and 242 produce a power that is slightly less than 
0.5, so PASS increased the sample size slightly. 
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Chapter 265 

Inequality Tests 
for Two ROC 
Curves 
Introduction 
Receiver operating characteristic (ROC) curves are used to summarize the accuracy of diagnostic 
tests. The technique is used when a criterion variable is available which is used to make a yes or 
no decision. The area under the ROC curve (AUC) is a popular summary index of an ROC curve.  

This module computes power and sample size for comparing the AUC’s of two diagnostic tests 
obtained from the same patients. The methodology of Obuchowski and McClish (1997) is used  
when the criterion variable yields a discrete value. The methodology of Hanley and McNeil 
(1983) is used when the criterion variable yields a continuous value.  

Technical Details 
In the following, we suppose that we have two groups of patients, those with a condition of 
interest (the disease) and those without it. A patient’s classification may be known from extensive 
diagnosis or based on the value of another diagnostic test. The diagnostic tests of interest are 
performed on each patient and the resulting test values are recorded. At each specified cutoff 
value of the criterion variable, the true positive rate (TPR) and the false positive rate (FPR) are 
calculated. An ROC curve is generating by plotting TPR versus FPR. The plot allows the 
consequences of using various cutoff values to be evaluated. The area under the ROC curve, 
either for the whole or partial range, is often used as a summary measure of the accuracy of the 
test.  

It should be noted that TPR is similar to the statistical power of the diagnostic test at a particular 
cutoff value of the criterion variable. Similarly, FPR is an estimate of the probability that the 
diagnostic test results in a type I (alpha) error. Thus the ROC curve may be interpreted as a plot 
of the diagnostic test’s power versus it’s significance level at various possible criterion cutoff 
values. 

Users of ROC curves have developed special names for TPR and FPR. They call TPR the 
sensitivity of the test and 1 - FPR the specificity of the test. Statisticians will be more familiar 
with using the word power instead of sensitivity and the phrase ‘1 - alpha’ instead of specificity. 
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An ROC curve may be summarized by the area under it (AUC). This area has an additional 
interpretation. Suppose that a rater is asked to study two subjects, one that is actually disease 
positive and one that is disease negative. The AUC is equal to the probability that the rater will 
give the disease positive subject a higher score than the disease negative subject. That is, the 
AUC is the probability that the rater will correctly order the two subjects as to which is more 
likely to have the disease. 

Several methods of computing the AUC have been proposed. One method uses the trapezoidal 
rule to calculate the AUC directly. Another method, called the binormal model, computes the area 
by fitting two normal distributions to the data.  

The Binormal Model 
Let X denote the distribution of the criterion variable for normal (non-diseased) patients and Y 
denote the distribution of the criterion variable for abnormal (diseased) patients. It is assumed that 

( )X ~ ,N μ σ− −
2  

and 

( )Y ~ ,N +μ σ+
2  

The partial area under the ROC curve, AUC, is defined as 

( ) (θ φi i i
c

c

A B v v v= +∫Φ
1

2

d)  

where  is the cumulative normal distribution, ( )Φ z ( )c FPRj j= −Φ 1 , and 
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Note that for the full range area under the curve, c1 = −∞  and c2 = ∞ .  

Maximum likelihood estimates of A and B can be computed. The variances and covariance of 
these MLE’s can be estimated from Fisher’s information matrix. 

Define Δ = −θ θ1 2  to be the difference in the accuracies (AUC’s) of the two tests. A test of 
whether the two AUC’s are different amounts to testing whether Δ = 0. The test statistic for this 
test is  

( )
Z =

−$

var $

Δ

Δ

0

0
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where  is the variance of ( )var $
0 Δ $Δ under the null hypothesis of equality. The above test statistic 

results in the following formula for computing sample size  

( ) ( )
N

z V z VAlt

+ =
+⎛

⎝⎜
⎞
⎠⎟α β0

2

2
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Δ
 

Rating Data 
When the criterion values are discrete rating values, Obuchowski and McClish (1997) showed that 
the variances could be calculated using 

( ) ( ) ( ) ( )V V V C0 1 1 12$ $ $ $ , $Δ = + −θ θ θ 1θ  
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R N
N

= −

+

 

( ) (A B TNR FPRi i i i= −− −Φ Φ1 1 )  

r−  and  are the correlations between the results of the two diagnostics tests for normal and 
abnormal patients, respectively. For the most conservative results, set 

r+
Bi = 1. 

Continuous Data 
When the criterion values are continuous, Obuchowski (1998) suggests that the following formulas 
of Hanley and McNeil (1983) are more appropriate. Note that these formulas cannot be used for 
evaluating the AUC for a partial range. 

( ) ( ) ( ) ( )V V V C$ $ $ $ , $Δ = + −θ θ θ1 2 12 θ2  
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( ) ( ) ( )C r V V$ , $θ θ θ θ1 2 1 22=  

and r is derived from a special table provided by Hanley and McNeil (1983). 

Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panel associated with the Data tab. To find out more about using the other tabs such as 
Axes/Legend/Grid, Plot Text, and Template, refer to the Procedure Templates chapter. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Solve For 

Find (Solve For) 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Power and Beta for a power analysis or N for sample size 
determination. 

Select N+ when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Power and Beta when you want to calculate the power of an experiment that has already 
been run. 
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Error Rates 

Power or Beta 
This option specifies one or more values for power or for beta (depending on the chosen setting). 
Power is the probability of rejecting a false null hypothesis, and is equal to one minus Beta. Beta 
is the probability of a type-II error, which occurs when a false null hypothesis is not rejected.  

Values must be between zero and one. Historically, the value of 0.80 (Beta = 0.20) was used for 
power. Now, 0.90 (Beta = 0.10) is also commonly used. 

A single value may be entered here or a range of values such as 0.8 to 0.95 by 0.05 may be 
entered.  

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected.  

Values must be between zero and one. Historically, the value of 0.05 has been used for alpha. 
This means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Sample Size 

N+ (Size of Positive Group) 
Specify the number of patients, that is, the sample size, in the positive (abnormal or diseased) 
group. Note that these values are ignored when you are solving for N+. You may enter a range of 
values such as 10 to 100 by 10. 

N- (Size of Negative Group) 
Specify the number of patients, that is, the sample size, in the negative (normal) group. Enter Use 
R to base N- on the value of N+. You may enter a range of values such as 10 to 100 by 10. 

• Use R 
When Use R is entered here, N- is calculated using the formula  

N- = [R(N+)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N+ = N-, enter Use R here and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N- is set to Use R.  

When used, N- is calculated from N+ using the formula: N- = [R(N+)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N- = N+. 
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Test 

Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. When a two-sided test is selected, the value of 
alpha is divided by two.  

Note that most researchers assume that, unless stated otherwise, all statistical tests are two-sided. 
If you use a one-sided test, you should clearly state and justify this in all reports. 

Effect Size – Area Under the Curve 

AUC1 (Area Under Curve 1) 
Specify one or more values of the AUC for diagnostic test 1. The range of values is from 0.5 
(indicative of a test useless in diagnosis) to 1.0 (indicative of a test that is perfect in diagnosis). 

Since the AUC may include a portion of the ROC curve that is not of interest because the FPR 
values are unrealistic, you may be interested in only a portion of the area. In this case, you can 
specify a range of FPR values for which the area is to be calculated. Unfortunately, the definition 
of the area becomes more difficult. When analyzing the whole ROC curve, the area is known to 
be between 0.50 and 1.0. Following the suggestion of Obuchowski and McClish (1997),  the 
following transformation is applied so that the values of AUC remain between 0.5 and 1.0. 

AUC AUC
′ = +

−
−

⎛
⎝⎜

⎞
⎠⎟

1
2

1 min
max min  

where 

max = −FPR FPR2 1 

( )min max
= +

2
2 1FPR FPR

 
Thus, when a partial range is entered for FPR1 and FPR2, the values entered here are assumed to 
be AUC' and are translated to AUC using the above formulas. 

AUC2 (Area Under Curve 2) 
Specify one or more values of the AUC for diagnostic test 2. The range of values is from 0.5 
(indicative of a test useless in diagnosis) to 1.0 (indicative of a test that is perfect in diagnosis). 
Note that, as discussed above, this is the value of AUC’ when a partial area is being analyzed. 

Effect Size – False Positive Rate 
Limits 

Lower FPR 
This option specifies the lower (left) limit of the false positive rate (FPR) for which the area is to 
be computed. If the area under the whole ROC curve is wanted, set this value to 0.0. If the partial 
area is wanted, set this value to the desired left limit. 

