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About this manual 
Congratulations on your purchase of the PASS package! PASS offers: 

• Easy parameter entry. 
• A comprehensive list of power analysis routines that are accurate and verified, yet are 

quick and easy to learn and use. 
• Straightforward procedures for creating paper printouts and file copies of both the 

numerical and graphical reports. 
Our goal is that with the help of these user's guides, you will be up and running on PASS 
quickly. After reading the quick start manual (at the front of User's Guide I) you will only 
need to refer to the chapters corresponding to the procedures you want to use. The 
discussion of each procedure includes one or more tutorials that will take you step-by-
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I believe you will find that these user’s guides provides a quick, easy, efficient, and 
effective way for first-time PASS users to get up and running.  

I look forward to any suggestions you have to improve the usefulness of this manual 
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PASS licenses may not be transferred more frequently than once in twelve months. Neither PASS nor its documentation 
may be modified or translated without written permission from NCSS. 
 You may not use, copy, modify, or transfer PASS, or any copy, modification, or merged portion, in whole or in part, 
except as expressly provided for in this license. 
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Dr. Jerry L. Hintze & NCSS, Kaysville, Utah 

Preface 
PASS (Power Analysis and Sample Size) is an advanced, easy-to-use statistical analysis software 
package. The system was designed and written by Dr. Jerry L. Hintze over the last fifteen years. 
Dr. Hintze drew upon his experience both in teaching statistics at the university level and in 
various types of statistical consulting. 

The present version, written for 32-bit versions of Microsoft Windows (98, 2000, ME, NT, XP, 
etc.) computer systems, is the result of several iterations. Experience over the years with several 
different types of users has helped the program evolve into its present form. 

NCSS maintains a website at WWW.NCSS.COM where we make the latest edition of PASS 
available for free downloading. The software is password protected, so only users with valid 
serial numbers may use this downloaded edition. We hope that you will download the latest 
edition routinely and thus avoid any bugs that have been corrected since you purchased your 
copy. 

We believe PASS to be an accurate, exciting, easy-to-use program. If you find any portion which 
you feel needs to be changed, please let us know. Also, we openly welcome suggestions for 
additions and enhancements. 

Verification 
All calculations used in this program have been extensively tested and verified. First, they have 
been verified against the original journal article or textbook that contained the formulas. Second, 
they have been verified against second and third sources when these exist. 
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CHAPTER 1 

Installation 
Before you install 
1. Check system requirements 
PASS runs on 32-bit Windows systems. This includes Windows 98, Windows ME, Windows NT 4.0, 
Windows 2000, and Windows XP. The recommended minimum system is a Pentium PC with 64 MB 
of memory.  

PASS takes up about 80 MB of disk space. Once installed, PASS also requires about 20 MB of 
temporary disk space while it is running. 

2. Find a home for PASS 
Before you start installing, decide on a folder where you want to install PASS. By default, the setup 
program will install PASS in the NCSS97 (or NCSS2000) folder of your C drive. You may change 
this during the installation, but not after.  

3. If you have a previous NCSS 
PASS and NCSS have been combined into one physical program. Access to each program is 
controlled by separate serial numbers. If you have a serial number for PASS, but not for NCSS, 
NCSS will work as a demo for 30 days from the time the first procedure is accessed.  

If NCSS is already installed on your system, instruct the installation program to place this new 
version in the same folder as your previous version (usually \Program Files\NCSS97). All appropriate 
files will be replaced.  

What install does 
The installation procedure (Setup) creates the necessary folders and copies the PASS/NCSS program 
from the installation file, called SETUP.EXE, to those folders. The files in SETUP.EXE are 
compressed, so the installation program decompresses these files as it copies them to your hard disk.  

The folders created by Setup are (either NCSS97 or NCSS2000 may be substituted below): 

\NCSS97 (or your substitute folder) contains most of the program files. 

\NCSS97\DATA contains the database files used by the tutorials. We recommend creating a sub-
folder of this folder to contain the data for each project you work on. For example, you might create a 
folder called \NCSS\DATA\Project1.  
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\NCSS97\JUNK contains temporary files used by the program while it is running. Under normal 
operation, PASS will automatically delete temporary files. After finishing PASS, you can delete any 
files left in this folder. 

\NCSS97\REPORT is the default folder in which to save your output. You can save the reports to any 
folder you wish. 

\NCSS97\SETTINGS contains the files used to store your template files. These files are used by the 
PASS template system which is described in a later chapter. 

\NCSS97\STS contains all labels, text, and online messages.  

\NCSS97\PDF contains printable copies of the documentation in Acrobat PDF format.  

Setup places a file called NCSS97.INI in your windows folder. This file contains all default settings, 
paths, and constants that are used by the system. This file is documented in README.WRI. The 
settings in this file may be viewed and edited by selecting Edit then Options from the spreadsheet 
menu. 

Installing PASS and NCSS 
This section gives instructions for installing PASS and NCSS on your computer system. You must use 
the NCSS/PASS setup program to install PASS and NCSS. The files are compressed, so you cannot 
simply copy the files to your hard drive. 

After running the Setup program, you should read the README.WRI file for late-breaking information 
before starting the program. 

Follow these basic steps to install PASS on your computer system. 

Step Notes  

1. Make sure that you are using a 32-bit version of windows such as Windows 98, Windows 
Me, Windows NT 4.0, Windows 2000, or Windows XP. 

2. If you are installing from a CD, insert the CD in the CD drive. The installation program 
should start automatically. If it does not, on the Start menu, select the Run command. Enter 
'D:Setup'. You may have to substitute the appropriate letter for your CD drive if it is not D. If 
you are installing from a download, simply run the downloaded file (SETUP.EXE). 

3. Once Setup starts, follow the instructions on the screen. PASS will be installed in the drive 
and folder you designate. 

If something goes wrong  
The installation procedure is automatic. If something goes wrong during installation, delete the 
\NCSS97 folder and start the installation process at the beginning. If trouble persists, contact our 
technical support staff as indicated below. 

 



 Installation   3

Starting PASS 
PASS may be started using your keyboard or your mouse using the same techniques that you use to 
start any other Windows application. You can start PASS by selecting NCSS from your Start menu 
using standard mouse or keyboard operations.  

The first time you run PASS, enter your serial number in the pop-up window that appears when the 
program begins. If you have entered a serial number for PASS only (not for NCSS), the PASS Home 
window will appear.  
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If you have entered serial numbers for both PASS and NCSS, the NCSS spreadsheet window will 
appear. 

 
To bring up the PASS Home window, click on the bull's-eye icon or select 'PASS Home' from the 
Window menu.  

Forcing the PASS Home screen to appear at startup 
You can force the PASS Home window to appear when the program is run by taking the following 
steps: 

1. From the spreadsheet select Edit, then Options from the menus. Or, from the PASS Home 
window select Other, then Options from the menus. 

2. Click on View tab. 

3. Check the 'Show PASS Home Window' option. 

4. Press the Ok button. 

This will force the PASS Home window to appear first. You can view the spreadsheet at any time by 
clicking the yellow and orange dice icon or by selecting 'Data (Spreadsheet)' from the Window menu. 
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Obtaining Help 
Online Help 
To help you learn and use PASS efficiently, the material in the manuals is included in an online help 
system. To access this help system, select Help from the Help menu. When the help system is 
displayed, press the 'Contents' button at the top left of the window. This will display the following 
window with which you can browse the help system.  

 

Using Help 
There are a few key features of our help system that, if you understand, will let you use the online 
help more efficiently. First, the Contents button brings up the table of contents of the help system. 
Use the Contents button to quickly navigate through the Help system. Second, each chapter was 
designed to be easily navigated. You can then proceed through a chapter section by section using the 
period and comma keys on your keyboard. Finally, you can use the Index and Find buttons to bring up 
an index of subjects. 

 



Installation 6 

Printing Documentation 
Obtaining a printed copy of the documentation is easy. Select 'View PDF File' from the Help menu. 
This will load and display the appropriate PDF file. From there, you can easily print a copy. 

Technical Support 
To help us answer your questions more accurately, we may need to know about your computer system. 
Please have pertinent information about your computer and operating system available.  

You can contact our technical support by calling (801) 546-0445 between 8 a.m. and 5 p.m. (MST). You 
can contact us by email at support@ncss.com. Our goal is to respond to email within 24 hours. 
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CHAPTER 2 

Running PASS 
About this chapter 
This chapter will show you how to start up and run a power analysis of the two-sample t test. It will 
give you a brief introduction to the windows used in PASS: the PASS Home window, the procedure 
window, and the output window. 

Starting PASS 
To start PASS, select NCSS-PASS from the Windows Start menu or double-click the NCSS/PASS 
icon. If you are licensed for PASS, but now for NCSS, the following PASS Home window will 
appear. 

 
This window gives you access to all of the PASS procedures. Clicking on the plus sign or double-
clicking on a phrase will expand the list so that you can see the procedures in that group. To load a 
specific procedure window, double-click on it or highlight it and click the View Procedure button. 



8  Running PASS 

If you have previously installed NCSS, the NCSS Data window will appear first. 

 
To bring up the PASS Home window, click on the bull's-eye icon or select ‘PASS Home’ from the 
Window menu.  

The two-sample t-test is a procedure to test the inequality of two means from independent samples. 
Take the following steps to load this procedure.  Expand the Means topic by double-clicking on the 
word ‘Means’. Drilling down, double-click on ‘Two Means’, and then on ‘Independent’. The first 
topic in the list is ‘Inequality using Differences (Normal Data)’. This is the two-sample t-test. Double-
click it. 
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The ‘PASS: Means: 2: Inequality [Differences]’ window will appear. Procedure windows let you 
specify, save, load, edit, and run an analysis.  

We will run a power analysis using the default values except that the value of Mean2 will be 2 and 
the value of S1 will be 3.  

 

1 Click the ‘Reset’ 
button to set all 
options to their 
default values. 

 
2 Click the ‘Guide Me’ 

button to have PASS 
prompt you for the 
necessary options. 

 

3 Click the ‘Next’ 
button twice to move 
to the Mean2 option. 

 
4 Enter ‘2’. 
 
5 Click the ‘Next’ 

button six times to 
move to the S1 
option. 

 
6 Enter ‘3’. 
 
7 Click the ‘Next’ 

button twice more. 
The Next button will 
change to the Run 
button. 
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The completed window will appear as follows. 

 

 

 

 

 

 

 

 

 

 

8 Click the ‘Run’ button 
to calculate the 
power analysis and 
display the following 
report. 

 
 

 

 

The Output window 
displays the output of 
the power analysis. It 
serves as a mini-word 
processor—allowing 
you to view, edit, save, 
and print your output.  
 
You may want to scroll 
down to view the graph 
at the end of the report. 
 
When you are finished, 
you can quit PASS by 
selecting Exit from the 
File menu. 
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CHAPTER 3 

PASS Home 
Window 
Introduction 
The PASS Home window lets you quickly and easily find the appropriate procedure to be loaded. 
Using an outline format, it lists every procedure in PASS along with a brief statement that 
describes what the procedure is for and when it might be used.  

The PASS Home window also lets you configure the eight procedure buttons that appear on the 
toolbars of the Data, Output, and Procedure windows. These buttons give you immediate access 
to your favorite procedures. 
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Using the PASS Home 
The PASS Home window is easy to use. It is loaded automatically if you are registered for PASS, 

but not NCSS. If you are registered for NCSS, press the bulls-eye icon  center top of the 
spreadsheet to load the PASS Home window. Alternatively, you can select the PASS Home 
option from the Window menu. 

The PASS Home window has a set of menus, a toolbar, and a large display area. On the left side 
of the display area is an outline list of all the procedures in PASS. On the right side of the display 
area is the immediate help area that displays a brief statement explaining the currently selected 
item to the left. 

Menus 
Outline Menu 
Collapse Outline 
This option collapses the outline so that only the main heading is displayed. 

Expand to First Level 
This option expands the outline so that the main headings and first-level subheadings are 
displayed. 

Expand All 
This option completely expands the outline so that all entries are displayed. 

Bold Text 
This option toggles the bolding of the text. 

Goto Selected Procedure 
This option loads the currently selected procedure’s window. 

Close 
This option closes the PASS Home window. 

Window Menu 
This menu allows you to open other windows in the PASS/NCSS system such as the Data 
window or the Output window. 

Help Menu 
This menu allows you to view the help system, modify your serial numbers, and load various 
portions of the printable (PDF) documentation. 
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Toolbar 
The toolbar gives you one-click access to several of the menu items. The menu item assigned to 
each button on the toolbar is displayed when the mouse is held over the button for a few seconds. 

 
The action caused by each of these icons is discussed next. 

 This icon toggles the bolding of the text in the outline window. 

 This icon causes the window of the currently selected procedure to be 
displayed. You can accomplish the same action by double-clicking on the procedure name. 

 This icon causes the NCSS spreadsheet window to be displayed. You will find this useful 
when working with procedures that use the spreadsheet, such as the Repeated Measures ANOVA 
procedure. 

 This icon causes the output window to be displayed.  

 This icon closes all windows and exits the program. 

 These buttons show up on all toolbars throughout the NCSS/PASS 
system. Clicking on them with the left mouse button will display that procedure. Clicking on one 
of these buttons with the right mouse button changes the button to the highlighted procedure. 

 This icon loads the help system. 

 This icon loads the file containing this chapter in PDF format. 

Customizing the Toolbars 
The eight procedure buttons that show up on all toolbars throughout the program may be changed 
here. The process of assigning one of these eight buttons a new procedure is as follows: 

1 Find and select the procedure in the outline section (left-side of main window) of the PASS 
Home window. 

2 Click on the button you want to assign the procedure to with the right-mouse button. 

That’s it. The icon of the selected procedure will now appear in all toolbars throughout the 
program. 
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Outline 
The outline expands and contracts as you either click on a plus or minus sign, or double-click on 
a topic. This gives you quick, intuitive access to all of the procedures in PASS.  

 
In the example shown here, we clicked on “Equivalence and Non-Inferiority Tests”, then on 
“Means”, then on “Two Independent Means”, and finally on “Non-Inferiority using Ratios” to 
highlight it. If we double-clicked on “Non-Inferiority using Ratios”, that procedure would be 
displayed. 
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CHAPTER 4 

Procedure Window 
Introduction 
All PASS procedures are controlled by a procedure window that contains all of the settings, options, 
and parameters that control the input and output of the program. These options are separated into 
groups called panels. A particular panel is viewed by pressing the corresponding tab that appears near 
the top of the window. For example, in the window below, the Data panel is active. Other panels are 
Options, Reports, and Plot Setup. 

The values of all options available for a procedure are referred to as a template. A template may be 
stored for future use in a template file. By creating and saving template files (often referred to as 
templates), you can tailor each procedure to your own specific needs. For example, you may want to 
your plots to be bar charts. This capability can be saved as a template. Each time you use a procedure, 
you simply load your template and run the analysis you have preset. You do not have to set all the 
options every time. The specific operations needed to do these are shown later. 

Note that at most six procedure windows can be opened at a time. Also note that you can widen the 
window to increase the size of the immediate help window by dragging the corners of the window. 
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Default Template 
Whenever you close a procedure, the current settings are automatically saved in a default template 
file named default. This template file is automatically loaded when the procedure is next opened. This 
allows you to continue using the template without resetting all of the options.  

Procedure Window Anatomy 
This section explains the various objects found on the template.  

 

 

Tabs. The tabs let 
you view different 
groups of options. 
 
Immediate Help. 
This box displays 
a brief help 
message about 
the field that the 
over-which the 
mouse is currently 
positioned. 
 
 

Menus. The 
menus let you 
move to other 
windows. 
 
Run. Clicking 
this button runs 
the program 
and generates 
output. 
 
Options. These 
fields set values 
that control the 
analysis. 
 

Template Id. This 
box can contain a 
phrase that 
identifies this 
template. 

Reset. This button 
resets all options 
under all tabs to 
their default 
values. 
 

Guide Me. This 
button instructs 
the program to 
step you through 
the main options 
that must be set 
for an analysis. 
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Menus 
The menus provide a convenient way to transfer from module to module within the PASS system. 
Each set of menus will be briefly described here. 

File Menu 
The File Menu is used for initializing, loading, and saving a copy of a template. Each set of options 
for a procedure, called a template, may be saved for future use. In this way, you do not have to set the 
options every time you use a procedure. Instead, you set the options the first time, save them as a 
template, and re-use the template whenever you re-use the procedure.  

New Template (Reset) 
This menu item resets all options to their default values. It performs the same function as the Reset 
buttons.  

Open Template Panel 
This option sets the Template panel as the active procedure panel. The Template panel lets you load 
or save template files. It displays all templates associated with this procedure along with the Template 
Id (the optional phrase at the bottom of the window).  

Save Template 
(button) 
To save a template, enter 
the name you want to 
give the template file in 
the File Name box. You 
may also enter an 
identifying phrase in the 
box at the bottom of the 
window since this will be 
displayed along side of 
the file names. Finally, 
press the Save Template 
button to save the file.  

Note that there is no 
automatic connection 
between the template in 
memory and the copy on 

the disk. If you want to save the changes you have made to a template, you must use the Save 
Template option to save them.  

Load Template (button) 
To load a template file, select it from the list of files given in the Template Files box. Once the 
desired file is selected, press the Load Template button to load the template. 
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Save Template 
This option saves the current option settings to the template file that is currently specified in the File 
Name option of the Template panel. You can be viewing any panel of the procedure when you issue 
this command—you do not have to be viewing the Template panel.  

The template files are stored in the Settings folder. You can erase any unwanted template files by 
deleting them from this folder using the Windows Explorer program. 

The template files for each procedure have different file name extensions. Thus, you can use the same 
name for a template saved from the T-Test procedure as for a template saved from the Multiple 
Regression procedure. For example, if the ‘Save Template’ command is issued in the window shown 
above, the current settings will be saved in a file called ‘default.201’ in the Settings folder. 

The Save button on the toolbar provides this same operation. It may be more convenient than 
selecting this menu item. 

Close Procedure 
This option closes this procedure window. 

Printer Setup 
This option lets you set various printer options. 

Exit NCSS and PASS 
This option terminates the NCSS/PASS system. Before using this option, you should save all 
datasheets, templates, and output documents that you want to keep.  

Run Menu 
This menu controls the execution of the program.  

Run Procedure 
The Run Procedure option runs the analysis, displaying the output in the Output document of the 
word processor. After you have set all options to their appropriate values, select this option to 
perform the analysis. 

Note that the procedure may also be run by pressing the F9 function key or by pressing the left-most 
key on the toolbar (the dark-blue-arrow button). 

Abort 
After starting a procedure, you may find that it is taking longer than you anticipated to finish. You 
can stop the running of the procedure by pressing this button. The red stop-sign icon that appears on 
the top right of the screen may be pressed for the same purpose.  

Analysis and Graphics Menus 
These menus allow you to transfer to various NCSS procedures. You can load these procedure 
windows, but when you try to run them, you will receive an error message indicating that you do not 
have a license for this procedure (unless you have purchased a license for NCSS). 
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PASS Menu 
This menu allows you to directly load any of the various PASS procedures.  

Window Menu 
This menu lets you display any of the other windows in the NCSS/PASS system that are currently 
open such as the Output window, the Data (Spreadsheet) window, the Navigator window, or any 
procedure windows. 

Output 
Select this option to display the output window. 

Data (Spreadsheet) 
Select this option to display the NCSS spreadsheet. 

Navigator 
Select this option to display the NCSS navigator window. 

Reset Window Positions 
Occasionally, NCSS/PASS windows will be loaded, but will not display. This menu item will load 
the Options window to a tab that will let you reset the position of all program windows. 

Help Menu 
This menu gives you access to the PASS documentation. 

Help... 
This option loads the help system. Once loaded, press the Contents button to obtain a table of 
contents window. 

About... 
This option show you which products are licensed and when your version was released. 

Serial Numbers... 
This option loads the serial number screen. Use this when you need to change one of your serial 
numbers.  

View PDF File... 
This option loads the PDF file that documents this procedure. This file may then be printed.  
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Toolbar  
The toolbar is a series of small buttons that appear just below the menus at the top of the procedure 
window. Each of these buttons provides quick access to a menu item.  

 

 

 

 

 

 

 

 

 

 

 

Run. Run 
the current 
procedure 
and 
generate 
the output. 

Reset. Set 
all options 
to their 
default 
values. 

Open. 
Load a 
template 
file. 

Save. 
Save the 
current 
settings 
to a 
template 
file. 

PASS 
Home. 
Load the 
PASS 
Home 
Window. 

Spreadsheet. 
Load the 
NCSS 
Spread-sheet 
window. 

Output. 
Load the 
Output 
window. 

Navigator. 
Load the 
NCSS 
Navigator 
window. 

Filter. 
Load the 
NCSS 
data filter 
window. 

Procedures (8). 
Customizable 
buttons that will 
jump to the user-
designated 
procedures. 

Help.  
Load the 
help 
system. 

PDF.  
Load the 
appropriate 
PDF file for 
viewing and 
printing. 

Important Tip for PASS Users 

The Procedures (8) buttons are a series of eight buttons that can be changed to your favorite 
procedures by right clicking on any of these buttons. 
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The Panel Tabs 
The procedure window contains several sets of options (panels). Each panel is displayed by clicking 
on the appropriate tab. We will now describe the purpose and operation of each panel.  

Data tab 
This tab displays most of the options specific to the procedure. This is where you set the values of 
power, sample size, alpha, etc. These options are described in detail in the chapters corresponding to 
each procedure. Once you have set the options, click the Run button to generate the output. 

Entering Multiple 
Values 
In most cases, boxes that are extra 
wide allow you to enter multiple 
values. When this is done, a 
separate analysis is made for each 
combination of all multiple 
values. For example, if you enter 
four sample sizes and three alpha 
values, the resulting report will 
contain 3 × 4 = 12 rows, one for 
each combination. 

You can enter multiple options 
using list or the to-by syntax. The 
to-by syntax is most easily 
described by an example. 

The to-by phrase 20 to 100 by 20 
is translated to the values: 20,40,60,80,100. 

Find (Solve For) 
Specify the parameter that is to be solved for in terms of the other parameters. For example, you 
might want to solve for power or sample size. 

In most cases, the algorithm for the calculating the power is programmed within PASS. When other 
parameters (such as sample size or difference) are selected, a binary search is conducted using the 
power algorithm. These searches can be time consuming, so the best place to start is with this option 
set to ‘Beta and Power’. 

 



22  Procedure Window 

Options tab 
The Options window presents the parameters that control the searching process.  

Maximum Iterations.  

This option specifies the 
maximum number of 
iterations before a search for 
the parameter of interest is 
halted. When the maximum 
number of iterations is 
reached without convergence, 
the criterion is left blank. We 
recommend that at least 500 
iterations be specified. 

 
 

 
Reports tab 
This tab displays the options that control the output reports.  

Decimals 
These options set the number of 
decimal places in 
corresponding values of the 
numeric and graphic output. 

Summary Statement 
Rows 
The Summary Statement is a 
paragraph that can be output for 
each row of the report. When 
you do not need this output, 
you can reduce the number of 
rows accordingly. To eliminate 
the text output completely, set 
this value to zero.  

Show ... 
These options control whether the corresponding item is displayed in the output.  
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Plot Setup tab 
This tab displays options that control the plots, including which parameters are shown on the axes and 
the type of plot that is displayed.  

 

Horizontal Axis 
Parameter 
This option selects which 
of the parameters from 
the Data tab is displayed 
across the horizontal axis. 
Note that you cannot 
select the parameter that 
was listed in the Find 
option. Also, you would 
normally only select a 
parameter that has 
multiple entries.  

When this option is set to 
Automatic, the parameter 
with the most values is 
selected. 

Legend Parameter 
A separate line is drawn for each value of this parameter. The lines are labeled in the legend. When 
this option is set to Automatic, the parameter with the second most values is selected.  

Show Beta as Power 
This option controls whether Beta or Power is displayed on the plots.  

Chart Type 
This option controls the type of chart that is displayed. Bar charts, line charts, and surface charts are 
available.  

Bar Chart Options 
These chart types are available when Chart Type is set to Bar.  
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Line Chart Options 
These chart types are available when Chart Type is set to Line.  

Line Chart - Lines
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Line Chart - Symbols
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Line Chart - Lines & Symbols Line Chart - Tape
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Surface Charts 
These chart types are available when Chart Type is set to Surface.  

Surface Chart - Surface
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Interactive Format 
This option controls whether the plot may be reformatted interactively after it has been generated. 
When checked, this option allows charts to be formatted interactively using the following window.  

The four scroll bars around the edge of 
this window control the vertical axis, 
horizontal axis, depth, and perspective. 
The current values of these parameters 
are shown in the boxes at the bottom of 
the screen. 

Once you are finished editing chart, 
click the Ok button to proceed. 

 

 

 

 

 

 

 

  
Each of the buttons along the top of the Scatter Plot Editing Window will display a different tab of 
the Graph Control window. Each tab provides options which allow detailed modification of the chart. 

We will not document these options here since most 
of them are not necessary to the running of PASS. If 
you want to explore these options further, choose the 
Help button at the bottom of the window. This will 
bring up a special help system that describes all 
graphics options in detail. 
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Plot Text tab 
This window controls the titles and labels of the plots.  

Plot Title - Legend 
Label 
The title and label options 
specify the text, color, and 
font size of the 
corresponding value 
displayed on the plot. 

Tickmark Number 
Rotation 
This option specifies 
whether the reference 
values are shown vertical 
or horizontal.  

Legend 
This option sets the 
position of the legend 

% Vert 
Specify the size of the legend area as a percentage of the maximum possible. This option lets you 
shrink a legend that is too large 

Color Legend as Symbols 
Normally, text in the legend is displayed using the color selected by the Color option. This option 
indicates that each legend entry is to be displayed in the corresponding group color.  
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Axes tab 
This tab displays options that control the chart axes.  

Vertical / 
Horizontal Range 
This option designates 
how the minimum and 
maximum along this axis 
are specified. Available 
options are:  

Min=0, Max=Data. The 
axis minimum is set to 
zero. The maximum is 
selected from the data 
values. The values of the 
Minimum, Maximum, 
and Number of Tick 
Marks are ignored.  

Min=Data, Max=Data. Both the minimum and the maximum of the axis are determined from the 
data. The values of the Minimum, Maximum, and Number of Tick Marks are ignored. 

User. This option lets you set the Minimum, Maximum, and Number of Tick Marks to scale the axis. 
These options determine which of the axes have grid lines displayed. This option is particularly useful 
when you want to make sure that the axis displaying power values displays a grid between zero and 
one. 

Minimum and Maximum.  
Specify the axis minimum or maximum to be used when the Vertical (or Horizontal) Range option is 
set to User. 

Number of Tick Marks 
Specify the number of tick marks along this axis. This value is used when Vertical (or Horizontal) 
Range is set to User.  

Show Grid Lines On 
These options determine which of the axes have grid lines displayed.  

Grid Line Style  
Specify the pattern of the line. This option only works when the line width is 20.  

Grid Color  
Specify the color of the grid line.  
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Show Tick Marks On  
These options control which of the axes have tick marks displayed.  

Axis Color  
Specify the color of the Axis line.  

3D tab 
This tab displays options that control the 3D charts.  

Horizontal Angle 
This option sets the horizontal 
viewing angle (in degrees) for 
3D plots. It represents an angle 
around the base of the plot. 
The range of values is -180 to 
180 degrees. This option may 
be changed interactively when 
the Interactive Format option is 
checked.  

Vertical Angle 
This option sets the vertical 
viewing angle (in degrees) for 
3D plots. It represents an angle 
above or below a point halfway 
up the graph. Values may 
range from -60 to 90 degrees. 

This option may be changed interactively when the Interactive Format option is checked.  

Depth 
This option sets the projected depth of 3D plots. Depth is a percentage of 100, calculated to provide 
equal increments in the X and Z directions. Values may range from 5 to 400. This option may be 
changed interactively when the Interactive Format option is checked. 

Perspective 
This option sets the degree of perspective foreshortening in 3D plots. Perspective is the perceived 
distance of the viewer from the graph. The range of values is 0 to 100. This option may be changed 
interactively when the Interactive Format option is checked. 

Projection Method 
Sets the projection method of 3D-type charts.  

Off 
No graph is drawn. 
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Isometric 
The graph is drawn, but no perspective is attempted.  

Perspective 
The axes are tilted to give a 3D perspective to the plot.  

Thin Walls 
This option specifies whether the walls of the axis grid that form the background of the chart are thick 
or thin.  

Color Palette 
Specify a color palette for the surface chart. Using a setting of, say, Black to Red will allow the 
surface plot to show a continuous array of red hues from lowest to highest.  

Wall Color 
Specify the color of the wall.  

Cage Wall 
Specify the color of the cage (grid) wall.  

Cage Edge 
Specify the color of the cage (grid) edge.  

Color Min 
Specifies the number of the color to be associated with the lowest numerical value. Possible values 
are 32 to 127. A value near 50 usually works well. Note that this option only works with 128-color 
palettes.  

Color Max 
Specifies the number of the color to be associated with the largest numerical value. Possible values 
are 32 to 127. A value near 120 usually works well. Note that this option only works with 128-color 
palettes.  

Cage Flip 
This option controls whether the back and side walls of the graph cage are allowed to switch to the 
opposite edge for better viewing as the graph is rotated.  



30  Procedure Window 

Symbols 1 and 2 tabs 
These tabs specify the appearance of up to fifteen symbols. If more than fifteen symbols are needed, 
the first fifteen are repeated.  

 
Symbol 
These options specify the color, size, and shape of the plotting symbols.  

Background tab 
These options specify the style and color of various portions of the graph.  
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Abbreviations tab 
These tabs specify the abbreviations that are used for the parameters in the titles of the plots. It is 
usually necessary to keep these abbreviations as short as possible since the title can only contain 80 
characters. 
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Template tab 
This tab displays the options necessary to load and save templates. The template refers to the settings 

of all options under all 
tabs. Templates are stored 
in files in the Settings 
subdirectory.  

File Name 
This box contains the 
name of the template file. 
Standard file naming 
conventions must be 
followed. A two or three 
character file extension is 
supplied by PASS. All 
you need to enter is the 
file name.  

 
 

Template Files 
Select a template file from this list of previously saved templates. The file’s name will be entered in 
the File Name box at the top of this window. You can then press the Load Template button to load the 
settings stored in this file into this template or the Save Template button to save the settings.  

Template Id’s 
This box contains a list of the template id’s corresponding to the template name. Remember that the 
template id is entered in the text box at the bottom of the window.  

Load Template 
This button will load the file whose name shows in the File Name box.  

Save Template 
This button will save the settings of the all options to the template file named in the File Name box.  
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CHAPTER 5 

Output Window 
Introduction 
PASS sends all statistics and graphics output to its built-in word processor from where they can 
be viewed, edited, printed, or saved. Reports and graphs are saved in rich text format (RTF). 
Since RTF is a standard document transfer format, these files may be loaded directly into your 
word processor for further processing. You can also cut and paste data onto an NCSS datasheet 
for further analysis. This chapter covers the basics of our built-in word processor.  

Viewing the output 
The output of the Example1 template of the Two-Sample T-Test program is shown below. The 
output window is in full-screen mode. The screen will look similar to this. Note that the actual 
size of your screen depends on the resolution of your monitor, so it may vary. 
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Documents 
The PASS word processor maintains two documents: Output and Log. Although both of these 
documents allow you to view your data, the Output document serves as a viewer while the Log 
document serves as a recorder.  

You can load additional documents as well. For example, you might want to view the output from 
a previous analysis to compare the results with the current analysis. To do this, you open a third 
document that is actually the log file from a previous analysis. 

All PASS documents are stored in the RTF format. This is a common format that is used by most 
word processors, including MS-Word and MS-Write. When you save a PASS report, you will be 
able to load that report directly into your own word processor. All text, formatting, and graphics 
will appear in your word processor ready for further editing. You can then save the document in 
your word processor’s native format. In this way, you can easily transfer the output of a PASS 
procedure to almost any format you desire.  

Output Document 
The Output document displays the output report from the current analysis. Whenever you run a 
PASS procedure, the resulting reports and graphs are displayed in the Output document. Each 
new run clears the existing Output document, so if you want to save a report, you must do so 
before running the next report. 

The Output document provides four main functions: display, print, save to the Log document, and 
save as an RTF file. 

Log Document 
The Log document provides a place to store a permanent record of your analysis. Since the 
Output document is erased by each new analysis, you need a place to store your permanent work. 
The Log document serves this purpose. When you have a report or graph that you want to keep, 
copy it from the Output document to the Log document. 

The Log document provides four main word processing functions: load, display and edit, print, 
and save. When you load a file into the Log document, you can add new output to it. In this way, 
you can record your work on a project in a single file, even though your work on that project is 
spread out over several days.  

File Menu 
The File Menu is used for opening, saving, and printing PASS word processor files. All options 
apply to the currently active document (the document whose title bar is selected). We will now 
discuss each of the options on this menu.  

New 
This option opens an empty document. You might use this when you want to make notes about 
your analysis. 

New Log 
This option opens an empty log document. You might use this when you want to start a new 
project. 
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Open 
This option opens an existing file. When this item is selected, the Open Report File dialog box 
appears. Note that no connection is maintained between a loaded file and its image on the disk. If 
you make changes to a file, you must save those changes to the disk. 

Open Log 
This option opens an existing log file. When this item is selected, the Open Report File dialog 
box appears. The requested file is loaded into the Log document. Note that no connection is 
maintained between a loaded file and its image on the disk. If you make changes to a file, you 
must save those changes to the disk. 

You might use this option when you want to continue using a certain file as the Log file. 

Toggle Auto-Log 
When Auto-Log is on, the contents of the Output document are automatically copied to the Log 
document. The Output document remains unchanged. If you want to keep a copy of all the output 
that has been placed in the Log document, you will still need to save it manually.  

This function allows you to automatically save all output for further use. 

Add Output to Log 
Selecting this option copies the contents of the Output document to the Log document. The 
Output document remains unchanged. This allows you to save the current output document for 
further use. 

Save As 
This option lets you save the contents of the currently active document to a designated file using 
the RTF format. Note that only the active document is saved. Also note that all file names should 
have the “RTF” extension so that other systems can recognize their format.  

Printer Setup 
This option allows you to set printing options on your printer. 

Print Preview 
This option displays the output report as it will appear on the printed page. Use it to preview your 
report before printing it out.  

Print... 
This option lets you print the entire document or a range of pages. When you select this option, a 
Print Dialog box will appear that lets you control which pages are printed. 

Close Document 
Minimizes the document that is currently being viewed. Note that this option does not clear the 
document, it simply minimizes it. 

Exit 
This option exits the NCSS/PASS system. All documents and databases are closed.  
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Edit Menu 
This menu contains options that let you edit a document.  

Undo 
This item reverses the last edit action. It is particularly useful for replacing something that was 
accidentally deleted. 

Cut 
This item copies the currently selected text to the Windows clipboard and erases it from the 
document. You can paste the information from the clipboard to a different location in the current 
document, into another document, into a datasheet in the spreadsheet, or into another application. 
The selected text is erased. 

Copy 
This item copies the currently selected text from the document to the Windows clipboard. You 
can paste this information from the clipboard to a different location in the current document, into 
another document, into a datasheet in the spreadsheet, or into another application. The selected 
text is not modified. 

Paste 
This item copies the contents of the clipboard to the current document at the insertion point. This 
command is especially useful for moving selected information from the Output document to the 
Log document. 

Select All 
This item selects the entire document. Although you can select a portion of the document using 
the mouse or a shift-arrow key, this is much faster if you want to select the entire document. 

Toggle Page Break 
Changes the status of the page break on the line at which the insertion point resides. If a page 
break exists (shown by a horizontal line), it is removed. If a page break does not currently exist at 
that point, one is added. 

Note that PASS does not repaginate your document for you. Once you make changes, it will be 
up to you to repaginate your document. 

Find 
This item opens the Search dialog box. You can specify text that you want to search for. This is 
especially useful when you are looking for a certain topic or data value in a large report. 

Find Next 
This item continues finding the text you entered in the Search Dialog box. 

Replace 
This item opens the Search and Replace dialog box. This allows you to make repetitive changes. 
For example, you might want to change the name of one of the variables to a more useful name. 
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Goto Section 
This item does not modify the document. Instead, it lets you reposition the insertion point to one 
of the major topics. When PASS runs a procedure, it stores the major report topics in this list box. 
You can quickly position the view to a desired topic using this screen. 

View Menu 
 The View Menu lets you designate which editing tools you want to use.  

Ruler 
This option controls whether the ruler and the tabs bar are displayed. The ruler displays the 
physical dimensions of the document. The tabs bar, found just below the ruler bar, lets you set the 
margins and tabs of your document. Only the currently selected part of your document is affected 
by a change in the tabs and margins.  

Format Toolbar 
This option controls whether the Format Toolbar is displayed. The function of each of the buttons 
is discussed below.  

Status Bar 
This option controls whether the Status Bar is displayed at the bottom of the output window. 

Show All  
Selecting this menu item causes the Ruler, Tabs Bar, Format Toolbar, and Status Bar to be 
displayed. 

Hide All  
Selecting this menu item causes the Ruler, Tabs Bar, Format Toolbar, and Status Bar to be 
hidden. This gives you more screen space to view your output. 

Redraw  
Occasionally the Output Window becomes cluttered. If this happens, select this option to 
redisplay the output. 

Format Menu 
This menu lets you set the format for a selected block of text.  

Font 
This option displays the Replace Font dialog box, which lets you specify the font and style of the 
selected text.  
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Paragraph 
This option displays the Paragraph dialog box, which lets you specify the tabs and margins of the 
selected text. 

Format Markers 
Indicates whether the (usually hidden) tab arrows and the end-of-paragraph marks are displayed 
in the document. Note that these characters are never printed. 

Window Menu 
This menu lets you designate how you want the documents arranged on the screen and which 
window you want displayed on top of your output desktop.  

Cascade 
This item arranges the documents in a cascading display from the upper left to the lower right of 
the screen. 

Tile Horizontally 
This item arranges the documents horizontally down the word processor window. 

Tile Vertically 
This item arranges the documents vertically across the word processor window. 

Arrange Icons 
When a document is minimized, it is represented as an icon at the bottom of the word processor 
window. This option arranges all document icons. It is usually applied when the word processor 
window has been resized. 

Current Output 
This item causes the Output window to be displayed. 

Log 
This item causes the Log window to be displayed. 

View Data (Spreadsheet) 
Causes the Spreadsheet window to be displayed.  

View Navigator 
Causes the NCSS/PASS Navigator window to be displayed.  
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Help Menu 
This menu controls the display of the serial numbers and help system.  

Help 
This item displays the help system. 

About 
This item displays the release date and version number of your software. 

Serial Numbers 
This item displays the NCSS/PASS Registration window where your serial numbers can be 
modified.  

View PDF File... 
This option loads the PDF file that documents this procedure. This file may then be printed.  
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Toolbar  
The toolbar is a series of small buttons that appear just below the menus at the top of the 
procedure window. Each of these buttons provides quick access to a menu item.  

Add 
to  
Log  

Print 
Pre- 
view 

Save Copy Find Marks Format 
Bar 

PASS 
Home 

Output Navigator 
 

Open 
Log 
File 

Print Cut Spread- 
sheet 

Font Programmable 
‘Jump to’ Buttons 

Log Ruler Paste Undo 
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CHAPTER 6 

Introduction to 
Power Analysis 
Overview 
A statistical test’s power is the probability that it will result in statistical significance. Since 
statistical significance is the desired outcome of a study, planning to achieve high power is of 
prime importance to the researcher. Because of its complexity, however, an analysis of power is 
often omitted.  

PASS calculates statistical power and determines sample sizes. It does so for a broad range of 
statistical techniques, including the study of means, variances, proportions, survival curves, 
correlations, bioequivalence, analysis of variance, log rank tests, multiple regression, and 
contingency tables. 

PASS was developed to meet several goals, including ease of learning, ease of use, accuracy, 
completeness, interpretability, and appropriateness. It lets you study the influence of sample size, 
effect size, variability, significance level, and power on your statistical analysis.  
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Brief Introduction to Power Analysis 
Statistical power analysis must be discussed in the context of statistical hypothesis testing. Hence, 
this discussion starts with a brief introduction to statistical hypothesis testing, paying particular 
attention to topics that relate to power analysis and sample size determination. Although the 
theory behind hypothesis testing is general, its concepts can be reviewed by discussing simple 
case: testing whether a proportion is greater than a known standard.  

Following the usual terminology of statistical hypothesis testing, define two complementary 
hypotheses 

H P P0 0: ≤  vs.  H P P1 0: >

where P is the response proportion in the population of interest and P0 is the known standard 
value. 

H0 is called the null hypothesis because it specifies that the difference between the two 
proportions is zero (null). 

H1  is called the alternative hypothesis. This is the hypothesis of interest to us. Our motivation for 
conducting the study is to provide evidence that the alternative (or research) hypothesis is true. 
We do this by showing that the null hypothesis is unlikely—thus establishing that the alternative 
hypothesis (the only possibility left) is likely. 

Outcomes from a statistical test may be categorized as follows:  

1. Reject H  when  is true. That is, conclude that  is unlikely when it is true. This 
constitutes a decision error known as the Type-I error. The probability of this error is alpha 
(

0 H0 H0

α ) and is often referred to as the significance level of the hypothesis test. 

2.  Do not reject  when  is false. That is, conclude that  is likely when it is false. This 
constitutes a decision error known as the Type-II error. The probability of this error is beta 
(

H0 H0 H0

β ). Power is 1− β . It is the probability of rejecting  when it is false. H0

3.  Reject  when  is false. This is a correct decision. H0 H0

4.  Do not reject  when  is true. This is also a correct decision. H0 H0

The basic steps in conducting a study that is analyzed with a hypothesis test are: 

1. Specify the statistical hypotheses,  and . H0 H1

2. Run the experiment on a given number of subjects.  

3. Calculate the value of a test statistic, such as the sample proportion. 

4. Determine whether the sample values favor  or . H0 H1
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Binomial Probability Table 
In the current example, suppose that a random sample of ten individuals is selected, that is N = 
10. The number of individuals, R, with the characteristic of interest is counted. Hence, R is the 
test statistic. A table of binomial probabilities gives the probability that R takes on each of its 
eleven possible values for various values for P.  

     P     

R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
0 0.349 0.107 0.028 0.006 0.001 0.000 0.000 0.000 0.000 
1 0.387 0.376 0.121 0.040 0.010 0.002 0.000 0.000 0.000 
2 0.194 0.302 0.233 0.121 0.044 0.011 0.001 0.000 0.000 
3 0.057 0.201 0.267 0.215 0.117 0.042 0.009 0.001 0.000 
4 0.011 0.088 0.200 0.251 0.205 0.111 0.037 0.006 0.000 
5 0.001 0.026 0.103 0.201 0.246 0.201 0.103 0.026 0.001 
6 0.000 0.006 0.037 0.111 0.205 0.251 0.200 0.088 0.011 
7 0.000 0.001 0.009 0.042 0.117 0.215 0.267 0.201 0.057 
8 0.000 0.000 0.001 0.011 0.044 0.121 0.233 0.302 0.194 
9 0.000 0.000 0.000 0.002 0.010 0.040 0.121 0.376 0.387 
10 0.000 0.000 0.000 0.000 0.001 0.006 0.028 0.107 0.349 

Let us discuss in detail the interpretation of the values in this table for the simple case in which a 
coin is flipped ten times and the number of heads is recorded. The column parameter P is the 
probability of obtaining a head on any one toss of the coin. When dealing with coin tossing, one 
would usually set P = 0.5, but this does not have to be the case. The row parameter R is the 
number of heads obtained in ten tosses of a coin.  

The body of the table gives the probability of obtaining a particular value of R. One way to 
interpret this probability value is as follows: conduct a simulation in which this experiment is 
repeated a million times for each value of P. Using the results of this simulation, calculate the 
proportion of experiments that result in each value of R. This proportion is recorded in this table. 
For example, when the probability of obtaining a head on a single toss of a coin is 0.5, ten flips of 
a coin would result in five heads 24.6% of the time. That is, as the procedure is repeated (flipping 
a coin ten times) over and over, 24.6% of the outcomes would be five heads. 
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Calculating the Significance Level, Alpha 
We will now explain how the above table is used to set the significance level (the probability of a 
type-I error) to a pre-specified value. Recall that a type-I error occurs when an experiment results 
in the rejection of the null hypothesis when, in fact, the null hypothesis is true. By studying the 
table, the impact of using different rejection regions can be determined. A rejection region is a 
simple rule that states which values of the test statistic will result in the null hypothesis being 
rejected.  

For example, suppose we want to test P0 = 0.5. That is, the null hypothesis is that P = 0.5 and the 
alternative hypothesis is that P > 0.5. Suppose the rejection region is R equal to 8, 9, or 10. That 
is,  is rejected if R = 8, 9, or 10. From the above table, the probability of obtaining 8, 9, or 10 
heads in 10 tosses when P = 0.5 is calculated as follows: 

H0

P(R = 8, 9, 10 | P = 0.5) = P(R = 8 | P = 0.5) + P(R = 9 | P = 0.5) + P(R = 10 | P = 0.5)  

= 0.044 + 0.010 + 0.001 = 0.055.  

That is, 5.5% of these coin tossing experiments using this decision rule result in a type-I error. By 
setting the rejection criterion to R = 8, 9, or 10, alpha has been set to 0.055. 

It is extremely important to understand what alpha means, so we will go over its interpretation 
again. If the probability of obtaining a head on a single toss of a coin is 0.5, then 5.5% of the 
experiments that use the rejection criterion of R = 8, 9, or 10 will result in the false conclusion 
that P > 0.5.  

The key features of this definition that are often overlooked by researchers are: 

1. The value of alpha is based on a particular value of P. Note that we used the assumption 
“if the probability of obtaining a head is 0.5” in our calculation of alpha. Hence, if the actual 
value of P is 0.4, our calculations based on the assumption that P is 0.5 are wrong. 
Mathematicians call this a conditional probability since it is based on the condition that P is 
0.5. Alpha is 0.055 if P is 0.5.  

Often, researchers think that setting alpha to 0.05 means that the probability of rejecting the 
null hypothesis is 0.05. Can you see what is wrong with this statement? They have forgotten 
to mention the key fact that this statement is based on the assumption that P is 0.5!  

2. Alpha is a statement about a proportion in multiple experiments. Alpha tells us what 
percentage of a large number of experiments will result in 8, 9, or 10 heads. Alpha is a 
statement about what to expect from future experiments. It is not a statement about P. 
Occasionally, researchers conclude that the alpha level is the probability that P = 0.5. This is 
not what is meant. Alpha is not a statement about P. It is a statement about future 
experiments, given a particular value of P. 

Interpreting P Values 
The term alpha value is often used interchangeably with the term p value. Although these two 
terms are closely related, there is an important distinction between them. A p value is the largest 
value of alpha that would result in the rejection of the null hypothesis for a particular set of data. 
Hence, while the value of alpha is set during the planning of an experiment, the p value is 
calculated from the data after experiment has been run.  
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Calculating Power and Beta 
We will now explain how to calculate the power. Recall that power is the probability of rejecting 
a false null hypothesis. A false  means that P is some value other than P0. In order to compute 
power, we must know the actual value of P.  

H0

Returning to our coin tossing example, suppose the actual value of P is 0.7. What is the power 
and beta value of this testing procedure? The decision rule is to reject the null hypothesis when R 
is 8, 9, or 10. From the above probability table, the probability of obtaining 8, 9, or 10 heads in 
10 tosses of a coin when probability of a head is actually  0.7 is  

P(R = 8, 9, 10 | P = 0.7) = P(R = 8 | P = 0.7) + P(R = 9 | P = 0.7) + P(R = 10 | P = 0.7)  

= 0.233 + 0.121 + 0.028 

 = 0.382  

This is the power. The value of a type-II error is 1.000 - 0.382, which is 0.618. That is, if P is 0.7, 
then 38.2% of these coin tossing experiments will reject , while 61.8% of them will result in a 
type-II error. 

H0

It is extremely important to understand what beta means, so we will go over its interpretation 
again. If the probability of obtaining a head on the toss of a coin is 0.7, then 61.8% of the 
experiments that use the rejection criterion of R = 8, 9, or 10 will result in the false conclusion 
that P = 0.5.  

The key features of this definition that are often overlooked by researchers are: 

1. The value of beta is based on a particular value of P. Note that we used the assumption “if 
the probability of obtaining a head is 0.7” in our calculation of beta. Hence, if the actual value 
of P is 0.6, our calculation based on the assumption that P was 0.7 is wrong. 

2. Beta is a statement about the proportion of experiments. Beta tells us what percentage of 
a large number of experiments will result in 8, 9, or 10 heads. Beta is a statement about what 
we can expect from future experiments. It is not a statement about P.  

3. Beta depends on the value of alpha. Since the rejection region (8, 9, or 10 heads) depends 
on the value of alpha, beta depends on alpha. 

4. You cannot make both errors at the same time. A type-II error can only occur when a 
type-I error did not occur, and vice versa.  

Specifying Alternative Values of the Parameters 
We have noted a great deal of confusion about specifying the values of the parameters under the 
alternative hypothesis. The alternative hypothesis is usually that the value of one parameter is 
different from another. The hypothesis does not usually specify how different. It simply gives the 
direction of the difference. The power is calculated at specified alternative values. These values 
should be considered as values at which the power is calculated, not as the true value.  
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Effect Size 
The effect size is the size of the change in the parameter of interest that can be detected by an 
experiment. For example, in the coin tossing example, the parameter of interest is P, the 
probability of a head. In calculating the sample size, we would need to state what the baseline 
probability is (probably 0.5) and how large of a deviation from P that we want to detect with our 
experiment. We would expect that it would take a much larger sample size to detect a deviation of 
0.01 than it would to detect a deviation of 0.40.  

Selecting an appropriate effect size is difficult because it is subjective. The question that must be 
answered is: what size change in the parameter would be of interest? Note that, in power analysis, 
the effect size is not the actual difference. Instead, the effect size is the change in the parameter 
that is of interest or is to be detected. This is a fundamental concept that is often forgotten after 
the experiment is run.  

After an experiment is run that leads to non-significance, researchers often ask, “What was the 
experiment’s power?” and “How large of a sample size would have been needed to detect 
significance?” To compute the power or sample size, they set the effect size equal to the amount 
that was seen in their experiment. This is incorrect. When performing a power analysis after an 
experiment has completed, the effect size is still the change in the parameter that would be of 
interest to other scientists.  It is not the change that was actually observed! 

Often, the effect size is stated as a percentage change rather than an absolute change. If this is the 
case, you must convert the percentage change to an absolute change. For example, suppose that 
you are designing an experiment to determine if tossing a particular coin has exactly a 50% 
chance of yielding a head. That is, P0 is 0.50. Suppose your gambling friends are interested in 
whether a certain coin has a 10% greater chance. That is, they are concerned with the case where 
P is 0.55 or greater. The effect size is |0.50 - 0.55| or 0.05. 

Types of Power Analyses 
There are several types of power analyses. Often, power analysis is performed during the design 
phase of a study to determine the sample size. This type of study would determine the value of N 
for set values of alpha and beta. Another type of power analysis is a post hoc analysis, which is 
done after the study is concluded. A post hoc analysis studies such questions as: 

1. What sample size would have been needed to detect a specific effect size? 

2. What is the smallest effect size that could be detected with this sample size? 

3. What was the power of the test procedure? 

These and similar questions may be answered using power analysis. By considering these kinds 
of questions after a study is concluded, you can gain important insights into how to make your 
research more efficient and effective. 
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Nuisance Parameters 
Statistical hypotheses usually make statements about one or more parameters from a set of one or 
more probability distributions. Often, the hypotheses leave other parameters of the probability 
distribution unspecified. These unspecified parameters are called ‘nuisance’ parameters.  

For example, a common clinical hypothesis is that the response proportions of two drugs are 
equal. The null hypothesis is that the difference between these two drugs is zero. The alternative 
is that the difference is non-zero. Note that the actual values of the two proportions are not stated 
in the hypothesis—just their difference. The actual values of the proportions will be needed to 
compute the power. That is, different powers will result for the case when P1 = 0.05 and P2 = 
0.25 and for the case P1 = 0.50 and P2 = 0.70. In this example, the proportion difference (D = P1 
– P2) is the parameter of interest. The baseline proportion, P1, is a nuisance parameter. 

Another example of a nuisance parameter occurs when using the t-test to test whether the mean is 
equal to a particular value. When computing the power or sample size for this test, the hypothesis 
specifies the value of the mean. However, the value of the standard deviation is also required. In 
this case, the standard deviation is a nuisance parameter. 

When performing a power analysis, you should state all your assumptions, including the values of 
any nuisance parameters that were used. When you do not have any idea as to reasonable values 
for nuisance parameters, you should use a range of possible values so that you can analyze how 
sensitive the results are to the values of the nuisance parameters. Also, do not be tempted to use 
the nuisance parameter’s value from a previous (or pilot) study. Instead, a reasonable strategy is 
to compute a confidence interval and use the confidence limit that results in the largest sample 
size. 

Choice of Test Statistics 
Many hypothesis tests can be tested with a variety of test statistics. For example, statisticians 
often have to decide between the t-test and the Wilcoxon test when testing means. Similarly, 
when testing whether two proportions are equal, they have to decide whether to use a z-test or an 
exact test. If they choose a z-test, they have to decide whether to apply a continuity correction.  

In most cases, each test statistic will have a different power. Thus, it should be obvious that you 
must compute the power of the test statistic that will be used in the analysis. A sample size based 
on the t-test will not be accurate for a nonparametric test. 

The next question is usually “Which test statistic should I use?” You might say “They one that 
requires the smallest sample size.” However, other issues besides power must be considered. For 
example, consideration must be given to whether the assumptions of the test statistic will be met 
be the data. If your data is binary, it is probably unreasonable to assume that they are continuous. 

These are simple principles, but they are often overlooked. 
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Types of Hypotheses 
Hypothesis tests work this way. If the null hypothesis if rejected, the alternative hypothesis is 
concluded to be true. However, if null hypothesis is not rejected, no conclusion is reached--the 
null hypothesis is not concluded to be true. The only way that a conclusion is reach is if the null 
hypothesis is rejected.  

Because of this, it is very important that the null and alternative hypotheses be constructed so that 
the conclusion of interest is associated with the alternative hypothesis. That way, if the null 
hypothesis is rejected, the study reaches the desired conclusion. 

There are several types of hypotheses. These include inequality, equivalence, non-inferiority, and 
superiority hypotheses. In the statistical literature, these terms are used with completely different 
meanings, so it is important to define what is meant by each. We have tried to adopted names that 
are associated with the alternative hypothesis, since this is the hypothesis of interest.  

It is important to note that even though two sets of hypotheses may be similar, they often will 
have different power and sample size requirements. For example, an equivalence test (see below) 
appears to be the simple reverse of a two-sided test of inequality, yet the equivalence test requires 
a much larger sample size to achieve the same power as the inequality test. Hence, you cannot 
select the sample size for an inequality test and then later decide to run an equivalence test.  

Each of the sections to follow will give a brief definition along with an example based on the 
difference between two proportions. 

Inequality Hypothesis 
The term ‘inequality’ is represents the classical one-sided and two-sided hypotheses in which the 
alternative hypothesis is simply that the two values are unequal. These hypotheses are called tests 
of superiority by Julious (2004), emphasizing the one-sided versions.  

Two-Sided 
When the null hypothesis is rejected, the conclusion is simply that the two parameters are 
unequal. No statement is made about how different. For example, 0.501 and 0.500 are unequal, as 
are 0.500 and 0.800. Obviously, even though the former are different, the difference is not large 
enough to be of practical importance in most situations. 

H p p0 1 2 0: − =  vs. H p p1 1 2 0: − ≠  or H or1 1 2 1 20 0: p p p p− < − >  

One-Sided 
These tests offer a little more information than the two sided tests since the direction of the 
difference is given. Again, no indication is made about how much higher (or lower) the superior 
value is to the inferior.  

H p p0 1 2 0: − ≤  vs.  or  H pH p p1 1 2 0: − > p0 1 2 0: − ≥  vs. H p p1 1 2 0: − <  
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Non-Inferiority Hypothesis  
These tests are a special case of the one-sided inequality tests. The term ‘non-inferiority’ is used 
to indicate that one treatment is not worse than another treatment. That is, one proportion is not 
less than another proportion by more than a trivial amount called the ‘margin of equivalence’.  

For example, suppose that a new drug is being developed that is less expensive and has fewer side 
effects than the standard drug. Producers must show that its effectiveness is no worse than the 
drug it is to replace. 

When testing two proportions in which a higher proportion is better, the non-inferiority of 
treatment 1 as compared to treatment 2 is expressed as 

H0 1 2: p p− ≤ −δ  vs. H1 1 2: p p− > −δ  or H0 1 2: p p≤ −δ  vs. H1 1 2: p p> −δ  

where δ > 0  is called the margin of equivalence. Note that when  is rejected, the conclusion 
is that the first proportion is not less than the second proportion by more than 

H0

δ . 

Perhaps an example will help introduce this type of test. Suppose that the current treatment for a 
disease works 70% of the time. Unfortunately, this treatment is expensive and occasionally 
exhibits serious side-effects. A promising new treatment has been developed to the point where it 
can be tested. One of the first questions that must be answered is whether the new treatment is as 
good as the current treatment. In other words, do at least 70% of subjects respond to the new 
treatment?  

Because of the many benefits of the new treatment, clinicians are willing to adopt the new 
treatment even if it is slightly less effective than the current treatment. They must determine, 
however, how much less effective the new treatment can be and still be adopted. Should it be 
adopted if 69% respond? 68%? 65%? 60%? There is a percentage below 70% at which the 
difference between the two treatments is no longer considered ignorable. After thoughtful 
discussion with several clinicians, it is decided that if a response of at least 63% is achieved, the 
new treatment will be adopted. The difference between these two percentages is called the margin 
of equivalence. The margin of equivalence in this example is 7% (which is ten percent of the 
original 70%).  

The developers must design an experiment to test the hypothesis that the response rate of the new 
treatment is at least 0.63. The statistical hypothesis to be tested is 

H p p0 1 2 0 07: .− ≤ −  versus H p p1 1 2 0 07: .− > −  

Notice that when the null hypothesis is rejected, the conclusion is that the response rate is at least 
0.63. Note that even though the response rate of the current treatment is 0.70, the hypothesis test 
is about a response rate of 0.63. Also, notice that a rejection of the null hypothesis results in the 
conclusion of interest.  
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Superiority Hypothesis  
These tests are a special case of the one-sided inequality tests. The term ‘superiority’ is used to 
indicate that one treatment is better than another by more than a trivial amount called the ‘margin 
of equivalence’. For example, suppose that a new drug is being developed that is thought to have 
superior performance to the existing drug. Producers must show that its effectiveness is better 
than the drug it is to replace.  

When testing two proportions in which a higher proportion is better, the superiority of treatment 1 
over treatment 2 is expressed as 

H0 1 2: p p− ≤ δ  vs. H1 1 2: p p− > δ  or H0 1 2: p p≤ +δ  vs. H1 1 2: p p> + δ  

where δ > 0  is called the margin of equivalence. Note that when  is rejected, the conclusion 
is that the first proportion is higher than the second proportion by more than 

H0

δ . 

Equivalence Hypothesis  
The term ‘equivalence’ is used here to represent tests designed to show that response rates of two 
treatments do not differ by more than a trivial amount called the ‘margin of equivalence’. These 
tests are the reverse of the two-sided inequality test.  

The typical set of hypotheses are 

H or0 1 2 1 2: p p p pL U− ≤ − ≥δ δ  vs. H1 1 2:δ δL Up p≤ − ≤  

where δL < 0 and δU > 0  are called the equivalence limits. 

Suppose 70% of subjects with a certain disease respond to a certain drug. The company that 
produces the drug has decided to open a new facility in another city. They must show that the 
drug produced in the new facility is equivalent (all most the same) as that produced in existing 
facilities. After thoughtful discussion with several clinicians and regulatory agencies, it is decided 
that if the response rate of the drug produced at the new facility is between 65% and 75%, the 
new facility will go into production. In this case, the margin of equivalence is 5%.  

The statistical hypothesis to be tested is 

H p p0 1 2 0 05: .− ≥  vs. H p p1 1 2 0 05: .− <  
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Chapter 7  

Proportions 
Introduction 
This chapter introduces power analysis and sample size calculation for proportions. When the 
response is binary, the results for each group may be summarized as proportions. Usually, 
hypothesis tests are conducted to compare two proportions.  

There are many issues that must be considered when designing experiments that use proportions. 
For example, will the proportions be analyzed directly, or will they be converted into differences, 
ratios, or odds ratios? Which test statistic will be used? Will the design use independent groups or 
will subjects be measured twice? Will the study have an active control? 

The various answers to these and other questions result in a large number of situations. This 
chapter will introduce you to the issues that are common to all the tests of proportions. 

Designs 
There are several experimental designs for comparing two proportions. You can you a one-
sample design to compare a sample proportion to a specific value. You can compare proportions 
from two independent samples using independent, stratified, cluster-randomized, or group-
sequential designs. You can compare two correlated proportions. And finally, you can compare 
several categories in a contingency table.  

Comparing Proportions  
Two proportions may be compared by considering their difference, ratio, or odds ratio. Each of 
these cases may lead to different test statistics with different powers and sample size 
requirements.  

Assume that  is the response proportion of the experimental group and  is the response 
proportion of the control (standard or reference) group. Mathematically, these alternative 
parameterizations are 

p1 p2

Parameter Computation 

Difference  δ = −p p1 2  

Ratio φ = p p1 2/  

Odds Ratio 
( )
( )

ψ =
−
−

p p
p p

1 1

2 2

1
1

/
/

 

Once you know  and , you can calculate any of these values, and you can easily change 
from once parameterization to another. Thus, the choice of which parameter you use may seem 
arbitrary. However, since different parameterizations lead to different test statistics, the choice 
can lead to a different power and sample size. These parameterizations will be discussed next. 

p1 p2
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Difference 
The difference δ = −p p1 2  is perhaps the most common method of comparing two proportions. 
This parameter is easy to interpret and communicate. It gives the absolute impact of the treatment. 
However, there are subtle difficulties that can arise with its use.  

One difficulty occurs when the event of interest is rare. If a difference of 0.001 is reported for an 
event with a baseline probability of 0.40, we would dismiss this as being trivial. That is, there is 
usually little interest in a treatment that decreases the probability from 0.400 to 0.399. However, 
if the baseline probability of a disease is 0.002, a 0.001 decrease in the disease probability would 
represent a 50% reduction. Thus, the interpretation of the difference depends on the baseline 
probability of the event. 

When planning studies, the value of  is usually known and the power is calculated at various 
values of 

p2

δ . The value of  is then calculated using p1 p p1 2= + δ . Because of the requirement 
that 0 , the values of 11< <p δ  are restricted to the interval − < < −p p2 21δ , not − < <1 1δ  
as you might expect. Likewise, the values of  are restricted to 0 1p2 2< < −p δ  if δ > 0  and 
− < <δ p2 1 if δ < 0 . 

Because typical values of δ  are usually between -0.2 and 0.2, the allowable values of  are 
restricted to be between 0.2 and 0.8. When the values of  are outside this range, it may be 
more convenient to use the odds ratio. 

p2

p2

Ratio 
The (risk) ratio, φ = p p1 / 2 , gives the relative change in the probability of the outcome under 
each of the hypothesized values. This parameter is direct and easy to interpret. To compare the 
ratio with the difference, examine the case where  = 0.1437 and = 0.0793. One should 
consider which number is more enlightening, 

p1 p2

δ  = -0.0644, or φ  = 55.18%. In many cases, the 
relative change (the ratio) is easier to interpret that the absolute change (the difference).  

When planning studies, the value of  is usually known and the power is calculated at various 
values of 

p2

φ . The value of  is then calculated using p1 p p1 2= × δ . Because of the requirement 
that 0 , the values of 11< <p φ  are restricted to the interval 0 1 2< <φ / p , not 0 < < ∞φ  as 
you might expect. Likewise, the values of  are restricted to p2 0 12< <p / φ  if φ > 1  and 

 if 0 12< <p φ < 1 . 

Because typical values of φ  are usually between 0.5 and 1.5, the values of  are restricted to be 
between 0 and 0.667. When the values of  are outside this range, it may be more convenient to 
use the odds ratio. 

p2

p2
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Odds Ratio 
Chances are usually communicated as long-term proportions or probabilities. In betting, chances 
are often given as odds. For example, the odds of a horse winning a race might be set at 10-to-1 
or 3-to-2. Odds can easily be translated into probabilities, and vice versa. An odds of 3-to-2 
means that the event is expected to occur three out of five times. That is, an odds of 3-to-2 (1.5) 
translates to a probability of winning of 0.60.  

The odds of an event are calculated by dividing the event risk by the non-event risk. Thus the 
odds are 

Odds p
p1

1

11
=

−
 and Odds p

p2
2

21
=

−
 

For example, if p is 0.6, the odds are 0.6/0.4 = 1.5. Rather than represent the odds as a decimal 
amount, it is re-scaled into whole numbers. Thus, instead of presenting the odds as 1.5-to-1, they 
present as 3-to-2. 

Two odds could be compared by considering their difference, but it is more convenient in many 
situations to form their ratio. Thus, another way to compare proportions is to compute the ratio of 
their odds. The odds ratio is 

ψ =

=
−

−

Odds
Odds

p
p

p
p

1

2

1

1

2

2

1

1

 

Unlike the difference and the ratio, the odds ratio is not restricted by the value of . The range 
of possible values of the odds ratio is 

p2

− ∞ < < ∞ψ . Because of the freedom in specifying the 
parameters, the odds ratio is a popular parameterization, even though it is not as easy to interpret 
as the difference and the ratio. 

 



54 Proportions  

Specifying the Proportions – Very Important! 
It is important to understand the interpretation of  and  within PASS. Suppose  
represents the proportion in the treatment group and  represents the proportion in the control 
group. In most hypothesis tests, these values are equal under the null hypothesis and different 
under the alternative hypothesis. Thus, under the null hypothesis, all that is needed is the value of 

 or , but not both. Under the alternative hypothesis, both values are necessary. So, when the 
input screen asks for  and the difference, these values should be interpreted as follows. The 
value of  is actually the value of both  and  under . Under , the value of  is 
calculated from  and 

p1 p2 p1

p2

p1 p2

p2

p2 p1 p2 H0 H1 p1

p2 δ  using the formula p p1 2= + δ .  

Also, it is important to understand what we mean by ‘under ’ in the above discussion. Notice 
that  does not specify the exact value of . Instead, it specifies a range of values. For 
example,  might be  or 

H1

H1 p1

H1 p p1 2> p p1 2− > δ . However, even though  gives a range of 
values for , the power is computed at a specific value of . 

H1

p1 p1

Selecting an appropriate value for  must be done very carefully. We recommend the following 
approach. Select a value of  that represents the change from  that you want the experiment 
to detect. When you calculate a sample size, it is interpreted as the sample size necessary to detect 
a difference of at least  when the significance level is 

p1

p1 p2

p p1 − 2 α and the power is 1− β .  

The important point is that  is not the value you anticipate obtaining from an experiment. 
Instead, it is that value of  at which you want to compute the power. This is a very important 
distinction! This is why, when investigating the power after an experiment is run, we recommend 
that you do not simply plug in the values of  and  from that experiment. Rather, you use 
values that represent the size of the difference that you want to detect. 

p1

p1

p1 p2
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Chapter 8  

Means 
Introduction 
This chapter introduces power analysis and sample size calculation for tests that compare means. 
In many situations, the results for each treatment group are summarized as means. There are 
many issues that must be considered when designing experiments for comparing means. For 
example, are the means independent or correlated? Which test statistic to use? Will a parametric 
or nonparametric test be used? Are the data normally distributed? Are there more than two 
treatment groups? The answers to these and other questions result in a large number of situations.  

Specifying the Means 
Assume that μ1  is the mean of an experimental group and μ2  is the mean of a control (standard 
or reference) group. Suppose δ  represents their difference. That is, δ μ μ= −1 2 . In most 
hypothesis tests, the null hypothesis ( ) is H0 δ = 0  and the alternative hypothesis ( ) is H1

δ ≠ 0 . Since  assumes that H0 δ = 0 , all that is really needed to compute the power is the value 
of δ  under . So, when the input screen asks for H1 μ1  and μ2 , these values should be interpreted 
as follows. The value of μ1  is actually the value of both μ1  and μ2  under . Under , the 
values of 

H0 H1

μ1  and μ2  provide the value of δ  at which the power is calculated.  

The above discussion is summarized in the following chart. 

Input Parameter Under  Under H  H0 1

Mean1 μ1 ,μ2  μ1  
Mean2 ignored μ2  

Also, it is important to understand what we mean by ‘under ’ in the above discussion.  
defines a range of values for 

H1 H1

δ  at which the power can be computed. To compute the power, the 
specific values of δ  must be determined. Thus, there is not a single power value. Instead, there 
are an infinite number of power values possible, depending on the value of δ . 

Selecting an appropriate value for μ1  must be done very carefully. We recommend the following 
approach. Select a value of μ1  that represents the change from μ2  that you want the experiment 
to detect. When you calculate a sample size, it is interpreted as the sample size necessary to detect 
a difference of at least δ  when the significance level is α and the power is 1− β .  

It is important to realize that δ  is not the value you anticipate obtaining from the experiment. 
Instead, it is that value of δ  at which you want to compute the power. This is a very important 
distinction! This is why, when investigating the power after an experiment is run, we recommend 
that you do not simply plug in the values of μ μ1  and 2  from that experiment. Rather, you use 
values that represent the size of the difference that you want to detect. 
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Specifying the Standard Deviation 
Usually, statistical hypotheses about the means make no direct statement about the standard 
deviation. However, the standard deviation is a parameter in the normal distribution, so its value 
must be specified. For this reason, it is called a nuisance parameter.  

Even though it is not of primary interest, an estimate of the standard deviation is necessary to 
perform a power analysis. Finding such an estimate is difficult not only because it is required 
before the data are available, but also because the physical interpretation of the standard deviation 
is vague. How do you estimate a quantity without data and without a clear understanding of what 
it is? This section will try to help.  

Understanding the Standard Deviation 
The standard deviation has two general interpretations. First, it is similar to the average absolute 
difference between each observation and the mean. Second, it is the average absolute difference 
between every pair of observations. 

The standard deviation of a population of values is calculated using the formula 

( )
σ

μ
X

i X
i

N

X

N
=

−
=
∑ 2

1  

where N is the number of items in the population, X is the variable being measured, and μX  is the 
mean of X. This formula indicates that the standard deviation is the square root of an average of 
the squared differences between each value and the mean. The differences are squared to remove 
the sign so that negative values will not cancel out positive values. After summing up these 
squared differences and dividing by N, the square root is taken to put the result back in the 
original scale. Bottom line—the standard deviation can be thought of as the average absolute 
difference between the data values and their mean.  

Estimating the Standard Deviation 
Our task is to find a rough estimate of the standard deviation to use in a power analysis. Several 
possible methods could be used. These include using the results of a previous study or a pilot 
study, using the range, using the coefficient of variation, etc. PASS includes a Standard Deviation 
Estimator procedure that will help you obtain a standard deviation estimate based on these 
methods. It is loaded from the PASS-Other menu. Remember that as the standard deviation 
increases, the power decreases. Hence, an increase in the standard deviation will cause an 
increase in the sample size. To be conservative in sample size calculation, you should use a large 
value for the standard deviation. 
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Simulation 
Most of the formulas used in PASS were derived by analytic methods. That is, based on a series 
of assumptions, a formula for the power and sample size is derived mathematically. This formula 
is then programmed and made available in PASS. Unfortunately, the formula is only as realistic 
as the assumptions upon which it is based. If the assumptions are inaccurate in a certain situation, 
the power calculations may also be inaccurate. An alternative to using analytic methods is to use 
simulation (or Monte Carlo) techniques. Because of the speed of modern computers, simulations 
can now be run in minutes that would have taken days or weeks only a few years ago.  

In power analysis, simulation refers to the process of generating several thousand random 
samples that follow a particular distribution, calculating the test statistic from each sample, and 
tabulating the distribution of these test statistics so that the significance level and power of the 
procedure may be estimated.  

The steps to a simulation study are  

1. Specify how the study is carried out. This includes specifying the randomization procedure, the 
test statistic that is used, and the significance level that will be used. 

2. Generate random samples from the distributions specified by the null hypothesis. Calculate each 
test statistic from the simulated data and determine if the null hypothesis is accepted or rejected. 
Tabulate the number of rejections and use this to calculate the test’s significance level.  

3. Generate random samples from the distributions specified by the alternative hypothesis. 
Calculate the test statistics from the simulated data and determine if the null hypothesis is 
accepted or rejected. Tabulate the number of rejections and use this to calculate the test’s power.  

4. Repeat steps 2 and 3 several thousand times, tabulating the number of times the simulated data 
leads to a rejection of the null hypothesis. The significance level is the proportion of simulated 
samples in step 2 that lead to rejection. The power is the proportion of simulated samples in step 
3 that lead to rejection.  
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How Large Should the Simulation Be? 
As the number of simulations is increased, the precision and running time of the simulation will 
be increased also. This section provides a method for estimating of the number simulations 
needed to achieve a given precision.  

Each simulation iteration (or simulation) generates a binary outcome: either the null hypothesis is 
rejected or not. Thus, the significance level and power estimates each follow the binomial 
distribution. This knowledge makes it a simple matter to compute confidence intervals for the 
significance level and power values. 

The following table gives one-half the width of a 95% confidence interval for the power when the 
estimated value is either 0.50 or 0.95.  
 Simulation Half-Width Half-Width 
 Size when when 
 M Power = 0.50 Power = 0.95 
 100 0.100   0.044 
 500 0.045   0.019 
 1000 0.032   0.014 
 2000 0.022   0.010  
 5000 0.014   0.006 
 10000 0.010   0.004 
 50000 0.004   0.002 
 100000 0.003   0.001 

Notice that a simulation size of 1000 gives a precision of plus or minus 0.014 when the true 
power is 0.95. Also, as the simulation size is increased beyond 5000, there is only a small amount 
of additional accuracy achieved. Since most sample-size studies require an accuracy of within one 
or two percentage points, simulation sizes from 2000 to 10000 should be ample. 

You are Running Two Simulations 
It is important to realize that when you run a simulation in PASS, you are actually running two 
separate simulations: one to estimate the significance level and the other to estimate the power. 
The significance-level simulation is defined by the input parameters labeled ‘|H0’. The power 
simulation is defined by the input parameters labeled ‘|H1’. Even though you have complete 
flexibility as to what distributions you use in each of these simulations, it usually makes sense to 
use the same distributions for both simulations—only changing the values of the means. 

Unequal Standard Deviations 
One of the subtle problems that can make the results of a simulation study misleading is to 
specify unequal standard deviations unknowingly when you are investigating another feature, 
such as the amount of skewness. It is well known that if the standard deviations differ (a situation 
called heteroskedasticity), the accuracy of the significance level and power is doubtful. When 
investigating the power of the t or F tests in non-normal situations, care must be taken to insure 
that the standard deviations of the groups remain about the same. Otherwise, the effects of 
skewness and heteroskedasticity cannot be separated. 
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Finding the Hypothesized Means 
It is important to set the mean difference of each simulation carefully. In the case of analytic 
formulas, the mean difference is specified easily and directly. Usually, the mean difference is set 
to zero under the null hypothesis and to a non-zero value under the alternative hypothesis. You 
must make certain that you follow this pattern when setting up a simulation.  

For most distributions, the means are set explicitedly (the exception is the multinomial 
distribution, where this is impossible). Hence, for both the null and alternative simulations, it is 
relatively simple to calculate the mean difference. You must do this! We will now present two 
examples showing how this is done. 

For the first example, consider the case of a simulation being run to compare two independent 
group means using the two-sample t-test. Suppose the PASS setup is as follows. Note that N(40 
2) stands for a normal distribution with a mean of 40 and a standard deviation of 2. 

  Mean Value 
Distribution PASS Input of Simulated Data 
Group 1 Distribution | H0  N(40 2) 40.0  
Group 2 Distribution | H0  N(40 2) 40.0  
Group 1 Distribution | H1  N(42 2) 42.0 
Group 2 Distribution | H1  N(40 2) 40.0 

The mean difference under H0 is 40 – 40 = 0, which is as it should be. The mean difference under 
H1 is 42 – 40 = 2. Hence, the power is being estimated for a mean difference of 2. 

Next we will consider a more complicated example. Suppose the PASS setup is as follows. Note 
that N(40 2)[70];K(0)[30] specifies a mixture distribution made up of 70% from a normal 
distribution with a mean of 40 and a standard deviation of 2 and 30% from a constant distribution 
with a value of 30. 

  Mean Value 
Distribution PASS Input of Simulated Data 
Group 1 Distribution | H0 N(40 2) [70];K(0)[30] 40(0.7) + 30(0.3) = 37.0 
Group 2 Distribution | H0 N(40 2) [70];K(0)[30] 40(0.7) + 30(0.3) = 37.0 
Group 1 Distribution | H1 N(42 2) [70];K(0)[30]  42(0.7) + 30(0.3) = 38.4 
Group 2 Distribution | H1 N(40 2) [70];K(0)[30]  40(0.7) + 30(0.3) = 37.0 

The mean difference under H0 is 37.0 – 37.0 = 0, which is as it should be for the null hypothesis. 
The mean difference under H1 is 38.4 – 37.0 = 1.4. Hence, the power is being estimated by 
simulation for a mean difference of 1.4. 

You must always be aware of what the mean differences are under both the null and alternative 
hypotheses. 
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Adjusting the Significance Level 
When faced with the task of designing an experiment that will have a specific significance level 
for a situation that does not meet the usual assumptions, there are several possibilities.  

1. A statistician could be hired to find an appropriate testing procedure.  

2. A nonparametric test could be run that (hopefully) corrects for the implausible assumptions.  

3. The regular parametric test could be run, relying on the test’s ‘robustness’ to correct for the 
implausible assumptions. 

4.  A simulation study could be conducted to determine an appropriate adjustment to the 
significance level so that the actual significance level is at the required value. 

We will now present an example of how to do the simulation adjustment alluded to in item 4, 
above.  

The two-sample t-test is known to be robust to the violation of some assumptions, but it is 
susceptible to inaccuracies when the data contain outliers. A mixture of two normal distributions 
will be used to generate data with outliers. The mixture will draw 95% of the data from a normal 
distribution with a mean of 0 and a standard deviation of 1. The other 5% of the data will come 
from a normal distribution with a mean of zero and a standard deviation of 10. A simulation study 
using 10,000 iterations and a sample size of 100 per group produced the following results when 
the nominal significance level was set to 0.05. 

  Lower 95% Upper 95%  
Nominal Actual Confidence Confidence  
Alpha Alpha Limit Limit Power 
0.050 0.045 0.041 0.049 0.816 
0.055 0.051 0.047 0.055 0.843 
0.060 0.057 0.053 0.062 0.835 

The actual alpha level of the t-test is 0.045, which is below the target value of 0.50. When the 
nominal alpha level is increased to 0.055, the actual alpha is 0.051—close to the desired level of 
0.05. Hence, an adjustment could be applied as follows. Analyze the data with the two-sample t-
test even though they contain outliers. However, instead of using an alpha of 0.050, use an alpha 
of 0.055. When this is done, the simulation shows that the actual alpha will be at the desired 0.05 
level. 

There is one limitation to this method: the resulting test procedure is not necessarily efficient. 
That is, it may be possible to derive a testing procedure that is more efficient (requires a smaller 
sample size to achieve the same power). For example, in this example, a test based on the 
trimmed mean may be more efficient in the presence of outliers. However, if you do not have the 
time or ability to derive an alternative test, this adjustment allows you to obtain reasonable testing 
procedure that achieves a desired significance level and power.  
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Chapter 100  

One Proportion – 
Inequality 
Introduction 
The One-Sample Proportion Test is used to assess whether a population proportion is 
significantly different from a hypothesized value. This is called the hypothesis of inequality. The 
hypotheses may be stated in terms of the proportions, their difference, their ratio, or their odds 
ratio.  

For example, suppose that the current treatment for a disease cures 62% of all cases. A new 
treatment method has been proposed and studied. In a sample of 80 subjects with the disease that 
were treated with the new method, 63 were cured. Do the results of this study support the claim 
that the new method has a higher response rate than the existing method? 

This procedure calculates sample size and statistical power for testing a single proportion using 
either exact or approximate tests. Results are based on exact calculations using the binomial and 
hypergeometric distributions. Because the analysis of several different test statistics is available, 
their statistical power may be compared to find the most appropriate test for a given situation. 

Some sample size programs use the normal approximation to the binomial distribution for power 
and sample size estimates. This approximation is useful for rough hand calculations, but more 
accurate results are easily obtainable with today’s software. When the normal approximation to 
the binomial is used, issues such as the need for continuity correction come into play. We avoid 
these issues by calculating exact results. Programs that use these approximations will often give 
different answers. Our calculations are exact, not approximate. 

Four Procedures Documented Here 
There are four procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, ratios of proportions, and odds ratios. Each 
of these options is listed separately on the menus.  
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Binomial Model 
A binomial variable should exhibit the following four properties:  

1. The variable is binary--it can take on one of two possible values. 

2. The variable is observed a known number of times. Each observation or replication is called a 
Bernoulli trial. The number of replications is n. The number of times that the outcome of interest 
is observed is r. Thus r takes on the possible values 0, 1, 2, ..., n. 

3. The probability, P, that the outcome of interest occurs is constant for each trial.  

4. The trials are independent. The outcome of one trial does not influence the outcome of the 
any other trial. 

A binomial probability is calculated using the formula 
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The Hypergeometric Model 
When samples are taken without replacement from a population of known size, N, the hypergeometric 
distribution should be used in place of the binomial distribution. The properties of a variable that is 
distributed according to the hypergeometric distribution are  

1. The variable is binary--it can take on one of two possible values.  

2. The variable is observed a known number of times. Each observation or replication is called a 
Bernoulli trial. The number of replications is n. The number of times that the outcome of interest 
is observed is r. Thus r takes on the possible values 0, 1, 2, ..., n. 

3. The total number of items is N. The proportion of items with the characteristic of interest is P.  

The hypergeometric probability of obtaining exactly r of n items with the characteristic of interest 
is calculated using 
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Note that the quantity NP is rounded to the nearest integer. 
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Test Procedure 
The testing procedure is as follows. Let P represent the true probability that an item selected at 
random from a population will have a characteristic of interest.  

1.  State the hypotheses. 
H0 is the null hypothesis that the proportion is P0.  

H1 is the alternative hypothesis that the proportion is P1. 

Three sets of statistical hypotheses may be formulated: 
1. H P P0: = 0 0 versus H P P P1 1: = ≠ . This hypothesis results in a two-tailed test. 
2. H P P0: ≤ 0  versus H P P P1 1: 0= > . This hypothesis results in a one-tailed test. 
3. H P P0: ≥ 0  versus H P P P1 1: 0= < . This hypothesis results in a one-tailed test. 

2.  Find the critical value. 
For an upper-tailed test with a given sample size find the critical value, Pc, based on the 
binomial (or hypergeometric) distribution, so that the probability of rejecting H0 when H0 is 
true is equal to a specified significance level,α .  

3.  Evaluate the sample. 
Select a sample of n items from the population and compute the sample proportion, p = r / n. 
If p > Pc then reject the null hypothesis that P = P0 in favor of an alternative hypothesis that 
P = P1 > P0.  

4.  Calculate the power. 
The power is the probability of rejecting H0 when the true proportion is P1. That is, the 
power is the probability that p > Pc calculated from a binomial (or hypergeometric) 
distribution in which P = P1. 

Similar steps are used for the lower-tail and two-tailed tests. 
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Test Statistics 
Many different test statistics have been proposed for testing a single proportion. Most of these were 
proposed before computers or hand calculators were widely available. Although these legacy methods 
are still presented in textbooks, their power and accuracy should be compared against modern exact 
methods before they are adopted for serious research. To make this comparison easy, the power and 
significance of several tests of a single proportion are available in this procedure.  