Note that the range of possible values is 0.0 <= Lower FPR < Upper FPR <= 1.0 
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Upper FPR 
This option specifies the upper (right) limit of the false positive rate (FPR). If the area under the 
whole ROC curve is wanted, set this value to 1.0. If the partial area is wanted, set this value to the 
desired right limit. 

Note that the range of possible values is 0.0 <= Lower FPR < Upper FPR <= 1.0 

Effect Size – Correlations 

Correlation+ 
This is the correlation between the two diagnostic-test scores for the positive group. Although 
correlations can range between -1 and 1, typical values are from 0.3 to 0.6.  

Note that if you want to analyze a design in which a separate set of patients receive each 
diagnostic test, this may be done by setting this correlation value to 0. 

Correlation- 
This is the correlation between the two diagnostic-test scores for the negative group. Although 
correlations can range between -1 and 1, typical values are from 0.3 to 0.6.  

Note that if you want to analyze a design in which a separate set of patients receive each 
diagnostic test, this may be done by setting this correlation value to 0. 

Effect Size – Type of Data 

Type of Data 
Specify the type of data that will be collected from the tests. The formulas for the variance are 
determined by this option. Possible types are: 

• Continuous 
The test results are from a continuum of possible values. The Hanley and McNeil (1983) 
variance formulas are used. Note that this option does not allow a partial range of FPR values 
to be analyzed. 

• Discrete (Ratings) 
The test results are from a small set of rating values such as 1, 2, 3, 4, 5. The Obuchowski & 
McClish (1997) variance formulas are used. 

B1 (SD Ratio) 
B1 is the ratio of the standard deviation of the negative group to the positive group (SD-/SD+) for 
diagnostic test 1. That is, assuming the binormal model 

B1 1

1

= −

+

σ
σ

 

Note that this parameter is ignored for continuous data. 

Although B1 can be any positive number, typical values are between 0.3 and 3.0. Obuchowski 
suggests that if the value of B1 is not known, a value of 1.0 is used since this will result in a 
conservative (extra large) sample size. She reports that in her experience, typical values are much 
less than 1.0, often near 0.3. 
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B2 (SD Ratio) 
B2 is the ratio of the standard deviation of the negative group to the positive group (SD-/SP+) for 
diagnostic test 2. That is, assuming the binormal model 

B2 2

2

= −

+

σ
σ

 

Note that this parameter is ignored for continuous data. 

Although B2 can be any positive number, typical values are between 0.3 and 3.0. Obuchowski 
suggests that if the value of B2 is not known, a value of 1.0 is used since this will result in a 
conservative (extra large) sample size. She reports that in her experience, typical values are much 
less than 1.0, often near 0.3. 

Example 1 – Calculating Power  
An investigator wants to compare the accuracy of two diagnostic tests which yield measurements 
on a rating scale from 1 to 5. Historically, such tests have had an AUC of 0.80. The investigator 
wants to investigate three alternative AUC values: 0.825, 0.850, and 0.900. A two-sided test is 
planned with a significance level of 0.05. Historically, both the positive and negative correlations 
between the responses on two such tests have been close to 0.60. Since no other information is 
available, B1 and B2 are both set to 1.0. The investigator would like to achieve a power of 90% in 
the study. Patients without the disease under study are about twice as frequent as patients with the 
disease. The investigator wants to see results for a sample size of up to 6000 patients.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two ROC Curves procedure window by 
clicking on Diagnostic Tests (ROC Curves), then Two ROC Curves. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example1 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................Power and Beta 
Power ......................................................Ignored since this is the Find Setting 
Alpha .......................................................0.05 
N+ (Size of Positive Group) ....................20 50 100 250 500 1000 2000 
N- (Size of Negative Group)....................Use R 
R (Sample Allocation Ratio) ....................2 
Alternative Hypothesis ............................Two-Sided Test 
AUC1 (Area Under Curve 1) ...................0.80 
AUC2 (Area Under Curve 2) ...................0.825 0.85 0.9 
Lower FPR ..............................................0.00 
Upper FPR ..............................................1.00 
Correlation+.............................................0.6 
Correlation- .............................................0.6 
Type of Data............................................Discrete (Ratings) 
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Data Tab (continued) 
B1 (SD Ratio) ..........................................1 
B2 (SD Ratio) ..........................................1 

Axes/Legend/Grid Tab 
Vertical Range.........................................User 
Minimum..................................................0 
Maximum.................................................1 
Number of Tick Marks .............................10 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Report 
 

Numeric Results for Testing AUC1 = AUC2 with Discrete (Rating) Data  
Test Type = Two-Sided.  FPR1 = 0.0.  FPR2 = 1.0.  B1 = 1.000.  B2 = 1.000.  Allocation Ratio = 2.000.  
 
Power N+ N- AUC1' AUC2' Diff' AUC1 AUC2 Diff Alpha Beta 
0.0501 20 40 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.9499 
0.0733 50 100 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.9267 
0.1084 100 200 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.8916 
0.2104 250 500 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.7896 
0.3744 500 1000 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.6256 
0.6426 1000 2000 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.3574 
0.9090 2000 4000 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.0910 
0.0920 20 40 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.9080 
0.1737 50 100 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.8263 
0.3083 100 200 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.6917 
0.6442 250 500 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.3558 
0.9116 500 1000 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.0884 
0.9969 1000 2000 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.0031 
1.0000 2000 4000 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.0000 
0.2470 20 40 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.7530 
0.5494 50 100 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.4506 
0.8496 100 200 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.1504 
0.9978 250 500 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0022 
1.0000 500 1000 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0000 
1.0000 1000 2000 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0000 
1.0000 2000 4000 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0000 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N+ is the sample size from the positive (diseased) population. 
N- is the sample size from the negative (non-diseased) population. 
Alloc Ratio is the Sample Allocation Ratio (R = N- / N+). 
AUC1' is the adjusted area under the ROC curve for diagnostic test 1. 
AUC2' is the adjusted area under the ROC curve for diagnostic test 2. 
Diff' is AUC2' - AUC1'. This is the adjusted difference to be detected. 
AUC1 is the actual area under the ROC curve for diagnostic test 1. 
AUC2 is the actual area under the ROC curve for diagnostic test 2. 
Diff is AUC2 - AUC1. This is the difference to be detected. 
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 
FPR1, FPR2 are the lower and upper bounds on the false positive rates. 
B1 and B2 are the ratios of the standard deviations of the negative and positive groups for each test. 
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Summary Statements 
A sample of 20 from the positive group and 40 from the negative group achieve 5% power to 
detect a difference of 0.0250 between a diagnostic test with an area under the ROC curve (AUC) 
of 0.8000 and another diagnostic test with an AUC of 0.8250 using a two-sided z-test at a 
significance level of 0.0500. The data are discrete (rating scale) responses. The AUC is 
computed between false positive rates of 0.000 and 1.000. The ratio of the standard deviation 
of the responses in the negative group to the standard deviation of the responses in the 
positive group for diagnostic test 1 is 1.000 and for diagnostic test 2 is 1.000. The 
correlation between the two diagnostic tests is assumed to be 0.600 for the positive group and 
0.600 for the negative group. 
 

This report shows the power for each of the sample sizes. Most of the definitions are standard. 
However, a special explanation must be given for AUC and AUC’. 

AUC’ 
This is the adjusted area under the curve. A rescaling, discussed earlier, has been applied so that 
the minimum area is 0.5 and the maximum area is 1.0.  

AUC 
This is the actual area under the curve. This value will equal the adjusted area when the FPR 
range is set from 0.0 to 1.0. Otherwise, these values will be different. 

Plots Section 
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This plot shows the power versus the sample size for the three values of AUC1. 
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Example 2 – Calculating Sample Size  
Continuing Example 1, the investigator wants to know the exact sample size needed for each of 
the three values of AUC2. The investigator wants to look at the Numeric Report. The panel from 
Example1 is modified as follows.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two ROC Curves procedure window by 
clicking on Diagnostic Tests (ROC Curves), then Two ROC Curves. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example2 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N+ 

Reports Tab 
Show Definitions .....................................Unchecked 
Show Plots ..............................................Unchecked 
Number of Summary Statements............0 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Testing AUC1 = AUC2 with Discrete (Rating) Data  
Test Type = Two-Sided.  FPR1 = 0.0.  FPR2 = 1.0.  B1 = 1.000.  B2 = 1.000.  Allocation Ratio = 2.000.  
Power N+ N- AUC1' AUC2' Diff' AUC1 AUC2 Diff Alpha Beta 
0.9001 1937 3874 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.0999 
0.9002 480 960 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.0998 
0.9012 117 234 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0988 
 

This report shows the sample size needed to achieve 90% power for each value of AUC2.  
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Example 3 – Partial Area Under Curve 
Continuing Example 2, the investigator knows that FPR values between 0.0 and 0.20 are the only 
values of interest. Hence, he wants to investigate the sample size needed when the FPR range is 
confined to this range. 