Exact Binomial Test 
The test statistic is r, the number of successes in n trials. This test should be the standard against 
which other test statistics are judged. The significance level and power are computed by 
enumerating the possible values of r, computing the probability of each value, and then 
computing the corresponding value of the test statistic. Hence the values that are reported in the 
output for these tests are exact, not approximate.  

Z Tests 
Several z statistics have been proposed that use the central limit theorem. This theorem states that for 
large sample sizes, the distribution of the z statistic is approximately normal. All of these tests take the 
following form:  

z p P
s

=
− 0

 

Although these z tests were developed because the distribution of z is approximately normal in 
large samples, the actual significance level and power can be computed exactly using the 
binomial distribution.  

We include four z tests which are based on two methods for computing s and whether a continuity 
correction is applied.  

Z Test using s(P0) 
This test statistic uses the value of P0 to compute s. 
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Z Test using s(P0) with Continuity Correction 
This test statistic is similar to the one above except that a continuity correction is applied to make the 
normal distribution more closely approximate the binomial distribution. 
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Z Test using s(P-hat) 
This test statistic uses the value of p to compute s. 
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Z Test using s(P-hat) with Continuity Correction 
This test statistic is similar to the one above except that a continuity correction is applied to make the 
normal distribution more closely approximate the binomial distribution.  
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T Test 
The one-sample t-test may be applied to this design. This is accomplished by considering the n trials 
as the outcomes of a numeric variable in which a success is coded as a ‘1’ and a failure is coded as a 
‘0’. The standard t-test may then be computed on these data values. 
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Parameterizations of the Proportions  
There are several ways to specify the proportions under the null and the alternative hypotheses. 
The most direct is to simply give values for P0 and P1. However, it is often more meaningful to 
specify P0 and then specify the alternative as the difference, the ratio, or the odds ratio. The value 
of P1 is calculated from these values. 

Mathematically, these alternative parameterizations are 

Parameter Computation

Difference  δ = −P P1 0  

Ratio φ = P P1 0/  

Odds Ratio ψ = =
P Q
P Q

P Q
P Q

1 1
0 0

1 0
0 1

/
/

 

Difference 
The (risk) difference, δ = −P P1 0 , is perhaps the most direct method of comparison between 
the two proportions. This parameter is easy to interpret and communicate. It gives the absolute 
impact of the treatment. However, there are subtle difficulties that can arise with its interpretation.  
One interpretation difficulty occurs when the event of interest is rare. If a difference of 0.001 is 
reported for an event with a baseline probability of 0.40, we would dismiss this as being trivial. 
That is, there is usually little interest in a treatment that decreases the probability from 0.400 to 
0.399. However, if the baseline probability of a disease is 0.002, a 0.001 decrease in the disease 
probability would represent a reduction of 50%. The interpretation depends on the baseline 
probability of the event. 

Ratio 
The (risk) ratio, φ = P P1 / 0 , gives the relative change in the probability of the outcome under 
each of the hypothesized values. This parameter is direct and easy to interpret. To compare the 
ratio with the difference, examine the case where P0 = 0.1437 and P1 = 0.0793. One should 
consider which number is more enlightening, the difference of -0.0644, or the ratio of 55.18%. In 
many cases, the ratio communicates the change in proportion in a manner that is more appropriate 
than the difference.  
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Odds Ratio 
Chances are usually communicated as long-term proportions or probabilities. In betting, chances 
are often given as odds. For example, the odds of a horse winning a race might be set at 10-to-1 
or 3-to-2. Odds can easily be translated into probability. An odds of 3-to-2 means that the event is 
expected to occur three out of five times. That is, an odds of 3-to-2 (1.5) translates to a 
probability of winning of 0.60.  

The odds of an event are calculated by dividing the event risk by the non-event risk. Thus the 
odds are 
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For example, if P1 is 0.60, the odds are 0.60/0.4 = 1.5. Rather than represent the odds as a 
decimal amount, it is re-scaled into whole numbers. Thus, instead of saying the odds are 1.5-to-1, 
we say they are 3-to-2. 

Thus, another way to compare proportions is to compute the ratio of their odds. The odds ratio of 
two proportions is 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and beta. This chapter covers four procedures, each of which has different options. 
This section documents options that are common to all four procedures. Later, unique options for 
each procedure will be documented.   

Find 
This option specifies the parameter to be solved for using the other parameters. The parameters 
that may be selected are P0, P1, Alpha, Beta, and n. Under most situations, you will select either 
Beta or n. 

Select n when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Beta when you want to calculate the power.  

n (Sample Size)  
Enter a value (or range of values) for the sample size, n. This is the number of individuals 
sampled in the study. Values must be integers greater than one. 

You may enter a range such as 10, 50, 100 or 10 to 100 by 10. 

N (Population Size)  
Enter the total number of items in the population from which the sample of n items is selected. 
Enter Infinite to signify an infinite population so that no correction factor is applied. An infinite 
population is one in which the number in the population is large and unknown. 

Note that N must be greater than n. 

When samples are drawn from a very large (infinite) population, calculations are based on the 
binomial distribution. 

When samples are drawn from a population of known size, N, calculations are based on the 
hypergeometric distribution. 

Test Statistic in Report 
Specify which test statistic will be used in reporting. Note that C.C. is short for Continuity 
Correction. This refers to the adding or subtracting 1/(2n) to (or from) the numerator of the z-
value to bring the normal approximation closer to the binomial distribution. 

In most situations, you would select the ‘Exact Test’ option. The other options are provided for 
comparative purposes. 
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Null Proportion (P0) 
Enter a value (or range of values) for the population proportion under the null hypothesis, P0. 
This is the baseline proportion, the proportion that exists in the general population. The 
proportion estimated from the data will be compared to this value by the statistical test. 

Proportions must be between zero and one. 

You may enter a range of values such as 0.1,0.2,0.3 or 0.1 to 0.9 by 0.1. 

Alpha (Significance Level) 
This option specifies one or more values for alpha, which is the probability of a type-I (false 
positive) error. This error occurs when you reject the null hypothesis of equal proportions when 
in fact they are equal.  

Values must be between zero and one. The value of 0.05 is often used for two-sided hypotheses 
while the value of 0.025 is used for a one-sided hypothesis. You should pick a value for alpha 
that represents the risk of a type-I you are willing to take in your experimental situation.  

Note that because of the discrete nature of the binomial distribution, the alpha level rarely will be 
achieved exactly. 

Beta (1 - Power) 
This option specifies one or more values for beta, which is the probability of a type-II (false 
negative) error. This error occurs when you fail to reject the null hypothesis of equal proportions 
when in fact the proportions are different. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta, but 
now 0.1 is more common. However, you should pick a value for beta that represents the risk of a 
type-II error you are willing to take. 

Power is defined as 1-beta. Power is equal to the probability of rejecting a false null hypothesis. 
Hence, specifying the beta error level also specifies the power level. For example, if you specify 
beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power values of 0.95, 
0.90, and 0.80, respectively.  
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Data Tab (Proportion) 
This section documents options that are used when the parameterization is in terms of the 
alternative proportion, P1. P0 is the value of the proportion assumed by the null hypothesis and 
P1 (or P) is the value of the proportion at which the power is calculated. 

Alternative Hypothesis 
This option specifies the alternative hypothesis, H1. This implicitly specifies the direction of the 
hypothesis test. Note that the null hypothesis, H0, is the opposite of H1.   

Note that P represents the actual value of the proportion and P0 represents the specific value of 
the proportion assumed by the null hypothesis, H0. 

Possible selections are 

H1: P <> P0. This is the most common selection. It yields the two-tailed test. Use this option 
when you are testing whether the proportions are different, but you do not want to specify 
beforehand which proportion is larger. By tradition, most studies are two-tailed unless there is a 
strong reason to make them one-tailed. 

H1: P < P0. This option yields a one-tailed test. 

H1: P > P0. This option also yields a one-tailed test. 

Alternative Proportion (P1) 
Enter a value (or range of values) for the value of the binomial proportion at which the power is 
calculated. This is labeled P1 on the screen. Power calculations assume that this is the true value 
of the proportion. 

This value cannot be equal to P0 since, by definition, it must be an alternative. 
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Data Tab (Difference) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P0. P0 is the value of the proportion assumed by the null hypothesis and P1 (or 
P) is the value of the proportion at which the power is calculated. Once P0 and the difference are 
given, the value of P1 is found by the formula: P1 = difference + P0. 

Alternative Hypothesis 
This option specifies the alternative hypothesis, H1. This implicitly specifies the direction of the 
hypothesis test. Note that the null hypothesis, H0, is the opposite of H1.   

Possible selections are 

H1: Difference <> 0. This is the most common selection. It yields the two-tailed test. Use this 
option when you are testing whether the proportions are different, but you do not want to specify 
beforehand which proportion is larger. By tradition, most studies are two-tailed unless there is a 
strong reason to make them one-tailed. 

H1: Difference < 0. This option yields a one-tailed test.  

H1: Difference > 0. This option also yields a one-tailed test. 

Alternative Difference (P1-P0) 
This option implicitly specifies the value of P1 (the proportion at which the power is calculated) 
by explicitly specifying the difference. The difference is used with P0 to calculate the value of P1 
using the formula, P1 = diff + P0.  

Since P1 is a proportion, the difference must be between –P0 and 1 – P0. By definition, the 
difference cannot be zero since P1 is an ‘alternative’ to P0. 
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Data Tab (Ratio) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P0. P0 is the value of the proportion assumed by the null hypothesis and P1 (or P) is the 
value of the proportion at which the power is calculated. Once P0 and the ratio are given, the 
value of P1 is found by the formula: P1 = (P0) x (ratio). 

Alternative Hypothesis 
This option specifies the alternative hypothesis, H1. This implicitly specifies the direction of the 
hypothesis test. Note that the null hypothesis, H0, is the opposite of H1.   

Possible selections are 

H1: Ratio <> 1. This is the most common selection. It yields the two-tailed test. Use this option 
when you are testing whether the proportions are different, but you do not want to specify 
beforehand which proportion is larger. By tradition, most studies are two-tailed unless there is a 
strong reason to make them one-tailed. 

H1: Ratio < 1. This option yields a one-tailed test.  

H1: Ratio > 1. This option also yields a one-tailed test. 

Alternative Ratio (P1/P0) 
This option implicitly specifies the value of P1 (the proportion at which the power is calculated) 
by explicitly specifying the ratio. The ratio is used with P0 to calculate the value of P1 using the 
formula, P1 = (P0) x (ratio).  

Since P1 is a proportion, the ratio must be between 0 and 1 / ratio. By definition, the ratio cannot 
be one since P1 is an ‘alternative’ to P0. 
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Data Tab (Odds Ratio) 
This section documents options that are used when the parameterization is in terms of the odds 
ratio, O1 / O0 where O1 = P1 / (1 – P1) and O0 = P0 / (1 – P0). P0 is the value of the proportion 
assumed by the null hypothesis and P1 (or P) is the value of the proportion at which the power is 
calculated. Once P0 and the odds ratio are given, the value of P1 is found by the formula P1 = A / 
(1 + A) where A = (O0) x (odds ratio). 

Alternative Hypothesis 
This option specifies the alternative hypothesis, H1. This implicitly specifies the direction of the 
hypothesis test. Note that the null hypothesis, H0, is the opposite of H1.   

Possible selections are 

H1: Odds Ratio <> 1. This is the most common selection. It yields the two-tailed test. Use this 
option when you are testing whether the proportions are different, but you do not want to specify 
beforehand which proportion is larger. By tradition, most studies are two-tailed unless there is a 
strong reason to make them one-tailed. 

H1: Odds Ratio < 1. This option yields a one-tailed test.  

H1: Odds Ratio > 1. This option also yields a one-tailed test. 

Alternative Odds Ratio (O1/O0) 
This option implicitly specifies the value of P1 (the proportion at which the power is calculated) 
by explicitly specifying the odds ratio. Since P1 is a proportion, the odds ratio must be greater 
than zero. By definition, the odds ratio cannot be one since P1 is an ‘alternative’ to P0. 
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Example1 - Finding the Power 
Suppose 50% of patients with a certain type of cancer survive five years. A new treatment will be 
adopted if it can increase this percentage to 60%. What power will be achieved if a historically 
controlled trial has sample sizes of 50, 100, 200, 300, 500, or 800 and a significance level of 
0.05? For comparative purposes, also calculate the power for alternative proportions of 55% and 
65%. 

Note: historically controlled means that no control group is formed for the current study. Instead, 
the rates reported from previous studies or that are known to exist in the general population are 
used. Because of the many advantages that occur when an actual control group is used, 
historically controlled trials should only be used when a control group is either impossible to 
obtain or unethical. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the proportion parameterization. You can then make the 
following entries directly on your screen or you can load the template entitled Example1 by 
clicking the Template tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Alternative Proportion (P1)................0.55 0.60 0.65 
Null Proportion (P0) ..........................0.50 
n ........................................................50 100 200 300 500 800 
N ....................................................... Infinite 
Test Statistic in Reports ....................Exact Test 
Alternative Hypothesis ......................H1: P <> P0 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results when H0: P = P0 versus H1: P = P<>P0 
Test Statistic: Exact Test 
 
  Proportion Proportion 
  Given H0 Given H1 Target Actual  Reject H0 If 
Power N (P0) (P1) Alpha Alpha Beta <=R|>=R 
0.0788 50 0.5000 0.5500 0.0500 0.0328 0.9212 17|33  
0.1352 100 0.5000 0.5500 0.0500 0.0352 0.8648 39|61  
0.2620 200 0.5000 0.5500 0.0500 0.0400 0.7380 85|115  
0.3867 300 0.5000 0.5500 0.0500 0.0431 0.6133 132|168  
0.5895 500 0.5000 0.5500 0.0500 0.0441 0.4105 227|273  
0.7932 800 0.5000 0.5500 0.0500 0.0438 0.2068 371|429  
0.2371 50 0.5000 0.6000 0.0500 0.0328 0.7629 17|33  
0.4621 100 0.5000 0.6000 0.0500 0.0352 0.5379 39|61  
0.7868 200 0.5000 0.6000 0.0500 0.0400 0.2132 85|115  
0.9291 300 0.5000 0.6000 0.0500 0.0431 0.0709 132|168  
0.9937 500 0.5000 0.6000 0.0500 0.0441 0.0063 227|273  
0.9999 800 0.5000 0.6000 0.0500 0.0438 0.0001 371|429  
0.5060 50 0.5000 0.6500 0.0500 0.0328 0.4940 17|33  
0.8276 100 0.5000 0.6500 0.0500 0.0352 0.1724 39|61  
0.9884 200 0.5000 0.6500 0.0500 0.0400 0.0116 85|115  
0.9995 300 0.5000 0.6500 0.0500 0.0431 0.0005 132|168  
1.0000 500 0.5000 0.6500 0.0500 0.0441 0.0000 227|273 
1.0000 800 0.5000 0.6500 0.0500 0.0438 0.0000 371|429  
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the size of the sample drawn from the population. To conserve resources, it should be small. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
P0 is the value of the population proportion under the null hypothesis. 
P1 is the value of the population proportion under the alternative hypothesis. 
 
Summary Statements 
A sample size of 50 achieves 8% power to detect a difference (P1-P0) of 0.0500 using a 
two-sided binomial test. The target significance level is 0.0500. The actual significance level 
achieved by this test is 0.0328. These results assume that the population proportion under the 
null hypothesis is 0.5000. 
 

This report shows the values of each of the parameters, one scenario per row. Because of the 
discrete nature of the binomial distribution, the stated (Target) alpha is usually greater than the 
actual alpha. Hence, we also show the Actual Alpha along with the rejection region.  

The symbol, R, stands for the number of items with the characteristic of interest out of the n items 
sampled. Hence, for the scenario presented on the first line, an exact test does not exist for these 
parameters at the target alpha of 0.05. The closest that can be achieved is an alpha of 0.0328. In 
this case, we would reject the null hypothesis in any sample of size 50 in which the count of 
individuals with the characteristic of interest is less than or equal to 17 or greater than or equal to 
33. 

The values from this table are plotted in the chart below.  
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Plots Section 
 

 

Power vs n by P1 with P0=0.5000 Alpha=0.05
2-Sided Exact

0.5500

0.6000

0.6500

P
ow

er

P
1

n

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800

               
   

This plot shows the relationship between power, sample size, and P1 in this example. We note 
that 80% power is achieved with a sample size of about 200 when P1 is 0.60, which was the 
specific value of interest. 
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Example2 - Finding the Sample Size 
Continuing with Example1, suppose you want to study the impact of various choices for P1 on 
sample size. Using a significance level of 0.05 and 90% power, find the sample size when P1 is 
0.55, 0.60, 0.65, 0.70, 0.75, and 0.80. Assume that an exact, two-tailed binomial test will be used. 

Setup 
First, load the appropriate panel from the menus. This example uses the Proportions 
parameterization. You can make these changes directly on your screen or you can load the 
Example2 template by clicking the Template tab and loading this template. 

Option Value
Data Tab 
Find ...................................................n 
Alternative Proportion (P1)................0.55 to 0.80 by 0.05 
Null Proportion (P0)...........................0.50 
n ........................................................Ignored since this is the Find setting 
N........................................................Infinite 
Test Statistic in Reports ....................Exact Test 
Alternative Hypothesis ......................H1: P <> P0 
Alpha .................................................0.05 
Beta...................................................0.10 
 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H0: P = P0 versus H1: P <>P0 
 
  Proportion Proportion 
  Given H0 Given H1 Target Actual  Reject H0 If 
Power N (P0) (P1) Alpha Alpha Beta <=R|>=R 
0.9003 1055 0.5000 0.5500 0.0500 0.0487 0.0997 495|560  
0.9022 263 0.5000 0.6000 0.0500 0.0483 0.0978 115|148  
0.9015 114 0.5000 0.6500 0.0500 0.0487 0.0985 46|68  
0.9100 65 0.5000 0.7000 0.0500 0.0464 0.0900 24|41  
0.9195 42 0.5000 0.7500 0.0500 0.0436 0.0805 14|28  
0.9100 28 0.5000 0.8000 0.0500 0.0357 0.0900 8|20  
 

This report shows the sample sizes corresponding to various values of P1. Notice that a sample 
size of only 28 is needed to detect the difference between 0.5 and 0.8, but a sample size of 1055 is 
needed to detect a difference between 0.50 and 0.55. 
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Example3 - Investigating the Saw-Tooth 
Power Function 
After releasing the first version of PASS, we received many inquiries about the strange shape of 
the relationship between power and sample size when testing a single proportion using the exact 
binomial test. This example will show why this strange shape occurs. 

Setup 
First, load the appropriate panel. This example uses the Proportions parameterization. This 
section presents the values of each of the parameters needed to run this example. You can make 
these changes directly on your screen or you can load the Example3 template by clicking the 
Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Beta and Power 
Null Proportion (P0) ..........................0.60 
Alternative Proportion (P1)................0.70 
n ........................................................51 to 60 by 1 
N ....................................................... Infinite 
Alternative Hypothesis ......................H1: P <> P0 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Reports Tab 
Test Statistic in Reports ....................Exact Test 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results for H0: P = P0 versus H1: P <>P0 
  Proportion Proportion 
  Given H0 Given H1 Target Actual  Reject H0 If 
Power N (P0) (P1) Alpha Alpha Beta <=R|>=R 
0.2966 51 0.6000 0.7000 0.0500 0.0443 0.7034 23|38  
0.2669 52 0.6000 0.7000 0.0500 0.0328 0.7331 23|39  
0.2393 53 0.6000 0.7000 0.0500 0.0348 0.7607 24|40  
0.3124 54 0.6000 0.7000 0.0500 0.0371 0.6876 24|40  
0.2828 55 0.6000 0.7000 0.0500 0.0379 0.7172 25|41  
0.2549 56 0.6000 0.7000 0.0500 0.0281 0.7451 25|42  
0.3277 57 0.6000 0.7000 0.0500 0.0417 0.6723 26|42  
0.2981 58 0.6000 0.7000 0.0500 0.0314 0.7019 26|43  
0.2701 59 0.6000 0.7000 0.0500 0.0327 0.7299 27|44  
0.3423 60 0.6000 0.7000 0.0500 0.0354 0.6577 27|44  
 

This report shows the values of each of the parameters, one scenario per row. The values from 
this table are plotted in the chart below.  

Plots Section 
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Notice that the power decreases as n increases from 51 to 52 and continues to decrease as n 
increases to 53. Usually, the power increases as the sample size increases. 

To understand why this happens, look at the last column and at the Actual Alpha column. Note 
that at n = 51, the actual alpha is 0.0443 and at n = 52, the actual alpha has decreased to 0.0328. 
Remember that as alpha decreases, power decreases as well. Hence, increasing the sample size 
from 51 to 52 was not enough to counterbalance the effect on power of a decrease in alpha from 
0.04428 to 0.03281. Hence, the power drops from 0.29656 to 0.26688. 
This phenomenon usually occurs for relatively small values of n.  
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Example4 - Step by Step Calculations 
In this example, we will take you step by step through the calculations necessary to compute the 
power of a specific scenario. We will set n = 10, P0 = 0.50, P1 = 0.80, and alpha = 0.05. We will 
compute the power of the two-tailed test.  

Setup 
First, load the appropriate panel from the menus. This example uses the Proportions 
parameterization. This section presents the values of each of the parameters needed to run this 
example. You can make these changes directly on your screen or you can load the Example4 
template by clicking the Template tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Null Proportion (P0) ..........................0.8 
P0 (Null Proportion) ..........................0.5 
n ........................................................10 
N ....................................................... Infinite 
Test Statistic in Reports ....................Exact Test 
Alternative Hypothesis ......................H1: P <> P0 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Reports Tab 
Report Probability Decimals..............6 
Proportion Decimals..........................6 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H0: P = P0 versus H1: P <>P0. 
  Proportion Proportion 
  Given H0 Given H1 Target Actual  Reject H0 If 
Power N (P0) (P1) Alpha Alpha Beta <=R|>=R 
0.375814 10 0.500000 0.800000 0.050000 0.021484 0.624186 1|9 

 

We will now proceed through the calculations necessary to compute this power value.  
We first construct a table of binomial probabilities for n = 10 and p = 0.5 using the formula 

( ) ( )b r
r

r r; , . . .10 0 5
10

0 5 1 0 5 10=
⎛
⎝
⎜

⎞
⎠
⎟ − −  
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Binomial Probabilities for n = 10 and p = 0.5 
R Prob(r = R) Cumulative Total  1 - Cumulative Total
0 0.000977 0.000977 0.999023 
1 0.009766 0.010742 0.989258 
2 0.043945 0.054688 0.945313 
3 0.117188 0.171875 0.828125 
4 0.205078 0.376953 0.623047 
5 0.246094 0.623047 0.376953 
6 0.205078 0.828125 0.171875 
7 0.117188 0.945313 0.054688 
8 0.043945 0.989258 0.010742 
9 0.009766 0.999023 0.000977 
10 0.000977 1.000000 0.000000 
 

When we construct a two-tailed test, we split the alpha value evenly between the two tails. Hence, 
we place α / 2  (or 0.025) in each tail. Moving down from the top, we find that the cumulative 
probability is 0.010742 for R = 1 and 0.054688 for R = 2. Since 0.054688 is greater than 0.025, 
we adopt R = 1 as our lower rejection value. Likewise, we find that R = 9 is the upper rejection 
value. 

Our testing strategy is 

1.  Draw a sample of 10 items and count the number with the characteristic of interest. Call this 
value r. 

2.  If r = 0, 1, 9, or 10, reject the null hypothesis that p = 0 5.  in favor of the alternative 
hypothesis that . p ≠ 0 5.

Now, to compute the power for P1 = 0.8, we must compute another table of binomial 
probabilities, this time for p = 0.8 using the formula. 

( ) ( )b r
r

r r; , . . .10 0 8
10

0 8 1 0 8 10=
⎛
⎝
⎜

⎞
⎠
⎟ − −  

Binomial Probabilities for n = 10 and p = 0.8 
R Prob(r = R) Cumulative Total  1 - Cumulative Total
0 0.000000 0.000000 1.000000 
1 0.000004 0.000004 0.999996 
2 0.000074 0.000078 0.999922 
3 0.000786 0.000864 0.999136 
4 0.005505 0.006369 0.993631 
5 0.026424 0.032793 0.967207 
6 0.088080 0.120874 0.879126 
7 0.201327 0.322200 0.677800 
8 0.301990 0.624190 0.375810 
9 0.268435 0.892626 0.107374 
10 0.107374 1.000000 0.000000 
The power is the probability of rejecting the null hypothesis. This occurs when r = 0, 1, 9, or 10. 
From the above table, we compute the power as 0.000000 + 0.000004 + 0.268435 + 0.107374 = 
0.375813. This matches the calculated power value as displayed in the results above to within 
rounding error. 
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Example5 - Validation using Zar 
Zar (1984) page 388 gives the results of a power analysis. When n = 12, P0 = 0.50, P1 = 0.83, 
and alpha = 0.05 using a one-sided test, Zar reports a power of 0.666. 

Setup 
First, load the appropriate panel from the menus. This example uses the Proportions 
parameterization. This section presents the values of each of the parameters needed to run this 
example. You can make these changes directly on your screen or you can load the Example5 
template by clicking the Template tab and loading this template.  

Option Value
Data Tab 
Find ...................................................Beta and Power 
Alternative Proportion (P1)................0.83 
Null Proportion (P0) ..........................0.5 
n ........................................................12 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
N ....................................................... Infinite 
Alternative Hypothesis ......................H1: P>P0 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for H0: P = P0 versus Ha: P = P1>P0 
 
  Proportion Proportion 
  Given H0 Given H1 Target Actual  Reject H0 
Power N (P0) (P1) Alpha Alpha Beta If R>=This 
0.6656 12 0.5000 0.8300 0.0500 0.0193 0.3344 10 
 

PASS calculated the power as 0.6656, which agrees with Zar’s value of 0.666.  
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Example6 – Comparing Test Statistics 
One important decision that must be made before conducting the experiment is to decide which of 
the available test statistics to use. This procedure makes it easy to make this comparison. The 
parameter settings will be set as they were in Example 1 except that the alternative proportion is 
set to 0.60 and the sample sizes are 10, 11, 12, 25, 50, and 70.  

Setup 
First, load the appropriate panel from the menus. This example uses the Proportions 
parameterization. You can make these changes directly on your screen or you can load the 
template entitled Example6 by clicking the Template tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Alternative Hypothesis ......................H1: P <> P0 
Alternative Proportion (P1)................0.60 
Null Proportion (P0)...........................0.50 
n ........................................................10 11 12 25 50 70 
N........................................................Infinite 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
Reports Tab 
Show Comparative Reports ..............Checked 
Show Comparative Plots...................Checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Power Comparison for Methods of Testing H0: P = P0 versus H1: P <> P0 
 
    Exact Z-Test Z-Test Z-Test Z-Test   
    Test S(P0) S(P0)C S(P) S(P)C T-Test  
N P0 P1 Alpha Power Power Power Power Power Power  
10 0.5000 0.6000 0.0500 0.0480 0.0480 0.0480 0.1796 0.1796 0.0480  
11 0.5000 0.6000 0.0500 0.0310 0.1248 0.0310 0.1248 0.1248 0.1248  
12 0.5000 0.6000 0.0500 0.0863 0.0863 0.0863 0.2406 0.0863 0.0863  
25 0.5000 0.6000 0.0500 0.1548 0.1548 0.1548 0.1548 0.1548 0.1548  
50 0.5000 0.6000 0.0500 0.2371 0.3361 0.2371 0.3361 0.2371 0.3361  
70 0.5000 0.6000 0.0500 0.3601 0.3601 0.3601 0.4549 0.3601 0.3601  
 
Actual Alpha Comparison for Methods of Testing H0: P = P0 versus H1: P <> P0 
 
    Exact Z-Test Z-Test Z-Test Z-Test   
   Target Test S(P0) S(P0)C S(P) S(P)C T-Test  
N P0 P1 Alpha Alpha Alpha Alpha Alpha Alpha Alpha  
10 0.5000 0.6000 0.0500 0.0215 0.0215 0.0215 0.1094 0.1094 0.0215  
11 0.5000 0.6000 0.0500 0.0117 0.0654 0.0117 0.0654 0.0654 0.0654  
12 0.5000 0.6000 0.0500 0.0386 0.0386 0.0386 0.1460 0.0386 0.0386  
25 0.5000 0.6000 0.0500 0.0433 0.0433 0.0433 0.0433 0.0433 0.0433  
50 0.5000 0.6000 0.0500 0.0328 0.0649 0.0328 0.0649 0.0328 0.0649  
70 0.5000 0.6000 0.0500 0.0414 0.0414 0.0414 0.0722 0.0414 0.0414  
 
Chart Section 
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An examination of the first report shows that for most sample sizes, the power is different for at 
least one of the tests. Also, notice that the exact test always has the minimum power in each row. 
This would lead us discard this test statistic. However, consider the second report, which shows 
the actual alpha level (the target was 0.05) for each test. By inspecting corresponding entries in 
both tables, we can see that whenever a test statistic achieves a better power than the exact test, it 
also exceeds the target alpha. For example, look at the powers for n = 12. The z test using s(p hat) 
has an unusually large power of 0.2406. This is a much larger power than the exact test’s value of 
0.0863. However, note that the actual alpha level for this test is 0.1460, which is much higher 
than the target of 0.05 and the actual value of the other tests, which is 0.0386. 
We conclude that indeed, the exact test is consistently the best test since it always achieves a 
significance level that is less than the target value. 
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Example7 - Finding the Power using 
Ratios 
Suppose that only 5% of patients with an aggressive type of cancer respond to the standard 
treatment.  Researchers have found a new treatment which could be widely used if the percentage 
of patients responding is at least 0.5 times greater than the proportion responding to the standard 
treatment, i.e. P1 = 1.5(P0), or in terms of ratios, P1/P0 = 1.5. What power will be achieved for 
trials with sample sizes of 200, 300, 500, or 800 and a significance level of 0.05? For comparative 
purposes, also calculate the power for alternative ratios of 1.25 and 1.75. 

Setup 
First, load the appropriate panel from the menus. This example uses the Ratio parameterization. 
You can make these changes directly on your screen or you can load the template entitled 
Example7 by clicking the Template tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Alternative Ratios (P1/P0).................1.25 1.50 1.75 
Null Proportion (P0)...........................0.05 
n ........................................................200 300 500 800 
N........................................................Infinite 
Test Statistic in Reports ....................Exact Test 
Alternative Hypothesis ......................H1: Ratio <> 1 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results for testing H0: P = P0 versus H1: P <> P0 
Test Statistic: Exact Test 
 
  Proportion Proportion 
  Given H0 Given H1 Ratio Target Actual  Reject H0 If 
Power N (P0) (P1) (P1 / P0) Alpha Alpha Beta <=R|>=R 
0.1247 200 0.0500 0.0625 1.2500 0.0500 0.0328 0.8753 3|17 
0.1315 300 0.0500 0.0625 1.2500 0.0500 0.0328 0.8685 7|24 
0.2138 500 0.0500 0.0625 1.2500 0.0500 0.0395 0.7862 15|36 
0.3509 800 0.0500 0.0625 1.2500 0.0500 0.0420 0.6491 27|53 
0.3322 200 0.0500 0.0750 1.5000 0.0500 0.0328 0.6678 3|17 
0.4019 300 0.0500 0.0750 1.5000 0.0500 0.0328 0.5981 7|24 
0.6248 500 0.0500 0.0750 1.5000 0.0500 0.0395 0.3752 15|36 
0.8432 800 0.0500 0.0750 1.5000 0.0500 0.0420 0.1568 27|53 
0.5861 200 0.0500 0.0875 1.7500 0.0500 0.0328 0.4139 3|17 
0.7062 300 0.0500 0.0875 1.7500 0.0500 0.0328 0.2938 7|24 
0.9072 500 0.0500 0.0875 1.7500 0.0500 0.0395 0.0928 15|36 
0.9882 800 0.0500 0.0875 1.7500 0.0500 0.0420 0.0118 27|53 
 

This report shows the values of each of the parameters, one scenario per row. Because of the 
discrete nature of the binomial distribution, the stated (Target) alpha is usually greater than the 
actual alpha. Hence, we also show the Actual Alpha along with the rejection region.  

The values from this table are plotted in the chart below.  
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This plot shows the relationship between power and P1/P0 in this example. We note that 80% 
power is achieved with a sample size of about 720 when P1/P0 is 1.50, which was the specific 
ratio of interest. 
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Example8 – Determining the Power after 
Completing an Experiment 
A group of researchers is studying the effects of a new diet on cholesterol levels in high-risk 
patients.  The researchers had hypothesized that the cholesterol level would be reduced to a safe 
level in more than 70% of subjects following the new diet.  They are confident that the proportion 
will be no less than 0.70.  To test this one-sided hypothesis, they randomly sampled 200 
individuals with dangerously high cholesterol and put them on the new diet.  After the period of 
the study, the researchers determined that 150 of the 200 patients sampled (75%) had reduced 
their cholesterol level while on the new diet.  Statistical analysis using the exact test and an alpha 
level of 0.05, however, resulted in failure to reject the null hypothesis that the proportion is 0.70.  
The researchers desire now to compute the power of their study for true proportions ranging from 
0.71 to 0.80. 

Note that a range of proportions is considered for power calculations instead of just 0.75, the 
sample proportion found in the experiment.  While it is tempting to use the sample proportion as 
the true proportion in post-experiment power calculations, it is more informative to review a 
range of possible alternatives representing practically significant differences from the null value.   

Setup 
First, load the appropriate panel from the menus. This example uses the Proportions 
parameterization.  You can make these changes directly on your screen or you can load the 
template entitled Example8 by clicking the Template tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Alternative Proportion (P1)................0.71 to 0.80 by 0.01 
Null Proportion (P0)...........................0.70 
n ........................................................200 
N........................................................Infinite 
Test Statistic in Reports ....................Exact Test 
Alternative Hypothesis ......................H1: P > P0 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

 
Numeric Results for testing H0: P = P0 versus H1: P > P0 
Test Statistic: Exact Test 
 
  Proportion Proportion 
  Given H0 Given H1 Target Actual  Reject H0 
Power N (P0) (P1) Alpha Alpha Beta If R>=This 
0.0675 200 0.7000 0.7100 0.0500 0.0359 0.9325 152  
0.1178 200 0.7000 0.7200 0.0500 0.0359 0.8822 152  
0.1913 200 0.7000 0.7300 0.0500 0.0359 0.8087 152  
0.2894 200 0.7000 0.7400 0.0500 0.0359 0.7106 152  
0.4083 200 0.7000 0.7500 0.0500 0.0359 0.5917 152  
0.5386 200 0.7000 0.7600 0.0500 0.0359 0.4614 152  
0.6673 200 0.7000 0.7700 0.0500 0.0359 0.3327 152  
0.7807 200 0.7000 0.7800 0.0500 0.0359 0.2193 152  
0.8696 200 0.7000 0.7900 0.0500 0.0359 0.1304 152  
0.9310 200 0.7000 0.8000 0.0500 0.0359 0.0690 152  
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Power ranges from 0.0675 for a true proportion of 0.71 to 0.9310 for a true proportion of 0.80.   
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Chapter 105  

One Proportion – 
Non-Inferiority  
This module provides power analysis and sample size calculation for non-inferiority and 
superiority tests in one-sample designs in which the outcome is binary. Users may choose from 
among six popular test statistics commonly used for running the hypothesis test.  

The details of sample size calculation for the one-sample design for binary outcomes are 
presented in the chapter One Proportion - Equality and they will not be duplicated here. Instead, 
this chapter focuses on those changes necessary for non-inferiority and superiority tests. 

Approximate sample size formulas for non-inferiority tests of a single proportion are presented in 
Chow et al. (2003) page 83. However, only large sample (normal approximation) results are 
given there. The results available in this module use exact calculations based on the enumeration 
of all possible values of the binomial distribution.  

Four Procedures Documented Here 
There are four procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, ratios of proportions, and odds ratios. Each 
of these options is listed separately on the menus.  
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Example 
A non-inferiority test example will set the stage for the discussion of the terminology that 
follows. Suppose that the current treatment for a disease is effective 70% of the time. 
Unfortunately, this treatment is expensive and occasionally exhibits serious side-effects. A 
promising new treatment has been developed to the point where it can be tested. One of the first 
questions that must be answered is whether the new treatment is as good as the current treatment. 
In other words, do at least 70% of treated subjects respond to the new treatment?  

Because of the many benefits of the new treatment, clinicians are willing to adopt the new 
treatment even if it is slightly less effective than the current treatment. They must determine, 
however, how much less effective the new treatment can be to still be adopted. Should it be 
adopted if 69% respond? 68%? 65%? 60%? There is a percentage below 70% at which the 
difference between the two treatments is no longer considered ignorable. After thoughtful 
discussion with several clinicians, it was decided that if a response of at least 63% was achieved, 
the new treatment would be adopted. The difference between these two percentages is called the 
margin of equivalence. The margin of equivalence in this example is 7%.  

The developers must design an experiment to test the hypothesis that the response rate of the new 
treatment is at least 0.63. The statistical hypothesis to be tested is 

H P0 0 6: .≤ 3  versus H P1 0 6: .> 3  

Notice that when the null hypothesis is rejected, the conclusion is that the response rate is at least 
0.63. Note that even though the response rate of the current treatment is 0.70, the hypothesis test 
is about a response rate of 0.63. Also notice that a rejection of the null hypothesis results in the 
conclusion of interest.  
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Technical Details 
In the discussion that follows, let P represent the proportion responding as a success. That is, P is 
the actual probability of a success in a binomial experiment. Let PB represent the baseline 
proportion. In a non-inferiority experiment, the baseline proportion is the response rate of the 
current treatment. Furthermore, let P0 represent the response proportion that is tested in the null 
hypothesis, H0. The power of a test is computed at a specific value of the proportion. Let P1 
represent the proportion at which the power is computed.  

Let PE represent the smallest value of P that still results in the conclusion that the new treatment 
is noninferior to the current treatment. The statistical hypotheses that are tested are 

H P PE0: ≤  versus H P PE1: >  

There are three common methods of specifying the margin of equivalence. The most direct is to 
simply assign values for PB and PE. However, it is often more meaningful to identify PB and 
then specify PE implicitly by giving their difference, ratio, or odds ratio. Mathematically, the 
definitions of these parameterizations are  

Parameter Computation Hypotheses

Difference  d PE PB0 = −  H P PB d H P PB d0 0 1: : 0≤ + > +vs  

Ratio r PE PB0 = /  ( ) (H P r PB H P r PB0 0 1 0: : )≤ >vs  

Odds Ratio o OddsE OddsB0 = /  

( )
( )

H P A H P A

A
o PB
PB o

0

0
1 0 1

1: :≤ >

=
+ −

vs
where  
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Difference 
The difference is perhaps the most direct method of comparison between two proportions. It is 
easy to interpret and communicate. It gives the absolute impact of the treatment. However, there 
are subtle difficulties that can arise with its interpretation.  

One difficulty arises when the event of interest is rare. If a difference of 0.001 occurs when the 
baseline probability is 0.40, it would be dismissed as being trivial. That is, there is usually little 
interest in a treatment that only decreases the probability from 0.400 to 0.399. However, if the 
baseline probability of a disease is 0.002, a 0.001 decrease would represent a reduction of 50%. 
Thus, interpretation of the difference depends on the baseline probability of the event. As a rule 
of thumb, the difference is best suited for those cases in which 0.20 < P < 0.80. 

Note that if d0 < 0, the procedure is called a non-inferiority test while if d0 > 0 the procedure is 
called a superiority test.  

Non-Inferiority using a Difference 
The following example might help you understand the concept of a non-inferiority test. Suppose 
60% of patients respond to the current treatment method (PB = 0.60). If the response rate of the 
new treatment is no less than five percentage points worse (d0 = -0.05) than the existing 
treatment, it will be considered noninferior. Substituting these figures into the statistical 
hypotheses gives H d0 0: .≤ − 05  versus H d1 0: .> 05− . The relationship P0 = PB + d0  

gives H P0 05: .≤ 5  versus H1: P > 0.55. 

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is at least 55%.  

Superiority using a Difference 
The following example is intended to help you understand the concept of superiority. Suppose 
60% of patients respond to the current treatment method (PB = 0.60). If the response rate of the 
new treatment is at least ten percentage points better (d0 = 0.10), it will be considered to be 
superior to the existing treatment. Substituting these figures into the statistical hypotheses gives 
H d0 01: .≤ 0  versus H d1 01: .> 0 . The relationship P0 = PB + d0 gives H P0 0 7: . 0≤ versus 
H P1 0 7: .> 0 . 

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is at least 0.70. That is, the conclusion of superiority is that the new treatment’s 
response rate is at least 0.10 more than that of the existing treatment.  
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Ratio 
The ratio r0 = PE / PB gives the relative change in the probability of the response. Testing non-
inferiority and superiority use the same formulation H r r0: 0≤  versus H r r1 0: > . 

The only subtlety is that for non-inferiority tests r0 < 1 while for superiority tests r0 > 1.  

Non-Inferiority using a Ratio 
The following example might help you understand the concept of non-inferiority as defined by 
the ratio. Suppose that 60% of patients (PB = 0.60) respond to the current treatment method. If a 
new treatment decreases the response rate by no more than 10% (r0 = 0.90), it will be considered 
to be noninferior to the standard treatment. Substituting these figures into the statistical 
hypotheses gives H r0 09: .≤ 0  versus H r1 09: .> 0 . The relationship P0 = (r0)(PB) 
gives H P0 05: .≤ 4  versus H P1 05: .> 4 . 

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is at least 54%. That is, the conclusion of non-inferiority is that the new treatment’s 
response rate is no worse than 10% less than that of the standard treatment. 

Superiority using a Ratio 
The following example is intended to help you understand the concept of superiority as it applies 
to the ratio. Suppose that 60% of patients (PB = 0.60) respond to the current treatment method. If 
a new treatment increases the response rate by at least 10% (r0 = 1.10), it will be considered to be 
superior to the existing treatment. Substituting these figures into the statistical hypotheses 
gives H r0 11: .≤ 0  versus H r1 11: .> 0 . The relationship P0 = (r0)(PB) gives H P0 0 6: .≤ 6  
versus H P1 0 6: .> 6 . 

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is at least 66%. That is, the conclusion of superiority is that the new treatment’s 
response rate is at least 10% more than that of the existing treatment. 
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Odds Ratio 
The odds ratio, o0 = (PE / (1 – PE)) / (PB / (1 – PB)), gives the relative change in the odds of the 
response. Testing non-inferiority and superiority use the same formulation H o o0: ≤ 0  versus 
H o o1: > 0 . The only difference is that for non-inferiority tests o0 <1, while for superiority tests 
o0 > 1.  

Power and Sample Size Calculation 
Historically, power and sample size calculations for a one-sample proportion test have been based 
on normal approximations to the binomial. However, with the speed of modern computers using 
the normal approximation is unnecessary, especially for small samples. Rather, the significance 
level and power can be computed using complete enumeration of all possible values of x, the 
number of successes in a sample of size n.  

This is done as follows.  

1. The critical value of the test is computed using standard techniques. 

2. For each possible value of x, the value of the test statistic (z test, t test, or exact test) is 
computed along with its associated probability of occurrence.  

3. The significance level and power are computed by summing the probabilities of occurrence 
for all values of the test statistic that are greater than (or less than) the critical value. Each 
probability of occurrence is calculated using P0 for the significance level and P1 for the 
power.  

Other variables such as the sample size are then found using an efficient search algorithm. 
Although this method is not as elegant as a closed-form solution, it is completely accurate.  

Test Statistics 
The test statistics used are listed in the One Proportion - Inequality chapter. They will not be repeated 
here. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and beta. This chapter covers four procedures, each of which has different options. 
This section documents options that are common to all four procedures. Later, unique options for 
each procedure will be documented.   

Find 
This option specifies the parameter to be solved for using the other parameters. The parameters 
that may be selected are Equiv. Value, Actual Value, Alpha, Beta, and n. In most situations, you 
will select either Beta or n. 

Select n when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Beta when you want to calculate the power of an experiment.  

Higher Proportions Are 
This option specifies whether proportions represent successes or failures. 

Better 
When proportions represent successes, the higher proportions are better. In this case, a non-
inferior treatment is one whose proportion is at least as high as the baseline. The alternative 
hypothesis of non-inferiority is H1: P > P0, where P0 is slightly less than PB. 

Worse 
When proportions represent failures, the lower proportions are better. In this case, a noninferior 
treatment is one whose proportion is at least as low as the baseline or lower. The alternative 
hypothesis of non-inferiority is H1: P < P0, where P0 is slightly greater than PB. 

Baseline Proportion (PB) 
Enter a value (or range of values) for the baseline proportion. In a non-inferiority study, this is the 
response rate of the standard (existing) treatment. Note that this is not the value of P0. Instead, 
this value is used in the calculation of P0. 

Proportions must be between zero and one. 

You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1.  

n (Sample Size)  
Enter a value (or range of values) for the sample size n. This is the number of individuals sampled 
in the study. Values must be integers greater than one. 

You may enter a range such as 10, 50, 100 or 10 to 100 by 10. 
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N (Population Size)  
Enter the total number of items in the population from which the sample of n items is selected. 
Enter Infinite to signify an infinite population so that no correction factor is applied. An infinite 
population is one in which the number in the population is large and unknown. 

Note that N must be greater than n. 

When samples are drawn from a very large (infinite) population, calculations are based on the 
binomial distribution. 

When samples are drawn from a population of known size N, calculations are based on the 
hypergeometric distribution. 

Alpha (Significance Level) 
This option specifies one or more values for alpha which is the probability of a type-I (false 
positive) error. This error occurs when you falsely reject a true null hypothesis.  

Values must be between zero and one. Historically, the value of 0.05 was used for alpha. This 
means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I you are willing to take in your experimental 
situation.  

Note that because of the discrete nature of the binomial distribution, the alpha level will seldom 
be achieved exactly. 

Beta (1 - Power) 
This option specifies one or more values for beta which is the probability of a type-II (false 
negative) error. This error occurs when you fail to reject a false null hypothesis. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta, but 
now 0.1 is more common. However, you should pick a value for beta that represents the risk of a 
type-II error you are willing to take. 

Power is defined as 1-beta. Power is equal to the probability of rejecting a false null hypothesis. 
Hence, specifying the beta error level also specifies the power level. For example, if you specify 
beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power values of 0.95, 
0.90, and 0.80, respectively.  

Test Statistic in Report 
Specify which test statistic will be used in searching and reporting. Note that C.C. is an 
abbreviation for Continuity Correction. This refers to the adding or subtracting of 1/(2n) to (or 
from) the numerator of the z-value to bring the normal approximation closer to the binomial 
distribution. 

In most situations, you would select the Exact Test option. The other options are provided for 
comparative purposes. 
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Data Tab (Proportion) 
This section documents options that are used when the parameterization is given directly in terms 
of the proportions P0 and P1.  

Equivalence Proportion (P0) 
This option sets the smallest value which is still trivially different from PB by directly setting the 
value of P0. If ‘Higher Proportions Are’ is set to ‘Better’, specify a value of P0 that is less than 
PB for a non-inferiority test or a value of P0 that is greater than PB for a superiority test. If 
‘Higher Proportions Are’ is set to ‘Worse’, do the opposite. 

For example, if PB (baseline proportion) is 0.50, you might consider 0.49, 0.48, 0.47, and 0.46 to 
be close enough so that the fact that they are less than 0.50 can be overlooked. However, you 
might decide that if the value is 0.45 or less, the treatment is inferior. Thus, this value would be 
set to 0.45. 

Since this value is a proportion, it must be a positive value less than one. It cannot be equal to PB.  

Actual Proportion (P1) 
This is the value of the proportion (P1) at which the power is calculated. The power calculations 
assume that this is the actual value of the proportion. For non-inferiority tests, this value is often 
set equal to PB. 

Proportions must be between zero and one.  

You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1.  
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Data Tab (Difference) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P0. P0 is the value of the proportion assumed by the null hypothesis and P1 (or 
P) is the value of the proportion at which the power is calculated. Once P0 and the difference are 
given, the value of P1 is found by the formula: P1 = difference + P0. 

Equivalence Difference (d0) 
This option sets the smallest value which is still trivially different from PB by setting the 
difference between P0 and PB. If ‘Higher Proportions Are’ is set to ‘Better’, specify a difference 
that is less than zero for a non-inferiority test or a difference greater than zero for a superiority 
test. If ‘Higher Proportions Are’ is set to ‘Worse’, do the opposite. 

For example, if PB (baseline proportion) is 0.50, you might consider -.01, -.02, or -.04 to be small 
enough so that the fact that P0 is less than 0.50 can be overlooked. However, you might decide 
that if the difference is -.05 or less, the treatment is inferior. Thus, this value would be set to -.05. 

Since this value is a difference between two proportions, it must be between -1 and 1.  

Actual Difference (d1) 
This option specifies the value of P1 (the proportion at which the power is calculated) by 
specifying the difference between the two proportions, P1 and PB. This difference is used with 
PB to calculate the value of P1 using the formula, P1 = PB + Difference. For non-inferiority tests, 
this value is often set equal to zero. 

Differences must be between -1 and 1. 

You may enter a range of values such as .03 .05 .10 or .01 to .05 by .01.  

 



 Non-Inferiority Test of One Proportion  105-11 

Data Tab (Ratio) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P0.  

Equivalence Ratio (r0) 
This option sets the smallest value which is still trivially different from PB by setting the ratio of 
P0 to PB. If ‘Higher Proportions Are’ is set to ‘Better’, specify a ratio that is less than one for a 
non-inferiority test or a ratio greater than one for a superiority test. If ‘Higher Proportions Are’ is 
set to ‘Worse’, do the opposite. 

For example, if PB (baseline proportion) is 0.50, you might consider ratios of 0.99, 0.98, or even 
0.96 to be small enough so that the fact that P0 is less than PB can be overlooked (the difference 
is trivial). However, you might decide that if the ratio is 0.95 or less, the treatment is inferior. 
Thus, this value would be set to 0.95. 

Since this value is a ratio between two proportions, it must be positive. Since it is a margin, it 
cannot be one. It cannot be so large that the calculated value of P0 is greater than one. 

Actual Ratio (r1) 
This option specifies the value of P1 (the actual proportion) by specifying the ratio between the 
two proportions, P1 and PB. This ratio is used with PB to calculate the value of P1 using the 
formula, P1 = PB(Ratio). For non-inferiority tests, this value is often set equal to one.  

Ratios must greater than zero. Note that the ratios must be small enough so that P1 is less than 
one. 

You may enter a range of values such as .5 .6 .7 .8 or 1.25 to 2.0 by .25.  
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Data Tab (Odds Ratio) 
This section documents options that are used when the parameterization is in terms of the odds 
ratio, O1 / O0 where O1 = P1 / (1 – P1) and O0 = P0 / (1 – P0).  

Equivalence Odds Ratio (o0) 
This option sets the smallest value which is still trivially different from PB by setting the odds 
ratio of P0 and PB. If ‘Higher Proportions Are’ is set to ‘Better’, specify a ratio that is less than 
one for a non-inferiority test or a ratio greater than one for a superiority test. If ‘Higher 
Proportions Are’ is set to ‘Worse’, do the opposite. 

For example, if PB (baseline proportion) is 0.50, you might consider odds ratios of 0.99, 0.90, or 
even 0.81 to be small enough so that the fact that P0 is less than PB can be overlooked (the 
difference is trivial). However, you might decide that if the odds ratio is 0.80 or less, the 
treatment is inferior. Thus, this value would be set to 0.80. 

Since this value is a ratio between two odds, it must be positive. Since it is a margin, it cannot be 
one.  

Actual Odds Ratio (o1) 
This option specifies the value of P1 (the actual proportion) by specifying the odds ratio between 
the two proportions, P1 and PB. This ratio is used with PB to calculate the value of P1. For non-
inferiority tests, this value is often set equal to one.  

Odds ratios must greater than zero.  

You may enter a range of values such as .5 .6 .7 .8 or 1.25 to 2.0 by .25.  
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Example 1 - Finding the Power 
Suppose 50% of patients with a certain type of cancer survive two years using the current 
treatment. The current treatment is expensive and has several severe side effects. A new treatment 
has fewer side effects and is less expensive. A non-inferiority trial is to be conducted to show that 
the two-year survival rate of the new treatment is as good as the current treatment. After serious 
consideration, the margin of non-inferiority is set at 5%. What power will be achieved by sample 
sizes of 50, 100, 200, 300, 500, or 800 and a significance level of 0.05? For comparative 
purposes, also calculate the power for a margin of non-inferiority of 10%. Assume that the true 
survival rate of the new treatment is the same as that of the current (baseline) treatment. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template Example1 by clicking the Template tab and 
loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Higher Proportions Are......................Better 
Equivalence Difference (d0)..............-.10 -.05 
Actual Difference (d1) .......................0 
Baseline Proportion (PB)...................0.50 
n (Sample Size).................................50 100 200 300 500 800 
N (Population Size) ...........................Infinite 
Alpha .................................................0.05 
Beta (1-Power) ..................................Ignored since this is the Find setting 
Test Statistic in Reports ....................Exact Test 
Reports Tab 
Show Numeric Reports .....................Checked 
Show Comparative Reports ..............Not checked 
Show Definitions ...............................Checked 
Show Plots ........................................Checked 
Show Comparative Plots...................Not checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results when H0: P = P0 versus H1: P = P>P0 
Test Statistic: Exact Test 
 
  Equiv. Actual Baseline 
  Difference Difference Proportion Target Actual  Reject H0 
Power N (d0) (d1) (PB) Alpha Alpha Beta If R>=This 
0.3359 50 -0.1000 0.0000 0.5000 0.0500 0.0314 0.6641 27 
0.6178 100 -0.1000 0.0000 0.5000 0.0500 0.0423 0.3822 49 
0.8854 200 -0.1000 0.0000 0.5000 0.0500 0.0492 0.1146 92 
0.9633 300 -0.1000 0.0000 0.5000 0.0500 0.0443 0.0367 135 
0.9976 500 -0.1000 0.0000 0.5000 0.0500 0.0461 0.0024 219 
1.0000 800 -0.1000 0.0000 0.5000 0.0500 0.0453 0.0000 344 
0.1611 50 -0.0500 0.0000 0.5000 0.0500 0.0444 0.8389 29 
0.2421 100 -0.0500 0.0000 0.5000 0.0500 0.0441 0.7579 54 
0.3619 200 -0.0500 0.0000 0.5000 0.0500 0.0381 0.6381 103 
0.5230 300 -0.0500 0.0000 0.5000 0.0500 0.0465 0.4770 150 
0.7195 500 -0.0500 0.0000 0.5000 0.0500 0.0484 0.2805 244 
0.8783 800 -0.0500 0.0000 0.5000 0.0500 0.0476 0.1217 384 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the size of the sample drawn from the population. To conserve resources, it should be small. 
Equiv. is the maximum value that is still considered unimportant. 
Actual is the value of this parameter given the alternative hypothesis is true. 
PB is the baseline or standard value of the proportion. This is the value under the current treatment. 
d0 is the smallest difference from PB which is still considered as equivalent. 
d1 is the value of the difference under the alternative hypothesis. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
 
Summary Statements 
A sample size of 50 achieves 34% power to detect a difference (P0-PB) of -0.1000 using a 
one-sided binomial test. The target significance level is 0.0500. The actual significance level 
achieved by this test is 0.0314. These results assume a baseline proportion (PB) of 0.5000 and 
that the actual difference (P1-PB) is 0.0000. 
 

This report shows the values of each of the parameters, one scenario per row. Because of the 
discrete nature of the binomial distribution, the target alpha is usually greater than the actual 
alpha. Hence, the actual alpha is also shown.  

Power 
Power is the probability of concluding non-inferiority when the treatment is indeed noninferior. 

N 
This is the sample size. 

Equiv. Difference (or Proportion, Ratio, or Odds Ratio) 
This difference is the maximum difference from the baseline proportion PB that is still considered 
unimportant or trivial. This value is used to calculate P0.  

Actual Difference (or Proportion, Ratio, or Odds Ratio) 
The actual difference is difference between the true proportion, P1, and the baseline proportion, 
PB.   

Baseline Proportion 
The baseline proportion is the response rate that is achieved by the current (standard) treatment. 
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Target Alpha 
This is the target (set in the design) value of the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. That is, this is the probability of concluding non-
inferiority when in fact the new treatment is inferior. Because of the discreteness of the binomial 
distribution from which this value is calculated, the target value is seldom achieved exactly. 

Actual Alpha 
This is the actual value of alpha (see Target Alpha) that is achieved by the design. Note that lower 
values of alpha imply lower power. 

Beta 
Beta is the probability of accepting a false null hypothesis. It is the opposite of power. 

Reject H0 if R>=This 
The symbol R stands for the number of items with the characteristic of interest out of the n items 
sampled. For the scenario presented on the first line, an exact test does not exist for these 
parameters at the target alpha of 0.05. The closest that can be achieved is an alpha of 0.0314. In 
this case, we would reject the null hypothesis in any sample of size 50 in which the count of 
individuals with the characteristic of interest is greater than or equal to 27. 

Plots Section 
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This plot shows the relationship between power, sample size, and the trivial difference. Note that 
90% power is achieved with an n of about 200 when the trivial difference is -.10 and about 800 
when the trivial difference is -.05. 
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Example 2 - Finding the Sample Size 
Continuing from Example 1, suppose you want to find the exact sample size necessary to achieve 
90% power when the equivalence difference is -.05. Assume that an exact binomial test will be 
used. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the Example2 template by clicking the Template tab and 
loading this template. 

Option Value
Data Tab 
Find ...................................................n 
Higher Proportions Are .....................Better 
Equivalence Difference (d0)..............-.05 
Actual Difference (d1) .......................0 
Baseline Proportion (PB) ..................0.50 
n (Sample Size) ................................ Ignored since this is the Find setting 
N (Population Size) ........................... Infinite 
Alpha.................................................0.05 
Beta...................................................0.10 
Test Statistic in Reports ....................Exact Test 
Reports Tab 
Show Numeric Reports .....................Checked 
Show Comparative Reports ..............Not checked 
Show Definitions ...............................Not checked 
Show Plots ........................................Not checked 
Show Comparative Plots...................Not checked 
 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results when H0: P = P0 versus H1: P = P>P0 
Test Statistic: Exact Test 
 
  Equiv. Actual Baseline 
  Difference Difference Proportion Target Actual  Reject H0 
Power N (d0) (d1) (PB) Alpha Alpha Beta If R>=This 
0.9024 861 -0.0500 0.0000 0.5000 0.0500 0.0499 0.0976 412 
 

This report shows that a sample size of 861 will be necessary to achieve the design requirements.  
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Example 3 – Comparing Test Statistics 
Continuing Example 1, suppose the researchers want to investigate which of the five test statistics 
to use. This is an important question since choosing the wrong test statistic may increase the 
sample size, reduce power or inflate the actual alpha level. The differences in the characteristics 
of test statistics are most noticeable in small samples. Hence, the investigation done here is for 
sample sizes of 20 to 200 in steps of 20. The trivial difference will be set to -.10. All other 
settings are as given in Example 1. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example3 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Higher Proportions Are......................Better 
Equivalence Difference (d0)..............-.10 
Actual Difference (d1) .......................0 
Baseline Proportion (PB)...................0.50 
n (Sample Size).................................20 to 200 by 20 
N (Population Size) ...........................Infinite 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
Reports Tab 
Show Numeric Reports .....................Not checked 
Show Comparative Reports ..............Checked 
Show Definitions ...............................Not checked 
Show Plots ........................................Not checked 
Show Comparative Plots...................Checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Power Comparison for Methods of Testing H0: P = P0 versus H1: P > P0 
 
 Equiv. Actual Baseline  Exact Z-Test Z-Test Z-Test Z-Test  
 Diff. Diff. Prop. Target Test S(P0) S(P0)C S(P) S(P)C T-Test 
N (d0) (d1) (PB) Alpha Power Power Power Power Power Power 
20 -0.1000 0.0000 0.5000 0.0500 0.1316 0.2517 0.1316 0.2517 0.1316 0.2517 
40 -0.1000 0.0000 0.5000 0.0500 0.3179 0.3179 0.3179 0.3179 0.3179 0.3179 
60 -0.1000 0.0000 0.5000 0.0500 0.4487 0.4487 0.4487 0.4487 0.4487 0.4487 
80 -0.1000 0.0000 0.5000 0.0500 0.5445 0.5445 0.5445 0.5445 0.5445 0.5445 
100 -0.1000 0.0000 0.5000 0.0500 0.6178 0.6178 0.6178 0.6178 0.6178 0.6178 
120 -0.1000 0.0000 0.5000 0.0500 0.6759 0.7385 0.6759 0.7385 0.6759 0.6759 
140 -0.1000 0.0000 0.5000 0.0500 0.7229 0.7765 0.7229 0.7765 0.7229 0.7765 
160 -0.1000 0.0000 0.5000 0.0500 0.8077 0.8077 0.8077 0.8077 0.8077 0.8077 
180 -0.1000 0.0000 0.5000 0.0500 0.8337 0.8683 0.8337 0.8337 0.8337 0.8337 
200 -0.1000 0.0000 0.5000 0.0500 0.8854 0.8854 0.8854 0.8854 0.8556 0.8854 
 
Actual Alpha Comparison for Methods of Testing H0: P = P0 versus H1: P > P0 
 
 Equiv. Actual Baseline  Exact Z-Test Z-Test Z-Test Z-Test  
 Diff. Diff. Prop. Target Test S(P0) S(P0)C S(P) S(P)C T-Test 
N (d0) (d1) (PB) Alpha Alpha Alpha Alpha Alpha Alpha Alpha 
20 -0.1000 0.0000 0.5000 0.0500 0.0210 0.0565 0.0210 0.0565 0.0210 0.0565 
40 -0.1000 0.0000 0.5000 0.0500 0.0392 0.0392 0.0392 0.0392 0.0392 0.0392 
60 -0.1000 0.0000 0.5000 0.0500 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 
80 -0.1000 0.0000 0.5000 0.0500 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 
100 -0.1000 0.0000 0.5000 0.0500 0.0423 0.0423 0.0423 0.0423 0.0423 0.0423 
120 -0.1000 0.0000 0.5000 0.0500 0.0392 0.0575 0.0392 0.0575 0.0392 0.0392 
140 -0.1000 0.0000 0.5000 0.0500 0.0358 0.0514 0.0358 0.0514 0.0358 0.0514 
160 -0.1000 0.0000 0.5000 0.0500 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 
180 -0.1000 0.0000 0.5000 0.0500 0.0408 0.0558 0.0408 0.0408 0.0408 0.0408 
200 -0.1000 0.0000 0.5000 0.0500 0.0492 0.0492 0.0492 0.0492 0.0363 0.0492 
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The first numeric report shows the power for each test statistic. The second shows the actual 
alpha achieved by the design. 

An examination of the first report shows that the power is often different for at least one of the 
tests. Also notice that the exact test always has the minimum power in each row. This would lead 
us discard this test statistic. However, consider the second report which shows the actual alpha 
level (the target was 0.05) for each test. By inspecting corresponding entries in both tables, we 

 



 Non-Inferiority Test of One Proportion  105-19 

see that whenever a test statistic achieves a better power than the exact test, it also yields an actual 
alpha level larger than the target alpha.  

For example, look at the powers for n = 20. The z test using s(p hat) has an unusually large power 
= 0.2517. This is a much larger power than the exact test’s value of 0.1316. However, note that 
the actual alpha for this test is 0.0560 which is larger than the target alpha of 0.05.  
We conclude that indeed, the exact test is consistently the best test since it always achieves a 
significance level that is less than the target value. 

Example 4 - Validation using Chow, 
Shao, and Wang 
The only appropriate example we have found is Chow, Shao, and Wang (2003) page 85, which 
gives the result of a sample size calculation using an asymptotic formula. They calculate a sample 
size of 22 when alpha = 0.05, beta = 0.20, PB = 0.30, Equiv. difference = -.10, and actual 
proportion = 0.50. As we shall see, PASS obtains a different answer. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the Example4 template by clicking the Template tab and 
loading this template.  

Option Value
Data Tab 
Find ...................................................n 
Higher Proportions Are......................Better 
Equivalence Difference (d0)..............-.10 
Actual Difference (d1) .......................0.20 
Baseline Proportion (PB)...................0.30 
n (Sample Size).................................Ignored since this is the Find setting 
N (Population Size) ...........................Infinite 
Alpha .................................................0.05 
Beta...................................................0.20 
Reports Tab 
Show Numeric Reports .....................Checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

  Equiv. Actual Baseline 
  Difference Difference Proportion Target Actual  Reject H0 
Power N (d0) (d1) (PB) Alpha Alpha Beta If R>=This 
0.8338 17 -0.1000 0.5000 0.3000 0.0500 0.0377 0.1662 7 
 

PASS calculated a sample size of only 17 while Chow’s formula obtained 22. The difference 
occurs because PASS uses exact calculations based on the binomial distribution, while Chow et 
al. use a large-sample approximation based on the normal approximation to the binomial. To see 
that 17 is indeed the correct answer, enter the values into PASS’s one-sample proportion test. The 
necessary values are P0 = 0.20, P1 = 0.50, alpha = 0.05, and beta = 0.10. These values result in a 
sample size of 17. 
We have found that the approximate results are closer to the exact results when the sample sizes 
are over 200. For sample sizes less than 50, there can be significant error in the approximate 
formulas. 
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Example 5 - Finding Power after an 
Experiment 
The proportion of successes of the current treatment is known to be 0.74 based on years of 
treatment use. Researchers have developed a new method of treatment which costs about half the 
current treatment price. Before the new treatment can be approved it must be shown that the 
success of the proposed treatment is not inferior to that of the current treatment. It is determined 
that use of the new treatment is justifiable if it is shown that it is effective more than 70% of the 
time. Sixty individuals are randomly selected to receive the new method of treatment. Forty-three 
(71.67%) of the 60 individuals responded positively to the treatment. The p-value for the test 
based on exact binomial probabilities is 0.4514. Because the researchers were unable to show the 
new treatment is non-inferior, they desire to know the power of the test. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the Example5 template by clicking the Template tab and 
loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Higher Proportions Are......................Better 
Equivalence Difference (d0)..............-.04 
Actual Difference (d1) .......................0.00 
Baseline Proportion (PB)...................0.74 
n (Sample Size).................................60 
N (Population Size) ...........................Infinite 
Alpha .................................................0.05 
Beta...................................................Ignored 
Test Statistic in Reports ....................Exact Test 
 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for testing H0: P = P0 versus H1: P > P0 
Test Statistic: Exact Test 
 
  Equiv. Actual Baseline 
  Difference Difference Proportion Target Actual  Reject H0 
Power N (d0) (d1) (PB) Alpha Alpha Beta If R>=This 
0.1112 60 -0.0400 0.0000 0.7400 0.0500 0.0295 0.8888 49 
 

This report shows that the power for the test was only 0.1112.  
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Example 6 - Finding Sample Size Based 
on the Odds Ratio 
The odds for success of the current treatment is known be 4.31. A new treatment is developed to 
compete with the current treatment with respect to cost and reduction in side effects. It must be 
shown to be non-inferior to the current treatment. The researchers want to determine the sample 
size necessary to achieve 80% power in this test of non-inferiority. The researchers determine that 
the new treatment will be considered non-inferior if the odds for success are no less than 90% the 
odds for success of the current treatment. The baseline proportion is calculated as PB = 
odds/(1+odds) = 4.31/(1+4.31) = 0.8117. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the odds ratio parameterization. You can make these changes 
directly on your screen or you can load the Example6 template by clicking the Template tab and 
loading this template. 

Option Value
Data Tab 
Find ...................................................n 
Higher Proportions Are .....................Better 
Equivalence Odds Ratio (o0) ............0.9 
Actual Odds Ratio (o1)......................1.0 
Baseline Proportion (PB) ..................0.8117 
n (Sample Size) ................................ Ignored 
N (Population Size) ........................... Infinite 
Alpha.................................................0.05 
Beta...................................................0.2 
Test Statistic in Reports ....................Exact Test 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for testing H0: P = P0 versus H1: P > P0 
Test Statistic: Exact Test 
 
  Equiv. Actual Baseline 
  Odds Ratio Odds Ratio Proportion Target Actual  Reject H0 
Power N (o0) (o1) (PB) Alpha Alpha Beta If R>=This 
0.8004 3547 0.9000 1.0000 0.8117 0.0500 0.0499 0.1996 2860 
 

A sample size of 3547 is required to show non-inferiority under these conditions. 
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Chapter 110  

One Proportion –
Equivalence  
This module provides power analysis and sample size calculation for equivalence tests in one-
sample designs in which the outcome is binary. Users may choose from among commonly-used 
test statistics.  

The details of sample size calculations for the one-sample design for binary outcomes are 
presented in the chapter entitled One Proportion - Equality and will not be repeated here. Instead, 
this chapter discusses those changes necessary for equivalence tests. 

Approximate sample size formulas for equivalence tests of a single proportion are presented in 
Chow et al. (2003) page 83. However, only large sample (normal approximation) results are 
given there. The results available in this module use exact calculations based on the enumeration 
of all possible values for the binomial distribution. 

Four Procedures Documented Here 
There are four procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, ratios of proportions, and odds ratios. Each 
of these options is listed separately on the menus.  
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Example 
An equivalence test example will set the stage for the discussion of the terminology that follows. 
Suppose that the current treatment for a disease is effective 70% of the time. Unfortunately, this 
treatment is expensive and occasionally exhibits serious side-effects. A promising new treatment 
has been developed to the point where it can be tested. One of the questions that must be 
answered is whether the new treatment is equivalent to the current treatment. In other words, do 
about 70% of treated subjects respond to the new treatment?  

It is known that the new treatment will not have a response rate that is exactly the same as that of 
the standard treatment. After careful consideration, they decide that the margin of equivalence is 
plus or minus 10%. That is, if the response rate of the new treatment is between 60% and 80% it 
will be deemed equivalent to the standard treatment. 

The developers must design an experiment to test the hypothesis that the response rate of the new 
treatment is within 10% of the standard (baseline) treatment. The statistical hypotheses to be 
tested are 

H P PB0 01: .− ≥  versus H P PB1 01: .− <  

Notice that when the null hypothesis is rejected the conclusion is that the response rate is between 
0.6 and 0.8.  

Technical Details 
In the discussion that follows, let P represent the proportion being investigated. That is, P is the 
actual probability of a success in a binomial experiment. Often, this proportion is a response rate, 
cure rate, or survival rate. Let PB represent the baseline proportion. In an equivalence trial, the 
baseline proportion is the response rate of the current (standard) treatment. Let PL represent the 
smallest value of P that still results in the conclusion that the new treatment is equivalent to the 
current treatment. Similarly, let PU represent the largest value of P that still results in the 
conclusion that the new treatment is equivalent to the current treatment. Note that PB will be 
between PL and PU. The power of a test is computed at a specific value of the proportion, P1. 
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The statistical hypotheses that are tested are 

H P PL P PU0: ≤ ≥or  versus H PL P PU1: < <  

This unusual hypothesis test can be broken down into two, one-sided hypothesis tests (TOST) as 
follows 

H P PL0: ≤  versus H P PL1: >  

and 

H P PU0: ≥  versus H P PU1: <  

If both of these one-sided tests are rejected at significance level α , then equivalence can be 
concluded at significance level α . Note that we do not conduct the individual tests at α / 2 . 

There are three common methods of specifying the margin of equivalence. The most direct is to 
simply assign values for PL and PU. However, it is often more meaningful to identify PB and 
then specify PL  and PU implicitly by giving a difference, ratio, or odds ratio. Mathematically, 
the definitions of these parameterizations are  

Parameter Computation Hypotheses

Difference  d PL P PU PBB0 = − = −   H d d H d d0 0 1: :≥ <vs 0

Ratio r
PL PB

PU PB0 1
= =

/
/   H r r H r r0 0 1: :≥ <vs 0

Odds Ratio o
OddsL OddsB

OddsU
OddsB

0 1
= =

/
  H o o H o o0 0 1: :≥ <vs 0

where  

Difference  d P PB= −   

Ratio   r
P PB P PB
PB P P PB

=
>
<

⎧
⎨
⎩

/
/

if
if

Odds Ratio   o
Odds OddsB P PB
OddsB Odds P PB

=
>
<

⎧
⎨
⎩

/
/

if
if
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Difference 
The difference is perhaps the most direct method of comparison between two proportions. It is 
easy to interpret and communicate. It gives the absolute impact of the treatment. However, there 
are subtle difficulties that can arise with its use.  

One difficulty arises when the event of interest is rare. If a difference of 0.001 occurs when the 
baseline probability is 0.40, it would be dismissed as being trivial. That is, there is usually little 
interest in a treatment that only decreases the probability from 0.400 to 0.399. However, if the 
baseline probability of a disease is 0.002, a 0.001 decrease would represent a reduction of 50%. 
Thus, interpretation of the difference depends on the baseline probability of the event. As a rule 
of thumb, the difference is best suited for those cases in which. 

Equivalence Test using a Difference 
The following example might be instructive. Suppose 60% of patients respond to the current 
treatment method (PB = 0.60). If the response rate of the new treatment is no less than five 
percentage points different (d0 = 0.05) from the existing treatment, it will be considered to be 
equivalent. Substituting these figures into the statistical hypotheses gives 

H d0 0 0: .≥ 5 versus H d1 0 0: . 5<  

where d = |P – PB|. 

The resulting joint hypotheses are 

H P0 05: .≤ 5  versus H1: P > 0.55. 

and 

H P0 0 6: .≥ 5  versus H1: P < 0.65. 

In this example, when both null hypotheses are rejected, the concluded alternative is that the 
response rate is between 55% and 65%.  

 



 Equivalence Tests for One Proportion  110-5 

Ratio 
The ratio r0 = PE / PB denotes the relative change in the probability of the response. Testing 
equivalence uses the hypotheses  

H r r0: 0≤  versus H r r1 0: >  

where r = P / PB if P > PB or r = PB / P if P < PB. 

Equivalence Test using a Ratio 
The following example might help to understand the concept of equivalence as defined by the 
ratio. Suppose that 60% of patients (PB = 0.60) respond to the current treatment method. If a new 
treatment changes the response rate by no more than 10% (r0 = 1.1), it will be considered to be 
equivalent to the standard treatment. Substituting these figures into the statistical hypotheses 
gives 

H r0 1: ≥ 1.  versus H r1 1: .1<  

The relationship P0 = (r0)(PB) gives the two, one-sided, hypotheses 

H P0 05: . 4≤  versus H P1 05: .> 4  

H P0 0 6: .≥ 6  versus H P1 0 6: . 6<  

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is between 54% and 66%.  
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Odds Ratio 
The odds ratio, o0 = (PE / (1 – PE)) / (PB / (1 – PB)), gives the relative change in the odds of the 
response. Testing noninferiority and superiority use the same formulation, namely  

H o o0: 0≤  versus H o o1 0: >  

where o = Odds / OddsB if P > PB or o = OddsB / Odds if P < PB. 

Power and Sample Size Calculation 
Historically, power and sample size calculations for a one-sample proportion test have been based 
on normal approximations to the binomial. However, with the speed of modern computers, using 
the normal approximation is unnecessary, especially for small samples. Rather, the significance 
level and power can be computed using complete enumeration of all possible values of x, the 
number of successes in a sample of size n.  

This is done as follows.  

1. The critical value of the test is computed using standard techniques. 

2. For each possible value of x, the value of the test statistic (z test, t test, or exact test) is 
computed along with its associated probability of occurrence.  

3. The significance level and power are computed by summing the probabilities of occurrence 
for all values of the test statistic that are greater than (or less than) the critical value. Each 
probability of occurrence is calculated using P0 for the significance level and P1 for the 
power.  

Other variables such as the sample size are then found using an efficient search algorithm. 
Although this method is not as elegant as a closed-form solution, it is completely accurate.  

Examples of Power Calculation for the Exact Test 
Suppose the baseline proportion, PB, is 0.50, the sample size is 10, and the target alpha level is 
0.05. A typical value for the equivalence difference is 0.05. However, because the example is for 
a small sample size, the equivalence difference will be set to 0.4 (which is, of course, a very 
unrealistic figure) for illustrative purposes. Calculate the power of this design to detect 
equivalence if the actual difference between the proportions is 0.10. 

The first step is to find the rejection region under the null hypothesis. In this example, the null 
hypothesis is H P0 0: .≤ 1 or H P0 0: > 9. and the alternative hypothesis is H P101 0 9: . .< <  

. This composite hypothesis breaks down into the following two, one-sided, 
simple hypotheses 
H P1 01 09: . .< <

1. H P0 0: ≤ 1.  versus H P1 0: .> 1 

2. H P0 0: ≥ 9.  versus H P1 0: .< 9  
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The rejection regions for the both tests are determined from the following table of cumulative 
binomial probabilities for N = 10. The first column of probabilities is for r greater than or equal to 
R while the second two columns of probabilities are for r less than or equal to R. 

Table of Binomial Probabilities for N = 10 and P = 0.1, 0.9, and 0.6  
  Reject  Reject Reject 
R Pr(r>=R |P=0.1)  Test1 Pr(r<=R |P=0.9) Test2 Both Pr(r<=R|P=0.6) 
0 1.0000  No 0.0000 Yes  No 0.0001  
1 0.6513  No 0.0000  Yes  No 0.0017 
2 0.2639  No 0.0000  Yes  No 0.0123 
3 0.0702  No 0.0000  Yes  No 0.0548 
4 0.0128  Yes 0.0001  Yes  Yes 0.1662 
5 0.0016  Yes 0.0016  Yes  Yes 0.3669 
6 0.0001  Yes 0.0128  Yes  Yes 0.6177 
7 0.0000  Yes 0.0702  No  No 0.8327 
8 0.0000  Yes 0.2639  No  No 0.9536 
9 0.0000  Yes 0.6513  No  No 0.9940 
10 0.0000  Yes 1.0000  No  No 1.0000 

The second column gives the value of alpha for the first test ( H P0 0: 1.≤  versus H P1 0: .> 1). 
The rejection region for this test is all values of R greater than or equal to 4. The fourth column 
gives the values of alpha for the second test. The rejection region for the second test is all values 
of R less than or equal to 6. The rejection region for both tests is those values of R values that 
result in rejection of both individual tests. These are the R values 4, 5, and 6. The power is 
computed using the final column of the table which gives cumulative binomial probabilities for P 
= 0.5 + 0.1 = 0.6. The power is probability for the cases 4, 5, and 6. It is calculated as 0.6177 – 
0.0548 = 0.5629. 
It is informative to consider what happens when the equivalence difference is reduced from 0.4 to 
0.2. The following table gives the appropriate cumulative binomial probabilities for this case.  

Table of Binomial Probabilities for N = 10 and P = 0.3, 0.7, and 0.6  
  Reject  Reject Reject 
R Pr(r>=R |P=0.3)  Test1 Pr(r<=R |P=0.7) Test2 Both Pr(r<=R|P=0.6) 
0 1.0000  No 0.0000 Yes  No 0.0001  
1 0.9718  No 0.0001  Yes  No 0.0017 
2 0.8507  No 0.0016  Yes  No 0.0123 
3 0.6172  No 0.0106  Yes  No 0.0548 
4 0.3504  No 0.0473  Yes  No 0.1662 
5 0.1503  No 0.1503  No  No 0.3669 
6 0.0473  Yes 0.3504  No  No 0.6177 
7 0.0106  Yes 0.6172  No  No 0.8327 
8 0.0016  Yes 0.8507  No  No 0.9536 
9 0.0001  Yes 0.9718  No  No 0.9940 
10 0.0000  Yes 1.0000  No  No 1.0000 

The second column gives the value of alpha for the first test. The rejection region for this test is 
all values of R greater than or equal to 6. The fourth column gives the values of alpha for the 
second test. The rejection region for the second test is all values of R less than or equal to 4. The 
rejection region for both tests together is empty! There is no R for which both tests will be 
rejected. Hence, the alpha level and the power will both be 0.0. 
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Examples of Power Calculation for the Z Test 
The following example illustrates how to calculate the power of an approximate z test. There are 
several z tests to choose from. We will use the following test.  

( )
z p P

P P
=

n
−
−

0
0 1 0 /

 

Calculating the rejection region for the z test is based on a table of normal probabilities. For the 
target alpha level of 0.05, the critical value is 1.6449. That is, the first hypothesis test that 
H P0 0: ≤ 1.  versus H P1 0: > 1.  is rejected if the resulting calculated z value is greater than 
1.6449. Similarly, the second hypothesis test that H P0 0: ≥ 9.  versus H P1 0: 9.<  is rejected 
when the calculated z value is less than -1.6449. The rejection regions for the both tests are shown 
in the following table of binomial probabilities for N = 10.  

Table Showing Both One-Sided Z Tests for N = 10 and P = 0.1, 0.9, and 0.6  
  Reject  Reject Reject 
R Z for P = 0.1  Test1 Z for P = 0.9 Test2 Both Pr(r<=R|P=0.6) 
0 -1.0541  No -9.4868 Yes  No 0.0001  
1 0.0000  No -8.4327  Yes  No 0.0017 
2 1.0541  No -7.3786  Yes  No 0.0123 
3 2.1082  Yes -6.3246  Yes  Yes 0.0548 
4 3.1623  Yes -5.2705  Yes  Yes 0.1662 
5 4.2164  Yes -4.2164  Yes  Yes 0.3669 
6 5.2705  Yes -3.1623  Yes  Yes 0.6177 
7 6.3246  Yes -2.1082  Yes  Yes 0.8327 
8 7.3786  Yes -1.0541  No  No 0.9536 
9 8.4327  Yes 0.0000  No  No 0.9940 
10 9.4868  Yes 1.0541  No  No 1.0000 

Note that the null hypothesis is rejected for the equivalence test when R is 3, 4, 5, 6, and 7. The 
power is the probability of these values calculated using P = 0.60. It is calculated as 0.8327 – 
0.0123 = 0.8204. Notice that this is much larger than 0.5629 which was the power for the exact 
test. The reason for this discrepancy is that the approximate test is actually testing at a larger 
alpha than the target of 0.05. The actual alpha is the maximum of the two individual alphas. From 
the first table, we can see that the actual alpha for the first test is Pr(r>=3|P=0.1) = 0.0702. 
Similarly, the actual alpha for the second test is Pr(r<=7|P=0.9) = 0.0702. Hence the alpha level is 
0.0702. The actual alpha of the exact test was 0.0128.  

Test Statistics 
The test statistics used are given in the chapter entitled One Proportion - Equality. They will not be 
repeated here. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and beta. This chapter covers four procedures, each of which has different options. 
This section documents options that are common to all four procedures. Later, unique options for 
each procedure will be documented.   

Find 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Alpha, Beta, and n. In most situations, you will select either Beta or n. 

Select n when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Beta when you want to calculate the power of an experiment.  

Baseline Proportion (PB) 
Enter a value (or range of values) for the baseline proportion. In an equivalence study, this is the 
response rate of the standard (existing) treatment. Note that this is not the value of P0. Instead, 
this value is used in the calculation of P0. 

Proportions must be between zero and one.  

You may enter a range of values such as 0.1,0.2,0.3 or 0.1 to 0.9 by 0.1. 

n (Sample Size)  
Enter a value (or range of values) for the sample size n. This is the number of individuals sampled 
in the study. Values must be integers greater than one. 

You may enter a range such as 10, 50, 100 or 10 to 100 by 10. 

Alpha (Significance Level) 
This option specifies one or more values for alpha which is the probability of a type-I (false 
positive) error. This error occurs when you falsely reject the null hypothesis.  

Values must be between zero and one. Historically, the value of 0.05 was used for alpha. This 
means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I you are willing to take in your experimental 
situation.  

Note that because of the discrete nature of the binomial distribution, the alpha level will not 
usually be achieved exactly. 

Beta (1 - Power) 
This option specifies one or more values for beta which is the probability of a type-II (false 
negative) error. This error occurs when you fail to reject a false null hypothesis. 

 



110-10  Equivalence Tests for One Proportion  

Values must be between zero and one. Historically, the value of 0.20 was often used for beta, but 
now 0.1 is more common. However, you should pick a value for beta that represents the risk of a 
type-II error you are willing to take. 

Power is defined as 1- beta. Power is equal to the probability of rejecting a false null hypothesis. 
Hence, specifying the beta error level also specifies the power level. For example, if you specify 
beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power values of 0.95, 
0.90, and 0.80, respectively.  

Test Statistic in Report 
Specify which test statistic will be used in searching and reporting. Note that C.C. is an 
abbreviation for Continuity Correction. This refers to the adding or subtracting of 1/(2n) to (or 
from) the numerator of the z-value to bring the normal approximation closer to the binomial 
distribution. 

In most situations, you would select the ‘Exact Test’ option. The other options are provided for 
comparative purposes. 

Data Tab (Proportion) 
This section documents options that are used when the parameterization is given directly in terms 
of the proportions PL, PU, PB, and P1.  

Actual Proportion (PB) 
This is the value of the proportion, P1 at which the power is calculated. The power calculations 
assume that this is the actual value of the proportion. For noninferiority tests, this value is often 
set equal to PB. 

Proportions must be between zero and one. You may enter a range of values such as 0.1 0.2 0.3 or 
0.1 to 0.9 by 0.1.  

Upper and Lower Equivalence Proportion 
These options set the smallest and largest values which are still to be considered trivially different 
from PB. Note that the lower proportion must be less than PB, and the upper proportion must be 
greater than PB. Since these values are proportions, they must be positive values less than one. 
They cannot be equal to PB.  
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Data Tab (Difference) 
This section documents options that are used when the parameterization is in terms of the 
difference of two proportions. 

Equivalence Difference (d0) 
This option sets the smallest value which is still trivially different from PB by setting the 
magnitude of the difference between P0 and PB. For example, if PB (baseline proportion) is 0.50, 
you might consider differences of 0.01, 0.02, or 0.04 to be small enough so that the fact that P0 is 
different from 0.50 can be overlooked. However, you might decide that if the difference is 0.05 or 
more, the treatment is not equivalent. Thus, this value would be set to 0.05. 

Since this value is an absolute difference between two proportions, it must be between 0 and 1.  

Actual Difference (d1) 
This option specifies the value of P1 (the actual proportion) by specifying the difference between 
the two proportions, P1 and PB. This difference is used with PB to calculate the value of P1 using 
the formula: P1 = PB + difference. For equivalence tests, this value is often set equal to zero. 

Differences must be between -1 and 1. 

You may enter a range of values such as .03 .05 .10 or .01 to .05 by .01.  
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Data Tab (Ratio) 
This section documents options that are used when the parameterization is in terms of the ratio of 
two proportions.  

Equivalence Ratio (r0) 
This option sets the value which is still trivially different from PB by setting the ratio between P0 
and PB. For P0 example, if PB (baseline proportion) is 0.50, you might consider ratios of 0.99, 
0.98, or even 0.96 to be small enough so that the fact that P0 is less than PB can be overlooked 
(the difference is trivial). However, you might decide that if the ratio is 0.95 or less, the treatment 
is not equivalent. Thus, this value would be set to 0.95. 

Since this value is a ratio between two proportions, it must be positive. Since it is a margin, it 
cannot be one. Also, it cannot be so large that the calculated value of P0 is greater than one. 

Actual Ratio (r1) 
This option specifies the value of P1 (the actual proportion) by specifying the ratio between the 
two proportions, P1 and PB. This ratio is used with PB to calculate the value of P1 using the 
formula: P1 = (Ratio)(PB). For equivalence tests, this value is often set equal to one.  

Ratios must be greater than zero. Note that the ratios must be small enough so that P1 is less than 
one. 

You may enter a range of values such as .5 .6 .7 .8 or 1.25 to 2.0 by .25.  
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Data Tab (Odds Ratio) 
This section documents options that are used when the parameterization is in terms of the odds 
ratios.  

Equivalence Odds Ratio (o0) 
This option sets the value which is still trivially different from PB by setting the odds ratio of P0 
and PB. For example, if PB (baseline proportion) is 0.50, you might consider odds ratios of 0.99, 
0.98, or even 0.96 to be small enough so that the fact that P0 is less than PB can be overlooked 
(the difference is trivial). However, you might decide that if the odds ratio is 0.80 or less, the 
treatment is inferior. Thus, this value would be set to 0.80. 

Since this value is a ratio between two odds, it must be positive. Because it is a margin, it cannot 
be one.  

Actual Odds Ratio (o1) 
This option specifies the value of P1 (the actual proportion) by specifying the odds ratio between 
the two proportions, P1 and PB. This ratio is used with PB to calculate the value of P1. For 
noninferiority tests, this value is often set equal to one.  

Odds ratios must be greater than zero. You may enter a range of values such as .5 .6 .7 .8 or 1.25 
to 2.0 by .25.  

Options Tab 
The Options tab allows for specification of the maximum number of iterations to be used in 
searches. 

Maximum Iterations during Searches 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. 
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Example1 - Finding the Power 
Suppose 50% of patients with a certain type of cancer survive two years using the current 
treatment. The current treatment is expensive and has several severe side effects. A new treatment 
has fewer side effects and is less expensive. An equivalence trial is to be conducted to show that 
the two-year survival rate of the new treatment is the same as the current treatment. After serious 
consideration, the margin of equivalence is set at 5%. What power will be achieved by sample 
sizes of 50, 100, 200, 300, 500, or 800 and a significance level of 0.05? For comparative 
purposes, also calculate the power for margin of equivalence of 10%. Assume that the true 
survival rate of the new treatment is the same as that of the current (baseline) treatment. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example1 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Baseline Proportion (PB) ..................0.50 
n (Sample Size) ................................50 100 200 300 500 800 
Actual Difference (d1) .......................0 
Equivalence Difference (d0)..............0.05 0.10 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Test Statistic in Reports ....................Exact Test 
Reports Tab 
Show Numeric Reports .....................Checked 
Show Comparative Reports ..............Not checked 
Show Definitions ...............................Checked 
Show Plots ........................................Checked 
Show Comparative Plots...................Not checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results when H0: Non-Equivalence versus H1: Equivalence 
Test Statistic: Exact Test 
 
   Lower Upper   
  Equiv. Equiv. Equiv. Actual Baseline    Reject H0 if 
  Diff. Prop. Prop. Diff. Prop. Target Actual  R1<=R<=R2 
Power N (d0) (P0L) (P0U) (d1) (PB) Alpha Alpha Beta (R1|R2) 
0.0000 50 0.0500 0.4500 0.5500 0.0000 0.5000 0.0500 0.0000 1.0000 29|21 
0.0000 100 0.0500 0.4500 0.5500 0.0000 0.5000 0.0500 0.0000 1.0000 54|46 
0.0000 200 0.0500 0.4500 0.5500 0.0000 0.5000 0.0500 0.0000 1.0000 103|97 
0.0460 300 0.0500 0.4500 0.5500 0.0000 0.5000 0.0500 0.0465 0.9540 150|150 
0.4390 500 0.0500 0.4500 0.5500 0.0000 0.5000 0.0500 0.0484 0.5610 244|256 
0.7567 800 0.0500 0.4500 0.5500 0.0000 0.5000 0.0500 0.0476 0.2433 384|416 
0.0000 50 0.1000 0.4000 0.6000 0.0000 0.5000 0.0500 0.0000 1.0000 27|23 
0.2356 100 0.1000 0.4000 0.6000 0.0000 0.5000 0.0500 0.0423 0.7644 49|51 
0.7708 200 0.1000 0.4000 0.6000 0.0000 0.5000 0.0500 0.0492 0.2292 92|108 
0.9267 300 0.1000 0.4000 0.6000 0.0000 0.5000 0.0500 0.0443 0.0733 135|165 
0.9952 500 0.1000 0.4000 0.6000 0.0000 0.5000 0.0500 0.0461 0.0048 219|281 
0.9999 800 0.1000 0.4000 0.6000 0.0000 0.5000 0.0500 0.0453 0.0001 344|456 
 
Report Definitions 
Power is the probability of concluding equivalence when the proportions are equivalent. 
N is the size of the sample drawn from the population. 
The equivalence difference is the maximum value of the difference that is still considered unimportant. 
The actual difference is the value of the difference under the alternative hypothesis. 
PB is the baseline or standard value of the proportion. This is the value under the current treatment. 
P0L and P0U are the limits between which an equivalent proportion must fall. 
d0 is the smallest absolute difference that is still considered equivalent. 
d1 is the value of the difference under the alternative hypothesis. 
Alpha is the probability of concluding equivalence when the proportions are non-equivalent. 
Beta is the probability concluding non-equivalence when the proportions are equivalent. 
 
Summary Statements 
A sample size of 50 achieves 0% power to detect a difference (P0-PB) of 0.0500 using a 
two-sided binomial test. The target significance level is 0.0500. The actual significance level 
achieved by this test is 0.0000. These results assume a baseline proportion (PB) of 0.5000 and 
that the actual difference (P1-PB) is 0.0000. 
 

This report shows the values of each of the parameters, one scenario per row. Because of the 
discrete nature of the binomial distribution, the target alpha is usually different than the actual 
alpha. Hence, the actual alpha is also shown.  

Power 
Power is the probability of concluding equivalence when the treatment is indeed equivalent. 

N 
This is the sample size. 

Equivalence Difference (or Proportion, Ratio, or Odds Ratio) 
The equivalence difference is the maximum difference from the baseline proportion, PB, that is 
still considered as unimportant or trivial. This value is used to calculate P0.  

Equivalence Upper and Lower Proportions 
If the true proportion is between these two limits, the treatment is considered to be equivalent to 
the baseline proportion. These are the bounds of equivalence.  
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Actual Difference (or Proportion, Ratio, or Odds Ratio) 
The actual difference is the difference between the actual proportion, P1, and the baseline 
proportion, PB.  

Baseline Proportion 
The baseline proportion, PB, is the response rate that is achieved by the current (standard) 
treatment. 

Target Alpha 
This is the target (set in the design) value of the probability of a type-I error. A type-I error occurs 
when a true null hypothesis is rejected. That is, this is the probability of concluding equivalence 
when in fact the new treatment is not equivalent. Because of the discreteness of the binomial 
distribution from which this value is calculated, the target value is seldom achieved. 

Actual Alpha 
This is the actual value of alpha (see Target Alpha) that is achieved by the design. Note that low 
values of alpha reduce the power. 

Beta 
Beta is the probability of accepting a false null hypothesis. It is the opposite of power. 

Reject H0 if R1<=R<=R2 
This value provides the bounds between which equivalence is concluded. For example, if n is 50, 
then a value here of 29|31 means that the null hypothesis of non-equivalence is rejected when the 
number of items with the characteristic of interest is 29, 30, or 31.  

When the second number is less than the first as it is in the first line (29|21), the design can never 
reject the null hypothesis. These designs should never be used. 

Plots Section 
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This plot shows the relationship between power, sample size, and the trivial difference. Note that 
80% power is achieved with a sample size of about 210 when the trivial difference is 0.10 and 
over 800 when the trivial difference is 0.05. 

Example2 - Finding the Sample Size 
Continuing from Example1, suppose you want to find the exact sample size necessary to achieve 
90% power when the trivial difference is 0.05. Assume that an exact binomial test will be used. 

Setup 
You can make these changes directly on your screen or you can load the Example2 template by 
clicking the Template tab and loading this template. 

Option Value
Data Tab 
Find ...................................................n 
Baseline Proportion (PB)...................0.50 
Actual Difference (d1) .......................0 
Equivalence Difference (d0)..............0.05 
n ........................................................Ignored since this is the Find setting 
Alpha .................................................0.05 
Beta...................................................0.10 
Test Statistic in Reports ....................Exact Test 
Reports Tab 
Show Numeric Reports .....................Checked 
Show Comparative Reports ..............Not checked 
Show Definitions ...............................Not checked 
Show Plots ........................................Not checked 
Show Comparative Plots...................Not checked 
 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results when H0: Non-Equivalence versus H1: Equivalence 
Test Statistic: Exact Test 
 
   Lower Upper   
  Equiv. Equiv. Equiv. Actual Baseline    Reject H0 if 
  Diff. Prop. Prop. Diff. Prop. Target Actual  R1<=R<=R2 
Power N (d0) (P0L) (P0U) (d1) (PB) Alpha Alpha Beta (R1|R2) 
0.9040 1092 0.0500 0.4500 0.5500 0.0000 0.5000 0.0500 0.0498 0.0960 519|573 
 

This report shows that a sample size of 1092 will be necessary to achieve the design 
requirements.  
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Example3 – Comparing Test Statistics 
Continuing Example1, suppose the researchers want to investigate which of the five test statistics 
to use. This is an important question since choosing the wrong test statistic can increase sample 
size and reduce power. The differences in the characteristics of test statistics are most noticeable 
in small samples. Hence, the investigation done here is for sample sizes of 20 to 200 in steps of 
20. The trivial difference will be set to 0.10. All other settings are as given in Example 1. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example3 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Baseline Proportion (PB) ..................0.50 
Actual Difference (d1) .......................0 
Equivalence Difference (d0)..............0.10 
n ........................................................20 to 200 by 20 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Reports Tab 
Show Numeric Reports .....................Not checked 
Show Comparative Reports ..............Checked 
Show Definitions ...............................Not checked 
Show Plots ........................................Not checked 
Show Comparative Plots...................Checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Power Comparison for Methods of Testing H0: Non-Equivalence versus H1: Equivalence 
 
 Equiv. Actual Baseline  Exact Z-Test Z-Test Z-Test Z-Test  
 Diff. Diff. Prop. Target Test S(P0) S(P0)C S(P) S(P)C T-Test 
N (d0) (d1) (PB) Alpha Power Power Power Power Power Power 
20 0.1000 0.0000 0.5000 0.0500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
40 0.1000 0.0000 0.5000 0.0500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
60 0.1000 0.0000 0.5000 0.0500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
80 0.1000 0.0000 0.5000 0.0500 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 
100 0.1000 0.0000 0.5000 0.0500 0.2356 0.2356 0.2356 0.2356 0.2356 0.2356 
120 0.1000 0.0000 0.5000 0.0500 0.3517 0.4770 0.3517 0.4770 0.3517 0.3517 
140 0.1000 0.0000 0.5000 0.0500 0.4457 0.5530 0.4457 0.5530 0.4457 0.5530 
160 0.1000 0.0000 0.5000 0.0500 0.6154 0.6154 0.6154 0.6154 0.6154 0.6154 
180 0.1000 0.0000 0.5000 0.0500 0.6674 0.7365 0.6674 0.6674 0.6674 0.6674 
200 0.1000 0.0000 0.5000 0.0500 0.7708 0.7708 0.7708 0.7708 0.7112 0.7708 
 
Actual Alpha Comparison for Methods of Testing H0: Non-Equivalence versus H1: Equivalence 
 
 Equiv. Actual Baseline  Exact Z-Test Z-Test Z-Test Z-Test  
 Diff. Diff. Prop. Target Test S(P0) S(P0)C S(P) S(P)C T-Test 
N (d0) (d1) (PB) Alpha Alpha Alpha Alpha Alpha Alpha Alpha 
20 0.1000 0.0000 0.5000 0.0500 0.0000 0.0565 0.0210 0.0565 0.0210 0.0565 
40 0.1000 0.0000 0.5000 0.0500 0.0000 0.0392 0.0392 0.0392 0.0392 0.0392 
60 0.1000 0.0000 0.5000 0.0500 0.0000 0.0445 0.0445 0.0445 0.0445 0.0445 
80 0.1000 0.0000 0.5000 0.0500 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 
100 0.1000 0.0000 0.5000 0.0500 0.0423 0.0423 0.0423 0.0423 0.0423 0.0423 
120 0.1000 0.0000 0.5000 0.0500 0.0392 0.0575 0.0392 0.0575 0.0392 0.0392 
140 0.1000 0.0000 0.5000 0.0500 0.0358 0.0514 0.0358 0.0514 0.0358 0.0514 
160 0.1000 0.0000 0.5000 0.0500 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 
180 0.1000 0.0000 0.5000 0.0500 0.0408 0.0558 0.0408 0.0408 0.0408 0.0408 
200 0.1000 0.0000 0.5000 0.0500 0.0492 0.0492 0.0492 0.0492 0.0363 0.0492 

          

Power vs n by Test with d0=0.1000 d1=0.0000
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The first report shows the power for each test statistic. The second report shows the actual alpha 
achieved by the design. 

An examination of the first report shows that once non-zero powers are obtained, they are often 
different for at least one of the tests. Also notice that the exact test always has the minimum 
power in each row. This would lead us discard this test statistic. However, consider the second 
report which shows the actual alpha level (the target was 0.05) for each test. By inspecting 
corresponding entries in both tables, we see that whenever a test statistic achieves a better power 
than the exact test, it also yields an actual alpha level larger than the target alpha.  

For example, look at the powers for n = 120. The z test using s(P0) has an unusually large power 
= 0.4770. This is a much larger power than the exact test’s value of 0.3517. However, note that 
the actual alpha for this test is 0.0575 which is larger than the target alpha of 0.05 and the exact 
test’s alpha of 0.0392.  
We conclude that indeed, the exact test is consistently the best test since it always achieves a 
significance level that is less than the target value. 
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Example4 - Validation 
We could not find a worked example for this situation in the literature. Therefore, we will use the 
example that was worked ‘by hand’ earlier in this chapter to validate the program. In that 
example, the baseline proportion was 0.50, alpha was 0.05, n was 10, the actual difference was 
0.10, and the trivial difference was 0.40. The power was calculated to be 0.5629. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization.  You can make these changes 
directly on your screen or you can load the Example4 template by clicking the Template tab and 
loading this template.  

Option Value
Data Tab 
Find ...................................................Beta and Power 
Baseline Proportion (PB)...................0.50 
Actual Difference (d1) .......................0.10 
Equivalence Difference (d0)..............0.40 
n ........................................................10 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
Reports Tab 
Show Numeric Reports .....................Checked 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results when H0: Non-Equivalence versus H1: Equivalence 
Test Statistic: Exact Test 
 
   Lower Upper   
  Equiv. Equiv. Equiv. Actual Baseline    Reject H0 if 
  Diff. Prop. Prop. Diff. Prop. Target Actual  R1<=R<=R2 
Power N (d0) (P0L) (P0U) (d1) (PB) Alpha Alpha Beta (R1|R2) 
0.5630 10 0.4000 0.1000 0.9000 0.1000 0.5000 0.0500 0.0128 0.4370 4|6 
 

PASS has obtained the same answer within rounding error. 
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Example5 - Computing the Power after 
Completing the Experiment 
Researchers are testing a generic drug to determine if it is equivalent to the name-brand 
alternative.  Equivalence is declared if the success rate of the generic brand is no more than 10% 
from that of the name-brand drug. Suppose that the name-brand drug is known to have a success 
rate of 60%.  In a study of 500 individuals, they find that 265, or 53%, are successfully treated 
using the generic brand.  An equivalence test (exact test) with alpha = 0.05 failed to declare that 
the two drugs are equivalent. The researchers would now like to compute the power for actual 
differences ranging from 0 to 9%. 

Note that the power is not calculated solely at the difference observed in the study, 7%.  It is more 
informative to study a range of values with practical significance. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the Example5 template by clicking the Template tab and 
loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Baseline Proportion (PB)...................0.60 
Actual Difference (d1) .......................0.0 to 0.09 by 0.01 
Equivalence Difference (d0)..............0.10 
n ........................................................500 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
Test Statistic in Reports ....................Exact Test 
Reports Tab 
Show Numeric Reports .....................Checked 
Show Comparative Reports ..............Not checked 
Show Definitions ...............................Not checked 
Show Plots ........................................Checked 
Show Comparative Plots...................Not checked 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

 



110-24  Equivalence Tests for One Proportion  

Numeric Results 
 
Numeric Results when H0: Non-Equivalence versus H1: Equivalence 
Test Statistic: Exact Test 
 
   Lower Upper   
  Equiv. Equiv. Equiv. Actual Baseline    Reject H0 if 
  Diff. Prop. Prop. Diff. Prop. Target Actual  R1<=R<=R2 
Power N (d0) (P0L) (P0U) (d1) (PB) Alpha Alpha Beta (R1|R2) 
0.9965 500 0.1000 0.5000 0.7000 0.0000 0.6000 0.0500 0.0489 0.0035 269|332 
0.9940 500 0.1000 0.5000 0.7000 0.0100 0.6000 0.0500 0.0489 0.0060 269|332 
0.9815 500 0.1000 0.5000 0.7000 0.0200 0.6000 0.0500 0.0489 0.0185 269|332 
0.9482 500 0.1000 0.5000 0.7000 0.0300 0.6000 0.0500 0.0489 0.0518 269|332 
0.8783 500 0.1000 0.5000 0.7000 0.0400 0.6000 0.0500 0.0489 0.1217 269|332 
0.7583 500 0.1000 0.5000 0.7000 0.0500 0.6000 0.0500 0.0489 0.2417 269|332 
0.5914 500 0.1000 0.5000 0.7000 0.0600 0.6000 0.0500 0.0489 0.4086 269|332 
0.4041 500 0.1000 0.5000 0.7000 0.0700 0.6000 0.0500 0.0489 0.5959 269|332 
0.2352 500 0.1000 0.5000 0.7000 0.0800 0.6000 0.0500 0.0489 0.7648 269|332 
0.1139 500 0.1000 0.5000 0.7000 0.0900 0.6000 0.0500 0.0489 0.8861 269|332 
 

Power vs d1 with d0=0.1000 n=500 Alpha=0.05
PB=0.6000 Test=Exact
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The range in power is quite large.  The power is relatively high and constant if the true difference 
is less than or equal to 4%, but it decreases rapidly as the differences increase from there. 

 



 Equivalence Tests for One Proportion  110-25 

Example6 - Finding the Sample Size 
using Ratios 
Researchers would like to compare a new treatment to an existing standard treatment.  The new 
treatment will be deemed equivalent to the standard treatment if the response rate is changed by 
no more than 20%, hence, r = 1.20.  It is known that 60% of patients respond to the standard 
treatment.  If the researchers use the exact test and a significance level of 0.05, how large of a 
sample must they take to achieve 90% power if the actual ratio is 1.0? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the ratio parameterization. You can make these changes directly 
on your screen or you can load the Example6 template by clicking the Template tab and loading 
this template. 

Option Value
Data Tab 
Find ...................................................n 
Baseline Proportion (PB)...................0.60 
Actual Ratio (r1) ................................1.0 
Equivalence Ratio (r0).......................1.2 
n ........................................................Ignored since this is the Find setting 
Alpha .................................................0.05 
Beta...................................................0.10 
Test Statistic in Reports ....................Exact Test 
Reports Tab 
Show Numeric Reports .....................Checked 
Show Comparative Reports ..............Not checked 
Show Definitions ...............................Not checked 
Show Plots ........................................Checked 
Show Comparative Plots...................Not checked 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results when H0: Non-Equivalence versus H1: Equivalence 
Test Statistic: Exact Test 
 
   Lower Upper   
  Equiv. Equiv. Equiv. Actual Baseline    Reject H0 if 
  Ratio Prop. Prop. Ratio Prop. Target Actual  R1<=R<=R2 
Power N (r0) (P0L) (P0U) (r1) (PB) Alpha Alpha Beta (R1|R2) 
0.9014 228 1.2000 0.5000 0.7200 1.0000 0.6000 0.0500 0.0488 0.0986 127|152 
 
Summary Statements 
A sample size of 228 achieves 90% power to detect a ratio (P0/PB) of 1.2000 using a two-sided 
binomial test. The target significance level is 0.0500. The actual significance level achieved 
by this test is 0.0488. These results assume a baseline proportion (PB) of 0.6000 and that the 
actual ratio (P1/PB) is 1.0000. 
 

They must sample 228 individuals to achieve just over 90% power for an actual ratio of 1.0 and 
trivial ratio of 1.20. 
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Chapter 115  

Confidence 
Interval for a 
Proportion 
Introduction 
This routine calculates the sample size necessary to achieve a required precision at a stated 
confidence coefficient for a confidence interval about the sample proportion.  

Technical Details 
Rather than use the normal approximation to the binomial distribution, PASS uses exact 
calculations based on the binomial distribution as presented in Desu and Raghavarao (1990). The 
results will be similar to the normal approximation results when the sample size is large (greater 
than 200). However, when the sample size is small, the normal approximation is poor. The point 
to remember is that PASS uses the exact calculations, not approximations as some other programs 
do.  

Let X be a discrete random variable with probability function   

( ) ( )f x P P Px x; 0 0 1 0 1= − −
 

where x = 0,1. X is said to follow the Bernoulli distribution. Let  X1, X2, …, Xn be a random sample 
of X of size n. Then 

Y Xi
i

n

=
=
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1

 

has a binomial distribution with parameters  n and P0. The probability distribution of Y is  
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We note that Y/n is the usual estimate of P0. 

To estimate P0 while controlling the absolute error with a given probability, you find  n to satisfy 

Pr Y
n

P d− <⎛
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⎞
⎠⎟
≥ −0 1 α  
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Here, d represents the precision of the estimate. This probability statement may be rearranged as 
follows: 
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Hence, for given values of d, P0, and 1−α , a search can be made for the smallest value of n for 
which the above probability statement is true. This is what is done in this routine. 

Finite Population Size 
The above calculations assume that samples are being drawn from a large (infinite) population. 
When the population is of finite size (N), a normal approximation to the hypergeometric distribution 
is used. Calculations are based on the formula 

( )( )
z d

P P N n
nN

1 2 0 1 0− =
− −

α /  

Confidence Coefficient 
The confidence coefficient,1−α , has the following interpretation. If thousands of samples of  n 
items are drawn from a population using simple random sampling and a confidence interval is 
calculated for each sample, the proportion of those intervals that will include the true population 
proportion is 1−α . 

Notice that is a long term statement about many, many samples.  

Power 
Notice that these formulas do not contain a statement about the power. In fact, since we are 
calculating confidence intervals and not conducting hypothesis tests, we cannot commit the errors 
that are possible with those tests. A natural question is, if we obtained a sample size based on the 
confidence interval formulas and then conducted a hypothesis test, what would be the power of the 
test? The answer is about 0.50. 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Find 
This option specifies the parameter to be solved for from the other parameters.  

Precision 
This is half the width of the confidence interval (d in the formulas). That is, the confidence 
interval is formed by taking the sample proportion plus and minus this amount. This is sometimes 
called the margin of error. The smaller this amount, the more precise will be the interval. 

You can enter a single value or a list of values. The value(s) must be greater than zero and less 
than one-half. 

Confidence Coefficient 
The confidence coefficient,1−α , has the following interpretation. If thousands of samples of  n 
items are drawn from a population using simple random sampling and a confidence interval is 
calculated for each sample, the proportion of those intervals that will include the true population 
mean is 1−α . In power analysis, we specify α . When dealing with confidence intervals, we 
specify 1−α . 

Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 
0.90,0.95 or 0.90 to 0.99 by 0.01. 

Population Size 
This is the number of individuals in the population. Usually, you assume that samples are drawn 
from a very large (infinite) population. Occasionally, however, situations arise in which the 
population of interest is of limited size. In these cases, appropriate adjustments must be made. 
This option sets the population size. 

N (Sample Size) 
Enter one or more values for the sample size. This is the number of individuals selected at 
random from the population to be in the study. 

You can enter a single value or a range of values. 

 



115-4  Confidence Interval of a Proportion  

P0 (Baseline Proportion) 
This is an estimate of the population proportion. Since the point of the study is to estimate this 
value, you will not know it in advance. However, since it is necessary to estimate this value, you 
must put in something. The largest sample sizes occur when P0 = 0.50. So when you do not have 
a good estimate of P0, use a value near 0.5. Your sample size will then be a little larger than 
necessary. 

Remember that P0 + d must be less than one and that P0 - d must be greater than zero (d is the 
precision). 

Options Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Iterative Precision 
When a search is made for the precision value, this is the cutoff value used to terminate the 
search. In most cases, a value of 0.0001 will be more than sufficient. 
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Example1 - Calculating Sample Size 
Suppose a study is planned in which you want to construct a confidence interval for the 
proportion that is no wider than 0.02. You want a confidence coefficient of 0.95. Previous studies 
show that the proportion is about 0.4. Instead of looking at a precision of just 0.02 with a 
confidence coefficient of 0.95, you want to see the sample sizes for a range of values from 0.02 to 
0.07 and at two confidence coefficients, 0.95 and 0.99. Calculate the necessary sample size. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value 
Data Tab 
Find ...................................................N (Sample Size) 
Precision ...........................................0.02 to 0.07 by 0.01 
Confidence Coefficient ......................0.95, 0.99 
Population Size .................................Infinite 
N (Sample Size) ................................Ignored 
P0 (Baseline Proportion) ...................0.4 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
 C.C. N P0 
 Confidence Sample Baseline 
Precision Coefficient Size Proportion 
0.02000 0.95073 2281 0.40000 
0.02000 0.99014 3955 0.40000 
0.03000 0.95051 1005 0.40000 
0.03000 0.99023 1754 0.40000 
0.04000 0.95165 566 0.40000 
0.04000 0.99003 980 0.40000 
0.05000 0.95208 365 0.40000 
0.05000 0.99056 634 0.40000 
0.06000 0.95023 244 0.40000 
0.06000 0.99058 435 0.40000 
0.07000 0.95175 181 0.40000 
0.07000 0.99045 315 0.40000 
 
Report Definitions 
Precision is the plus and minus value used to create the confidence interval. 
Confidence Coefficient is probability value associated with the confidence interval. 
N is the size of the sample drawn from the population.  
P0 is the estimated baseline proportion. 
 
Summary Statements 
A sample size of 2281 produces a 95% confidence interval equal to the sample proportion plus or minus 
0.02000 when the estimated proportion is 0.40000. 
 

This report shows the calculated sample size for each of the scenarios.  
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Plot Section 
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This plot shows the sample size versus the precision for the two confidence coefficients. 

Example2 - Validation Using Hahn and 
Meeker 
Hahn and Meeker (1991) page 145 state that a sample size of 30 gives a 90% confidence interval 
of 0.50 plus or minus 0.16. We will run this problem through PASS.  

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 

Option Value 
Data Tab 
Find ...................................................Confidence Coefficient 
Precision ...........................................0.02 to 0.07 by 0.01 
Confidence Coefficient......................0.95, 0.99 
Population Size ................................. Infinite 
N (Sample Size)................................30 
P0 (Baseline Proportion)...................0.5 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
 C.C. N P0 
 Confidence Sample Baseline 
Precision Coefficient Size Proportion 
0.16000 0.90126 30 0.50000 
 

The confidence coefficient calculated by PASS is also 0.90.  
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Chapter 120  

Single-Stage 
Phase II Clinical 
Trials 
Introduction 
Phase II clinical trials determine whether a drug or regimen has sufficient activity against disease 
to warrant more extensive study and development. In a single-stage design, a single group of 
patients is studied. Usually, investigators will know the response rate of other drugs against the 
disease. Unless the current drug can be shown to be significantly more effective, its use will not 
be pursued.  

This module finds designs that meet the error rate (alpha and beta) criterion and minimize the 
sample size when an exact test of proportions is used. The algorithm, discussed by A’Hern 
(2001), is an exact version of the algorithm of Fleming (1982 
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Technical Details 
Phase I clinical trials are designed to provide information about the maximum tolerated dose 
levels of a treatment. They consist of three to six patients at each dose level and provide little 
information about the effectiveness of the treatment.  

Phase II trials obtain initial estimates of the degree of treatment activity. A patient’s response 
may be measured by the decrease in the size of a tumor. For example, a patient may be 
considered to have responded to treatment if the tumor shrinks by 50% or more. There is no 
control group in these designs. Rather, the purpose of the trial is to determine if the drug shows 
enough activity against disease to warrant a full-scale, phase III clinical trial. 

Let P0 be the largest response proportion that, if true, clearly implies that the treatment does not 
warrant further study. P0 is sometimes called the response rate of a poor treatment. For example, 
for a new anti-tumor drug, this may be set to 0.10. 

Let P1 be the smallest response proportion that, if true, clearly implies that the treatment does 
warrant further study. P1 is sometimes called the response rate of a good treatment. For example, 
for a new anti-tumor drug, this may be set to 0.30. 

A statistical test of hypothesis may be conducted to test the null hypothesis that P P≤ 0 versus 
the alternative hypothesis that P P≥ 1 (P is the true proportion responding to the treatment in the 
population). Let α be the probability of rejecting the null hypothesis when it is true. Let β  be the 
probability of rejecting the alternative hypothesis when it is true. 

A single-stage phase II design can be represented by two numbers: N and R. N is the sample size. R 
is the critical value. If R or fewer responses occur in the N  patients, the drug is rejected.  The design 
is found by searching for the minimum value of N for which a value for R can be found such that the 
following two error rate constraints are met: 

( )Pr | , ,reject P R N0 1≥ − α  

and 

( )Pr | , ,reject P R N1 ≤ β  

Limiting the Range of the Search 
Because of the discrete nature of the binomial distribution by which these error rates are 
calculated, there is no closed-formed solution and so a search among possible values of N must be 
conducted. In order to speed up the search, only values of N between 0.8F and 4F are considered. 
F is the sample size based on the normal approximation to the binomial, suggested by Fleming 
(1982). 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs.  

Data Tab 
P0 (Maximum Response of a Poor Treatment) 
Enter one or more response proportions of a poor drug. If the true proportion responding to the 
treatment is less than this amount, study of the treatment will not be recommended. 

This value must be less than P1 and greater than zero. 

P1 (Minimum Response of a Good Treatment) 
Enter one or more response proportions of a good drug. If the true proportion responding to the 
treatment is greater than or equal to this amount, study of the treatment can be recommended.  

This value must be greater than P0 and less than one.  

Alpha 
Alpha is the probability of rejecting the hypothesis that the proportion responding to the treatment 
is less than or equal to P0 when this hypothesis is actually true. That is, Alpha = Pr(Rejecting 
P<=P0 | P<=P0). 

The range of Alpha is 0.001 to 0.25. Popular values are 0.05 and 0.10. 

Beta 
This is the probability of rejecting the hypothesis that the proportion responding to the treatment 
is greater than or equal to P1 when this hypothesis is true. That is, Beta = Pr(rejecting 
P>=P1|P>=P1). 

The range of Beta is 0.001 to 0.4. Popular values are 0.10 and 0.20. 
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Example1 - Validation from A’Hern 
A’Hern (2001) presents tables of sample sizes for various values of the design parameters. Setting 
alpha = 0.05, beta = 0.20, P0 = 0.05, and P1 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, 
A’Hern finds the corresponding sampling plans to be (using the notation R+1/N) 14/169, 4/27, 
3/14, 2/7, 2/5, 2/4, 2/4, 1/1, and 1/1. This would be set up as follows. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value 
Data Tab 
P0......................................................0.05 
P1...................................................... .1 .2 .3 .4 .5 .6 .7 .8 .9 
Alpha.................................................0.05 
Beta...................................................0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Single Stage Design for Testing H0: P <= P0 versus H1: P >= P1 
 
    Cut-Off  Actual Actual 
P0 P1 Alpha Beta R + 1 N Alpha Beta 
0.050 0.100 0.050 0.200 14 169 0.045 0.194 
0.050 0.200 0.050 0.200 4 27 0.044 0.182 
0.050 0.300 0.050 0.200 3 14 0.030 0.161 
0.050 0.400 0.050 0.200 2 7 0.044 0.159 
0.050 0.500 0.050 0.200 2 5 0.023 0.188 
0.050 0.600 0.050 0.200 2 4 0.014 0.179 
0.050 0.700 0.050 0.200 2 4 0.014 0.084 
0.050 0.800 0.050 0.200 1 1 0.050 0.200 
0.050 0.900 0.050 0.200 1 1 0.050 0.100 
 
Report Definitions 
P0 is the maximum response proportion of a poor drug. 
P1 is the minimum response proportion of a good drug. 
N is the sample size. 
If the number of responses >= R+1, P0 is rejected. 
If the number of responses <= R, P1 is rejected. 
Alpha is the probability of rejecting that P<=P0 when this is true. 
Beta is the probability of rejecting that P>=P1 when this is true. 
 
Summary Statements 
A study requires 169 subjects to decide whether the proportion responding, P, is less than or 
equal to 0.050 or greater than or equal to 0.100. If the number of responses is 14 or more, the 
hypothesis that P <= 0.050 is rejected with a target error rate of 0.050 and an actual error 
rate of 0.045. If the number of responses is 13 or less, the hypothesis that P >= 0.100 is 
rejected with a target error rate of 0.200 and an actual error rate of 0.194. 
 

Note that the designs match those of A’Hern (2001) exactly.  
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Chapter 125  

Two-Stage Phase II 
Clinical Trials 
Introduction 
Phase II clinical trials determine whether a drug or regimen has sufficient activity against disease 
to warrant more extensive study and development. In a two-stage design, the patients are divided 
into two groups or stages. At the completion of the first stage, an interim analysis is made to 
determine if the second stage should be conducted. If the number of patients responding is greater 
than a certain amount, the second stage is conducted. Otherwise, it is not.  

This module finds designs that meet the error rate (alpha and beta) criterion and minimize the 
expected sample size. The algorithm is discussed in Simon (1989). Extending Simon’s work, our 
algorithm allows the investigation of near-optimal designs that may have other useful properties.  

Technical Details 
Phase I clinical trials are designed to provide information about the maximum tolerated dose 
levels of a treatment. They consist of three to six patients at each dose level and provide little 
information about the effectiveness of the treatment.  

Phase II trials obtain initial estimates of the degree of treatment activity. A patient’s response 
may be measured by the decrease in the size of a tumor. For example, a patient may be 
considered to have responded to treatment if the tumor shrinks by 50% or more. There is no 
control group in these designs. Rather, the purpose of the trial is to determine if the drug shows 
enough activity against disease to warrant a full-scale, phase III clinical trial. 

Let P0 be the largest response proportion which, if true, clearly implies that the treatment does 
not warrant further study. P0 is sometimes called the response rate of a poor treatment. For a new 
anti-tumor drug, this may be set to 0.10. 

Let P1 be the smallest response proportion which, if true, clearly implies that the treatment does 
warrant further study. P1 is sometimes called the response rate of a good treatment. For a new 
anti-tumor drug, this may be set to 0.30. 

A statistical test of hypothesis may be conducted to test the null hypothesis that versus 
the alternative hypothesis that

P P≤ 0
P P≥ 1 (P is the true proportion responding to the treatment in the 

population). Let α be the probability of rejecting the null hypothesis when it is true. Let β  be the 
probability of rejecting the alternative hypothesis when it is true. 

A phase II design can be represented by four numbers: N1, R1, N, and R. N1 is the sample size in the 
first stage. R1 is the critical value in the first stage. If R1 or fewer responses occur in the N1 patients, 
the drug is rejected. N is the combined sample size for both the first and second stages. R is the 
critical value in the combined sample. If R or fewer of the N patients respond, the drug is rejected. 
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The expected (or average) sample size of this design is 

( )( )E N N PET N NE( ) = + − −1 1 1  

where PET is the probability of early termination of the study. 

The probability of rejecting a drug with success probability P can be found using the binomial 
distribution. The formulation is 

( ) ( ) ( )
( )

( )Pr | , , , , | , | , | ,
min ,

reject P N R R N B R P N b X P N B R X P N N
X R

N R

1 1 1 1 1 1
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= + −
= +
∑ −  

where 

( ) ( ) ( )b X P N N
X N X

P PX N X| , !
! !
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| , | ,=
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)  

The two error rate constraints are 

( )Pr | , , , ,reject P N R R N0 1 1 1≥ −α  

and 

( )Pr | , , , ,reject P N R R N1 1 1 ≤ β  

Optimum Design 
The optimum design minimizes the average sample size, E(N), while meeting the error rate 
constraints. This design is found through an exhaustive search of all possible designs. This search 
may take several minutes to complete. 

Designs Other Than Optimal 
The optimal design minimizes the average sample size. There are examples where a less-than 
optimal design may be more desirable. For example, suppose the optimal design were N1 = 5 and 
N = 25. This design is poor because only 5 patients are obtained during the first stage, but 20 are 
needed during the second stage. Most researchers would rather have more balance in the sample 
sizes of the two stages. Because of this, the actual optimal design may be rejected on other 
grounds. 
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Design Flexibility 
Dealing with sequential designs is complicated. It may be difficult to achieve exactly the number 
of patients proscribed for each phase. However, it should be remembered that the validity of the 
probability statements depends on the sample size requirements being met exactly. This is 
because the interpretation of an error rate probability statement is for repeated studies conducted 
in exactly the same way. We envision that if many studies of the same drug are conducted using 
the specific sampling plan N1, R1, N, R when P = P0, a proportion α of them will be falsely 
terminated due to chance occurrences. 

The point is, the interpretation of the error rates is for a large number of identical studies in which 
the sampling plan is identical and as proscribed. If the sampling plan is allowed to vary, this 
interpretation is invalid. Of course, the degree of possible error in interpretation depends on the 
degree to which the sampling plan is changed. We recognize that when dealing with human 
subjects, flexibility must be maintained. However, the scientist must also recognize that when the 
sampling plan is changed, the exact probability statements can no longer be calculated. 

Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Which Designs are Displayed 
This parameter specifies which designs are displayed. Since several thousand designs may be 
considered during the search for the optimum, it is important to limit the number of designs 
reported on. 

The options are: 

All designs 

All designs considered are output. This option should only be used in special cases in which a 
small number of designs are tested. Otherwise, hundreds of pages of output will be generated. 

Only designs that meet alpha & beta constraints 
Only designs that meet the alpha and beta constraints are shown. This allows you to consider 
many near optimal designs which may be selected on grounds other than expected sample size. 

Optimum designs only  
Only the optimum design, the minimax design, and the single stage design are displayed. 
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P0 (Poor) 
This is the response proportion of a poor drug. If the true proportion responding to the treatment  
is less than this amount, study of the treatment would not be recommended. 

This value must be less than P1 and greater than zero. 

Only one value can be entered. 

P1 (Good) 
This is the response proportion of a good drug. If the true proportion responding to the treatment 
is greater than or equal to this amount, study of the treatment would be recommended.  

This value must be greater than P0 and less than one.  

Only one value can be entered. 

Alpha 
Alpha is the probability of rejecting the hypothesis that the proportion responding to the treatment 
is less than or equal to P0 when this hypothesis is actually true. That is, Alpha = Pr(Rejecting 
P<=P0|P<=P0). 

The range of Alpha is 0.001 to 0.25. Popular values are 0.05 and 0.10. 

Beta 
This is the probability of rejecting the hypothesis that the proportion responding to the treatment 
is greater than or equal to P1 when this hypothesis is true. That is, Beta = Pr(rejecting 
P>=P1|P>=P1). 

The range of Beta is 0.001 to 0.4. Popular values are 0.10 and 0.20. 

N Min 
N is the combined sample size of the two stages of the design. This parameter sets the minimum 
value of N that is used during the search. The optimum value of N must be between N Min and N 
Max or it will not be found. 

The keyword MIN indicates that the value used is the minimum of the smallest sample size from 
a single stage design and MIN2 where MIN2 is calculated using  

MIN p p p p z z
p p

2 = +
−
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−
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2

2
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2
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Since it is unlikely that the two stage sample size will be less MIN, this provides a reasonable 
starting point for a search for N. However, experience has shown that you should use a small 
number such as 2 to insure that you obtain the optimum. 

You can also enter a value like MIN-x where x is a positive integer. This will cause the search to 
begin x units below the MIN.  

The problem here is that this procedure may take a long time to run. Specifying a good starting 
value significantly reduces the running time. 

Examples of valid entries are 2, 10, 20, MIN, MIN-1, MIN-15. 
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N Max 
N is the combined sample size of the two stages of the design. This parameter sets the maximum 
value of N used during the search. The optimum value of N should be between N Min and N Max 
or it will not be found. 

The keyword BEST+X indicates that the search should try at least X units above the latest 
optimum value of N. For example, suppose the N Min is set at 10. The search algorithm begins at 
10, and then continues by examining 11, 12, and so. Suppose that the search finds a candidate 
optimum at N = 13. To make sure that 13 is the optimum, the search continues on from 13 to 
13+X (if, for example, X = 5, this value is 18). If no new optimum designs are found, the design at 
N = 13 is selected.  

When using this option, X should be set large enough to guarantee that the true optimum can be 
found, but small enough so that the search does not take hours to complete. Our experience is that 
X should be greater than or equal to 8. 

Examples of valid entries are for this parameter are: 

20 
30 
BEST+8 
BEST 8 (the plus sign is optional) 
BEST 3 
Best 4 (capitalization is not necessary) 

N Step 
This parameter sets the step size in the search for N. Usually, you would enter 1 here. 
Occasionally, you may want to increase the step size during the initial part of your search to 
speed up convergence. Once you have determined a likely range, you can tighten up the search 
boundaries and reset this value to 1. 

R Min 
R is the treatment rejection number for the combined samples. If the total number of patients 
responding to the treatment is not greater than R, the treatment is deemed unworthy of further 
study. R Min sets the lower boundary for R during the search for the optimum design. The 
optimum design must have an R value between R Min and R Max. 

The recommended value for this parameter is zero. Its range is from zero to N. 

R Max 
R is the rejection number for the combined samples. If the total number of patients responding to 
the treatment is not greater than R, the treatment is deemed unworthy of further study. 

R Max sets the upper boundary for R during the search for the optimum design. The optimum 
design must have an R value between R Min and R Max. 

Since the upper value is N and N is also a varying parameter, you can set this parameter to MAX 
or MAX-X (replacing X with an appropriate integer like 1, 2, or 3). This causes the maximum 
value of R to be set to the current value of N-X during each iteration of the search. 

 



125-6  Two-Stage Design  

R Step 
This parameter sets the step size in the search for R. Usually, you would enter 1 here. 
Occasionally, you may want to increase the step size during the initial part of your search to 
speed up convergence. Once you have determined a likely range, you can tighten up the search 
boundaries and reset this value to 1. 

N1 Min 
N1 is the sample size of the first stage. This value sets the minimum value of N1 that is used 
during the search. The optimum value must be between N1 Min and N1 Max or it will not be 
found.  

Although, in theory, the sample first stage design may have only 1, 2, or 3 patients, you may want 
to ignore such designs from consideration by setting this value to 4 or 5. 

The actual range of this parameter is from 1 to N. 

N1 Max 
N1 is the sample size of the first stage of the design. This parameter sets the maximum value of 
N1 used during the search. The optimum value of N1 should be between N Min and N Max or it 
will not be found. Although, in theory, the sample first stage design may have N-3, N-2, or N-1 
patients, you may want to ignore such designs from consideration by setting this value to a 
smaller number.  

Since the upper value is N-1 and N is also a varying parameter, you can set this parameter to 
MAX or MAX-X (replacing X with an appropriate value like 1 or 2). This causes the maximum 
value of N1 to be set to the current value of N-X. 

Examples: 

10 
20 
MAX 
Max-2 
max-4 

N1 Step 
This parameter sets the step size in the search for N1. Usually, you would enter a 1 here. 
Occasionally, you may want to increase the step size during the initial part of your search to 
speed up convergence. Once you have determined a likely range, you can tighten up the search 
boundaries and reset this value to 1. 

R1 Min 
R1 is the drug rejection number for the first stage. If the number of patients responding to the 
treatment in the first stage is not greater than R1, the treatment is deemed unworthy of further 
study. This parameter sets the lower boundary for R1 during the search for the optimum design. 
The optimum design must have an R1 value between R Min and R Max. 

The recommended value for this parameter is zero. Its range is from zero to N1. 
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R1 Max 
R1 is the rejection number for the first stage. If the number of patients responding to the treatment 
in the first stage is not greater than R1, the treatment is deemed unworthy of further study. This 
parameter sets the upper boundary for R1 in the search for the optimum design.  

Since the upper value is N1 and N1 is a varying parameter, you can set this parameter to MAX or 
MAX-X (replacing X with an integer like 1,2, or 3). This causes the maximum value of R1 to be 
set to the current value of N1-X. 

The valid range of R1 is between zero and N1. 

R1 Step 
This parameter sets the step size in the search for R1. Usually, you would enter a 1 here. 
Occasionally, you may want to increase the step size during the initial part of your search to 
speed up convergence. Once you have determined a likely range, you can tighten up the search 
boundaries and reset this value to 1. 

Options Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example1 - Calculating the Power 
Suppose a design is wanted for the case Alpha = 0.05, Beta = 0.20, P0 = 0.05, and P1 = 0.25. 
This would be set up as follows: 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value 
Data Tab 
Which Designs ..................................Optimum designs only 
P0 (Poor)...........................................0.05 
P1 (Good) .........................................0.25 
Alpha.................................................0.05 
Beta...................................................0.20 
N Min.................................................Min-1 
N Max................................................Best+8 
N Step ...............................................1 
R Min.................................................0 
R Max................................................Max-3 
R Step ...............................................1 
N1 Min...............................................1 
N1 Max..............................................Max-4 
N1 Step .............................................1 
R1 Min...............................................0 
R1 Max..............................................Max-1 
R1 Step .............................................1 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Possible Designs For P0=0.050, P1=0.250, Alpha=0.050, Beta=0.200 
        Constraints  
N1 R1 PET N R Ave N Alpha Beta Satisfied  
16 2 0.000 16 2 16.00 0.043 0.197 Single Stage  
12 0 0.540 16 2 13.84 0.043 0.199 Minimax  
9 0 0.630 17 2 11.96 0.047 0.188 Optimum  
 
Report Definitions 
N1 is the sample size in the first stage. 
R1 is the drug rejection number in the first stage. 
PET is the probability of early termination of the study. 
N is the combined sample size of both stages. 
R is the combined drug rejection number after both stages. 
Ave N is the average sample size if this design is repeated many times. 
Alpha is the probability of rejecting that P<=P0 when this is true. 
Beta is the probability of rejecting that P>=P1 when this is true. 
P0 is the response proportion of a poor drug. 
P1 is the response proportion of a good drug. 
 
 
Summary Statements 
The optimal two-stage design to test the null hypothesis that P<=0.050 versus the alternative 
that P>=0.250 has an expected sample size of 11.96 and a probability of early termination of 
0.630. If the drug is actually not effective, there is a 0.047 probability of concluding that 
it is (the target for this value was 0.050). If the drug is actually effective, there is a 
0.188 probability of concluding that it is not (the target for this value was 0.200). After 
testing the drug on 9 patients in the first stage, the trial will be terminated if 0 respond. 
If the trial goes on to the second stage, a total of 17 patients will be studied. If the total 
number responding is less than or equal to 2, the drug is rejected. 
 

This report shows three designs. The first is the smallest single stage design. The second is the 
Minmax solution. This is the design with the smallest total sample size (N). The third is the 
optimum design—the one that minimizes the average sample size. 
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Example2 - Validation using Simon 
Simon (1989) page 4 in his Table 1 presents designs for several scenarios. The first row of the 
table sets P0 to 0.05, P1 to 0.25, Alpha to 0.10, and Beta to 0.10. The optimal design is N1 = 9, 
R1 = 0, N = 24, and R = 2. The minimax design is N1 = 13, R1 = 0, N = 20, and R = 2. We will 
now run this example through PASS. 

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 

Option Value 
Data Tab 
Which Designs ..................................Optimum designs only 
P0 (Poor)...........................................0.05 
P1 (Good) .........................................0.25 
Alpha.................................................0.10 
Beta...................................................0.10 
N Min.................................................Min-1 
N Max................................................Best+8 
N Step ...............................................1 
R Min.................................................0 
R Max................................................Max-3 
R Step ...............................................1 
N1 Min...............................................1 
N1 Max..............................................Max-4 
N1 Step .............................................1 
R1 Min...............................................0 
R1 Max..............................................Max-1 
R1 Step .............................................1 
 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Possible Designs For P0=0.050, P1=0.250, Alpha=0.050, Beta=0.200 
        Constraints  
N1 R1 PET N R Ave N Alpha Beta Satisfied  
20 2 0.000 20 2 20.00 0.075 0.091 Single Stage  
13 0 0.513 20 2 16.41 0.074 0.097 Minimax  
9 0 0.630 24 2 14.55 0.093 0.097 Optimum  
 

PASS has calculated exactly the same optimal design and minimax design. 
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Chapter 130  

Three-Stage Phase 
II Clinical Trials 
Introduction 
Phase II clinical trials determine whether a drug or regimen has sufficient activity against disease 
to warrant more extensive study and development. In a three-stage design, the patients are divided 
into three groups or stages. At the completion of the first stage, an interim analysis is made to 
determine if the second stage should be conducted. If the number of patients responding is greater 
than a certain amount, the second stage is conducted. Otherwise, it is not. A similar interim 
analysis is conducted at the end of the second stage. 

This module finds designs that meet the error rate (alpha and beta) criterion and minimize the 
expected sample size. The formulation is given in Chen (1997). Extending Chen’s work, our 
algorithm allows the investigation of near-optimal designs that may have other useful properties.  

Technical Details 
Phase I clinical trials are designed to provide information about the maximum tolerated dose 
levels of a treatment. They consist of three to six patients at each dose level and provide little 
information about the effectiveness of the treatment.  

Phase II trials obtain initial estimates of the degree of treatment activity. A patient’s response 
may be measured by the decrease in the size of a tumor. For example, a patient may be 
considered to have responded to treatment if the tumor shrinks by 50% or more. There is no 
control group in these designs. Rather, the purpose of the trial is to determine if the drug shows 
enough activity against disease to warrant a full-scale, phase III clinical trial. 

Let P0 be the largest response proportion which, if true, clearly implies that the treatment does 
not warrant further study. P0 is sometimes called the response rate of a poor treatment. For a new 
anti-tumor drug, this may be set to 0.10. 

Let P1 be the smallest response proportion which, if true, clearly implies that the treatment does 
warrant further study. P1 is sometimes called the response rate of a good treatment. For a new 
anti-tumor drug, this may be set to 0.30. 

A statistical test of hypothesis may be conducted to test the null hypothesis that P P≤ 0 versus 
the alternative hypothesis that P P≥ 1 (P is the true proportion responding to the treatment in the 
population). Let α be the probability of rejecting the null hypothesis when it is true. Let β  be the 
probability of rejecting the alternative hypothesis when it is true. 
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A three-stage phase II design can be represented by six numbers: R1, N1, R2, N2, R3 and N3. N1 is 
the sample size in the first stage. R1 is the critical value in the first stage. If R1 or fewer responses 
occur in the N1 patients, the drug is rejected. N2 is the total sample size of stages one and two. R2 is 
the critical value in the second stage. If R2 or fewer responses occur in the N2 patients, the drug is 
rejected. N3 is the combined sample size of all three stages. R3 is the critical value in the combined 
sample. If R3 or fewer of the N3 patients respond, the drug is rejected. 

The expected (or average) sample size of this design is 

( )( ) ( )( )E N N PET N N PET N NE( ) = + − − + − −1 1 1 2 1 1 2 3 2  

where PET1 is the probability of early termination of the study after stage one and PET2 is the 
probability of early termination after stage two. 

The probability of rejecting a drug with success proportion P can be found using the binomial 
distribution. The formulation is 

( )Pr | , , , , , ,reject P N R R N R N PET PET PET1 1 2 2 3 3 1 2 3= + +  
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The two error rate constraints are 

( )Pr | , , , , , ,reject P N R R N R N0 1 1 2 2 3 3 1≥ − α  

and 

( )Pr | , , , , , ,reject P N R R N R N1 1 1 2 2 3 3 ≤ β  

Optimum Design 
The optimum design minimizes the average sample size, E(N), while meeting the error rate 
constraints. This design is found through an exhaustive search of all possible designs. This search 
may take several minutes to complete. 
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Designs Other Than Optimal 
The optimal design minimizes the average sample size. There are examples where a less-than 
optimal design may be more desirable. For example, suppose the optimal design were N1 = 5, N2 
= 25, and N3 = 26. This design is poor because the bulk of the subjects are tested in the second 
phase. Most researchers would rather have more balance in the sample sizes of the three stages. 
For reasons like this, the actual optimal design may be replaced by another, sub-optimal, design. 

Design Flexibility 
Dealing with sequential designs is complicated. It may be difficult to achieve exactly the number 
of patients proscribed for each phase. However, it should be remembered that the validity of the 
probability statements depends on the sample size requirements being met exactly. This is 
because the interpretation of an error rate probability statement is for repeated studies conducted 
in exactly the same way. We envision that if many studies of the same drug are conducted using 
the specific sampling plan when P = P0, a proportion α of them will be falsely terminated due to 
chance occurrences. 

The point is, the interpretation of the error rates is for a large number of identical studies in which 
the sampling plan is identical and as proscribed. If the sampling plan is allowed to vary, this 
interpretation is invalid. Of course, the degree of possible error in interpretation depends on the 
degree to which the sampling plan is changed. We recognize that when dealing with human 
subjects, flexibility must be maintained. However, the researcher must also recognize that when 
the sampling plan is changed, the exact probability statements can no longer be calculated. 

Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs, turn to the chapter entitled Procedure Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Which Designs are Displayed 
This parameter controls which designs are displayed. Since several thousand designs may be 
considered during the search for the optimum, it is important to limit the number of designs 
reported on. 

The options are: 

All designs 

All designs considered are output. This option should only be used in special cases in which a 
small number of designs are tested. Otherwise, hundreds of pages of output will be generated. 

Only designs that meet alpha & beta constraints 
Only designs that meet the alpha and beta constraints are shown. This allows you to consider 
many near optimal designs which may be selected on grounds other than expected sample size. 

Optimum designs only  
Only the optimum design, the minimax design, and the single stage design are displayed. 
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P0 (Poor) 
This is the response proportion of a poor drug. If the true proportion responding to the treatment  
is less than this amount, study of the treatment would not be recommended. 

This value must be less than P1 and greater than zero. 

Only one value can be entered. 

P1 (Good) 
This is the response proportion of a good drug. If the true proportion responding to the treatment 
is greater than or equal to this amount, study of the treatment would be recommended.  

This value must be greater than P0 and less than one.  

Only one value can be entered. 

Alpha 
Alpha is the probability of rejecting the hypothesis that the proportion responding to the treatment 
is less than or equal to P0 when this hypothesis is actually true. That is, Alpha = Pr(Rejecting 
P<=P0|P<=P0). 

The range of Alpha is 0.001 to 0.25. Popular values are 0.05 and 0.10. 

Beta 
This is the probability of rejecting the hypothesis that the proportion responding to the treatment 
is greater than or equal to P1 when this hypothesis is true. That is, Beta = Pr(rejecting 
P>=P1|P>=P1). 

The range of Beta is 0.001 to 0.4. Popular values are 0.10 and 0.20. 

N Min 
N is the combined sample size of the three stages of the design. This parameter sets the minimum 
value of N3 that is used during the search. The optimum value of N3 must be between N Min and 
N Max or it will not be found. 

The keyword MIN indicates that the value used is the minimum of the smallest sample size from 
a single stage design and MIN2 where MIN2 is calculated using  
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Since it is unlikely that the three stage sample size will be less MIN, this provides a reasonable 
starting point for a search for N. You can also enter a value like MIN-x where x is a positive 
integer. This will cause the search to begin x units below the MIN.  

This procedure may take a long time to run. Specifying a good starting value significantly 
reduces the running time. 

Examples of valid entries are 2, 10, 20, MIN, MIN-1, MIN-15. 
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N Max 
N is the combined sample size of the three stages of the design. This parameter sets the maximum 
value of N3 used during the search. The optimum value of N3 should be between N Min and N 
Max or it will not be found. 

The keyword BEST+X indicates that the search should try at least X units above the latest 
optimum value of N3. For example, suppose the N Min is set at 10. The search algorithm begins 
at 10, and then continues by examining 11, 12, and so. Suppose that the search finds a candidate 
optimum at N = 13. To make sure that 13 is the optimum, the search continues on from 13 to 
13+X (if, for example, X = 5, this value is 18). If no new optimum designs are found, the design at 
N3 = 13 is selected.  

When using this option, X should be set large enough to guarantee that the true optimum can be 
found, but small enough so that the search does not take hours to complete. Our experience 
indicates that X should be greater than or equal to 8. 

Examples of valid entries for this parameter are: 

20 
30 
BEST+8 
BEST 8 (the plus sign is optional) 
BEST 3 
Best 4 (capitalization is not necessary) 

Options Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the results 
are left blank. A value of 500 is recommended. 
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Example1 - Calculating the Power and 
Validation using Chen 
Chen (1997) provides the minimax and optimum design for the case Alpha = 0.05, Beta = 0.20, 
P0 = 0.05, and P1 = 0.25. The optimum design is 0/8, 1/13, and 2/19. The minimax design is 
0/12, 1/15, and 2/16. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 
Option Value 
Data Tab 
Which Designs ..................................Optimum designs only 
P0 (Poor)...........................................0.05 
P1 (Good) .........................................0.25 
Alpha.................................................0.05 
Beta...................................................0.20 
N Min.................................................Min 
N Max................................................Best+2 
Note that the search may take several minutes to run, depending on the speed of your computer. 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
Possible Designs For P0=0.050, P1=0.250, Alpha=0.050, Beta=0.200 
Stage 1 Stage 2 Stage 3  Stage 1 Overall   Constraints  
R1/N1 R2/N2 R3/N3 Ave N Pet P0 Pet P0 Alpha Beta Satisfied  
2/16 2/16 2/16 16.00 0.000 0.000 0.043 0.197 Single Stage  
0/12 1/15 2/16 13.55 0.833 0.869 0.043 0.199 Minimax  
0/8 1/13 2/19 10.41 0.663 0.880 0.049 0.195 Optimum  
 
Report Definitions 
N1 is the sample size in the first stage. 
R1 is the drug rejection number in the first stage. 
N2 is the sample size in the first and second stages. 
R2 is the drug rejection number in the second stage. 
N3 is the combined sample size of all three stages. 
R3 is the drug rejection number in the third stage. 
Stage 1 PET P0 is the probability of early termination at the first stage. 
Stage 2 PET P0 is the probability of early termination at the second stage. 
Ave N is the average sample size if this design is repeated many times. 
Alpha is the probability of rejecting that P<=P0 when this is true. 
Beta is the probability of rejecting that P>=P1 when this is true. 
P0 is the response proportion of a poor drug. 
P1 is the response proportion of a good drug. 
 

This report shows three designs. The first is the smallest single stage design. The second is the 
Minmax solution. This is the design with the smallest total sample size (N). The third is the 
optimum design—the one that minimizes the average sample size. 

Note that PASS matches the results of Chen. 
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Chapter 135  

Post-Marketing 
Surveillance 
Introduction 
Post-marketing surveillance refers to the search for adverse reactions to drugs that have been 
cleared for general use. Two types of study designs are often used: the cohort study and the case-
control study. In a cohort design, a large group of treated patients are studied to determine the 
frequency of any adverse reactions. In a case-control study, patients who have experienced the 
adverse reaction are matched with other treated patients who have not.  

Technical Details 
This section presents the formulas used to calculate sample size and power in four situations. The 
theory and formulas provided by Machin et al. (1997) are used. 

Design Type 1 - Cohort Study, No Background Incidence of Adverse 
Reactions 
Let the anticipated incidence rate of adverse reactions be R0, the number of occurrences of a 
particular adverse reaction be A, the number of patients be N, and the probability that you will not 
find A reactions in the sample of N patients be β . If R0 is small, the occurrence of an adverse 
reaction may be assumed to follow the Poisson distribution. If this is the case, the relationship 
among the above parameters is 

∑
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Using numerical search techniques, PASS is able to solve any one of these parameters in terms of 
the others. 

Design Type 2 - Cohort Study, Known Background Incidence of Adverse 
Reactions 
Let the anticipated incidence rate of adverse reactions be R0, let the additional incidence rate 
caused by the drug be D, and let the number of patients be N. For a given significance level 
α and power 1− β , the relationship between these parameters is 
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Design Type 3 - Cohort Study, Unknown Background Incidence of Adverse 
Reactions 
A control group is needed when the background incidence rate is not known. In post-marketing 
surveillance studies, the control group is usually made up of untreated individuals. Let the 
anticipated incidence rate of adverse reactions be R0, let the additional incidence rate caused by 
the drug be D, let the number of patients be N, and let the number of control patients for each 
treated patient be M. Thus the number of control patients is NM. For a given significance level 
α and power 1− β , the relationship between these parameters is 
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Design Type 4 - Matched Case-Control Study 
A case-control design involves identifying a group of patients that have experienced the reaction 
of interest and then obtaining matched control patients that have not experienced the reaction. 

Let the anticipated incidence rate of adverse reactions be R0, let the additional incidence rate 
caused by the drug be D, let the number of patients be N, and let the number of control patients 
matched with each treated patient be M. For a given significance level α and power 1− β , the 
relationship between these parameters is 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Design Type 
This parameter specifies which of the four possible designs is to be analyzed. 

Note that the other parameters have numbers in brackets, such as [234]. The numbers between the 
brackets indicate which of the four designs use that parameter. 

The possible designs are: 

[1] Cohort - No Background Incidence 

This is a cohort design in which the adverse effect does not occur except when caused by the 
drug. 

[2] Cohort - Known Background Incidence 

This is a cohort design. The adverse effect can occur without being related to the drug. The 
incidence rate of the adverse effect is known. 

[3] Cohort - Unknown Background Incidence 

This is a cohort design. Although the adverse effect can occur, its incidence rate is not known. A 
control group must be followed to determine the background incidence rate. 

[4] Matched Case-Control Study 

One or more control patients is matched with each case patient. All of these patients are in the 
study. This is different from design type 3 in that the controls are matched with the cases. In 
design type 3, no matching is done. 

Find 
This option specifies the parameter to be solved for from the other parameters.  

R0 (Incidence Rate) 
This is the background incidence rate of the adverse reaction. This is the rate that occurs in the 
population without the drug being monitored. Since this is an incidence rate, and hence a 
proportion, it should be less than one. Also, this value plus D must be less than one. 

The [234] reminds you that this parameter is used with design types 2, 3, and 4 (but not 1). 
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D (Additional Incidence Rate) 
This is the additional incidence rate of the adverse reaction that can be attributed to the drug 
being studied. Since this is a rate, it should not be greater than one. Also, this value plus R0 
should be less than one. 

The [1234] reminds you that this parameter is used with all four design types. 

A (Number of Occurrences) 
This is the number of occurrences of the adverse reaction of interest in the N patients being 
monitored. Sometimes, a single drug-related adverse reaction (such as death) might be enough to 
make the drug unacceptable. The acceptable range is one or greater. 

The [1] reminds you that this parameter is only needed when the Design Type is 1. 

N (Patients) 
This is the number of patients in the cohort being studied. In the case-control designs, this is the 
number of cases. For case-control studies, the total number of patients in the study is N(1+M) 
where M is the number of control patients per case patient. 

The [1234] reminds you that this parameter is used with all four design types. 

M (Controls Per Case) 
This is the number of control patients for each case patient. For case-control studies, the total 
number of patients in the study is N(1+M) where N is the number of case patients. 

The [34] reminds you that this parameter is only used when the Design Type is 3 or 4. 

Alpha 
This option specifies one or more values for the significance level--probability of a type-I error 
(alpha). A type-I error occurs when you reject the null hypothesis when in fact it is true.  

Values between 0.001 and 0.100 are acceptable. The value of 0.05 has become the standard. This 
means that about one test in twenty will falsely reject the null hypothesis. Although 0.05 is the 
standard value, you should pick a value for alpha that represents the risk of a type-I error you are 
willing to take in your experimental situation. 

Note that you can enter a range of values such as 0.01,0.05 or 0.01 to 0.05 by 0.01. 

The [234] reminds you that this parameter is not used when the Design Type is 1. 

One-Sided 
This option lets you designate whether the test will be one-sided (checked) or two-sided 
(unchecked). When the two-sided box is indicated, the alpha value is simply divided by two.  
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Beta (1-Power) 
This option specifies one or more values for beta (the probability of accepting a false null 
hypothesis). Since statistical power is equal to one minus beta, specifying beta implicitly specifies 
the power. For example, setting beta at 0.20 also sets the power to 0.80. 

Values must be between zero and one. The value of 0.20 was often used for beta. Recently, the 
value of 0.10 has become common. However, you should pick a value for beta that represents the 
risk of this type of error you are willing to take. 

Note that you can enter a range of values such as 0.10,0.20 or 0.05 to 0.20 by 0.05. 

If your only interest is in determining the appropriate sample size for a confidence interval, set 
beta to 0.5. 

Note that the interpretation of Beta is a little different when the Design Type is 1. 

Options Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 

Iterative Precision 
When a search is made for the precision value, this is the cutoff value used to terminate the 
search. In most cases, a value of 0.0001 will be more than sufficient. 
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Example1 - Calculating the Power 
Suppose 1 in 10,000 people receiving a certain drug are expected to have an irregular heart beat. 
A researcher decides that if the irregular heart beat occurs in three patients, the drug will have to 
be withdrawn. Study the sample size necessary to achieve 99% probability of success.  
In order to do this, sample sizes between 1000 and 21,000 will be considered. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value 
Data Tab 
Design Type......................................[1] Cohort - No Background Incidence 
Find ...................................................Beta and Power 
R0 ..................................................... Ignored 
D .......................................................0.0001 
A........................................................1 2 3 
N .......................................................1000 to 21000 by 4000 
M ....................................................... Ignored 
Alpha................................................. Ignored 
Beta...................................................0.20 
Reports Tab 
Incidence Rate Decimals ..................5 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results  (Cohort Study with No Background Incidence) 
 
  Additional Number of 
 Sample Incidence Occurrences 
Power Size (N) Rate (D) (A) Beta 
0.09516 1000 0.00010 1 0.90484 
0.00468 1000 0.00010 2 0.99532 
0.00015 1000 0.00010 3 0.99985 
0.39347 5000 0.00010 1 0.60653 
0.09020 5000 0.00010 2 0.90980 
0.01439 5000 0.00010 3 0.98561 
0.59343 9000 0.00010 1 0.40657 
0.22752 9000 0.00010 2 0.77248 
0.06286 9000 0.00010 3 0.93714 
0.72747 13000 0.00010 1 0.27253 
0.37318 13000 0.00010 2 0.62682 
0.14289 13000 0.00010 3 0.85711 
0.81732 17000 0.00010 1 0.18268 
0.50675 17000 0.00010 2 0.49325 
0.24278 17000 0.00010 3 0.75722 
0.87754 21000 0.00010 1 0.12246 
0.62039 21000 0.00010 2 0.37961 
0.35037 21000 0.00010 3 0.64963 
 
Report Definitions 
Power is 1 - Beta. 
N is the number of patients monitored. 
D is the expected incidence rate of adverse reactions. 
A is the number of adverse reactions. 
Beta is the probability that A reactions will not be found in the N patients. 
 
Summary Statements 
In a cohort study with no background incidence of a particular adverse reaction, the 
probability that 1 or more adverse reactions will not occur in a sample of 1000 patients with 
an anticipated incidence rate of 0.00 is 0.90484. The power of this study is 10%. 
 

This report shows the calculated sample size for each of the scenarios.  

Plot Section 
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This plot shows the power versus the sample size for three values of A. 
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Example2 - Validation using Machin 
Machin et al. (1997) page 147 give an example of a cohort design with no background incidence 
in which N is 30000, incidence is 0.0001, and A is 1 or 2. When A is 1, the power is 95%. When 
A is 2, the power is 80%. 

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 

Option Value 
Data Tab 
Design Type......................................[1] Cohort - No Background Incidence 
Find ...................................................Beta and Power 
R0 ..................................................... Ignored 
D .......................................................0.0001 
A........................................................1 2 
N .......................................................30000 
M ....................................................... Ignored 
Alpha................................................. Ignored 
Beta................................................... Ignored 
Reports Tab 
Incidence Rate Decimals ..................5 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results  (Cohort Study with No Background Incidence) 
 
  Additional Number of 
 Sample Incidence Occurrences 
Power Size (N) Rate (D) (A) Beta 
0.95021 30000 0.00010 1 0.04979 
0.80085 30000 0.00010 2 0.19915 
 

PASS has calculated the same power values as did Machin et al (1997). 
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Example3 - Validation using Machin 
Machin et al. (1997) page 148 give an example of a cohort design with unknown background 
incidence in which N is 8500, R0 is 0.01, D is 0.005, and A is 1. The power is 90%. 

Setup 
You can enter these values yourself or load the Example3 template from the Template tab. 

Option Value 
Data Tab 
Design Type ......................................[3] Cohort - Unknown Background Incidence 
Find ...................................................Beta and Power 
R0......................................................0.01 
D........................................................0.005 
A........................................................1 
N........................................................8500 
M .......................................................1 
Alpha .................................................0.05 
Beta...................................................Ignored 
Reports Tab 
Incidence Rate Decimals ..................5 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results  (Cohort Study with No Background Incidence) 
 
 
  Controls Background Additional  
 Sample Per Incidence Incidence One-Sided 
Power Size (N) Case (M) Rate (R0) Rate (D) Alpha Beta 
0.90136 8500 1 0.01000 0.00500 0.05000 0.09864 
 

PASS has calculated the same power value as did Machin et al (1997). 
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Chapter 150  

Inequality of 
Correlated 
Proportions 
Introduction 
McNemar’s test compares the proportions for two correlated dichotomous variables. These two 
variables may be two responses on a single individual or two responses from a matched pair (as 
in matched case-control studies).  

This procedure is similar to the Matched Case-Control procedure also available in PASS. It 
differs from that procedure in three basic ways: 

1.  The results are calculated exactly using an unconditional formula rather than using 
conditional, normal approximations to the binomial. 

2.  It only deals with the case of a matched pair: one case and one control (the Matched Case-
Control procedure lets you match several controls with each case). 

3.  It is based directly on the 2-by-2 contingency table. 

To fix these ideas, consider the following fictitious data concerning the relationship between 
smoking and lung cancer. Suppose that a sample of N = 100 cases of identical twins in which 
only one twin has lung cancer is selected for further study. The twin with lung cancer is the case. 
The other twin serves as the control. Each pair of twins is surveyed to determine if they smoke 
tobacco. The results are summarized in the following two-way table: 

 No Lung Cancer Twin (Control)
Lung Cancer Twin (Case) Smokes = Yes Smokes = No
Smokes = Yes 16 21 
Smokes = No 4 59 

There is a basic difference between this table and the more common two-way table. In the 
matched-paired case, the count represents the number of pairs, not the number of individuals. 

The investigator wishes to compare the proportion of cases that smoke with the proportion of 
controls that smoke. The proportion of controls who smoke is (16+4)/100 = 0.20. The proportion 
of cases who smoke is (16+21)/100 = 0.37.  
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Dividing each of the entries in the table by N gives the proportions: 

 No Lung Cancer Twin (Control)
Lung Cancer Twin (Case) Smokes = Yes Smokes = No  Total
Smokes = Yes 0.16 0.21 0.37 
Smokes = No 0.04 0.59 0.63 
Total 0.20 0.80 0.63 

Symbolically, this table is represented as: 

 No Lung Cancer Twin (Control)
Lung Cancer Twin (Case) Smokes = Yes Smokes = No Total
Smokes = Yes P11 P10 Pt 
Smokes = No P01 P00 1-Pt 
Total Ps 1-Ps 1 

Formally, the hypothesis of interest is that Pt equals Ps. A little algebra shows that Pt = Ps is 
equivalent to P10 = P01, since P11 is common to both. Thus, the null hypothesis of McNemar’s 
test is P10 = P01 and the alternative is that they are unequal. The alternative hypothesis may be 
one-sided (such as P10>P01) or two-sided (P10≠ P01). 

The null hypothesis may also be stated in terms of the odds ratio as OR = 1. The odds ratio is 
computed differently in the matched pairs case. The formula is: 

OR P
P

=
12
21

 

Notice that the values of P11 and P00 are not used in these hypotheses. It turns out that their 
individual values are not needed, but their sum is. 

For this example, the odds ratio is computed as 21/4 = 5.25.  

Technical Details 
Consider the matched-pairs table again: 

 Controls
Cases Yes No Total
Yes P11 P10 Pt 
No P01 P00 1-Pt 
Total Ps 1-Ps 1 

Pairs with the same response from cases and controls (Yes-Yes and No-No) are called concordant 
pairs. Pairs with different responses (Yes-No and No-Yes) are call discordant pairs. McNemar’s 
test statistic is the estimated odds ratio:  

Mc =  P
P

10
01

 

The sample size problem thus reduces to a study of how many Yes-No’s and No-Yes’s are 
needed. Once this has been determined, the overall sample size is found be estimating the 
proportion of discordant pairs and inflating the sample size appropriately. 
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Some power analysis programs follow an approximate procedure. Since the McNemar statistic 
follows the binomial probability distribution for a fixed number of discordant pairs, they use 
formulas that use the normal approximation to the binomial and then adjust the sample size 
depending on the proportion of discordant pairs, PD=P10+P01. This is called the conditional 
procedure.  

One such approximate formula is given by Machin, Campbell, Fayers, and Pinol (1997). 
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where s is the number of sides to the test (one or two), OR P
P

=
10
01

, PD P P= +10 01, and alpha 

and beta are the usual error rate probabilities. 

However, Schork and Williams (1980) published a formula which provides the exact results for 
the unconditional case. This is the formulation that is used in PASS. 
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where  

PD = P10+P01 

D = P10-P01 

N is total of all four cells (N11+N12+N21+N22) 
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Difference or Odds Ratio 
The formula given above is parameterized in terms of the difference. This formula is also used 
when odds ratios are specified. The program simply converts the OR value into its corresponding 
D value. 

Discussion 
The exact algorithm works for N < 2000. Above 2000, computing time goes up and the algorithm 
has numerical problems. PASS lets you select either the exact, or the approximate, solutions. We 
have found that the approximate solution tends to use a sample size that is about 10% less than 
the exact solution. 

Because of the lengthy computer time necessary to compute the exact answer when N > 1500, we 
suggest that you use the approximate formula to begin with and then revert to the exact formula 
when you are ready for your final results. This is based on the value of N specified in the 'Use 
Approximations if N >' box of the Options tab. 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates at the beginning of this manual. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and beta. This chapter covers two procedures, which have different options. This 
section documents options that are common to both procedures. Later, unique options for each 
procedure will be documented.   

Find 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Odds Ratio, Difference, N, Alpha, and Beta (or Power). Under most 
situations, you will select either Beta to calculate power or N to calculate sample size. 

The program is set up to evaluate beta directly. For the other parameters, a search is made using 
an iterative procedure until an appropriate value is found. Two solutions can often be found when 
searching for the Odds Ratio or the Difference. You may specify the region in which you want 
the solution to be searched for. For example, you may search for an odds ratio either above or 
below one. Also note that the parameter selected must match the procedure you are using. For 
example, if you are searching for the odds ratio, you must be in the odds ratio window. 

Note that the value selected here always appears as the vertical axis on the charts. 

Proportion Discordant (P10+01) 
This is the proportion of discordant pairs (P10 + P01). This value will be difficult to specify 
unless you have previous studies that give you some idea of what to expect. When you have no 
idea, Machin, Campbell, Fayers, and Pinol (1997) suggest the following strategy. Estimate values 
of Pt and Ps. Calculate the proportion of discordant pairs using the approximation 

( ) ( )PtPsPsPtPD −+−= 11  

This approximation assumes that the two responses are independent in each subject, which will 
usually not be true. However, it may be the only way of determining a ball park value for this 
parameter. 

Use Approximations if N > 
Below this value of N, the exact power calculation formula based on the binomial is used. Above 
this value of N, the approximate formula based on the normal approximation to the binomial is 
used. The exact formula suffers from numerical problems when N is greater than 2000. On the 
other hand, the approximate formula tends to underestimate the N necessary to achieve a certain 
beta value by about 5%. 

You control which formula is used by setting this value. 
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Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. A one-sided hypothesis uses an inequality as 
in P10 > P01 or Odds Ratio > 1. A two-sided hypothesis states that the proportions are not equal 
without specifying which is greater. If you do not have any special reason to do otherwise, you 
should use the two-sided option.  

N (Number of Pairs) 
Enter a value (or range of values) for the sample size, N, the number of pairs in the study. 

You may enter a range of values such as 100,200,300 or 200 to 400 by 50. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you falsely conclude equivalence or inferiority.  

Beta (1-Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject a false H0. Power is defined as 1-beta. Power is equal to the 
probability of rejecting a false null hypothesis. Hence, specifying the beta error level also 
specifies the power level. For example, if you specify beta values of 0.05, 0.10, and 0.20, you are 
specifying the corresponding power values of 0.95, 0.90, and 0.80, respectively.  

Values must be between 0 and 1. Values of 0.10 or 0.20 are often used for beta. However, you 
should pick a value for beta that represents the risk of a type-II error that you are willing to take. 

If your only interest is in determining the appropriate sample size for a confidence interval, set 
beta to 0.5. 

Data Tab (Difference) 
This section documents options that are used when the parameterization is in terms of the 
difference, P10 - P01. 

Difference (P10-P01) 
The difference, P10-P01, is a popular parameter to specify because it comes directly from the 
alternative hypothesis that Pt not equal Ps. If Pt and Ps are not equal, the obvious question is, by 
how much? The answer is, by P10-P01 since Pt-Ps = (P11+P10)-(P11+P01) = P10-P01. Hence, 
this is a value that may easily be set.  

The range of values is between -1 and 1. You may enter a list of value list 0.1, 0.15, 0.2 or 0.05 to 
0.20 by 0.05. 
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Data Tab (Odds Ratio) 
This section documents options that are used when the parameterization is in terms of the odds 
ratio, P10 / P01. 

Odds Ratio (P10/P01) 
The odds ratio is a popular parameter to specify because of its simple interpretability and close 
relationship to the relative risk. An odds ratio of 2.0 means that the odds of the numerator 
variable is twice the odds of the denominator variable. Note that several values of P10 and P01 
can yield the same odds ratio. For example, 0.2/0.1 and 0.4/0.2 both have an odds ratio of 2.0, but 
are based on very different values of P10 and P01. Under the null hypothesis, the odds ratio is 
one. Only positive values are allowed. 

You may enter a list of values like 1.5,2.0,3.0 or 1.2 to 2.4 by 0.2. 

Options Tab 
This tab sets a couple of options used in the iterative procedures. 

Maximum Iterations 
Specify the maximum number of iterations allowed before the search for the criterion of interest 
is aborted. When the maximum number of iterations is reached without convergence, the criterion 
is left blank. A value of 500 is recommended. 
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Example1 - Calculating Power 
This example will show how to calculate the power of a retrospective study for several sample 
sizes and odds ratio values. Suppose that a matched case-control study is to be run in which the 
odds ratios might be 1.5, 2.5, or 3.5; PD is 0.3, N = 50 to 300 by 50; alpha is 0.05; and beta is to 
be calculated. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the odds ratio parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example1 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Odds Ratio ........................................1.5 2.0 2.5 
Proportion Discordant .......................0.3 
Use Approximations if N>..................1500 
Alternative Hypothesis ......................Two-Sided 
N (Number of Pairs) ..........................50 to 200 by 50 
Alpha .................................................0.05 
Beta...................................................Calculated 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Test 
    Difference Proportion Odds   
Power N P10 P01 (P10-P01) Discordant Ratio Alpha Beta 
0.07467 50 0.180 0.120 0.060 0.300 1.500 0.05000 0.92533 
0.14214 100 0.180 0.120 0.060 0.300 1.500 0.05000 0.85786 
0.22451 150 0.180 0.120 0.060 0.300 1.500 0.05000 0.77549 
0.29790 200 0.180 0.120 0.060 0.300 1.500 0.05000 0.70210 
0.17849 50 0.200 0.100 0.100 0.300 2.000 0.05000 0.82151 
0.37305 100 0.200 0.100 0.100 0.300 2.000 0.05000 0.62695 
0.56457 150 0.200 0.100 0.100 0.300 2.000 0.05000 0.43543 
0.70340 200 0.200 0.100 0.100 0.300 2.000 0.05000 0.29660 
0.29601 50 0.214 0.086 0.129 0.300 2.500 0.05000 0.70399 
0.59122 100 0.214 0.086 0.129 0.300 2.500 0.05000 0.40878 
0.80105 150 0.214 0.086 0.129 0.300 2.500 0.05000 0.19895 
0.90751 200 0.214 0.086 0.129 0.300 2.500 0.05000 0.09249 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the number of pairs in the sample. 
P10 is the proportion of pairs in cell 1,2 of the 2x2 table. 
P01 is the proportion of pairs in cell 2,1 of the 2x2 table. 
Difference is the difference between proportions parameter under the alternative hypothesis. 
Proportion Discordant' is the total of P10 and P01. 
Odds Ratio is the value of this parameter under the alternative hypothesis. 
Alpha is the probability of rejecting a true null hypothesis. It should be small. 
Beta is the probability of accepting a false null hypothesis. It should be small. 
 