The panel from Example 2 is modified as follows. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two ROC Curves procedure window by 
clicking on Diagnostic Tests (ROC Curves), then Two ROC Curves. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example3 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Upper FPR ..............................................0.20 

Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing AUC1 = AUC2 with Discrete (Rating) Data  
Test Type = Two-Sided.  FPR1 = 0.0.  FPR2 = 0.200.  B1 = 1.000.  B2 = 1.000.  Allocation Ratio = 2.000.  
 
Power N+ N- AUC1' AUC2' Diff' AUC1 AUC2 Diff Alpha Beta 
0.9000 4095 8190 0.8000 0.8250 0.0250 0.1280 0.1370 0.0090 0.0500 0.1000 
0.9002 1012 2024 0.8000 0.8500 0.0500 0.1280 0.1460 0.0180 0.0500 0.0998 
0.9001 242 484 0.8000 0.9000 0.1000 0.1280 0.1640 0.0360 0.0500 0.0999 
 

Note that the necessary sample size has more than doubled. 
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Example 4 – Validation using Obuchowski  
The formulas used in this module were given in Obuchowski and McClish (1997). On pages 1538 
- 1540, they provide an example which will be duplicated here. The study compared an 
automated classification system with an expert mammographer in their ability to find malignant 
breast lesions. The measure of diagnostic accuracy is the AUC from an FPR of 0.0 to an FPR of 
0.2. The allocation ratio is 2. B1 = B2 = 1.0. Correlation+ = Correlation- = 0.6. The values of A1 
and A2 are found to be 2.6 and 1.9. These translate to adjusted AUC’s of 0.922222 and 0.819444. 
A two-tailed test is envisioned in which alpha is 0.05. A power of 80% is desired. In their article, 
they found N+ = 109 and N- = 218.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two ROC Curves procedure window by 
clicking on Diagnostic Tests (ROC Curves), then Two ROC Curves. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example4 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N+ 
Power ......................................................0.80 
Alpha .......................................................0.05 
N+ (Size of Positive Group) .................... Ignored since this is the Find Setting 
N- (Size of Negative Group)....................Use R 
R (Sample Allocation Ratio)....................2 
Alternative Hypothesis ............................Two-Sided Test 
AUC1 (Area Under Curve 1) ...................0.80 
AUC2 (Area Under Curve 2) ...................0.825 0.85 0.9 
Lower FPR ..............................................0.00 
Upper FPR ..............................................0.20 
Correlation+.............................................0.6 
Correlation- .............................................0.6 
Type of Data............................................Discrete (Ratings) 
B1 (SD Ratio) ..........................................1 
B2 (SD Ratio) ..........................................1 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing AUC1 = AUC2 with Discrete (Rating) Data  
Test Type = Two-Sided.  FPR1 = 0.0.  FPR2 = 0.200.  B1 = 1.000.  B2 = 1.000.  Allocation Ratio = 2.000.  
 
Power N+ N- AUC1' AUC2' Diff' AUC1 AUC2 Diff Alpha Beta 
0.8027 109 218 0.9222 0.8194 -0.1028 0.1720 0.1350 -0.0370 0.0500 0.1973 
 

Note that the sample sizes of 109 and 218 match exactly with the results of Obuchowski.  

Example 5 – Validation using Hanley  
The formulas for continuous data were given in Hanley and McNeil (1982). On page 34 of their 
article they provide a table of sample sizes calculated using their formulas. We will duplicate 
their results for AUC1 = 0.70 and AUC2 = 0.75. Using a one-sided test of significance with alpha 
= 0.05 and a sample allocation ratio of 1.0, they found the number of subjects for both the 
positive and negative groups to be 652, 897, and 1131 for statistical powers of 80%, 90%, and 
95%, respectively. 

When using Hanley and McNeil’s formulation, the values of B1, B2, FPR1, and FPR2 are 
ignored. Also, in this case, the correlations are set to 0.0. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, from 
the PASS Home window, load the Inequality Tests for Two ROC Curves procedure window by 
clicking on Diagnostic Tests (ROC Curves), then Two ROC Curves. You may then follow 
along here by making the appropriate entries as listed below or load the completed template 
Example5 from the Template tab on the procedure window. 

Option Value 
Data Tab 
Find (Solve For) ......................................N+ 
Power ......................................................0.8 0.9 0.95 
Alpha .......................................................0.05 
N+ (Size of Positive Group) ....................Ignored since this is the Find Setting 
N- (Size of Negative Group)....................Use R 
R (Sample Allocation Ratio) ....................1 
Alternative Hypothesis ............................One-Sided Test 
AUC1 (Area Under Curve 1) ...................0.7 
AUC2 (Area Under Curve 2) ...................0.75 
Lower FPR ..............................................0.00 
Upper FPR ..............................................1.00 
Correlation+.............................................0.0 
Correlation- .............................................0.0 
Type of Data............................................Continuous 
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Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 1 
 

Numeric Results for Testing AUC1 = AUC2 with Continuous Data  
Test Type = One-Sided.  FPR1 = 0.0.  FPR2 = 1.0.  B1 = 1.000.  B2 = 1.000.  Allocation Ratio = 1.000.  
 
Power N+ N- AUC1' AUC2' Diff' AUC1 AUC2 Diff Alpha Beta 
0.9501 1129 1129 0.7000 0.7500 0.0500 0.7000 0.7500 0.0500 0.0500 0.0499 
0.9001 897 897 0.7000 0.7500 0.0500 0.7000 0.7500 0.0500 0.0500 0.0999 
0.8003 652 652 0.7000 0.7500 0.0500 0.7000 0.7500 0.0500 0.0500 0.1997 
 

Note that the sample sizes of 897 and 652 match exactly with the results of Hanley and McNeil. 
The 1129 is two less than their 1131. This difference may be due to refinements in computing the 
normal probability distribution used in PASS. You can compare these sample sizes by calculating 
their power. 

Numeric Results 2 
 

Numeric Results for Testing AUC1 = AUC2 with Continuous Data  
Test Type = One-Sided.  FPR1 = 0.0.  FPR2 = 1.0.  B1 = 1.000.  B2 = 1.000.  Allocation Ratio = 1.000.  
 
Power N+ N- AUC1' AUC2' Diff' AUC1 AUC2 Diff Alpha Beta 
0.9499 1128 1128 0.7000 0.7500 0.0500 0.7000 0.7500 0.0500 0.0500 0.0501 
0.9501 1129 1129 0.7000 0.7500 0.0500 0.7000 0.7500 0.0500 0.0500 0.0499 
0.9502 1130 1130 0.7000 0.7500 0.0500 0.7000 0.7500 0.0500 0.0500 0.0498 
0.9504 1131 1131 0.7000 0.7500 0.0500 0.7000 0.7500 0.0500 0.0500 0.0496 
0.9505 1132 1132 0.7000 0.7500 0.0500 0.7000 0.7500 0.0500 0.0500 0.0495 

 
Note that the power for 1129 is 0.9501 while the power for 1131 is 0.9505. This is only a slight 
difference and explains why this value showed up in their table. 
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two proportions, 216-7 

Gart-Nam test 
two proportions - equivalence, 215-10 
two proportions - non-inferiority, 210-11 
two proportions - offset, 205-10 

Geisser-Greenhouse 
repeated measures ANOVA, 570-1 

Geisser-Greenhouse F-test 
repeated measures ANOVA, 570-4 

General linear multivariate model 
MANOVA, 605-2 
repeated measures ANOVA, 570-3 

Generating data, 920-1 
Goodness of fit 

chi-square estimator, 900-1 
Chi-square test, 250-1 

Graeco-Latin square designs, 884-1 
Grid color, 4-12 
Grid line style, 4-12 
Grid lines, 4-12 
Group sequential test 

log-rank, 710-1 
survival, 710-1 
two means, 475-1 
two proportions, 220-1 

H 
Hazard rate 

Cox regression, 850-1 
Hazard rate parameterization 

logrank, 715-2 
Hazard rates 

logrank, 700-2 
logrank - advanced, 705-2 
time dependent, 715-22 

Hazard ratio 
group sequential, 710-2 

Help menu 
output window, 5-7 
PASS home window, 3-3 
procedure window, 4-6 
spreadsheet, 925-5 