Summary Statements 
A sample size of 50 pairs achieves 7% power to detect an odds ratio of 1.500 using a two-sided 
McNemar test with a significance level of 0.05000. The odds ratio is equivalent to a difference 
between two paired proportions of 0.060 which occurs when the proportion in cell 1,2 is 0.180 
and the proportion in cell 2,1 is 0.120. The proportion of discordant pairs is 0.300. 
 

This report shows the power for each of the scenarios.  

Plot Section 
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This plot shows the power versus the sample size for the three odds ratios. 
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Example2 - Validation using Schork and 
Williams 
Schork and Williams (1980) page 354 present a table of sample sizes for various combinations of 
the other parameters. When the difference is 0.2, the proportion discordant is 0.7, the power is 
80%, and the one-sided significance level is 0.025, the sample size is 144. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example2 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Difference..........................................0.2 
Proportion Discordant .......................0.7 
Alternative Hypothesis ......................One-Sided 
N (Number of Pairs) ..........................144 
Alpha .................................................0.025 
Beta...................................................Ignored 
You can enter these values yourself or load the Example2 template from the Template tab. 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Two-Sided Test 
    Difference Proportion Odds   
Power N P10 P01 (P10-P01) Discordant Ratio Alpha Beta 
0.80092 144 0.450 0.250 0.200 0.700 1.800 0.02500 0.19908 
 

PASS has also found the power to be about 80%.  
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Chapter 155  

Matched  
Case-Control 
Introduction 
A 2-by-M case-control study investigates a risk factor relevant to the development of a disease. A 
population of case patients with a disease and control patients without the disease is considered. 
Some of these patients have had exposure to a risk factor of interest. A random sample of N case 
patients is selected. Patients are stratified by the levels of a confounding variable (such as age, 
gender, etc.). For each selected case patient, a random sample of M matched control patients is 
drawn from the same strata (group). An estimate of the odds ratio, OR, of developing the disease 
in exposed and unexposed patients who have equal values of the confounding variable is desired. 
This odds ratio is assumed to be constant across all levels of the confounding variables.  

To fix these ideas, consider the following fictitious data concerning the relationship between 
smoking and lung cancer. Suppose that a sample of N = 100 cases of identical twins in which 
only one twin has lung cancer is selected. The second twin serves as the control. Each pair of 
twins is surveyed to determine if either, both, or none smoke tobacco. The results are summarized 
in the following two-way table: 

 No Lung Cancer Twin (Control)
Lung Cancer Twin (Case) Smokes = Yes Smokes = No
Smokes = Yes 16 21 
Smokes = No 4 59 

Note that the values in this table are counts of pairs, not individuals. The proportion of controls 
who smoke is (16+4)/100 = 0.20. The proportion of cases who smoke is (16+21)/100 = 0.37. The 
odds ratio is 21/4 = 5.25. That is, the twin who smoked is 5.25 times more likely to have lung 
cancer than the twin who did not.  

This procedure is similar to the McNemar procedure also available in PASS. It differs from that 
procedure in three basic ways: 

1.  The results are based on the normal approximation to the binomial. 

2.  This procedure lets you have multiple controls for each case. The McNemar procedure only 
allows one control per case. 

3.  The input parameters are different. 
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Technical Details 
The following results summarize the article by Dupont (1988) upon which this module is based. 
The probabilities that the data fall into various categories are: 

1. The probability that a case patient was exposed to the risk factor is . p1

2. The probability that a control patient was exposed to the risk factor is . p0

3. The probability that a case patient was not exposed to the risk factor is q p1 11= − . 

4. The probability that a control patient was not exposed to the risk factor is q p0 01= − . 

The odds ratio, OR, is defined as 

OR =  p q
p q

1 1/
/0 0  

Assume that you use a  test for the null hypothesis that OR = 1, that is, that . Such a 
test is given by Breslow and Day (1980). 

χ 2 p p0 = 1

0
0

j

Let  if the  sampled case patient was or was not exposed, respectively. Let 
 if the corresponding first matched control patient was or was not exposed. Let 

. For example,  is the probability that the case patient was exposed 
to the risk factor while the corresponding first control patient was not. The relationships between 
these probabilities are 

x ork = 1 k th

y ork = 1
( )p x i yij k k= = =Pr and p10

1 11 10p  =  p p+  

and 

0 11 01p  =  p p+  

Define φ  to be the correlation between  and . It can be shown that xk yk

φ =  p p p p
p q p q

11 00 10 01

1 1 0 0

−  

A little algebra will show that 

11 1 0 1 1 0 0p  =  p p + p q p qφ  

10 1 0 1 1 0 0p  =  p q - p q p qφ  

01 1 0 1 1 0 0p  =  q p - p q p qφ  

00 1 0 1 1 0 0p  =  q q + p q p qφ  

0
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1
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p  

0
01

1
-p  =  p

q  
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0 0+ +q  =  - p1  

0 0- -q  =  - p1  
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Let  represent the number of matched sets of subjects in which the case patient was (i = 1) or was not (i 
= 0) exposed and j of the M control subjects were exposed. Let 

nij

y =  n
m=

M

m
1

1 1∑ −,
 

be the number of discordant sets in which the case patient was exposed and let 

T   n nm m m= +−1 1 0, ,  

be the number of sets in which m subjects were exposed. The expected value of  is .  Tm Ntm

Let 
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Dupont (1988) provides the following formula relating α β φ, , , , , ,p OR N M0 and . 
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This equation may be used to make power and sample size calculations. 

Estimating the Sample Control Exposure 
Probability 
To calculate power and sample size, a value for the probability that a sample control patient was 
exposed to the risk factor (  must be estimated. Remember that the control sample is not a 
random sample of the population. Instead, it is matched to a random sample of case patients. 
Hence, the sample does not necessarily provide an unbiased estimate of . Care should be taken 
to provide an accurate estimate of the probability that a matched control patient was exposed, not the 
probability that someone was exposed in the general population. However, when there is little 
association between the confounding (matching) variable and the exposure variable in the control 
population, the baseline probability of the exposure variable may be used.  

)p0

p0
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Estimating the Correlation, φ  
Previous matched 2-by-2 contingency tables can be used to estimate φ  using the relationship 

φ χ
= u

N

2

 

where 

( )χu
N n n n n

n n n n
2 00 11 01 10

2

0 1 0 1

=
−

• • • •

 

When no previous data are available about φ, Dupont (1988) suggests using a value of 0.2 rather 
than 0. 

Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Find 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Odds Ratio, Probability Exposed, Correlation, N, M, Alpha, and Beta. 
Under most situations, you will select either Beta for a power analysis or N for sample size 
determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Beta when you want to calculate the power of an experiment that has already been run. 

OR (Odds Ratio) 
This option sets the value of the odds ratio, OR, which is the ratio of the disease odds of 
individuals exposed to the risk factor to the disease odds of individuals not exposed to the risk 
factor. 

For example, an odds ratio of 2.0 means that subjects exposed to the risk factor are twice as likely 
of developing the disease as are unexposed subjects. 

A value greater than one is usually used. The value must be greater than zero. The null hypothesis 
is that the odds ratio is one. You should use a value that will be of interest to others, such as 1.5 
or 2.0. 

You can enter a list of values. 
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P0 (Prob Exposed) 
Specify the value of , the probability that a sample control patient is exposed to the risk factor. 
If the matching variables are independent of the risk factor, you can use the baseline rate of 
exposure to the risk factor in the general population.

p0

  

Since this is a probability, it must be between zero and one. 

You can enter a list of values separated by commas or blanks. 

Phi (Correlation) 
This is the correlation for exposure between a case subject and the first of the corresponding 
control subjects. A value of zero here indicates independence between exposure rates for case and 
controls. Often, assuming complete independence is unrealistic, so when no other information is 
available, Dupont (1988) suggests using a value of 0.2.  

Correlations can range between -1 and 1. However, only positive correlations should be used.  

N (Case Patients) 
The number of case patients to be sampled. This is the number of pairs. Since there are M 
controls for each case patient, the total number of patients is N (M + 1).Values of one or greater 
are allowed here. 

M (Controls Per Case) 
The number of control patients matched with each case patient. When M is one, McNemar’s test 
is used to analyze the data. 

The total number of patients in the study is N (M + 1). Values of one or greater are allowed here. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis when in fact it is true. In this case, the test is 
two-sided. 

Values must be between zero and one. Historically, the value of 0.05 was used for alpha. This 
means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis when in fact it is false. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
However, you should pick a value for beta that represents the risk of a type-II error you are 
willing to take. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80.  
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Example1 - Calculating Power  
Problem Statement 
This example will show how to calculate the power of a retrospective study for several sample 
sizes and odds ratios. 

Suppose that a matched case-control study is to be run in which the odds ratios of interest are 1.5, 
2.5, or 3.5, P0 = 0.6, correlation = 0.2, M = 1, N = 25 50 100 150 200, alpha = 0.05, and power is 
to be found. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
OR.....................................................1.5  2.5  3.5 
P0......................................................0.6 
Correlation ........................................0.2 
N .......................................................25 50 100 150 200 
M .......................................................1 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find Setting 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results 
 Cases Controls Per Odds Ratio Probability Correlation   
Power (N) Case (M) (OR) Exposed (P0) (Phi) Alpha Beta 
0.08863 25 1 1.50 0.60000 0.20000 0.05000 0.91137 
0.13364 50 1 1.50 0.60000 0.20000 0.05000 0.86636 
0.22622 100 1 1.50 0.60000 0.20000 0.05000 0.77378 
0.31832 150 1 1.50 0.60000 0.20000 0.05000 0.68168 
0.40652 200 1 1.50 0.60000 0.20000 0.05000 0.59348 
0.23067 25 1 2.50 0.60000 0.20000 0.05000 0.76933 
0.44278 50 1 2.50 0.60000 0.20000 0.05000 0.55722 
0.75646 100 1 2.50 0.60000 0.20000 0.05000 0.24354 
0.90966 150 1 2.50 0.60000 0.20000 0.05000 0.09034 
0.97004 200 1 2.50 0.60000 0.20000 0.05000 0.02996 
0.36379 25 1 3.50 0.60000 0.20000 0.05000 0.63621 
0.68570 50 1 3.50 0.60000 0.20000 0.05000 0.31430 
0.95159 100 1 3.50 0.60000 0.20000 0.05000 0.04841 
0.99482 150 1 3.50 0.60000 0.20000 0.05000 0.00518 
0.99956 200 1 3.50 0.60000 0.20000 0.05000 0.00044 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the size of the sample drawn from the treatment (case) group. 
M is the number of matching control patients drawn for each case patient. 
OR is the odds ratio of for subjects exposed to the risk factor. 
P0 is the probability of exposure among sampled control patients. 
Phi is the correlation of exposure between matched individuals. 
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 
 
 
Summary Statements 
In a matched case-control study, the probability of exposure among sampled control patients is 
0.60000 and the correlation coefficient for exposure between matched case and control patents 
is 0.20000. A sample of 25 case patients is obtained. For each case patient, a matching sample 
of 1 control patient(s) is also obtained. This sample of 50 patients achieves 9% power to 
detect an odds ratio of 1.50 versus the alternative of equal odds using a Chi-Square test with 
a 0.05000 significance level. 
 

This report shows the power for each of the scenarios.  

Plot Section 
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This plot shows the power versus the sample size for the three odds ratios. 
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Example2 - Calculating Sample Size  
Suppose that a matched case-control study is planned to study the relationship between smoking 
and a certain kind of cancer. Researchers want to have a sample large enough to detect an odds 
ratio of 2.0. During the power analysis, the researchers also want to calculate the required sample 
size for odds ratios of 1.5 and 2.5. 

The probability that a sampled control (non-cancer) patient smokes is estimated at 0.3. The 
correlation of smoking between cases and controls is 0.2. The researchers want samples sizes 
large enough to achieve 80% power at the 0.05 significance levels. In an effort to reduce the 
number of cancer patients that must be enrolled, the researchers want to try several values for the 
number of controls per case between 1 and 20. 

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................N (Cases) 
OR.....................................................1.5 2.0 2.5 
P0......................................................0.3 
Correlation ........................................0.2 
N ....................................................... Ignored since this is the Find Setting 
M .......................................................1 2 3 4 5 10 20 
Alpha.................................................0.05 
Beta...................................................0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results 
 Cases Controls Per Odds Ratio Probability Correlation   
Power (N) Case (M) (OR) Exposed (P0) (Phi) Alpha Beta 
0.80064 539 1 1.50 0.30000 0.20000 0.05000 0.19936 
0.80021 378 2 1.50 0.30000 0.20000 0.05000 0.19979 
0.80025 324 3 1.50 0.30000 0.20000 0.05000 0.19975 
0.80038 297 4 1.50 0.30000 0.20000 0.05000 0.19962 
0.80076 281 5 1.50 0.30000 0.20000 0.05000 0.19924 
0.80009 248 10 1.50 0.30000 0.20000 0.05000 0.19991 
0.80044 232 20 1.50 0.30000 0.20000 0.05000 0.19956 
0.80100 180 1 2.00 0.30000 0.20000 0.05000 0.19900 
0.80249 127 2 2.00 0.30000 0.20000 0.05000 0.19751 
0.80077 108 3 2.00 0.30000 0.20000 0.05000 0.19923 
0.80220 99 4 2.00 0.30000 0.20000 0.05000 0.19780 
0.80087 93 5 2.00 0.30000 0.20000 0.05000 0.19913 
0.80261 82 10 2.00 0.30000 0.20000 0.05000 0.19739 
0.80125 76 20 2.00 0.30000 0.20000 0.05000 0.19875 
0.80156 102 1 2.50 0.30000 0.20000 0.05000 0.19844 
0.80262 72 2 2.50 0.30000 0.20000 0.05000 0.19738 
0.80028 61 3 2.50 0.30000 0.20000 0.05000 0.19972 
0.80327 56 4 2.50 0.30000 0.20000 0.05000 0.19673 
0.80559 53 5 2.50 0.30000 0.20000 0.05000 0.19441 
0.80351 46 10 2.50 0.30000 0.20000 0.05000 0.19649 
0.80672 43 20 2.50 0.30000 0.20000 0.05000 0.19328 
 

N vs M by OR with P0=0.30 Phi=0.20 Alpha=0.05
Power=0.81 M.C.C. Test
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This report shows the sample size for each of the scenarios. Notice that the required number of 
cancer patients (N) drops off drastically as more controls are added. However, using more than 
five controls seems to only moderately reduce the sample size necessary sample size. 

Also notice that the difference in sample size is much larger when moving from an odds ratio of 
2.0 to 1.5 than from 2.5 to 2.0. 
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Example3 - Validation using Dupont  
The formulas used in this module were given in Dupont (1988). He gives an example on page 
1164 of the article in which P0 is 0.6, Phi is 0.2, OR is 3.0, alpha is 0.05, and beta is 0.2. Dupont 
finds the sample size for M  = 1 to be 80 and for M = 3 to be 50.  

Setup 
You can enter these values yourself or load the Example3 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................N (Cases) 
OR.....................................................3.0 
P0......................................................0.6 
Correlation ........................................0.2 
N ....................................................... Ignored since this is the Find Setting 
M .......................................................1 3 
Alpha.................................................0.05 
Beta...................................................0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
 Cases Controls Per Odds Ratio Probability Correlation   
Power (N) Case (M) (OR) Exposed (P0) (Phi) Alpha Beta 
0.80149 80 1 3.00 0.60000 0.20000 0.05000 0.19851 
0.80052 50 3 3.00 0.60000 0.20000 0.05000 0.19948 
 

Note that values of 80 and 50 for N agree exactly with Dupont. 
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Chapter 160  

Non-Inferiority of 
Correlated 
Proportions 
These modules compute power and sample size for non-inferiority tests in which two 
dichotomous responses are measured on each subject. When one is interested in showing that the 
true proportions are different, the data are often analyzed with McNemar’s test. However, we are 
interested in showing non-inferiority rather than difference. For example, suppose a diagnostic 
procedure is accurate, but is expensive to apply or has serious side effects. A replacement 
procedure is sought which is no less accurate, but is less expensive or has fewer side effects. In 
this case, we are not interested in showing that the two diagnostic procedures are different, but 
rather that the second is no worse than the first. Non-inferiority tests were designed for this 
situation.  

These tests are often divided into two categories: equivalence (two-sided) tests and non-
inferiority (one-sided) tests. Here, the term equivalence tests means that we want to show that two 
diagnostic procedures are equivalent—that is, their accuracy is about the same. This requires a 
two-sided hypothesis test. On the other hand, non-inferiority tests are used when we want to show 
that a new (experimental) procedure is no worse than the existing (reference or gold-standard) 
one. This requires a one-sided hypothesis test. The procedures discussed in this chapter deal with 
the non-inferiority (one-sided) case. 
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Technical Details 
The results of a study in which two dichotomous responses are measured on each subject can be 
displayed in a 2-by-2 table in which one response is shown across the columns and the other is 
shown down the rows. In the discussion to follow, the columns of the table represent the standard 
(reference or control) response and the rows represent the treatment (experimental) response. The 
outcome probabilities can be classified into the following table. 

Experimental Standard Diagnosis
Diagnosis Yes No Total

Yes
No

Total

p p
p p
P P

T

T

S S

11 10

01 00 1
1 1

−
−

P
P

 

In this table, . That is, the first subscript represents the response of the new, 
experimental procedure while the second subscript represents the response of the standard 
procedure. Thus,  represents the proportion having a negative treatment response and a 
positive standard response.  

p pij Treatment Standard= ,

p01

To aid in interpretation, analysts have developed a few proportions that summarize the table. 
Three of the most popular ratios are sensitivity, specificity, and prevalence.  

Sensitivity 
Sensitivity is the proportion of subjects with a positive standard response who also have a 
positive experimental response. In terms of proportions from a 2-by-2 table,  

Sensitivity = ( )p p p p11 01 11 11/ / P+ = S  

Specificity 
Specificity is the proportion of subjects with a negative standard response who also have a 
negative experimental response. In terms of proportions from a 2-by-2 table,  

Specificity = ( )p p p00 10 00/ +  

Prevalence 
Prevalence is the overall proportion of individuals with the disease (or feature of interest). In 
terms of proportions from a 2-by-2 table,  

Prevalence = . PS
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The outcome counts from a sample of n subjects can be classified into the following table. 

 

Experimental Standard Diagnosis
Diagnosis Yes No Total

Yes
No

Total

n n
n n n
n n n

T

T

S S

11 10

01 00 −
−

n
n

n

S

S

E

 

Note that  is the number of matches (concordant pairs) and  is the number of 
discordant pairs. 

n n11 00+ n n10 01+

The hypothesis of interest concerns the two marginal probabilities  and .  represents the 
accuracy or success of the standard test and  represents the accuracy or success of the new, 
experimental test. Non-inferiority is defined in terms of either the difference, , or the 
relative risk ratio, , of these two proportions. The choice between D and R will 
usually lead to different sample sizes to achieve the same power. 

PT PS PS

PT

D P P= −T

R P P= T /

Non-Inferiority Hypotheses using Difference 
This section is based on Liu, Hsueh, Hsieh and Chen (2002). Refer to that paper for complete 
details.  

The null and alternative hypotheses of non-inferiority in terms of the difference are 

H P P DT S0: − ≤ − versus H P P DT S1: E− > −  

To demonstrate non-inferiority, one desires to reject the null hypothesis and thus conclude that 
the experimental treatment is not worse than the standard by as much or more than . In the 
context of the preceding statement,  is defined to be positive. The choice of an appropriate 

 may be difficult. It should be clinically meaningful so that clinicians are willing to conclude 
that the experimental treatment is acceptable if the difference is less than . From a statistical 
perspective,  should be less than the effect, if known, of the standard treatment compared to 
placebo.

DE

DE

DE

DE

DE

  

Liu et al. (2002) discuss the RMLE-based (score) method for constructing these confidence 
intervals. This method is based on (developed by, described by) Nam (1997). 
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Asymptotic Tests 
An asymptotic test is given by 

Z   D D c nD

d nD
zL

E E=
+

=
+

−
≥

$

$ $σ α2
 

where 

$D  n
n

n
n

n
n

n
n

T S= − = −10 01  

d  n n= +10 01  
c  n n= −10 01  

and  is the standard normal deviate having zα α  in the right tail.  

An estimate of σ̂  based on the RMLE-based (score) procedure of Nam (1997) uses the estimates 

~ ~ ~
, ,σ L

L Lp p D
n

=
+ −10 01

2
E  

where 

~
~ ~ ~

,p
a a b

L
L L

10

2 8
4

=
− + − L

E

 

~ ~
, ,p p DL L01 10= −  

( ) ( )~ $ $,a D D p DL E01 011 2= − − − + E  

( )~
$,b D D pL E E01 011= +  
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Power Formula 
The power when the actual difference is  can be evaluated exactly using the multinomial 
distribution. However, when the sample size is above a user-set level, we use a normal 
approximation to this distribution which leads to 

DA

( ) ( )1
1

− =
− >⎧

⎨
⎩

⎫
⎬
⎭

β D
c D D

A
L AΦ if

0 otherwise
− E  

where 

c D D z
wL

A E

L

=
−

− +
σ σ

α  

σ =
+ −p p D

n
A01 10  

w p D D
p D DL

A A

L E

=
+ −
− −

2
2

01
2

01
2

, E

 

p
a a b

L
L L

,01

2 8
4

=
− + − L  

( ) ( )a D D p DL A E E= − − − +1 2 01  

( )b D D pL E E= +1 01  
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Non-Inferiority Hypotheses using Ratios 
The following is based on Nam and Blackwelder (2002). We refer you to this paper for the 
complete details of which we will only provide a brief summary here.  

When , the statistical hypotheses of non-equivalence are RE <1

H P P RT S0: / E≤ versus  H P P RT S1: / > E

Test Statistics 
The test statistic for an asymptotic test based on constrained maximum likelihood for large n is 
given by 

( ) ( )
( )

Z R   
n P R P

R p pE
E

E

=
−

+

$ $

~ ~
T S

10 01

 

where 

( ) ( )
( )

~
$ $ $ $ $ $ $

p
P R P p P R P R p p

R R
E E

E E
10

2
10

2 2 2
10 012 4

2 1
=
− + + + − +

+
T S T S E

 

( )( )~ ~ $p R p R pE E01 10 001 1= − − −  

$ , $ , $ , $p n
n

p n
n

P n n
n

P n n
n01

01
10

10 10 11 01 11= = =
+

=
+

T S  

 



 Non-Inferiority of Correlated Proportions  160-7 

Power Formula 
The power when the true value of the relative risk ratio is  can be evaluated exactly using the 
multinomial distribution. When n is large, we use a normal approximation to the multinomial 
distribution which leads to 

RE

( ) ( )β R cA U=Φ  

where 

( ) ( )
( )

c
z V T E T

V TU =
−−1 0 0 1 0

1 0

α  

( ) ( )V T
R p p

n
E

0 0
10 01=
+

 

( ) ( )E T R R PA E1 0 = − S  

( ) ( ) ( )
V T

R R P R p R R P
n

A E E A E
1 0

2
11

22
=

+ − − −S S
2

 

( ) ( )
( )

p
P R P p P R P R p p

R R
E E

E E
10

2
10

2 2 2
10 012 4

2 1
=
− + + + − +

+
T S T S E

 

( )( )p R p R pE E01 10 001 1= − − −  

Nuisance Parameter 
Unfortunately, the 2-by-2 table includes four parameters and , but the power 
specifications above only specify two parameters:  and  or . A third parameter is 
defined implicitly since the sum of the four parameters is one. One parameter, known as a 
nuisance parameter, remains unaccounted for. This parameter must be addressed to fully specify 
the problem. This fourth parameter can be specified by specifying any one of the following: 

p p p11 10 01, , , p00

PS DA RA

p p p p11 10 01 00, , , , p p p p10 01 11 00+ +, ,  or the sensitivity of the experimental response, . p P11 / S

It may be difficult to specify a reasonable value for the nuisance parameter since its value may 
not be even approximately known until after the study is conducted. Because of this, we suggest 
that you calculate power or sample size for a range of values of the nuisance parameter. This will 
allow you to determine how sensitive the results are to its value. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and beta. This chapter covers two procedures which have different options. This 
section documents options that are common to both procedures. Later, unique options for each 
procedure will be documented.   

Find 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Beta and Power or N.  

Ps (Standard Proportion) 
This is the proportion of yes’s (or successes), , when subjects received the standard treatment. 
This value or a good estimate is often available from previous studies. 

PS

You may enter a set of values separated by blank spaces. For example, you could enter ‘0.50 0.60 
0.70’. Values between, but not including, 0 and 1 are permitted. 

Max N Using Exact Power 
Specify the maximum value of N (sample size) for which you would like an exact power 
calculation based on the multinomial distribution. Sample Sizes greater than this value will use 
the asymptotic approximation given in the documentation. The exact calculation of the 
multinomial distribution becomes very time consuming for N > 200. For most cases, when N > 
200, the difference between the exact and approximate calculations is small. For N > 200, the 
length of time needed to calculate the exact answer may become prohibitive. However, as the 
speed of computers increases, it will become faster and easier to calculate the exact power for 
larger values of N. 

If you want all calculations to use exact results, enter ‘1000’ here. 

If you want all calculations to use the quick approximations, enter ‘1’ here. 

N (Sample Size) 
Enter a value for the sample size. This value must be greater than two. You may enter a range of 
values such as 10 to100 by10. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you falsely conclude equivalence.  

 



 Non-Inferiority of Correlated Proportions  160-9 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to conclude equivalence when in fact it is true. 

Values must be between 0 and 1. Values of 0.10 or 0.20 are often used for beta. However, you 
should pick a value for beta that represents the risk of a type-II error that you are willing to take. 

Power is defined as 1-beta. Power is equal to the probability of rejecting a false null hypothesis. 
Hence, specifying the beta error level also specifies the power level. For example, if you specify 
beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power values of 0.95, 
0.90, and 0.80.  

Nuisance Parameter Type 
Enter the type of nuisance parameter here. Unfortunately, the 2-by-2 table cannot be completely 
specified by using only the parameters Ps and Da or Ps and Ra. One other parameter must be 
specified. This additional parameter is called a ‘nuisance’ parameter. It will be assumed to be a 
known quantity. Several possible choices are available. This option lets you specify which 
parameter you want to use. In all cases, the value you specify is a proportion. 

P11 is the proportion of subjects that are positive on both tests. 

P00 is the proportion of subjects that are negative on both tests. 

P01 is the proportion of subjects that are negative on the treatment, but positive on the standard. 

P10 is the proportion of subjects that are positive on the treatment, but negative on the standard. 

P11+P00 is the proportion of matches (concordant pairs). 

P01+P10 is the proportion of non-matches (discordant pairs). 

P11/Ps is the sensitivity. 

Nuisance Parameter Value 
Enter the value of the nuisance parameter that you specified in the ‘Nuisance Parameter Type’ 
box. This value is a proportion, so it must be between 0 and 1.  
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Data Tab (Difference) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value 
of P1 at which the power is calculated. Once P2, D0, and D1 are given, the values of P1.1 and 
P1.0 can be calculated. 

De (Equivalence Difference) 
De is the maximum allowable difference between the standard and treatment proportions that will 
still result in the conclusion of equivalence. In order to ensure that De is positive, the difference is 
computed in reverse order. That is, D P PE S T= − . This parameter is only used when the Test 
Statistic option is set to ‘Difference’. 

Only positive values can be entered here. Typical values for this difference are 0.05, 0.10, and 
0.20. For two-sided tests, you must have |Da| < De. For one-sided tests, you must have Da > -De. 

Da (Actual Difference) 
Da is the actual difference between the treatment and standard proportions D P PA T S= − . Da may 
be positive, negative, or (usually) zero. This parameter is only used when the Test Statistic option 
is set to ‘Difference’. 

For two-sided tests, you must have |Da| < De. For one-sided tests, you must have Da > -De. 

Data Tab (Ratio) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of P1 at 
which the power is calculated. Once P2, R0, and R1 are given, the values of P1.0 and P1.1 can be 
calculated. 

Re (Equivalence Ratio) 
Re is the minimum size of the relative risk ratio, , that will still result in the conclusion of 
equivalence. Both equivalence and non-inferiority trials use a value that is less than one. Typical 
values for this ratio are 0.8 or 0.9. 

ST PP /

This parameter is only used when the Test Statistic option is set to ‘Ratio’. 

Ra (Actual Ratio) 
Enter a value for Ra, the actual relative risk ratio . This value is used to generate the value 
of  using the formula . Often this value is set equal to one, but this is not necessary. 

P PT / S

PT P P RaT S=

This parameter is only used when the Test Statistic option is set to ‘Ratio’. 
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Example1 - Finding Power 
A clinical trial will be conducted to show that a non-invasive MRI test is not inferior to the 
invasive CTAP reference test. Historical data suggest that the CTAP test is 80% accurate. After 
careful discussion, the researchers decide that if the MRI test is 75% accurate or better, it will be 
considered non-inferior. They decide to use a difference test statistic. Thus, the equivalence 
difference is 0.05. They want to study the power for various sample sizes between 20 and 1000 at 
the 5% significance level. 

They use P01 as the nuisance parameter and look at two values: 0.05 and 0.10. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example1 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
|De|....................................................0.05 
Da......................................................0.00 
Ps ......................................................0.80 
Max N Using Exact Power.................100 
N........................................................20 100 200 300 450 600 800 1000 
Alpha .................................................0.05 
Beta...................................................Ignored 
Nuisance Parameter Type ................P01 
Nuisance Parameter Value ...............0.05 0.10 
Axes Tab 
Vertical Range...................................User 
Minimum............................................0 
Maximum...........................................1 
Number of Tick Marks .......................10 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results for a Non-Inferiority (One-Sided) Test of a Difference 
 
 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Difference Difference Proportion Proportion Parameter 
Power (N) (De) (Da) (Pt) (Ps) (P01) Alpha Beta 
0.22938 20 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.77062 
0.13717 20 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.86283 
0.43625 100 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.56375 
0.28895 100 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.71105 
0.67771 200 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.32229 
0.46318 200 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.53682 
0.83244 300 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.16756 
0.60369 300 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.39631 
0.94287 450 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.05713 
0.75745 450 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.24255 
0.98206 600 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.01794 
0.85657 600 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.14343 
0.99651 800 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.00349 
0.93172 800 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.06828 
0.99937 1000 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.00063 
0.96870 1000 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.03130 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the number of subjects, the sample size. 
De is the maximum difference between the two proportions that is still called 'equivalent'. 
Da is the actual difference between Pt and Ps. That is, Da = Pt-Ps. 
Pt is the response proportion to the treatment (experimental or new) test. 
Ps is the response proportion to the standard (reference or old) test. 
The Nuisance Parameter is a value that is needed, but is not a direct part of the hypothesis. 
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 
 
Summary Statements 
A sample size of 20 subjects achieves 23% power at a 5% significance level using a one-sided 
equivalence test of correlated proportions when the standard proportion is 0.80000, the maximum 
allowable difference between these proportions that still results in equivalence (the range of 
equivalence) is 0.05000, and the actual difference of the proportions is 0.00000. 

 
This report shows the power for the indicated scenarios. All of the columns are defined in the 
‘Report Definitions’ section. 

Plot Section 
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This plot shows the power versus the sample size for the two values of P01. In this example, we 
see that the value of the nuisance parameter has a large effect on the calculated sample size. 

Example2 - Finding Sample Size 
Continuing with Example1, the analysts want to determine the exact sample size necessary to 
achieve 90% power for both values of the nuisance parameter.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example2 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Sample Size (N) 
|De|....................................................0.05 
Da......................................................0.00 
Ps ......................................................0.80 
Max N Using Exact Power.................100 
N........................................................Ignored 
Alpha .................................................0.05 
Beta...................................................0.10 
Nuisance Parameter Type ................P01 
Nuisance Parameter Value ...............0.05 0.10 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for a Non-Inferiority (One-Sided) Test of a Difference 
 
 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Difference Difference Proportion Proportion Parameter 
Power (N) (De) (Da) (Pt) (Ps) (P01) Alpha Beta 
0.90026 374 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.09974 
0.90014 699 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.09986 

 
This report shows that the sample size required nearly doubles when P01 is changed from 0.05 to 
0.10. 
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Example3 - Validation using Liu 
Liu et al. (2002) give an example in which P01 is 0.05, P10 is 0.05, Da is 0.00, De is 0.05, the 
significance level is 0.025, and the power is 80%. From their Table III, the sample size is 350. 

In this example, the value of Ps is arbitrary. We set it at 0.50. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example3 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Sample Size (N) 
|De|....................................................0.05 
Da .....................................................0.00 
Ps......................................................0.50 
Max N Using Exact Power ................100 
N ....................................................... Ignored 
Alpha.................................................0.025 
Beta...................................................0.20 
Nuisance Parameter Type ................P01 
Nuisance Parameter Value ...............0.05 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for a Non-Inferiority (One-Sided) Test of a Difference 
 
 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Difference Difference Proportion Proportion Parameter 
Power (N) (De) (Da) (Pt) (Ps) (P01) Alpha Beta 
0.80046 350 0.05000 0.00000 0.50000 0.50000 0.05000 0.02500 0.19954 

 
The calculated sample size of 350 matches the results of Liu et al. (2002). 
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Example4 - Validation using Nam and 
Blackwelder 
Nam and Blackwelder (2002) give an example in which Ps is 0.80, P10 is 0.05, Ra is 1.00, Re is 
0.80, the significance level is 0.05, and the power is 80%. From their Table III, the sample size is 
34.  

Note that their calculations use the approximate formula, so we will set the value of ‘Max N 
Using Exact Power’ to ‘1’ so that only the approximate formula is used.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the ratio parameterization. You can make these changes directly 
on your screen or you can load the template entitled Example4 by clicking the Template tab and 
loading this template. 

Option Value
Data Tab 
Find ...................................................Sample Size (N) 
Re......................................................0.80 
Ra......................................................1.00 
Ps ......................................................0.80 
Max N Using Exact Power.................1 
N........................................................Ignored 
Alpha .................................................0.05 
Beta...................................................0.20 
Nuisance Parameter Type ................P10 
Nuisance Parameter Value ...............0.05 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for a Non-Inferiority (One-Sided) Test of a Difference 
 
 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Difference Difference Proportion Proportion Parameter 
Power (N) (De) (Da) (Pt) (Ps) (P10) Alpha Beta 
0.80050 34 0.80 1.00 0.80000 0.80000 0.05000 0.05000 0.19950 

 

The calculated sample size of 34 matches the results of Nam and Blackwelder (2002). 
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Example5 – Finding Sample Size for a 
Non-inferiority Test 
Researchers have developed a new treatment for migraine headaches which is less expensive than 
a current standard. The researchers need to show that the proportion of individuals who respond 
to the new treatment is not inferior to the standard treatment. They want to determine the 
minimum number of subjects required to achieve 90% power for the test of non-inferiority. The 
new treatment will be considered non-inferior if its success rate is no less than 90% of the success 
rate of the standard, which is about 0.65. The sample size required is evaluated for various values 
(0.3 to 0.9) of the nuisance parameter: P11/Ps = sensitivity. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the ratio parameterization. You can make these changes directly 
on your screen or you can load the template entitled Example5 by clicking the Template tab and 
loading this template. 

Option Value
Data Tab 
Find ...................................................Sample Size (N) 
Re .....................................................0.95 
Ra .....................................................1.0 
Ps......................................................0.65 
Max N Using Exact Power ................1 
N ....................................................... Ignored 
Alpha.................................................0.05 
Beta...................................................0.10 
Nuisance Parameter Type ................P11/Ps (Sensitivity) 
Nuisance Parameter Value ...............0.3 to 0.9 by 0.1 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
 

Numeric Results for a Non-Inferiority (One-Sided) Test of a Ratio 
 
 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Ratio Ratio Proportion Proportion Parameter 
Power (N) (Re) (Ra) (Pt) (Ps) (P11/Ps) Alpha Beta 
 13 0.95 1.00 0.65000 0.65000 0.30000 0.05000  
 13 0.95 1.00 0.65000 0.65000 0.40000 0.05000  
0.90004 5013 0.95 1.00 0.65000 0.65000 0.50000 0.05000 0.09996 
0.90001 4013 0.95 1.00 0.65000 0.65000 0.60000 0.05000 0.09999 
0.90004 3015 0.95 1.00 0.65000 0.65000 0.70000 0.05000 0.09996 
0.90011 2020 0.95 1.00 0.65000 0.65000 0.80000 0.05000 0.09989 
0.90016 1035 0.95 1.00 0.65000 0.65000 0.90000 0.05000 0.09984 

 

These scenarios require a large sample size. In fact, the first two rows are blank because the 
sample size is so large it can’t be determined. 
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Chapter 165  
Equivalence of 
Correlated 
Proportions 
The two procedures described in this chapter compute power and sample size for testing 
equivalence using differences or ratios in designs in which two dichotomous responses are 
measured on each subject. Each of these options is listed separately on the menus.  

When one is interested in showing that two correlated proportions are different, the data are often 
analyzed with McNemar’s test. However, the procedures discussed here are interested in showing 
equivalence rather than difference. For example, suppose a diagnostic procedure is accurate, but 
is expensive to apply or has serious side effects. A replacement procedure may be sought which is 
equally accurate, but is less expensive or has fewer side effects. In this case, we are not interested 
in showing that the two diagnostic procedures are different, but rather that they are the same. 
Equivalence tests were designed for this situation.  

These tests are often divided into two categories: equivalence (two-sided) tests and non-
inferiority (one-sided) tests. Here, the term equivalence tests means that we want to show that two 
diagnostic procedures are equivalent—that is, their accuracy is about the same. This requires a 
two-sided hypothesis test. On the other hand, non-inferiority tests are used when we want to show 
that a new (experimental) procedure is no worse than the existing (reference or gold-standard) 
one. This requires a one-sided hypothesis test. 
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Technical Details 
The results of a study in which two dichotomous responses are measured on each subject can be 
displayed in a 2-by-2 table in which one response is shown across the columns and the other is 
shown down the rows. In the discussion to follow, the columns of the table represent the standard 
(reference or control) response and the rows represent the treatment (experimental) response. The 
outcome probabilities can be classified into the following table. 

Experimental Standard Diagnosis
Diagnosis Yes No Total

Yes
No

Total

p p
p p
P P

T

T

S S

11 10

01 00 1
1 1

−
−

P
P

 

In this table, . That is, the first subscript represents the response of the new, 
experimental procedure while the second subscript represents the response of the standard 
procedure. Thus,  represents the proportion having a negative treatment response and a 
positive standard response.  

p pij Treatment Standard= ,

p01

To aid in interpretation, analysts have developed a few proportions that summarize the table. 
Three of the most popular ratios are sensitivity, specificity, and prevalence.  

Sensitivity 
Sensitivity is the proportion of subjects with a positive standard response who also have a 
positive experimental response. In terms of proportions from the 2-by-2 table,  

Sensitivity = ( )p p p p11 01 11 11/ / P+ = S  

Specificity 
Specificity is the proportion of subjects with a negative standard response who also have a 
negative experimental response. In terms of proportions from the 2-by-2 table,  

Specificity = ( )p p p00 10 00/ +  

Prevalence 
Prevalence is the overall proportion of individuals with the disease (or feature of interest). In 
terms of proportions from the 2-by-2 table,  

Prevalence =  PS
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The outcome counts from a sample of n subjects can be classified into the following table. 

 

Experimental Standard Diagnosis
Diagnosis Yes No Total

Yes
No

Total

n n
n n n
n n n

T

T

S S

11 10

01 00 −
−

n
n

n

S

S

E

 

Note that  is the number of matches (concordant pairs) and  is the number of 
discordant pairs. 

n n11 00+ n n10 01+

The hypothesis of interest concerns the two marginal probabilities  and .  represents the 
accuracy or success of the standard test and  represents the accuracy or success of the new, 
experimental test. Equivalence is defined in terms of either the difference, , or the 
relative risk ratio, , of these two proportions. The choice between D and R will 
usually lead to different sample sizes to achieve the same power. 

PT PS PS

PT

D P P= −T

R P P= T /

Equivalence Hypotheses using Difference 
This section is based on Liu, Hsueh, Hsieh and Chen (2002). We refer you to that paper for 
complete details.  

The hypotheses of equivalence in terms of the difference are 

H P P D H P P D H D P P DE E E0 0 1: : :T S T S T Sor versus− ≥ − ≤ − − < − <  

These hypotheses can be decomposed into two sets of one-sided hypotheses  

H P P D H P P DL E L0 1: :T S T Sversus− E≤ − − > −  

and 

H P P D H P P DU E U0 1: :T S T Sversus E− ≥ − <  

The hypothesis test of equivalence with type I error rate α  is conducted by computing a 
(100 1 2− )α % confidence interval for P PT S−  and determining if this interval is wholly 

contained between  and . This confidence interval approach is often recommended by 
regulatory agencies.

− DE DE

   

Liu et al. (2002) discuss the RMLE-based (score) method for constructing these confidence 
intervals. This method is based on (developed by, described by) Nam (1997). 
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Asymptotic Tests 
An asymptotic test for testing  versus  is given by H L0 H L1

Z   D D c nD

d nD
zL

E E=
+

=
+

−
≥

$

$ $σ α2
 

where 

$D  n
n

n
n

n
n

n
n

T S= − = −10 01  

d  n n= +10 01  
c  n n= −10 01  

and  is the standard normal deviate having zα α  in the right tail.  

Similarly, an asymptotic test for testing H0U versus H1U  is given by 

Z   D D c nD

d nD
zU

E E=
−

=
−

−
≤ −

$

$ $σ α2
. 

Equivalence is concluded if both the tests on ZL and ZU are rejected.. 

An estimate of σ̂  based on the RMLE-based (score) procedure of Nam (1997) uses the estimates 

~ ~ ~
, ,σ L

L Lp p D
n

=
+ −10 01

2
E  

and 

~ ~ ~
, ,σU

U Up p D
n

=
+ −10 01

2
E  

where 

~
~ ~ ~

,p
a a b

L
L L

10

2 8
4

=
− + − L

E

 

~ ~
, ,p p DL L01 10= −  

~
~ ~ ~

,p
a a b

U
U U

10

2 8
4

=
− + − U  

~ ~
, ,p pU U01 10 DE= +  

( ) ( )~ $ $,a D D p DL E01 011 2= − − − + E  

( )~
$,b D D pL E E01 011= +  

( ) ( )~ $ $,a D D p DU E01 011 2= − + − − E  
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( )~
$,b D DU E E01 011= − − p  

Note that the ICH E9 guideline (see Lewis (1999)) suggests using a significance level of α / 2  
when testing this hypothesis. 

Power Formula 
The power when the actual difference is  can be evaluated exactly using the multinomial 
distribution. However, when the sample size is above a user-set level, we use a normal 
approximation to this distribution which leads to 

DA

( ) ( ) ( )1
0

− =
− −⎧

⎨
⎩

⎫
⎬
⎭

β D
c c c c

A
U L U LΦ Φ if

0 otherwi
>

se
 

where 

c D D z
wU

A E

U

=
−

+ −
σ σ

α  

c D D z
wL

A E

L

=
−

− +
σ σ

α  

σ =
+ −p p D

n
A01 10  

w p D D
p D DL

A A

L E

=
+ −
− −

2
2

01
2

01
2

, E

 

w p D D
p D DU

A A

U E

=
+ −
+ −

2
2

01
2

01
2

, E

 

p
a a b

L
L L

,01

2 8
4

=
− + − L  

p
a a b

U
U U

,01

2 8
4

=
− + − U  

( ) ( )a D D p DL A E E= − − − +1 2 01  

( )b D D pL E E= +1 01  

( ) ( )a D D p DU A E E= − + − −1 2 01  

( )b D D pU E E= − −1 01  
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Equivalence Hypotheses using Ratios 
For the two-sided (equivalence) case when RE <1, the statistical hypotheses are 

H P P R P P R H R P P RE E E0 11 1: / / / : / /T S T S T Sor versus≤ ≥ E< <  

These can be decomposed into two sets of one-sided hypotheses  

H P P R H P P RL E L E0 1: / : /T S T Sversus≤ >  

and 

H P P R H P P RU E U0 11 1: / / : / /T S T Sversus≥ E<  

Note that the first set of one-sided hypotheses, H0L versus H1L, is referred to as the hypotheses of 
non-inferiority.  

The following is based on Nam and Blackwelder (2002). We refer you to this paper for the 
complete details of which we will only provide a brief summary here.  

Test Statistics 
The test statistic for an asymptotic test based on constrained maximum likelihood for large n is 
given by 

( ) ( )
( )

Z R   
n P R P

R p pE
E

E

=
−

+

$ $

~ ~
T S

10 01

 

where 

( ) ( )
( )

~
$ $ $ $ $ $ $

p
P R P p P R P R p p

R R
E E

E E
10

2
10

2 2 2
10 012 4

2 1
=
− + + + − +

+
T S T S E

 

( )( )~ ~ $p R p R pE E01 10 001 1= − − −  

$ , $ , $ , $p n
n

p n
n

P n n
n

P n n
n01

01
10

10 10 11 01 11= = =
+

=
+

T S  

Note that the above applies to a one-sided test. When using a two-sided test, we calculate both 
 and  using the above formula. (Z RE ) )(Z RE1/
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Power Formula 
The power of the one-sided procedure when the true value of the relative risk ratio is  can be 
evaluated exactly using the multinomial distribution. When n is large, we use a normal 
approximation to the multinomial distribution which leads to 

RE

( ) ( )β R cA U=Φ  

where 

( ) ( )
( )

c
z V T E T

V TU =
−−1 0 0 1 0

1 0

α  

( ) ( )V T
R p p

n
E

0 0
10 01=
+

 

( ) ( )E T R R PA E1 0 = − S  

( ) ( ) ( )
V T

R R P R p R R P
n

A E E A E
1 0

2
11

22
=

+ − − −S S
2

 

( ) ( )
( )

p
P R P p P R P R p p

R R
E E

E E
10

2
10

2 2 2
10 012 4

2 1
=
− + + + − +

+
T S T S E

 

( )( )p R p R pE E01 10 001 1= − − −  

Nuisance Parameter 
Unfortunately, the 2-by-2 table includes four parameters and , but the power 
specifications above only specify two parameters:  and  or . A third parameter is 
defined implicitly since the sum of the four parameters is one. One parameter, known as a 
nuisance parameter, remains unaccounted for. This parameter must be addressed to fully specify 
the problem. This fourth parameter can be specified by specifying any one of the following: 

p p p11 10 01, , , p00

PS DA RA

p p p p11 10 01 00, , , , p p p p10 01 11 00+ +, ,  or the sensitivity of the experimental response, . p P11 / S

It may be difficult to specify a reasonable value for the nuisance parameter since its value may 
not be even approximately known until after the study is conducted. Because of this, we suggest 
that you calculate power or sample size for a range of values of the nuisance parameter. This will 
allow you to determine how sensitive the results are to its value. 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates at the beginning of this manual. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and beta. This chapter covers two procedures which have different options. This 
section documents options that are common to both procedures. Later, unique options for each 
procedure will be documented.   

Find 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are Beta and Power or N.  

Ps (Standard Proportion) 
This is the proportion of yes’s (or successes), , when subjects received the standard treatment. 
This value or a good estimate is often available from previous studies.  

PS

Note that this value does not matter when the Nuisance Parameter Type is set to 'P01' (or 'P10'), 
as long as it is greater than P01 (or P10). 

You may enter a set of values separated by blank spaces. For example, you could enter 0.50 0.60 
0.70. Values between, but not including, 0 and 1 are permitted. 

Max N Using Exact Power 
Specify the maximum value of N (sample size) for which you would like an exact power 
calculation based on the multinomial distribution. Sample Sizes greater than this value will use 
the asymptotic approximation given in the documentation. The exact calculation of the 
multinomial distribution becomes very time consuming for N > 200. For most cases, when N > 
200, the difference between the exact and approximate calculations is small. For N > 200, the 
length of time needed to calculate the exact answer may become prohibitive. However, as the 
speed of computers increases, it will become faster and easier to calculate the exact power for 
larger values of N. 

If you want all calculations to use exact results, enter ‘1000’ here. 

If you want all calculations to use the quick approximations, enter ‘1’ here. 

N (Sample Size) 
Enter a value for the sample size. This value must be greater than two. You may enter a range of 
values such as 10 to100 by10. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you falsely conclude equivalence or inferiority.  
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Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to conclude equivalence or non-inferiority when in fact it is true. 

Values must be between 0 and 1. Values of 0.10 or 0.20 are often used for beta. However, you 
should pick a value for beta that represents the risk of a type-II error that you are willing to take. 

Power is defined as 1-beta. Power is equal to the probability of rejecting a false null hypothesis. 
Hence, specifying the beta error level also specifies the power level. For example, if you specify 
beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power values of 0.95, 
0.90, and 0.80, respectively.  

Nuisance Parameter Type 
Enter the type of nuisance parameter here. Unfortunately, the 2-by-2 table cannot be completely 
specified by using only the parameters Ps and Da or Ps and Ra. One other parameter must be 
specified. This additional parameter is called a ‘nuisance’ parameter. It will be assumed to be a 
known quantity. Several possible choices are available. This option lets you specify which 
parameter you want to use. In all cases, the value you specify is a proportion. 

P11 is the proportion of subjects that are positive on both tests. 

P00 is the proportion of subjects that are negative on both tests. 

P01 is the proportion of subjects that are negative on the treatment, but positive on the standard. 

P10 is the proportion of subjects that are positive on the treatment, but negative on the standard. 

P11+P00 is the proportion of matches (concordant pairs). 

P01+P10 is the proportion of non-matches (discordant pairs). 

P11/Ps is the sensitivity. 

Nuisance Parameter Value 
Enter the value of the nuisance parameter that you specified in the ‘Nuisance Parameter Type’ 
box. This value is a proportion, so it must be between 0 and 1.  
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Data Tab (Difference) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value 
of P1 at which the power is calculated. Once P2, D0, and D1 are given, the values of P1.1 and 
P1.0 can be calculated. 

De (Equivalence Difference) 

 

T

De is the maximum allowable difference between the standard and treatment proportions that will 
still result in the conclusion of equivalence. In order to ensure that De is positive, the difference is 
computed in reverse order. That is, D P PE S= − . This parameter is only used when the Test 
Statistic option is set to Difference. 

Only positive values can be entered here. Typical values for this difference are 0.05, 0.10, and 
0.20. For two-sided tests, you must have |Da| < De. For one-sided tests, you must have Da > -De. 

Da (Actual Difference) 
Da is the actual difference between the treatment and standard proportions D P PA T S= − . Da may 
be positive, negative, or (usually) zero. This parameter is only used when the Test Statistic option 
is set to Difference. 

For two-sided tests, you must have |Da| < De. For one-sided tests, you must have Da > -De. 

Data Tab (Ratio) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of P1 at 
which the power is calculated. Once P2, R0, and R1 are given, the values of P1.0 and P1.1 can be 
calculated. 

Re (Equivalence Ratio) 
Re is the minimum size of the relative risk ratio, , that will still result in the conclusion of 
equivalence. Both equivalence and non-inferiority trials use a value that is less than one. Typical 
values for this ratio are 0.8 or 0.9. 

ST PP /

This parameter is only used when the Test Statistic option is set to Ratio. 

Ra (Actual Ratio) 
Enter a value for Ra, the actual relative risk ratio . This value is used to generate the value 
of  using the formula . Often this value is set equal to one, but this is not necessary. 

P PT / S

PT P P RaT S=

This parameter is only used when the Test Statistic option is set to Ratio. 
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Example1 - Finding Power 
A clinical trial will be conducted to show that a non-invasive MRI test is equivalent to the 
invasive CTAP reference test. Historical data suggest that the CTAP test is 80% accurate. After 
careful discussion, the researchers decide that if the MRI test is five percentage points of the 
CTAP, it will be considered equivalent. They decide to use a difference test statistic. Thus, the 
equivalence difference is 0.05. They want to study the power for various sample sizes between 20 
and 1000 at the 5% significance level. The decide to use the approximate power calculations, so 
they set the 'Max N Using Exact Power' option to 2. 

They use P01 as the nuisance parameter and look at two values: 0.05 and 0.10. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example1 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
|De|....................................................0.05 
Da......................................................0.00 
Ps ......................................................0.80 
Max N Using Exact Power.................2 
N........................................................20 100 200 300 450 600 800 1000 
Alpha .................................................0.05 
Beta...................................................Ignored 
Nuisance Parameter Type ................P01 
Nuisance Parameter Value ...............0.05 0.10 
Axes Tab 
Vertical Range...................................User 
Minimum............................................0 
Maximum...........................................1 
Number of Tick Marks .......................10 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for an Equivalence (Two-Sided) Test of a Difference 
 
 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Difference Difference Proportion Proportion Parameter 
Power (N) (De) (Da) (Pt) (Ps) (P01) Alpha Beta 
0.00000 20 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 1.00000 
0.00000 20 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 1.00000 
0.00000 100 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 1.00000 
0.00000 100 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 1.00000 
0.35542 200 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.64458 
0.00000 200 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 1.00000 
0.66488 300 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.33512 
0.20739 300 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.79261 
0.88574 450 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.11426 
0.51491 450 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.48509 
0.96411 600 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.03589 
0.71314 600 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.28686 
0.99301 800 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.00699 
0.86344 800 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.13656 
0.99874 1000 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.00126 
0.93739 1000 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.06261 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N is the number of subjects, the sample size. 
De is the maximum difference between the two proportions that is still called 'equivalent'. 
Da is the actual difference between Pt and Ps. That is, Da = Pt-Ps. 
Pt is the response proportion to the treatment (experimental or new) test. 
Ps is the response proportion to the standard (reference or old) test. 
The Nuisance Parameter is a value that is needed, but is not a direct part of the hypothesis. 
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 
 
Summary Statements 
A sample size of 20 subjects achieves 0% power at a 5% significance level using a two-sided 
equivalence test of correlated proportions when the standard proportion is 0.80000, the maximum 
allowable difference between these proportions that still results in equivalence (the range of 
equivalence) is 0.05000, and the actual difference of the proportions is 0.00000. 

 
This report shows the power for the indicated scenarios. All of the columns are defined in the 
‘Report Definitions’ section. 
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Plot Section 
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This plot shows the power versus the sample size for the two values of P01. In this example, we 
see that the value of the nuisance parameter has a large effect on the calculated sample size. 
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Example2 - Finding Sample Size 
Continuing with Example1, the analysts want to determine the exact sample size necessary to 
achieve 90% power for both values of the nuisance parameter.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example2 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Sample Size (N) 
|De|....................................................0.05 
Da .....................................................0.00 
Ps......................................................0.80 
Max N Using Exact Power ................2 
N ....................................................... Ignored 
Alpha.................................................0.05 
Beta...................................................0.10 
Nuisance Parameter Type ................P01 
Nuisance Parameter Value ...............0.05 0.10 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for an Equivalence (Two-Sided) Test of a Difference 
 
 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Difference Difference Proportion Proportion Parameter 
Power (N) (De) (Da) (Pt) (Ps) (P01) Alpha Beta 
0.90019 468 0.05000 0.00000 0.80000 0.80000 0.05000 0.05000 0.09981 
0.90002 881 0.05000 0.00000 0.80000 0.80000 0.10000 0.05000 0.09998 

 
This report shows that the sample size required nearly doubles when P01 is changed from 0.05 to 
0.10. 



 Equivalence of Correlated Proportions  165-15 

 

Example3 - Validation using Liu 
Liu et al. (2002) page 238 give a table of power values for sample sizes of 50, 100, and 200 when 
the significance level is 0.05. From this table, we find that when P01 is 0.10, P10 is 0.10, Da = 
P01 - P10 = 0.00, and De is 0.10, and the three power values are 0.026, 0.417, and 0.861 for the 
column head 'RMLE-based Without CC' (this is the case we use).  

In their calculations, they round the z value to 1.64. This corresponds to an alpha value of 
0.0505025835. So that our results match, we will use this value for alpha rather than 0.05. 

In this example, the value of Ps is not used. We set it at 0.50. Also, we set the Max N value to 
200 so that the exact values will be calculated. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example3 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
|De|....................................................0.1 
Da......................................................0.0 
Ps ......................................................0.5 
Max N Using Exact Power.................200 
N........................................................50 100 200 
Alpha .................................................0.0505025835 
Beta...................................................Ignored since this is the Find setting 
Nuisance Parameter Type ................P01 
Nuisance Parameter Value ...............0.1 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for an Equivalence (Two-Sided) Test of a Difference 
 
 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Difference Difference Proportion Proportion Parameter 
Power (N) (De) (Da) (Pt) (Ps) (P01) Alpha Beta 
0.02614 50 0.10000 0.00000 0.50000 0.50000 0.10000 0.05050 0.97386 
0.41741 100 0.10000 0.00000 0.50000 0.50000 0.10000 0.05050 0.58259 
0.86080 200 0.10000 0.00000 0.50000 0.50000 0.10000 0.05050 0.13920 
 

As you can see, the values computed by PASS match the results of Liu et al. (2002). 
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Example4 – Finding Power Following an 
Experiment 
An experiment involving a single group of 57 subjects was run to show that a new treatment was 
equivalent to a previously used standard. Historically, the standard treatment has had a 48% 
success rate. The new treatment is known to have similar side effects to the standard, but is much 
less expensive. The treatments were to be considered equivalent if the success rate of the new 
treatment is within 10% of the success rate of the standard.  

To compare the new and standard treatments, each of the 57 subjects received both treatments 
with a washout period between them. Thus, the proportions based on the two treatments are 
correlated. Of the 57 subjects, 18 responded to both treatments, 20 did not respond to either 
treatment, 9 responded to the new treatment but not the standard, and 10 responded to the 
standard but not the new treatment. The proportion responding to the new treatment is (18+9)/57 
= 0.4737. The proportion responding to the standard is (18+10)/57 = 0.4912. The difference is 
0.0175, lower than the threshold for equivalence, but the resulting p-value was 0.3358, indicating 
the two treatments could not be deemed equivalent at the 0.05 level. Note that McNemar’s test 
only uses the discordant pairs, so the effective size of this study is really only 9 + 10 = 19, 
although 57 subjects were investigated. The researchers want to know the power of the test they 
used. 

It may be the inclination of the researchers to use the observed difference in proportions for 
calculating power. The p-value, however, is based on the maximum allowable difference for 
equivalence, which is 10% of 0.48, or 0.048. This is the number that should be used in the power 
calculation. The experiment gave a value of P01 of 10/28 = 0.36. The power of the experiment is 
near zero for all values of P01 less than 0.10. We calculate the power for a variety of nuisance 
parameter values (P01 = 0.01, 0.03, 0.05, and 0.10) to monitor its effect. Because it is in fact 
believed that the success rates are equivalent for the two treatments, the specified actual 
difference is set to 0. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the ratio parameterization. You can make these changes directly 
on your screen or you can load the template entitled Example4 by clicking the Template tab and 
loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
De .....................................................0.048 
Da .....................................................0.00 
Ps......................................................0.48 
Max N Using Exact Power ................200 
N .......................................................57 
Alpha.................................................0.05 
Beta................................................... Ignored 
Nuisance Parameter Type ................P01 
Nuisance Parameter Value ...............0.01 0.03 0.05 0.10 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for an Equivalence (Two-Sided) Test of a Difference 
 

 Sample Equiv. Actual Treatment Standard Nuisance 
 Size Difference Difference Proportion Proportion Parameter 
Power (N) (De) (Da) (Pt) (Ps) (P01) Alpha Beta 
0.31614 57 0.04800 0.00000 0.48000 0.48000 0.01000 0.05000 0.68386 
0.02940 57 0.04800 0.00000 0.48000 0.48000 0.03000 0.05000 0.97060 
0.00247 57 0.04800 0.00000 0.48000 0.48000 0.05000 0.05000 0.99753 
0.00000 57 0.04800 0.00000 0.48000 0.48000 0.10000 0.05000 1.00000 

 

Note that there is no power for value of P01 greater than 0.05. This is probably due to the low 
number of discordant pairs. 
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Chapter 200  

Two Independent 
Proportions – 
Inequality 
Introduction 
This module computes power and sample size for hypothesis tests of the difference, ratio, or odds 
ratio of two independent proportions. The term null case in the chapter title refers to the value of 
the null hypothesis. The test statistics analyzed by this procedure assume that the difference 
between the two proportions is zero or their ratio is one under the null hypothesis. The non-null 
(offset) case is discussed in another procedure. This procedure computes and compares the power 
achieved by each of several test statistics that have been proposed. 

For example, suppose you want to compare two methods for treating cancer. Your experimental 
design might be as follows. Select a sample of patients and randomly assign half to one method 
and half to the other. After five years, determine the proportion surviving in each group and test 
whether the difference in the proportions is significantly different from zero.  

The power calculations assume that random samples are drawn from two separate populations.  

Four Procedures Documented Here 
There are four procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, ratios of proportions, and odds ratios. Each 
of these options is listed separately on the menus.  
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Technical Details  
Suppose you have two populations from which dichotomous (binary) responses will be recorded. 
The probability (or risk) of obtaining the event of interest in population 1 (the treatment group) is 

 and in population 2 (the control group) is . The corresponding failure proportions are given 
by  and .  
p1 p2

q p1 11= − q p2 21= −

The assumption is made that the responses from each group follow a binomial distribution. This 
means that the event probability, , is the same for all subjects within the group and that the 
response from one subject is independent of that of any other subject. 

pi

Random samples of m and n individuals are obtained from these two populations. The data from 
these samples can be displayed in a 2-by-2 contingency table as follows 

Group Success Failure Total 
Treatment a c m 
Control b d n 
Total s f N 
 
The following alternative notation is also used. 
 
Group Success Failure Total 
Treatment    x11 x12 n1

Control    x21 x22 n2

Total   N m1 m2

The binomial proportions  and  are estimated from these data using the formulae p1 p2

$p a
m

x
n1
11

1

= =  and $p b
n

x
n2

21

2

= =  

Comparing Two Proportions  
When analyzing studies such as this, one usually wants to compare the two binomial 
probabilities, and . Common measures for comparing these quantities are the difference and 
the ratio. If the binomial probabilities are expressed in terms of odds rather than probabilities, 
another common measure is the odds ratio. Mathematically, these comparison parameters are 

p1 p2

Parameter Computation

Difference  δ = −p p1 2  

Risk Ratio φ = p p1 2/  

Odds Ratio 
( )
( )

ψ =
−
−

=
p p
p p

p q
p q

1 1

2 2

1 2

2 1

1
1

/
/

 

The tests analyzed by this routine are for the null case. This refers to the values of the above 
parameters under the null hypothesis. In the null case, the difference is zero and the ratios are one 
under the null hypothesis. In the non-null case, discussed in another chapter, the difference is 
some value other than zero and the ratios are some value other than one. The non-null case often 
appears in equivalence and non-inferiority testing.  
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Hypothesis Tests 
Several statistical tests have been developed for testing the inequality of two proportions. For 
large samples, the powers of the various tests are about the same. However, for small samples, the 
differences in the powers can be quite large. Hence, it is important to base the power analysis on 
the test statistic that will be used to analyze the data. If you have not selected a test statistic, you 
may wish to determine which one offers the best power in your situation. No single test is the 
champion in every situation, so you must compare the powers of the various tests to determine 
which to use.  

Difference  
The (risk) difference,δ = −p p1 2 , is perhaps the most direct measure for comparing two 
proportions. Three sets of statistical hypotheses can be formulated: 

1.  versus H p p0 1 2 0: − = H p p1 1 2 0: − ≠ ; this is often called the two-tailed test. 
2. H p p0 1 2 0: − ≤  versus H p p1 1 2 0: − > ; this is often called the upper-tailed test. 
3.  versus H p p0 1 2 0: − ≥ H p p1 1 2 0: − < ; this is often called the lower-tailed test. 
 
The traditional approach for testing these hypotheses has been to use the Pearson chi-square test 
for large samples, the Yates chi-square for intermediate sample sizes, and the Fisher Exact test for 
small samples. Recently, some authors have begun questioning this solution. For example, based 
on exact enumeration, Upton (1982) and D’Agostino (1988) conclude that the Fisher Exact test 
and Yates test should never be used.  

Ratio  
The (risk) ratio,φ = p p1 / 2 , is often preferred to the difference when the baseline proportion is 
small (less than 0.1) or large (greater than 0.9) because it expresses the difference as a percentage 
rather than an amount. In this null case, the null hypothesized ratio of proportions,φ0 , is one. 
Three sets of statistical hypotheses can be formulated:  

1. H p p0 1 2 0: / = φ  versus H p p1 1 2 0: / ≠ φ ; this is often called the two-tailed test. 
2. H p p0 1 2 0: / ≤ φ  versus H p p1 1 2 0: / > φ ; this is often called the upper-tailed test. 
3. H p p0 1 2 0: / ≥ φ  versus H p p1 1 2 0: / < φ ; this is often called the lower-tailed test. 
 

Odds Ratio  
The odds ratio,

( )
( )

ψ = =
−
−

=
o
o

p p
p p

p q
p q

1

2

1 1

2 2

1 2

2 1

1
1

/
/

, is sometimes used to compare the two 

proportions because of its statistical properties and because some experimental designs require its 
use. In this null case, the null hypothesized odds ratio,ψ 0 , is one. Three sets of statistical 
hypotheses can be formulated:  

1. H0: 0ψ ψ=  versus H1: 0ψ ψ≠ ; this is often called the two-tailed test. 
2. H0: 0ψ ψ≤  versus H1: 0ψ ψ> ; this is often called the upper-tailed test. 
3. H0: 0ψ ψ≥  versus H1: 0ψ ψ< ; this is often called the lower-tailed test. 
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Power Calculation 
The power for a test statistic that is based on the normal approximation can be computed exactly 
using two binomial distributions. The following steps are taken to compute the power of such a 
test.  
1.  Find the critical value (or values in the case of a two-sided test) using the standard normal 

distribution. The critical value, , is that value of z that leaves exactly the target value of 
alpha in the appropriate tail of the normal distribution. For example, for an upper-tailed test 
with a target alpha of 0.05, the critical value is 1.645.  

zcritical

2.  Compute the value of the test statistic, , for every combination of  and . Note that  
ranges from 0 to , and  ranges from 0 to . A small value (around 0.0001) can be 
added to the zero cell counts to avoid numerical problems that occur when the cell value is 
zero. 

zt x11 x21 x11

n1 x21 n2

3. If z z , the combination is in the rejection region. Call all combinations of  and  
that lead to a rejection the set A. 

t critical> x11 x21

4. Compute the power for given values of  and  as p1 p2

1 1

11
1 1

2

21
2 2

11 1 11 21 2 21− =
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟− −∑β

n
x

p q
n
x

p qx n x x n x

A

 

5. Compute the actual value of alpha achieved by the design by substituting  for   p2 p1

α* =
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟− −∑

n
x

p q
n
x

p qx n x x n x

A

1

11
1 1

2

21
1 1

11 1 11 21 2 21  

When the values of  and  are large (say over 200), these formulas may take a little time to 
evaluate. In this case, a large sample approximation may be used. 

n1 n2
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Test Statistics 
The various test statistics that are available in this routine are listed next.  

Fisher’s Exact Test 
The most useful reference we found for power analysis of Fisher’s Exact test was in the StatXact 
5 (2001) documentation. The material present here is summarized from Section 26.3 (pages 866 – 
870) of the StatXact-5 documentation. In this case, the test statistic is 
 

T

n
x

n
x

N
m

= −

⎛
⎝
⎜

⎞
⎠
⎟
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⎡
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⎢

⎤
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⎥
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1

1

2

2  

The null distribution of T is based on the hypergeometric distribution. It is given by 

( )
( )

Pr | ,T t m H
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where 

( ) { }A m x x x x m T t= + = ≥all  pairs such that given1 2 1 2, ,  

Conditional on m, the critical value, , is the smallest value of t such that  tα

( )Pr | ,T t m H≥ ≤α α0  
The power is defined as  

( ) ( )1
0

1− = ≥
=
∑β αP m T t m H
m

N

Pr | ,  
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( ) ( )
( ) (

P m x x m H
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=
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⎝
⎜
⎞
⎠
⎟ − −1  

When either group’s sample size is greater than the Maximum N1 or N2 limit, an approximation 
is used based on the pooled, continuity corrected Chi-Square test. 
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Chi-Square Test (Pooled and Unpooled) 
This test statistic was first proposed by Karl Pearson in 1900. Although this test is usually 
expressed directly as a Chi-Square statistic, it is expressed here as a z statistic so that it can be 
more easily used for one-sided hypothesis testing.   

Both pooled and unpooled versions of this test have been discussed in the statistical literature. 
The pooling refers to the way in which the standard error is estimated. In the pooled version, the 
two proportions are averaged, and only one proportion is used to estimate the standard error. In 
the unpooled version, the two proportions are used separately. 

The formula for the test statistic is  

z p p
t

D

=
−$ $

$
1 2

σ
 

Pooled Version 
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Unpooled Version 
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Power 
The power of this test is computed using the enumeration procedure described above. For large 
sample sizes, the following approximation is used. 
1.  Find the critical value (or values in the case of a two-sided test) using the standard normal 

distribution. The critical value is that value of z that leaves exactly the target value of alpha in 
the tail.  

2.  Use the normal approximation to binomial distribution to compute binomial probabilities, 
Compute the power using 

1 1 1
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=
+
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1 2

 and q p= −1  

 

 



 Two Independent Proportions – Inequality  200-7 

Chi-Square Test with Continuity Correction  
Frank Yates is credited with proposing a correction to the Pearson Chi-Square test for the lack of 
continuity in the binomial distribution. However, the correction was in common use when he 
proposed it in 1922.  

Both pooled and unpooled versions of this test have been discussed in the statistical literature. 
The pooling refers to the way in which the standard error is estimated. In the pooled version, the 
two proportions are averaged, and only one proportion is used to estimate the standard error. In 
the unpooled version, the two proportions are used separately. 

The continuity corrected z-test is  

( )
z

p p F
n n
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where F is -1 for lower-tailed, 1 for upper-tailed, and both -1 and 1 for two-sided hypotheses.  

Pooled Version 
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Unpooled Version 
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Power 
The power of this test is computed using the enumeration procedure described for the z-test 
above. For large samples, approximate results based on the normal approximation to the binomial 
are used.  

Conditional Mantel Haenszel Test  
The conditional Mantel Haenszel test, see Lachin (2000) page 40, is based on the index 
frequency, , from the 2x2 table. The formula for the z-statistic is x11

( )
( )

z
x E x

V xc

=
−11 11

11

 

where  

( )E x n m
N11
1 1=  

( ) ( )
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N Nc 11
1 2 1 2
2 1

=
−

 

Power 
The power of this test is computed using the enumeration procedure described above.  
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Likelihood Ratio Test 
In 1935, Wilks showed that the following quantity has a chi-square distribution with one degree 
of freedom. Using this test statistic to compare proportions is presented, among other places, in 
Upton (1982). The likelihood ratio test statistic is computed as 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

LR
a a b b c c d d

N N s s f f m m n n
=

+ + + +

− − − −

⎡
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⎦
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2
ln ln ln ln
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Power 
The power of this test is computed using the enumeration procedure described above. When large 
sample results are needed, the results for the z test are used. 

T-Test 
Based on a study of the behavior of several tests, D’Agostino (1988) and Upton (1982) proposed 
using the usual two-sample t-test for testing whether two proportions are equal. One substitutes a 
‘1’ for a success and a ‘0’ for a failure in the usual, two-sample t-test formula. The test statistic is 
computed as 
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which can be compared to the t distribution with N-2 degrees of freedom. 
 

Power 
The power of this test is computed using the enumeration procedure described above, except that 
the t tables are used instead of the standard normal tables.  
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and beta. This chapter covers four procedures, each of which has different options. 
This section documents options that are common to all four procedures. Later, unique options for 
each procedure will be documented.   

Find 
This option specifies the parameter to be solved for using the other parameters. The parameters 
that may be selected are P1, Beta, N1, and N2. Under most situations, you will select either Beta 
or N1. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Beta when you want to calculate the power of an experiment.  

Test Statistic 
Specify which test statistic will be used in searching and reporting. 

Note that ‘C.C.’ is an abbreviation for Continuity Correction. This refers to the adding or 
subtracting 2/(N1+N2) to (or from) the numerator of the z-value to bring the normal 
approximation closer to the binomial distribution. 

P2 (Control Group Proportion) 
Specify the value of , the control, baseline, or standard group’s proportion. The null hypothesis 
is that the two proportions, and , are both equal to this value.  

p2

p1 p2

Since these values are proportions, values must be between zero and one. 

You may enter a range of values such as 0.1,0.2,0.3 or 0.1 to 0.9 by 0.1. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha), often called 
the significance level. This is the probability of a false positive. A type-I error occurs when you 
reject the null hypothesis of equal proportions when in fact they are equal.  

Values must be between zero and one. Historically, the value of 0.05 was used for alpha. This 
means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  
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You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta or false 
negative). A type-II error occurs when you fail to reject the null hypothesis of equal proportions 
when in fact they are different. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
However, you should pick a value for beta that represents the risk of a type-II error you are 
willing to take. 

Power is defined as 1-beta. Power is equal to the probability of rejecting a false null hypothesis. 
Hence, specifying the beta error level also specifies the power level. For example, if you specify 
beta values of 0.05, 0.10, and 0.20, you are specifying power values of 0.95, 0.90, and 0.80, 
respectively.  

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. You may enter a range of 
values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

Use R 

When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio, and [Y] is the first integer greater than or equal to Y. For 
example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R. 

When used, N2 is calculated from N1 using the formula: N2= [R(N1)], where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 
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Data Tab (Proportion) 
This section documents options that are used when the parameterization is in terms of the values 
of the two proportions, P1 and P2. P1 is the value of the P1 at which the power is calculated. 

P1 (Group 1 Proportion |H1) 
This is the value of P1 under the alternative hypothesis, H1. The power calculations assume that 
this is the actual value of this proportion. 

You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1.  

Note that values must be between zero and one and cannot be equal to P2.  

Alternative Hypothesis (H1) 
This option specifies the type of alternative hypothesis. The null hypothesis is H0: P1 = P2. 

One-Sided (H1:P1<P2) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: P1<P2. 

One-Sided (H1:P1>P2) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: P1>P2. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: 
P1<>P2. Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 
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Data Tab (Difference) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P2. P1 is the value of the group 1 proportion at which the power is calculated. 
Once P2 and D1 are given, the value of P1 can be calculated. 

D1 (Difference|H1 = P1-P2) 
This option specifies the difference between the two proportions under the alternative hypothesis, 
H1. This difference is used with P2 to calculate the value of P1 using the formula: P1 = D1 + P2. 
Differences must be between -1 and 1. They cannot take on the values -1, 0, or 1. 

The power calculations assume that P1 is the actual value of the proportion in group 1 (the 
experimental or treatment group). 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

Alternative Hypothesis (H1) 
This option specifies the type of alternative hypothesis. The null hypothesis is H0: P1 = P2. 

One-Sided (H1:D1<0) refers to a one-sided test in which the alternative hypothesis is of the form 
H1: D1<0. 

One-Sided (H1:D1>0) refers to a one-sided test in which the alternative hypothesis is of the form 
H1: D1>0. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: D1<>0. 
Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 
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Data Tab (Ratio) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P2. P1 is the value of the group 1 proportion at which the power is calculated. Once P2 and 
R1 are given, the value of P1 can be calculated. 

R1 (Ratio|H1 = P2/P1) 
This option specifies the ratio between the two proportions, P1 and P2. This ratio is used with P2 
to calculate the value of P1 at which the power is calculated using the formula: P1=(R1) x (P2). 
The power calculations assume that P1 is the actual value of the proportion in group 1, which is 
the experimental, or treatment, group. 

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25. Ratios must greater 
than zero. They cannot take on the value of one. 

Alternative Hypothesis (H1) 
This option specifies the type of alternative hypothesis. The null hypothesis is H0: P1 = P2. 

One-Sided (H1:R1<1) refers to a one-sided test in which the alternative hypothesis is of the form 
H1: R1<1. 

One-Sided (H1:R1>1) refers to a one-sided test in which the alternative hypothesis is of the form 
H1: R1>1. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: R1<>1, 
Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 
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Data Tab (Odds Ratio) 
This section documents options that are used when the parameterization is in terms of the odds 
ratios. Note that the odds are defined as O2 = P2 / (1 – P2) and O1 = P1 / (1 – P1). Once P2 and 
OR1 are given, the value of P1 can be calculated.  

OR1 (Odds Ratio|H1 = O1/O2) 
This option specifies the odds ratio of the two proportions, P1 and P2. This odds ratio is used 
with P2 to calculate the value of P1. The power calculations assume that P1 is the actual value of 
the proportion in group 1, which is the experimental, or treatment, group. 

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25. Odds ratios must 
greater than zero. They cannot take on the value of one. 

Alternative Hypothesis (H1) 
This option specifies the type of alternative hypothesis. The null hypothesis is H0: P1 = P2. 

One-Sided (H1:OR1<1) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: P1<P2, H1: D1<0, H1: R1<1, or H1: OR1<1. 

One-Sided (H1: OR1>1) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: P1>P2, H1: D1>0, H1: R1>1, or H1: OR1>1. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: 
OR1<>1. Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 
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Options Tab 
The Options tab contains various limits and options. 

Zero Count Adjustment Method 
Zero cell counts often cause calculation problems. To compensate for this, a small value (called 
the Zero Count Adjustment Value) can be added either to all cells or to all cells with zero counts. 
This option specifies whether you want to use the adjustment and which type of adjustment you 
want to use. We recommend that you use the option Add to zero cells only. 

Zero cell values often do not occur in practice. However, since power calculations are based on 
total enumeration, they will occur in power and sample size estimation. 

Adding a small value is controversial, but can be necessary for computational considerations. 
Statisticians have recommended adding various fractions to zero counts. We have found that 
adding 0.0001 seems to work well.  

Zero Count Adjustment Value 
Zero cell counts cause many calculation problems when computing power or sample size. To 
compensate for this, a small value may be added either to all cells or to all zero cells. This value 
indicates the amount that is added. We have found that 0.0001 works well. 

Be warned that the value of the ratio and the odds ratio will be affected by the amount specified 
here! 

Maximum N1 or N2 Exact 
When either N1 or N2 is above this amount, power calculations are based on the normal 
approximation to the binomial. In this case, the actual value of alpha is not calculated. Currently, 
for three-gigahertz computers, a value near 200 is reasonable. As computers increase in speed, 
this number may be increased. 

Maximum Iterations 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. A value of at least 500 is recommended. 

Calculate Exact Test Results 
When checked, the power of Fisher’s Exact Test will be calculated for the comparative reports, 
even if the ‘Test Statistic’ option is not set to Fisher’s Exact Test. 

This option is provided because calculations for Fisher's Exact Test can become lengthy for large 
sample sizes. 
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Example1 - Finding Power 
A study is being designed to study the effectiveness of a new treatment. Historically, the standard 
treatment has enjoyed a 60% cure rate. Researchers want to compute the power of the two-sided 
z-test at group sample sizes ranging from 50 to 650 for detecting differences of 0.05 and 0.10 in 
the cure rate at the 0.05 significance level. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example1 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Test Statistic .....................................Z Test (Pooled) 
D1 .....................................................0.05 0.10 
P2......................................................0.6 
Alternative Hypothesis ......................Two-Sided 
N1 .....................................................50 to 650 by 100 
N2 .....................................................Use R 
R .......................................................1.0 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Options Tab 
Maximum N1 or N2 Exact .................400 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2=0. H1: P1-P2<>D1. Test Statistic: Z test with pooled variance  
 
 Sample Sample Prop|H1 Prop      
 Size Size Grp 1 or Grp 2 or Diff Diff    
 Grp 1 Grp 2 Trtmnt Control if H0 if H1 Target Actual  
Power N1 N2 P1 P2 D0 D1 Alpha Alpha Beta 
0.08173 50 50 0.65000 0.60000 0.00000 0.05000 0.05000 0.05239 0.91827 
0.14469 150 150 0.65000 0.60000 0.00000 0.05000 0.05000 0.05173 0.85531 
0.20852 250 250 0.65000 0.60000 0.00000 0.05000 0.05000 0.04981 0.79148 
0.27586 350 350 0.65000 0.60000 0.00000 0.05000 0.05000 0.04946 0.72414 
0.34064 450 450 0.65000 0.60000 0.00000 0.05000 0.05000  0.65936 
0.40234 550 550 0.65000 0.60000 0.00000 0.05000 0.05000  0.59766 
0.46095 650 650 0.65000 0.60000 0.00000 0.05000 0.05000  0.53905 
0.18042 50 50 0.70000 0.60000 0.00000 0.10000 0.05000 0.05239 0.81958 
0.43968 150 150 0.70000 0.60000 0.00000 0.10000 0.05000 0.05173 0.56032 
0.65180 250 250 0.70000 0.60000 0.00000 0.10000 0.05000 0.04981 0.34820 
0.79585 350 350 0.70000 0.60000 0.00000 0.10000 0.05000 0.04946 0.20415 
0.88326 450 450 0.70000 0.60000 0.00000 0.10000 0.05000  0.11674 
0.93640 550 550 0.70000 0.60000 0.00000 0.10000 0.05000  0.06360 
0.96636 650 650 0.70000 0.60000 0.00000 0.10000 0.05000  0.03364 
 
Note: exact results based on the binomial were only made when both N1 and N2 were less than 400. 
 
Report Definitions 
'Power' is the probability of rejecting a false null hypothesis. It should be close to one. 
'N1 and N2' are the sizes of the samples drawn from the corresponding populations. 
'P1' is the proportion for group one under H1. This is the treatment or experimental group. 
'P2' is the proportion for group two. This is the standard, reference, or control group 
'D1: Diff. if H1' is the difference P1 – P2 assuming the alternative hypothesis. 
'Target Alpha' is the probability of rejecting a true null hypothesis that was desired. 
'Actual Alpha' is the value of alpha that is actually achieved. 
'Beta' is the probability of accepting a false null hypothesis. 
 
Summary Statements 
Group sample sizes of 50 in group one and 50 in group two achieve 8% power to detect a 
difference between the group proportions of 0.05000. The proportion in group one (the treatment 
group) is assumed to be 0.60000 under the null hypothesis and 0.65000 under the alternative 
hypothesis. The proportion in group two (the control group) is 0.60000. The test statistic used 
is the two-sided Z test . The significance level of the test was targeted at 0.05000. The 
significance level actually achieved by this design is 0.05239. 
 

This report shows the values of each of the parameters, one scenario per row. Note that the actual 
alpha value is blank for sample sizes greater than 400, which was the limit set for exact 
computation. 

The values from this table are plotted in the chart below. 
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Plots Section 
 

Power vs N1 by D1 with P2=0.60 A=0.05 N2=N1
2-Sided Zp Test

0.05000

0.10000

P
ow

er

D
1

N1

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800

 
 

 



 Two Independent Proportions – Inequality  200-19 

Example2 - Finding the Sample Size 
A clinical trial is being designed to test effectiveness of new drug in reducing mortality. Suppose 
the current cure rate during the first year is 0.44. The sample size should be large enough to 
detect a difference in the cure rate of 0.10. Assuming the test statistic is a two-sided z-test with a 
significance level of 0.05, what sample size will be necessary to achieve 90% power? 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example2 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................N1 
Test Statistic......................................Z Test (Pooled) 
D1......................................................0.10 
P2......................................................0.44 
Alternative Hypothesis ......................Two-Sided 
N1......................................................Ignored since this is the search parameter. 
N2......................................................Use R 
R........................................................1.0 
Alpha .................................................0.05 
Beta...................................................0.10 
Options Tab 
Maximum N1 or N2 Exact .................100 (Set low for a rapid search.) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2=0. H1: P1-P2<>D1. Test Statistic: Z test with pooled variance  
 
 Sample Sample Prop|H1 Prop      
 Size Size Grp 1 or Grp 2 or Diff Diff    
 Grp 1 Grp 2 Trtmnt Control if H0 if H1 Target Actual  
Power N1 N2 P1 P2 D0 D1 Alpha Alpha Beta 
0.90050 524 524 0.54000 0.44000 0.00000 0.10000 0.05000  0.09950 
 

The required sample size is 524 per group.  

These results use the large sample approximation. As an exercise, reset the Maximum N1 or N2 
Exact parameter to 600 so that exact results can be calculated. When this is done, the sample size 
is 521—not much of a difference from the 524 that was found by approximate methods. The 
actual alpha is 0.04930 which is very close to the target of 0.05. 
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Example3 – Comparing the Power of 
Several Test Statistics 
Researchers want to determine which of the eight test statistics to adopt using the comparative 
reports and charts that PASS produces. They want to detect a difference of 0.20 when the 
response rate of the control group is 0.30. The significance level is 0.05. They want to study 
sample sizes from 10 to 100. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example3 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Test Statistic .....................................Z Test (Pooled) 
D1 .....................................................0.2 
P2......................................................0.3 
Alternative Hypothesis ......................Two-Sided 
N1 .....................................................10 to 100 by 10 
N2 .....................................................Use R 
R .......................................................1.0 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Options Tab 
Maximum N1 or N2 Exact .................400 
Calculate Exact Test Results ............Checked 
Reports Tab 
Show Numeric Report.......................Not checked 
Show Comparative Reports ..............Checked 
Show Definitions ...............................Not checked 
Show Plots ........................................Not checked 
Show Comparative Plots...................Checked 
Summary Statement Rows ...............0 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Power Comparison of Tests Based on the Difference: P1 – P2 
H0: P1-P2=0. H1: P1-P2<>D1.  
    Exact Z(P) Z(UnP) Z(P) Z(UnP) Mantel Like. T  
   Target Test Test Test cc Test cc Test Hnzl. Ratio Test  
N1/N2 P1 P2 Alpha Power Power Power Power Power Power Power Power  
10/10 0.5000 0.3000 0.0500 0.0547 0.1275 0.2215 0.0547 0.1215 0.1275 0.1629 0.1275  
20/20 0.5000 0.3000 0.0500 0.1632 0.2452 0.3167 0.1419 0.2067 0.2452 0.2452 0.2452  
30/30 0.5000 0.3000 0.0500 0.2594 0.3511 0.3604 0.2594 0.2708 0.3511 0.3604 0.3511  
40/40 0.5000 0.3000 0.0500 0.3683 0.4581 0.4612 0.3683 0.3728 0.4581 0.4612 0.4581  
50/50 0.5000 0.3000 0.0500 0.4635 0.5455 0.5481 0.4635 0.4671 0.5455 0.5455 0.5455  
60/60 0.5000 0.3000 0.0500 0.5424 0.6177 0.6214 0.5424 0.5501 0.6157 0.6177 0.6157  
70/70 0.5000 0.3000 0.0500 0.6138 0.6771 0.6815 0.6101 0.6195 0.6771 0.6771 0.6771  
80/80 0.5000 0.3000 0.0500 0.6773 0.7310 0.7435 0.6773 0.6917 0.7310 0.7368 0.7310  
90/90 0.5000 0.3000 0.0500 0.7485 0.7930 0.8036 0.7485 0.7589 0.7882 0.7969 0.7930  
100/100 0.5000 0.3000 0.0500 0.7924 0.8320 0.8328 0.7924 0.7942 0.8316 0.8320 0.8316  
 
Actual Alpha Comparison of Tests Based on the Difference: P1 - P2 
H0: P1-P2=0. H1: P1-P2=D1<>0. 
    Exact Z(P) Z(UnP) Z(P) Z(UnP) Mantel Like. T  
   Target Test Test Test cc Test cc Test Hnzl. Ratio Test  
N1/N2 P1 P2 Alpha Alpha Alpha Alpha Alpha Alpha Alpha Alpha Alpha  
10/10 0.5000 0.3000 0.0500 0.0119 0.0371 0.0949 0.0119 0.0258 0.0371 0.0771 0.0371  
20/20 0.5000 0.3000 0.0500 0.0248 0.0533 0.0686 0.0214 0.0267 0.0533 0.0534 0.0533  
30/30 0.5000 0.3000 0.0500 0.0261 0.0487 0.0583 0.0261 0.0321 0.0487 0.0583 0.0487  
40/40 0.5000 0.3000 0.0500 0.0282 0.0484 0.0541 0.0276 0.0317 0.0484 0.0541 0.0484  
50/50 0.5000 0.3000 0.0500 0.0307 0.0498 0.0554 0.0307 0.0334 0.0498 0.0498 0.0498  
60/60 0.5000 0.3000 0.0500 0.0308 0.0525 0.0552 0.0308 0.0353 0.0483 0.0525 0.0491  
70/70 0.5000 0.3000 0.0500 0.0330 0.0516 0.0549 0.0318 0.0348 0.0516 0.0516 0.0516  
80/80 0.5000 0.3000 0.0500 0.0331 0.0513 0.0518 0.0331 0.0350 0.0493 0.0516 0.0493  
90/90 0.5000 0.3000 0.0500 0.0344 0.0497 0.0525 0.0344 0.0365 0.0497 0.0500 0.0497  
100/100 0.5000 0.3000 0.0500 0.0348 0.0510 0.0529 0.0348 0.0373 0.0494 0.0517 0.0494  

 

Power vs N1 by Test with D1=0.20 P2=0.30 A=0.05
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It is interesting to note that the power of Fisher’s Exact Test and the z-test with continuity 
correction are consistently lower than the other tests. This occurs because the actual alpha 
achieved by these tests is much lower than that of the other tests. An interesting finding of this 
short study was that the regular t-test performed better than the more popular z-test.  
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Example4 - Validation using Fleiss with 
Equal Sample Sizes 
Fleiss (2003), page 74, presents a sample size study in which P1 = 0.7, P2 = 0.6, alpha = 0.01, 
and beta = 0.05. Assuming two-sided testing and equal sample allocation, Fleiss finds the 
necessary sample size to be 827 in each group. The calculations of Fleiss (2003) included an 
adjustment for continuity correction. This continuity correction is not necessary here when exact 
calculations are made. However, when the sample size is large enough so that approximate 
calculations are used, the continuity correction must be applied to obtain the same results. This is 
done by setting the Test Statistic to ‘Z Test C.C.’. Note that this adjustment is used here to keep 
our results identical to those of Fleiss (2003). In practice, this adjustment is not recommended 
because it reduces the power and the actual alpha of the test procedure.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example4 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................N1 
Test Statistic .....................................Z Test C.C. (Pooled) 
D1 .....................................................0.10 
P2......................................................0.60 
Alternative Hypothesis ......................Two-Sided 
N1 ..................................................... Ignored since this is the search parameter. 
N2 .....................................................Use R 
R .......................................................1.0 
Alpha.................................................0.01 
Beta...................................................0.05 
Options Tab 
Maximum N1 or N2 Exact .................100 (Set low for a rapid search.) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2=0. H1: P1-P2<>D1. Test Statistic: Z test with continuity correction and pooled variance 
 
 Sample Sample Prop|H1 Prop      
 Size Size Grp 1 or Grp 2 or Diff Diff    
 Grp 1 Grp 2 Trtmnt Control if H0 if H1 Target Actual  
Power N1 N2 P1 P2 D0 D1 Alpha Alpha Beta 
0.95025 827 827 0.70000 0.60000 0.00000 0.10000 0.01000  0.04975 
 

PASS found the required sample size to be 827 which corresponds to Fleiss.  
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Example5 - Validation using Fleiss with 
Unequal Sample Sizes 
Fleiss (2003), pages 76-77, presents a sample size study in which P1 = 0.25, P2 = 0.40, alpha = 
0.01, and beta = 0.05. Assuming two-sided testing with half as many in the second group as the 
first, Fleiss finds the sample sizes to be 530 in the first group and 265 in the second. 

Note that half as many in the second group is achieved by setting R to 0.5. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example5 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................N1 
Test Statistic......................................Z Test C.C. (Pooled) 
D1......................................................-0.15 
P2......................................................0.40 
Alternative Hypothesis ......................Two-Sided 
N1......................................................Ignored since this is the search parameter. 
N2......................................................Use R 
R........................................................0.5 
Alpha .................................................0.01 
Beta...................................................0.05 
Options Tab 
Maximum N1 or N2 Exact .................100 (Set low for a rapid search.) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P2 - P1 
H0: P2-P1=0. H1: P2-P1<>D1. Test Statistic: Z test with continuity correction and pooled variance 
 
 Sample Sample Prop|H1 Prop      
 Size Size Grp 1 or Grp 2 or Diff Diff    
 Grp 1 Grp 2 Trtmnt Control if H0 if H1 Target Actual  
Power N1 N2 P1 P2 D0 D1 Alpha Alpha Beta 
0.95066 531 266 0.25000 0.40000 0.00000 -0.15000 0.01000  0.04934  

PASS found the required sample sizes to be 531 and 266 which nearly corresponds to Fleiss’s 
results. Fleiss computed 530 instead of 531. 531 is correct because the power for 530 is slightly 
less than the required 0.95. 
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Example6 - Determining the Power after 
Completing an Experiment 
A study has just been completed aimed at determining the effectiveness of a new treatment for 
cancer.  Because of the cost of administering the new treatment, they would adopt the new 
treatment only if the difference between the proportion cured by the new treatment and that cured 
by the standard treatment is at least 0.10.  The researchers enrolled 200 cancer patients in the 
study (100 for each treatment) and found that 51% were cured by the standard treatment, while 
62% were cured by the new treatment.  These results, however, showed no statistically significant 
difference based on the pooled z-test with continuity correction and alpha = 0.05.  Therefore, the 
researchers want to compute the power of this test for detecting a difference of 0.10 for standard 
treatment proportions ranging from 0.40 to 0.60. 

Note that the power was not exclusively computed at the observed sample proportion for the 
standard treatment group, 0.51.  It is more informative to compute the power for a range of likely 
values suggested by historical evidence.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example6 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Test Statistic .....................................Z Test C.C. (Pooled) 
D1 .....................................................0.10 
P2......................................................0.40 to 0.60 by 0.04 
Alternative Hypothesis ......................Two-Sided 
N1 .....................................................100 
N2 .....................................................Use R 
R .......................................................1.0 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Options Tab 
Maximum N1 or N2 Exact .................400 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Tests Based on the Difference: P1 - P2 
H0: P1-P2=0. H1: P1-P2=D1<>0. Test Statistic: Z test with continuity correction and pooled variance 
 
 Sample Sample Prop|H1 Prop      
 Size Size Grp 1 or Grp 2 or Diff Diff    
 Grp 1 Grp 2 Trtmnt Control if H0 if H1 Target Actual  
Power N1 N2 P1 P2 D0 D1 Alpha Alpha Beta 
0.26090 100 100 0.50000 0.40000 0.00000 0.10000 0.05000 0.03628 0.73910 
0.26194 100 100 0.54000 0.44000 0.00000 0.10000 0.05000 0.03861 0.73806 
0.26159 100 100 0.58000 0.48000 0.00000 0.10000 0.05000 0.03988 0.73841 
0.25988 100 100 0.62000 0.52000 0.00000 0.10000 0.05000 0.03988 0.74012 
0.25785 100 100 0.66000 0.56000 0.00000 0.10000 0.05000 0.03861 0.74215 
0.26266 100 100 0.70000 0.60000 0.00000 0.10000 0.05000 0.03628 0.73734 
 
 

This report shows the values of each of the parameters, one scenario per row.  The power over the 
entire range of the likely standard treatment proportions is relatively constant at 0.26. 

The values from this table are plotted in the chart below. 

Plots Section 
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It is evident from these results that the test performed by the researchers had very low power to 
detect a difference of 0.10 with the sample size used.  The power is only 0.26 for a large range of 
standard treatment proportions.  Note that the fluctuation in power is related to the value of alpha. 
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Example7 - Finding the Sample Size 
using Ratios 
Researchers would like to design an experiment to compare the infection rate of a rare disease 
among two populations.  More specifically, they would like to determine how many subjects they 
need to sample from each population to determine if the disease rate in population 1 is at least 
three times that of population 2 with 80% power.  Suppose that the researchers are confident from 
previous studies that the infection rate in population 2 is 0.025.  The researchers plan to use the 
likelihood ratio test and alpha = 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the ratio parameterization. You can make these changes directly 
on your screen or you can load the template entitled Example7 by clicking the Template tab and 
loading this template. 

Option Value
Data Tab 
Find ...................................................N1 
Test Statistic .....................................Likelihood Ratio Test 
R1 .....................................................3 
P2......................................................0.025 
Alternative Hypothesis ......................Two-Sided 
N1 ..................................................... Ignored since this is the Find setting 
N2 .....................................................Use R 
R .......................................................1.0 
Alpha.................................................0.05 
Beta...................................................0.20 
Options Tab 
Maximum N1 or N2 Exact .................100 
 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Tests Based on the Ratio: P1 / P2 
H0: P1/P2=1. H1: P1/P2=R1<>1. Test Statistic: Likelihood Ratio test 
 
 Sample Sample Prop|H1 Prop      
 Size Size Grp 1 or Grp 2 or Ratio Ratio    
 Grp 1 Grp 2 Trtmnt Control if H0 if H1 Target Actual  
Power N1 N2 P1 P2 R0 R1 Alpha Alpha Beta 
0.8012 298 298 0.0750 0.0250 1.000 3.000 0.0500  0.1988 

 
The researchers must sample 298 individuals from each population to achieve 80% power to 
detect a ratio of 3.0. 
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Chapter 205  

Two Independent 
Proportions – 
Offset 
Introduction 
This module computes power and sample size for hypothesis tests of the difference, ratio, or odds 
ratio of two independent proportions. The word 'offset' in the chapter title indicates that the 
difference being tested in the null hypothesis is not zero (or that the ratio is not one). The non-
offset case is available in another procedure. This procedure compares the power achieved by 
each of several test statistics.   

The power calculations assume that independent, random samples are drawn from two 
populations.  

Four Procedures Documented Here 
There are four procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, ratios of proportions, and odds ratios. Each 
of these options is listed separately on the menus.  
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Technical Details  
Suppose you have two populations from which dichotomous (binary) responses will be recorded. 
The probability (or risk) of obtaining the event of interest in population 1 (the treatment group) is 

 and in population 2 (the control group) is . The corresponding failure proportions are given 
by  and .  
p1 p2

q p1 11= − q p2 21= −

An assumption is made that the responses from each group follow a binomial distribution. This 
means that the event probability, , is the same for all subjects within the group and that the 
response from one subject is independent of that of any other subject. 

pi

Random samples of m and n individuals are obtained from these two populations. The data from 
these samples can be displayed in a 2-by-2 contingency table as follows 

Group Success Failure Total 
Treatment a c m 
Control b d n 
Total s f N 
 
The following alternative notation is sometimes used. 
 
Group Success Failure Total 
Treatment    x11 x12 n1

Control    x21 x22 n2

Total   N m1 m2

The binomial proportions,  and , are estimated from these data using the formulae p1 p2

$p a
m

x
n1
11

1

= =  and $p b
n

x
n2

21

2

= =  
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Comparing Two Proportions  
When analyzing studies such as this, you usually want to compare the two binomial 
probabilities, and . The most direct method of comparing these quantities is to calculate their 
difference or their ratio. If the binomial probability is expressed in terms of odds rather than 
probability, another measure is the odds ratio. Mathematically, these comparison parameters are 

p1 p2

Parameter Computation

Difference  δ = −p p1 2  

Risk Ratio φ = p p1 2/  

Odds Ratio 
( )
( )

ψ =
−
−

=
p p
p p

p q
p q

1 1

2 2

1 2

2 1

1
1

/
/  

The choice of which of these measures is used might seem arbitrary, but it is not. Not only will 
the interpretation be different, but, for small sample sizes, the powers of tests based on different 
parameters will be different. The non-null case is commonly used in equivalence and non-
inferiority testing. 

Difference 
The (risk) difference, δ = −p p1 2 ,is perhaps the most direct method of comparison between the 
two event probabilities. This parameter is easy to interpret and communicate. It gives the absolute 
impact of the treatment. However, there are subtle difficulties that can arise with its interpretation.  

One interpretation difficulty occurs when the event of interest is rare. If a difference of 0.001 
were reported for an event with a baseline probability of 0.40, we would probably dismiss this as 
being of little importance. That is, there usually little interest in a treatment that decreases the 
probability from 0.400 to 0.399. However, if the baseline probability of a disease was 0.002 and 
0.001 was the decrease in the disease probability, this would represent a reduction of 50%. Thus 
we see that interpretation depends on the baseline probability of the event. 

A similar situation occurs when the amount of possible difference is considered. Consider two 
events, one with a baseline event rate of 0.40 and the other with a rate of 0.02. What is the 
maximum decrease that can occur? Obviously, the first event rate can be decreased by an absolute 
amount of 0.40, while the second can only be decreased by a maximum of 0.02. 

So, although creating the simple difference is a useful method of comparison, care must be taken 
that it is appropriate for the situation.  
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Ratio 
The (risk) ratio, φ = p p1 / 2 , gives the relative change in the disease risk due to the application of 
the treatment. This parameter is also direct and easy to interpret. To compare this with the 
difference, consider a treatment that reduces the risk of disease from 0.1437 to 0.0793. One 
should consider which single number is more enlightening, the fact that the absolute risk of 
disease has been decreased by 0.0644, or the fact that risk of disease in the treatment group is 
only 55.18% of that in the control group. In many cases, the percentage (risk ratio) communicates 
the impact of the treatment better than the absolute change.  

Perhaps the biggest drawback to this parameter is that it cannot be calculated in one of the most 
common experimental designs, the case-control study. Another drawback is that the odds ratio 
occurs directly in the likelihood equations and as a parameter in logistic regression.   

Odds Ratio 
Chances are usually communicated as long-term proportions or probabilities. In betting, chances 
are often given as odds. For example, the odds of a horse winning a race might be set at 10-to-1 
or 3-to-2. Odds can easily be translated into probability. An odds of 3-to-2 means that the event is 
expected to occur three out of five times. That is, an odds of 3-to-2 (1.5) translates to a 
probability of winning of 0.60. 

The odds of an event are calculated by dividing the event risk by the non-event risk. Thus, in our 
case of two populations, the odds are 

o p
p1

1

11
=

−
 and o p

p2
2

21
=

−
 

For example, if  is 0.60, the odds are 0.60/0.40 = 1.5. Rather than represent the odds as a 
decimal amount, it is re-scaled into whole numbers. Instead of saying the odds are 1.5-to-1, we 
say they are 3-to-2. 

p1

Another way to compare proportions is to compute the ratio of their odds. The odds ratio of two 
events is 

( )
( )

ψ = =
−
−

=
o
o

p p
p p

p q
p q

1

2

1 1

2 2

1 2

2 1

1
1

/
/

 

Although the odds ratio is more complicated to interpret than the risk ratio, it is often the 
parameter of choice. One reason for this is the fact that the odds ratio can be accurately estimated 
from case-control studies, while the risk ratio cannot. Also, the odds ratio is the basis of logistic 
regression (used to study the influence of risk factors). Furthermore, the odds ratio is the natural 
parameter in the conditional likelihood of the two-group, binomial-response design. Finally, 
when the baseline event rates are rare, the odds ratio provides a close approximation to the risk 
ratio since, in this case, 1 , so that 11− ≈ −p 2p

( )
( )

ψ φ= =
−
−

≈ =
o
o

p p
p p

p
p

1

2

1 1

2 2

1

2

1
1

/
/
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Hypothesis Tests 
Although several statistical tests are available for testing the inequality of two proportions, only a 
few can be generalized to the non-null case. No single test is the champion in every situation, so 
one should compare the powers of the various tests to determine which to use.  

Difference  
The (risk) difference, δ = −p p1 2 , is perhaps the most direct method for comparing two 
proportions. Three sets of statistical hypotheses can be formulated: 

1. H p p0 1 2 0: − = δ  versus H p p1 1 2 0: − ≠ δ ; this is often called the two-tailed test. 
2. H p p0 1 2 0: − ≤ δ  versus H p p1 1 2 0: − > δ ; this is often called the upper-tailed test. 
3. H p p0 1 2 0: − ≥ δ  versus H p p1 1 2 0: − < δ ; this is often called the lower-tailed test. 

Ratio  
The (risk) ratio, φ = p p1 / 2 , is often preferred as a comparison parameter because it expresses 
the difference as a percentage rather than an amount. Three sets of statistical hypotheses can be 
formulated: 

1. H p p0 1 2 0: / = φ  versus H p p1 1 2 0: / ≠ φ ; this is often called the two-tailed test. 
2. H p p0 1 2 0: / ≤ φ  versus H p p1 1 2 0: / > φ ; this is often called the upper-tailed test. 
3. H p p0 1 2 0: / ≥ φ  versus H p p1 1 2 0: / < φ ; this is often called the lower-tailed test. 

Odds Ratio  
The odds ratio, ( )[ ] ( )[ ]ψ = − −p p p p1 1 21 1/ / / 2

0

, is sometimes used as the comparison because 
of its statistical properties and because some convenient experimental designs only allow it to be 
estimated. Three sets of statistical hypotheses can be formulated: 

1. H0:ψ ψ=  versus H1: 0ψ ψ≠ ; this is often called the two-tailed test. 
2. H0: 0ψ ψ≤  versus H1: 0ψ ψ> ; this is often called the upper-tailed test. 
3. H0: 0ψ ψ≥  versus H1: 0ψ ψ< ; this is often called the lower-tailed test. 
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Power Calculation 
The power for a test statistic that is based on the normal approximation can be computed exactly 
using two binomial distributions. The following steps are taken to compute the power of such a 
test.  
1.  Find the critical value (or values in the case of a two-sided test) using the standard normal 

distribution. The critical value, , is that value of z that leaves exactly the target value of 
alpha in the appropriate tail of the normal distribution. For example, for an upper-tailed test 
with a target alpha of 0.05, the critical value is 1.645.  

zcritical

2.  Compute the value of the test statistic, , for every combination of  and . Note that  
ranges from 0 to , and  ranges from 0 to . A small value (around 0.0001) can be 
added to the zero cell counts to avoid numerical problems that occur when the cell value is 
zero. 

zt x11 x21 x11

n1 x21 n2

3. If z z , the combination is in the rejection region. Call all combinations of  and  
that lead to a rejection the set A. 

t critical> x11 x21

4. Compute the power for given values of  and  as p1 p2

1 1

11
1 1

2

21
2 2

11 1 11 21 2 21− =
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟− −∑β

n
x

p q
n
x

p qx n x x n x

A

 

5. Compute the actual value of alpha achieved by the design by substituting  for  to obtain  p2 p1

α* =
⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟ + + − −∑

n
x

n
x

p qx x n n x x

A

1

11

2

21
2 2

11 21 1 2 11 21  

Asymptotic Approximations 
When the values of  and  are large (say over 200), these formulas often take a long time to 
evaluate. In this case, a large sample approximation is used. The large sample approximation is 
made by replacing the values of  and  in the z values with the corresponding values of  
and  under the alternative hypothesis and then computing the results based on the normal 
distribution. Note that in large samples, the Farrington and Manning statistic is substituted for the 
Gart and Nam statistic. Also, for large samples, the results for the odds ratio have not (to our 
knowledge) been published. In this case, we substitute the calculations based on the ratio. 

n1 n2

$p1 $p2 p1

p2
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Test Statistics 
Several test statistics have been proposed for testing whether the difference, ratio, or odds ratio 
are different from a specified value. The main difference among the several test statistics is in the 
formula used to compute the standard error used in the denominator. These tests are based on the 
following z-test  

z p p c
t =

− − −$ $

$
1 2 0δ

σ
 

The constant, c, represents a continuity correction that is applied in some cases. When the 
continuity correction is not used, c is zero. In power calculations, the values of  and  are not 
known. The corresponding values of  and  under the alternative hypothesis are reasonable 
substitutes. 

$p1 $p2

p1 p2

Following is a list of the test statistics available in PASS. The availability of several test statistics 
begs the question of which test statistic you should use. The answer is simple: you should use the 
test statistic that you will use to analyze your data. You may choose a method because it is a 
standard in your industry, because it seems to have better statistical properties, or because your 
statistical package calculates it. Whatever your reasons for selecting a certain test statistic, you 
should use the same test statistic during power or sample calculations. 

Z Test (Pooled) 
This test was first proposed by Karl Pearson in 1900. Although this test is usually expressed 
directly as a chi-square statistic, it is expressed here as a z statistic so that it can be more easily 
used for one-sided hypothesis testing. The proportions are pooled (averaged) in computing the 
standard error. The formula for the test statistic is  

z p p
t =

− −$ $

$
1 2

1

0δ
σ

 

where  

( )$σ1
1 2

1 1 1
= − +

⎛
⎝
⎜

⎞
⎠
⎟p p

n n
 

p n p n p
n n

=
+
+

1 1 2 2

1 2

$ $
 

Z Test (Unpooled) 
This test statistic does not pool the two proportions in computing the standard error.  

z p p
t =

− −$ $

$
1 2

2

0δ
σ

 

where  

( ) ( )
$

$ $ $ $
σ2

1 1

1

2 2

2

1 1
=

−
+

−p p
n

p p
n
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Z Test with Continuity Correction (Pooled)  
This test is the same as Z Test (Pooled), except that a continuity correction is used. Recall that in 
the null case, the continuity correction makes the results closer to those of Fisher’s Exact test. 

z
p p F

n n
t =

− − + +
⎛
⎝
⎜

⎞
⎠
⎟$ $

$

1 2 0
1 2

1

2
1 1δ

σ
 

( )$σ1
1 2

1 1 1
= − +

⎛
⎝
⎜

⎞
⎠
⎟p p

n n
 

p n p n p
n n

=
+
+

1 1 2 2

1 2

$ $
 

where F is -1 for lower-tailed, 1 for upper-tailed, and both -1 and 1 for two-sided hypotheses. 

Z Test with Continuity Correction (Unpooled)  
This test is the same as the Z Test (Unpooled), except that a continuity correction is used. Recall 
that in the null case, the continuity correction makes the results closer to those of Fisher’s Exact 
test. 

z
p p F

n n
t =

− − − +
⎛
⎝
⎜

⎞
⎠
⎟$ $

$

1 2 0
1 2

2

2
1 1δ

σ
 

( ) ( )
$

$ $ $ $
σ2

1 1

1

2 2

2

1 1
=

−
+

−p p
n

p p
n

 

where F is -1 for lower-tailed, 1 for upper-tailed, and both -1 and 1 for two-sided hypotheses. 

T-Test of Difference 
Based on a detailed, comparative study of the behavior of several tests, D’Agostino (1988) and 
Upton (1982) proposed using the usual two-sample t-test for testing whether the two proportions 
are equal. One substitutes a ‘1’ for a success and a ‘0’ for a failure in the usual, two-sample t-test 
formula.  
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Miettinen and Nurminen’s Likelihood Score Test of the 
Difference 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the difference is equal 
to a specified, non-zero, value,δ0 . The regular MLE’s,  and , are used in the numerator of 
the score statistic while MLE’s  and 

$p1 $p2
~p1

~p2 , constrained so that ~ ~p p1 2 0− = δ , are used in the 
denominator. A correction factor of N/(N-1) is applied to make the variance estimate less biased. 
The significance level of the test statistic is based on the asymptotic normality of the score 
statistic.  

The formula for computing this test statistic is 

z p p
MND

MND

=
− −$ $

$
1 2 0δ
σ

 

where 

$
~ ~ ~ ~

σ MND
p q
n

p q
n

N
N

= +
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

1 1

1

2 2

2 1
 

~ ~p p1 2 0= +δ  

( )~ cosp B A L
L2
2

3

2
3

= −  

A C
B

= + ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣⎢
⎤

⎦⎥
−1

3
1

3π cos  

( )B C L
L

L
L

= −sign 2
2

3

1

39 3
 

C L
L

L L
L

L
L

= − +2
3

3
3

1 2

3
2

0

327 6 2
 

( )L x0 21 0 01= −δ δ  

[ ]L N N x M1 2 0 21 02 1= − − +δ δ  

( )L N N N M2 2 0 1= + − −δ  
L N3 =  
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Miettinen and Nurminen’s Likelihood Score Test of the Ratio 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the ratio is equal to a 
specified value,φ0 . The regular MLE’s,  and , are used in the numerator of the score 
statistic while MLE’s  and 

$p1 $p2
~p1

~p2 , constrained so that ~ / ~p p1 2 0= φ , are used in the denominator. 
A correction factor of N/(N-1) is applied to make the variance estimate less biased. The 
significance level of the test statistic is based on the asymptotic normality of the score statistic.  

The formula for computing the test statistic is 

 z p p

p q
n

p q
n

N
N

MNR =
−

+
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

$ / $
~ ~ ~ ~

1 2 0

1 1

1
0
2 2 2

2 1

φ

φ

  

where 
~ ~p p1 2 0= φ  

~p B B AC
A2

2 4
2

=
− − −

 

A N= φ0  

[ ]B N x N x= − + + +1 0 11 2 21 0φ φ  
C M= 1  

Miettinen and Nurminen’s Likelihood Score Test of the Odds 
Ratio 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the odds ratio is equal 
to a specified value,ψ 0 . Because the approach they used with the difference and ratio does not 
easily extend to the odds ratio, they used a score statistic approach for the odds ratio. The regular 
MLE’s are  and . The constrained MLE’s are  and $p1 $p2

~p1
~p2 . These estimates are constrained 

so that ~ψ ψ= 0 . A correction factor of N/(N-1) is applied to make the variance estimate less 
biased. The significance level of the test statistic is based on the asymptotic normality of the score 
statistic.  

The formula for computing the test statistic is 

 

( ) ( )
z

p p
p q

p p
p q

N p q N p q
N

N

MNO =

−
−

−

+
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

$ ~
~ ~

$ ~
~ ~

~ ~ ~ ~

1 1

1 1

2 2

2 2

2 1 1 2 2 2

1 1
1

  

where 

( )
~ ~

~p p
p1

2 0

2 01 1
=

+ −
ψ
ψ ,

~p B B AC
A2

2 4
2

=
− + −

, 

( )A N= −2 0 1ψ , ( )B N N M= + − −1 0 2 1 0 1ψ ψ , C M= − 1  
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Farrington and Manning’s Likelihood Score Test of the 
Difference 
Farrington and Manning (1990) proposed a test statistic for testing whether the difference is equal 
to a specified value,δ0 . The regular MLE’s,  and , are used in the numerator of the score 
statistic while MLE’s  and 

$p1 $p2
~p1

~p2 , constrained so that ~ ~p p1 2 0− = δ , are used in the denominator. 
The significance level of the test statistic is based on the asymptotic normality of the score 
statistic.  

The formula for computing the test statistic is 

 z p p

p q
n

p q
n

FMD =
− −

+
⎛
⎝
⎜

⎞
⎠
⎟

$ $

~ ~ ~ ~
1 2 0

1 1

1

2 2

2

δ   

where the estimates,  and ~p1
~p2 , are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 

Farrington and Manning’s Likelihood Score Test of the Ratio 
Farrington and Manning (1990) proposed a test statistic for testing whether the ratio is equal to a 
specified value,φ0 . The regular MLE’s,  and , are used in the numerator of the score 
statistic while MLE’s  and 

$p1 $p2
~p1

~p2 , constrained so that ~ / ~p p1 2 0= φ , are used in the denominator. 
A correction factor of N/(N-1) is applied to increase the variance estimate. The significance level 
of the test statistic is based on the asymptotic normality of the score statistic.  

The formula for computing the test statistic is 

 z p p

p q
n

p q
n

FMR =
−

+
⎛
⎝
⎜

⎞
⎠
⎟

$ / $
~ ~ ~ ~

1 2 0

1 1

1
0
2 2 2

2

φ

φ

  

where the estimates,  and ~p1
~p2 , are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 

Farrington and Manning’s Likelihood Score Test of the Odds 
Ratio 
Farrington and Manning (1990) indicate that the Miettinen and Nurminen statistic may be 
modified by removing the factor N/(N-1). 

The formula for computing this test statistic is 

 

( ) ( )
z

p p
p q

p p
p q

N p q N p q
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−
−

−

+
⎛
⎝
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⎞
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⎟
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2 1 1 2 2 2

1 1
  

where the estimates,  and ~p1
~p2 , are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 
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Gart and Nam’s Likelihood Score Test of the Difference 
Gart and Nam (1990), page 638, proposed a modification to the Farrington and Manning (1988) 
difference test that corrected for skewness. Let ( )zFMD δ  stand for the Farrington and Manning 
difference test statistic described above. The skewness corrected test statistic, , is the 
appropriate solution to the quadratic equation 

zGND

 ( ) ( ) ( )( )− + − + +~ ~γ δz z zGND GND FMD
2 1 0=γ   

where 

( ) ( ) ( )~
~ ~ ~ ~ ~ ~ ~ ~ ~/

γ
δ
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−
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⎝
⎜

⎞
⎠
⎟

V p q q p
n

p q q p
n

3 2
1 1 1 1

1
2

2 2 2 2

2
26

 

Gart and Nam’s Likelihood Score Test of the Ratio 
Gart and Nam (1988), page 329, proposed a modification to the Farrington and Manning (1988) 
ratio test that corrected for skewness. Let ( )zFMR φ  stand for the Farrington and Manning ratio 
test statistic described above. The skewness corrected test statistic, , is the appropriate 
solution to the quadratic equation 

zGNR

 ( ) ( ) ( )( )− + − + +~ ~ϕ φz z zGNR GNR FMR
2 1 0=ϕ   
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter entitled Procedure Templates. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and beta. This chapter covers four procedures, each of which has different options. 
This section documents options that are common to all four procedures. Later, unique options for 
each procedure will be documented.   

Find 
This option specifies the parameter to be solved for using the other parameters. The parameters 
that may be selected are P1.1, Alpha, Beta, N1, and N2. Under most situations, you will select 
either Beta or N1. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level. 

Select Beta when you want to calculate the power of an experiment.  

Test Statistic 
Specify which test statistic is used in searching and reporting. 

Note that C.C. is an abbreviation for Continuity Correction. This refers to the adding or 
subtracting 1/(2n) to (or from) the numerator of the z-value to bring the normal approximation 
closer to the binomial distribution. 

P2 (Control Group Proportion) 
Specify the value of P2, the control, baseline, or standard group’s proportion. The null hypothesis 
is that the two proportions differ by a specified amount. Since P2 is a proportion, these values 
must be between zero and one. 

You may enter a range of values such as 0.1,0.2,0.3 or 0.1 to 0.9 by 0.1. 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. You may enter a range of 
values such as 10 to 100 by 10. 
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N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

Use R 

When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio, and [Y] is the first integer greater than or equal to Y. For 
example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2= [R(N1)], where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis that the proportions differ by a specified amount 
when in fact they do differ by that amount.  

Values must be between zero and one. Historically, the value of 0.05 was used for alpha. This 
means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01,0.05,0.10 or 0.01 to 0.10 by 0.01. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of equal proportions when in fact they are 
different. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
However, you should pick a value for beta that represents the risk of a type-II error you are 
willing to take. 

Power is defined as 1-beta. Power is equal to the probability of rejecting a false null hypothesis. 
Hence, specifying the beta error level also specifies the power level. For example, if you specify 
beta values of 0.05, 0.10, and 0.20, you are specifying power values of 0.95, 0.90, and 0.80, 
respectively.  
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Data Tab (Proportion) 
This section documents options that are used when the parameterization is in terms of the values 
of the two proportions, P1 and P2. P1.0 is the value of the P1 assumed by the null hypothesis and 
P1.1 is the value of P1 at which the power is calculated. 

P1.0 (Group 1 Proportion|H0) 
This option specifies the value of the group 1 proportion given the null hypothesis. The power 
calculations assume that P1.0 is the value of the P1 under the null hypothesis. In this non-null 
case, the value of P1.0 is not equal to P2 as it is in the null case. 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

Proportions must be between zero and one. They cannot take on the values zero or one.  

P1.1 (Group 1 Proportion|H1) 
This is the value of P1 under the alternative hypothesis. It is written P1.1. The power calculations 
assume that this is the actual value of this proportion. 

You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1.  

Note that values must be between zero and one.  

Alternative Hypothesis (H1) 
This option specifies whether a one-sided or two-sided hypothesis is analyzed.  

One-Sided (H1: P1<P2) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: P1<P2. 

One-Sided (H1:D1>D0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: P1>P2. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: 
P1<>P2+D0. Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 
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Data Tab (Difference) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value 
of P1 at which the power is calculated. Once P2, D0, and D1 are given, the values of P1.1 and 
P1.0 can be calculated. 

D0 (Difference|H0 = P1.0 – P2) 
This option specifies the difference between the two proportions given in the null hypothesis, H0. 
This difference is used with P2 to calculate the value of P1.0 using the formula: P1.0 = P2 + D0. 
Note that P1.0 here means the value of P1 under H0. 

Differences must be between -1 and 1. They cannot take on the values -1, 0, or 1. 

The power calculations use P1.0 as the value of the proportion in group 1 (the experimental or 
treatment group) under the null hypothesis. In this non-null case, the value of P1.0 is not equal to 
P2 as it is in the null case. 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

D1 (Difference|H0 = P1.1 – P2) 
This option specifies the difference between the P1.1 and P2. This difference is used with P2 to 
calculate the value of P1.1 using the formula: P1.1 = D1 + P2. Note that P1.1 here means the 
value of P1 under H1. Differences must be between -1 and 1. They cannot take on the values -1 
or 1. 

The power calculations assume that P1.1 is the actual value of the proportion in group 1 
(experimental or treatment group). 

This option is only used if you are specifying Differences. 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

Alternative Hypothesis (H1) 
This option specifies whether a one-sided or two-sided hypothesis is analyzed.  

One-Sided (H1:D1<D0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: D1<D0. 

One-Sided (H1:D1>D0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: D1>D0. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: 
D1<>D0. Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 
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Data Tab (Ratio) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of P1 at 
which the power is calculated. Once P2, R0, and R1 are given, the values of P1.0 and P1.1 can be 
calculated. 

R0 (Ratio|H0 = P1.0 / P2) 
This option specifies the ratio between the group 1 proportion under the null hypothesis P1.0 and 
P2. This ratio is used with P2 to calculate the value of P1.0 using the formula: P1.0 = R0 x P2. 
The power calculations assume that P1.0 is the value of the P1 under the null hypothesis. In this 
non-null case, the value of P1.0 is not equal to P2 as it is in the null case. 

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25.  

Ratios must greater than zero. 

R1 (Ratio|H1 = P1.1 / P2) 
This option specifies the ratio of P1.1 and P2, where P1.1 is the proportion in group 1 under the 
alternative hypothesis. This ratio is used with P2 to calculate the value of P1.1 using the formula: 
P1.1 = R1 x P2.The power calculations assume that P1.1 is the actual value of the proportion in 
group 1 (experimental or treatment group). 

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25.  

Ratios must greater than zero. They cannot take on the value of one. 

Alternative Hypothesis (H1) 
This option specifies whether a one-sided or two-sided hypothesis is analyzed.  

One-Sided (H1:R1<R0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: R1<R0. 

One-Sided (H1:R1>R0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: R1>R0. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: 
R1<>R0. Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 
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Data Tab (Odds Ratio) 
This section documents options that are used when the parameterization is in terms of the odds 
ratios, O1.1 / O2 and O1.0 / O2. Note that the odds are defined as O2 = P2 / (1 – P2), O1.0 = P1.0 
/ (1 – P1.0), etc. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of 
P1 at which the power is calculated. Once P2, OR0, and OR1 are given, the values of P1.1 and 
P1.0 can be calculated.  

OR0 (Odds Ratio|H0 = O1.0 / O2) 
This option specifies the odds ratio between the group 1 proportion under the null hypothesis and 
the proportion in group 2. This value is used with P2 to calculate the value of P1.0. The power 
calculations assume that P1.0 is the value of the P1 under the null hypothesis. In this non-null 
case, the value of P1.0 is not equal to P2 as it is in the null case. 

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25.  

Odds ratios must greater than zero. 

OR1 (Odds Ratio|H1 = O1.1 / O2) 
This option specifies the odds ratio of the two proportions P1.1 and P2. This odds ratio is used 
with P2 to calculate the value of P1.1. The power calculations assume that P1.1 is the actual value 
of the proportion in group 1, which is the experimental, or treatment, group. 

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25. Odds ratios must 
greater than zero.  

Alternative Hypothesis (H1) 
This option specifies whether a one-sided or two-sided hypothesis is analyzed.  

One-Sided (H1: OR1<OR0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: OR1<OR0. 

One-Sided (H1: OR1>OR0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: OR1>OR0. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: 
OR1<>OR0. Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 
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Options Tab 
The Options tab contains various limits and options. 

Maximum N1 or N2 Exact 
When either N1 or N2 is above this amount, power calculations are based on the normal 
approximation to the binomial. In this case, the actual value of alpha is not calculated. Currently, 
for three-gigahertz computers, a value near 200 is reasonable. As computers increase in speed, 
this number may be increased. 

Maximum Iterations 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. A value of at least 500 is recommended. 

Zero Count Adjustment Method 
Zero cell counts often cause calculation problems. To compensate for this, a small value (called 
the Zero Count Adjustment Value) can be added either to all cells or to all cells with zero counts. 
This option specifies whether you want to use the adjustment and which type of adjustment you 
want to use. We recommend that you use the option ‘Add to zero cells only’. 

Zero cell values often do not occur in practice. However, since power calculations are based on 
total enumeration, they will occur in power and sample size estimation. 

Adding a small value is controversial, but can be necessary for computational considerations. 
Statisticians have recommended adding various fractions to zero counts.. We have found that 
adding 0.0001 seems to work well.  

Zero Count Adjustment Value 
Zero cell counts cause many calculation problems when computing power or sample size. To 
compensate for this, a small value may be added either to all cells or to all zero cells. This value 
indicates the amount that is added. We have found that 0.0001 works well. 

Be warned that the value of the ratio and the odds ratio will be affected by the amount specified 
here! 
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Example1 - Finding Power 
A study is being designed to study the effectiveness of a new treatment. Historically, the standard 
treatment has enjoyed a 60% cure rate. The new treatment reduces the seriousness of certain side 
effects that occur with the standard treatment. Thus, the new treatment will be adopted even if it 
is slightly less effective than the standard treatment. The researchers will recommend adoption of 
the new treatment if it has a cure rate of at least 55%.  

The researchers plan to use the Farrington and Manning likelihood score test statistic to analyze 
the data. They want to study the power of the one-sided Farrington and Manning test at group 
sample sizes ranging from 50 to 2000 for detecting a difference significantly greater than -0.05 
when the actual cure rate of the new treatment ranges from 57% to 70%. The significance level 
will be 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example1 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Test Statistic .....................................Likelihood Score (Farr. & Mann.) 
D0 ..................................................... -0.05 
D1 .....................................................-0.03 0.00 0.05 0.10 
P2......................................................0.6 
Alternative Hypothesis ......................One-Sided (H1:D1>D0) 
N1 .....................................................50 100 250 500 1000 1500 2000 
N2 .....................................................Use R 
R .......................................................1.0 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Options Tab 
Maximum N1 or N2 Exact .................300 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample Prop Prop|H0 Prop|H1      
 Size Size Grp 2 or Grp 1 or Grp 1 or Diff Diff    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.0778 50 50 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0500 0.0527 0.9222 
0.0865 100 100 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0500 0.0499 0.9135 
0.1189 250 250 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0500 0.0516 0.8811 
0.1583 500 500 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0500  0.8417 
0.2310 1000 1000 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0500  0.7690 
0.2976 1500 1500 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0500  0.7024 
0.3596 2000 2000 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0500  0.6404 
Report continues … 
 
Note: exact results based on the binomial were only calculated when both N1 and N2 were less than 300. 
 
Report Definitions 
'H0' as an abbreviation for the NULL hypothesis. This is the hypothesis being evaluated by the statistical test. 
'H1' as an abbreviation for the ALTERNATIVE hypothesis. This hypothesis gives the 'true' parameter values. 
'Power' is the probability of rejecting a false null hypothesis. It should be close to one. 
'N1 and N2' are the sizes of the samples drawn from the corresponding populations. 
'P2' is the proportion for group two. This is the standard, reference, baseline, or control group. 
'P1.0' is the proportion for group one (treatment group) assuming the null hypothesis (H0).  
'P1.1' is the proportion for group one (treatment group) assuming the alternative hypothesis (H1).  
'D0: Diff|H0' is the difference P1 – P2 assuming the null hypothesis (H0). 
'D1: Diff|H1' is the difference P1 – P2 assuming the alternative hypothesis (H1). 
'Target Alpha' is the probability of rejecting a true null hypothesis that was desired. 
'Actual Alpha' is the value of alpha that is actually achieved. 
'Beta' is the probability of accepting a false H0. Beta = 1 - Power. 
 
Summary Statements 
Group sample sizes of 50 in group one and 50 in group two achieve 8% power to detect a 
difference between the group proportions of -0.0300. The proportion in group two is 0.6000. The 
proportion in group one is assumed to be 0.5500 under the null hypothesis and 0.5700 under the 
alternative hypothesis. The test statistic used is the one-sided Score test (Farrington & 
Manning). The significance level of the test was targeted at 0.0500. The significance level 
actually achieved by this design is 0.0527. 
 

This report shows the values of each of the parameters, one scenario per row. Note that the actual 
alpha value is blank for sample sizes greater than 300, which was the limit set for exact 
computation.  

Most of the report columns have obvious interpretations. Those that may not be obvious are 
presented here. 

Prop Grp 2 or Control P2 
This is the value of P2, the proportion responding positively in the control group. 

Prop|H0 Grp 1 or Trtmnt P1.0 
This is the value of P1.0, the proportion responding positively in the treatment group as specified 
by the null hypothesis. The difference between this value and P2 is the value specified by the null 
hypothesis. 
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Prop|H1 Grp 1 or Trtmnt P1.1 
This is the value of P1.1, the proportion responding positively in the treatment group as specified 
by the alternative hypothesis. The difference between this value and P2 is the value specified by 
the alternative hypothesis. 

Diff if H0 D0 
This is the value of D0, the difference between proportions under the null hypothesis. 

Diff if H1 D1 
This is the value of D1, the difference between proportions under the alternative hypothesis. 

Target Alpha 
This is the value of alpha that was targeted by the design. Note that the target alpha is not usually 
achieved exactly. 

Actual Alpha 
This is the value of alpha that was actually achieved by this design. Note that since the limit on 
exact calculations was set to 300, and since this value is calculated exactly, it is not shown for 
values of N1 greater than 300.  

The difference between the Target Alpha and the Actual Alpha is caused by the discrete nature of 
the binomial distribution and the use of the normal approximation to the binomial in determining 
the critical value of the test statistic. 

Plots Section 
 

 

Power vs N1 by D1 with P2=0.60 A=0.05 N2=N1
D0=-0.05 1-Sided LS FM Test
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The values from the table are displayed in the above chart. This chart gives us a quick look at the 
sample size that will be required for various values of D1. 
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Example2 - Finding the Sample Size 
Continuing with the scenario given in Example 1, the researchers want to determine the sample 
size needed to achieve 80% power for each value of D1. To cut down on the runtime, they decide 
to look at approximate values whenever N1 is greater than 100.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example2 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................N1 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
D0......................................................-0.05 
D1......................................................-0.03 0.00 0.05 0.10 
P2......................................................0.6 
Alternative Hypothesis ......................One-Sided (H1:D1>D0) 
N1......................................................Ignored since this is the Find setting 
N2......................................................Use R 
R........................................................1.0 
Alpha .................................................0.05 
Beta...................................................0.20 
Options Tab 
Maximum N1 or N2 Exact .................100 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample Prop Prop|H0 Prop|H1      
 Size Size Grp 2 or Grp 1 or Grp 1 or Diff Diff    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.8000 7491 7491 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0500  0.2000 
0.8002 1186 1186 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500  0.1998 
0.8008 290 290 0.6000 0.5500 0.6500 -0.0500 0.0500 0.0500  0.1992 
0.8011 125 125 0.6000 0.5500 0.7000 -0.0500 0.1000 0.0500  0.1989 

 

The required sample size will depend a great deal on the value of D1. The researchers should 
spend time determining the most accurate value for D1.  
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Example3 – Comparing the Power of 
Several Test Statistics 
Continuing with Example 1, the researchers want to determine which of the eight possible test 
statistics to adopt by using the comparative reports and charts that PASS produces. They decide 
to compare the powers and actual alphas for various sample sizes between 50 and 200 when D1 is 
0.05.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example3 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Test Statistic .....................................Likelihood Score (Farr. & Mann.) 
D0 ..................................................... -0.05 
D1 .....................................................0.05 
P2......................................................0.6 
Alternative Hypothesis ......................One-Sided (H1:D1>D0) 
N1 .....................................................50 100 150 200 
N2 .....................................................Use R 
R .......................................................1.0 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Options Tab 
Maximum N1 or N2 Exact .................300 
Reports Tab 
Show Numeric Report.......................Not checked 
Show Comparative Reports ..............Checked 
Show Definitions ...............................Not checked 
Show Plots ........................................Not checked 
Show Comparative Plots...................Checked 
Summary Statement Rows ...............0 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Power Comparison of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0.  
    Z(P) Z(UnP) Z(P) Z(UnP) T F.M. M.N. G.N.  
   Target Test Test CC Test CC Test Test Score Score Score  
N1/N2 P2 P1.1 Alpha Power Power Power Power Power Power Power Power  
50/50 0.6000 0.6500 0.0500 0.2720 0.2720 0.2064 0.2096 0.2694 0.2720 0.2694 0.2720  
100/100 0.6000 0.6500 0.0500 0.4207 0.4248 0.3663 0.3663 0.4178 0.4207 0.4207 0.4207  
150/150 0.6000 0.6500 0.0500 0.5540 0.5540 0.5054 0.5054 0.5519 0.5540 0.5519 0.5519  
200/200 0.6000 0.6500 0.0500 0.6654 0.6683 0.6286 0.6286 0.6624 0.6683 0.6654 0.6654  
 
Actual Alpha Comparison of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0.  
    Z(P) Z(UnP) Z(P) Z(UnP) T F.M. M.N. G.N.  
   Target Test Test CC Test CC Test Test Score Score Score  
N1/N2 P2 P1.1 Alpha Alpha Alpha Alpha Alpha Alpha Alpha Alpha Alpha  
50/50 0.6000 0.6500 0.0500 0.0527 0.0527 0.0342 0.0343 0.0526 0.0527 0.0526 0.0527  
100/100 0.6000 0.6500 0.0500 0.0499 0.0500 0.0369 0.0369 0.0499 0.0499 0.0499 0.0499  
150/150 0.6000 0.6500 0.0500 0.0509 0.0509 0.0398 0.0398 0.0509 0.0509 0.0509 0.0509  
200/200 0.6000 0.6500 0.0500 0.0479 0.0482 0.0387 0.0387 0.0477 0.0482 0.0479 0.0479  
 

Power vs N1 by Test with D1=0.05 P2=0.60 A=0.05
N2=N1 D0=-0.05 1-Sided Test
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It is interesting to note that the powers of the continuity-corrected test statistics are consistently 
lower than the other tests. This occurs because the actual alpha achieved by these tests is lower 
than for the other tests.  
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Example4 - Validation using Machin et al. 
with Equal Sample Sizes 
Machin et al. (1997), page 106, present a sample size study in which P2 = 0.5, D0 = -0.2, D1=0, 
one-sided alpha = 0.1, and beta = 0.2. Using the Farrington and Manning test statistic, they found 
the sample size to be 55 in each group. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example4 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................N1 
Test Statistic .....................................Likelihood Score (Farr. & Mann.) 
D0 .....................................................-0.2 
D1 .....................................................0 
P2......................................................0.50 
Alternative Hypothesis ......................One-Sided (H1:D1>D0) 
N1 ..................................................... Ignored since this is the Find setting 
N2 .....................................................Use R 
R .......................................................1.0 
Alpha.................................................0.10 
Beta...................................................0.20 
Options Tab 
Maximum N1 or N2 Exact .................2 (Set low for a rapid search.) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample    Sample Prop Prop|H0 Prop|H1     
 Size Size Grp 2 or Grp 1 or Grp 1 or Diff Diff    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.8001 55 55 0.5000 0.3000 0.5000 -0.2000 0.0000 0.1000  0.1999 
 

PASS found the required sample size to be 55, which corresponds to the results of Machin et al.  
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Example5 - Validation using Farrington 
and Manning 
Farrington and Manning (1990), page 1451, present a sample size study in which P2 = 0.05, D0 = 
0.2, D1=0.35, one-sided alpha = 0.05, and beta = 0.20. Using the Farrington and Manning test 
statistic, they found the sample size to be 80 in each group. They mention that the true power is 
0.813. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example5 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................N1 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
D0......................................................0.2 
D1......................................................0.35 
P2......................................................0.05 
Alternative Hypothesis ......................One-Sided (H1:D1>D0) 
N1......................................................Ignored since this is the Find setting 
N2......................................................Use R 
R........................................................1.0 
Alpha .................................................0.05 
Beta...................................................0.20 
Options Tab 
Maximum N1 or N2 Exact .................2 (Set low for a rapid search.) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample    Sample Prop Prop|H0 Prop|H1     
 Size Size Grp 2 or Grp 1 or Grp 1 or Diff Diff    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.8007 80 80 0.0500 0.2500 0.4000 0.2000 0.3500 0.0500  0.1993 
 

PASS also calculated the required sample size to be 80.  
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Next, to calculate the exact power for this sample size, we make the following changes to the 
template. 

Data Tab 
Find ...................................................Beta and Power 
N1 .....................................................80 
Options Tab 
Maximum N1 or N2 Exact .................300 (Set >80 to force exact calculation.) 

Numeric Results 
 
Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P2-P1<=D0. H1: P2-P1=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample    Sample Prop Prop|H0 Prop|H1     
 Size Size Grp 2 or Grp 1 or Grp 1 or Diff Diff    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.8132 80 80 0.0500 0.2500 0.4000 0.2000 0.3500 0.0500 0.0553 0.1868 
 

PASS also calculated the exact power to be 0.813.  
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Example6 - Validation of Risk Ratio 
Calculations using Blackwelder 
Blackwelder (1993), page 695, presents a table of power values for several scenarios using the 
risk ratio. The second line of the table presents the results for the following scenario: P2 = 0.04, 
R0 = 0.3, R1=0.1, N1=N2=1044, one-sided alpha = 0.05, and beta = 0.20. Using the Farrington 
and Manning likelihood-score test statistic, he found the exact power to be 0.812, the exact alpha 
to be 0.044, and, using the asymptotic formula, the approximate power to be 0.794. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the ratio parameterization. You can make these changes directly 
on your screen or you can load the template entitled Example6 by clicking the Template tab and 
loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
R0......................................................0.3 
R1......................................................0.1 
P2......................................................0.04 
Alternative Hypothesis ......................One-Sided (H1:R1<R0) 
N1......................................................1044 
N2......................................................Use R 
R........................................................1.0 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
Options Tab 
Maximum N1 or N2 Exact .................2000 (Set high for exact results.) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Tests Based on the Ratio: P1 / P2 
H0: P1/P2>=R0. H1: P1/P2=R1<R0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample Prop Prop|H0 Prop|H1      
 Size Size Grp 2 or Grp 1 or Grp 1 or Ratio Ratio    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 R0 R1 Alpha Alpha Beta 
0.8118 1044 1044 0.0400 0.0120 0.0040 0.300 0.100 0.0500 0.0444 0.1882 
 

PASS also calculated the exact power to be 0.812 and the actual alpha to be 0.044, after rounding.  
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Next, to calculate the asymptotic power, we make the following changes to the template. 

Options Tab 
Maximum N1 or N2 Exact .................2 (Set < 1044 to force asymptotic calculation.) 

Numeric Results 
 
Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1/P2>=R0. H1: P1/P2=R1<R0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample Prop Prop|H0 Prop|H1      
 Size Size Grp 2 or Grp 1 or Grp 1 or Ratio Ratio    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 R0 R1 Alpha Alpha Beta 
0.7937 1044 1044 0.0400 0.0120 0.0040 0.300 0.100 0.0500  0.2063 
 

PASS also calculated the asymptotic power to be 0.794.  
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Example7 - Finding the Power after 
Completing an Experiment 
Researchers are studying the effectiveness of a new treatment for cancer. Historically, the 
standard treatment has enjoyed a 52% cure rate. The new experimental treatment is believed to be 
better, but it costs much more to administer. After weighing cost versus effectiveness, the 
researchers decided that they will adopt the new treatment if the cure rate is at least 59%. They 
conduct a study in which 200 patients are given the new treatment, and 200 are given the standard 
regimen. They find that 66% are cured by the new treatment, while 52% are cured by the standard 
treatment. The Farrington and Manning likelihood score test, however, indicates that the results 
are not statistically significant for alpha = 0.05. They now desire to compute the power for a 
range of alternative values. 

Note that a range of alternatives is used in computing the power instead of the actual difference 
from the study. The power should be computed at values representing practically significant 
differences from the null value. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example7 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta & Power 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
D0......................................................0.07 
D1......................................................0.08 to 0.20 by 0.02 
P2......................................................0.52 
Alternative Hypothesis ......................One-Sided (H1:D1>D0) 
N1......................................................200 
N2......................................................Use R 
R........................................................1.0 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
Options Tab 
Maximum N1 or N2 Exact .................200 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample Prop Prop|H0 Prop|H1      
 Size Size Grp 2 or Grp 1 or Grp 1 or Diff Diff    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.0715 200 200 0.5200 0.5900 0.6000 0.0700 0.0800 0.0500 0.0479 0.9285 
0.1446 200 200 0.5200 0.5900 0.6200 0.0700 0.1000 0.0500 0.0479 0.8554 
0.2581 200 200 0.5200 0.5900 0.6400 0.0700 0.1200 0.0500 0.0479 0.7419 
0.4089 200 200 0.5200 0.5900 0.6600 0.0700 0.1400 0.0500 0.0479 0.5911 
0.5783 200 200 0.5200 0.5900 0.6800 0.0700 0.1600 0.0500 0.0479 0.4217 
0.7368 200 200 0.5200 0.5900 0.7000 0.0700 0.1800 0.0500 0.0479 0.2632 
0.8591 200 200 0.5200 0.5900 0.7200 0.0700 0.2000 0.0500 0.0479 0.1409 
 
Note: exact results based on the binomial were only calculated when both N1 and N2 were less than 200. 
 

Power vs D1 with P2=0.52 A=0.05 N1=200 N2=N1
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The power depends a great deal on the value of D1 for this sample size.  It is evident that the 
power is quite low for the majority of alternative values studied. 
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Example8 - Finding the Sample Size 
using Ratios 
A study is being designed to determine the effectiveness of a new treatment.  Researchers would 
like to know how large of a sample is needed for comparison of the two treatments.  The standard 
treatment has a success rate of 65%.  The researchers will adopt the new treatment, which has 
fewer side effects, if the success rate is at least 90% of the rate for the standard treatment, i.e. P1 
= 0.9 x P2 or P1/P2 = 0.9.  They would like to calculate the sample sizes necessary to achieve 
80%, 85%, 90%, and 95% power for the case where the true ratio between the two proportions is 
1.1 and alpha = 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the ratio parameterization. You can make these changes directly 
on your screen or you can load the template entitled Example8 by clicking the Template tab and 
loading this template. 

Option Value
Data Tab 
Find ...................................................N1 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
R0......................................................0.9 
R1......................................................1.1 
P2......................................................0.65 
Alternative Hypothesis ......................One-Sided (H1:R1>R0) 
N1......................................................Ignored since this is the Find setting 
N2......................................................Use R 
R........................................................1.0 
Alpha .................................................0.05 
Beta...................................................0.05 0.10 0.15 0.20 
Options Tab 
Maximum N1 or N2 Exact .................300 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Ratio: P1 / P2 
H0: P1/P2<=R0. H1: P1/P2=R1>R0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample Prop Prop|H0 Prop|H1      
 Size Size Grp 2 or Grp 1 or Grp 1 or Ratio Ratio    
 Grp 1 Grp 2 Control Trtmnt Trtmnt if H0 if H1 Target Actual  
Power N1 N2 P2 P1.0 P1.1 R0 R1 Alpha Alpha Beta 
0.9506 252 252 0.6500 0.5850 0.7150 0.900 1.100 0.0500 0.0503 0.0494 
0.9013 199 199 0.6500 0.5850 0.7150 0.900 1.100 0.0500 0.0508 0.0987 
0.8504 167 167 0.6500 0.5850 0.7150 0.900 1.100 0.0500 0.0507 0.1496 
0.8048 145 145 0.6500 0.5850 0.7150 0.900 1.100 0.0500 0.0499 0.1952 
 
Note: exact results based on the binomial were only calculated when both N1 and N2 were less than 300. 
 
 

N1 vs Power with R1=1.10 P2=0.65 A=0.05 N2=N1
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Necessary sample sizes range from 145 for 80% power to 252 for 95% power for detecting a ratio 
of 1.1. 
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Chapter 210  

Non-Inferiority of 
Two Independent 
Proportions 
Introduction 
This module provides power analysis and sample size calculation for non-inferiority and 
superiority tests in two-sample designs in which the outcome is binary. Users may choose from 
among eight popular test statistics commonly used for running the hypothesis test. 

The power calculations assume that independent, random samples are drawn from two 
populations.  

Four Procedures Documented Here 
There are four procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, ratios of proportions, and odds ratios. Each 
of these options is listed separately on the menus.  
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Example 
A non-inferiority test example will set the stage for the discussion of the terminology that 
follows. Suppose that the current treatment for a disease works 70% of the time. Unfortunately, 
this treatment is expensive and occasionally exhibits serious side-effects. A promising new 
treatment has been developed to the point where it can be tested. One of the first questions that 
must be answered is whether the new treatment is as good as the current treatment. In other 
words, do at least 70% of treated subjects respond to the new treatment?  

Because of the many benefits of the new treatment, clinicians are willing to adopt the new 
treatment even if it is slightly less effective than the current treatment. They must determine, 
however, how much less effective the new treatment can be and still be adopted. Should it be 
adopted if 69% respond? 68%? 65%? 60%? There is a percentage below 70% at which the 
difference between the two treatments is no longer considered ignorable. After thoughtful 
discussion with several clinicians, it was decided that if a response of at least 63% were achieved, 
the new treatment would be adopted. The difference between these two percentages is called the 
margin of equivalence. The margin of equivalence in this example is 7%.  

The developers must design an experiment to test the hypothesis that the response rate of the new 
treatment is at least 0.63. The statistical hypothesis to be tested is 

H p p0 1 2 0 07: .− ≤ −  versus H p p1 1 2 0 07: .− > −  

Notice that when the null hypothesis is rejected, the conclusion is that the response rate is at least 
0.63. Note that even though the response rate of the current treatment is 0.70, the hypothesis test 
is about a response rate of 0.63. Also notice that a rejection of the null hypothesis results in the 
conclusion of interest.  
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Technical Details  
The details of sample size calculation for the two-sample design for binary outcomes are 
presented in the chapter “Two Proportions Non-Null Case,” and they will not be duplicated here. 
Instead, this chapter only discusses those changes necessary for non-inferiority and superiority 
tests. 

Approximate sample size formulas for non-inferiority tests of two proportions are presented in 
Chow et al. (2003), page 90. Only large sample (normal approximation) results are given there. 
The results available in this module use exact calculations based on the enumeration of all 
possible values in the binomial distribution. 

Suppose you have two populations from which dichotomous (binary) responses will be recorded. 
Assume without loss of generality that the higher proportions are better. The probability (or risk) 
of cure in population 1 (the treatment group) is  and in population 2 (the reference group) 
is . Random samples of and individuals are obtained from these two populations. The 
data from these samples can be displayed in a 2-by-2 contingency table as follows 

p1

p2 n1 n2

Group Success Failure Total 
Treatment    x11 x12 n1

Control    x21 x22 n2

Totals   N m1 m2

The binomial proportions,  and , are estimated from these data using the formulae p1 p2

$p a
m

x
n1
11

1

= =  and $p b
n

x
n2

21

2

= =  

Let  represent the group 1 proportion tested by the null hypothesis, . The power of a test is 
computed at a specific value of the proportion which we will call . Let 

p1 0. H0

p11. δ  represent the 
smallest difference (margin of equivalence) between the two proportions that still results in the 
conclusion that the new treatment is not inferior to the current treatment. For a non-inferiority 
test, δ < 0.  The set of statistical hypotheses that are tested is 

H0 1 0 2: .p p− ≤ δ  versus H1 1 0 2: .p p− > δ  

which can be rearranged to give 

H0 1 0 2: .p p≤ +δ  versus H1 1 0 2: .p p> +δ  

There are three common methods of specifying the margin of equivalence. The most direct is to 
simply give values for  and . However, it is often more meaningful to give  and then 
specify  implicitly by specifying the difference, ratio, or odds ratio. Mathematically, the 
definitions of these parameterizations are  

p2 p1 0. p2

p1 0.

Parameter Computation Hypotheses

Difference  δ = −p p1 0 2.  H vs. H0 1 0 2 0 1 1 0 2 0 0 0: :. .p p p p ,− ≤ − > <δ δ δ  

Ratio φ = p p1 0 2. /  H vs. H0 1 2 0 1 1 2 0 0 1: / : / ,p p p p≤ > <φ φ φ  

Odds Ratio ψ = Odds Odds1 0 2. /  H versus H0 1 0 2 0 1 1 0 2 0 0 1: / : / ,. .o o o o≤ > <ψ ψ ψ  
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Difference 
The difference is perhaps the most direct method of comparison between two proportions. It is 
easy to interpret and communicate. It gives the absolute impact of the treatment. However, there 
are subtle difficulties that can arise with its interpretation.  

One difficulty arises when the event of interest is rare. If a difference of 0.001 occurs when the 
baseline probability is 0.40, it would be dismissed as being trivial. However, if the baseline 
probably of a disease is 0.002, a 0.001 decrease would represent a reduction of 50%. Thus 
interpretation of the difference depends on the baseline probability of the event.  

Note that if δ < 0 , the procedure is called a non-inferiority test while if δ > 0  the procedure is 
called a superiority test.  

Non-Inferiority using a Difference 
The following example might help you understand the concept of a non-inferiority test. Suppose 
60% of patients respond to the current treatment method ( )p2 0 60= . . If the response rate of the 
new treatment is no less than 5 percentage points worse ( )δ = −0 05.  than the existing treatment, 
it will be considered to be noninferior. Substituting these figures into the statistical hypotheses 
gives 

H0 0 05: .δ ≤ −  versus H1 0 05: .δ > −  

Using the relationship 

p p1 0 2. = +δ  

gives 

H p0 1 0 055: . ≤ .  versus  H p1 1 0 0 55: .. >

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is at least 55%, which means that the new treatment is not inferior to the current 
treatment. 

Superiority using a Difference 
The following example is intended to help you understand the concept of a superiority test. 
Suppose 60% of patients respond to the current treatment method ( )p2 0 60= . . If the response 
rate of the new treatment is at least 10 percentage points better ( )δ = 010. , it will be considered to 
be superior to the existing treatment. Substituting these figures into the statistical hypotheses 
gives 

H0 010: .δ ≤  versus H1 010: .δ >  

Using the relationship 

p p1 0 2. = +δ  

gives 

H p0 1 0 0 70: .. ≤  versus  H p1 1 0 0 70: .. >

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is at least 0.70. That is, the conclusion of superiority is that the new treatment’s 
response rate is at least 0.10 more than that of the existing treatment. 
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Ratio 
The ratio,φ = p p1 0 2. / , gives the relative change in the probability of the response. Testing non-
inferiority and superiority use the formulation  

H p p0 1 0 2 0: /. ≤ φ  versus H p p1 1 0 2 0: /. > φ  

The only subtlety is that for non-inferiority tests φ0 1< , while for superiority testsφ0 1> .  

Non-Inferiority using a Ratio 
The following example might help you understand the concept of non-inferiority as defined by 
the ratio. Suppose that 60% of patients ( )p2 0 60= .  respond to the current treatment method. If a 
new treatment decreases the response rate by no more than 10% ( )φ0 0 90= . , it will be considered 
to be noninferior to the standard treatment. Substituting these figures into the statistical 
hypotheses gives 

H0 090: .φ ≤  versus H1 0 90: .φ >  

Using the relationship 

p p1 0 0 2. = φ  

gives 

H p0 1 0 0 54: .. ≤  versus  H p1 1 0 0 54: .. >

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is at least 54%. That is, the conclusion of non-inferiority is that the new treatment’s 
response rate is no worse than 10% less than that of the standard treatment. 

Odds Ratio 
The odds ratio, ( )( ) ( )( )ψ = − −p p p p1 0 1 0 2 21 1. ./ / / , gives the relative change in the odds of the 
response. Testing non-inferiority and superiority use the same formulation  

H0: 0ψ ψ≤  versus H1 0:ψ ψ>  

The only difference is that for non-inferiority tests ψ0 1< , while for superiority testsψ0 1> .  

A Note on Setting the Significance Level, Alpha 
Setting the significance level has always been somewhat arbitrary. For planning purposes, the 
standard has become to set alpha to 0.05 for two-sided tests. Almost universally, when someone 
states that a result is statistically significant, they mean statistically significant at the 0.05 level.  

Although 0.05 may be the standard for two-sided tests, it is not always the standard for one-sided 
tests, such as non-inferiority tests. Statisticians often recommend that the alpha level for one-
sided tests be set at 0.025 since this is the amount put in each tail of a two-sided test. 
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Power Calculation 
The power for a test statistic that is based on the normal approximation can be computed exactly 
using two binomial distributions. The following steps are taken to compute the power of these 
tests.  
1.  Find the critical value using the standard normal distribution. The critical value, , is that 

value of z that leaves exactly the target value of alpha in the appropriate tail of the normal 
distribution.  

zcritical

2.  Compute the value of the test statistic, , for every combination of  and . Note that  
ranges from 0 to , and  ranges from 0 to . A small value (around 0.0001) can be added 
to the zero-cell counts to avoid numerical problems that occur when the cell value is zero. 

zt x11 x21 x11

n1 x21 n2

3. If z z , the combination is in the rejection region. Call all combinations of  and  
that lead to a rejection the set A. 

t critical> x11 x21

4. Compute the power for given values of  and  as p11. p2

1 1

11
11 11

2

21
2 2

11 1 11 21 2 21− =
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
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⎞
⎠
⎟− −∑β

n
x

p q
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x

p qx n x x n x

A
. .  

5. Compute the actual value of alpha achieved by the design by substituting  for  to obtain  p2 p11.

α* =
⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟ + + − −∑

n
x

n
x

p qx x n n x x

A

1

11

2

21
2 2

11 21 1 2 11 21  

Asymptotic Approximations 
When the values of  and  are large (say over 200), these formulas often take a long time to 
evaluate. In this case, a large sample approximation can be used. The large sample approximation 
is made by replacing the values of  and  in the z statistic with the corresponding values of 

 and , and then computing the results based on the normal distribution. Note that in large 
samples, the Farrington and Manning statistic is substituted for the Gart and Nam statistic. Also, 
for large samples, the results for the odds ratio have not (to our knowledge) been published. In 
this case, we substitute the calculations based on the ratio formulation. 

n1 n2

$p1 $p2

p11. p2
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Test Statistics 
Several test statistics have been proposed for testing whether the difference, ratio, or odds ratio 
are different from a specified value. The main difference among the several test statistics is in the 
formula used to compute the standard error used in the denominator. These tests are based on the 
following z-test  

z p p c
t =

− − −$ $

$
1 2 0δ

σ
 

The constant, c, represents a continuity correction that is applied in some cases. When the 
continuity correction is not used, c is zero. In power calculations, the values of  and  are not 
known. The corresponding values of  and  may be reasonable substitutes. 

$p1 $p2

p11. p2

Following is a list of the test statistics available in PASS. The availability of several test statistics 
begs the question of which test statistic one should use. The answer is simple: one should use the 
test statistic that will be used to analyze the data. You may choose a method because it is a 
standard in your industry, because it seems to have better statistical properties, or because your 
statistical package calculates it. Whatever your reasons for selecting a certain test statistic, you 
should use the same test statistic when doing the analysis after the data have been collected. 

Z Test (Pooled) 
This test was first proposed by Karl Pearson in 1900. Although this test is usually expressed 
directly as a chi-square statistic, it is expressed here as a z statistic so that it can be more easily 
used for one-sided hypothesis testing. The proportions are pooled (averaged) in computing the 
standard error. The formula for the test statistic is  
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Z Test (Unpooled) 
This test statistic does not pool the two proportions in computing the standard error.  
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Z Test with Continuity Correction (Pooled)  
This test is the same as Z Test (Pooled), except that a continuity correction is used. Remember 
that in the null case, the continuity correction makes the results closer to those of Fisher’s Exact 
test. 

z
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n n
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where F is -1 for lower-tailed hypotheses and 1 for upper-tailed hypotheses. 

Z Test with Continuity Correction (Unpooled)  
This test is the same as the Z Test (Unpooled), except that a continuity correction is used. 
Remember that in the null case, the continuity correction makes the results closer to those of 
Fisher’s Exact test. 
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where F is -1 for lower-tailed hypotheses and 1 for upper-tailed hypotheses. 

T-Test of Difference 
Because of a detailed, comparative study of the behavior of several tests, D’Agostino (1988) and 
Upton (1982) proposed using the usual two-sample t-test for testing whether the two proportions 
are equal. One substitutes a ‘1’ for a success and a ‘0’ for a failure in the usual, two-sample t-test 
formula.  
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Miettinen and Nurminen’s Likelihood Score Test of the 
Difference 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the difference is equal 
to a specified, non-zero, value,δ0 . The regular MLE’s,  and , are used in the numerator of 
the score statistic while MLE’s  and 

$p1 $p2
~p1

~p2 , constrained so that ~ ~p p1 2 0− = δ , are used in the 
denominator. A correction factor of N/(N-1) is applied to make the variance estimate less biased. 
The significance level of the test statistic is based on the asymptotic normality of the score 
statistic. The formula for computing this test statistic is  
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Miettinen and Nurminen’s Likelihood Score Test of the Ratio 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the ratio is equal to a 
specified valueφ0 . The regular MLE’s,  and , are used in the numerator of the score statistic 
while MLE’s  and 

$p1 $p2
~p1

~p2 , constrained so that ~ / ~p p1 2 0= φ , are used in the denominator. A 
correction factor of N/(N-1) is applied to make the variance estimate less biased. The significance 
level of the test statistic is based on the asymptotic normality of the score statistic.  

The formula for computing the test statistic is 
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Miettinen and Nurminen’s Likelihood Score Test of the Odds 
Ratio 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the odds ratio is equal 
to a specified value,ψ 0 . Because the approach they used with the difference and ratio does not 
easily extend to the odds ratio, they used a score statistic approach for the odds ratio. The regular 
MLE’s are  and . The constrained MLE’s are  and $p1 $p2

~p1
~p2 . These estimates are constrained 

so that ~ψ ψ= 0 . A correction factor of N/(N-1) is applied to make the variance estimate less 
biased. The significance level of the test statistic is based on the asymptotic normality of the score 
statistic.  

The formula for computing the test statistic is 
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Farrington and Manning’s Likelihood Score Test of the 
Difference 
Farrington and Manning (1990) proposed a test statistic for testing whether the difference is equal 
to a specified valueδ0 . The regular MLE’s,  and , are used in the numerator of the score 
statistic while MLE’s  and 

$p1 $p2
~p1

~p2 , constrained so that ~ ~p p1 2 0− = δ , are used in the denominator. 
The significance level of the test statistic is based on the asymptotic normality of the score 
statistic.  

The formula for computing the test statistic is 
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where the estimates  and ~p1
~p2  are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 
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Farrington and Manning’s Likelihood Score Test of the Ratio 
Farrington and Manning (1990) proposed a test statistic for testing whether the ratio is equal to a 
specified valueφ0 . The regular MLE’s,  and , are used in the numerator of the score 
statistic while MLE’s  and 

$p1 $p2
~p1

~p2 , constrained so that ~ / ~p p1 2 0= φ , are used in the denominator. 
A correction factor of N/(N-1) is applied to increase the variance estimate. The significance level 
of the test statistic is based on the asymptotic normality of the score statistic.  

The formula for computing the test statistic is 

 z p p

p q
n

p q
n

FMR =
−

+
⎛
⎝
⎜

⎞
⎠
⎟

$ / $
~ ~ ~ ~

1 2 0

1 1

1
0
2 2 2

2

φ

φ

  

where the estimates  and ~p1
~p2  are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 

Farrington and Manning’s Likelihood Score Test of the Odds 
Ratio 
Farrington and Manning (1990) indicate that the Miettinen and Nurminen statistic may be 
modified by removing the factor N/(N-1). 

The formula for computing this test statistic is 
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where the estimates  and ~p1
~p2  are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 
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Gart and Nam’s Likelihood Score Test of the Difference 
Gart and Nam (1990), page 638, proposed a modification to the Farrington and Manning (1988) 
difference test that corrects for skewness. Let ( )zFMD δ  stand for the Farrington and Manning 
difference test statistic described above. The skewness corrected test statistic, , is the 
appropriate solution to the quadratic equation 
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Gart and Nam’s Likelihood Score Test of the Ratio 
Gart and Nam (1988), page 329, proposed a modification to the Farrington and Manning (1988) 
ratio test that corrects for skewness. Let ( )zFMR φ  stand for the Farrington and Manning ratio test 
statistic described above. The skewness corrected test statistic, , is the appropriate solution to 
the quadratic equation 
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter Procedure Templates. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and beta. This chapter covers four procedures, each of which has different options. 
This section documents options that are common to all four procedures. Later, unique options for 
each procedure will be documented.   

Find 
This option specifies the parameter to be solved for using the other parameters. The parameters 
that may be selected are P1.1, Alpha, Beta, N1, and N2. Under most situations, you will select 
either Beta or N1. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level. 

Select Beta when you want to calculate the power of an experiment.  

Test Statistic 
Specify which test statistic is used in searching and reporting. Although the pooled z-test is 
commonly shown in elementary statistics books, the likelihood score test is arguably the best 
choice. 

Note that C.C. is an abbreviation for Continuity Correction. This refers to the adding or 
subtracting 1/(2n) to (or from) the numerator of the z-value to bring the normal approximation 
closer to the binomial distribution. 

Higher Proportions Are 
This option specifies whether proportions represent successes (better) or failures (worse). 

Better (Successes) 
When proportions represent successes, higher proportions are better. A noninferior treatment is 
one whose proportion is at least almost as high as that of the reference group.  

For testing non-inferiority, D0 is negative, R0 is less than 1, and OR0 is less than 1. For testing 
superiority, D0 is positive, R0 is greater than 1, and OR0 is greater than 1.  

Worse (Failures) 
When proportions represent failures, lower proportions are better. A noninferior treatment is one 
whose proportion is at most almost as low as that of the reference group.  

For testing non-inferiority, D0 is positive, R0 is greater than 1, and OR0 is greater than 1. For 
testing superiority, D0 is negative, R0 is less than 1, and OR0 is less than 1.  
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N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. You may enter a range of 
values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

Use R 

When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio, and [Y] is the first integer greater than or equal to Y. For 
example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2= [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis of unequal proportions when in fact they are not 
equal.  

Values must be between 0 and 1. Because this is a one-sided test, unless you have good reason to 
do otherwise, the value of 0.025 is recommended. You should pick a value for alpha that 
represents the risk of a type-I error you are willing to take in your experimental situation.  

You may enter a range of values such as 0.01 0.025 0.05 or 0.01 to 0.10 by 0.01. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis when in fact it is false. 

Values must be between 0 and 1. Historically, the value of 0.20 was often used for beta. 
However, you should pick a value for beta that represents the risk of a type-II error you are 
willing to take. 

Power is defined as 1-beta. Power is equal to the probability of rejecting a false null hypothesis. 
Hence, specifying the beta error level also specifies the power level. For example, if you specify 
beta values of 0.05, 0.10, and 0.20, you are specifying power values of 0.95, 0.90, and 0.80, 
respectively.  
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Data Tab (Proportion) 
This section documents options that are used when the parameterization is in terms of the values 
of the two proportions, P1 and P2. P1.0 is the value of the P1 assumed by the null hypothesis and 
P1.1 is the value of P1 at which the power is calculated. 

P1.0 (Equivalence Proportion) 
This option allows you to specify the value P1.0 directly. This is that value of treatment group’s 
proportion above which the treatment group is considered noninferior to the reference group.  

When Higher Proportions Are is set to Better, the trivial proportion is the smallest value of P1 for 
which the treatment group is declared noninferior to the reference group. In this case, P1.0 should 
be less than P2 for non-inferiority tests and greater than P2 for superiority tests. The reverse is the 
case when Higher Proportions Are is set to Worse.  

Proportions must be between 0 and 1. They cannot take on the values 0 or 1. This value should 
not be set to exactly the value of P2. 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

P1.1 (Actual Proportion) 
This option specifies the value of P1.1 which is the value of the treatment proportion at which the 
power is to be calculated. Proportions must be between 0 and 1. They cannot take on the values 0 
or 1.  

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01. 
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Data Tab (Difference) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value 
of P1 at which the power is calculated. Once P2, D0, and D1 are given, the values of P1.1 and 
P1.0 can be calculated. 

D0 (Equivalence Difference) 
This option specifies the trivial difference (often called the margin of error) between P1.0 (the 
value of P1 under H0) and P2. This difference is used with P2 to calculate the value of P1.0 using 
the formula: P1.0 = P2 + D0.  

When Higher Proportions Are is set to Better, the trivial difference is that amount by which P1 
can be less than P2 and still have the treatment group declared noninferior to the reference group. 
In this case, D0 should be negative for non-inferiority tests and positive for superiority tests. 

The reverse is the case when Higher Proportions Are is set to worse.  

You may enter a range of values such as -.03 -.05 -.10 or -.05 to -.01 by .01. Differences must be 
between -1 and 1. D0 cannot take on the values -1, 0, or 1. 

D1 (Actual Difference) 
This option specifies the actual difference between P1.1 (the actual value of P1) and P2. This is 
the value of the difference at which the power is calculated. In non-inferiority trials, this 
difference is often set to 0. 

The power calculations assume that P1.1 is the actual value of the proportion in group 1 
(experimental or treatment group). This difference is used with P2 to calculate the value of P1 
using the formula: P1.1 = D1 + P2.  

You may enter a range of values such as -.05 0 .5 or -.05 to .05 by .02. Actual differences must be 
between -1 and 1. They cannot take on the values -1 or 1. 
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Data Tab (Ratio) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of P1 at 
which the power is calculated. Once P2, R0, and R1 are given, the values of P1.0 and P1.1 can be 
calculated. 

R0 (Equivalence Ratio) 
This option specifies the trivial ratio (also called the Relative Margin of Equivalence) between 
P1.0 and P2. The power calculations assume that P1.0 is the value of the P1 under the null 
hypothesis. This value is used with P2 to calculate the value of P1.0 using the formula: P1.0 = R0 
x P2.  

When Higher Proportions Are is set to Better, the trivial ratio is the relative amount by which P1 
can be less than P2 and still have the treatment group declared noninferior to the reference group. 
In this case, R0 should be less than one for non-inferiority tests and greater than 1 for superiority 
tests. The reverse is the case when Higher Proportions Are is set to Worse.  

Ratios must be positive. R0 cannot take on the value of 1. You may enter a range of values such 
as 0.95 .97 .99 or .91 to .99 by .02.  

R1 (Actual Ratio) 
This option specifies the ratio of P1.1 and P2, where P1.1 is the actual proportion in the treatment 
group. The power calculations assume that P1.1 is the actual value of the proportion in group 1. 
This difference is used with P2 to calculate the value of P1 using the formula: P1.1 = R1 x P2. In 
non-inferiority trials, this ratio is often set to 1. 

Ratios must be positive. You may enter a range of values such as 0.95 1 1.05 or 0.9 to 1.9 by 
0.02.  
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Data Tab (Odds Ratio) 
This section documents options that are used when the parameterization is in terms of the odds 
ratios, O1.1 / O2 and O1.0 / O2. Note that the odds are defined as O2 = P2 / (1 – P2), O1.0 = P1.0 
/ (1 – P1.0), etc. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of 
P1 at which the power is calculated. Once P2, OR0, and OR1 are given, the values of P1.1 and 
P1.0 can be calculated.  