Help system, 1-5 
contents window, 1-7 
index window, 1-6 
navigating, 1-6 
printing documentation, 1-9 
search window, 1-8 

Heterogeneous variances 
mixed models, 571-46 

Home window, 3-1 
Horizontal viewing angle, 4-17 
Hotelling’s T2, 600-1 

examples, 600-8 
validation, 600-11 

Hotelling’s T2 distribution 
probablility calculator, 915-4 

Hotelling-Lawley trace, 605-1 
MANOVA, 605-3 
repeated measures ANOVA, 570-1, 570-7 

Hypergeometric distribution 
probablility calculator, 915-4 

Hypergeometric model 
one proportion, 100-2 

Hypothesis 
equivalence, 7-9 
inequality, 7-7 
introduction, 7-1 
means, 9-1 
non-inferiority, 7-7 
superiority, 7-8 
types, 7-6 

Hypothesis testing 
introduction, 7-1 

I 
Icons 

output window, 5-7, 6-2 
PASS home window, 3-3 
procedure window, 4-6 

Incidence rate 
post-marketing surveillance, 135-2 
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Inclusion points 
D-optimal designs, 888-6 

Independence test, 250-1 
Inequality 

one proportion, 100-1 
two means ratio, 445-1 
two proportions, 200-1 
two proportions - offset, 205-1 

Inequality hypothesis, 7-7 
Installation, 1-1 

folders, 1-1 
Interaction 

two-level designs, 881-3 
Intercept 

linear regression, 855-1 
Interim analysis 

survival, 710-1 
three-stage trial, 130-1 
two means, 475-1 
two proportions, 220-1 

Intraclass correlation, 810-1 
examples, 810-4 
validation, 810-6 

Intracluster correlation 
cluster randomization - two means, 480-3 
cluster randomized - non-inferiority, 235-4 
cluster randomized design, 230-2 

Introduction to power analysis, 7-1 
Isometric, 4-17 
Iterations 

maximum, 4-20 
Iterations tab, 4-20 

K 
Kappa 

examples, 811-6 
validation, 811-11 

Kappa test for rater agreement, 811-1 
Kenward and Roger method 

mixed models, 571-11 
Kolmogorov-Smirnov test, 670-2 
Kruskal-Wallis 

multiple comparisons - simulation, 580-1 
simulation, 555-1 

Kruskal-Wallis test 
multiple comparisons - simulation, 580-3, 585-1 
simulation, 585-3 

L 
Labels of plots, 4-13 
Lachin and Foulkes 

logrank test, 705-1 
Lakatos 

logrank, 715-1 
Lan-DeMets 

survival - group sequential, 710-1 
two means - group sequential, 475-1 
two proportions - group sequential, 220-1 

Latin square 
ANOVA, 560-17 

Latin square designs, 884-1 
examples, 884-5 

Legend 
color, 4-14 
parameter, 4-12 
percent of vertical space, 4-12 
position, 4-12 

Likelihood ratio test 
two proportions, 200-7 

Likert-scale 
simulation, 410-21, 920-8 
simulation, 920-22 

Lilliefors' critical values 
normality tests, 670-2 

Line chart options, 4-16 
Linear model 

ANOVA, 560-2 
repeated measures ANOVA, 570-3 

Linear regression, 855-1 
confidence interval, 856-1 
examples, 855-5 
validation, 855-7 

Load template button, 4-4, 4-21 
Loading a procedure, 2-2 
Log file, 5-2 
Log transformation 

cross-over, 505-2 
cross-over - equivalence, 525-2 
cross-over - higher-order - equivalence, 545-4 
cross-over - higher-order - non-inferiority, 535-4 
cross-over - non-inferiority, 515-2 
mean ratio, 445-2 
mean ratio - equivalence, 470-2 
mean ratio - non-inferiority, 455-2 

Logistic regression, 860-1 
examples, 860-9 
validation, 860-14 

Logit 
logistic regression, 860-2 

Logrank 
hazard rate parameterization, 715-2 
median survival time parameterization, 715-2 
mortality parameterization, 715-2 
proportion surviving parameterization, 715-2 

Log-rank 
group sequential test, 710-1 

Logrank procedure comparison, 715-3 
Logrank test, 700-1, 715-1 

Lachin and Foulkes, 705-1 
non-inferiority, 706-1 

Logrank tests - non-inferiority 
examples, 706-7 
validation, 706-11 

Logrank tests (Lakatos) 
examples, 715-16 
validation, 715-21 
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Longitudinal data models 
mixed models, 571-2 

Longitudinal models, 571-1 

M 
Macros, 930-1 

command list, 930-19 
commands, 930-6 
examples, 930-20 
syntax, 930-2 

Mann-Whitney test, 430-1 
assumptions, 430-4 
examples, 430-16 
non-inferiority, 450-5 
simulation, 440-5 

Mann-Whitney test - equivalence 
simulation, 465-5 

Mann-Whitney test - simulation 
equivalence, 465-1 

MANOVA, 605-1 
assumptions, 605-1 
examples, 605-12 
validation, 605-17 

Mantel Haenszel test 
two proportions, 200-7 

Mantel-Haenszel, 225-1 
Many proportions - trend 

examples, 255-12 
validation, 255-19 

Map window, 6-1 
Margin of equivalence 

two means, 450-8 
two means - non-inferiority, 455-5 

Martinez-Iglewicz test, 670-3 
Matched case-control, 155-1 

post-marketing surveillance, 135-2 
Matched case-control - proportions 

examples, 155-6 
validation, 155-10 

Matrices, 925-1 
Maximum iterations, 4-20 
Maximum likelihood 

mixed models, 571-8 
Maximum on axis, 4-11 
McNemar test, 150-1 
McNemar test - two correlated proportions 

examples, 150-7 
validation, 150-9 

Mean (one) 
confidence interval, 420-1 
exponential, 405-1 
simulation, 410-1 

Mean (one) - confidence interval 
examples, 420-5 
validation, 420-7 

Mean (one) - tolerance - confidence interval 
examples, 421-6 
validation, 421-8 

Mean (one) - tolerance probability 
confidence interval, 421-1 

Mean absolute deviation 
standard deviation estimator, 905-3 

Mean ratio 
equivalence, 470-1 
inequality, 445-1 

Means 
introduction, 9-1 
one-way - simulation, 555-1 

Means - ratio - equivalence 
cross-over, 525-1 

Means - ratio - equivalence - higher-order 
cross-over, 545-1 

Means - ratio - non-inferiority 
cross-over, 515-1 

Means - ratio - non-inferiority - higher-order 
cross-over, 535-1 

Means - ratio - superiority 
cross-over, 515-1 

Means - ratio - superiority - higher-order 
cross-over, 535-1 

Means (paired) 
confidence interval, 496-1 
simulation, 490-1 

Means (paired) - confidence interval 
examples, 496-5 
validation, 496-6 

Means (paired) - equivalence 
simulation, 495-1 

Means (paired) - tolerance - confidence interval 
examples, 497-6 
validation, 497-8 

Means (paired) - tolerance probability 
confidence interval, 497-1 

Means (two) 
cluster randomized design, 480-1 
confidence interval, 471-1 
cross-over, 500-1 
equivalence, 460-1 
exponential, 435-1 
group sequential test, 475-1 
interim analysis, 475-1 
non-inferiority, 450-1 
ratio, 445-1 
simulation, 440-1 
T-test, 430-1 
t-test - equivalence, 460-1 
T-test - non-inferiority, 450-1 

Means (two) - cluster randomized design 
examples, 480-4 
validation, 480-6 

Means (two) - confidence interval 
examples, 471-5 
validation, 471-7 

Means (two) - equivalence 
cross-over, 520-1 
examples, 460-5 
validation, 460-7 

Means (two) - equivalence - higher-order 
cross-over, 540-1 
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Means (two) - equivalence - simulation 
examples, 465-12 
validation, 465-19 

Means (two) - group sequential 
examples, 475-10 
validation, 475-17 

Means (two) - non-inferiority 
cross-over, 510-1 
examples, 450-10 
validation, 450-13 

Means (two) - non-inferiority - higher-order 
cross-over, 530-1 

Means (two) - ratio 
cross-over, 505-1 
equivalence, 470-1 
non-inferiority, 455-1 
superiority, 455-1 

Means (two) - ratio - non-inferiority 
examples, 455-6 
validation, 455-8 

Means (two) - simulation 
equivalence, 465-1 
t-test - equivalence, 465-1 

Means (two) - superiority 
cross-over, 510-1 

Means (two) - superiority - higher-order 
cross-over, 530-1 

Means (two) - tolerance - confidence interval 
examples, 472-6 
validation, 472-8 