OR0 (Equivalence Odds Ratio) 
This option specifies the trivial odds ratio between P1.0 and P2. The power calculations assume 
that P1.0 is the value of the P1 under the null hypothesis. OR0 is used with P2 to calculate the 
value of P1.0.  

When Higher Proportions Are is set to Better, the trivial odds ratio implicitly gives the amount 
by which P1 can be less than P2 and still have the treatment group declared noninferior to the 
reference group. In this case, OR0 should be less than 1 for non-inferiority tests and greater than 
1 for superiority tests. The reverse is the case when Higher Proportions Are is set to Worse.  

Odds ratios must be positive. OR0 cannot take on the value of 1. 

You may enter a range of values such as 0.95 0.97 0.99 or 0.91 to 0.99 by 0.02.  

OR1 (Actual Odds Ratio) 
This option specifies the odds ratio of P1.1 and P2, where P1.1 is the actual proportion in the 
treatment group. The power calculations assume that P1.1 is the actual value of the proportion in 
group 1. This value is used with P2 to calculate the value of P1. In non-inferiority trials, this odds 
ratio is often set to 1. 

Odds ratios must be positive. You may enter a range of values such as 0.95 1 1.05 or 0.9 to 1 by 
0.02.  

P2 (Reference Group Proportion) 
Specify the value of , the reference, baseline, or control group’s proportion. The null 
hypothesis is that the two proportions differ by no more than a specified amount. Since P2 is a 
proportion, these values must be between 0 and 1. 

p2

You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1. 
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Options Tab 
The Options tab contains various limits and options. 

Maximum N1 or N2 Exact 
When either N1 or N2 is above this amount, power calculations are based on the normal 
approximation to the binomial. In this case, the actual value of alpha is not calculated. Currently, 
for three-gigahertz computers, a value near 200 is reasonable. As computers get faster, this 
number may be increased. 

Maximum Iterations 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. A value of at least 500 is recommended. 

Zero Count Adjustment Method 
Zero cell counts cause many calculation problems. To compensate for this, a small value (called 
the Zero Count Adjustment Value) can be added either to all cells or to all cells with zero counts. 
This option specifies whether you want to use the adjustment and which type of adjustment you 
want to use. We recommend that you use the option ‘Add to zero cells only.’ 

Zero cell values often do not occur in practice. However, since power calculations are based on 
total enumeration, they will occur in power and sample size estimation. 

Adding a small value is controversial, but can be necessary for computational considerations. 
Statisticians have recommended adding various fractions to zero counts. We have found that 
adding 0.0001 seems to work well. 

Zero Count Adjustment Value 
Zero cell counts cause many calculation problems when computing power or sample size. To 
compensate for this, a small value may be added either to all cells or to all zero cells. This is the 
amount that is added. We have found that 0.0001 works well. 

Be warned that the value of the ratio and the odds ratio will be affected by the amount specified 
here! 
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Example1 - Finding Power 
A study is being designed to establish the non-inferiority of a new treatment compared to the 
current treatment. Historically, the current treatment has enjoyed a 60% cure rate. The new 
treatment reduces the seriousness of certain side effects that occur with the current treatment. 
Thus, the new treatment will be adopted even if it is slightly less effective than the current 
treatment. The researchers will recommend adoption of the new treatment if it has a cure rate of at 
least 55%.  

The researchers plan to use the Farrington and Manning likelihood score test statistic to analyze 
the data that will be (or has been) obtained. They want to study the power of the Farrington and 
Manning test at group sample sizes ranging from 50 to 500 for detecting a difference of -0.05 
when the actual cure rate of the new treatment ranges from 57% to 70%. The significance level 
will be 0.025. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example1 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
D0......................................................-0.05 
D1......................................................-0.03 0.00 0.05 0.10 
P2......................................................0.6 
Higher Proportions Are......................Better 
N1......................................................50 to 500 by 50 
N2......................................................Use R 
R........................................................1.0 
Alpha .................................................0.025 
Beta...................................................Ignored since this is the Find setting 
Options Tab 
Maximum N1 or N2 Exact .................300 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results of Non-Inferiority Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample  Equiv. Actual Equiv. Actual    
 Size Size Grp 2 Grp 1 Grp 1 Margin Margin    
 Grp 1 Grp 2 Prop Prop Prop Diff Diff Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.0380 50 50 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250 0.0236 0.9620 
0.0494 100 100 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250 0.0267 0.9506 
0.0525 150 150 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250 0.0241 0.9475 
0.0588 200 200 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250 0.0244 0.9412 
0.0650 250 250 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250 0.0241 0.9350 
0.0735 300 300 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250 0.0261 0.9265 
0.0776 350 350 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250  0.9224 
0.0832 400 400 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250  0.9168 
0.0886 450 450 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250  0.9114 
0.0940 500 500 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250  0.9060 
Report continues … 
 
Note: exact results based on the binomial were only calculated when both N1 and N2 were less than 300. 
 
Report Definitions 
'Power' is the probability of rejecting a false null hypothesis. It should be close to one. 
'N1 and N2' are the sizes of the samples drawn from the corresponding groups. 
'P2' is the response rate for group two which is the standard, reference, baseline, or control group. 
'P1.0' is the smallest treatment-group response rate that still yields a non-inferiority conclusion.  
'P1.1' is the treatment-group response rate at which the power is calculated.  
'D0' is the non-inferiority margin. It is the difference P1-P2 assuming H0. 
'D1' is the actual difference, P1-P2, at which the power is calculated. 
'Target Alpha' is the probability of rejecting a true null hypothesis that was desired. 
'Actual Alpha' is the value of alpha that is actually achieved. 
'Beta' is the probability of accepting a false H0. Beta = 1 - Power. 
'Grp 1' refers to Group 1 which is the treatment or experimental group. 
'Grp 2' refers to Group 2 which is the reference, standard, or control group. 
' Equiv.' refers to a small amount that is not of practical importance. 
'Actual' refers to the true value at which the power is computed. 
 
Summary Statements 
Sample sizes of 50 in group one and 50 in group two achieve 4% power to detect a 
non-inferiority margin difference between the group proportions of -0.0500. The reference group 
proportion is 0.6000. The treatment group proportion is assumed to be 0.5500 under the null 
hypothesis of inferiority. The power was computed at for the case when the actual treatment 
group proportion is 0.5700. The test statistic used is the one-sided Score test (Farrington & 
Manning). The significance level of the test was targeted at 0.0250. The significance level 
actually achieved by this design is 0.0236. 
 

This report shows the values of each of the parameters, one scenario per row. Note that the actual 
alpha value is blank for sample sizes greater than 300, which was the limit set for exact 
computation.  

Most of the report columns have obvious interpretations. Those that may not be obvious are 
presented here. Note that the discussion below assumes that higher response rates are better and 
that non-inferiority testing (rather than superiority testing) is planned. 

Prop Grp 2 P2 
This is the value of P2, the response rate in the control group. 

Equiv. Grp 1 Prop P1.0 
This is the value of P1.0, the response rate of the treatment group, as specified by the null 
hypothesis of inferiority. Values of P1 less than this amount are considered different from P2. 
Values of P1 greater than this are considered noninferior to the reference group. The difference 
between this value and P2 is the value of the null hypothesis. 
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Actual Grp 1 Prop P1.1 
This is the value of P1.1, the response rate of the treatment group, at which the power is 
computed. This is the value of P1 under the alternative hypothesis. The difference between this 
value and P2 is the value of the alternative hypothesis. 

Equiv. Margin Diff D0 
This is the value of D0, the difference between the two group proportions under the null 
hypothesis. This value is often called the margin of non-inferiority.  

Actual Margin Diff D1 
This is the value of D1, the difference between the two group proportions at which the power is 
computed. This is the value of the difference under the alternative hypothesis. 

Target Alpha 
This is the value of alpha that was targeted by the design. Note that the target alpha is not usually 
achieved exactly. For one-sided tests, this value should usually be 0.025. 

Actual Alpha 
This is the value of alpha that was actually achieved by this design. Note that since the limit on 
exact calculations was set to 300, and since this value is calculated exactly, it is not shown for 
values of N1 greater than 300.  

The difference between the Target Alpha and the Actual Alpha is caused by the discrete nature of 
the binomial distribution and the use of the normal approximation to the binomial in determining 
the critical value of the test statistic. 

Plots Section 
  

 

Power vs N1 by D1 with P2=0.60 A=0.03 N2=N1
D0=-0.05 1-Sided LS FM Test
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The values from the table are displayed in the above chart. This chart gives us a quick look at the 
sample size that will be required for various values of D1. 
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Example2 - Finding the Sample Size 
Continuing with the scenario given in Example 1, the researchers want to determine the sample 
size necessary for each value of D1 to achieve a power of 0.80. To cut down on the runtime, they 
decide to look at approximate values whenever N1 is greater than 100.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example2 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................N1 
Test Statistic .....................................Likelihood Score (Farr. & Mann.) 
D0 .....................................................-0.05 
D1 .....................................................-0.03 0.00 0.05 0.10 
P2......................................................0.6 
Higher Proportions Are .....................Better 
N1 ..................................................... Ignored since this is the Find setting 
N2 .....................................................Use R 
R .......................................................1.0 
Alpha.................................................0.025 
Beta...................................................0.2 
Options Tab 
Maximum N1 or N2 Exact .................100 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Non-Inferiority Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample  Equiv. Actual Equiv. Actual    
 Size Size Prop Grp 1 Grp 1 Margin Margin    
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.8000 9509 9509 0.6000 0.5500 0.5700 -0.0500 -0.0300 0.0250  0.2000 
0.8001 1505 1505 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0250  0.1999 
0.8008 368 368 0.6000 0.5500 0.6500 -0.0500 0.0500 0.0250  0.1992 
0.8019 159 159 0.6000 0.5500 0.7000 -0.0500 0.1000 0.0250  0.1981 

 

The required sample size will depend a great deal on the value of D1. Any effort spent 
determining an accurate value for D1 will be worthwhile.  
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Example3 – Comparing the Power of 
Several Test Statistics 
Continuing with Example 1, the researchers want to determine which of the eight possible test 
statistics to adopt by using the comparative reports and charts that PASS produces. They decide 
to compare the powers and actual alphas for various sample sizes between 50 and 200 when D1 is 
0.1. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example3 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta & Power 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
D0......................................................-0.05 
D1......................................................0.10 
P2......................................................0.6 
Higher Proportions Are......................Better 
N1......................................................50 100 150 200 
N2......................................................Use R 
R........................................................1.0 
Alpha .................................................0.025 
Beta...................................................Ignored since this is the Find setting 
Options Tab 
Maximum N1 or N2 Exact .................300 
Reports Tab 
Show Numeric Report .......................Not checked 
Show Comparative Reports ..............Checked 
Show Definitions ...............................Not checked 
Show Plots ........................................Not checked 
Show Comparative Plots...................Checked 
Summary Statement Rows................0 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Power Comparison of Non-Inferiority Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0.  
    Z(P) Z(UnP) Z(P) Z(UnP) T F.M. M.N. G.N.  
   Target Test Test CC Test CC Test Test Score Score Score  
N1/N2 P2 P1 Alpha Power Power Power Power Power Power Power Power  
50/50 0.6000 0.7000 0.0250 0.3581 0.3670 0.2782 0.2945 0.3464 0.3581 0.3464 0.3581  
100/100 0.6000 0.7000 0.0250 0.6030 0.6088 0.5474 0.5475 0.5982 0.6030 0.6030 0.6030  
150/150 0.6000 0.7000 0.0250 0.7821 0.7837 0.7453 0.7474 0.7821 0.7837 0.7821 0.7821  
200/200 0.6000 0.7000 0.0250 0.8849 0.8857 0.8635 0.8638 0.8849 0.8857 0.8849 0.8849  
 
Actual Alpha Comparison of Non-Inferiority Tests Based on the Difference: P1 – P2 
H0: P2-P1<=D0. H1: P2-P1=D1>D0.  
    Z(P) Z(UnP) Z(P) Z(UnP) T F.M. M.N. G.N.  
   Target Test Test CC Test CC Test Test Score Score Score  
N1/N2 P1 P2 Alpha Alpha Alpha Alpha Alpha Alpha Alpha Alpha Alpha  
50/50 0.6000 0.7000 0.0250 0.0236 0.0253 0.0140 0.0161 0.0225 0.0236 0.0225 0.0236  
100/100 0.6000 0.7000 0.0250 0.0267 0.0267 0.0190 0.0190 0.0266 0.0267 0.0267 0.0267  
150/150 0.6000 0.7000 0.0250 0.0239 0.0241 0.0181 0.0183 0.0239 0.0241 0.0239 0.0239  
200/200 0.6000 0.7000 0.0250 0.0243 0.0244 0.0191 0.0191 0.0243 0.0244 0.0243 0.0243 
 

Power vs N1 by Test with D1=0.10 P2=0.60 A=0.03
N2=N1 D0=-0.05 1-Sided Test
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It is interesting to note that the powers of the continuity-corrected test statistics are consistently 
lower than the other tests. This occurs because the actual alpha achieved by these tests is lower 
than for the other tests. An interesting finding of this example is that the regular t-test performed 
about as well as the z-test.  
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Example4 - Validation using Machin with 
Equal Sample Sizes 
Machin et al. (1997), page 106, present a sample size study in which P2 = 0.5, D0 = -0.2, D1=0, 
one-sided alpha = 0.1, and beta = 0.2. Using the Farrington and Manning test statistic, they found 
the sample size to be 55 in each group. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example4 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................N1 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
D0......................................................-0.2 
D1......................................................0.0 
P2......................................................0.5 
Higher Proportions Are......................Better 
N1......................................................Ignored since this is the Find setting 
N2......................................................Use R 
R........................................................1.0 
Alpha .................................................0.1 
Beta...................................................0.2 
Options Tab 
Maximum N1 or N2 Exact .................2 (Set low for a rapid search.) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Non-Inferiority Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample  Equiv. Actual Equiv. Actual    
 Size Size Prop Grp 1 Grp 1 Margin Margin    
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.8001 55 55 0.5000 0.3000 0.5000 -0.2000 0.0000 0.1000  0.1999 
 

PASS found the required sample size to be 55 which corresponds to Machin.  
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Example5 - Validation of a Superiority 
Test using Farrington and Manning 
Farrington and Manning (1990), page 1451, present a sample size study for a superiority test in 
which P2 = 0.05, D0 = 0.2, D1=0.35, one-sided alpha = 0.05, and beta = 0.20. Using the 
Farrington and Manning test statistic, they found the sample size to be 80 in each group. They 
mention that the true power is 0.813. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example5 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................N1 
Test Statistic .....................................Likelihood Score (Farr. & Mann.) 
D0 .....................................................0.2 
D1 .....................................................0.35 
P2......................................................0.05 
Higher Proportions Are .....................Better 
N1 ..................................................... Ignored since this is the search parameter. 
N2 .....................................................Use R 
R .......................................................1.0 
Alpha.................................................0.05 
Beta...................................................0.20 
Options Tab 
Maximum N1 or N2 Exact .................2 (Set low for a rapid search.) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Non-Inferiority Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample  Equiv. Actual Equiv. Actual    
 Size Size Prop Grp 1 Grp 1 Margin Margin    
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.8007 80 80 0.0500 0.2500 0.4000 0.2000 0.3500 0.0500  0.1993 
 

PASS also calculated the required sample size to be 80.  
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Next, to calculate the exact power for this sample size, we make the following changes to the 
template. 

Data Tab 
Find ...................................................Beta and Power 
N1......................................................80 
Options Tab 
Maximum N1 or N2 Exact .................200 (Set >80 to force exact calculation.) 

Numeric Results 
 
Numeric Results of Non-Inferiority Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample  Equiv. Actual Equiv. Actual    
 Size Size Prop Grp 1 Grp 1 Margin Margin    
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha Beta 
0.8132 80 80 0.0500 0.2500 0.4000 0.2000 0.3500 0.0500 0.0553 0.1993 
 

PASS also calculated the exact power to be 0.813.  
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Example 6 - Validation of Risk Ratio 
Calculations using Blackwelder 
Blackwelder (1993), page 695, presents a table of power values for several scenarios using the 
risk ratio. The second line of the table presents the results for the following scenario: P2 = 0.04, 
R0 = 0.3, R1=0.1, N1=N2=1044, one-sided alpha = 0.05, and beta = 0.20. Using the Farrington 
and Manning likelihood-score test statistic, he found the exact power to be 0.812, the exact alpha 
to be 0.044, and, using the asymptotic formula, the approximate power to be 0.794. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the ratio parameterization.  You can make these changes 
directly on your screen or you can load the template entitled Example6 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Test Statistic .....................................Likelihood Score (Farr. & Mann.) 
R0 .....................................................0.3 
R1 .....................................................0.1 
P2......................................................0.04 
Higher Proportions Are .....................Worse 
N1 .....................................................1044 
N2 .....................................................Use R 
R .......................................................1.0 
Alpha.................................................0.05 
Beta...................................................0.20 
Options Tab 
Maximum N1 or N2 Exact .................2000 (Set high for exact results.) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results of Non-Inferiority Tests Based on the Difference: P1 / P2 
H0: P1/P2>=R0. H1: P1/P2=R1<R0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample  Equiv. Actual Equiv. Actual    
 Size Size Prop Grp 1 Grp 1 Margin Margin    
 Grp 1 Grp 2 Grp 2 Prop Prop Ratio Ratio Target Actual  
Power N1 N2 P2 P1.0 P1.1 R0 R1 Alpha Alpha Beta 
0.8118 1044 1044 0.0400 0.0120 0.0040 0.300 0.100 0.0500 0.0444 0.1882 
 

PASS also calculated the power to be 0.812 and the actual alpha to be 0.044, within rounding.  
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Next, to calculate the asymptotic power, we make the following changes to the template. 

Options Tab 
Maximum N1 or N2 Exact .................2 (Set < 1044 to force asymptotic calculation.) 

Numeric Results 
 
Numeric Results of Non-Inferiority Tests Based on the Difference: P1 / P2 
H0: P1/P2>=R0. H1: P1/P2=R1<R0. Test Statistic: Score test (Farrington & Manning) 
 
 Sample Sample  Equiv. Actual Equiv. Actual    
 Size Size Prop Grp 1 Grp 1 Margin Margin    
 Grp 1 Grp 2 Grp 2 Prop Prop Ratio Ratio Target Actual  
Power N1 N2 P2 P1.0 P1.1 R0 R1 Alpha Alpha Beta 
0.7937 1044 1044 0.0400 0.0120 0.0040 0.300 0.100 0.0500  0.2063 
 

PASS also calculated the power to be 0.794.  
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Example7 - Finding Power following an 
Experiment 
In an effort to show a new treatment non-inferior to the current standard, researchers randomly 
assigned 80 subjects to each treatment. The new treatment was to be considered non-inferior if 
the odds ratio (treatment to standard) was at least 0.80. Using the Farrington and Manning 
Likelihood Score test, non-inferiority could not be concluded. The researchers now want to see 
the power of the test. The control proportion was 0.625. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example7 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Test Statistic .....................................Likelihood Score (Farr. & Mann.) 
Specify Treatment Proportion using..Odds Ratios 
OR0...................................................0.80 
OR1...................................................1.0 
P2......................................................0.625 
Higher Proportions Are .....................Better 
N1 .....................................................80 
N2 .....................................................Use R 
R .......................................................1.0 
Alpha.................................................0.05 
Beta................................................... Ignored 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
 Numeric Results for Non-Inferiority Tests Based on the Odds Ratio: O1 / O2 
 H0: O1/O2<=OR0. H1: O1/O2=OR1>OR0. Test Statistic: Score test (Farrington & Manning) 
 
  Sample Sample  Equiv. Actual Equiv. Actual    
  Size Size Grp 2 Grp 1 Grp 1 Margin Margin    
  Grp 1 Grp 2 Prop Prop Prop O.R. O.R. Target Actual  
 Power N1 N2 P2 P1.0 P1.1 OR0 OR1 Alpha Alpha Beta 
 0.1845 80 80 0.6250 0.5714 0.6250 0.800 1.000 0.0500 0.0571 0.8155 
 

The power of a test with 80 receiving each treatment is only 0.1801. 
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Example8 - Finding True Proportion 
Difference 
Researchers have developed a new treatment with minimal side effects compared to the standard 
treatment. The researchers are limited by the number of subjects (140 per group) they can use to 
show the new treatment is non-inferior. The new treatment will be deemed non-inferior if it is at 
least 0.10 below the success rate of the standard treatment. The standard treatment has a success 
rate of about 0.75. The researchers want to know how much more successful the new treatment 
must be (in truth) to yield a test which has 90% power. The test statistic used will be the pooled Z 
test. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example8 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................P1.1 (Search>P1.0) 
Test Statistic......................................Z Test (Pooled) 
D0......................................................-0.10 
D1......................................................Ignored 
P2......................................................0.75 
Higher Proportions Are......................Better 
N1......................................................140 
N2......................................................Use R 
R........................................................1.0 
Alpha .................................................0.05 
Beta...................................................0.10 
Options Tab 
Maximum N1 or N2 Exact .................500 (Set high for exact results.) 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Z test (pooled) 
 
 Sample Sample  Equiv. Actual Equiv. Actual    
 Size Size Grp 2 Grp 1 Grp 1 Margin Margin    
 Grp 1 Grp 2 Prop Prop Prop Diff Diff Target Actual  
Power N1 N2 P2 P1.0 P1.1 D0 D1 Alpha Alpha    Beta 
0.9000 140 140 0.7500 0.6500 0.7961 -0.1000 0.0461 0.0500 0.0505 0.1000 

 

With 140 subjects in each group, the new treatment must have a success rate 0.0464 higher than 
the current treatment (or about 0.7964) to have 90% power in the test of non-inferiority. 
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Chapter 215  

Equivalence of 
Two Independent 
Proportions 
Introduction 
This module provides power analysis and sample size calculation for equivalence tests in two-
sample designs in which the outcome is binary. Users may choose from among eight popular test 
statistics commonly used for running the hypothesis test.  

The power calculations assume that independent, random samples are drawn from two 
populations.  

Four Procedures Documented Here 
There are four procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, ratios of proportions, and odds ratios. Each 
of these options is listed separately on the menus.  

Example 
An equivalence test example will set the stage for the discussion of the terminology that follows. 
Suppose that the response rate of the standard treatment of a disease is 0.70. Unfortunately, this 
treatment is expensive and occasionally exhibits serious side-effects. A promising new treatment 
has been developed to the point where it can be tested. One of the first questions that must be 
answered is whether the new treatment is therapeutically equivalent to the standard treatment.  

Because of the many benefits of the new treatment, clinicians are willing to adopt the new 
treatment even if its effectiveness is slightly different from the standard. After thoughtful 
discussion with several clinicians, it is decided that if the response rate of the new treatment is 
between 0.63 and 0.77, the new treatment would be adopted. The margin of equivalence is 0.07.  

The developers must design an experiment to test the hypothesis that the response rate of the new 
treatment does not differ from that of the standard treatment by more than 0.07. The statistical 
hypothesis to be tested is 

H p p0 1 2 0 07: .− ≥  versus H p p1 1 2 0 07: .− <  
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Technical Details  
The details of sample size calculation for the two-sample design for binary outcomes are 
presented in the chapter entitled “Two Proportion Non-Null Case,” and they will not be 
duplicated here. Instead, this chapter only discusses those changes necessary for equivalence 
tests.  

Approximate sample size formulas for equivalence tests of two proportions are presented in 
Chow et al. (2003), page 88. Only large sample (normal approximation) results are given there. 
The results available in this module use exact calculations based on the enumeration of all 
possible values in the binomial distribution. 

Suppose you have two populations from which dichotomous (binary) responses will be recorded. 
Assume without loss of generality that higher proportions are better. The probability (or risk) of 
cure in group 1 (the treatment group) is  and in group 2 (the reference group) is . Random 
samples of and individuals are obtained from these two groups. The data from these 
samples can be displayed in a 2-by-2 contingency table as follows 

p1 p2

n1 n2

Group Success Failure Total 
Treatment a c m 
Control b d n 
Totals s f N 
 
The following alternative notation is also used. 

Group Success Failure Total 
Treatment    x11 x12 n1

Control    x21 x22 n2

Totals   N m1 m2

The binomial proportions  and  are estimated from these data using the formulae p1 p2

$p a
m

x
n1
11

1

= =  and $p b
n

x
n2

21

2

= =  
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Let  represent the group 1 proportion tested by the null hypothesis . The power of a test is 
computed at a specific value of the proportion which we will call . Let 

p1 0. H0

p11. δ  represent the 
smallest difference (margin of equivalence) between the two proportions that still results in the 
conclusion that the new treatment is equivalent to the current treatment. The set of statistical 
hypotheses that are tested is 

H0 1 0 2: .p p− ≥ δ  versus H1 1 0 2: .p p− < δ  

These hypotheses can be rearranged to give 

H or0 1 0 2 1 0 2: . .p p p pL U− ≤ − ≥δ δ  versus H1 1 0 2: .δ δL Up p≤ − ≤  

This composite hypothesis can be reduced to two one-sided hypotheses as follows 

H0 1 0 2L Lp p: . − ≤ δ  versus H1 1 0L L p p: . 2δ ≤ −  

H0 1 0 2U Up p: . − ≥ δ  versus H1 1 0U U p p: . 2δ ≥ −  

There are three common methods of specifying the margin of equivalence. The most direct is to 
simply give values for   and . However, it is often more meaningful to give  and then 
specify  implicitly by reporting the difference, ratio, or odds ratio. Mathematically, the 
definitions of these parameterizations are 

p2 p1 0. p2

p1 0.

 

Parameter Computation Alternative Hypotheses

Difference  δ = −p p1 0 2.  H1 1 0 2: .δ δL Up p≤ − ≤  

Ratio φ = p p1 0 2. /  H1 1 0 2: /.φ φL Up p≤ ≤  

Odds Ratio ψ = Odds Odds1 0 2. /  H1 1 0 2: /.ψ ψL Uo o≤ ≤  
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Difference 
The difference is perhaps the most direct method of comparison between two proportions. It is 
easy to interpret and communicate. It gives the absolute impact of the treatment. However, there 
are subtle difficulties that can arise with its interpretation.  

One difficulty arises when the event of interest is rare. If a difference of 0.001 occurs when the 
baseline probability is 0.40, it would be dismissed as being trivial. However, if the baseline 
probability of a disease is 0.002, a 0.001 decrease would represent a reduction of 50%. Thus 
interpretation of the difference depends on the baseline probability of the event.  

Note that δL < 0  and δU > 0 . Usually, δ δL U= − . 

Equivalence using a Difference 
The following example might help you understand the concept of an equivalence test. Suppose 
60% of patients respond to the current treatment method ( )p2 0 60= . . If the response rate of the 
new treatment is no less than five percentage points better or worse than the existing treatment, it 
will be considered to be equivalent. Substituting these figures into the statistical hypotheses gives 

H or0 1 0 2 1 0 20 05 0 05: .. .p p p p− ≤ .− − ≥  versus H1 1 0 20 05 0 05: . ..− ≤ − ≤p p  

Using the relationship 

p p1 0 2. = +δ  

gives 

H or0 1 0 1 00 55 0 65: .. .p p≤ ≥ .  versus H1 1 00 55 0 65: . ..≤ ≤p  

In this example, when the null hypothesis is rejected, the concluded alternative is that the 
response rate is between 0.55 and 0.65.  
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Ratio 
The ratio,φ = p p1 0 2. / , gives the relative change in the probability of the response. Testing 
equivalence uses the formulation  

H or0 1 0 2 1 0 2: / /. .p p p pL U≤ ≥φ φ  versus H1 1 0 2: /.φ φL Up p≤ ≤  

The only subtlety is that for equivalence tests φL < 1 andφU >1. Usually, φ φL U= 1 / . 

Equivalence using a Ratio 
The following example might help you understand the concept of equivalence as defined by the 
ratio. Suppose that 60% of patients ( )p2 0 60= .  respond to the current treatment method. If the 
response rate of a new treatment is within 10% of 0.60, it will be considered to be equivalent to 
the standard treatment. Substituting these figures into the statistical hypotheses gives 

H or0 1 0 2 1 0 20 9 11: / . /. .p p p p≤ ≥ .  versus H1 1 0 20 9 11: . / ..≤ ≤p p  

Using the relationship 

p p1 0 0 2. = φ  

gives 

H or0 1 0 1 00 54 0 66: . .. .p p≤ ≥  versus H1 1 00 54 0 66: . ..≤ ≤p  

Odds Ratio 
The odds ratio, ( )( ) ( )( )ψ = − −p p p p1 0 1 0 2 21 1. ./ / / , gives the relative change in the odds (o) of 
the response. Testing equivalence use the formulation  

H or0 1 0 2 1 0 2: / /. .o o o oL U≤ ≥ψ ψ  versus H1 1 0 2: /.ψ ψL Uo o≤ ≤  

The only subtlety is that for equivalence tests ψ L <1 andψU > 1. Usually, ψ ψL U= 1 / . 
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Power Calculation 
The power for a test statistic that is based on the normal approximation can be computed exactly 
using two binomial distributions. The following steps are taken to compute the power of these 
tests.  
1.  Find the critical values using the standard normal distribution. The critical values  and  

are chosen as that value of z that leaves exactly the target value of alpha in the appropriate tail 
of the normal distribution.  

zL zU

2.  Compute the value of the test statistic  for every combination of  and . Note that  
ranges from 0 to , and  ranges from 0 to . A small value (around 0.0001) can be 
added to the zero-cell counts to avoid numerical problems that occur when the cell value is 
zero. 

zt x11 x21 x11

n1 x21 n2

3. If z  and , the combination is in the rejection region. Call all combinations of 
 and  that lead to a rejection the set A. 

zt > L Uz zt <
x11 x21

4. Compute the power for given values of  and  as p11. p2

1 1

11
11 11

2

21
2 2

11 1 11 21 2 21− =
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟− −∑β

n
x

p q
n
x

p qx n x x n x

A
. .  

5. Compute the actual value of alpha achieved by the design by substituting and  for 
 to obtain  

p L1 0. p U1 0.

p11.

αL L
x

L
n x x n x

A

n
x

p q
n
x

p q=
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟− −∑ 1

11
1 0 1 0

2

21
2 2

11 1 11 21 2 21
. .  

and 

αU U
x

U
n x x n x

A

n
x

p q
n
x

p q=
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟− −∑ 1

11
1 0 1 0

2

21
2 2

11 1 11 21 2 21
. .  

The value of alpha is then computed as the maximum ofαL andαU . 

Asymptotic Approximations 
When the values of  and  are large (say over 200), these formulas take a long time to 
evaluate. In this case, a large sample approximation can be used. The large sample approximation 
is made by replacing the values of  and  in the z statistic with the corresponding values of 

 and  and then computing the results based on the normal distribution. Note that in large 
samples, the Farrington and Manning statistic is substituted for the Gart and Nam statistic. Also, 
for large samples, the results for the odds ratio have not (to our knowledge) been published. In 
this case, we substitute the calculations which are based on the ratio hypotheses. 

n1 n2

$p1 $p2

p11. p2
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Test Statistics 
Several test statistics have been proposed for testing whether the difference, ratio, or odds ratio 
are different from a specified value. The main difference among the several test statistics is in the 
formula used to compute the standard error used in the denominator. These tests are based on the 
following z-test  

z p p c
t =

− − −$ $

$
1 2 0δ

σ
 

The constant, c, represents a continuity correction that is applied in some cases. When the 
continuity correction is not used, c is zero. In power calculations, the values of  and  are not 
known. The corresponding values of  and  can be reasonable substitutes. 

$p1 $p2

p11. p2

Following is a list of the test statistics available in PASS. The availability of several test statistics 
begs the question of which test statistic one should use. The answer is simple: one should use the 
test statistic that will be used to analyze the data. You may choose a method because it is a 
standard in your industry, because it seems to have better statistical properties, or because your 
statistical package calculates it. Whatever your reasons for selecting a certain test statistic, you 
should use the same test statistic when doing the analysis after the data have been collected. 

Z Test (Pooled) 
This test was first proposed by Karl Pearson in 1900. Although this test is usually expressed 
directly as a chi-square statistic, it is expressed here as a z statistic so that it can be more easily 
used for one-sided hypothesis testing. The proportions are pooled (averaged) in computing the 
standard error. The formula for the test statistic is  

z p p
t =

− −$ $

$
1 2

1

0δ
σ

 

where  

( )$σ1
1 2

1 1 1
= − +

⎛
⎝
⎜

⎞
⎠
⎟p p

n n
 

p n p n p
n n

=
+
+

1 1 2 2

1 2

$ $
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Z Test (Unpooled) 
This test statistic does not pool the two proportions in computing the standard error.  

z p p
t =

− −$ $

$
1 2

2

0δ
σ

 

where  

( ) ( )
$

$ $ $ $
σ2

1 1

1

2 2

2

1 1
=

−
+

−p p
n

p p
n

 

Z Test with Continuity Correction (Pooled)  
This test is the same as Z Test (Pooled), except that a continuity correction is used. Remember 
that in the null case, the continuity correction makes the results closer to those of Fisher’s Exact 
test. 

z
p p F

n n
t =

− − + +
⎛
⎝
⎜

⎞
⎠
⎟$ $

$

1 2 0
1 2

1

2
1 1δ

σ
 

( )$σ1
1 2

1 1 1
= − +

⎛
⎝
⎜

⎞
⎠
⎟p p

n n
 

p n p n p
n n

=
+
+

1 1 2 2

1 2

$ $
 

where F is -1 for lower-tailed hypotheses and 1 for upper-tailed hypotheses. 

Z Test with Continuity Correction (Unpooled)  
This test is the same as the Z Test (Unpooled), except that a continuity correction is used. 
Remember that in the null case, the continuity correction makes the results closer to those of 
Fisher’s Exact test. 

z
p p F

n n
t =

− − − +
⎛
⎝
⎜

⎞
⎠
⎟$ $

$

1 2 0
1 2

2

2
1 1δ

σ
 

( ) ( )
$

$ $ $ $
σ2

1 1

1

2 2

2

1 1
=

−
+

−p p
n

p p
n

 

where F is -1 for lower-tailed hypotheses and 1 for upper-tailed hypotheses. 

T-Test of Difference 
Because of a detailed, comparative study of the behavior of several tests, D’Agostino (1988) and 
Upton (1982) proposed using the usual two-sample t-test for testing whether the two proportions 
are equal. One substitutes a ‘1’ for a success and a ‘0’ for a failure in the usual, two-sample t-test 
formula.  
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Miettinen and Nurminen’s Likelihood Score Test of the 
Difference 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the difference is equal 
to a specified, non-zero, value,δ0 . The regular MLE’s,  and , are used in the numerator of 
the score statistic while MLE’s  and 

$p1 $p2
~p1

~p2 , constrained so that ~ ~p p1 2 0− = δ , are used in the 
denominator. A correction factor of N/(N-1) is applied to make the variance estimate less biased. 
The significance level of the test statistic is based on the asymptotic normality of the score 
statistic.  

The formula for computing this test statistic is 

z p p
MND

MND

=
− −$ $

$
1 2 0δ
σ

 

where 

$
~ ~ ~ ~

σ MND
p q
n

p q
n

N
N

= +
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

1 1

1

2 2

2 1
 

~ ~p p1 2 0= +δ  

( )~ cosp B A L
L1
2

3

2
3

= −  

A C
B

= + ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣⎢
⎤

⎦⎥
−1

3
1

3π cos  

( )B C L
L

L
L

= −sign 2
2

3

1

39 3
 

C L
L

L L
L

L
L

= − +2
3

3
3

1 2

3
2

0

327 6 2
 

( )L x0 21 0 01= −δ δ  

[ ]L N N x M1 2 0 21 02 1= − − +δ δ  

( )L N N N M2 2 0 1= + − −δ  
L N3 =  
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Miettinen and Nurminen’s Likelihood Score Test of the Ratio 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the ratio is equal to a 
specified value,φ0 . The regular MLE’s,  and , are used in the numerator of the score 
statistic while MLE’s  and 

$p1 $p2
~p1

~p2 , constrained so that ~ / ~p p1 2 0= φ , are used in the denominator. 
A correction factor of N/(N-1) is applied to make the variance estimate less biased. The 
significance level of the test statistic is based on the asymptotic normality of the score statistic.  

The formula for computing the test statistic is 

 z p p

p q
n

p q
n

N
N

MNR =
−

+
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

$ / $
~ ~ ~ ~

1 2 0

1 1

1
0
2 2 2

2 1

φ

φ

  

where 
~ ~p p1 2 0= φ  

~p B B AC
A2

2 4
2

=
− − −

 

A N= φ0  

[ ]B N x N x= − + + +1 0 11 2 21 0φ φ  
C M= 1  

Miettinen and Nurminen’s Likelihood Score Test of the Odds 
Ratio 
Miettinen and Nurminen (1985) proposed a test statistic for testing whether the odds ratio is equal 
to a specified value,ψ 0 . Because the approach they used with the difference and ratio does not 
easily extend to the odds ratio, they used a score statistic approach for the odds ratio. The regular 
MLE’s are  and . The constrained MLE’s are  and $p1 $p2

~p1
~p2 . These estimates are constrained 

so that ~ψ ψ= 0 . A correction factor of N/(N-1) is applied to make the variance estimate less 
biased. The significance level of the test statistic is based on the asymptotic normality of the score 
statistic. The formula for computing the test statistic is 

 

( ) ( )
z

p p
p q

p p
p q

N p q N p q
N

N

MNO =

−
−

−

+
⎛
⎝
⎜

⎞
⎠
⎟

−
⎛
⎝⎜

⎞
⎠⎟

$ ~
~ ~

$ ~
~ ~

~ ~ ~ ~

1 1

1 1

2 2

2 2

2 1 1 2 2 2

1 1
1

  

where 

( )
~ ~

~p p
p1

2 0

2 01 1
=

+ −
ψ
ψ

 

~p B B AC
A2

2 4
2

=
− + −

 

( )A N= −2 0 1ψ  

( )B N N M= + − −1 0 2 1 0 1ψ ψ  
C M= − 1  
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Farrington and Manning’s Likelihood Score Test of the 
Difference 
Farrington and Manning (1990) proposed a test statistic for testing whether the difference is equal 
to a specified value,δ0 . The regular MLE’s,  and , are used in the numerator of the score 
statistic while MLE’s  and 

$p1 $p2
~p1

~p2 , constrained so that ~ ~p p1 2 0− = δ , are used in the denominator. 
The significance level of the test statistic is based on the asymptotic normality of the score 
statistic.  

The formula for computing the test statistic is 

 z p p

p q
n

p q
n

FMD =
− −

+
⎛
⎝
⎜

⎞
⎠
⎟

$ $

~ ~ ~ ~
1 2 0

1 1

1

2 2

2

δ   

where the estimates  and ~p1
~p2  are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 

Farrington and Manning’s Likelihood Score Test of the Ratio 
Farrington and Manning (1990) proposed a test statistic for testing whether the ratio is equal to a 
specified value,φ0 . The regular MLE’s,  and , are used in the numerator of the score 
statistic while MLE’s  and 

$p1 $p2
~p1

~p2 , constrained so that ~ / ~p p1 2 0= φ , are used in the denominator. 
A correction factor of N/(N-1) is applied to increase the variance estimate. The significance level 
of the test statistic is based on the asymptotic normality of the score statistic.  

The formula for computing the test statistic is 

 z p p

p q
n

p q
n

FMR =
−

+
⎛
⎝
⎜

⎞
⎠
⎟

$ / $
~ ~ ~ ~

1 2 0

1 1

1
0
2 2 2

2

φ

φ

  

where the estimates  and ~p1
~p2  are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 

Farrington and Manning’s Likelihood Score Test of the Odds 
Ratio 
Farrington and Manning (1990) indicate that the Miettinen and Nurminen statistic may be 
modified by removing the factor N/(N-1). 

The formula for computing this test statistic is 

 

( ) ( )
z

p p
p q

p p
p q

N p q N p q

FMO =

−
−

−

+
⎛
⎝
⎜

⎞
⎠
⎟

$ ~
~ ~

$ ~
~ ~

~ ~ ~ ~

1 1

1 1

2 2

2 2

2 1 1 2 2 2

1 1
  

where the estimates  and ~p1
~p2  are computed as in the corresponding test of Miettinen and 

Nurminen (1985) given above. 

 



215-12  Two Independent Proportions – Equivalence Tests  

Gart and Nam’s Likelihood Score Test of the Difference 
Gart and Nam (1990), page 638, proposed a modification to the Farrington and Manning (1988) 
difference test that corrects for skewness. Let ( )zFMD δ  stand for the Farrington and Manning 
difference test statistic described above. The skewness-corrected test statistic, , is the 
appropriate solution to the quadratic equation 

zGND

 ( ) ( ) ( )( )− + − + +~ ~γ δz z zGND GND FMD
2 1 0=γ   

where 

( ) ( ) ( )~
~ ~ ~ ~ ~ ~ ~ ~ ~/

γ
δ

=
−

−
−⎛

⎝
⎜

⎞
⎠
⎟

V p q q p
n

p q q p
n

3 2
1 1 1 1

1
2

2 2 2 2

2
26

 

Gart and Nam’s Likelihood Score Test of the Ratio 
Gart and Nam (1988), page 329, proposed a modification to the Farrington and Manning (1988) 
ratio test that corrects for skewness. Let ( )zFMR φ  stand for the Farrington and Manning ratio test 
statistic described above. The skewness-corrected test statistic, , is the appropriate solution to 
the quadratic equation 

zGNR

 ( ) ( ) ( )( )− + − + +~ ~ϕ φz z zGNR GNR FMR
2 1 0=ϕ   

where 

( ) ( )~
~

~ ~ ~
~

~ ~ ~
~/ϕ =

−
−

−⎛
⎝
⎜

⎞
⎠
⎟

1
6 3 2

1 1 1

1
2

1
2

2 2 2

2
2

2
2u

q q p
n p

q q p
n p

 

~ ~
~

~
~u q

n p
q

n p
= +1

1 1

2

2 2
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Procedure Options 
This section describes the options that are specific to this procedure. These are located on the 
Data tab. To find out more about using the other tabs such as Labels or Plot Setup, turn to the 
chapter Procedure Templates. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and beta. This chapter covers four procedures, each of which has different options. 
This section documents options that are common to all four procedures. Later, unique options for 
each procedure will be documented.   

Find 
This option specifies the parameter to be solved for using the other parameters. The parameters 
that may be selected are P1.1, Alpha, Beta, N1, and N2. Under most situations, you will select 
either Beta or N1. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Beta when you want to calculate the power of an experiment.  

Test Statistic 
Specify which test statistic is used in searching and reporting. Although the pooled z-test is 
commonly shown in elementary statistics books, the likelihood score test is arguably the best 
choice. 

Note that C.C. is an abbreviation for Continuity Correction. This refers to the adding or 
subtracting 1/(2n) to (or from) the numerator of the z-value to bring the normal approximation 
closer to the binomial distribution. 

P2 (Reference Group Proportion) 
Specify the value of P2, the reference, baseline, or control group’s proportion. The null 
hypothesis is that the two proportions differ by no more than a specified amount. Since P2 is a 
proportion, these values must be between 0 and 1. 

You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1. 

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. You may enter a range of 
values such as 10 to 100 by 10. 
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N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

Use R 

When Use R is entered here, N2 is calculated using the formula  

N2 = [R(N1)] 

where R is the Sample Allocation Ratio, and [Y] is the first integer greater than or equal to Y. For 
example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R.  

When used, N2 is calculated from N1 using the formula: N2= [R(N1)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis of unequal proportions when in fact they are not 
equal.  

Values must be between 0 and 1. Because this is a two-sided test, unless you have good reason to 
do otherwise, the value of 0.05 is recommended. You should pick a value for alpha that 
represents the risk of a type-I error you are willing to take in your experimental situation.  

You may enter a range of values such as 0.01 0.025 0.05 or 0.01 to 0.10 by 0.01. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of unequal proportions when in fact they 
are equivalent. 

Values must be between 0 and 1. Historically, the value of 0.20 was often used for beta. 
However, you should pick a value for beta that represents the risk of a type-II error you are 
willing to take. 

Power is defined as 1-beta. Power is equal to the probability of rejecting a false null hypothesis. 
Hence, specifying the beta error level also specifies the power level. For example, if you specify 
beta values of 0.05, 0.10, and 0.20, you are specifying power values of 0.95, 0.90, and 0.80, 
respectively.  
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Data Tab (Proportion) 
This section documents options that are used when the parameterization is in terms of the values 
of the two proportions, P1 and P2. P1.0 is the value of the P1 assumed by the null hypothesis and 
P1.1 is the value of P1 at which the power is calculated. 

P1.0U & P1.0L (Upper & Lower Equivalence 
Proportion) 
Specify the margin of equivalence directly by giving the upper and lower bounds of P1.0. The 
two groups are assumed to be equivalent when P1.0 is between these values. Thus, P1.0U should 
be greater than P2 and P1.0L should be less than P2. 

Note that the values of P1.0U and P1.0L are used in pairs. Thus, the first values of P1.0U and 
P1.0L are used together, then the second values of each are used, and so on.   

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

Proportions must be between 0 and 1. They cannot take on the values 0 or 1. These values should 
surround P2. 

P1.1 (Actual Proportion) 
This option specifies the value of P1.1, which is the value of the treatment proportion at which 
the power is to be calculated. Proportions must be between 0 and 1. They cannot take on the 
values 0 or 1.  

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01. 
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Data Tab (Difference) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value 
of P1 at which the power is calculated. Once P2, D0, and D1 are given, the values of P1.1 and 
P1.0 can be calculated. 

D0.U & D0.L (Upper & Lower Equivalence 
Difference) 
Specify the margin of equivalence by specifying the largest distance above (D0.U) and below 
(D0.L) P2 which will still result in the conclusion of equivalence. As long as the actual difference 
is between these two values, the difference is not considered to be large enough to be of practical 
importance.  

The values of D0.U must be positive and the values of D0.L must be negative. D0.L can be set to 
‘-D0.U,’ which is usually what is desired. 

The power calculations assume that P1.0 is the value of P1 under the null hypothesis. This value 
is used with P2 to calculate the value of P1.0 using the formula: P1.0U = D0.U + P2. 

You may enter a range of values for D0.U such as .03 .05 .10 or .05 to .20 by .05. 

Note that if you enter values for D0.L (other than '-D0.U'), they are used in pairs with the values 
of D0.U. Thus, the first values of D0.U and D0.L are used together, then the second values of 
each are used, and so on.   

RANGE: 

D0.L must be between -1 and 0. D0.U must be between 0 and 1. Neither can take on the values    
-1, 0, or 1. 

D1 (Actual Difference) 
This option specifies the actual difference between P1.1 (the actual value of P1) and P2. This is 
the value of the difference at which the power is calculated. In equivalence trials, this difference 
is often set to 0. 

The power calculations assume that P1.1 is the actual value of the proportion in group 1 
(experimental or treatment group). This difference is used with P2 to calculate the true value of 
P1 using the formula: P1.1 = D1 + P2.  

You may enter a range of values such as -.05 0 .5 or -.05 to .05 by .02. Actual differences must be 
between -1 and 1. They cannot take on the values -1 or 1. 
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Data Tab (Ratio) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of P1 at 
which the power is calculated. Once P2, R0, and R1 are given, the values of P1.0 and P1.1 can be 
calculated. 

R0.U & R0.L (Upper & Lower Equivalence Ratio) 
Specify the margin of equivalence by specifying the largest ratio (P1/P2) above (R0.U) and 
below (R0.L) 1 which will still result in the conclusion of equivalence. As long as the actual ratio 
is between these two values, the difference between the proportions is not considered to be large 
enough to be of practical importance.  

The values of R0.U must be greater than 1 and the values of R0.L must be less than 1. R0.L can 
be set to ‘1/R0.U,’ which is often desired. 

The power calculations assume that P1.0 is the value of P1 under the null hypothesis. This value 
is used with P2 to calculate the value of P1.0 using the formula: P1.0U = R0.U x P2. 

You may enter a range of values for R0.U such as 1.1 1.5 1.8 or 1.1 to 2.1 by 0.2. 

Note that if you enter values for R0.L (other than '1/R0.U'), they are used in pairs with the values 
of R0.U. Thus, the first values of R0.U and R0.L are used together, then the second values of 
each are used, and so on.   

R0.L must be between 0 and 1. R0.U must be greater than 1. Neither can take on the value 1.  

R1 (Actual Ratio) 
This option specifies the ratio of P1.1 and P2, where P1.1 is the actual proportion in the treatment 
group. The power calculations assume that P1.1 is the actual value of the proportion in group 1. 
This difference is used with P2 to calculate the value of P1 using the formula: P1.1 = R1 x P2. In 
equivalence trials, this ratio is often set to 1. 

Ratios must be positive. You may enter a range of values such as 0.95 1 1.05 or 0.9 to 1.9 by 
0.02.  
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Data Tab (Odds Ratio) 
This section documents options that are used when the parameterization is in terms of the odds 
ratios, O1.1 / O2 and O1.0 / O2. Note that the odds are defined as O2 = P2 / (1 – P2), O1.0 = P1.0 
/ (1 – P1.0), etc. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of 
P1 at which the power is calculated. Once P2, OR0, and OR1 are given, the values of P1.1 and 
P1.0 can be calculated.  

OR0.U & OR0.L (Upper & Lower Equivalence Odds 
Ratio) 
Specify the margin of equivalence by specifying the largest odds ratio above (OR0.U) and below 
(OR0.L) 1 which will still result in the conclusion of equivalence. As long as the actual odds ratio 
is between these two values, the difference between the proportions is not large enough to be of 
practical importance.  

The values of OR0.U must be greater than 1 and the values of OR0.L must be less than 1. OR0.L 
can be set to ‘1/OR0.U,’ which is often desired. 

The power calculations assume that P1.0 is the value of the P1 under the null hypothesis. This 
value is used with P2 to calculate the value of P1.0. 

You may enter a range of values for OR0.U such as 1.1 1.5 1.8 or 1.1 to 2.1 by 0.2. 

Note that if you enter values for OR0.L (other than '1/OR0.U'), they are used in pairs with the 
values of OR0.U. Thus, the first values of OR0.U and OR0.L are used together, next the second 
values of each are used, and so on.   

OR0.L must be between 0 and 1. OR0.U must be greater than 1. Neither can take on the value 1.  

OR1 (Actual Odds Ratio) 
This option specifies the odds ratio of P1.1 and P2, where P1.1 is the actual proportion in the 
treatment group. The power calculations assume that P1.1 is the actual value of the proportion in 
group 1. This value is used with P2 to calculate the value of P1. In equivalence trials, this odds 
ratio is often set to 1. 

Odds ratios must be positive. You may enter a range of values such as 0.95 1 1.05 or 0.9 to 1.9 by 
0.02.  
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Options Tab 
The Options tab contains various limits and options. 

Maximum N1 or N2 Exact 
When either N1 or N2 is above this amount, power calculations are based on the normal 
approximation to the binomial. When the normal approximation to the binomial is used, the 
actual value of alpha is not calculated. Currently, for three-gigahertz computers, a value near 200 
is reasonable. As computers increase in speed, this number may be increased. 

Maximum Iterations 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. A value of at least 500 is recommended. 

Zero Count Adjustment Method 
Zero cell counts cause many calculation problems. To compensate for this, a small value (called 
the Zero Count Adjustment Value) can be added either to all cells or to all cells with zero counts. 
This option specifies whether you want to use the adjustment and which type of adjustment you 
want to use. We recommend that you use the option ‘Add to zero cells only.’ 

Zero cell values often do not occur in practice. However, since power calculations are based on 
total enumeration, they will occur in power and sample size estimation. 

Adding a small value is controversial, but can be necessary for computational considerations. 
Statisticians have recommended adding various fractions to zero counts. We have found that 
adding 0.0001 seems to work well.  

Zero Count Adjustment Value 
Zero cell counts cause many calculation problems when computing power or sample size. To 
compensate for this, a small value may be added either to all cells or to all zero cells. This value 
indicates the amount that is added. We have found that 0.0001 works well. 

Be warned that the value of the ratio and the odds ratio will be affected by the amount specified 
here!  
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Example1 - Finding Power 
A study is being designed to establish the equivalence of a new treatment compared to the current 
treatment. Historically, the current treatment has enjoyed a 50% cure rate. The new treatment 
reduces the seriousness of certain side effects that occur with the current treatment. Thus, the new 
treatment will be adopted even if it is slightly less effective than the current treatment. The 
researchers will recommend adoption of the new treatment if its cure rate is within 15% of the 
standard treatment.  

The researchers plan to use the Farrington and Manning likelihood score test statistic to analyze 
the data. They want to study the power of the Farrington and Manning test at group sample sizes 
ranging from 50 to 500 for detecting a difference inside 15% when the actual cure rate of the new 
treatment ranges from 50% to 60%. The significance level will be 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example1 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Test Statistic .....................................Likelihood Score (Farr. & Mann.) 
D0.U..................................................0.15 
D0.L ..................................................-D0.U 
D1 .....................................................0.00 0.05 0.10 
P2......................................................0.5 
N1 .....................................................50 to 500 by 50 
N2 .....................................................Use R 
R .......................................................1.0 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Options Tab 
Maximum N1 or N2 Exact .................100 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
Test Statistic: Score test (Farrington & Manning) 
 
    Lower Upper Lower Upper    
 Sample Sample  Equiv. Equiv. Equiv. Equiv. Actual   
 Size Size Prop Grp 1 Grp 1 Margin Margin Margin   
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Diff Target Actual 
Power N1 N2 P2 P1.0L P1.0U D0.L D0.U D1 Alpha Alpha 
0.0000 50 50 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500 0.0515 
0.3793 100 100 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500 0.0489 
0.6689 150 150 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500  
0.8305 200 200 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500  
0.9160 250 250 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500  
0.9594 300 300 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500  
0.9808 350 350 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500  
0.9911 400 400 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500  
Report continues … 
 
Note: exact results based on the binomial were only calculated when both N1 and N2 were less than 100. 
 
Report Definitions 
'Power' is the probability of rejecting a false null hypothesis. It should be close to one. 
'Power' is the probability of concluding equivalence when equivalence is correct. 
'Beta' is the probability of accepting a false H0. Beta = 1 - Power. 
'N1 and N2' are the sizes of the samples drawn from the corresponding groups. 
'P2' is the response rate for group two which is the standard, reference, baseline, or control group. 
'P1.0L' is the smallest treatment-group response rate that still yields an equivalence conclusion.  
'P1.0U' is the largest treatment-group response rate that still yields an equivalence conclusion.  
'D0.L' is the lowest difference that still results in the conclusion of equivalence. 
'D0.U' is the highest difference that still results in the conclusion of equivalence. 
'D1' is the actual difference, P1-P2, at which the power is calculated. 
'Target Alpha' is the probability of rejecting a true null hypothesis that was desired. 
'Actual Alpha' is the value of alpha that is actually achieved. Only available for exact results. 
'Grp 1' refers to Group 1 which is the treatment or experimental group. 
'Grp 2' refers to Group 2 which is the reference, standard, or control group. 
' Equiv.' refers to a small amount that is not of practical importance. 
'Actual' refers to the true value at which the power is computed. 
 
Summary Statements 
Sample sizes of 50 in the treatment group and 50 in the reference group achieve 0% power to 
detect equivalence. The margin of equivalence, given in terms of the difference, extends from 
-0.1500 to 0.1500. The actual difference is 0.0000. The reference group proportion is 0.5000. 
The calculations assume that two, one-sided likelihood score (Farrington & Manning) tests are 
used. Although the significance level is targeted at 0.0500, the level actually achieved is 
0.0515. 
 

This report shows the values of each of the parameters, one scenario per row. Note that the actual 
alpha value is blank for sample sizes greater than 100, which was the limit set for exact 
computation.  

Most of the report columns have obvious interpretations. Those that may not be obvious are 
presented here.  

Prop Grp 2 P2 
This is the value of P2, the response rate in the control group. 

Lower & Upper Equiv. Grp 1 Prop: P1.0L & P1.0U 
These are the margin of equivalence for the response rate of the treatment group as specified by 
the null hypothesis of non-equivalence. Values of P1 inside these limits are considered equivalent 
to P2.  
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Lower & Upper Equiv. Margin Diff: D0.L & D0.U 
These set the margin of equivalence for the difference in response rates. Values of the difference 
outside these limits are considered non-equivalent.  

Actual Margin Diff D1 
This is the value of D1, the difference between the two group proportions at which the power is 
computed. This is the value of the difference under the alternative hypothesis. 

Target Alpha 
This is the value of alpha that was targeted by the design. Note that the target alpha is not usually 
achieved exactly. For two-sided tests, this value will usually be 0.05. 

Actual Alpha 
This is the value of alpha that was actually achieved by this design. Note that since the limit on 
exact calculations was set to 100, and since this value is calculated exactly, it is not shown for 
values of N1 greater than 100.  

The difference between the Target Alpha and the Actual Alpha is caused by the discrete nature of 
the binomial distribution and the use of the normal approximation to the binomial in determining 
the critical value of the test statistic. 

Plots Section 
 

 

Power vs N1 by D1 with P2=0.50 A=0.05 N2=N1
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The values from the table are displayed in the above chart. This chart gives us a quick look at the 
sample size that will be required for various values of D1. 
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Example 2 - Finding the Sample Size 
Continuing with the scenario given in Example 1, the researchers want to determine the sample 
size necessary for each value of D1 to achieve a power of 0.80. To cut down on the runtime, they 
decide to look at approximate values whenever N1 is greater than 100.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example2 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................N1 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
D0.U ..................................................0.15 
D0.L...................................................-D0.U 
D1......................................................0.00 0.05 0.10 
P2......................................................0.5 
N1......................................................Ignored since this is the Find setting. 
N2......................................................Use R 
R........................................................1.0 
Alpha .................................................0.05 
Beta...................................................0.20 
Options Tab 
Maximum N1 or N2 Exact .................100 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
Test Statistic: Score test (Farrington & Manning) 
 
    Lower Upper Lower Upper    
 Sample Sample  Equiv. Equiv. Equiv. Equiv. Actual   
 Size Size Prop Grp 1 Grp 1 Margin Margin Margin   
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Diff Target Actual 
Power N1 N2 P2 P1.0L P1.0U D0.L D0.U D1 Alpha Alpha 
0.8003 188 188 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0000 0.0500  
0.8001 304 304 0.5000 0.3500 0.6500 -0.1500 0.1500 0.0500 0.0500  
0.8001 1202 1202 0.5000 0.3500 0.6500 -0.1500 0.1500 0.1000 0.0500  

 

The required sample size will depend a great deal on the value of D1. Any effort spent 
determining an accurate value for D1 will be worthwhile.  
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Example3 – Comparing the Power of 
Several Test Statistics 
Continuing with Example 1, the researchers want to determine which of the eight possible test 
statistics to adopt by using the comparative reports and charts that PASS produces. They decide 
to compare the powers and actual alphas for various sample sizes between 50 and 200 when D1 is 
0.1.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example3 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Test Statistic .....................................Likelihood Score (Farr. & Mann.) 
D0.U..................................................0.15 
D0.L ..................................................-D0.U 
D1 .....................................................0.10 
P2......................................................0.5 
N1 .....................................................50 to 200 by 50 
N2 .....................................................Use R 
R .......................................................1.0 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Options Tab 
Maximum N1 or N2 Exact .................300 
Reports Tab 
Show Numeric Report.......................Not checked 
Show Comparative Reports ..............Checked 
Show Definitions ...............................Not checked 
Show Plots ........................................Not checked 
Show Comparative Plots...................Checked 
Summary Statement Rows ...............0 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Power Comparison of Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
  Upper           
  Equiv.  Z(P) Z(UnP) Z(P) Z(UnP) T F.M. M.N. G.N.  
  Margin Target Test Test CC Test CC Test Test Score Score Score  
N1/N2 P2 D0.U Alpha Power Power Power Power Power Power Power Power  
50/50 0.5000 0.1500 0.0500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
100/100 0.5000 0.1500 0.0500 0.1494 0.1494 0.1047 0.1047 0.1493 0.1495 0.1494 0.1494  
150/150 0.5000 0.1500 0.0500 0.2208 0.2208 0.1863 0.1863 0.2208 0.2208 0.2208 0.2208  
200/200 0.5000 0.1500 0.0500 0.2552 0.2553 0.2238 0.2239 0.2552 0.2566 0.2566 0.2560  
 
Actual Alpha Comparison of Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
  Upper           
  Equiv.  Z(P) Z(UnP) Z(P) Z(UnP) T F.M. M.N. G.N.  
  Margin Target Test Test CC Test CC Test Test Score Score Score  
N1/N2 P2 D0.U Alpha Alpha Alpha Alpha Alpha Alpha Alpha Alpha Alpha  
50/50 0.5000 0.1500 0.0500 0.0515 0.0515 0.0334 0.0334 0.0514 0.0515 0.0515 0.0515  
100/100 0.5000 0.1500 0.0500 0.0486 0.0486 0.0358 0.0358 0.0485 0.0489 0.0487 0.0487  
150/150 0.5000 0.1500 0.0500 0.0495 0.0495 0.0386 0.0386 0.0495 0.0495 0.0495 0.0495  
200/200 0.5000 0.1500 0.0500 0.0465 0.0468 0.0376 0.0378 0.0465 0.0488 0.0488 0.0481  
 
 

Power vs N1 by Test with D1=0.10 P2=0.50 A=0.05
N2=N1 D0.U=0.15 2-Sided Test

Zp

Zup
Zpcc

Zupcc

T
LS FM

LS MN

LS GN

Po
w

er

Te
st

N1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 50 100 150 200

 
   

It is interesting to note that the powers of the continuity-corrected test statistics are consistently 
lower than the other tests. This occurs because the actual alpha achieved by these tests is lower 
than for the other tests. An interesting finding of this example is that the regular t-test performed 
about as well as the z-test.  
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Example4 - Validation using Chow with 
Equal Sample Sizes 
Chow et al. (2003), page 91, present a sample size study in which P2 = 0.75, D0.U = 0.2, D0.L =  
-0.2, D1 = 0.05, alpha = 0.05, and beta = 0.2. Using the pooled Z test statistic, they found the 
sample size to be 96 in each group. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example4 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................N1 
Test Statistic .....................................Z Test (Pooled) 
Specify Treatment Proportion using..Differences (P1-P2) 
D0.U..................................................0.2 
D0.L ..................................................-D0.U 
D1 .....................................................0.05 
P2......................................................0.75 
N1 ..................................................... Ignored since this is the Find setting. 
N2 .....................................................Use R 
R .......................................................1.0 
Alpha.................................................0.05 
Beta...................................................0.20 
Options Tab 
Maximum N1 or N2 Exact .................2 (Set low for a rapid search.) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 
Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
Test Statistic: Z test (pooled) 
 
    Lower Upper Lower Upper    
 Sample Sample  Equiv. Equiv. Equiv. Equiv. Actual   
 Size Size Prop Grp 1 Grp 1 Margin Margin Margin   
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Diff Target Actual 
Power N1 N2 P2 P1.0L P1.0U D0.L D0.U D1 Alpha Alpha 
0.8028 98 98 0.7500 0.5500 0.9500 -0.2000 0.2000 0.0500 0.0500  
 

PASS found the required sample size to be 98 which is slightly larger than the 96 that Chow 
obtained. This is mainly due to the rounding to two decimal places that Chow did in this example. 
We used the exact option in PASS and obtained N1 = 99. Thus, PASS was indeed closer than was 
Chow.  
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Example5 - Validation using Tuber-Bitter 
with Equal Sample Sizes 
Tuber-Bitter et al. (2000), page 1271, present a sample size study in which P2 = 0.1; D0.U = 
0.01, 0.02, 0.03; D0.L = -D0.U; D1 = 0.0; alpha = 0.05; and beta = 0.1. Using the pooled Z test 
statistic, they found the sample sizes to be 19484, 4871, and 2165 in each group.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example5 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................N1 
Test Statistic .....................................Z Test (Pooled) 
Specify Treatment Proportion using..Differences (P1-P2) 
D0.U.................................................. .01 .02 .03 
D0.L ..................................................-D0.U 
D1 .....................................................0.0 
P2......................................................0.1 
N1 ..................................................... Ignored since this is the Find setting. 
N2 .....................................................Use R 
R .......................................................1.0 
Alpha.................................................0.05 
Beta...................................................0.10 
Options Tab 
Maximum N1 or N2 Exact .................2 (Set low for a rapid search.) 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
Test Statistic: Z test (pooled) 
 
    Lower Upper Lower Upper    
 Sample Sample  Trivial Trivial Trivial Trivial Actual   
 Size Size Prop Grp 1 Grp 1 Margin Margin Margin   
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Diff Target Actual 
Power N1 N2 P2 P1.0L P1.0U D0.L D0.U D1 Alpha Alpha 
0.9000 19480 19480 0.1000 0.0900 0.1100 -0.0100 0.0100 0.0000 0.0500  
0.9000 4870 4870 0.1000 0.0800 0.1200 -0.0200 0.0200 0.0000 0.0500  
0.9001 2165 2165 0.1000 0.0700 0.1300 -0.0300 0.0300 0.0000 0.0500  
 

PASS found the required sample sizes to within rounding error of Tuber-Bitter.  
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Example6 - Computing the Power after 
Completing an Experiment 
Researchers are testing a generic drug to determine if it is equivalent to the name-brand 
alternative.  Equivalence is declared if the success rate of the generic brand is no more than 5% 
from that of the name-brand drug.  In a study with 1000 individuals in each group, they find that 
774, or 77.4%, are successfully treated using the name-brand drug, and 700, or 70%, respond to 
the generic drug.  An equivalence test (exact test) with alpha = 0.05 failed to declare that the two 
drugs are equivalent. The researchers would now like to compute the power for actual differences 
ranging from 0 to 4%.  Suppose that the true value for the response rate for the name-brand drug 
is 77%. 

Note that the power is not calculated at the difference observed in the study, 77.4%.  In fact, the 
difference observed in the study is larger than the proposed equivalence difference, 5%. It would 
make no sense to perform a power calculation for a difference larger than the equivalence 
difference.  It is more informative to study a range of values smaller than or equal to the 
equivalence difference.   

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example6 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
D0.U ..................................................0.05 
D0.L...................................................-D0.U 
D1......................................................0.00 to 0.04 by 0.01 
P2......................................................0.77 
N1......................................................1000 
N2......................................................Use R 
R........................................................1.0 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
Options Tab 
Maximum N1 or N2 Exact .................100 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
Test Statistic: Score test (Farrington & Manning) 
 
    Lower Upper Lower Upper    
 Sample Sample  Trivial Trivial Trivial Trivial Actual   
 Size Size Prop Grp 1 Grp 1 Margin Margin Margin   
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Diff Target Actual 
Power N1 N2 P2 P1.0L P1.0U D0.L D0.U D1 Alpha Alpha 
0.6875 1000 1000 0.7700 0.7200 0.8200 -0.0500 0.0500 0.0000 0.0500  
0.6313 1000 1000 0.7700 0.7200 0.8200 -0.0500 0.0500 0.0100 0.0500  
0.4731 1000 1000 0.7700 0.7200 0.8200 -0.0500 0.0500 0.0200 0.0500  
0.2857 1000 1000 0.7700 0.7200 0.8200 -0.0500 0.0500 0.0300 0.0500  
0.1362 1000 1000 0.7700 0.7200 0.8200 -0.0500 0.0500 0.0400 0.0500  
 
Note: exact results based on the binomial were only calculated when both N1 and N2 were less than 100. 
 

Power vs D1 with P2=0.77 A=0.05 N1=1000 N2=N1
D0U=0.05 T=LS FM Test

P
ow

er

D1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.70 0.75 0.80 0.85

 
 

The power of the test ranges from 68.75% if the true difference is actually 0.0% to 13.62% if the 
true difference is 4%. 
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Example7 - Finding the Sample Size 
using Proportions 
A study is being designed to prove the equivalence of a new drug to the current standard.  The 
current drug is effective in 85% of cases.  The new drug, however, is cheaper to produce.  The 
new drug will be deemed equivalent to the standard if its success rate is between 78% and 92%.  
What sample sizes are necessary to obtain 80% or 90% power for actual success rates ranging 
from 80% to 90%?  The researchers will test at a significance level of 0.05 using the Farrington 
and Manning likelihood score test. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the proportion parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example7 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................N1 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
P1.0U ................................................0.92 
P1.0L.................................................0.78 
P1.1...................................................0.80 to 0.90 by 0.02 
P2......................................................0.85 
N1......................................................Ignored since this is the Find setting 
N2......................................................Use R 
R........................................................1.0 
Alpha .................................................0.05 
Beta...................................................0.20 0.10 
Equivalence Tab 
 
Options Tab 
Maximum N1 or N2 Exact .................100 
 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
Test Statistic: Score test (Farrington & Manning) 
 
    Lower Upper Lower Upper    
 Sample Sample  Equiv. Equiv. Equiv. Equiv. Actual   
 Size Size Prop Grp 1 Grp 1 Margin Margin Margin   
 Grp 1 Grp 2 Grp 2 Prop Prop Diff Diff Diff Target Actual 
Power N1 N2 P2 P1.0L P1.0U D0.L D0.U D1 Alpha Alpha 
0.9000 6166 6166 0.8500 0.7800 0.9200 -0.0700 0.0700 -0.0500 0.0500  
0.8001 4453 4453 0.8500 0.7800 0.9200 -0.0700 0.0700 -0.0500 0.0500  
0.9000 1480 1480 0.8500 0.7800 0.9200 -0.0700 0.0700 -0.0300 0.0500  
0.8002 1070 1070 0.8500 0.7800 0.9200 -0.0700 0.0700 -0.0300 0.0500  
0.9001 655 655 0.8500 0.7800 0.9200 -0.0700 0.0700 -0.0100 0.0500  
0.8008 503 503 0.8500 0.7800 0.9200 -0.0700 0.0700 -0.0100 0.0500  
0.9004 622 622 0.8500 0.7800 0.9200 -0.0700 0.0700 0.0100 0.0500  
0.8004 477 477 0.8500 0.7800 0.9200 -0.0700 0.0700 0.0100 0.0500  
0.9002 1261 1261 0.8500 0.7800 0.9200 -0.0700 0.0700 0.0300 0.0500  
0.8002 912 912 0.8500 0.7800 0.9200 -0.0700 0.0700 0.0300 0.0500  
0.9000 4685 4685 0.8500 0.7800 0.9200 -0.0700 0.0700 0.0500 0.0500  
0.8000 3386 3386 0.8500 0.7800 0.9200 -0.0700 0.0700 0.0500 0.0500  
 
Note: exact results based on the binomial were only calculated when both N1 and N2 were less than 100. 
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It is evident from these results that the sample sizes required to achieve 80% and 90% power 
depend a great deal on the actual value of the success rate, P1.1. 
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Chapter 220  

Group Sequential 
Tests of Two 
Proportions 
Introduction 
Clinical trials are longitudinal. They accumulate data sequentially through time. The participants 
cannot be enrolled and randomized on the same day. Instead, they are enrolled as they enter the 
study. It may take several years to enroll enough patients to meet sample size requirements. 
Because clinical trials are long term studies, it is in the interest of both the participants and the 
researchers to monitor the accumulating information for early convincing evidence of either harm 
or benefit. This permits early termination of the trial.  

Group sequential methods allow statistical tests to be performed on accumulating data while a 
phase III clinical trial is ongoing. Statistical theory and practical experience with these designs 
have shown that making four or five interim analyses is almost as effective in detecting large 
differences between treatment groups as performing a new analysis after each new data value. 
Besides saving time and resources, such a strategy can reduce the experimental subject’s 
exposure to an inferior treatment and make superior treatments available sooner.  

When repeated significance testing occurs on the same data, adjustments have to be made to the 
hypothesis testing procedure to maintain overall significance and power levels. The landmark 
paper of Lan & DeMets (1983) provided the theory behind the alpha spending function approach 
to group sequential testing. This paper built upon the earlier work of Armitage, McPherson, & 
Rowe (1969), Pocock (1977), and O’Brien & Fleming (1979). PASS implements the methods 
given in Reboussin, DeMets, Kim, & Lan (1992) to calculate the power and sample sizes of 
various group sequential designs. 

This module calculates sample size and power for group sequential designs used to compare two 
group proportions. Other modules perform similar analyses for the comparison of means and 
survival functions. The program allows you to vary the number and times of interim tests, the 
type of alpha spending function, and the test boundaries. It also gives you complete flexibility in 
solving for power, significance level, sample size, or effect size. The results are displayed in both 
numeric reports and informative graphics.  
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Technical Details 
Suppose the means of two samples of N1 and N2 individuals will be compared at various stages 
of a trial using the  statistic: zk

( ) ( )
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The subscript k indicates that the computations use all data that are available at the time of the kth 
interim analysis or kth  look (k goes from 1 to K). This formula computes the standard z-test that is 
assumed to be normally distributed.  

Spending Functions 
Lan and DeMets (1983) introduced alpha spending functions, ( )α τ , that determine a set of 
boundaries b b for the sequence of test statistics . These boundaries are the 
critical values of the sequential hypothesis tests. That is, after each interim test, the trial is 
continued as long as 

bK1 2, , ,L z z zK1 2, , ,L

z bk < k . When z bk ≥ k , the hypothesis of equal means is rejected and the 
trial is stopped early.  

The time argumentτ either represents the proportion of elapsed time to the maximum duration of 
the trial or the proportion of the sample that has been collected. When elapsed time is being used 
it is referred to as calendar time. When time is measured in terms of the sample, it is referred to 
as information time. Since it is a proportion,τ can only vary between zero and one. 

Alpha spending functions have the characteristics: 
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The last characteristic guarantees a fixed α  level when the trial is complete. That is,  

( ) ( )Pr z b or z b or or z bk k1 1 2 2≥ ≥ ≥ =L α τ  

This methodology is very flexible since neither the times nor the number of analyses must be 
specified in advance. Only the functional form of ( )α τ  must be specified.  

PASS provides five popular spending functions plus the ability to enter and analyze your own 
boundaries. These are calculated as follows: 

 



 Group Sequential - Proportions  220-3 
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2.  Pocock      ( )( )α τln 1 1+ −e
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3.  Alpha * time     ατ  
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4.  Alpha * time^1.5      ατ 3 2/
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5.  Alpha * time^2      ατ 2
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6.  User Supplied 

A custom set of boundaries may be entered. 

The O’Brien-Fleming boundaries are commonly used because they do not significantly increase 
the overall sample size and because they are conservative early in the trial. Conservative in the 
sense that the proportions must be extremely different before statistical significance is indicated. 
The Pocock boundaries are nearly equal for all times. The Alpha*t boundaries use equal amounts 
of alpha when the looks are equally spaced. You can enter your own set of boundaries using the 
User Supplied option. 

 



 Group Sequential - Proportions  220-5 

Theory 
A detailed account of the methodology is contained in Lan & DeMets (1983), DeMets & Lan 
(1984), Lan & Zucker (1993), and DeMets & Lan (1994). The theoretical basis of the method will 
be presented here.  

Group sequential procedures for interim analysis are based on their equivalence to discrete 
boundary crossing of a Brownian motion process with drift parameter θ . The test statistics  

follow the multivariate normal distribution with means 

zk

θ τ k  and, for , covariances j k≤

τ τk / j . The drift parameter is related to the parameters of the z-test through the equation 
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Hence, the algorithm is as follows: 

1.  Compute boundary values based on a specified spending function and alpha value. 

2.  Calculate the drift parameter based on those boundary values and a specified power value. 

3.  Use the drift parameter and the above equation to calculate the appropriate sample size. 
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Procedure Tabs 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains the parameters associated with the z-test such as the proportions, sample 
sizes, alpha, and beta. 

Find 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are P1, P2, Alpha, Beta, N1 or N2. Under most situations, you will select 
either Beta or N1. 

Select N1 when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Beta when you want to calculate the power of an experiment.  

P1 (Proportion in Group 1) 
Enter value(s) for the response proportion in the first group under both hypotheses and the 
response proportion of the second group under the null hypothesis of equal proportions. The 
values must be between zero and one. 

You may enter a range of values such as 0.1, 0.2, 0.3 or 0.1 to 0.9 by 0.2. 

P2 (Proportion in Group 2) 
Enter value(s) for the response proportion of the second group under the alternative hypothesis. 
You may enter a range of values such as 0.1, 0.2, 0.3 or 0.1 to 0.9 by 0.2. 

Alpha 
This option specifies one or more values for the probability of a type-I error, alpha. This is also 
called the significance level or test size. A type-I error occurs when you reject the null hypothesis 
of equal proportions when in fact the proportions are equal. 

Values of alpha must be between zero and one. Often, the value of 0.05 is used for alpha since 
this value is spread across several interim tests. This means that about one trial in twenty will 
falsely reject the null hypothesis. You should pick a value for alpha that represents the risk of a 
type-I error that you are willing to take.  
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Beta (1-Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of equal proportions when in fact they are 
different. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
Now, 0.10 is more common. You should pick a value that represents the risk of a type-II error 
you are willing to take. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80, respectively.  

Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. When a two-sided hypothesis is selected, the 
value of alpha is halved. Everything else remains the same. 

Note that the accepted procedure is to use Two-Sided unless you can justify using a one-sided 
test.  

N1 (Sample Size Group 1) 
Enter a value (or range of values) for the sample size of this group. Note that these values are 
ignored when you are solving for N1. You may enter a range of values such as 10 to 100 by 10. 

N2 (Sample Size Group 2) 
Enter a value (or range of values) for the sample size of group 2 or enter Use R to base N2 on the 
value of N1. You may enter a range of values such as 10 to 100 by 10. 

Use R 

When Use R is entered here, N2 is calculated using the formula  

N2 = [R N1] 

where R is the Sample Allocation Ratio and [Y] is the first integer greater than or equal to Y. For 
example, if you want N1 = N2, select Use R and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N2 is set to Use R. 

When used, N2 is calculated from N1 using the formula: N2=[R N1] where [Y] is the next integer 
greater than or equal to Y. Note that setting R = 1.0 forces N2 = N1. 
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Use Continuity Correction 
Specify whether to use the Continuity Correction. This option applies an adjustment to the sample 
sizes that is recommend by Fleiss(1981) page 45 to make the alpha and beta values more 
accurate. The formula for the adjustment is 
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Sequential Tab 
The Sequential tab contains the parameters associated with Group Sequential Design such as the 
type of spending function, the times, and so on. 

Number of Looks 
This is the number of interim analyses (including the final analysis). For example, a five here 
means that four interim analyses will be run in addition to the final analysis. 

Spending Function 
Specify which alpha spending function to use. The most popular is the O'Brien-Fleming boundary 
that makes early tests very conservative. Select User Specified if you want to enter your own set 
of boundaries. 

Boundary Truncation 
You can truncate the boundary values at a specified value. For example, you might decide that no 
boundaries should be larger than 4.0. If you want to implement a boundary limit, enter the value 
here. 

If you do not want a boundary limit, enter None here. 

Times 
Enter a list of time values here at which the interim analyses will occur. These values are scaled 
according to the value of the Max Time option. 

For example, suppose a 48-month trial calls for interim analyses at 12, 24, 36, and 48 months. 
You could set Max Time to 48 and enter 12,24,36,48 here or you could set Max Time to 1.0 and 
enter 0.25,0.50,0.75,1.00 here.  

The number of times entered here must match the value of the Number of Looks. 

Equally Spaced 

If you are planning to conduct the interim analyses at equally spaced points in time, you can enter 
Equally Spaced and the program will generate the appropriate time values for you. 
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Max Time 
This is the total running time of the trial. It is used to convert the values in the Times box to 
fractions. The units (months or years) do not matter, as long as they are consistent with those 
entered in the Times box. 

For example, suppose Max Time = 3 and Times = 1, 2, 3. Interim analyses would be assumed to 
have occurred at 0.33, 0.67, and 1.00. 

Informations 
You can weight the interim analyses on the amount of information obtained at each time point 
rather than on actual calendar time. If you would like to do this, enter the information amounts 
here. Usually, these values are the sample sizes obtained up to the time of the analysis. 

For example, you might enter 50, 76, 103, 150 to indicate that 50 individuals where included in 
the first interim analysis, 76 in the second, and so on. 

Upper and Lower Boundaries 
If the Spending Function is set to User Supplied you can enter a set of lower test boundaries, one 
for each interim analysis. The lower boundaries should be negative and the upper boundaries 
should be positive. Typical entries are 4,3,3,3,2 and 4,3,2,2,2. 

Symmetric 

If you only want to enter the upper boundaries and have them copied with a change in sign to the 
lower boundaries, enter Symmetric for the lower boundaries. 

Options Tab 
The Options tab controls the convergence of the various iterative algorithms used in the 
calculations. 

Max Iterations 1 
Specify the maximum number of iterations to be run before the search for the criterion of interest 
(Alpha, Beta, etc.) is aborted. When the maximum number of iterations is reached without 
convergence, the criterion is left blank.  

Recommended: 500 (or more). 

Max Iterations 2 
This is the maximum number of iterations used in the Lan-DeMets algorithm during its search 
routine. We recommend a value of at least 200. 
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Probability Tolerance 
During the calculation of the probabilities associated with a set of boundary values, probabilities 
less than this are assumed to be zero. 

We suggest a value of 0.00000000001. 

Power Tolerance 
This is the convergence level for the search for the spending function values that achieve a certain 
power. Once the iteration changes are less than this amount, convergence is assumed. We suggest 
a value of 0.0000001. 

If the search is too time consuming, you might try increasing this value. 

Alpha Tolerance 
This is the convergence level for the search for a given alpha value. Once the changes in the 
computed alpha value are less than this amount, convergence is assumed and iterations stop. We 
suggest a value of 0.0001. 
This option is only used when you are searching for alpha. 

If the search is too time consuming, you can try increasing this value. 

Bnd Axes Tab 
The Bnd Axes tab, short for Boundary Axes tab, allows the axes of the spending function plots to 
be set separately from those of the power plots. The options are identical to those of the Axes tab. 
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Example1 - Finding the Sample Size 
A clinical trial is to be conducted over a two-year period to compare the proportion response of a 
new treatment to that of the current treatment. The current response proportion is 0.53. The health 
community will be interested in the new treatment if the response rate is increased to 0.63. So that 
the sample size requirements for different effect sizes can be compared, it is also of interest to 
compute the sample size at response rates of 0.60, 0.65, 0.70, and 0.75. 

Testing will be done at the 0.05 significance level and the power should be set to 0.10. A total of 
four tests are going to be performed on the data as they are obtained. The O’Brien-Fleming 
boundaries will be used.  

Find the necessary sample sizes and test boundaries assuming equal sample sizes per arm and 
two-sided hypothesis tests. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................N1 
P1......................................................0.53 
P2......................................................0.60, 0.63, 0.65, 0.70, 0.75 
Alpha .................................................0.05 
Beta...................................................0.10 
Alternative Hypothesis ...................... Two-Sided 
N1......................................................Ignored 
N2......................................................Use R 
R........................................................1.0 
Use Continuity Correction .................Checked 

Sequential Tab 
Number of Looks...............................4 
Spending Function ............................O’Brien-Fleming 
Times ................................................Equally Spaced 
Max Time ..........................................2 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Proportions. Continuity Correction Applied. 
 
Power N1 N2 Alpha Beta P1 P2 
0.900168 1102 1102 0.050000 0.099832 0.53 0.60 
0.900930 542 542 0.050000 0.099070 0.53 0.63 
0.900408 376 376 0.050000 0.099592 0.53 0.65 
0.901093 187 187 0.050000 0.098907 0.53 0.70 
0.903126 111 111 0.050000 0.096874 0.53 0.75 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. Power should be close to one. 
N1 and N2 are the number of items sampled from groups 1 and 2. 
Alpha is the probability of rejecting a true null hypothesis in at least one of the sequential tests. 
Beta is the probability of accepting a false null hypothesis at the conclusion of all tests. 
P1 is the value of both proportions under the null hypothesis. 
P2 is the proportion in group two under the alternative hypothesis. 
 