Means (two) - tolerance probability 
confidence interval, 472-1 

Means matrix 
MANOVA, 605-4 
repeated measures ANOVA, 570-7 

Measurement error 
randomized block ANOVA, 565-2 

Median survival time parameterization 
logrank, 715-2 

Menus 
output window, 5-2 
PASS home window, 3-2 
procedure window, 4-3 
spreadsheet, 925-1 

Microarray data 
one sample t-test, 610-1 
paired T-test, 610-1 
two sample t-test, 615-1 

Microarray one-sample or paired t-test 
examples, 610-12 
validation, 610-19 

Microarray two-sample t-test 
examples, 615-12 
validation, 615-19 

Miettinen-Nurminen confidence interval 
two proportions, 216-6 

Miettinen-Nurminen test 
two proportions - equivalence, 215-7 
two proportions - non-inferiority, 210-8 
two proportions - offset, 205-7 

Minimum detectable difference 

mixed models, 571-14 
multiple comparisons, 575-11 
one-way ANOVA, 550-17 
t-test, 400-12 
two-sample t test, 430-14 

Minimum on axis, 4-11 
Mixed model 

defined, 571-2 
Mixed models, 571-1 

differential evolution, 571-12 
examples, 571-35 
F test, 571-11 
Fisher scoring, 571-12 
fixed effects, 571-1 
G matrix, 571-5 
heterogeneous variances, 571-46 
Kenward and Roger method, 571-11 
L matrix, 571-9 
likelihood formulas, 571-8 
maximum likelihood, 571-8 
minimum detectable difference, 571-14 
MIVQUE, 571-12 
Newton-Raphson, 571-12 
pairwise contrasts, 201-6, 431-7 
R matrix, 571-5 
restricted maximum likelihood, 571-9 
simulation steps, 571-17 
types, 571-1 
validation, 571-41 

Mixture data 
simulation, 920-25 

Mixture design 
D-optimal designs, 888-20 

Monte Carlo, 9-3 
Monte Carlo simulation, 920-1 
Mortality parameterization 

logrank, 715-2 
Moving data, 925-10 
MTBF 

exponential mean (one), 405-1 
Multinomial 

chi-square estimator, 900-3 
Multinomial distribution 

simulation, 920-8 
Multiple comparisons, 575-1 

Dunnett's test - simulation, 585-1 
examples, 575-13 
Games-Howell - simulation, 580-1 
pair-wise - simulation, 580-1 
validation, 575-19 
vs control - simulation, 585-1 
with a control, 575-2 
with best, 575-5 

Multiple comparisons - simulation 
examples, 580-13 
power, 580-4 
validation, 580-22 

Multiple comparisons - vs control - simulation 
examples, 585-12 
validation, 585-21 

Multiple contrasts 
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simulation, 590-1 
Multiple contrasts - simulation 

examples, 590-14 
validation, 590-24 

Multiple regression, 865-1 
examples, 865-6 
validation, 865-10 

Multiple testing adjustment 
t-test - two groups, 615-2 
t-test -one group, 610-4 

Multivariate analysis of variance, 605-1 

N 
Navigating the help system, 1-6 
Negative binomial distribution 

probablility calculator, 915-5 
Nested factors 

design generator, 889-1 
New template, 4-3 
Noncentrality 

one-way ANOVA, 550-3 
Noncentrality parameter 

one-way ANOVA, 550-4 
Non-inferiority 

correlated proportions, 160-1 
logrank, 705-13, 706-1 
means (two), 450-1 
means (two) - ratio, 455-1 
one proportion, 105-1 
paired t-test, 415-1 
survival, 706-1 
two proportions, 210-1 

Non-inferiority - two correlated proportions 
examples, 160-10 
validation, 160-13 

Non-inferiority hypothesis, 7-7 
Non-Inferiority test (two means) 

simulation, 440-17 
Nonparametric 

t-test, 400-7 
Nonparametric tests 

Wilcoxon test, 400-1 
Normal distribution 

probablility calculator, 915-5 
simulation, 920-9, 920-19 

Normality - simulation 
examples, 670-8 
validation, 670-11 

Normality tests, 670-1 
Anderson-Darling test, 670-2 
D’Agostino kurtosis, 670-2 
D’Agostino omnibus, 670-3 
D’Agostino skewness, 670-4 
Kolmogorov-Smirnov, 670-2 
Lilliefors' critical values, 670-2 
Martinez-Iglewicz, 670-3 
range, 670-4 
Shapiro-Wilk, 670-4 

Nuisance parameter, 9-2 
Nuisance parameters, 7-6 
Null hypothesis, 7-1, 9-1 

O 
O’Brien-Fleming 

survival - group sequential, 710-1 
two means - group sequential, 475-1 
two proportions - group sequential, 220-1 

Odds ratio 
logistic regression, 860-2 
matched case-control, 155-1 
McNemar test, 150-3 
one proportion, 100-6 
proportions, 8-3 
two proportions, 200-3 

Odds ratio estimator, 910-1 
examples, 910-2 

One proportion 
equivalence, 110-1 
inequality, 100-1 
non-inferiority, 105-1 
superiority, 105-1 

One-sample t-test 
microarray data, 610-1 

One-way ANOVA, 550-1 
examples, 550-10 
simulation, 555-1 
validation, 550-19 

One-way ANOVA - simulation 
examples, 555-10 
validation, 555-16 

Open template, 4-3 
Options, 4-4 
Orthogonal arrays, 887-1 
Orthogonal sets of Latin squares, 884-2 
Outliers 

multiple comparisons - simulation, 580-23 
one-way ANOVA - simulation, 555-18 

Outliers (two means) 
simulation, 440-19 

Outline 
PASS home window, 3-4 

Output, 2-4 
Output window, 5-1 

edit menu, 5-4 
file menu, 5-2 
format menu, 5-6 
help menu, 5-7 
toolbar, 5-7, 6-2 
view menu, 5-5 
window menu, 5-6 
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P 
P value, 7-4 
Page setup 

spreadsheet, 925-2 
Paired design 

microarray data, 610-1 
Paired designs 

non-inferiority, 415-1 
Paired distributions 

simulating, 490-2 
Paired means 

simulation, 490-1 
Paired means - equivalence 

simulation, 495-1 
Paired proportions 

equivalence, 165-1 
non-inferiority, 160-1 

Paired t-test, 400-1 
assumptions, 400-3 
microarray data, 610-1 
non-inferiority, 415-1 
superiority, 415-1 

Pairwise comparisons 
multiple comparisons, 575-7 

Pair-wise comparisons 
simulation, 580-1 

Pairwise contrasts 
mixed models, 201-6 

Pairwise contrasts 
mixed models, 431-7 

Panel, 4-1 
Parameters 

3D, 4-18 
abbreviations, 4-15 
axis, 4-11 
entering, 4-7 
legend, 4-12 

PASS help system, 1-5 
PASS home window, 3-1 

help menu, 3-3 
outline, 3-4 
procedure menus, 3-2 
toolbar, 3-3 
tools menu, 3-2 
view menu, 3-2 
window menu, 3-3 

Password, 5-7 
Patient entry 

logrank, 705-3 
Perspective, 4-17, 4-18 
Phase I trials 

definition, 120-1 
Phase II clinical trials 

single-stage one proportion, 120-1 
three-stage one proportion, 130-1 
two-stage one proportion, 125-1 

Phase II trials 
definition, 120-1 

Pillai-Bartlett trace, 605-1 

MANOVA, 605-3 
repeated measures ANOVA, 570-1, 570-6 

Plackett-Burman designs, 886-1 
Planned comparisons 

one-way ANOVA, 550-1 
Plot labels, 4-13 
Plot text tab, 4-13 
Plot titles, 4-13 
Plot type, 4-15 
Plot type tab, 4-15 
Pocock 

survival - group sequential, 710-1 
two means - group sequential, 475-1 
two proportions - group sequential, 220-1 

Poisson distribution 
probablility calculator, 915-5 
simulation, 920-9 

Poisson incidence 
post-marketing surveillance, 135-1 

Poisson regression, 870-1 
examples, 870-7 
validation, 870-9 

Population size 
t-test, 400-8 

Post-marketing surveillance, 135-1 
examples, 135-6 
validation, 135-8 

Power 
calculating, 7-4 
introduction, 7-1 
means, 9-1 
multiple comparisons - simulation, 580-4 