Summary Statements 
Sample sizes of 1102 and 1102 achieve 90% power to detect a difference of 0.07 between the 
group proportions of 0.53 and 0.60 at a significance level (alpha) of 0.0500 using a two-sided 
z-test with continuity correction. These results assume that 4 sequential tests are made using the O'Brien-Fleming 
spending function to determine the test boundaries. 
 

This report shows the values of each of the parameters, one scenario per row. Note that 542 
participants in each arm of the study are required to meet the 90% power requirement when the 
proportion is 0.63. 

The values from this table are in the chart below. Note that this plot actually occurs further down 
in the report. 

Plots Section 
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This plot shows that a large increase in sample size is necessary when the detectable proportion in 
group two is less than 0.63. 
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Details Section 
 
Details when Spending = O'Brien-Fleming, N1 = 542, N2 =542, P1 = 0.53, P2 = 0.63, Continuity Correction. 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.50 -4.33263 4.33263 0.000015 0.000015 0.000015 0.003525 0.003525  
2 1.00 -2.96311 2.96311 0.003045 0.003036 0.003051 0.255573 0.259098  
3 1.50 -2.35902 2.35902 0.018323 0.016248 0.019299 0.427801 0.686899  
4 2.00 -2.01406 2.01406 0.044003 0.030701 0.050000 0.214031 0.900930  
Drift 3.27640 
 

This report shows information about the individual interim tests. One report is generated for each 
scenario. 

Look 
These are the sequence numbers of the interim tests. 

Time 
These are the time points at which the interim tests are conducted. Since the Max Time was set to 
2 (for two years), these time values are in years. Hence, the first interim test is at half a year, the 
second at one year, and so on. 

We could have set Max Time to 24 so that the time scale was in months. 

Lower and Upper Boundary 
These are the test boundaries. If the computed value of the test statistic z is between these values, 
the trial should continue. Otherwise, the trial can be stopped.  

Nominal Alpha 
This is the value of alpha for these boundaries if they were used for a single, standalone, test. 
Hence, this is the significance level that must be found for this look in a standard statistical 
package that does not adjust for multiple looks. 

Inc Alpha 
This is the amount of alpha that is spent by this interim test. It is close to, but not equal to, the 
value of alpha that would be achieved if only a single test was conducted. For example, if we 
lookup the third value, 2.35902, in normal probability tables, we find that this corresponds to a 
(two-sided) alpha of 0.018323. However, the entry is 0.016248. The difference is due to the 
correction that must be made for multiple tests. 

Total Alpha 
This is the total amount of alpha that is used up to and including the current test.  

Inc Power 
These are the amounts that are added to the total power at each interim test. They are often called 
the exit probabilities because they give the probability that significance is found and the trial is 
stopped, given the alternative hypothesis.  

Total Power 
These are the cumulative power values. They are also the cumulative exit probabilities. That is, 
they are the probability that the trial is stopped at or before the corresponding time. 
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Drift 
This is the value of the Brownian motion drift parameter. 

Boundary Plots 
 

O'Brien-Fleming Boundaries with Alpha = 0.05

Upper

Lower

Z 
Va

lu
e

Look

-1

-2

-3

-4

-5

0

1

2

3

4

5

1 2 3 4

 
 

This plot shows the interim boundaries for each look. This plot shows very dramatically that the 
results must be extremely significant at early looks, but that they are near the single test boundary 
(1.96 and -1.96) at the last look. 
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Example2 - Finding the Power 
Continuing the scenario began in Example1, the researcher wishes to calculate the power of the 
design at sample sizes 200, 400, 600, 800, 1000. Testing will be done at the 0.01, 0.05, 0.10 
significance levels and the overall power will be set to 0.10. Find the power of these sample sizes 
and test boundaries assuming equal sample sizes per arm and two-sided hypothesis tests. 

Proceeding as in Example1, we decide to translate the mean and standard deviation into a percent 
of mean scale. 

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
P1......................................................0.53 
P2......................................................0.63 
Alpha .................................................0.01, 0.05, 0.10 
Beta...................................................Ignored 
Alternative Hypothesis ...................... Two-Sided 
N1......................................................200 to 1000 by 200 
N2......................................................Use R 
R........................................................1.0 
Use Continuity Correction .................Checked 

Sequential Tab 
Number of Looks...............................4 
Spending Function ............................O’Brien-Fleming 
Times ................................................Equally Spaced 
Max Time ..........................................2 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 
Numeric Results for Two-Sided Test of Proportions. Continuity Correction Applied. 
 
Power N1 N2 Alpha Beta P1 P2 
0.254797 200 200 0.010000 0.745203 0.53 0.63 
0.581920 400 400 0.010000 0.418080 0.53 0.63 
0.805679 600 600 0.010000 0.194321 0.53 0.63 
0.920951 800 800 0.010000 0.079049 0.53 0.63 
0.970898 1000 1000 0.010000 0.029102 0.53 0.63 
0.478378 200 200 0.050000 0.521622 0.53 0.63 
0.790815 400 400 0.050000 0.209185 0.53 0.63 
0.928267 600 600 0.050000 0.071733 0.53 0.63 
0.977859 800 800 0.050000 0.022141 0.53 0.63 
0.993673 1000 1000 0.050000 0.006327 0.53 0.63 
0.599827 200 200 0.100000 0.400173 0.53 0.63 
0.867330 400 400 0.100000 0.132670 0.53 0.63 
0.961331 600 600 0.100000 0.038669 0.53 0.63 
0.989659 800 800 0.100000 0.010341 0.53 0.63 
0.997396 1000 1000 0.100000 0.002604 0.53 0.63 
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These data show the power for various sample sizes and alphas. It is interesting to note that once 
the sample size is greater than 700, the value of alpha makes little difference on the value of 
power. 
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Example3 - Effect of Number of Looks 
Continuing with examples one and two, it is interesting to determine the impact of the number of 
looks on power. PASS allows only one value for the Number of Looks parameter per run, so it 
will be necessary to run several analyses. To conduct this study, set alpha to 0.05, N1 to 500, and 
leave the other parameters as before. Run the analysis with Number of Looks equal to 1, 2, 3, 4, 
6, 8, 10, and 20. Record the power for each run. 

Setup 
You can enter these values yourself or load the Example3 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
P1......................................................0.53 
P2.......................................................63 
Alpha .................................................0.05 
Beta...................................................Ignored 
Alternative Hypothesis ......................Two-Sided 
N1......................................................500 
N2......................................................Use R 
R........................................................1.0 
Use Continuity Correction .................Unchecked 

Sequential Tab 
Number of Looks...............................1 (Also run with 2, 3, 4, 6, 8, 10, and 20) 
Spending Function ............................O’Brien-Fleming 
Times ................................................Equally Spaced 
Max Time ..........................................2 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Proportions 
 
Power N1 N2 Alpha Beta P1 P2 Looks 
0.893174 500 500 0.050000 0.106826 0.53 0.63 1 
0.892118 500 500 0.050000 0.107882 0.53 0.63 2 
0.889620 500 500 0.050000 0.110380 0.53 0.63 3 
0.887691 500 500 0.050000 0.112309 0.53 0.63 4 
0.885125 500 500 0.050000 0.114875 0.53 0.63 6 
0.883535 500 500 0.050000 0.116465 0.53 0.63 8 
0.882456 500 500 0.050001 0.117544 0.53 0.63 10 
0.879929 500 500 0.050001 0.120071 0.53 0.63 20 
 
 

This analysis shows how little the number of looks impacts the power of the design. The power of 
a study with no interim looks is 0.893174. When twenty interim looks are made, the power falls 
to 0.879929—a very small change. 
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Example 4 - Studying a Boundary Set 
Continuing with the previous examples, suppose that you are presented with a set of boundaries 
and want to find the quality of the design (as measured by alpha and power). This is easy to do 
with PASS. Suppose that the analysis is to be run with five interim looks at equally spaced time 
points. The upper boundaries to be studied are 3.5, 3.5, 3.0, 2.5, 2.0. The lower boundaries are 
symmetric. The analysis would be run as follows. 

Setup 
You can enter these values yourself or load the Example4 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
P1......................................................0.53 
P2......................................................0.63 
Alpha.................................................0.05 (will be calculated from boundaries) 
Beta................................................... Ignored 
Alternative Hypothesis ......................  Two-Sided 
N1 .....................................................500 
N2 .....................................................Use R 
R .......................................................1.0 
Use Continuity Correction .................Checked 

Sequential Tab 
Number of Looks...............................5 
Spending Function ............................User Supplied 
Times ................................................Equally Spaced 
Lower Boundaries .............................Symmetric 
Upper Boundaries .............................3.5, 3.5, 3.0, 2.5, 2.0 
Max Time ..........................................2 
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Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Proportions 
 

 Power N1 N2 Alpha Beta P1 P2 
 0.887792 500 500 0.048157 0.112208 0.53 0.63 
 

Details when Spending = User Supplied, N1 = 500, N2 =500, P1 = 0.53, P2 = 0.63 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.40 -3.50000 3.50000 0.000465 0.000465 0.000465 0.018094 0.018094  
2 0.80 -3.50000 3.50000 0.000465 0.000408 0.000874 0.054010 0.072105  
3 1.20 -3.00000 3.00000 0.002700 0.002410 0.003284 0.219472 0.291577  
4 1.60 -2.50000 2.50000 0.012419 0.010331 0.013615 0.335232 0.626809  
5 2.00 -2.00000 2.00000 0.045500 0.034542 0.048157 0.248848 0.875657  
Drift 3.14209 
 
 

The power for this design is about 0.88. This value depends on both the boundaries and the 
sample size. The alpha level is about 0.048. This value only depends on the boundaries. 

Example5 - Validation Using O’Brien-
Fleming Boundaries 
Reboussin (1992) presents an example for binomial distributed data for a design with two-sided 
O’Brien-Fleming boundaries, looks = 5, alpha = 0.05, beta = 0.10, P1 = 0.1100, P2 = 0.0825. 
They compute a drift of 3.28 and a sample size of 2381.78 per group. The upper boundaries are: 
4.8769, 3.3569, 2.6803, 2.2898, 2.0310. 

To test that PASS provides the same result, enter the following. 

Setup 
You can enter these values yourself or load the Example5 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................N1 
P1......................................................0.1100 
P2......................................................0.0825 
Alpha .................................................0.05 
Beta...................................................0.10 
Alternative Hypothesis ...................... Two-Sided 
N1......................................................Ignored 
N2......................................................Use R 
R........................................................1.0 
Use Continuity Correction .................Not checked 
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Sequential Tab 
Number of Looks...............................5 
Spending Function ............................O’Brien-Fleming 
Times ................................................Equally Spaced 
Max Time ..........................................1 

Numeric Results 
 
Numeric Results for Two-Sided Hypothesis Test of Proportions 
 
Power N1 N2 Alpha Beta P1 P2 
0.900105 2474 2474 0.050000 0.099895 0.1100 0.0825 
 
Details when Spending = O'Brien-Fleming, N1 = 2468, N2 =2468, P1 = 0.1100, P2 = 0.0825 
  Lower Upper Nominal Inc Total Inc Total 
Look Time Bndry Bndry Alpha Alpha Alpha Power Power 
1 0.20 -4.87688 4.87688 0.000001 0.000001 0.000001 0.000324 0.000324  
2 0.40 -3.35695 3.35695 0.000788 0.000787 0.000788 0.099454 0.099778  
3 0.60 -2.68026 2.68026 0.007357 0.006828 0.007616 0.346699 0.446477  
4 0.80 -2.28979 2.28979 0.022034 0.016807 0.024424 0.299644 0.746120  
5 1.00 -2.03100 2.03100 0.042255 0.025576 0.050000 0.153985 0.900105  
Drift 3.27939 
 

The difference in the sample sizes (2468 versus 2382) is due to rounding errors in the Reboussin 
article. Reboussin rounds from four-digits to three-digits, which caused a large difference. PASS 
uses more accurate routines.  

To see that the results are equal to within rounding error, we will compute the sample size using 
Reboussin’s results, but with more decimal places in the intermediate steps. They had 

( )( )( )
( )

nK = =
2 0 096 0904 328

0 028
238178

2

2

. . .
.

.  

When we compute this without rounding, we get 

( )( )( )
( )

nK = =
2 0 09625 0 90375 327939

0 0275
2474 00

2

2

. . .
.

.  

The 2474 is what PASS gets.  
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Chapter 225  

Comparing 
Proportions in 
Stratified Designs 
(Mantel-Haenszel) 
Introduction 
In a stratified design, the subjects are selected from two or more strata which are formed from 
important covariates such as gender, income level, or marital status. The number of subjects in 
each of the two groups in each strata is set (fixed) by the design. A separate 2-by-2 table is 
formed for each stratum. Although response rates may vary among strata, hypotheses about the 
overall odds ratio can be tested the Cochran-Mantel-Haenszel test. This module allows you to 
determine power and sample size for such a study.  

Technical Details 
This procedure is based on the results of Woolson, Bean, and Rojas (1986) which were extended 
to include a continuity correction by Nam (1992). For more details, consult those articles or 
chapter 4 in Lachin (2000). We will now briefly summarize these results. 

Suppose you are interested in comparing the disease response rates of two groups (treatment and 
control). Further suppose that response rate is known to be related to another covariate (such as 
age, race, or gender). It is often desirable to remove the covariate’s impact from the comparison 
of the two proportions. This is accomplished by stratifying on the covariate and forming 
hypotheses about a common odds ratio across all strata. Data from such a stratified design may be 
analyzed by the Cochran-Mantel-Haenszel test. 

There are two versions of the Cochran-Mantel-Haenszel test: one that is continuity corrected and 
one that is not. The continuity-corrected test is more commonly used.  
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The computation of the test statistic is as follows. Suppose there are J strata. The result of each 2-
by-2 table may be summarized as follows.  

 Groups 

 Group 1 Group 2  
Response Treatment Control Total 
Yes    x j1 x j2 x j.

No   n xj j1 1− n xj j2 2− N xj j− .  
Total    n j1 n j2 N j

where j = 1, 2, …, J and . N N j
j

J

=
=
∑

1

The parameters of interest are the success proportions  and . These parameters are 
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In the sequel, it is assumed that the strata odds ratios are all equal. That is, it is assumed that 
ψ ψ ψ ψ1 2= = =L J . Solving this relationship for  in terms of p j1 ψ  and  gives p j2
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If values for the odds ratio under the null hypothesis ( )ψ 0 , under the alternative hypothesis ( )ψ1 , 

and  are specified, values for  under the null hypothesis p j2 p j1 ( )p j1 0  and the alternative 

hypothesis can be calculated as follows (p j1 1)
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p
p

p p
j Jj

j

j j
1 1

1 2

2 1 21
1 2=

− +
=

ψ
ψ

, , ,L,  

Assuming a common odds ratio across all strata of ψ  (that is, assumingψ ψ ψ ψ1 2= = =L J ), 
hypotheses of the form H0: 0ψ ψ≤  versus H1: 0ψ ψ>  may be tested using Cochran’s U 
statistic (Woolson et al. 1986, page 928) 
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The value U  is commonly used to form the Cochran-Mantel-Haenszel statistic. U  is an 
extension of this statistic which allows 

0 G

ψ 0 1≠ .  

The calculation of the asymptotically normal test statistic, , may or may not include a continuity 
correction factor depending on whether the parameter cc is set to 1/2 or 0. The formula for  
is 
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The name Cochran-Mantel-Haenszel test actually refers to two tests: the Cochran test and the the 
Mantel-Haenszel test. The difference is between these test is that Cochran’s test uses  to 
estimate the unconditional variance assuming that the group sample sizes are fixed, while the 
Mantel-Haenszel test replaces 

(v UG0 )

( )v UG0  with an estimate of the conditional variance of U 
assuming that both row and column marginals are fixed. Asymptotically the two variances are 
equivalent, so the test is often called the Cochran-Mantel-Haenszel statistic. 
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Power Calculations 
The asymptotic power of  for testing a one-sided hypothesis of the form zCMH H0: 0ψ ψ≤  versus 
H1 0:ψ ψ>  is 
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Note that Woolson et al. (1986) and Nam (1992) give results for the usual case when ψ 0 1= . The 
above results are our extension to the important case when ψ 0 1≠ . We could not find published 
results for this case, so we have made this extension. When published results become available, 
we will adopt those results. If you have ψ 0 1≠ , you must use U , rather than U , in the 
calculation of the test statistic. 

G 0

Similar calculations may also be made for testing the other one-sided hypothesis H0 0:ψ ψ≥  
versus H1: 0ψ ψ<  and the two-sided hypothesis H0: 0ψ ψ=  versus H1 0:ψ ψ≠ . 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, refer to the Procedure Templates chapter. 

Data Tab 
The Data tab contains most of the parameters and options of interest for this procedure. 

Find 
This option specifies the parameter to be solved for using the other parameters. The parameters 
that may be selected are OR1, Alpha, Beta, or N. In most cases, you will select either Beta or N. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Beta when you want to calculate the power.  

OR1 (Odds Ratio|H1) 
This option specifies the odds ratio of the two proportions P1 and P2 at which the power is to be 
computed. This odds ratio is used to specify the size of the difference between the two 
proportions at which the power is calculated.  

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25.  

Odds ratios must greater than zero.  

OR0 (Odds Ratio|H0) 
Specify the odds ratio under the null hypothesis, H0. For each strata, this value is used with the 
value of Pr(Success) to calculate the probability of obtaining a success in group one (the 
treatment group) assuming the null hypothesis. In the standard Cochran-Mantel-Haenszel test, 
this value is assumed to be (and should be entered as) one. If you enter a value other than one, 
your data analysis should use the more general test statistic. 

Note that OR0 must be greater than zero and cannot be equal to OR1.  

Alternative Hypothesis (H1) 
This option specifies whether a one-sided or two-sided hypothesis is analyzed.  

One-Sided (H1: OR1 < OR0) refers to a one-sided test in which the alternative hypothesis is of 
the form H1: OR1 < OR0. 

One-Sided (H1: OR1 > OR0) refers to a one-sided test in which the alternative hypothesis is of 
the form H1: OR1 > OR0. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: OR1 
<> OR0. Here ‘<>’ means ‘is not equal to’ or ‘is less than or greater than’. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 
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Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis of equal proportions when in fact they are equal.  

Values must be between zero and one. Historically, the value of 0.05 was used for alpha. This 
means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01 0.05 0.10 or 0.01 to 0.10 by 0.01. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of equal proportions when in fact they are 
different. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
However, you should pick a value for beta that represents the risk of a type-II error you are 
willing to take. 

Power is defined as 1 - beta. Power is equal to the probability of rejecting a false null hypothesis. 
Hence, specifying the beta error level also specifies the power level. For example, if you specify 
beta values of 0.05, 0.10, and 0.20, you are specifying power values of 0.95, 0.90, and 0.80, 
respectively.  

M (Sample Size Multiplier) 
M and the values of R1 and R2 are used to calculate the group sample sizes within each strata 
using the formulas N1 = M x R1 and N2 = M x R2. The total sample size, N, is found by 
summing N1 and N2 across all strata. Note that fractional values for N, N1, and N2 will usually 
result. In practice these values are rounded up to the next integer value. 

One or more values, separated by blanks or commas, may be entered. A separate analysis is 
performed for each value. 

Using M as the Group Size 
To use M as the sample size in each group, the values of R1 and R2 must each be set to one. 

Using M as the Strata Size: 
To use M as the sample size in each strata, the values of R1 and R2 must sum to one within each 
strata. For example, suppose M = 30 and R1 = R2 = 0.5. The values of N1 and N2, the group 
sample sizes within a stratum, will be 0.5 x 30 = 15. Thus, the total sample size within the strata 
is 15 + 15 = 30. 

Using M as Total Sample Size: 
To use M as the total sample size across all strata, the values of R1 and R2 must sum to one 
across all values. Note that the resulting value of N may not exactly equal M because of rounding. 

For example, suppose there are three strata with R1 = 0.1, 0.2, and 0.2 and R2 = 0.1, 0.3, and 0.1. 
(Note that these values sum to one.) If M were 100, then the values of N1 would be 10, 20, and 
20 and the values of N2 would be 10, 30, and 10. These sum to 100, the value of M. 
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Strata 
This option specifies the number of strata specified on this line. Usually, you will enter a '1' to 
specify a single stratum, or you will enter a '0' to ignore this line. However, this option lets you 
specify several strata at once. 

The total number of strata is equal to the sum of these values. 

R1 = N1 / M, R2 = N2 / M 
R1 and R2 are used to obtain the sample sizes in groups 1 (treatment) and 2 (control) within a 
strata using the formulas N1 = R1 x M and N2 = R2 x M. The only limitation on R1 and R2 is 
that they are positive (non-zero) values. See the comments under M for more information. 

Note that only a single value may be entered for this parameter—you cannot enter several values. 

Pr(Success) 
This is the baseline probability of a successful response. This value is used with OR1 to calculate 
the probability of a success in group 1 (the treatment or numerator group).  

Since this value is a probability, it must be between zero and one. 

Note that only one value may be entered here. 

Continuity Correction 
Specify whether to use the Continuity Correction. When selected, a continuity correction is made 
that is recommend by Fleiss et al. (2003) to make the alpha and beta values achieved by the test 
more accurate. 
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Example1 - Finding Power  
Nam (1992) discusses a case-control study investigating the possible association between 
chlorinated water and colon cancer among males in Iowa. Since age is known to affect colon 
cancer rates, the population is stratified into four age groups with weights of 10%, 40%, 35%, and 
15%. An equal number of cases and controls will be selected in each age-group. Prior studies had 
shown the probability of chlorinated water exposure among non-cancer subjects was 0.75, 0.70, 
0.65, and 0.60, respectively, among the four age groups. The significance level is set to 0.05. The 
investigators want to consider various total sample sizes from 50 to 500. They also want to 
consider odds ratios of 2 and 3. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example1 by 
clicking the Template tab and loading this template. 

Option Value 
Data Tab 
Find ...................................................Beta and Power 
Alternative Hypothesis ......................One-Sided (H1:OR1>OR0) 
OR0...................................................1 
OR1...................................................2  3 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting  
M .......................................................50 to 500 by 50 
Continuity Correction ........................Checked 
Strata(1) ............................................1 
R1(1) .................................................0.05 (half of 10%) 
R2(1) .................................................R1 
Pr(Success)(1) ..................................0.75 
Strata(2) ............................................1 
R1(2) .................................................0.20 (half of 40%) 
R2(2) .................................................R1 
Pr(Success)(2) ..................................0.70 
Strata(3) ............................................1 
R1(3) .................................................0.175 (half of 35%) 
R2(3) .................................................R1 
Pr(Success)(3) ..................................0.65 
Strata(4) ............................................1 
R1(4) .................................................0.075 (half of 15%) 
R2(4) .................................................R1 
Pr(Success)(4) ..................................0.60 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results of Cochran-Mantel-Haenszel Test of an Odds Ratio 
H0: OR1=OR0. H1: OR1>OR0. Test: Continuity-Corrected Z-Test. 
 
 Total Sample Sample Sample H0 Actual   
 Sample Size Size of Size of Odds Odds Signif.  
 Size Multiplier Group 1 Group 2 Ratio Ratio Level  
Power (N) (M) (N1) (N2) (OR0) (OR1) Alpha Beta 
0.1783 50 50.000 25 25 1.000 2.000 0.0500 0.8217 
0.3505 100 100.000 50 50 1.000 2.000 0.0500 0.6495 
0.4992 150 150.000 75 75 1.000 2.000 0.0500 0.5008 
0.6215 200 200.000 100 100 1.000 2.000 0.0500 0.3785 
0.7186 250 250.000 125 125 1.000 2.000 0.0500 0.2814 
0.7937 300 300.000 150 150 1.000 2.000 0.0500 0.2063 
0.8506 350 350.000 175 175 1.000 2.000 0.0500 0.1494 
0.8929 400 400.000 200 200 1.000 2.000 0.0500 0.1071 
0.9239 450 450.000 225 225 1.000 2.000 0.0500 0.0761 
0.9464 500 500.000 250 250 1.000 2.000 0.0500 0.0536 
0.3356 50 50.000 25 25 1.000 3.000 0.0500 0.6644 
0.6337 100 100.000 50 50 1.000 3.000 0.0500 0.3663 
0.8151 150 150.000 75 75 1.000 3.000 0.0500 0.1849 
0.9121 200 200.000 100 100 1.000 3.000 0.0500 0.0879 
0.9601 250 250.000 125 125 1.000 3.000 0.0500 0.0399 
0.9825 300 300.000 150 150 1.000 3.000 0.0500 0.0175 
0.9925 350 350.000 175 175 1.000 3.000 0.0500 0.0075 
0.9969 400 400.000 200 200 1.000 3.000 0.0500 0.0031 
0.9987 450 450.000 225 225 1.000 3.000 0.0500 0.0013 
0.9995 500 500.000 250 250 1.000 3.000 0.0500 0.0005 
 
Report Definitions 
'Power' is the probability of rejecting a false null hypothesis. It should be close to one. 
'N' is the total sample size summed across all groups and strata. 
'M' is the factor by which the values of R1 and R2 are multiplied. 
'N1 and N2' are the sample sizes from groups 1 and 2 summed across all strata. 
'OR0' is the odds ratio [P1/(1-P1)] / [P2/(1-P2)] assuming the null hypothesis (H0). 
'OR1' is the value of the odds ratio at which the power is computed. 
'Alpha' is the probability of rejecting a true null hypothesis. 
'Beta' is the probability of accepting a false null hypothesis. 
In a treatment vs. control design, the treatment group is 1 and the control group is 2. 
 
 
Summary Statements 
A stratified design, which divides the sample among 4 strata, is analyzed using the one-sided, 
Cochran-Mantel-Haenszel test. Sample sizes, summed across all strata, of 25 in group 1 
(treatment group) and 25 in group 2 (control group) achieve 18% power to reject the odds ratio 
set by the null hypothesis of 1.000 when the odds ratio is actually 2.000. The significance 
level of the test was set at 0.0500. 
 

Sample Sizes: N, N1, and N2 
The value of N is the sum of N1 and N2. The values of N1 and N2 are found by summing the 
individual strata-group sample sizes. These are found by multiplying R1 and R2 by M.  

Note that this multiplication will usually result in fractional sample sizes across the strata. As a 
practical matter, we recommend rounding each fractional value up to the next integer when 
implementing a given design. 
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Strata-Detail Report 
 

Strata-Detail Report 
 
 Proportion Proportion Proportion   Strata 
Number of Total of this of this Group 1 Group 2 Probability 
of Sample in Strata in Strata in Multiplier Multiplier of 
Strata each Strata Group 1 Group 2 (R1) (R2) Success 
1 0.1000 0.5000 0.5000 0.050 0.050 0.7500 
1 0.4000 0.5000 0.5000 0.200 0.200 0.7000 
1 0.3500 0.5000 0.5000 0.175 0.175 0.6500 
1 0.1500 0.5000 0.5000 0.075 0.075 0.6000 

This report shows the values of the individual, strata-level parameters that were used. These 
parameters are the same for all rows of the Numerical Results Report (shown above), so they are 
only displayed once. 

Plots Section 
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The values from the Numerical Results Report are displayed in this scatter plot. This chart 
provides a quick view of the power that is achieved for various sample sizes. 
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Example2 - Validation Using Nam  
To validate the procedure, we will compare PASS’s results to those on page 392 of Nam (1992). 
Most of the settings in this example are the same as those of Example 1, except that the power is 
90% and the odds ratio is 3. Nam (1992) found the necessary sample sizes to be 192 for the 
corrected test and 171 for the uncorrected test. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load either template Example2a or 
Example2b by clicking the Template tab and loading the desired template. 

Option Value 
Data Tab 
Find ...................................................N (Sample Size) 
Alternative Hypothesis ......................One-Sided (H1:OR1>OR0) 
OR0...................................................1 
OR1...................................................3 
Alpha .................................................0.05 
Beta...................................................0.10  
M .......................................................Ignored since this is the Find setting 
Continuity Correction.........................Checked 
Strata(1) ............................................1 
R1(1) .................................................0.05 (half of 10%) 
R2(1) .................................................R1 
Pr(Success)(1) ..................................0.75 
Strata(2) ............................................1 
R1(2) .................................................0.20 (half of 40%) 
R2(2) .................................................R1 
Pr(Success)(2) ..................................0.70 
Strata(3) ............................................1 
R1(3) .................................................0.175 (half of 35%) 
R2(3) .................................................R1 
Pr(Success)(3) ..................................0.65 
Strata(4) ............................................1 
R1(4) .................................................0.075 (half of 15%) 
R2(4) .................................................R1 
Pr(Success)(4) ..................................0.60 
 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
Numeric Results of Cochran-Mantel-Haenszel Test of an Odds Ratio 
H0: OR1=OR0. H1: OR1>OR0. Test: Continuity-Corrected Z-Test. 
 
 Total Sample Sample Sample H0 Actual   
 Sample Size Size of Size of Odds Odds Signif.  
 Size Multiplier Group 1 Group 2 Ratio Ratio Level  
Power (N) (M) (N1) (N2) (OR0) (OR1) Alpha Beta 
0.9000 192 191.538 96 96 1.000 3.000 0.0500 0.1000 
 
 

The value of 192 agrees exactly with that of Nam (1992).  

If you uncheck the Continuity Correction option and rerun the analysis, you will get the 
following results. 

Numeric Results of Cochran-Mantel-Haenszel Test of an Odds Ratio 
H0: OR1=OR0. H1: OR1>OR0. Test: Uncorrected Z-Test. 
 
 Total Sample Sample Sample H0 Actual   
 Sample Size Size of Size of Odds Odds Signif.  
 Size Multiplier Group 1 Group 2 Ratio Ratio Level  
Power (N) (M) (N1) (N2) (OR0) (OR1) Alpha Beta 
0.9000 171 170.741 85 85 1.000 3.000 0.0500 0.1000 
 

The value of 171 agrees exactly with that of Nam (1992).  
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Example3 - Finding Power of a 
Completed Experiment  
Suppose you want to find the power for a completed experiment in which the individual strata 
sample sizes are known. In this example there are three strata with success probabilities 0.72, 
0.66, and 0.69. The sample sizes for the treatment group in each stratum are 102, 113, and 97. 
The sample sizes for the control group in each stratum are 98, 110, and 114. The experiment was 
designed to detect an odds ratio of at least 1.5 with alpha equal to 0.05 for a one-sided test.  

To calculate the power in this situation, we set M to 1 and enter the sample sizes directly into R1 
and R2. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example3 by 
clicking the Template tab and loading this template.  

Option Value 
Data Tab 
Find ...................................................Beta and Power 
Alternative Hypothesis ......................One-Sided (H1:OR1>OR0) 
OR0...................................................1 
OR1...................................................1.5 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting  
M .......................................................1 
Continuity Correction.........................Checked 
Strata(1) ............................................1 
R1(1) .................................................102 
R2(1) .................................................98 
Pr(Success)(1) ..................................0.72 
Strata(2) ............................................1 
R1(2) .................................................113 
R2(2) .................................................110 
Pr(Success)(2) ..................................0.66 
Strata(3) ............................................1 
R1(3) .................................................97 
R2(3) .................................................114 
Pr(Success)(3) ..................................0.69 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results of Cochran-Mantel-Haenszel Test of an Odds Ratio 
H0: OR1=OR0. H1: OR1>OR0. Test: Continuity-Corrected Z-Test. 
 
 Total Sample Sample Sample H0 Actual   
 Sample Size Size of Size of Odds Odds Signif.  
 Size Multiplier Group 1 Group 2 Ratio Ratio Level  
Power (N) (M) (N1) (N2) (OR0) (OR1) Alpha Beta 
0.6980 634 1.000 312 322 1.000 1.500 0.0500 0.3020 
 

The power to detect an odds ratio of 1.5 is only 0.6980 in this experiment. 
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Chapter 230  

Comparing 
Proportions in 
Cluster- 
Randomized Trials 
Introduction 
A cluster (group) randomized design is one in which whole units, or clusters, of subjects are 
randomized to the groups rather than the individual subjects in those clusters. However, the 
conclusions of the study concern individual subjects rather than the clusters. Examples of clusters 
are families, school classes, neighborhoods, and hospital wards.  

Cluster-randomized designs are often adopted when there is a high risk of contamination if cluster 
members were randomized individually. For example, it may be difficult for an instructor to use 
two methods of teaching individuals in the same class. The price of randomizing by clusters is a 
loss of efficiency--the number of subjects needed to obtain a certain level of precision in a 
cluster-randomized trial is usually much larger than the number needed when the subjects are 
randomized individually. Hence, the standard methods of sample size estimation cannot be used. 

Three Procedures Documented Here 
There are three procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, or ratios of proportions. Each of these 
options is listed separately on the menus.  

Technical Details 
Our formulation comes from Donner and Klar (2000). Denote a binary observation by Y where 
g = 1 or 2 is the group, k = 1, 2, …,  is a cluster within group g, and m = 1, 2, …,  is an 
individual in cluster k of group g. The results that follow assume an equal number of individuals per 
cluster. When the number of subjects from cluster to cluster are about the same, the power and 
sample size values should be fairly accurate. In these cases, the average number of subjects per 
cluster can be used.

gkm

Kg Mg
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The statistical hypothesis that is tested concerns the difference between the two group proportions, 
 and . When necessary, we assume that group 1 is the treatment group and group 2 is the 

control group. With a simple modification, all of the large-sample sample size formulas that are 
listed in the module for testing two proportions can be used here. When the individual subjects 
are randomly assigned to one of the two groups, the variance of the sample proportion is 
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When the randomization is by clusters of subjects, the variance of the sample proportion is 
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The factor  is called the inflation factor. The Greek letter( )[1 1+ −mg ρ] ρ  is used to represent the 

intracluster correlation coefficient (ICC). This correlation may be thought of as the simple 
correlation between any two subjects within the same cluster. If we stipulate that ρ  is positive, it 
may also be interpreted as the proportion of total variability that is attributable to differences 
between clusters. This value is critical to the sample size calculation. 

All of the asymptotic formulas that were used in comparing two proportions may be used with 
cluster-randomized designs as well, as long as an adjustment is made for the inflation factor. The 
basic form of the z-test becomes 
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The quantities  and ~p1
~p2  are the maximum likelihood estimates constrained by ~ ~p p1 2− = 0δ . 
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Power Calculations 
A large sample approximation may be used that is most accurate when the values of  and  
are large. The large approximation is made by replacing the values of  and  in the z statistic 
with the corresponding values of  and  under the alternative hypothesis, and then 
computing the results based on the normal distribution.  

n1 n2

$p1 $p2

p1 p2

Note that in this case, exact calculations are not possible. 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter Procedure Templates. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and beta. This chapter covers three procedures, each of which has different options. 
This section documents options that are common to all three procedures. Later, unique options for 
each procedure will be documented.   

Find 
This option specifies the parameter to be solved for using the other parameters. The parameters 
that may be selected are P1.1, Alpha, Beta, K1, and M1. Under most situations, you will select 
either Beta or K1. 

Select K1 when you want to calculate the sample size needed to achieve a given power and alpha 
level. 

Select Beta when you want to calculate the power of an experiment.  

Test Statistic 
Specify which test statistic is used in searching and reporting. We recommend the likelihood 
score test. 

P2 (Control Group Proportion) 
Specify the value of , the control, baseline, or standard group’s proportion. The null hypothesis 
is that the two proportions differ by a specified amount (See Specify Group 1 Proportion using 
below).  

p2

Since is a proportion, these values must be between zero and one. p2

You may enter a range of values such as 0.1,0.2,0.3 or 0.1 to 0.9 by 0.1. 

K1 (Clusters Group 1) 
Enter a value (or range of values) for the number of clusters in this group. You may enter a range 
of values such as 10 to 20 by 2. The sample size for this group is equal to the number of clusters 
times the number of subjects per cluster. 

M1 (Items Group 1) 
This is the average number of items (subjects) per cluster in group one. This value must be a 
positive number that is at least one. You can use a list of values such as 100 150 200. 
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K2 (Clusters Group 2) 
This is the number of clusters in group two. The sample size for this group is equal to the number 
of clusters times the number of subjects per cluster. This value must be a positive number.  

 

If you simply want a multiple of the value for group one, you would enter the multiple followed 
by K1, with no blanks. If you want to use K1 directly, you do not have to premultiply by 1. For 
example, all of the following are valid entries:10 K1 2K1 0.5K1. 

You can use a list of values such as 10 20 30 or K1 2K1 3K1. 

M2 (Items Group 2) 
This is the average number of items (subjects) per cluster in group two. This value must be at 
least one. 

If you simply want a multiple of the value for group one, you would enter the multiple followed 
by M1, with no blanks. If you want to use M1 directly, you do not have to premultiply by 1. For 
example, all of the following are valid entries: 10  M1 2M1 0.5M1. 

You can use a list of values such as 10 20 30 or M1 2M1 3M1. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis of equal proportions when in fact they are equal.  

Values must be between zero and one. Historically, the value of 0.05 was used for alpha. This 
means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

You may enter a range of values such as 0.01,0.05,0.10 or 0.01 to 0.10 by 0.01. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of equal proportions when in fact they are 
different. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
However, you should pick a value for beta that represents the risk of a type-II error you are 
willing to take. 

Power is defined as 1-beta. Power is equal to the probability of rejecting a false null hypothesis. 
Hence, specifying the beta error level also specifies the power level. For example, if you specify 
beta values of 0.05, 0.10, and 0.20, you are specifying power values of 0.95, 0.90, and 0.80, 
respectively.  
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ICC (Intracluster Correlation) 
Enter a value (or range of values) for the intracluster correlation. This correlation may be thought 
of as the simple correlation between any two observations in the same cluster. It may also be thought 
of as the proportion of total variance in the observations that can be attributed to difference between 
clusters. 

Although the actual range for this value is from zero to one, typical values range from 0.002 to 
0.05. 

Data Tab (Proportion) 
This section documents options that are used when the parameterization is in terms of the values 
of the two proportions, P1 and P2. P1.0 is the value of the P1 assumed by the null hypothesis and 
P1.1 is the value of P1 at which the power is calculated. 

P1.0 (Group 1 Proportion |H0) 
This option specifies the value of the group 1 proportion given the null hypothesis. The power 
calculations assume that P1.0 is the value of P2 under the null hypothesis. In this non-null case, 
the value of P1.0 is not equal to P2 as it is in the null case. 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

Proportions must be between zero and one. They cannot take on the values zero or one.  

P1.1 (Group 1 Proportion |H1) 
This is the value of P1 under the alternative hypothesis. It is written P1.1. The power calculations 
assume that this is the actual value of the proportion. 

You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1.  

Note that values must be between zero and one.  

Alternative Hypothesis (H1) 
This option specifies whether a one-sided or two-sided hypothesis is analyzed.  

One-Sided (H1: P1<P2) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: P1<P2. 

One-Sided (H1:D1>D0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: P1>P2. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: 
P1<>P2+D0. Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 
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Data Tab (Difference) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value 
of P1 at which the power is calculated. Once P2, D0, and D1 are given, the values of P1.1 and 
P1.0 can be calculated. 

D0 (Difference|H0 = P1.0 – P2) 
This option specifies the difference between the two proportions given in the null hypothesis, H0. 
This difference is used with P2 to calculate the value of P1.0 using the formula: P1.0 = P2 + D0. 
Note that P1.0 here means the value of P1 under H0. 

Differences must be between -1 and 1. They cannot take on the values -1, 0, or 1. 

The power calculations use P1.0 as the value of the proportion in group 2 (the experimental or 
treatment group) under the null hypothesis. In the non-null case, the value of P1.0 is not equal to 
P2 as it is in the null case. 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

D1 (Difference|H1 = P1.1 – P2) 
This option specifies the difference between P1.1 and P2. This difference is used with P2 to 
calculate the value of P1.1 using the formula: P1.1 = D1 + P2. Note that P1.1 here means the 
value of P1 under H1. Differences must be between -1 and 1. They cannot take on the values -1 
or 1. 

The power calculations assume that P1.1 is the actual value of the proportion in group 2 
(experimental or treatment group). 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

Alternative Hypothesis (H1) 
This option specifies whether a one-sided or two-sided hypothesis is analyzed.  

One-Sided (H1:D1<D0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: D1<D0. 

One-Sided (H1:D1>D0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: D1>D0. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: 
D1<>D0. Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 
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Data Tab (Ratio) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of P1 at 
which the power is calculated. Once P2, R0, and R1 are given, the values of P1.0 and P1.1 can be 
calculated. 

R0 (Ratio|H0 = P1.0 / P2) 
This option specifies the ratio between the group 1 proportion under the null hypothesis, P1.0, 
and P2. This ratio is used with P2 to calculate the value of P1.0 using the formula: P1.0 = R0 x 
P2. The power calculations assume that P1.0 is the value of the P1 under the null hypothesis. In 
this non-null case, the value of P1.0 is not equal to P2 as it is in the null case. 

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25.  

Ratios must be greater than zero. 

R1 (Ratio|H1 =  P1.1 / P2) 
This option specifies the ratio of P1.1 and P2, where P1.1 is the proportion in group 1 under the 
alternative hypothesis. This ratio is used with P2 to calculate the value of P1.1 using the formula: 
P1.1 = R1 x P2.The power calculations assume that P1.1 is the actual value of the proportion in 
group 1 (experimental or treatment group). 

You may enter a range of values such as 0.5 0.6 0.7 0.8 or 1.25 to 2.0 by 0.25.  

Ratios must be greater than zero. They cannot take on the value of one. 

Alternative Hypothesis (H1) 
This option specifies whether a one-sided or two-sided hypothesis is analyzed.  

One-Sided (H1:R1<R0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: R1<R0. 

One-Sided (H1:R1>R0) refers to a one-sided test in which the alternative hypothesis is of the 
form H1: R1>R0. 

Two-Sided refers to a two-sided test in which the alternative hypothesis is of the type H1: 
R1<>R0. Here ‘<>’ means unequal. 

Note that the alternative hypothesis enters into power calculations by specifying the rejection 
region of the hypothesis test. Its accuracy is critical. 
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Options Tab 
The Options tab contains various limits and options. 

Maximum Iterations 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. A value of at least 500 is recommended. 

Zero Count Adjustment Method 
Zero cell counts often cause calculation problems. To compensate for this, a small value (called 
the Zero Count Adjustment Value) can be added either to all cells or to all cells with zero counts. 
This option specifies whether you want to use the adjustment and which type of adjustment you 
want to use. We recommend that you use the option Add to zero cells only. 

Zero cell values often do not occur in practice. However, since power calculations are based on 
total enumeration, they will occur in power and sample size estimation. 

Adding a small value is controversial, but can be necessary for computational considerations. 
Statisticians have recommended adding various fractions to zero counts. We have found that 
adding 0.0001 seems to work well.  

Zero Count Adjustment Value 
Zero cell counts cause many calculation problems when computing power or sample size. To 
compensate for this, a small value may be added either to all cells or to all zero cells. This is the 
amount that is added. We have found that 0.0001 works well. 

Be warned that the values of the ratio and the odds ratio will be affected by the amount specified 
here! 
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Example1 - Finding Power  
Two competing physical therapy treatments have been available for several years but have not yet 
been compared as to their effectiveness. The comparison of the two treatments is complicated by 
the sampling method that will be used. Instead of randomly assigning individuals to treatments, 
the researchers will randomly select two groups of physical therapists. The first group will be 
selected from those who use treatment 1. The second group will be selected from those who use 
treatment 2. The researchers will then follow up on the success or failure of the treatment for 
multiple patients of each physical therapist. The success rate of treatment 2 is known to be about 
0.44. The researchers want to examine effect of the number of physical therapists used in each 
group and the number of patients for each physical therapist on the power of the test. They 
determine that the two treatments should be declared different if they are shown to be at least 0.07 
apart in proportion. They plan to use the Farrington and Manning likelihood score test statistic to 
analyze the data. Based on similar studies, the intracluster correlation is estimated to be 0.02. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example1 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Test Statistic .....................................Likelihood Score (Farr. & Mann.) 
D0 .....................................................0.0 
D1 .....................................................0.07 
P2......................................................0.44 
K1......................................................10 15 20 25 
K2......................................................K1 
M1.....................................................10 to 50 by 10 
M2.....................................................M1 
Alternative Hypothesis ......................Two-Sided 
ICC....................................................0.02 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
Plot Setup Tab 
Horizontal Axis Parameter ................K1 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 - P2 
H0: P1-P2=D0. H1: P1-P2=D1<>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra- Prop Prop|H0 Prop|H1     
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 or Grp 1 or Diff Diff   
 Items Items Corr. Control Trtmnt Trtmnt if H0 if H1   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha Beta 
0.1491 10/10 10/10 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.8509 
0.2219 10/20 10/20 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.7781 
0.2763 10/30 10/30 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.7237 
0.3179 10/40 10/40 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.6821 
0.3506 10/50 10/50 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.6494 
0.2013 15/10 15/10 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.7987 
0.3096 15/20 15/20 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.6904 
0.3871 15/30 15/30 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.6129 
    .                .                 .                 .                 .                  .                 .               .                 .               .              . 
    .                .                 .                 .                 .                  .                 .               .                 .               .              . 
    .                .                 .                 .                 .                  .                 .               .                 .               .              .                             
 
Summary Statements 
Sample sizes of 100 in group one and 100 in group two, which were obtained by sampling 10 
clusters with 10 subjects each in group one and 10 clusters with 10 subjects each in group two, 
achieve 15% power to detect a difference between the group proportions of 0.0700. The group two 
proportion is 0.4400. The group one proportion is assumed to be 0.4400 under the null 
hypothesis and 0.5100 under the alternative hypothesis. The test statistic used is the 
two-sided Score test (Farrington & Manning). The significance level of the test was 0.0500. 
 

Group 1 Clusters/Items: K1/M1 
This line gives the value of K1, the number of clusters in group 1, followed by M1, the number of 
items per cluster in this group. The total number of items sampled in group 1 is N1 = K1 x M1. 

Group 2 Clusters/Items: K2/M2 
This line gives the value of K2, the number of clusters in group 2, followed by M2, the number of 
items per cluster in this group. The total number of items sampled in group 2 is N2 = K2 x M2. 

Intracluster Corr.: ICC 
This is the value of the intracluster correlation coefficient, ICC. 

Prop Grp 2 or Control: P2 
This is the value of P2, the proportion responding positively in the control group. 

Prop|H0 Grp 1 or Trtmnt: P1.0 
This is the value of P1.0, the proportion responding positively in the treatment group as specified 
by the null hypothesis. The difference between this value and P2 is the value used in the null 
hypothesis. 

Prop|H1 Grp 1 or Trtmnt: P1.1 
This is the value of P1.1, the proportion responding positively in the treatment group as specified 
by the alternative hypothesis. The difference between this value and P2 is the value used in the 
alternative hypothesis. 

 



230-12  Cluster Randomization: Proportions  

Diff if H0: D0 
This is the value of D0, the difference between proportions under the null hypothesis. 

Alpha 
This is the value of alpha (significance level) that was targeted by the design.  

Beta 
This is the value of beta, which is the probability of not rejecting a false null hypothesis. 

Plots Section 
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The values from the table are displayed on the above chart. This chart gives us a quick look at the 
power that is achieved for various combinations of cluster size and numbers of clusters. 
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Example2 - Finding Sample Size  
Continuing with Example1, the maximum number of therapists the researchers hope to use is 25 
for each treatment. They decide to determine how many patients each therapist would have to 
treat to achieve 90% power if the maximum number of therapists is used. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example2 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................M1 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
D0......................................................0.0 
D1......................................................0.07 
P2......................................................0.44 
K1......................................................25 
K2......................................................K1 
M1 .....................................................Ignored 
M2 .....................................................M1 
Alternative Hypothesis ......................Two-Sided 
ICC ....................................................0.02 
Alpha .................................................0.05 
Beta...................................................0.10 
 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 - P2 
H0: P1-P2=D0. H1: P1-P2=D1<>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra- Prop Prop|H0 Prop|H1     
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 or Grp 1 or Diff Diff   
 Items Items Corr. Control Trtmnt Trtmnt if H0 if H1   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha    Beta 
0.9002 25/286 25/286 0.0200 0.4400 0.4400 0.5100 0.0000 0.0700 0.0500 0.0998 

 

To achieve 90% power, each therapist would need to be evaluated on 286 patients.
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Example3 - Finding Power (Non-
Inferiority) 
A study is being designed to study the effectiveness of a new treatment. Historically, the standard 
treatment has enjoyed a 60% cure rate. The new treatment reduces the seriousness of certain side 
effects that occur with the standard treatment. Thus, the new treatment will be adopted even if it 
is slightly less effective than the standard treatment. The researchers will recommend adoption of 
the new treatment if it has a cure rate of at least 55%.  

The researchers will recruit patients from various hospitals. All patients at a particular hospital 
will receive the same treatment. They anticipate an average of 100 patients per hospital. 

The researchers plan to use the Farrington and Manning likelihood score test statistic to analyze 
the data. They want to study the power of the one-sided Farrington and Manning test at group 
cluster sizes ranging from 2 to 10 for detecting a difference of -0.05 when the actual cure rate of 
the new treatment ranges from 60% to 66%. The significance level will be 0.05. Based on similar 
studies, they estimate the intracluster correlation to be 0.002. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example3 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Test Statistic .....................................Likelihood Score (Farr. & Mann.) 
D0 ..................................................... -0.05 
D1 .....................................................0 .02 .04 .06 
P2......................................................0.6 
K1......................................................2 4 6 8 10 
K2......................................................K1 
M1.....................................................100 
M2.....................................................M1 
Alternative Hypothesis ......................One-Sided (H1:D1>D0) 
ICC....................................................0.002 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra- Prop Prop|H0 Prop|H1     
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 or Grp 1 or Diff Diff   
 Items Items Corr. Control Trtmnt Trtmnt if H0 if H1   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha Beta 
0.2387 2/100 2/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.7613 
0.3729 4/100 4/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.6271 
0.4889 6/100 6/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.5111 
0.5879 8/100 8/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.4121 
0.6709 10/100 10/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.3291 
. . . . . . . . . . . 
. . . . . . . . . . . 
. . . . . . . . . . . 
 
Summary Statements 
Sample sizes of 200 in group one and 200 in group two, which were obtained by sampling 2 
clusters with 100 subjects each in group one and 2 clusters with 100 subjects each in group 
two, achieve 24% power to detect a difference between the group proportions of 0.0000. The 
group two proportion is 0.6000. The group one proportion is assumed to be 0.5500 under the null 
hypothesis and 0.6000 under the alternative hypothesis. The test statistic used is the 
one-sided Score test (Farrington & Manning). The significance level of the test was 0.0500. 
 

This report shows the values of each of the parameters, one scenario per row. Most of the report 
columns have obvious interpretations. Those that may not be obvious are presented here. 

Plots Section 
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The values from the table are displayed on the above chart. This chart gives us a quick look at the 
sample size that will be required for various values of D1. 
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Example4 - Finding the Sample Size 
(Non-Inferiority) 
Continuing with the scenario given in Example 3, the researchers want to determine the number 
of clusters necessary for each value of D1 when the target power is set to 0.80.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template Example4 by clicking the Template tab and 
loading this template. 

Option Value
Data Tab 
Find ...................................................K1 
Test Statistic .....................................Likelihood Score (Farr. & Mann.) 
D0 ..................................................... -0.05 
D1 .....................................................0 .02 .04 .06 
P2......................................................0.6 
K1...................................................... Ignored since this is the Find setting 
K2......................................................K1 
M1 .....................................................100 
M2 .....................................................M1 
Alternative Hypothesis ......................One-Sided (H1:D1>D0) 
ICC....................................................0.002 
Alpha.................................................0.05 
Beta...................................................0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra- Prop Prop|H0 Prop|H1     
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 or Grp 1 or Diff Diff   
 Items Items Corr. Control Trtmnt Trtmnt if H0 if H1   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha Beta 
0.8190 15/100 15/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.1810 
0.8364 8/100 8/100 0.0020 0.6000 0.5500 0.6200 -0.0500 0.0200 0.0500 0.1636 
0.8503 5/100 5/100 0.0020 0.6000 0.5500 0.6400 -0.0500 0.0400 0.0500 0.1497 
0.8186 3/100 3/100 0.0020 0.6000 0.5500 0.6600 -0.0500 0.0600 0.0500 0.1814 

 

The required sample size depends a great deal on the value of D1. The researchers should spend 
time determining the most appropriate value for D1.  
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Example5 – Investigating the Impact of 
the Intracluster Correlation 
Continuing with the scenario given in Example 4, the researchers, having decided that the most 
appropriate value of D1 is 0.02, now want to investigate the effect of the intracluster correlation 
on the sample size. From values found in other studies, they believe the ICC will be somewhere 
between 0.001 and 0.009.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example5 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................K1 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
D0......................................................-0.05 
D1......................................................0.02 
P2......................................................0.6 
K1......................................................Ignored since this is the Find setting 
K2......................................................K1 
M1 .....................................................100 
M2 .....................................................M1 
Alternative Hypothesis ......................One-Sided (H1:D1>D0) 
ICC ....................................................0.001 to 0.009 by 0.002 
Alpha .................................................0.05 
Beta...................................................0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra- Prop Prop|H0 Prop|H1     
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 or Grp 1 or Diff Diff   
 Items Items Corr. Control Trtmnt Trtmnt if H0 if H1   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha Beta 
0.8207 7/100 7/100 0.0010 0.6000 0.5500 0.6200 -0.0500 0.0200 0.0500 0.1793 
0.8099 8/100 8/100 0.0030 0.6000 0.5500 0.6200 -0.0500 0.0200 0.0500 0.1901 
0.8020 9/100 9/100 0.0050 0.6000 0.5500 0.6200 -0.0500 0.0200 0.0500 0.1980 
0.8275 11/100 11/100 0.0070 0.6000 0.5500 0.6200 -0.0500 0.0200 0.0500 0.1725 
0.8197 12/100 12/100 0.0090 0.6000 0.5500 0.6200 -0.0500 0.0200 0.0500 0.1803 

 

This chart shows that the necessary sample size almost doubles when the ICC is changed from 
0.001 to 0.009. The researchers decide to obtain a narrower range for the value of ICC.  
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Example6 - Validation using Donner and 
Klar 
Donner (1997), page 63, present a sample size study in which P2 = 0.06, D1 = -0.02, D0=0, ICC 
= 0.01, M1=M2=100, two-sided alpha = 0.05, and beta = 0.20. Using the pooled z test statistic, 
they found the number of subjects to be 3698 in each group, which they round off to 38 clusters 
per group.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example6 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................K1 
Test Statistic .....................................Z test (pooled) 
D0 .....................................................0.0 
D1 .....................................................-0.02 
P2......................................................0.06 
K1...................................................... Ignored since this is the Find setting 
K2......................................................K1 
M1 .....................................................100 
M2 .....................................................M1 
Alternative Hypothesis ......................Two-Sided 
ICC....................................................0.01 
Alpha.................................................0.05 
Beta...................................................0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results of Tests Based on the Difference: P1 – P2 
H0: P1-P2=D0. H1: P1-P2=D1<>D0. Test Statistic: Z test (pooled) 
 
 Group 1 Group 2 Intra- Prop Prop|H0 Prop|H1     
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 or Grp 1 or Diff Diff   
 Items Items Corr. Control Trtmnt Trtmnt if H0 if H1   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha Beta 
0.8097 38/100 38/100 0.0100 0.0600 0.0600 0.0400 0.0000 -0.0200 0.0500 0.1903 

 

PASS has also found the required sample size to be 38 clusters.  
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Chapter 235  

Non-Inferiority 
Tests of Two 
Proportions in 
Cluster 
Randomized Trials 
Introduction 
This module provides power analysis and sample size calculation for non-inferiority and 
superiority tests in two-sample, cluster-randomized designs in which the outcome is binary.  

Three Procedures Documented Here 
There are four procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, or ratios of proportions. Each of these 
options is listed separately on the menus.  

Technical Details 
The methods contained in this module are identical to those discussed in the chapter “Comparing 
Proportions in Cluster Randomized Trials.” The input and output has simply been reformatted in 
a manner that is convenient for non-inferiority testing. A complete review of non-inferiority 
testing is given in the chapter “Non-Inferiority of Two Independent Proportions.” We refer you to 
these two chapters for complete technical details on the methods used in this module.  
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter Procedure Templates. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and beta. This chapter covers three procedures, each of which has different options. 
This section documents options that are common to all three procedures. Later, unique options for 
each procedure will be documented.   

Find 
This option specifies the parameter to be solved for using the other parameters. The parameters 
that may be selected are P1.1, Alpha, Beta, K1, M1, or ICC. Under most situations, you will 
select either Beta or K1. 

Select K1 when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Beta when you want to calculate the power of an experiment that has already been run.  

Test Statistic 
Specify which test statistic is used in searching and reporting. We recommend the likelihood 
score test. 

Higher Proportions Are 
This option specifies whether proportions represent successes (better) or failures (worse). 

Better (Successes) 
When proportions represent successes, higher proportions are better. A noninferior treatment is 
one whose proportion is at least almost as high as that of the reference group.  

For testing non-inferiority, D0 is negative, and R0 is less than one. For testing superiority, D0 is 
positive and R0 is greater than one.  

Worse (Failures) 
When proportions represent failures, lower proportions are better. A noninferior treatment is one 
whose proportion is at most almost as low as that of the reference group.  

For testing non-inferiority, D0 is positive and R0 is greater than one. For testing superiority, D0 
is negative, and R0 is less than one.  
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P2 (Group 2 Proportion) 
Specify the value of , the control, baseline, or standard group’s proportion. The null hypothesis 
is that the two proportions differ by a specified amount (See Specify Group 1 Proportion using 
below).  

p2

Since is a proportion, these values must be between 0 and 1. p2

You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1. 

ICC (Intracluster Correlation) 
Enter a value (or range of values) for the intracluster correlation. This correlation may be thought 
of as the simple correlation between any two observations in the same cluster. It may also be thought 
of as the proportion of total variance in the observations that can be attributed to difference between 
clusters.  

Although the actual range for this value is between 0 to 1, typical values range from 0.002 to 
0.05. 

K1 (Clusters Group 1) 
Enter a value (or range of values) for the number of clusters in group one. You may enter a range 
of values such as 10 to 20 by 2. The sample size for this group is equal to the number of clusters 
times the number of subjects per cluster. 

M1 (Items Group 1) 
This is the average number of items (subjects) per cluster in group one. This value must be a 
positive number that is at least 1. You can use a list of values such as 100 150 200. 

K2 (Clusters Group 2) 
This is the number of clusters in group two. The sample size for this group is equal to the number 
of clusters times the number of subjects per cluster. This value must be a positive number.  

If you simply want a multiple of the value for group one, you would enter the multiple followed 
by K1, with no blanks. If you want to use K1 directly, you do not have to pre-multiply by 1. For 
example, all of the following are valid entries:10 K1 2K1 0.5K1. 

You can use a list of values such as 10 20 30 or K1 2K1 3K1. 

M2 (Items Group 2) 
This is the number of items (subjects) per cluster in group two. This value must be a positive 
number.  

If you simply want a multiple of the value for group one, you would enter the multiple followed 
by M1, with no blanks. If you want to use M1 directly, you do not have to pre-multiply by 1. For 
example, all of the following are valid entries: 10 M1 2M1 0.5M1. 

You can use a list of values such as 10 20 30 or M1 2M1 3M1. 
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Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis of unequal proportions when in fact they are not 
equal.  

Values must be between 0 and 1. Because this is a one-sided test, unless you have good reason to 
do otherwise, the value of 0.025 is recommended. You should pick a value for alpha that 
represents the risk of a type-I error you are willing to take in your experimental situation.  

You may enter a range of values such as 0.01 0.025 0.05 or 0.01 to 0.10 by 0.01. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis when in fact it is false. 

Values must be between 0 and 1. Historically, the value of 0.20 was often used for beta. 
However, you should pick a value for beta that represents the risk of a type-II error you are 
willing to take. 

Power is defined as 1-beta. Power is equal to the probability of rejecting a false null hypothesis. 
Hence, specifying the beta error level also specifies the power level. For example, if you specify 
beta values of 0.05, 0.10, and 0.20, you are specifying power values of 0.95, 0.90, and 0.80, 
respectively.  

Data Tab (Proportion) 
This section documents options that are used when the parameterization is in terms of the values 
of the two proportions, P1 and P2. P1.0 is the value of the P1 assumed by the null hypothesis and 
P1.1 is the value of P1 at which the power is calculated. 

P1.0 (Equiv. Proportion) 
This option allows you to specify the value P1.0 directly. This is the value of the treatment 
group’s proportion above which the treatment group is considered noninferior to the reference 
group. This option is only used for Proportions. 

When Higher Proportions Are is set to Better, the trivial proportion is the smallest value of P1 for 
which the treatment group is declared noninferior to the reference group. In this case, P1.0 should 
be less than P2 for non-inferiority tests and greater than P2 for superiority tests. The reverse is the 
case when Higher Proportions Are is set to Worse.  

Proportions must be between 0 and 1. They cannot take on the values 0 or 1. This value should 
not be set to exactly the value of P2. 

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

P1.1 (Actual Proportion) 
This option specifies the value of P1.1, the value of the treatment proportion at which the power 
is to be calculated. It is only used for Proportions. Proportions must be between 0 and 1. They 
cannot take on the values 0 or 1.  

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  
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Data Tab (Difference) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value 
of P1 at which the power is calculated. Once P2, D0, and D1 are given, the values of P1.1 and 
P1.0 can be calculated. 

D0 (Equiv.Difference) 
This option specifies the trivial difference (often called the margin of error) between P1.0 (the 
value of P1 under H0) and P2. This difference is used with P2 to calculate the value of P1.0 using 
the formula: P1.0 = P2 + D0. It is only used for Differences. 

When Higher Proportions Are is set to Better, the trivial difference is that amount that P1 can be 
less than P2 and still have the treatment group declared noninferior to the reference group. In this 
case, D0 should be negative for non-inferiority tests and positive for superiority tests. 

The reverse is the case when Higher Proportions Are is set to worse.  

You may enter a range of values such as -.03 -.05 -.10 or -.05 to -.01 by .01.  Differences must be 
between -1 and 1. D0 cannot take on the values -1, 0, or 1. 

D1 (Actual Difference) 
This option specifies the actual difference between P1.1 (the actual value of P1) and P2. This is 
the value of the difference at which the power is calculated. In non-inferiority trials, this 
difference is often set to zero. 

The power calculations assume that P1.1 is the actual value of the proportion in group 1 
(experimental or treatment group). This difference is used with P2 to calculate the value of P1.1 
using the formula: P1.1 = D1 + P2.  

You may enter a range of values such as -.05 0 .5 or -.05 to .05 by .02. Actual differences must be 
between -1 and 1. They cannot take on the values -1 or 1. 

This option is only used for Differences. 
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Data Tab (Ratio) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of P1 at 
which the power is calculated. Once P2, R0, and R1 are given, the values of P1.0 and P1.1 can be 
calculated. 

R0 (Equiv. Ratio) 
This option specifies the trivial ratio (also called the Relative Margin of Equivalence) between 
P1.0 and P2. The power calculations assume that P1.0 is the value of P1 under the null 
hypothesis. This value is used with P2 to calculate the value of P1.0 using the formula: P1.0 = R0 
x P2. This option is only used for Ratios. 

When Higher Proportions Are is set to Better, the trivial ratio is the relative amount by which P1 
can be less than P2 and still have the treatment group declared noninferior to the reference group. 
In this case, R0 should be less than 1 for non-inferiority tests and greater than 1 for superiority 
tests. The reverse is the case when ‘Higher Proportions Are’ is set to ‘Worse’. In this case, R0 
should be less than 1 for non-inferiority tests and greater than 1 for superiority tests. The reverse 
is the case when Higher Proportions Are is set to Worse. 

Ratios must be positive. R0 cannot take on the value of 1. 

You may enter a range of values such as 0.95 .97 .99 or .91 to .99 by .02.  

R1 (Actual Ratio) 
This option specifies the ratio of P1.1 and P2, where P1.1 is the actual proportion in the treatment 
group. The power calculations assume that P1.1 is the actual value of the proportion in group one. 
This difference is used with P2 to calculate the value of P1.1 using the formula: P1.1 = R1 x P2. 
In non-inferiority trials, this ratio is often set to 1. 

This option is only used for Ratios. 

Ratios must be positive. You may enter a range of values such as 0.95 1 1.05 or 0.9 to 1.9 by 
0.02.  
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Options Tab 
The Options tab contains various limits and options. 

Maximum Iterations 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. A value of at least 500 is recommended. 

Zero Count Adjustment Method 
Zero cell counts often cause calculation problems. To compensate for this, a small value (called 
the Zero Count Adjustment Value) can be added either to all cells or to all cells with zero counts. 
This option specifies whether you want to use the adjustment and which type of adjustment you 
want to use. We recommend that you use the option Add to zero cells only. 

Zero cell values often do not occur in practice. However, since power calculations are based on 
total enumeration, they will occur in power and sample size estimation. 

Adding a small value is controversial, but can be necessary for computational considerations. 
Statisticians have recommended adding various fractions to zero counts. We have found that 
adding 0.0001 seems to work well.  

Zero Count Adjustment Value 
Zero cell counts cause many calculation problems when computing power or sample size. To 
compensate for this, a small value may be added either to all cells or to all zero cells. This value 
indicates the amount that is added. We have found that 0.0001 works well. 

Be warned that the value of the ratio and the odds ratio will be affected by the amount specified 
here! 
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Example1 - Finding Power 
A study is being designed to study the effectiveness of a new treatment. Historically, the standard 
treatment has enjoyed a 60% cure rate. The new treatment reduces the seriousness of certain side 
effects that occur with the standard treatment. Thus, the new treatment will be adopted even if it 
is slightly less effective than the standard treatment. The researchers will recommend adoption of 
the new treatment if it has a cure rate of at least 55%. That is, the margin of inferiority is -5%. 

The researchers will recruit patients from various hospitals. All patients at a particular hospital 
will receive the same treatment. They anticipate an average of 100 patients per hospital. Based on 
similar studies, they estimate the intracluster correlation to be 0.002. 

The researchers plan to use the Farrington and Manning likelihood score test statistic to analyze 
the data. They want to study the power of the one-sided Farrington and Manning test at group 
cluster sizes ranging from 2 to 10 for detecting a difference of -0.05 when the actual cure rate of 
the new treatment ranges from 60% to 66%. The significance level will be 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example1 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Test Statistic .....................................Likelihood Score (Farr. & Mann.) 
D0 ..................................................... -0.05 
D1 .....................................................0 .02 .04 .06 
P2......................................................0.6 
K1......................................................2 4 6 8 10 
M1.....................................................100 
K2......................................................K1 
M2.....................................................M1 
Higher Proportions Are .....................Better 
ICC....................................................0.002 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 

 



 Two Proportions: Cluster-Randomized Non-Inferiority Trials  235-9 
 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra-  Equiv. Actual Equiv. Actual   
 Clusters/ Clusters/ Cluster Grp 2 Grp 1  Grp 1 Margin Margin   
 Items Items Corr. Prop Prop Prop Diff Diff   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha Beta 
0.2387 2/100 2/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.7613 
0.3729 4/100 4/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.6271 
0.4889 6/100 6/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.5111 
0.5879 8/100 8/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.4121 
0.6709 10/100 10/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.3291 
. . . . . . . . . . . 
. . . . . . . . . . . 
. . . . . . . . . . . 
 
Summary Statements 
Sample sizes of 200 in group one and 200 in group two, which were obtained by sampling 2 
clusters with 100 subjects each in group one and 2 clusters with 100 subjects each in group 
two, achieve 24% power to detect a non-inferiority margin difference between the group 
proportions of -0.0500. The group two proportion is 0.6000. The group one proportion is assumed 
to be 0.5500 under the null hypothesis and 0.6000 under the alternative hypothesis. The test 
statistic used is the one-sided Score test (Farrington & Manning). The significance level of 
the test was 0.0500. 
 

This report shows the values of each of the parameters, one scenario per row. Most of the report 
columns have obvious interpretations. Those that may not be obvious are presented here. 

Group 1 Clusters/Items: K1/M1 
This line gives the value of K1, the number of clusters in group 1, followed by M1, the number of 
items per cluster in this group. The total number of items sampled in group 1 is N1 = K1 x M1. 

Group 2 Clusters/Items: K2/M2 
This line gives the value of K2, the number of clusters in group 2, followed by M2, the number of 
items per cluster in this group. The total number of items sampled in group 2 is N2 = K2 x M2. 

Intracluster Corr.: ICC 
This is the value of the intracluster correlation coefficient, ICC. 

Prop Grp 2: P2 
This is the value of P2, the proportion responding positively in the control group. 

Equiv. Grp 1 Prop P1.0 
This is the value of P1.0, the response rate of the treatment group, as specified by the null 
hypothesis of inferiority. Values of P1 less than this amount are considered different from P2. 
Values of P1 greater than this are considered noninferior to the reference group. The difference 
between this value and P2 is the value of the null hypothesis. 
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Actual Grp 1 Prop P1.1 
This is the value of P1.1, the response rate of the treatment group, at which the power is 
computed. This is the value of P1 under the alternative hypothesis. The difference between this 
value and P2 is the value of the alternative hypothesis. 

Equiv. Margin Diff D0 
This is the value of D0, the difference between the two group proportions under the null 
hypothesis. This value is often called the margin of non-inferiority.  

Actual Margin Diff D1 
This is the value of D1, the difference between the two group proportions at which the power is 
computed. This is the value of the difference under the alternative hypothesis. 

Alpha 
This is the value of alpha (significance level) that was targeted by the design.  

Beta 
This is the value of beta, which is the probability of not rejecting a false null hypothesis. 

Plots Section 
 

 

Pwr vs K1 by D1 with P2=0.60 A=0.05 M1=100
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The values from the table are displayed on the above chart. This chart gives us a quick look at the 
sample sizes that will be required for various values of D1. 
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Example2 - Finding the Sample Size 
(Number of Clusters) 
Continuing with the scenario given in Example 1, the researchers want to determine the number 
of clusters necessary for each value of D1 when the target power is set to 0.80. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example2 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................K1 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
D0......................................................-0.05 
D1......................................................0 .02 .04 .06 
K1......................................................Ignored since this is the Find setting 
M1 .....................................................100 
K2......................................................K1 
M2 .....................................................M1 
Higher Proportions Are......................Better 
P2......................................................0.6 
ICC ....................................................0.002 
Alpha .................................................0.05 
Beta...................................................0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Non-Inferiority Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra-  Equiv. Actual Equiv. Actual   
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 Grp 1 Margin Margin   
 Items Items Corr. Prop Prop Prop Diff Diff   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha Beta 
0.8190 15/100 15/100 0.0020 0.6000 0.5500 0.6000 -0.0500 0.0000 0.0500 0.1810 
0.8364 8/100 8/100 0.0020 0.6000 0.5500 0.6200 -0.0500 0.0200 0.0500 0.1636 
0.8503 5/100 5/100 0.0020 0.6000 0.5500 0.6400 -0.0500 0.0400 0.0500 0.1497 
0.8186 3/100 3/100 0.0020 0.6000 0.5500 0.6600 -0.0500 0.0600 0.0500 0.1814 

 

The required sample size depends a great deal on the value of D1. The researchers should spend 
time determining the most appropriate value for D1.  
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Example3 - Validation 
We could not find an example of this type of analysis in the literature. Therefore, we will validate 
the procedure by comparing the results to those given in Example3 in the chapter “Comparing 
Proportions in Cluster Randomized Trials,” since both modules should give identical results. 
Validation can be accomplished by running Example 1 in this chapter and Example3 in that 
chapter. If you do this, you will see that both procedures give the same results. 
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Example4 - Finding Power after an 
Experiment 
A group of researchers want to show that a new, less expensive treatment works at least as well as 
the current treatment. They believe, in fact, that the new treatment is about 0.10 higher in 
proportion of success. One hundred patients at each of 10 randomly chosen hospitals were given 
the current treatment. One hundred patients at each of 10 randomly chosen hospitals were given 
the new treatment. It was agreed before the experiment that the new treatment needed to be no 
less than 0.05 in proportion of success below the current treatment to be considered noninferior. 
The proportion of patients responding to the current treatment was 821/1000 = 0.821. The 
proportion of patients responding to the new treatment was 819/1000 = 0.819. This result did not 
show significant noninferiority at the 0.05 level. The researchers want to know the power of their 
noninferiority test. They decide to use the intracluster correlation coefficient estimated from the 
data, which was 0.0068. Although the observed difference in proportions is 0.819 – 0.821 = -
0.002, the trivial difference is still -0.05. This value is used in the power calculation. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example4 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
D0......................................................-0.05 
D1......................................................0.0 0.10 
P2......................................................0.821 
K1......................................................10 
K2......................................................K1 
M1 .....................................................100  
M2 .....................................................M1 
Higher Proportions Are......................Better 
ICC ....................................................0.0068 
Alpha .................................................0.05 
Beta...................................................Ignored 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 
Numeric Results for Non-Inferiority Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0. H1: P1-P2=D1>D0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra-  Equiv. Actual Equiv. Actual   
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 Grp 1 Margin Margin   
 Items Items Corr. Prop Prop Prop Diff Diff   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 D0 D1 Alpha Beta 
0.7272 10/100 10/100 0.0068 0.8210 0.7710 0.8210 -0.0500 0.0000 0.0500 0.2728 
1.0000 10/100 10/100 0.0068 0.8210 0.7710 0.9210 -0.0500 0.1000 0.0500 0.0000 
 

If indeed the new treatment were 0.10 higher in proportion of success, the power for showing 
noninferiority would be 1.0000. If the true proportions are the same, the power would be 0.7272. 
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Example5 - Finding Sample Size 
(Individuals Within Clusters) 
An agency would like to show the proportion of success of a new treatment is no less than that of 
the current treatment. Thirty doctors are available for the study. Fifteen will be randomly chosen 
to be trained to administer the new treatment. The remaining fifteen will continue to administer 
the current treatment. The new treatment will be considered noninferior if the the proportion of 
success is at least 90% of the current treatment success. The agency would like to know the 
number of patients that need to be treated by each doctor to achieve 80% power for the 
noninferiority test. Various values for the intracluster correlation coefficient will be use since its 
true value is unknown. It is expected that the two treatments will have a success rate near 0.65. 
Alpha is set at 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example5 by clicking the Template 
tab and loading this template. 

Option Value
Data Tab 
Find ...................................................M1 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
R0 (Trivial Ratio) ...............................0.90 
R1 (Actual Ratio)...............................1.0 
P2......................................................0.65 
K1......................................................15 
K2......................................................K1 
M1 .....................................................Ignored since this is the find setting 
M2 .....................................................M1 
Higher Proportions Are......................Better 
ICC ....................................................0.001 to 0.01 by 0.001 
Alpha .................................................0.05 
Beta...................................................0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results for Non-Inferiority Tests Based on the Ratio: P1 / P2 
H0: P1/P2<=R0. H1: P1/P2=R1>R0. Test Statistic: Score test (Farrington & Manning) 
 
 Group 1 Group 2 Intra-  Trivial Actual Trivial Actual   
 Clusters/ Clusters/ Cluster Grp 2 Grp 1 Grp 1 Margin Margin   
 Items Items Corr. Prop Prop Prop Ratio Ratio   
Power K1/M1 K2/M2 ICC P2 P1.0 P1.1 R0 R1 Alpha Beta 
0.8011 15/42 15/42 0.0010 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1989 
0.8023 15/44 15/44 0.0020 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1977 
0.8023 15/46 15/46 0.0030 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1977 
0.8017 15/48 15/48 0.0040 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1983 
0.8045 15/51 15/51 0.0050 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1955 
0.8011 15/53 15/53 0.0060 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1989 
0.8017 15/56 15/56 0.0070 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1983 
0.8005 15/59 15/59 0.0080 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1995 
0.8017 15/63 15/63 0.0090 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1983 
0.8011 15/67 15/67 0.0100 0.6500 0.5850 0.6500 0.900 1.000 0.0500 0.1989 

 

Plots Section 
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The number of patients that should be seen by each doctor ranges from 42 to 67, depending on 
the intracluster correlation coefficient.. 
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Chapter 240  

Equivalence of 
Two Proportions 
in Cluster- 
Randomized Trials 
Introduction 
This module provides power analysis and sample size calculation for equivalence tests in two-
sample, cluster-randomized designs in which the outcome is binary.  

Three Procedures Documented Here 
There are three procedures in the menus that use the program module described in this chapter. 
These procedures are identical except for the type of parameterization. The parameterization can 
be in terms of proportions, differences in proportions, or ratios of proportions. Each of these 
options is listed separately on the menus.  

Technical Details 
The methods contained in this module are identical to those discussed in the chapter entitled 
“Comparing Proportions in Cluster-Randomized Trials.” The input and output has simply been 
reformatted in a manner that is convenient for equivalence testing. A complete review of 
equivalence testing is given in the chapter “Equivalence of Two Independent Proportions.” We 
refer you to these two chapters for complete technical details on the methods used in this module.  
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter Procedure Templates. 

Data Tab (Common Options) 
The Data tab contains the parameters associated with this test such as the proportions, sample 
sizes, alpha, and beta. This chapter covers three procedures, each of which has different options. 
This section documents options that are common to all three procedures. Later, unique options for 
each procedure will be documented.   

Find 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are P1.1, Alpha, Beta, K1, M1, or ICC. Under most situations, you will 
select either Beta or K1. 

Select K1 when you want to calculate the sample size needed to achieve a given power and alpha 
level. 

Select Beta when you want to calculate the power of an experiment.  

Test Statistic 
Specify which test statistic is used in searching and reporting. We recommend the likelihood 
score test. 

P2 (Control Group Proportion) 
Specify the value of P2, the control, baseline, or standard group’s proportion. The null hypothesis 
is that the two proportions differ by a specified amount (See Specify Group 1 Proportion using 
below).  

Since P2 is a proportion, these values must be between 0 and 1. 

You may enter a range of values such as 0.1 0.2 0.3 or 0.1 to 0.9 by 0.1. 

ICC (Intracluster Correlation) 
Enter a value (or range of values) for the intracluster correlation. This correlation may be thought 
of as the simple correlation between any two observations in the same cluster. It may also be thought 
of as the proportion of total variance in the observations that can be attributed to difference between 
clusters. 

Although the actual range for this value is from 0 to 1, typical values range from 0.002 to 0.05. 

K1 (Clusters Group 1) 
Enter a value (or range of values) for the number of clusters in this group. You may enter a range 
of values such as 10 to 20 by 2. The sample size for this group is equal to the number of clusters 
times the number of subjects per cluster. 
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M1 (Items Group 1) 
This is the average number of items (subjects) per cluster in group one. This value must be a 
positive number that is at least 1. You can use a list of values such as 100 150 200. 

K2 (Clusters Group 2) 
This is the number of clusters in group two. The sample size for this group is equal to the number 
of clusters times the number of subjects per cluster. This value must be a positive number.  

If you simply want a multiple of the value for group one, you would enter the multiple followed 
by K1, with no blanks. If you want to use K1 directly, you do not have to pre-multiply by 1. For 
example, all of the following are valid entries: 10 K1 2K1 0.5K1. 

You can use a list of values such as 10 20 30 or K1 2K1 3K1. 

M2 (Items Group 2) 
This is the number of items (subjects) per cluster in group two. This value must be a positive 
number.  

If you simply want a multiple of the value for group one, you would enter the multiple followed 
by M1, with no blanks. If you want to use M1 directly, you do not have to pre-multiply by 1. For 
example, all of the following are valid entries: 10  M1 2M1 0.5M1. 

You can use a list of values such as 10 20 30 or M1 2M1 3M1. 

Alpha (Significance Level 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis of unequal proportions when in fact they are not 
equal.  

Values must be between 0 and 1. Because this is a two-sided test, unless you have good reason to 
do otherwise, the value of 0.05 is recommended. You should pick a value for alpha that 
represents the risk of a type-I error you are willing to take in your experimental situation.  

You may enter a range of values such as 0.01 0.025 0.05 or 0.01 to 0.10 by 0.01. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis when in fact it is false. 

Values must be between 0 and 1. Historically, the value of 0.20 was often used for beta. 
However, you should pick a value for beta that represents the risk of a type-II error you are 
willing to take. 

Power is defined as 1-beta. Power is equal to the probability of rejecting a false null hypothesis. 
Hence, specifying the beta error level also specifies the power level. For example, if you specify 
beta values of 0.05, 0.10, and 0.20, you are specifying power values of 0.95, 0.90, and 0.80, 
respectively.  
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Data Tab (Proportion) 
This section documents options that are used when the parameterization is in terms of the values 
of the two proportions, P1 and P2. P1.0 is the value of the P1 assumed by the null hypothesis and 
P1.1 is the value of P1 at which the power is calculated. 

P1.0U & P1.0L (Upper & Lower Equivalence 
Proportion) 
Specify the margin of equivalence directly by giving the upper and lower bounds of P1.0. The 
two groups are assumed to be equivalent when P1.0 is between these values. Thus, P1.0U should 
be greater than P2 and P1.0L should be less than P2. 

This option is only used for Proportions. 

Note that the values of P1.0U and P1.0L are used in pairs. Thus, the first values of P1.0U and 
P1.0L are used together, and then the second values of each are used, and so on.   

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01.  

Proportions must be between 0 and 1. They cannot take on the values 0 or 1. These values should 
surround P2. 

P1.1 (Actual Proportion) 
This option specifies the value of P1.1, which is the value of the treatment proportion at which 
the power is to be calculated. It is only used for Proportions. Proportions must be between 0 and 
1. They cannot take on the values 0 or 1.  

You may enter a range of values such as 0.03 0.05 0.10 or 0.01 to 0.05 by 0.01. 
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Data Tab (Difference) 
This section documents options that are used when the parameterization is in terms of the 
difference, P1 – P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value 
of P1 at which the power is calculated. Once P2, D0, and D1 are given, the values of P1.1 and 
P1.0 can be calculated. 

D0.U & D0.L (Upper & Lower Equivalence 
Difference) 
Specify the margin of equivalence by specifying the largest distance above (D0.U) and below 
(D0.L) P2 which will still result in the conclusion of equivalence. As long as the actual difference 
is between these two values, the difference is not large enough to be of practical importance.  

The values of D0.U must be positive and the values of D0.L must be negative. D0.L can be set to 
‘-D0.U,’ which is usually what is desired. 

The power calculations assume that P1.0 is the value of the P1 under the null hypothesis. This 
value is used with P2 to calculate the value of P1.0 using the formula: P1.0U = D0.U + P2. 

This option is only used for Differences. 

You may enter a range of values for D0.U such as .03 .05 .10 or .05 to .20 by .05. 

Note that if you enter values for D0.L (other than '-D0.U'), they are used in pairs with the values 
of D0.U. Thus, the first values of D0.U and D0.L are used together, then the second values of 
each are used, and so on.   

RANGE: 

D0.L must be between -1 and 0. D0.U must be between 0 and 1. Neither can take on the values    
-1, 0, or 1. 

D1 (Actual Difference) 
This option specifies the actual difference between P1.1 (the actual value of P1) and P2. This is 
the value of the difference at which the power is calculated. In equivalence trials, this difference 
is often set to zero. 

The power calculations assume that P1.1 is the actual value of the proportion in group 1 
(experimental or treatment group). This difference is used with P2 to calculate the true value of 
P1 using the formula: P1.1 = D1 + P2.  

You may enter a range of values such as -.05 0 .5 or -.05 to .05 by .02. Actual differences must be 
between -1 and 1. They cannot take on the values -1 or 1. 

This option is only used for Differences. 
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Data Tab (Ratio) 
This section documents options that are used when the parameterization is in terms of the ratio, 
P1 / P2. P1.0 is the value of P1 assumed by the null hypothesis and P1.1 is the value of P1 at 
which the power is calculated. Once P2, R0, and R1 are given, the values of P1.0 and P1.1 can be 
calculated. 

R0.U & R0.L (Upper & Lower Equivalence Ratio) 
Specify the margin of equivalence by specifying the largest ratio (P1/P2) above (R0.U), and 
below (R0.L), which will still result in the conclusion of equivalence. As long as the actual ratio 
is between these two values, the difference between the proportions is not said to be large enough 
to be of practical importance.  