Prevalence 
correlated proportions, 160-2, 165-2 

Printer setup 
spreadsheet, 925-2 

Printing documentation, 1-9 
Printing output, 5-4 
Probability calculator, 915-1 

Beta distribution, 915-1 
Binomial distribution, 915-2 
Bivariate normal distribution, 915-2 
Chi-square distribution, 915-2 
Correlation coefficient distribution, 915-3 
F distribution, 915-3 
Gamma distribution, 915-4 
Hotelling’s T2 distribution, 915-4 
Hypergeometric distribution, 915-4 
Negative binomial distribution, 915-5 
Normal distribution, 915-5 
Poisson distribution, 915-5 
Student’s t distribution, 915-6 
Studentized range distribution, 915-6 
Weibull distribution, 915-6 

Procedure menus 
PASS home window, 3-2 
procedure window, 4-5 

Procedure options, 4-1 
Procedure window, 4-1 

file menu, 4-3 
help menu, 4-6 
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procedure menus, 4-5 
run menu, 4-5 
tabs, 4-7 
toolbar, 4-6 
tools menu, 4-5 
window menu, 4-5 

Producer’s risk 
exponential mean (one), 405-2 

Projection method, 4-17 
Proportion (one) 

binomial model, 100-2 
confidence interval, 115-1 
continuity correction, 100-5 
equivalence, 110-1 
exact binomial test, 100-4 
examples, 100-13 
hypergeometric model, 100-2 
inequality, 100-1 
non-inferiority, 105-1 
odds ratio, 100-6 
saw-tooth power function, 100-16 
single-stage phase II trials, 120-1 
superiority, 105-1 
three-stage phase II trials, 130-1 
two-stage phase II trials, 125-1 
validation, 100-20 
Z test, 100-4 

Proportion (one) - confidence interval 
examples, 115-6 
validation, 115-9 

Proportion (one) - equivalence 
examples, 110-11 
validation, 110-17 
Z test, 110-6 

Proportion (one) - non-inferiority 
examples, 105-10 
validation, 105-16 

Proportion surviving parameterization 
logrank, 715-2 

Proportion trend test, 255-1 
Proportional hazards regression, 850-1 
Proportions 

comparing, 8-1 
difference, 8-2 
interpretation, 8-3 
introduction, 8-1 
logistic regression, 860-1 
odds ratio, 8-3 
odds ratio estimator, 910-1 
paired (equivalence), 165-1 
paired (non-inferiority), 160-1 
ratio, 8-2 

Proportions (many) 
trend, 255-1 

Proportions (many) - trend 
examples, 255-12 
validation, 255-19 

Proportions (multiple) 
Chi-square test, 250-1 

Proportions (two) 
Chi-square test, 200-5 

cluster randomized - equivalence, 240-1 
cluster randomized - non-inferiority, 235-1 
cluster randomized - superiority, 235-1 
cluster randomized design, 230-1 
confidence intervals, 216-1 
equivalence, 215-1 
Fisher's exact, 200-4 
group sequential test, 220-1 
independent, 200-1 
independent - equivalence, 215-1 
independent - non-inferiority & superiority, 210-1 
independent - offset, 205-1 
inequality, 200-1 
inequality - offset, 205-1 
interim analysis, 220-1 
matched case control, 155-1 
McNemar test, 150-1 
non-inferiority & superiority, 210-1 
stratified, 225-1 

Proportions (two) - cluster - equivalence 
examples, 240-8 
validation, 240-12 

Proportions (two) - cluster - non-inferiority 
examples, 235-7 
validation, 235-11 

Proportions (two) - cluster randomized design 
examples, 230-9 
validation, 230-17 

Proportions (two) - confidence interval 
examples, 216-26 
validation, 216-28 

Proportions (two) - equivalence 
examples, 215-17 
validation, 215-23 

Proportions (two) - group sequential 
examples, 220-9 
validation, 220-17 

Proportions (two) - inequality 
examples, 200-14 
validation, 200-19 

Proportions (two) - non-inferiority 
examples, 210-17 
validation, 210-24 

Proportions (two) - offset 
examples, 205-18 
validation, 205-24 

Proportions (two) - stratified design 
examples, 225-8 
validation, 225-11 

Proportions (two) correlated 
equivalence, 165-1 
non-inferiority, 160-1 

Proportions estimator, 910-1 
examples, 910-2 

Q 
Qualitative factors 

D-optimal designs, 888-5 
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Quick launch window, 6-1 
Quick-access buttons 

map window, 6-2 
output window, 5-9 
PASS home window, 3-3 
procedure window, 4-6 

Quitting PASS, 4-4 

R 
Random assignment, 880-1 
Random effects models, 571-1 

mixed models, 571-1 
Random factor 

ANOVA, 560-5 
Random numbers, 920-1 

multiple comparisons - simulation, 580-5 
simulation, 585-5, 590-5 

Random sorting, 880-3 
Random sorting using max % deviation, 880-5 
Randomization 

complete, 880-3 
Efron’s biased coin, 880-3 
Latin square designs, 884-2 
random sorting, 880-3 
random sorting using max % deviation, 880-5 
Smith, 880-4 
Wei’s urn, 880-4 

Randomization lists, 880-1 
examples, 880-9 

Randomized block ANOVA, 565-1 
examples, 565-9 
validation, 565-11 

Randomized block design 
design generator, 889-5 

Range on axis, 4-11 
Range test, 670-4 
Rater agreement - kappa, 811-1 
Rating data 

ROC curve (one), 260-4 
ROC curves (two), 265-3 

Ratio 
proportions, 8-2 
two means, 445-1 
two means - equivalence, 470-1 

Ratio (two means) 
non-inferiority, 455-1 

Ratio of two means 
examples, 445-6 
validation, 445-8 

Ratio of two means - equivalence 
examples, 470-7 
validation, 470-9 

Ratio -two means 
cross-over, 505-1 

Regression 
confidence interval, 856-1 
Cox, 850-1 
linear, 855-1 

logistic, 860-1 
multiple, 865-1 
Poisson, 870-1 

Regression - confidence interval 
examples, 856-7 
validation, 856-10 

Rejection region, 7-3 
Repeated measures 

mixed models, 571-1 
two means, 431-1 
two proportions, 201-1 

Repeated measures - two means 
examples, 431-13 
validation, 431-19 

Repeated measures - two proportions 
examples, 201-16 
validation, 201-24 

Repeated measures ANOVA, 570-1 
examples, 570-29 
validation, 570-49 

Repeated measures design 
design generator, 889-6 

Replication 
two-level designs, 881-3 

Reports tab, 4-8 
Resetting a template, 4-3 
Response surface designs, 885-1 

examples, 885-3 
Restricted maximum likelihood 

mixed models, 571-9 
Risk ratio 

Blackwelder, 205-26 
ROC curve (one), 260-1 

examples, 260-8 
validation, 260-12 

ROC curves (two), 265-1 
examples, 265-8 
validation, 265-13 

Row heights, 925-11 
R-squared 

logistic regression, 860-8 
multiple regression, 865-1 

RTF, 5-3 
RTF files, 5-1 
Ruler, 5-5 
Run menu 

procedure window, 4-5 
Running a procedure, 2-3 
Running PASS, 2-1 

S 
Sample size 

introduction, 7-1 
Save template, 4-4 
Save template button, 4-4, 4-22 
Saw-tooth power function 

one proportion, 100-16 
Scaling factors 
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D-optimal designs, 888-2 
Score test 

two proportions - equivalence, 215-7 
two proportions - non-inferiority, 210-8 
two proportions - offset, 205-7 

Screening designs, 886-1 
examples, 886-3 

Sensitivity 
correlated proportions, 160-2, 165-2 
ROC curve (one), 260-1 

Serial numbers, 1-4, 5-7 
Setting options, 4-4 
Shapiro-Wilk test, 670-4 
Show tickmarks, 4-13 
Sign test 

simulation, 410-3 
Sign test - paired means 

simulation, 490-4 
Sign test - paired means - equivalence 

simulation, 495-5 
Significance level, 7-3 

adjusting, 9-5 
Significance level - simulation 

multiple comparisons, 580-1, 585-2 
multiple contrasts, 590-1 

Simon 
two-stage phase II trials, 125-1 

Simple linear regression 
confidence interval, 856-1 

Simulation, 9-3, 920-1 
Beta distribution, 920-3 
Binomial distribution, 920-5 
Cauchy distribution, 920-5 
Constant distribution, 920-6 
contaminated normal, 920-20 
Exponential distribution, 920-6 
F distribution, 920-7 
Gamma distribution, 920-7 
Likert-scale, 920-8, 920-22 
Multinomial distribution, 920-8 
multiple comparisons, 580-1, 580-5, 585-1, 585-4 
multiple contrasts, 590-1, 590-4 
Normal distribution, 920-9, 920-19 
normality tests, 670-1 
one mean, 410-1 
one-way ANOVA, 555-1 
paired means, 490-1 
paired means - equivalence, 495-1 
Poisson distribution, 920-9 
random number generation, 580-5, 585-5, 590-5 
size, 9-3 
skewed distribution, 920-10 
Student's T distribution, 920-10 
syntax, 920-13 
T distribution, 920-10 
Tukey's lambda distribution, 920-10 
two means, 440-1 
two means - equivalence, 465-1 
Uniform distribution, 920-11 
Weibull distribution, 920-12 

Simulation steps 

mixed models, 571-17 
Single-stage design 

one proportion, 120-1 
Single-stage phase II trials 

examples, 120-3 
validation, 120-3 

Skewed data 
one-way ANOVA - simulation, 555-20 
simulation, 410-12 

Skewed data (two means) 
simulation, 440-20 

Skewed distribution 
simulation, 920-10 

Skewness test, 670-4 
Slope 

linear regression, 855-1 
Slope - simple linear regression 

confidence interval, 856-1 
Smith’s randomization, 880-4 
Specificity 

correlated proportions, 160-2, 165-2 
ROC curve (one), 260-1 

Spending functions 
survival - group sequential, 710-3 
two means - group sequential, 475-2 
two proportions - group sequential, 220-2 

Split plot analysis 
mixed models, 571-1 

Spreadsheet, 925-1 
data entry, 925-6 
edit menu, 925-3 
file menu, 925-1 
help menu, 925-5 
menus, 925-1 
navigating, 925-6 
window menu, 925-5 

Standard deviation, 9-2 
estimator, 905-1 
interpretation, 905-1 

Standard deviation (one) 
confidence interval, 640-1 

Standard deviation (one) - confidence interval 
examples, 640-5 
validation, 640-7 

Standard deviation (one) - relative error 
confidence interval, 642-1 

Standard deviation (one) - relative error - confidence 
interval 
examples, 642-4 
validation, 642-6 

Standard deviation (one) - tolerance - confidence 
interval 
examples, 641-6 
validation, 641-8 

Standard deviation (one) - tolerance probability 
confidence interval, 641-1 

Standard deviation estimator 
examples, 905-6 

Standard deviation test 
one, 650-1 
two, 655-1 
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Starting PASS, 1-3, 2-1 
Stratified designs 

two proportions, 225-1 
Student’s t distribution 

probablility calculator, 915-6 
Studentized range distribution 

probablility calculator, 915-6 
Student's T distribution 

simulation, 920-10 
Style 

grid lines, 4-12 
Superiority 

means (two), 450-1 
means (two) - ratio, 455-1 
one proportion, 105-1 
paired t-test, 415-1 
two proportions, 210-1 

Superiority hypothesis, 7-8 
Surface chart options, 4-17 
Survival 

logrank, 700-1, 715-1 
logrank - Lachin and Foulkes, 705-1 
non-inferiority, 706-1 

Survival - group sequential 
examples, 710-11 
validation, 710-18 

Survival - logrank 
examples, 700-6 
validation, 700-9 

Survival - logrank - Lachin and Foulkes 
examples, 705-8 
validation, 705-12 

Syntax 
macros, 930-2 

System requirements, 1-1 

T 
T distribution 

simulation, 920-10 
T test 

two proportions - equivalence, 215-7 
two proportions - non-inferiority, 210-8 

T2 
Hotelling’s, 600-1 

Tabs 
axes/legend/grid, 4-11 
data, 4-7 
iterations, 4-20 
plot text, 4-13 
plot type, 4-15 
reports, 4-8 
template, 4-21 

Tabs on the procedure window, 4-7 
Taguchi designs, 887-1 

examples, 887-4 
Technical support, 1-11 
Template tab, 4-21 
Templates, 4-1 

automatic, 4-2 
creating a new, 4-3 
default, 4-2 
definition, 4-3 
deleting, 4-4, 4-22 
file extension, 4-4, 4-22 
file name, 4-21 
loading, 4-3, 4-4, 4-21 
opening, 4-3 
saving, 4-4, 4-22 
storage location, 4-4, 4-22 
template id, 4-21 

Test statistics, 7-6 
Thin walls, 4-18 
Three-stage design 

one proportion, 130-1 
Three-stage phase II trials 

examples, 130-8 
validation, 130-8 

Tickmarks, 4-12 
show, 4-13 

Time averaged difference 
binary data, 201-1 
normal data, 431-1 
power for, 201-2, 431-2 
two means, 431-1 
two proportions, 201-1 

Titles of plots, 4-13 
Toolbar 

output window, 5-7, 6-2 
PASS home window, 3-3 
procedure window, 4-6 

Toolbars 
customizing, 3-4 
customizing using drag-and-drop, 6-3 
format, 5-5 

Tools menu 
PASS home window, 3-2 
procedure window, 4-5 

Trend in proportions, 255-1 
Trimmed t-test (two means) 

simulation, 440-4 
Trimmed t-test (two means) - equivalence 

simulation, 465-4 
T-test 

cross-over, 500-3 
microarray data, 610-1, 615-1 
one group - multiple testing adjustment, 610-4 
one mean, 400-1 
one mean - simulation, 410-1 
paired, 400-1 
paired - equivalence - simulation, 495-1 
paired - simulation, 490-1 
two groups - multiple testing adjustment, 615-2 
two means, 430-1 
two means - equivalence, 460-1 
two means - non-inferiority, 450-1 
two means - simulation, 440-1 
two proportions, 200-8 

T-test - equivalence 
cross-over, 520-3 

 



  Index-17 

T-test - simulation 
two means - equivalence, 465-1 

T-test (one mean) 
assumptions, 400-3 
examples, 400-8 
non-inferiority, 415-1 
superiority, 415-1 
validation, 400-17 

T-test (one mean) - non-inferiority 
examples, 415-9 
validation, 415-12 

T-test (one mean) - simulation 
examples, 410-10 
validation, 410-16 

T-test (paired means) - equivalence - simulation 
examples, 495-11 
validation, 495-17 

T-test (paired means) - simulation 
examples, 490-11 
validation, 490-16 

T-test (paired) 
examples, 400-13 

T-test (two means) 
examples, 430-10 
validation, 430-18 

T-test (two means) - simulation 
examples, 440-12 
validation, 440-16 

T-tests (two means) 
assumptions, 430-3 

Tukey-Kramer 
simulation, 580-1 

Tukey-Kramer test 
multiple comparisons, 575-7 
simulation, 580-3 

Tukey's lambda distribution 
simulation, 920-10 

Two correlated proportions - equivalence 
examples, 165-11 
validation, 165-14 

Two correlated proportions - non-inferiority 
examples, 160-10 
validation, 160-13 

Two means 
cluster randomized design, 480-1 
cross-over, 500-1 

Two means - cluster randomized design 
examples, 480-4 
validation, 480-6 

Two means - equivalence 
cross-over, 520-1 
examples, 460-5 
validation, 460-7 

Two means - equivalence - higher-order 
cross-over, 540-1 

Two means - equivalence - simulation 
examples, 465-12 
validation, 465-19 

Two means - group sequential 
examples, 475-10 
validation, 475-17 

Two means - non-inferiority 
cross-over, 510-1 
examples, 450-10 
validation, 450-13 

Two means - non-inferiority - higher-order 
cross-over, 530-1 

Two means - ratio 
cross-over, 505-1 
examples, 445-6 
validation, 445-8 

Two means - ratio - equivalence 
cross-over, 525-1 
examples, 470-7 
validation, 470-9 

Two means – ratio - equivalence - higher-order 
cross-over, 545-1 

Two means - ratio - non-inferiority 
cross-over, 515-1 

Two means - ratio - non-inferiority - higher-order 
cross-over, 535-1 

Two means - ratio - superiority 
cross-over, 515-1 

Two means - ratio - superiority - higher-order 
cross-over, 535-1 

Two means - superiority 
cross-over, 510-1 

Two means - superiority - higher-order 
cross-over, 530-1 

Two means (ratio) - non-inferiority 
examples, 455-6 
validation, 455-8 

Two proportions 
cluster randomized - equivalence, 240-1 
cluster randomized - non-inferiority, 235-1 
cluster randomized - superiority, 235-1 
cluster randomized design, 230-1 
equivalence, 215-1 
inequality, 200-1 
inequality - offset, 205-1 
matched case-control, 155-1 
McNemar test, 150-1 
non-inferiority & superiority, 210-1 

Two proportions - cluster - equivalence 
examples, 240-8 
validation, 240-12 

Two proportions - cluster - non-inferiority 
examples, 235-7 
validation, 235-11 

Two proportions - cluster randomized design 
examples, 230-9 
validation, 230-17 

Two proportions - equivalence 
examples, 215-17 
validation, 215-23 

Two proportions - group sequential 
examples, 220-9 
validation, 220-17 

Two proportions - inequality 
examples, 200-14 
validation, 200-19 

Two proportions - non-inferiority 
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examples, 210-17 
validation, 210-24 

Two proportions - offset 
examples, 205-18 
validation, 205-24 

Two proportions - stratified design 
examples, 225-8 
validation, 225-11 

Two-channel arrays, 610-1 
Two-level designs, 881-1 

examples, 881-6 
Two-level factorial designs, 881-1 
Two-sample t-test, 430-1 

equivalence, 460-1 
microarray data, 615-1 
non-inferiority, 450-1 
superiority, 450-1 

Two-sample t-test - simulation 
equivalence, 465-1 

Two-stage design 
one proportion, 125-1 

Two-stage phase II trials 
examples, 125-8 
validation, 125-10 

Type-I error, 7-2 
Type-II error, 7-2 

U 
Uniform distribution 

simulation, 920-11 

V 
Validation 

Chi-square test, 250-9 
Cochran-Armitage test, 255-19 
correlation (one) - confidence interval, 801-7 
Cox regression, 850-6 
cross-over - higher-order - equivalence, 540-10 
cross-over - higher-order - non-inferiority, 530-12 
cross-over - ratio - equivalence, 525-9 
cross-over - ratio - higher-order - equivalence, 545-

12 
cross-over - ratio - higher-order - non-inferiority, 

535-13 
cross-over - ratio - non-inferiority, 515-8 
cross-over (two means), 500-10 
cross-over (two means) - equivalence, 520-10 
cross-over (two means) - non-inferiority, 510-10 
cross-over (two means) - ratio, 505-8 
equivalence - two correlated proportions, 165-14 
exponential mean (one), 405-10 
exponential means (two), 435-7 
fixed effects ANOVA, 560-19 
Hotelling’s T2, 600-11 
intraclass correlation, 810-6 

kappa, 811-11 
linear regression, 855-7 
logistic regression, 860-14 
logrank tests - non-inferiority, 706-11 
logrank tests (Lakatos), 715-21 
MANOVA, 605-17 
many proportions - trend, 255-19 
matched case-control - proportions, 155-10 
McNemar test - two correlated proportions, 150-9 
mean ratio - non-inferiority, 455-8 
microarray one-sample or paired t-test, 610-19 
microarray two-sample t-test, 615-19 
mixed models, 571-41 
multiple comparisons, 575-19 
multiple comparisons - simulation, 580-22 
multiple comparisons - vs control - simulation, 

585-21 
multiple contrasts - simulation, 590-24 
multiple regression, 865-10 
non-inferiority - two correlated proportions, 160-

13 
normality - simulation, 670-11 
one coefficient alpha, 815-7 
one correlation, 800-7 
one mean - confidence interval, 420-7 
one mean - tolerance - confidence interval, 421-8 
one proportion, 100-20 
one proportion - confidence interval, 115-9 
one proportion - equivalence, 110-17 
one proportion - non-inferiority, 105-16 
one standard deviation - confidence interval, 640-7 
one standard deviation - relative error - confidence 

interval, 642-6 
one standard deviation - tolerance - confidence 

interval, 641-8 
one variance - confidence interval, 651-6 
one variance - relative error - confidence interval, 

653-6 
one variance - tolerance - confidence interval, 652-

8 
one-way ANOVA, 550-19 
one-way ANOVA - simulation, 555-16 
paired means - confidence interval, 496-6 
paired means - tolerance - confidence interval, 

497-8 
Poisson regression, 870-9 
post-marketing surveillance, 135-8 
randomized block ANOVA, 565-11 
ratio of two means, 445-8 
ratio of two means - equivalence, 470-9 
regression - confidence interval, 856-10 
repeated measures - two means, 431-19 
repeated measures - two proportions, 201-24 
repeated measures ANOVA, 570-49 
ROC curve (one), 260-12 
ROC curves (two), 265-13 
single-stage phase II trials, 120-3 
survival - group sequential, 710-18 
survival - logrank, 700-9 
survival - logrank - Lachin and Foulkes, 705-12 
three-stage phase II trials, 130-8 
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t-test (one mean), 400-17 
t-test (one mean) - non-inferiority, 415-12 
t-test (one mean) - simulation, 410-16 
t-test (paired means) - equivalence - simulation, 

495-17 
t-test (paired means) - simulation, 490-16 
t-test (two means), 430-18 
t-test (two means) - simulation, 440-16 
two coefficient alphas, 820-10 
two correlated proportions - equivalence, 165-14 
two correlated proportions - non-inferiority, 160-

13 
two correlations, 805-8 
two means - cluster randomized, 480-6 
two means - confidence interval, 471-7 
two means - equivalence, 460-7 
two means - equivalence - simulation, 465-19 
two means - group sequential, 475-17 
two means - non-inferiority, 450-13 
two means - ratio, 445-8 
two means - ratio - equivalence, 470-9 
two means - tolerance - confidence interval, 472-8 
two proportions - cluster - equivalence, 240-12 
two proportions - cluster - non-inferiority, 235-11 
two proportions - cluster randomized, 230-17 
two proportions - confidence interval, 216-28 
two proportions - equivalence, 215-23 
two proportions - group sequential, 220-17 
two proportions - inequality, 200-19 
two proportions - non-inferiority, 210-24 
two proportions - offset, 205-24 
two proportions - stratified design, 225-11 
two-stage phase II trials, 125-10 
variance (one), 650-7 
variance ratio - confidence interval, 656-8 
variance ratio - relative error - confidence interval, 

657-6 
variances (two), 655-8 

Variance (one) 
confidence interval, 651-1 
examples, 650-4 
validation, 650-7 

Variance (one) - confidence interval 
examples, 651-4 
validation, 651-6 

Variance (one) - relative error 
confidence interval, 653-1 

Variance (one) - relative error - confidence interval 
examples, 653-4 
validation, 653-6 

Variance (one) - tolerance - confidence interval 
examples, 652-6 
validation, 652-8 

Variance (one) - tolerance probability 
confidence interval, 652-1 

Variance ratio 
confidence interval, 656-1 

Variance ratio - confidence interval 
examples, 656-5 
validation, 656-8 

Variance ratio - relative error 

confidence interval, 657-1 
Variance ratio - relative error - confidence interval 

examples, 657-4 
validation, 657-6 

Variance test 
one, 650-1 
two, 655-1 

Variances (two) 
examples, 655-4 
validation, 655-8 

Vertical viewing angle, 4-18 
View menu 

output window, 5-5 
PASS home window, 3-2 

Viewing angle 
horizontal, 4-17 
vertical, 4-18 

Viewing output, 2-4 

W 
Wall color, 4-18 
Walter’s confidence intervals 

two proportions, 216-11 
Wei’s urn randomization, 880-4 
Weibull distribution 

probablility calculator, 915-6 
simulation, 920-12 

Welch test 
multiple contrasts - simulation, 590-4 

Welch's test - simulation 
equivalence, 465-1 

Welch's t-test 
non-inferiority, 450-5 
simulation, 440-3 

Wilcoxon test, 400-1, 400-7, 415-7, 450-9 
assumptions, 400-3 
non-inferiority, 415-1 
simulation, 410-3 
superiority, 415-1 

Wilcoxon test - paired means 
simulation, 490-4 

Wilcoxon test - paired means - equivalence 
simulation, 495-4 

Wilks’ Lambda, 605-1 
MANOVA, 605-2 
repeated measures ANOVA, 570-1, 570-6 

Wilson score limits 
one proportion, 115-2 

Wilson’s score confidence interval 
two proportions, 216-7 

Window menu 
output window, 5-6 
PASS home window, 3-3 
procedure window, 4-5 
spreadsheet, 925-5 

Winsorized test (two means) - equivalence 
simulation, 465-4 

Within standard deviation 
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repeated measures ANOVA, 570-15 
Within-subjects design 

repeated measures ANOVA, 570-3 
Word processor, 5-1 

Z 
Z test 

one proportion, 100-4 
one proportion - equivalence, 110-6 
two proportions - equivalence, 215-5 
two proportions - non-inferiority, 210-6 
two proportions - offset, 205-6 
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