The values of R0.U must be greater than 1 and the values of R0.L must be less than 1. R0.L can 
be set to ‘1/R0.U’, which is most often desired. 

The power calculations assume that P1.0 is the value of the P1 under the null hypothesis. This 
value is used with P2 to calculate the value of P1.0 using the formula: P1.0U = R0.U x P2. 

This option is only used for Ratios. 

You may enter a range of values for R0.U such as 1.1 1.5 1.8 or 1.1 to 2.1 by 0.2. 

Note that if you enter values for R0.L (other than ‘1/R0.U’), they are used in pairs with the values 
of R0.U. Thus, the first values of R0.U and R0.L are used together, then the second values of 
each are used, and so on.   

R0.L must be between 0 and 1. R0.U must be greater than 1. Neither can take on the value 1.  

R1 (Actual Ratio) 
This option specifies the ratio of P1.1 and P2, where P1.1 is the actual proportion in the treatment 
group. The power calculations assume that P1.1 is the actual value of the proportion in group 1. 
This difference is used with P2 to calculate the value of P1 using the formula: P1.1 = R1 x P2. In 
equivalence trials, this ratio is often set to 1. 

This option is only used for Ratios. 

Ratios must be positive. You may enter a range of values such as 0.95 1 1.05 or 0.9 to 1.9 by 
0.02.  
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Options Tab 
The Options tab contains various limits and options. 

Maximum Iterations 
Specify the maximum number of iterations before the search for the criterion of interest is 
aborted. When the maximum number of iterations is reached without convergence, the criterion is 
not reported. A value of at least 500 is recommended. 

Zero Count Adjustment Method 
Zero cell counts often cause calculation problems. To compensate for this, a small value (called 
the Zero Count Adjustment Value) can be added either to all cells or to all cells with zero counts. 
This option specifies whether you want to use the adjustment and which type of adjustment you 
want to use. We recommend that you use the option Add to zero cells only. 

Zero cell values often do not occur in practice. However, since power calculations are based on 
total enumeration, they will occur in power and sample size estimation. 

Adding a small value is controversial, but can be necessary for computational considerations. 
Statisticians have recommended adding various fractions to zero counts. We have found that 
adding 0.0001 seems to work well.  

Zero Count Adjustment Value 
Zero cell counts cause many calculation problems when computing power or sample size. To 
compensate for this, a small value may be added either to all cells or to all zero cells. This value 
indicates the amount that is added. We have found that 0.0001 works well. 

Be warned that the value of the ratio and the odds ratio will be affected by the amount specified 
here! 
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Example1 - Finding Power 
A study is being designed to establish the equivalence of a new treatment compared to the current 
treatment. Historically, the standard treatment has enjoyed a 60% cure rate. The new treatment 
reduces the seriousness of certain side effects that occur with the standard treatment. Thus, the 
new treatment will be adopted even if it is slightly less effective than the standard treatment. The 
researchers will recommend adoption of the new treatment if its cure rate is within 0.15 of the 
standard treatment. 

The researchers will recruit patients from various hospitals. All patients at a particular hospital 
will receive the same treatment. They anticipate enlisting an average of 50 patients per hospital. 
Based on similar studies, they estimate the intracluster correlation to be 0.002. 

The researchers plan to use the Farrington and Manning likelihood score test statistic to analyze 
the data. They want to study the power of the two, one-sided tests proposed by Farrington and 
Manning when the number of clusters per groups ranges from 2 to 10. They want to investigate 
the behavior of this test when the actual cure rate of the new treatment ranges from 60% to 66%. 
The significance level will be 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example1 by clicking the Template 
tab and loading this template. 

Option Value 
Data Tab 
Find ...................................................Beta and Power 
Test Statistic .....................................Likelihood Score (Farr. & Mann.) 
D0.U..................................................0.15 
D0.L ..................................................-D0.U 
D1 .....................................................0 .03 .06 
P2......................................................0.6 
K1......................................................2 4 6 8 10 
M1.....................................................50 
K2......................................................K1 
M2.....................................................M1 
ICC....................................................0.002 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find setting 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0L or P1-P2>=D0U. H1: D0L<P1-P2=D1<D0U. 
Test Statistic: Score tests 
 
     Lower Upper Lower Upper   
 Group 1 Group 2 Intra-  Equiv. Equiv. Equiv. Equiv. Actual  
 Clusters/ Clusters/ Cluster Prop Grp 1 Grp 1 Margin Margin Margin  
 Items Items Corr. Grp 2 Prop Prop Diff Diff Diff  
Power K1/M1 K2/M2 ICC P2 P1.0L P1.0U D0.L D0.U D1 Alpha Beta  
0.3459 2/50 2/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0000 0.0500 0.6541  
0.8065 4/50 4/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0000 0.0500 0.1935  
0.9494 6/50 6/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0000 0.0500 0.0506  
0.9879 8/50 8/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0000 0.0500 0.0121  
0.9973 10/50 10/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0000 0.0500 0.0027  
0.3279 2/50 2/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0300 0.0500 0.6721  
. . . . . . . . . . . 
. . . . . . . . . . . 
. . . . . . . . . . . 
 
Summary Statements 
Sample sizes of 100 in group one and 100 in group two, which were obtained by sampling 2 
clusters with 50 subjects each in group one and 2 clusters with 50 subjects each in group two, 
achieve 33% power to detect equivalence. The margin of equivalence, given in terms of the 
difference between the proportions, extends from -0.1500 to 0.1500. The actual difference 
between the proportions is 0.0000. The group two proportion is 0.6000. The calculations assume 
that two, one-sided z tests (unpooled) were used. The significance level of the test was 
0.0500. 
 

This report shows the values of each of the parameters, one scenario per row. Most of the report 
columns have obvious interpretations. Those that may not be obvious are presented here. 

Group 1 Clusters/Items: K1/M1 
This line gives the value of K1, the number of clusters in group 1, followed by M1, the number of 
items per cluster in this group. The total number of items sampled in group 1 is N1 = K1 x M1. 

Group 2 Clusters/Items: K2/M2 
This line gives the value of K2, the number of clusters in group 2, followed by M2, the number of 
items per cluster in this group. The total number of items sampled in group 2 is N2 = K2 x M2. 

Intracluster Corr.: ICC 
This is the value of the intracluster correlation coefficient, ICC. 

Prop Grp 2: P2 
This is the value of P2, the proportion responding positively in the control group. 

Lower & Upper Equiv. Grp 1 Prop: P1.0L & P1.0U 
These are the margin of equivalence for the response rate of the treatment group, as specified by 
the null hypothesis of non-equivalence. Values of P1 inside these limits are considered equivalent 
to P2.  
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Lower & Upper Equiv. Margin Diff: D0.L & D0.U 
These set the margin of equivalence for the different in response rates. Values of the difference 
outside these limits are considered non-equivalent.  

Actual Margin Diff D1 
This is the value of D1, the difference between the two group proportions at which the power is 
computed. This is the value of the difference under the alternative hypothesis. 

Alpha 
This is the value of alpha (significance level) that was targeted by the design.  

Beta 
This is the value of beta, which is the probability of not rejecting a false null hypothesis. 

Plots Section 
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The values from the table are displayed on the above chart. This chart gives us a quick look at the 
sample size that will be required for various values of D1. 
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Example2 - Finding the Sample Size 
(Number of Clusters) 
Continuing with the scenario given in Example 1, the researchers want to determine the number 
of clusters necessary for each value of D1 when the target power is set to 0.80.  

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example2 by clicking the Template 
tab and loading this template. 

Option Value 
Data Tab 
Find ...................................................K1 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
D0.U ..................................................0.15 
D0.L...................................................-D0.U 
D1......................................................0 .03 .06 
P2......................................................0.6 
K1......................................................Ignored since this is the Find setting 
M1 .....................................................50 
K2......................................................K1 
M2 .....................................................M1 
ICC ....................................................0.002 
Alpha .................................................0.05 
Beta...................................................0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0L or P1-P2>=D0U. H1: D0L<P1-P2=D1<D0U. 
Test Statistic: Score tests 
 
     Lower Upper Lower Upper   
 Group 1 Group 2 Intra-  Equiv. Equiv. Equiv. Equiv. Actual  
 Clusters/ Clusters/ Cluster Prop Grp 1 Grp 1 Margin Margin Margin  
 Items Items Corr. Grp 2 Prop Prop Diff Diff Diff  
Power K1/M1 K2/M2 ICC P2 P1.0L P1.0U D0.L D0.U D1 Alpha Beta  
0.8065 4/50 4/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0000 0.0500 0.1935  
0.8324 5/50 5/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0300 0.0500 0.1676  
0.8137 8/50 8/50 0.0020 0.6000 0.4500 0.7500 -0.1500 0.1500 0.0600 0.0500 0.1863  

 

The required sample size depends a great deal on the value of D1. The researchers should spend 
time determining the most appropriate value for D1.  
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Example3 - Validation 
We could not find an example of this type of analysis in the literature. Therefore, we will validate 
the procedure by comparing the results to those given in the chapter entitled “Equivalence – Two 
Independent Proportions,” since both modules should give identical results for the same sample 
sizes when the ICC is set to zero. We ran the case when N1 = N2 = 200, P2 = 0.6, D0.U = 0.15, 
D1 = 0, and Alpha = 0.05. In this module, set M1 = 1 and set K1 = 200. Both program modules 
calculated the power to be 0.8482 in this case. 
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Example4 - Finding Power after an 
Experiment 
Individuals promoting a new, more expensive treatment claim that it achieves better results than 
the current treatment without citing statistical evidence. A group of researchers attempted to show 
the claim was false through a study involving 12 hospitals. Two hundred patients at each of 6 
randomly chosen hospitals were given the current treatment. Two hundred patients at each of the 
remaining 6 hospitals were given the new treatment. It was agreed before the experiment that if a 
difference of less than 0.05 in proportion of success could be shown, the two treatments would be 
deemed equivalent. The proportion of patients responding properly to the current treatment was 
540/1200 = 0.450. The proportion of patients responding properly to the new treatment was 
570/1200 = 0.475. This result did not show significant equivalence at the 0.05 level. The 
researchers want to know the power of their equivalence test. They decide to use the intracluster 
correlation coefficient estimated from the data, which was 0.0043. Although the observed 
difference in proportions is 0.475 – 0.450 = 0.025, the equivalence difference is still 0.05. This 
value is used in the power calculation. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example4 by clicking the Template 
tab and loading this template. 

Option Value 
Data Tab 
Find ...................................................Beta and Power 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
D0.U ..................................................0.05 
D0.L...................................................-D0.U 
D1......................................................0.0 
P2......................................................0.45 
K1......................................................6 
K2......................................................K1 
M1 .....................................................200 
M2 .....................................................M1 
ICC ....................................................0.0043 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find setting 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

 Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
 H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
 Test Statistic: Score tests 
  
      Lower Upper Lower Upper   
  Group 1 Group 2 Intra-  Equiv. Equiv. Equiv. Equiv. Actual  
  Clusters/ Clusters/ Cluster Prop Grp 1 Grp 1 Margin Margin Margin  
  Items Items Corr. Grp 2 Prop Prop Diff Diff Diff  
 Power K1/M1 K2/M2 ICC P2 P1.0L P1.0U D0.L D0.U D1 Alpha Beta  
 0.1309 6/200 6/200 0.0043 0.4500 0.4000 0.5000 -0.0500 0.0500 0.0000 0.0500 0.8691  

 

The power of the test of equivalence was only 0.1309. 
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Example5 - Finding Sample Size 
(Individuals within Clusters) 
An agency would like to show the proportion of success is the same for two treatments. Eight 
doctors are available for the study. Four will be randomly chosen to be trained to administer 
treatment 1. The remaining four will administer treatment 2. The treatments will be considered 
equivalent if the the proportion of success of treatment 1 is within 0.10 of treatment 2 success. 
The agency would like to know the number of patients that need to be treated by each doctor to 
achieve 80% power for the equivalence test. Various values for the intracluster correlation 
coefficient will be use since its true value is unknown. It is expected that the two treatments will 
have a success rate near 0.70. Alpha is set at 0.05. 

Setup 
This section presents the values of each of the parameters needed to run this example. First, load 
the procedure. This example uses the difference parameterization. You can make these changes 
directly on your screen or you can load the template entitled Example5 by clicking the Template 
tab and loading this template. 

Option Value 
Data Tab 
Find ...................................................M1 
Test Statistic......................................Likelihood Score (Farr. & Mann.) 
D0.U ..................................................0.10 
D0.L...................................................-D0.U 
D1......................................................0.0 
P2......................................................0.70 
K1......................................................4 
K2......................................................K1 
M1 .....................................................Ignored since this is the find setting 
M2 .....................................................M1 
ICC ....................................................0.001 to 0.01 by 0.001 
Alpha .................................................0.05 
Beta...................................................0.20 
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Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 
Numeric Results for Equivalence Tests Based on the Difference: P1 - P2 
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U. 
Test Statistic: Score tests 
 
     Lower Upper Lower Upper   
 Group 1 Group 2 Intra-  Equiv. Equiv. Equiv. Equiv. Actual  
 Clusters/ Clusters/ Cluster Prop Grp 1 Grp 1 Margin Margin Margin  
 Items Items Corr. Grp 2 Prop Prop Diff Diff Diff  
Power K1/M1 K2/M2 ICC P2 P1.0L P1.0U D0.L D0.U D1 Alpha Beta  
0.8028 4/99 4/99 0.0010 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1972  
0.8042 4/110 4/110 0.0020 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1958  
0.8028 4/123 4/123 0.0030 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1972  
0.8014 4/140 4/140 0.0040 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1986  
0.8014 4/162 4/162 0.0050 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1986  
0.8014 4/194 4/194 0.0060 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1986  
0.8014 4/240 4/240 0.0070 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1986  
0.8014 4/316 4/316 0.0080 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1986  
0.8014 4/463 4/463 0.0090 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1986  
0.8014 4/867 4/867 0.0100 0.7000 0.6000 0.8000 -0.1000 0.1000 0.0000 0.0500 0.1986  
 

 
Plots Section 
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The number of patients needed to be treated by each doctor ranges from 99 to 867 depending on 
the value of the intracluster correlation coefficient. 
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Chapter 250  

Chi-Square Tests 
Introduction 
The Chi-square test is often used to test whether sets of frequencies or proportions follow certain 
patterns. The two most common instances are tests of goodness of fit using multinomial tables 
and tests of independence in contingency tables.  

The Chi-square goodness of fit test is used to test whether the distribution of a set of data follows 
a particular pattern. For example, the goodness-of-fit Chi-square may be used to test whether a set 
of values follow the normal distribution or whether the proportions of Democrats, Republicans, 
and other parties are equal to a certain set of values, say 0.4, 0.4, and 0.2.  

The Chi-square test for independence in a contingency table is the most common Chi-square test. 
Here individuals (people, animals, or things) are classified by two (nominal or ordinal) 
classification variables into a two-way, contingency table. This table contains the counts of the 
number of individuals in each combination of the row categories and column categories. The Chi-
square test determines if there is dependence (association) between the two classification 
variables. Hence, many surveys are analyzed with Chi-square tests. 

The following table is an example of data arranged in a two-way contingency table. The rows of 
the table represent the stated political party of a respondent. The columns represent the 
respondent’s answer to a question about whether they favor a certain proposition. The body of the 
table represents the number of individuals that fall into each cell (category). Note that the 
opinions of 311 individuals are recorded in this table. 

(Count) Favor Proposition A
Political Party Yes No
Democrats 86 21 
Republican 54 59 
Others 34 57 

The table below presents the row percentages for each category.  

(Row Percentage) Favor Proposition A
Political Party Yes No
Democrats 80.4 19.6 
Republican 47.8 52.2 
Others 37.4 62.6 

The Chi-square statistic tests whether the percentage of Yes responses remains constant across the 
three political parties. Notice that 80% of the Democrats said Yes, while only 37% of those in the 
Other category chose Yes. The Chi-square value for the above table is 5.59, which is statistically 
significant. Obviously, there is quite a shift in response pattern on this item across political 
parties.  
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Effect Size 
We begin by defining what we will call the effect size. For each cell of a table containing m cells, 
suppose there are two proportions considered: one specified by a null hypothesis and the other 
specified by an alternative hypothesis. Often, the proportions specified by the alternative 
hypothesis are those occurring in the data. Define  to be the proportion in cell i under the null 
hypothesis and  to be the proportion in cell i under the alternative hypothesis. The effect size, 
w, is calculated using the formula 

0ip

1ip

w =  ( p - p )
p

.
i=1

m 2
i i

0i
∑ 1 0  

The formula for computing the Chi-square value, is  χ 2,

χ 2 =  ( O - E )
E

 =  N ( p - p )
p

,

i=1

m 2
i i

i

i=1

m 2
0i 1i

0i

∑

∑
 

where N is the total count in all the cells. Hence, the relationship between w and  is χ 2

χ 2 2 =  Nw  

Note that when you are dealing with a contingency table, the cell index, i, is often replaced by 
two indices, one representing columns and the other representing rows.  

The effect size, w, was used by Cohen (1988) because it does not depend on the sample size. He 
sets a small value of w at 0.1, a medium value at 0.3, and a large value at 0.5. Although these are 
rather arbitrary settings, they are useful for planning purposes. 
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Chi-Square Effect Size Estimator 
PASS provides a special module to aid in finding an appropriate value for w called the Chi-
Square Effect Size Estimator. This module may be loaded by pressing the CS button near the W 
(Effect Size) box or from the menus by selecting PASS and then Other. 

You will find that as values are typed into the body of the table, the value of the effect size 
(shown at the bottom in the box labeled Effect Size - W) is also changed. Using this utility 
program, you can quickly determine the impact of table configurations on the value of w. 
For example, suppose the cell proportions under the null and alternative hypotheses are as 
follows: 

Cell 1 2 3 4 

0ip  0.25 0.25 0.25 0.25 (Null: Equal distribution across the four cells.) 

1ip  0.40 0.20 0.20 0.20 (Alternative: cell 1 has twice the probability as the rest.) 

To calculate w, first create the differences (ignoring the signs since the differences will be 
squared 

|Diff| 0.15 0.05 0.05 0.05 

Next, square the differences 

Diff^2 0.0225 0.0025 0.0025 0.0025 

Divide by the null 

X^2 0.09 0.01 0.01 0.01 

When these are summed, the result is 0.12. Taking the square of 0.12 gives the value of w as 
0.3464. 

As an experiment, load the Chi-Square Effect Size Estimator and enter these values on the 
Multinomial Test window. Enter the  values in the column labeled Data Values and 
the values in1 the column marked Hypothesized Proportions. Check that the value of w is 
0.3464. Next, change the Data Values to 4,2,2,2 and the Hypothesized Proportions to 1,1,1,1. 
Check that the value of w is still the same. 

0ip

1ip

Calculating the Power 
The power is calculated as follows:  

1. Find xα such that ( )1 2− =χ ααx df , where ( )χ α
2 x df is the area to the left of x under a 

Chi-square distribution with df degrees of freedom.  

2. Power = 1 , where  is the left-tail area of the noncentral Chi-square distribution 

with k degrees of freedom and noncentrality parameter 

2− ′χ λdf , ′χ λk ,
2

λ . Note that . λ = Nw2
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Find 
This option specifies the parameter to be solved for from the other parameters. The parameters 
that may be selected are W, DF, N, Alpha, and Beta. Under most situations, you will select either 
Beta for a power analysis or N for sample size determination. 

Select N when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Beta when you want to calculate the power of an experiment that has already been run. 

DF (Degrees of Freedom) 
This options specifies the degrees of freedom of the Chi-square test. For a test of independence in 
a contingency table, the degrees of freedom is (R-1)(C-1) where R is the number of rows and C is 
the number of columns. For example, for a 3-by-4 table, DF = (3-1)(4-1) = 6. 

In a goodness of fit test, the degrees of freedom is the number of cells minus one. You may have 
to further adjust it for every distributional parameter that is estimated from the data. For example, 
suppose a Chi-square goodness-of-fit will be used to test the adequacy of the normality 
assumption on a set of 300 observations. Two parameters, the mean and variance, are estimated 
from the data. Suppose the data are categorized into six categories. DF = 6 - 2 - 1 = 3. 

W (Effect Size) 
This is the value of w, the effect size. If you have Chi-square values that you want to analyze, use 
the following formula to transform them to w’s: 

w
N

=
χ 2

 

Remember that a small value of w is 0.1, a medium value is 0.3, and a large value is 0.5. 

N (Sample Size) 
This option specifies the number of individuals whose responses are recorded in the table. This 
number should be greater than or equal to the number of cells in the table. 
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Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis of equal row (or column) proportions when in 
fact they are equal.  

Values must be between zero and one. Historically, the value of 0.05 was used for alpha. This 
means that about one test in twenty will falsely reject the null hypothesis. You should pick a 
value for alpha that represents the risk of a type-I error you are willing to take in your 
experimental situation.  

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis of equal row proportions when in fact they 
are different. 

Values must be between zero and one. Historically, the value of 0.20 was often used for beta. 
However, you should pick a value for beta that represents the risk of a type-II error you are 
willing to take. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80.  
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Example 1 - Finding the Power for an 
Existing Contingency Table 
This example will compute the power of the Chi-square test of independence of the data in the 
contingency table that was discussed at the beginning of this chapter. If you would like to follow 
along, load the Chi-Square Effect Size Estimator window, select the Contingency Table tab, enter 
86, 54, 34 in the first column and 21, 59, 57 in the second column. The results are Chi-square =  
41.708829, DF = 2, N = 311, and W = 0.366213.  

We will compute the power when alpha = 0.01, 0.05, and 0.10. For evaluation purposes, we will 
compute the power when N = 20, 50, 100, and 200 as well as at 311. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example1 by 
clicking the Template tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
DF .....................................................2 
N .......................................................20 50 100 200 311 
W.......................................................0.366213 
Alpha.................................................0.01  0.05  0.10 
Beta................................................... Ignored since this is the Find setting. 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results 
 
Power N W Chi-Square DF Alpha Beta 
0.12127 20 0.3662 2.6822 2 0.01000 0.87873 
0.29104 20 0.3662 2.6822 2 0.05000 0.70896 
0.41007 20 0.3662 2.6822 2 0.10000 0.58993 
0.39621 50 0.3662 6.7056 2 0.01000 0.60379 
0.63538 50 0.3662 6.7056 2 0.05000 0.36462 
0.74622 50 0.3662 6.7056 2 0.10000 0.25378 
0.78214 100 0.3662 13.4112 2 0.01000 0.21786 
0.91678 100 0.3662 13.4112 2 0.05000 0.08322 
0.95512 100 0.3662 13.4112 2 0.10000 0.04488 
0.98840 200 0.3662 26.8224 2 0.01000 0.01160 
0.99795 200 0.3662 26.8224 2 0.05000 0.00205 
0.99927 200 0.3662 26.8224 2 0.10000 0.00073 
0.99980 311 0.3662 41.7088 2 0.01000 0.00020 
0.99998 311 0.3662 41.7088 2 0.05000 0.00002 
1.00000 311 0.3662 41.7088 2 0.10000 0.00000 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. It should be close to one. 
N is the size of the sample drawn from the population. To conserve resources, it should be small. 
W is the effect size--a measure of the magnitude of the Chi-Square that is to be detected. 
DF is the degrees of freedom of the Chi-Square distribution. 
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 
 
Summary Statements 
A sample size of 20 achieves 12% power to detect an effect size (W) of 0.3662 using a 2 degrees 
of freedom Chi-Square Test with a significance level (alpha) of 0.01000. 
 

This report shows the values of each of the parameters, one scenario per row. The definitions of 
each column are given in the Report Definitions section. 
Note that in this particular example, a reasonable power of about 0.80 is reached for all values of 
alpha once the sample size is greater than 100. 

The values from this table are plotted in the chart below.  

Plots Section 
 

 

Power vs N by Alpha with W=0.3662 DF=2 Chi2 Test
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This plot shows the relationship between sample size, power, and alpha.  
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Example 2 - Finding the Sample Size 
A survey is being planned that will contain several questions with three possible answers: agree, 
neutral, disagree. The researchers are planning to analyze the questionnaires using Chi-square 
tests of independence in two-way contingency tables. How many respondents are needed to 
detect small (w = 0.1), medium (w = 0.3), or large (w = 0.5) effects if all hypothesis testing will 
be done at the 0.05 significance level? 

Since the researchers are planning for 3-by-3 tables, DF = (3 - 1)(3 - 1) = 4. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example2 by 
clicking the Template tab and loading this template. 

Option Value
Data Tab 
Find ...................................................N 
DF .....................................................4 
N ....................................................... Ignored since this is the Find setting. 
W.......................................................0.1 0.3 0.5 
Alpha.................................................0.05 
Beta...................................................0.10 0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
 
Power N W Chi-Square DF Alpha Beta 
0.90010 1541 0.1000 15.4100 4 0.05000 0.09990 
0.80018 1194 0.1000 11.9400 4 0.05000 0.19982 
0.90157 172 0.3000 15.4800 4 0.05000 0.09843 
0.80130 133 0.3000 11.9700 4 0.05000 0.19870 
0.90198 62 0.5000 15.5000 4 0.05000 0.09802 
0.80243 48 0.5000 12.0000 4 0.05000 0.19757 
 

This report shows that for 80% power, 1194 (about 1200) respondents are needed to detect small 
effects, 133 respondents are needed to detect medium effects, and 48 respondents are needed to 
detect large effects. 
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Example 3 - Validation using Cohen 
Cohen (1988) page 251 presents an example in which W = 0.30 and 0.40, N = 140, alpha = 0.01, 
and DF = 2. He gives the power as 0.75 for W = 0.3 and 0.97 for W = 0.4. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example3 by 
clicking the Template tab and loading this template. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
DF .....................................................2 
N........................................................140 
W.......................................................0.3 0.4 
Alpha .................................................0.01 
Beta...................................................Ignored since this is the Find setting. 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
 
Power N W Chi-Square DF Alpha Beta 
0.74841 140 0.3000 12.6000 2 0.01000 0.25159 
0.96641 140 0.4000 22.4000 2 0.01000 0.03359 
 

PASS matches Cohen’s power values of 0.75 and 0.97. 
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Example 4 - Finding the Sample Size for 
a Normality Goodness-of-Fit Test 
A researcher is planning a study to determine if the distribution of scores on a certain test is 
normal. He plans to divide the test scores from his sample into five intervals of equal probability 
under the normal distribution using the sample mean and sample variance. After experimenting 
with the Chi-Square Effect Size Estimator, he decides that he must be able to detect a departure 
from normality of w = 0.20. He sets his significance level at 0.10 so that he will be lenient in his 
rejection of normality. He decides to focus on a power of 0.80. How large of a sample size will 
the researcher need? 

The value of DF = 5 - 2 - 1 = 2, since there are five intervals and two parameters, mean and 
variance, are used. 

Setup 
This section presents the values of each of the parameters needed to run this example. You can 
make these changes directly on your screen or you can load the template entitled Example4 by 
clicking the Template tab and loading this template. 

Option Value
Data Tab 
Find ...................................................N 
DF .....................................................2 
N ....................................................... Ignored since this is the Find setting. 
W.......................................................0.25 
Alpha.................................................0.10 
Beta...................................................0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results 
 
Power N W Chi-Square DF Alpha Beta 
0.80046 193 0.2000 7.7200 2 0.10000 0.19954 
 

This report shows that for 80% power, 193 observations are needed. 
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Chapter 260  

ROC Curve 
Receiver operating characteristic (ROC) curves are used to assess the accuracy of a diagnostic 
test. The technique is used when you have a criterion variable which will be used to make a yes 
or no decision based on the value of this variable. The area under the ROC curve (AUC) is a 
popular summary index of an ROC curve.  

This module computes power and sample size when a new diagnostic test is compared to an 
existing (gold) standard. Two approaches are available: the approach of Hanley and McNeil 
(1982) is used when the criterion variable is continuous and the approach of Obuchowski and 
McClish (1997) is used when the criterion variable is a discrete rating scale. 

Technical Details 
In the following, we suppose that we have two groups of patients, those with a condition of 
interest (the positive group) and those without it (the negative group). This classification may be 
known from extensive diagnosis or based on the value of another diagnostic test. The diagnostic 
test of interest is performed on each patient and the resulting test value is recorded. At each 
specified cutoff value of the criterion variable, the true positive rate (TPR) and the false positive 
rate (FPR) are calculated. A plot of the TPR versus the FPR allows you study the consequences 
of using various cutoff values. This plot is called the ROC curve. 

It should be noted that TPR is similar to the statistical power of the diagnostic test at a particular 
cutoff value of the criterion variable. Similarly, FPR is an estimate of the probability that the 
diagnostic test results in a type I (alpha) error. Thus the ROC curve may be interpreted as a plot 
of the diagnostic test’s power versus it’s significance level at various possible criterion cutoff 
values.  

Users of ROC curves have developed special names for TPR and FPR. They call TPR the 
sensitivity of the test and 1 - FPR the specificity of the test. Statisticians will be more familiar with 
using the word power instead of sensitivity and the phrase ‘1 - alpha’ instead of specificity.  

An ROC curve may be summarized by the area under it (AUC). This area has an additional 
interpretation. Suppose that a rater is asked to study two subjects, one that is actually disease 
positive and one that is disease negative. The AUC is equal to the probability that the rater will 
give the disease positive subject a higher score than the disease negative subject. That is, the 
AUC is the probability that the rater will correctly order the two subjects as to which is more 
likely to have the disease. 

Several methods of computing the AUC have been proposed. One method uses the trapezoidal 
rule to calculate the AUC directly. Another method, called the binormal model, computes the area 
by fitting two normal distributions to the data.  



260-2  ROC Curve  

The Binormal Model 
Let X denote the distribution of the criterion variable for negative (normal) patients and Y denote 
the distribution of the criterion variable for positive (diseased) patients. It is assumed that 

( )X ~ ,N μ σ− −
2  

and 

( )Y ~ ,N μ σ+ +
2  

For a particular cutoff value of the criterion variable, c, the true positive rate is given by 
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where ( )Φ z  is the cumulative normal distribution. 

Similarly, the false positive rate is given by 
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The ROC curve is thus the curve traced out by the functions 
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The area under the ROC curve, AUC, is defined as 
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where c v= −− −μ σ , and 

A =
−+ −

+

μ μ
σ

 

B = −

+

σ
σ

 

Maximum likelihood estimates of A and B can be computed and used to compute AUC. The 
variances and covariance of these MLE’s can be estimated from Fisher’s information matrix. 

Define Δ = −θ θ0 1  to be the difference in the accuracies (AUC’s) of two diagnostic tests. A 
hypothesis test of whether the two AUC’s are different amounts to testing whether . The test 
statistic for this test is  

Δ = 0

( )
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−$
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θ θ

θ
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0

 

where  is the variance of  under the null hypothesis of equality. The above test statistic 

gives the following formulae for computing sample size or power 
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Rating Data 
For a criterion variable yielding a discrete rating, Obuchowski (1998) recommends 
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The value of A can be found as 

( )A B= +−Φ 1 21θ  
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For the most conservative results, Obuchowski (1998) recommends setting B = 1, so that  

( )A = −Φ 1 2θ  

Continuous Data 
For a criterion variable yielding a continuous result, Obuchowski (1998) suggests that the following 
formula of Hanley and McNeil (1983) is more appropriate 
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Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
Find 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Beta for a power analysis or N for sample size determination. 

Select N+ when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Beta and Power when you want to calculate the power of an experiment that has already 
been run. 

AUC0 (Area under Curve) 
Specify one or more values of the AUC for the diagnostic test. The range of values is from 0.5 
(indicative of a test useless in diagnosis) to 1.0 (indicative of a test that is perfect in diagnosis). 

Since the AUC may include a portion of the ROC curve that is not of interest because the FPR 
values are unrealistic, you may be interested in only a portion of the area. In this case, you can 
specify a range of FPR values for which the area is to be calculated. Unfortunately, the definition 
of the area becomes more difficult. When analyzing the whole ROC curve, the area is known to 
be between 0.50 and 1.0. Following the suggestion of Obuchowski and McClish (1997), the 
following transformation is applied so that the values of AUC remain between 0.5 and 1.0. 

AUC AUC
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Thus, when a partial range is entered for FPR1 and FPR2, the values entered here are assumed to 
be AUC' and are translated to AUC using the above formulas. 

AUC1 
Specify one or more values of AUC under the alternative hypothesis. The range of values is from 
0.5 (indicative of a test useless in diagnosis) to 1.0 (indicative of a test that is perfect in 
diagnosis). Note that, as discussed above, this is the value of AUC’ when a partial area is being 
analyzed. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis when in fact it is true. Values must be between 
zero and one. Historically, the value of 0.05 was used for alpha. This means that about one test in 
twenty will falsely reject the null hypothesis. You should pick a value for alpha that represents 
the risk of a type-I error you are willing to take in your experimental situation.  

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis when in fact it is false. Values must be 
between zero and one. Traditionally, the values from 0.05 to 0.20 are used for beta. However, you 
should pick a value for beta that represents the risk of a type-II error you are willing to take. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80.  

Type of Data 
Specify the type of data that will be collected from the tests. The formulas for the variance are 
determined by this option. Possible types are: 

Continuous. The test results are from a continuum of possible values. The Hanley and McNeil 
(1983) variance formulas are used. Note that this option does not allow a partial range of FPR 
values to be analyzed. 

Discrete. The test results are from a small set of rating values such as 1, 2, 3, 4, 5. The 
Obuchowski & McClish (1997) variance formulas are used. 

Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. When a two-sided test is selected, the value of 
alpha is divided by two.  

Note that most researchers assume that, unless stated otherwise, all statistical tests are two-sided. 
If you use a one-sided test, you should clearly state and justify this in all reports. 
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Lower FPR 
This option specifies the lower (left) limit of the false positive rate (FPR) for which the area is to 
be computed. If the area under the whole ROC curve is wanted, set this value to 0.0. If the partial 
area is wanted, set this value to the desired left limit.  

Note that the range of possible values is 0.0 <= Lower FPR < Upper FPR <= 1.0 

Upper FPR 
This option specifies the upper (right) limit of the false positive rate (FPR). If the area under the 
whole ROC curve is wanted, set this value to 1.0. If the partial area is wanted, set this value to the 
desired right limit. 

Note that the range of possible values is 0.0 <= Lower FPR < Upper FPR <= 1.0 

B (SD Ratio) 
B is the ratio of the standard deviation of the negative group to the positive group (SD-/SD+) for 
the diagnostic test. That is, assuming the binormal model 

B = −

+

σ
σ

 

Note that this parameter is ignored for continuous data. 

Although B can be any positive number, typical values are between 0.3 and 3.0. Obuchowski 
suggests that if the value of B is not known, a value of 1.0 is used since this will result in a 
conservative (extra large) sample size. She reports that in her experience, typical values are much 
less than 1.0, often near 0.3. 

N+ (Size of Positive Group) 
Specify the number of patients, that is, the sample size, in the positive (abnormal or diseased) 
group. Note that these values are ignored when you are solving for N+. You may enter a range of 
values such as 10 to 100 by 10. 

N- (Size of Negative Group) 
Specify the number of patients, that is, the sample size, in the negative (normal) group. Enter Use 
R to base N- on the value of N+. You may enter a range of values such as 10 to 100 by 10. 

Use R 
When Use R is entered here, N- is calculated using the formula  

N- = [R(N+)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N+ = N-, enter Use R here and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N- is set to Use R.  

When used, N- is calculated from N+ using the formula: N- = [R(N+)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N- = N+. 
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Example1 - Calculating Power  
An investigator wants to study the accuracy of a diagnostic test which yields measurements on a 
rating scale from 1 to 5. Historically, such tests have had an AUC of 0.80. The investigator wants 
to investigate three alternative AUC values: 0.825, 0.850, and 0.900. A two-sided test is planned 
with a significance level of 0.05. Since no other information is available, B is set to 1.0. The 
investigator would like to achieve a power of 90% in the study. Patients without the disease under 
study are about twice as frequent as patients with the disease. The investigator wants to see 
results for a sample size of up to 6000 patients. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
AUC1.................................................0.80 
AUC2.................................................0.825 0.85 0.9 
Alpha .................................................0.05 
Beta...................................................Ignored since this is the Find Setting 
Type of Data......................................Discrete (Ratings) 
Alternative Hypothesis ......................Two-Sided Test 
Lower FPR ........................................0.00 
Upper FPR ........................................1.00 
B........................................................1 
N+......................................................20 50 100 250 500 1000 2000 
N- ......................................................Use R 
R........................................................2 
Axis Tab 
Vertical Range...................................User 
Minimum............................................0 
Maximum...........................................1 
Number of Tick Marks .......................10 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Report 
 

Numeric Results for Testing AUC0 = AUC1 with Discrete (Rating) Data  
Test Type = Two-Sided.  FPR1 = 0.0.  FPR2 = 1.0.  B = 1.000.  Allocation Ratio = 2.000.  
 
Power N+ N- AUC0' AUC1' Diff' AUC0 AUC1 Diff Alpha Beta 
0.0481 20 40 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.9519 
0.0739 50 100 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.9261 
0.1146 100 200 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.8854 
0.2365 250 500 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.7635 
0.4321 500 1000 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.5679 
0.7264 1000 2000 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.2736 
0.9550 2000 4000 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.0450 
0.0870 20 40 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.9130 
0.1834 50 100 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.8166 
0.3491 100 200 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.6509 
0.7369 250 500 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.2631 
0.9629 500 1000 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.0371 
0.9997 1000 2000 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.0003 
1.0000 2000 4000 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.0000 
0.2489 20 40 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.7511 
0.6563 50 100 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.3437 
0.9474 100 200 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0526 
1.0000 250 500 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0000 
1.0000 500 1000 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0000 
1.0000 1000 2000 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0000 
1.0000 2000 4000 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0000 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N+ is the sample size from the positive (diseased) population. 
N- is the sample size from the negative (non-diseased) population. 
Alloc Ratio is the Sample Allocation Ratio (R = N- / N+). 
AUC0' is the adjusted area under the ROC curve under the null hypothesis. 
AUC1' is the adjusted area under the ROC curve under the alternative hypothesis. 
Diff' is AUC1' - AUC0'. This is the adjusted difference to be detected. 
AUC0 is the actual area under the ROC curve under the null hypothesis. 
AUC1 is the actual area under the ROC curve under the alternative hypothesis. 
Diff is AUC1 - AUC0. This is the difference to be detected. 
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 
FPR1, FPR2 are the lower and upper bounds on the false positive rates. 
B is the ratio of the standard deviations of the negative and positive groups. 
 
Summary Statements 
A sample of 20 from the positive group and 40 from the negative group achieve 5% power to 
detect a difference of 0.0250 between the area under the ROC curve (AUC) under the null 
hypothesis of 0.8000 and an AUC under the alternative hypothesis of 0.8250 using a two-sided 
z-test at a significance level of 0.0500. The data are discrete (rating scale) responses. The 
AUC is computed between false positive rates of 0.000 and 1.000. The ratio of the standard 
deviation of the responses in the negative group to the standard deviation of the responses in 
the positive group is 1.000. 
 

This report shows the power for each of the sample sizes. Most of the definitions are standard. 
However, a special explanation must be given for AUC and AUC’. 

AUC’ 
This is the adjusted area under the curve. A rescaling, discussed earlier, has been applied so that 
the minimum area is 0.5 and the maximum area is 1.0.  

AUC 
This is the actual area under the curve. This value will equal the adjusted area when the FPR 
range is set from 0.0 to 1.0. Otherwise, these values will be different. 
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Plot Section 
 

 

Power vs N+ by A1 with A0=0.80 Alpha=0.05
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This plot shows the power versus the sample size for the three values of AUC1. 
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Example2 - Calculating Sample Size  
Continuing on with Example1, the investigator wants to know the exact sample size needed for 
each of the three values of AUC2. The investigator wants to look at the Numeric Report. The 
panel from Example1 is modified as follows. 

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 
Option Value
Data Tab 
Find ...................................................N+ 
Reports Tab 
Show Definitions ...............................Unchecked 
Show Plots ........................................Unchecked 
Summary Statement Rows ...............0 

Click the Run button to perform the calculations and generate the following output. 

Numeric Report 
Numeric Results for Testing AUC1 = AUC2 with Discrete (Rating) Data  
Test Type = Two-Sided.  FPR1 = 0.0.  FPR2 = 1.0.  B = 1.000.  Allocation Ratio = 2.000.  
 
Power N+ N- AUC0' AUC1' Diff' AUC0 AUC1 Diff Alpha Beta 
0.9001 1582 3164 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.0999 
0.9007 381 762 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.0993 
0.9024 85 170 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0976 
 

This report shows the sample size needed to achieve 90% power for each value of AUC1.  
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Example3 - Partial Area under Curve 
Continuing on with Example2, the investigator knows that FPR values between 0.0 and 0.20 are 
the only values of interest. Hence, he wants to investigate the sample size needed when the FPR 
range is confined to this range. 

The panel from Example2 is modified as follows.  

Setup 
You can enter these values yourself or load the Example3 template from the Template tab. 

Option Value
Data Tab 
Upper FPR ........................................0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing AUC1 = AUC2 with Discrete (Rating) Data  
Test Type = Two-Sided.  FPR1 = 0.0.  FPR2 = 0.200.  B = 1.000. Allocation Ratio = 2.000.  
 
Power N+ N- AUC0' AUC1' Diff' AUC0 AUC1 Diff Alpha Beta 
0.9001 2663 5326 0.8000 0.8250 0.0250 0.1280 0.1370 0.0090 0.0500 0.0999 
0.9002 645 1290 0.8000 0.8500 0.0500 0.1280 0.1460 0.0180 0.0500 0.0998 
0.9013 144 288 0.8000 0.9000 0.1000 0.1280 0.1640 0.0360 0.0500 0.0987 
 

Note that the necessary sample size has almost doubled. 
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Example4 - Validation using Obuchowski  
The formulas used in this module were given in Obuchowski and McClish (1997). On page 1538, 
they provide an example which will be duplicated here. The study investigated the accuracy of 
MRI for detecting abnormalities in patients with symptomatic knees. In order to do this, they 
wanted to know the sample size that would be needed to construct a 95% confidence interval so 
that the length of the confidence interval is no more than 0.10. 

The measure of diagnostic accuracy is the AUC from an FPR of 0.0 to an FPR of 1.0. The 
allocation ratio is 1.5. B = 1.0. The value of A is found to be 1.2. This translates to an AUC0 of 
0.7995. The value of AUC1 = AUC0 + 0.10 / 2, where 0.10 is the maximum length of the 
confidence interval. A two-tailed confidence interval is envisioned in which alpha is 0.05. In 
order to find the sample size of a confidence interval, the power is set to 50%. In their article, 
they found N+ = 161 and N- = 242. 

Setup 
You can enter these values yourself or load the Example4 template from the Template tab. 
Option Value
Data Tab 
Find ...................................................N+ 
AUC1 ................................................0.7995 
AUC2 ................................................0.8495 
Alpha.................................................0.05 
Beta...................................................0.50 
Type of Data .....................................Discrete (Ratings) 
Alternative Hypothesis ......................Two-Sided Test 
Lower FPR ........................................0.00 
Upper FPR ........................................1.00 
B........................................................1 
N+ ..................................................... Ignored since this is the Find Setting 
N- ......................................................Use R 
R .......................................................1.5 

Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing AUC1 = AUC2 with Discrete (Rating) Data  
Test Type = Two-Sided.  FPR1 = 0.0.  FPR2 = 0.200.  B1 = 1.000.  B2 = 1.000.  Allocation Ratio = 2.000.  
 
Power N+ N- AUC1' AUC2' Diff' AUC1 AUC2 Diff Alpha Beta 
0.5026 162 243 0.7995 0.8495 0.0500 0.7995 0.8495 0.0500 0.0500 0.4974 
 

Note that the sample sizes of 162 and 243 are within one of the results of Obuchowski. The 
difference occurs because their values of 161 and 242 produce a power that is slightly less than 
0.5, so PASS increased the sample size slightly. 
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Chapter 265  

Comparing Two 
ROC Curves 
Receiver operating characteristic (ROC) curves are used to summarize the accuracy of diagnostic 
tests. The technique is used when a criterion variable is available which is used to make a yes or 
no decision. The area under the ROC curve (AUC) is a popular summary index of an ROC curve.  

This module computes power and sample size for comparing the AUC’s of two diagnostic tests 
obtained from the same patients. The methodology of Obuchowski and McClish (1997) is used  
when the criterion variable yields a discrete value. The methodology of Hanley and McNeil 
(1983) is used when the criterion variable yields a continuous value.  

Technical Details 
In the following, we suppose that we have two groups of patients, those with a condition of 
interest (the disease) and those without it. A patient’s classification may be known from extensive 
diagnosis or based on the value of another diagnostic test. The diagnostic tests of interest are 
performed on each patient and the resulting test values are recorded. At each specified cutoff 
value of the criterion variable, the true positive rate (TPR) and the false positive rate (FPR) are 
calculated. An ROC curve is generating by plotting TPR versus FPR. The plot allows the 
consequences of using various cutoff values to be evaluated. The area under the ROC curve, 
either for the whole or partial range, is often used as a summary measure of the accuracy of the 
test.  

It should be noted that TPR is similar to the statistical power of the diagnostic test at a particular 
cutoff value of the criterion variable. Similarly, FPR is an estimate of the probability that the 
diagnostic test results in a type I (alpha) error. Thus the ROC curve may be interpreted as a plot 
of the diagnostic test’s power versus it’s significance level at various possible criterion cutoff 
values. 

Users of ROC curves have developed special names for TPR and FPR. They call TPR the 
sensitivity of the test and 1 - FPR the specificity of the test. Statisticians will be more familiar with 
using the word power instead of sensitivity and the phrase ‘1 - alpha’ instead of specificity. 

An ROC curve may be summarized by the area under it (AUC). This area has an additional 
interpretation. Suppose that a rater is asked to study two subjects, one that is actually disease 
positive and one that is disease negative. The AUC is equal to the probability that the rater will 
give the disease positive subject a higher score than the disease negative subject. That is, the 
AUC is the probability that the rater will correctly order the two subjects as to which is more 
likely to have the disease. 

Several methods of computing the AUC have been proposed. One method uses the trapezoidal 
rule to calculate the AUC directly. Another method, called the binormal model, computes the area 
by fitting two normal distributions to the data.  
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The Binormal Model 
Let X denote the distribution of the criterion variable for normal (non-diseased) patients and Y 
denote the distribution of the criterion variable for abnormal (diseased) patients. It is assumed that 

( )X ~ ,N μ σ− −
2  

and 

( )Y ~ ,N +μ σ+
2  

The partial area under the ROC curve, AUC, is defined as 

( ) (θ φi i i
c
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Note that for the full range area under the curve, c1 = −∞  and c2 = ∞ .  

Maximum likelihood estimates of A and B can be computed. The variances and covariance of 
these MLE’s can be estimated from Fisher’s information matrix. 

Define Δ = −θ θ1 2  to be the difference in the accuracies (AUC’s) of the two tests. A test of 
whether the two AUC’s are different amounts to testing whether Δ = 0. The test statistic for this 
test is  

( )
Z =

−$

var $

Δ

Δ

0

0

 

where  is the variance of under the null hypothesis of equality. The above test statistic 

results in the following formula for computing sample size  
( )var $
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Rating Data 
When the criterion values are discrete rating values, Obuchowski and McClish (1997) showed that 
the variances could be calculated using 

( ) ( ) ( ) ( )V V V C0 1 1 12$ $ $ $ , $Δ = + −θ θ θ 1θ  

( ) ( ) ( ) ( )V V V CAlt
$ $ $ $ , $Δ = + −θ θ θ θ1 2 12 2  
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r−  and  are the correlations between the results of the two diagnostics tests for normal and 
abnormal patients, respectively. For the most conservative results, set 

r+
Bi = 1. 
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Continuous Data 
When the criterion values are continuous, Obuchowski (1998) suggests that the following formulas 
of Hanley and McNeil (1983) are more appropriate. Note that these formulas cannot be used for 
evaluating the AUC for a partial range. 

( ) ( ) ( ) ( )V V V C$ $ $ $ , $Δ = + −θ θ θ1 2 12 θ2  
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and r is derived from a special table provided by Hanley and McNeil (1983). 

Procedure Options 
This section describes the options that are unique to this procedure. These are located on the 
panels associated with the Data, Options, and Reports tabs. To find out more about using the 
other tabs such as Plot Text, Axes, and Template, turn to the chapter entitled Procedure 
Templates. 

Data Tab 
The Data tab contains most of the parameters and options that you will be concerned with. 

Find 
This option specifies the parameter to be solved for from the other parameters. Under most 
situations, you will select either Beta for a power analysis or N for sample size determination. 

Select N+ when you want to calculate the sample size needed to achieve a given power and alpha 
level.  

Select Beta and Power when you want to calculate the power of an experiment that has already 
been run. 

AUC1 (Area under Curve) 
Specify one or more values of the AUC for diagnostic test 1. The range of values is from 0.5 
(indicative of a test useless in diagnosis) to 1.0 (indicative of a test that is perfect in diagnosis). 

Since the AUC may include a portion of the ROC curve that is not of interest because the FPR 
values are unrealistic, you may be interested in only a portion of the area. In this case, you can 
specify a range of FPR values for which the area is to be calculated. Unfortunately, the definition 
of the area becomes more difficult. When analyzing the whole ROC curve, the area is known to 
be between 0.50 and 1.0. Following the suggestion of Obuchowski and McClish (1997),  the 
following transformation is applied so that the values of AUC remain between 0.5 and 1.0. 

AUC AUC
′ = +

−
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2
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max min  
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where 

max = −FPR FPR2 1 

( )min max
= +

2
2 1FPR FPR

 
Thus, when a partial range is entered for FPR1 and FPR2, the values entered here are assumed to 
be AUC' and are translated to AUC using the above formulas. 

AUC2 (Area under Curve) 
Specify one or more values of the AUC for diagnostic test 2. The range of values is from 0.5 
(indicative of a test useless in diagnosis) to 1.0 (indicative of a test that is perfect in diagnosis). 
Note that, as discussed above, this is the value of AUC’ when a partial area is being analyzed. 

Alpha (Significance Level) 
This option specifies one or more values for the probability of a type-I error (alpha). A type-I 
error occurs when you reject the null hypothesis when in fact it is true. Values must be between 
zero and one. Historically, the value of 0.05 was used for alpha. This means that about one test in 
twenty will falsely reject the null hypothesis. You should pick a value for alpha that represents 
the risk of a type-I error you are willing to take in your experimental situation. 

Beta (1 - Power) 
This option specifies one or more values for the probability of a type-II error (beta). A type-II 
error occurs when you fail to reject the null hypothesis when in fact it is false. Values must be 
between zero and one. Traditionally, the values from 0.05 to 0.20 are used for beta. However, you 
should pick a value for beta that represents the risk of a type-II error you are willing to take. 

Power is defined as one minus beta. Power is equal to the probability of rejecting a false null 
hypothesis. Hence, specifying the beta error level also specifies the power level. For example, if 
you specify beta values of 0.05, 0.10, and 0.20, you are specifying the corresponding power 
values of 0.95, 0.90, and 0.80.  

Type of Data 
Specify the type of data that will be collected from the tests. The formulas for the variance are 
determined by this option. Possible types are: 

Continuous. The test results are from a continuum of possible values. The Hanley and McNeil 
(1983) variance formulas are used. Note that this option does not allow a partial range of FPR 
values to be analyzed. 

Discrete. The test results are from a small set of rating values such as 1, 2, 3, 4, 5. The 
Obuchowski & McClish (1997) variance formulas are used. 

Alternative Hypothesis 
Specify whether the test is one-sided or two-sided. When a two-sided test is selected, the value of 
alpha is divided by two.  

Note that most researchers assume that, unless stated otherwise, all statistical tests are two-sided. 
If you use a one-sided test, you should clearly state and justify this in all reports. 
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Lower FPR 
This option specifies the lower (left) limit of the false positive rate (FPR) for which the area is to 
be computed. If the area under the whole ROC curve is wanted, set this value to 0.0. If the partial 
area is wanted, set this value to the desired left limit. 

Note that the range of possible values is 0.0 <= Lower FPR < Upper FPR <= 1.0 

Upper FPR 
This option specifies the upper (right) limit of the false positive rate (FPR). If the area under the 
whole ROC curve is wanted, set this value to 1.0. If the partial area is wanted, set this value to the 
desired right limit.  

Note that the range of possible values is 0.0 <= Lower FPR < Upper FPR <= 1.0 

B1 (SD Ratio) 
B1 is the ratio of the standard deviation of the negative group to the positive group (SD-/SD+) for 
diagnostic test 1. That is, assuming the binormal model 

B1 1

1

= −

+

σ
σ

 

Note that this parameter is ignored for continuous data. 

Although B1 can be any positive number, typical values are between 0.3 and 3.0. Obuchowski 
suggests that if the value of B1 is not known, a value of 1.0 is used since this will result in a 
conservative (extra large) sample size. She reports that in her experience, typical values are much 
less than 1.0, often near 0.3. 

B2 (SD Ratio) 
B2 is the ratio of the standard deviation of the negative group to the positive group (SD-/SP+) for 
diagnostic test 2. That is, assuming the binormal model 

B2 2

2

= −
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Note that this parameter is ignored for continuous data. 

Although B2 can be any positive number, typical values are between 0.3 and 3.0. Obuchowski 
suggests that if the value of B2 is not known, a value of 1.0 is used since this will result in a 
conservative (extra large) sample size. She reports that in her experience, typical values are much 
less than 1.0, often near 0.3. 

Correlation+ 
This is the correlation between the two diagnostic-test scores for the positive group. Although 
correlations can range between -1 and 1, typical values are from 0.3 to 0.6.  

Note that if you want to analyze a design in which a separate set of patients receive each 
diagnostic test, this may be done by setting this correlation value to 0. 

Correlation- 
This is the correlation between the two diagnostic-test scores for the negative group. Although 
correlations can range between -1 and 1, typical values are from 0.3 to 0.6.  
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Note that if you want to analyze a design in which a separate set of patients receive each 
diagnostic test, this may be done by setting this correlation value to 0. 

N+ (Size of Positive Group) 
Specify the number of patients, that is, the sample size, in the positive (abnormal or diseased) 
group. Note that these values are ignored when you are solving for N+. You may enter a range of 
values such as 10 to 100 by 10. 

N- (Size of Negative Group) 
Specify the number of patients, that is, the sample size, in the negative (normal) group. Enter Use 
R to base N- on the value of N+. You may enter a range of values such as 10 to 100 by 10. 

Use R 
When Use R is entered here, N- is calculated using the formula  

N- = [R(N+)] 

where R is the Sample Allocation Ratio and the operator [Y] is the first integer greater than or 
equal to Y. For example, if you want N+ = N-, enter Use R here and set R = 1. 

R (Sample Allocation Ratio) 
Enter a value (or range of values) for R, the allocation ratio between samples. This value is only 
used when N- is set to Use R.  

When used, N- is calculated from N+ using the formula: N- = [R(N+)] where [Y] is the next 
integer greater than or equal to Y. Note that setting R = 1.0 forces N- = N+. 
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Example1 - Calculating Power  
An investigator wants to compare the accuracy of two diagnostic tests which yield measurements 
on a rating scale from 1 to 5. Historically, such tests have had an AUC of 0.80. The investigator 
wants to investigate three alternative AUC values: 0.825, 0.850, and 0.900. A two-sided test is 
planned with a significance level of 0.05. Historically, both the positive and negative correlations 
between the responses on two such tests have been close to 0.60. Since no other information is 
available, B1 and B2 are both set to 1.0. The investigator would like to achieve a power of 90% 
in the study. Patients without the disease under study are about twice as frequent as patients with 
the disease. The investigator wants to see results for a sample size of up to 6000 patients. 

Using these values, the investigator fills out the PASS: ROC Curve - Two Tests panel as follows. 

Setup 
You can enter these values yourself or load the Example1 template from the Template tab. 

Option Value
Data Tab 
Find ...................................................Beta and Power 
AUC1 ................................................0.80 
AUC2 ................................................0.825 0.85 0.9 
Alpha.................................................0.05 
Beta................................................... Ignored since this is the Find Setting 
Type of Data .....................................Discrete (Ratings) 
Alternative Hypothesis ......................Two-Sided Test 
Lower FPR ........................................0.00 
Upper FPR ........................................1.00 
B1......................................................1 
B2......................................................1 
Correlation+ ......................................0.6 
Correlation- .......................................0.6 
N+ .....................................................20 50 100 250 500 1000 2000 
N- ......................................................Use R 
R .......................................................2 
Axis Tab 
Vertical Range ..................................User 
Minimum ...........................................0 
Maximum ..........................................1 
Number of Tick Marks.......................10 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 
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Numeric Report 
 

Numeric Results for Testing AUC1 = AUC2 with Discrete (Rating) Data  
Test Type = Two-Sided.  FPR1 = 0.0.  FPR2 = 1.0.  B1 = 1.000.  B2 = 1.000.  Allocation Ratio = 2.000.  
 
Power N+ N- AUC1' AUC2' Diff' AUC1 AUC2 Diff Alpha Beta 
0.0501 20 40 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.9499 
0.0733 50 100 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.9267 
0.1084 100 200 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.8916 
0.2104 250 500 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.7896 
0.3744 500 1000 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.6256 
0.6426 1000 2000 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.3574 
0.9090 2000 4000 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.0910 
0.0920 20 40 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.9080 
0.1737 50 100 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.8263 
0.3083 100 200 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.6917 
0.6442 250 500 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.3558 
0.9116 500 1000 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.0884 
0.9969 1000 2000 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.0031 
1.0000 2000 4000 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.0000 
0.2470 20 40 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.7530 
0.5494 50 100 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.4506 
0.8496 100 200 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.1504 
0.9978 250 500 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0022 
1.0000 500 1000 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0000 
1.0000 1000 2000 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0000 
1.0000 2000 4000 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0000 
 
Report Definitions 
Power is the probability of rejecting a false null hypothesis. 
N+ is the sample size from the positive (diseased) population. 
N- is the sample size from the negative (non-diseased) population. 
Alloc Ratio is the Sample Allocation Ratio (R = N- / N+). 
AUC1' is the adjusted area under the ROC curve for diagnostic test 1. 
AUC2' is the adjusted area under the ROC curve for diagnostic test 2. 
Diff' is AUC2' - AUC1'. This is the adjusted difference to be detected. 
AUC1 is the actual area under the ROC curve for diagnostic test 1. 
AUC2 is the actual area under the ROC curve for diagnostic test 2. 
Diff is AUC2 - AUC1. This is the difference to be detected. 
Alpha is the probability of rejecting a true null hypothesis. 
Beta is the probability of accepting a false null hypothesis. 
FPR1, FPR2 are the lower and upper bounds on the false positive rates. 
B1 and B2 are the ratios of the standard deviations of the negative and positive groups for each test. 
 
Summary Statements 
A sample of 20 from the positive group and 40 from the negative group achieve 5% power to 
detect a difference of 0.0250 between a diagnostic test with an area under the ROC curve (AUC) 
of 0.8000 and another diagnostic test with an AUC of 0.8250 using a two-sided z-test at a 
significance level of 0.0500. The data are discrete (rating scale) responses. The AUC is 
computed between false positive rates of 0.000 and 1.000. The ratio of the standard deviation 
of the responses in the negative group to the standard deviation of the responses in the 
positive group for diagnostic test 1 is 1.000 and for diagnostic test 2 is 1.000. The 
correlation between the two diagnostic tests is assumed to be 0.600 for the positive group and 
0.600 for the negative group. 
 

This report shows the power for each of the sample sizes. Most of the definitions are standard. 
However, a special explanation must be given for AUC and AUC’. 

AUC’ 
This is the adjusted area under the curve. A rescaling, discussed earlier, has been applied so that 
the minimum area is 0.5 and the maximum area is 1.0.  

AUC 
This is the actual area under the curve. This value will equal the adjusted area when the FPR 
range is set from 0.0 to 1.0. Otherwise, these values will be different. 
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Plot Section 
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This plot shows the power versus the sample size for the three values of AUC1. 

Example2 - Calculating Sample Size  
Continuing Example1, the investigator wants to know the exact sample size needed for each of 
the three values of AUC2. The investigator wants to look at the Numeric Report. The panel from 
Example1 is modified as follows.  

Setup 
You can enter these values yourself or load the Example2 template from the Template tab. 
Option Value
Data Tab 
Find ...................................................N+ 
Reports Tab 
Show Definitions ...............................Unchecked 
Show Plots ........................................Unchecked 
Summary Statement Rows ...............0 

Click the Run button to perform the calculations and generate the following output. 

Numeric Report 
Numeric Results for Testing AUC1 = AUC2 with Discrete (Rating) Data  
Test Type = Two-Sided.  FPR1 = 0.0.  FPR2 = 1.0.  B1 = 1.000.  B2 = 1.000.  Allocation Ratio = 2.000.  
Power N+ N- AUC1' AUC2' Diff' AUC1 AUC2 Diff Alpha Beta 
0.9001 1937 3874 0.8000 0.8250 0.0250 0.8000 0.8250 0.0250 0.0500 0.0999 
0.9002 480 960 0.8000 0.8500 0.0500 0.8000 0.8500 0.0500 0.0500 0.0998 
0.9012 117 234 0.8000 0.9000 0.1000 0.8000 0.9000 0.1000 0.0500 0.0988 
 

This report shows the sample size needed to achieve 90% power for each value of AUC2.  
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Example3 - Partial Area Under Curve 
Continuing Example2, the investigator knows that FPR values between 0.0 and 0.20 are the only 
values of interest. Hence, he wants to investigate the sample size needed when the FPR range is 
confined to this range. 

The panel from Example2 is modified as follows. 

Setup 
You can enter these values yourself or load the Example3 template from the Template tab. 

Option Value
Data Tab 
Upper FPR ........................................0.20 

Annotated Output 
Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing AUC1 = AUC2 with Discrete (Rating) Data  
Test Type = Two-Sided.  FPR1 = 0.0.  FPR2 = 0.200.  B1 = 1.000.  B2 = 1.000.  Allocation Ratio = 2.000.  
 
Power N+ N- AUC1' AUC2' Diff' AUC1 AUC2 Diff Alpha Beta 
0.9000 4095 8190 0.8000 0.8250 0.0250 0.1280 0.1370 0.0090 0.0500 0.1000 
0.9002 1012 2024 0.8000 0.8500 0.0500 0.1280 0.1460 0.0180 0.0500 0.0998 
0.9001 242 484 0.8000 0.9000 0.1000 0.1280 0.1640 0.0360 0.0500 0.0999 
 

Note that the necessary sample size has more than doubled. 
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Example4 - Validation using Obuchowski  
The formulas used in this module were given in Obuchowski and McClish (1997). On pages 1538 
- 1540, they provide an example which will be duplicated here. The study compared an 
automated classification system with an expert mammographer in their ability to find malignant 
breast lesions. The measure of diagnostic accuracy is the AUC from an FPR of 0.0 to an FPR of 
0.2. The allocation ratio is 2. B1 = B2 = 1.0. Correlation+ = Correlation- = 0.6. The values of A1 
and A2 are found to be 2.6 and 1.9. These translate to adjusted AUC’s of 0.922222 and 0.819444. 
A two-tailed test is envisioned in which alpha is 0.05. A power of 80% is desired. In their article, 
they found N+ = 109 and N- = 218. 

Setup 
You can enter these values yourself or load the Example4 template from the Template tab. 
Option Value
Data Tab 
Find ...................................................N+ 
AUC1 ................................................0.80 
AUC2 ................................................0.825 0.85 0.9 
Alpha.................................................0.05 
Beta...................................................0.20 
Type of Data .....................................Discrete (Ratings) 
Alternative Hypothesis ......................Two-Sided Test 
Lower FPR ........................................0.00 
Upper FPR ........................................0.20 
B1......................................................1 
B2......................................................1 
Correlation+ ......................................0.6 
Correlation- .......................................0.6 
N+ ..................................................... Ignored since this is the Find Setting 
N- ......................................................Use R 
R .......................................................2 

Click the Run button to perform the calculations and generate the following output. 

Numeric Results 
 

Numeric Results for Testing AUC1 = AUC2 with Discrete (Rating) Data  
Test Type = Two-Sided.  FPR1 = 0.0.  FPR2 = 0.200.  B1 = 1.000.  B2 = 1.000.  Allocation Ratio = 2.000.  
 
Power N+ N- AUC1' AUC2' Diff' AUC1 AUC2 Diff Alpha Beta 
0.8027 109 218 0.9222 0.8194 -0.1028 0.1720 0.1350 -0.0370 0.0500 0.1973 
 

Note that the sample sizes of 109 and 218 match exactly with the results of Obuchowski.  
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Example5 - Validation using Hanley  
The formulas for continuous data were given in Hanley and McNeil (1982). On page 34 of their 
article they provide a table of sample sizes calculated using their formulas. We will duplicate 
their results for AUC1 = 0.70 and AUC2 = 0.75. Using a one-sided test of significance with alpha 
= 0.05 and a sample allocation ratio of 1.0, they found the number of subjects for both the 
positive and negative groups to be 652, 897, and 1131 for statistical powers of 80%, 90%, and 
95%, respectively. 

When using Hanley and McNeil’s formulation, the values of B1, B2, FPR1, and FPR2 are 
ignored. Also, in this case, the correlations are set to 0.0. 

Setup 
You can enter these values yourself or load the Example5 template from the Template tab. 
Option Value
Data Tab 
Find ...................................................N+ 
AUC1.................................................0.7 
AUC2.................................................0.75 
Alpha .................................................0.05 
Beta...................................................0.2 0.1 0.05 
Type of Data......................................Continuous 
Alternative Hypothesis ......................One-Sided Test 
Correlation+.......................................0.0 
Correlation- .......................................0.0 
N+......................................................Ignored since this is the Find Setting 
N- ......................................................Use R 
R........................................................1 

Click the Run button to perform the calculations and generate the following output. 
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Numeric Results 
 

Numeric Results for Testing AUC1 = AUC2 with Continuous Data  
Test Type = One-Sided.  FPR1 = 0.0.  FPR2 = 1.0.  B1 = 1.000.  B2 = 1.000.  Allocation Ratio = 1.000.  
 
Power N+ N- AUC1' AUC2' Diff' AUC1 AUC2 Diff Alpha Beta 
0.9501 1129 1129 0.7000 0.7500 0.0500 0.7000 0.7500 0.0500 0.0500 0.0499 
0.9001 897 897 0.7000 0.7500 0.0500 0.7000 0.7500 0.0500 0.0500 0.0999 
0.8003 652 652 0.7000 0.7500 0.0500 0.7000 0.7500 0.0500 0.0500 0.1997 
 

Note that the sample sizes of 897 and 652 match exactly with the results of Hanley and McNeil. 
The 1129 is two less than their 1131. This difference may be due to refinements in computing the 
normal probability distribution used in PASS. You can compare these sample sizes by calculating 
their power. 

Numeric Results 
 

Numeric Results for Testing AUC1 = AUC2 with Continuous Data  
Test Type = One-Sided.  FPR1 = 0.0.  FPR2 = 1.0.  B1 = 1.000.  B2 = 1.000.  Allocation Ratio = 1.000.  
 
Power N+ N- AUC1' AUC2' Diff' AUC1 AUC2 Diff Alpha Beta 
0.9499 1128 1128 0.7000 0.7500 0.0500 0.7000 0.7500 0.0500 0.0500 0.0501 
0.9501 1129 1129 0.7000 0.7500 0.0500 0.7000 0.7500 0.0500 0.0500 0.0499 
0.9502 1130 1130 0.7000 0.7500 0.0500 0.7000 0.7500 0.0500 0.0500 0.0498 
0.9504 1131 1131 0.7000 0.7500 0.0500 0.7000 0.7500 0.0500 0.0500 0.0496 
0.9505 1132 1132 0.7000 0.7500 0.0500 0.7000 0.7500 0.0500 0.0500 0.0495 

 

Chapter 365 Note that the power for 1129 is 0.9501 while the power for 1131 is 0.9505. 
This is only a slight difference and explains why this value showed up in their table. 
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Comparisons: multiple comparisons, 575-1; one-way, 

550-1 
Comparisonwise: error rate, 580-2, 585-2, 590-1 
Compound symmetry, 570-14 
Confidence coefficient: mean, 420-2, 420-3; 

proportion, 115-2 
Confidence interval: mean, 420-1; proportion, 115-1 
Constant: simulating a, 630-6 
Consumer’s risk, 405-1 
Contingency table, 250-1; chi-square, 900-1 
Continuity correction, 100-5; proportions, 220-8; two 

proportions, 205-8 
Contrast coefficients, 550-7 
Contrast matrix, 570-11 
Contrasts, 550-1, 590-1; MANOVA, 605-6; multiple, 

590-2 
Control: multiple comparisons, 575-2, 585-1 
Controlled variables: multiple regression, 865-5 
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Correlated proportions: equivalence, 165-1; McNemar 
test, 150-1 

Correlation: cluster randomization, 480-3; intraclass, 
810-1; linear regression, 855-1; one, 800-1; two, 
805-1 

Correlation coefficient, 800-1 
Correlation tolerance: paired means using simulation, 

490-11 
Covariance: Hotelling’s T2, 600-5; MANOVA, 605-

11 
Covariance matrix, 570-14 
Covariate: logistic regression, 860-6 
Cox regression, 850-1 
Creating data: simulation, 630-1 
Cronbach's alpha, 815-1, 1 
Coefficient of variation, 525-4, 545-5 
Equivalence tests, 540-3 
Hypothesis, 545-3 
Cross-over: Balaam's design, 540-2; equivalence, 520-

1, 525-1, 540-1, 545-1; higher order, 535-1, 540-1; 
higher-order, 530-1; mean difference, 500-1; non-
inferiority, 510-1, 515-1, 530-1, 535-1; ratio, 505-
1, 525-1, 535-1; repeated measures, 570-46 

Cubic: contrast, 550-7 
Customizing toolbars, 13 
Data, 38; simulation of, 630-1 
Data Tab, 21 
Decimals, 22 
Default: template, 16 
Depth, 28 
Diagnostic testing: ROC curve, 260-1 
Difference: equivalence, 110-4, 165-3, 460-1, 520-1, 

540-1; non-inferiority, 105-4, 160-3, 450-1, 530-1; 
proportion, 100-6; proportions, 52, 200-3, 205-3, 
210-4, 215-4 

Discordant pairs, 150-2 
Distribution: combining, 630-16; mixing, 630-16 
Distributions: simulating paired, 490-2; simulation, 

630-1 
Documentation, 19, 39 
Donner & Klar: cluster randomization, 230-2 
Double exponential, 400:7 
Drift: group sequential, 475-5; proportions, 220-5 
Dunn’s test, 590-3; power, 590-4 
Dunnett’s test, 585-3; multiple comparisons, 575-3 
Dunnett's test, 585-1 
Dunn's test: power, 590-1 
Edit menu, 36 
Effect size, 46; ANOVA, 560-3, 560-7; chi-square, 

900-1, 900-2; chi-square test, 250-2; multiple 
regression, 865-3; one-way ANOVA, 550-3; 
randomized block, 560-2 

Effect Size: one-way ANOVA, 550-13 
Balaam's design, 545-2 
Equivalence: cluster randomization, 240-1; correlated 

proportions, 165-1; cross-over, 520-1, 525-1, 540-
1, 545-1; difference, 460-1; hypothesis, 215-4, 215-
5; limits, 495-8; margin, 450-9; Mean, 520-1; mean 
ratio, 470-1; means, 465-1; paired means, 495-1; 
proportion, 110-1; proportions, 165-1, 215-1; ratio, 
165-6; ratio, 470-1; simulation, 495-3; t-test, 465-3 

Equivalence hypothesis, 50 
Equivalence margin: non-inferiority, 455-4 
Error rates: multiple comparison, 580-2, 585-2, 590-1 
Errors, 42 
Exit, 18 
Experimentwise: error rate, 580-2, 585-2, 590-1 
Exponential: log-rank, 705-3; means, 435-1; 

simulating a, 630-7 
Exponential data: simulation, 410-28 
Exponential mean, 405-1 
Exponential test: simulation, 410-5 
Exposed, 255-5 
Exposure, 870-1 
Exposure probability: matched case-control, 255-3 
F: simulating a, 630-8 
Factor: fixed, 560-5; random, 560-5 
Factorial ANOVA, 560-1 
Familywise: error rate, 580-2, 585-2, 590-1 
Farrington - Manning test: difference, 210-11; 

equivalence, 215-11; non-inferiority, 210-11; ratio, 
215-11 

Farrington-Manning test: two proportions, 205-11 
File menu, 34 
File Menu, 17 
File Name: template file, 32 
Files: template, 32 
: , 105-12 
Finite population correction: t test, 400:6 
Finite population size, 420-2; proportion, 115-2 
Fisher's Exact test: proportions, 200-5 
Fisher-z transformation, 805-1 
Fixed factor, 560-5 
Fleming: one-stage design, 120-1 
Folders, 1 
Follow-up: log-rank, 705-4 
Fonts: changing, 37 
Format menu, 37, 40 
Formatting: charts interactively, 25 
FPR: ROC curve, 260-6; ROC curves, 265-1, 265-6 
F-test: Geisser-Greenhouse, 570-4; one-way, 555-2; 

simulation, 555-1; two variances, 655-1 
Games-Howell: multiple comparison, 580-1 
Games-Howell test, 580-4 
Gamma: simulating, 630-24; simulating a, 630-9 
Gart - Nam test: difference, 210-13; equivalence, 215-

12; non-inferiority, 210-13; ratio, 215-12 
Gart-Nam test: two proportions, 205-12 
Geisser-Greenhouse, 570-1 
Geisser-Greenhouse F-test, 570-4 
General linear multivariate model: MANOVA, 605-2 
General Linear Multivariate Model, 570-3 
Generating data, 630-1 
Goodness of fit, 250-1; chi-square, 900-1 
Grid color, 27 
Grid line style, 27 
Grid lines, 27 
Group Sample Size, 555-5 
Group sample size pattern, 580-10 
Group sequential test: log-rank, 710-1; means, 475-1; 

proportions, 220-1; survival, 710-1 
Hazard rate: Cox regression, 850-1 
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Hazard rates: log-rank, 700-2, 705-2 
Hazard ratio: group sequential, 710-2 
Help menu, 39 
Help system, 5 
Cross-over, 545-1 
Home window, 11 
Horizontal Axis, 23 
Hotelling’s T2, 600-1 
Hotelling-Lawley trace, 570-7, 605-1; MANOVA, 

605-5 
Hotelling-Lawley trace, 570-1 
Hypergeometric, 100-2 
Hypotheses: ANOVA, 560-4; non-inferiority, 415-2; 

offset proportions, 205-5; superiority, 415-2; types, 
48 

Hypothesis: difference, 210-4, 215-4; equivalence, 50, 
110-4, 165-3, 215-4, 215-5; inequality, 48; 
introduction, 42; means, 55; non-inferiority, 49, 
105-4, 105-5, 160-3, 160-6, 450-2; odds ratio, 110-
6, 210-5, 215-5; , 410-7; one variance, 650-3; ratio, 
110-5, 210-5, 215-5; superiority, 50, 105-4; 
Superiority, 210-4 

Hypothesis testing: introduction, 42 
Hypothesized mean, 550-14 
Hypothesized means, 550-6; randomized block, 560-4 
Icons, 12, 13 
Incidence rate, 135-2 
Independence test, 250-1 
Inequality: 2x2 cross-over, 500-1; correlated 

proportions, 150-1; hypothesis, 48; mean ratio, 
445-1; proportion, 100-1; proportions, 200-1, 205-1 

Installation, 1 
Interactive Charts, 25 
Interactive Format, 25 
Intercept: linear regression, 855-1 
Interim analysis: means, 475-1; proportions, 220-1; 

survival, 710-1; three-stage, 130-1 
Intraclass correlation, 810-1 
Intracluster correlation: cluster randomization, 230-2, 

480-3; cluster randomization, 235-3 
Isometric, 29 
Iterations: maximum, 22 
Kruskal-Wallis: multiple comparisons, 580-1; 

simulation, 555-1 
Kruskal-Wallis test, 580-4, 585-4; multiple 

comparisons, 585-1; simulation, 555-3 
Labels of plots, 26 
Lachin: log-rank test, 705-1 
Lan-DeMets: means, 475-1; proportions, 220-1; 

survival, 710-1 
Latin square: ANOVA, 560-19 
Legend, 23, 26 
Legend color, 26 
Likelihood ratio test: proportions, 200-8 
Likert-scale: simulating, 630-22; simulating a, 630-10; 

simulation, 410-23 
Line Chart options, 24 
Linear: contrast, 550-7 
Linear model, 570-3 
Linear model: ANOVA, 560-2 
Linear regression, 855-1; correlation, 800-1 

Load template, 32 
Log: cross-over, 515-3, 525-3, 545-4; mean ratio, 445-

2, 455-2 
Log file, 34 
Log transformation: cross-over, 505-2, 535-4; ratio, 

470-3 
Logistic, 400:7 
Logistic regression, 860-1 
Logit: logistic regression, 860-2 
Log-rank: group sequential test, 710-1 
Log-rank test, 700-1, 705-1 
Log-rank Non-Inferiority test, 705-15 
Mann-Whitney test, 430-1, 430-18; equivalence, 465-

6; equivalence, 465-1; non-inferiority, 450-6; 
simulation, 440-4 

MANOVA, 605-1 
Mantel Haenszel test: proportions, 200-7 
Mantel-Haenszel, 225-1 
Margin of equivalence, 455-4; difference, 450-9 
Matched case-control, 135-2, 255-1 
Max time: sequential survival, 710-9 
Maximum: on axis, 27 
Maximum Iterations, 22 
McNemar test, 150-1 
Mean: confidence interval, 420-1; cross-over, 505-1; 

equivalence, 470-1, 525-1; exponential, 405-1; 
non-inferiority, 515-1; simulation, 410-1 

Mean difference: 2x2 cross-over, 500-1; cross-over, 
510-1 

Mean ratio: equivalence, 545-1; inequality, 445-1; 
non-inferiority, 455-1 

Means: contrasts, 590-1; cross-over, 540-1; 
equivalence, 460-1, 465-1; exponential, 435-1; 
group sequential test, 475-1; hypothesized, 550-6; 
introduction, 55; MANOVA, 605-1; multiple 
comparisons, 585-1; non-inferiority, 450-1, 530-1; 
one-way, 555-1; paired, 490-1, 495-1; simulation, 
59; simulation, 440-1 

Means matrix: MANOVA, 605-5 
Means matrix, 570-7 
Measurement error, 560-2 
Menu: edit, 36; file, 34; format, 37; help, 39; view, 37; 

window, 38 
Menus, 12, 17; file, 17 
Miettinen - Nurminen test: difference, 210-9, 215-9; 

equivalence, 215-9, 215-10; non-inferiority, 210-9; 
proportions, 205-9; Ratio, 215-10 

Minimum: on axis, 27 
Minimum detectable difference: multiple 

comparisons, 575-10; one-way ANOVA, 550-19; t-
test, 400:13; two-sample t test, 430-15 

Monte Carlo, 57, 630-1 
MTBF: exponential mean, 405-1 
Multinomial: chi-square, 900-4; simulating a, 630-10 
Multiple comparisons, 575-1; Dunnett's test, 585-1; 

Games-Howell, 580-1; pair-wise, 580-1; power, 
580-5, 585-4 

Multiple contrasts, 590-1; power, 590-4 
Multiple regression, 865-1 
Navigator, 38 
NCSS: quitting, 18 
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New Template, 17 
Nominal alpha: group sequential test of means, 475-13 
Noncentrality: one-way ANOVA, 550-3 
noncentrality parameter: one-way ANOVA, 550-4 
Non-inferiority: correlated proportions, 160-1; cross-

over, 510-1, 515-1, 530-1; difference, 160-3; 
hypotheses, 450-2; hypotheses, 415-2;log-rank test, 
705-15; mean difference, 450-1; mean ratio, 455-1; 
odds ratio, 210-5; paired means, 415-1, 490-8, 490-
18; paired means, 415-2; proportion, 105-1; ; 
cluster randomization, 235-1; proportions, 210-1; 
ratio, 160-6, 210-5; z test, 210-7 

Non-Inferiority: simulation, 440-6 
Non-inferiority hypothesis, 49 
Non-Inferiority test: simulation, 440-17 
Non-inferiority tests, 510-3, 530-3, 535-3 
Non-null: proportions, 205-1 
Nonparametric: Mann-Whitney, 430-8; t-test, 400:7; 

Wilcoxon test, 400:1 
Normal: contaminated, 630-21; simulating, 630-19; 

simulating a, 630-11 
Nuisance parameter, 56; correlated proportions, 160-7, 

165-7 
Nuissance parameters, 47 
Null case: proportions, 200-1 
Null hypothesis, 42, 55 
O’Brien-Fleming: means, 475-1; proportions, 220-1; 

survival, 710-1 
Odds ratio: equivalence, 110-6; logistic regression, 

860-2; Mantel-Haenszel, 225-2; matched case-
control, 255-1; McNemar test, 150-3; non-
inferiority, 210-5; non-inferiority, 105-6; 
proportion, 100-7; proportions, 53, 200-3, 205-4, 
215-5 

Odds ratio estimator, 910-1 
Offset: proportions, 205-1 
One-way ANOVA, 550-1 
Open Template, 17 
Options tab, 22 
Outliers: multiple comparisons, 580-26; simulation, 

440-18, 555-19 
Outline window, 14 
Output: word processor, 33 
P value, 44 
Paired designs, 415-1 
Paired means: equivalence, 495-1; simulation, 490-1 
Paired proportions: non-inferiority, 160-1 
Paired t-tes, 490-1 
Paired t-test, 400:14; assumptions, 400:3; non-

inferiority, 415-1 
Paired t-tests, 400:1 
Pairwise comparisons: multiple comparisons, 575-8 
Pair-wise comparisons, 580-1 
Panel, 15 
PASS: starting, 7 
PASS Home, 11 
Password, 19, 39 
Patient entry: log-rank, 705-3 
PDF files, 19, 39 
Perspective, 28, 29 
Phase I trials, 120-2 

Phase II trials, 120-2 
Phi: matched case-control, 255-5 
Pillai-Bartlett trace, 570-6, 605-1; MANOVA, 605-4 
Pillai-Bartlett trace, 570-1 
Planned Comparisons, 550-1 
Plot Setup tab, 23 
Plot Text tab, 26 
Pocock: means, 475-1; proportions, 220-1; survival, 

710-1 
Poisson: incidence, 135-1; simulating a, 630-11 
Poisson regression, 870-1 
Population size: t-test, 400:6 
Post-marketing surveillance, 135-1 
Power, 45; introduction, 41; means, 55; multiple 

comparisons, 580-5, 585-4; multiple contrasts, 590-
4 

Prevalence: correlated proportions, 160-2, 165-2 
Print, 35 
Procedure Window, 15 
Producer’s risk, 405-1 
Projection method, 28 
Proportion: confidence interval, 115-1; difference, 

100-6; equivalence, 110-1; inequality, 100-1; non-
inferiority, 105-1; odds ratio, 100-7; ratio, 100-6 

Proportional hazards regression, 850-1 
Proportions: Chi-square test, 200-6; cluster 

randomization, 240-1; inequality, 230-1; cluster 
randomization, 235-1; comparing, 51; correlated, 
160-1, 165-1; difference, 52; equivalence, 215-1; 
Farrington - Manning test, 210-11; Fisher's exact, 
200-5; Gart - Nam test, 210-13; group sequential 
test, 220-1; independent, 200-1; inequality, 200-1, 
205-1; interim analysis, 220-1; interpretation, 54; 
introduction, 51; logistic regression, 860-1; 
matched case control, 255-1; McNemar test, 150-1; 
Miettinen - Nurminen test, 210-9, 215-9; non-
inferiority, 160-1, 210-1; odds ratio, 53; odds ratio 
estimator, 910-1; offset, 205-1; paired, 160-1; ratio, 
52; single-stage, 120-1; stratified, 225-1; 
superiority, 210-1; three-stage, 130-1; two-stage, 
125-1 

Quadratic: contrast, 550-7 
Quitting, 35 
Random factor, 560-5 
Random number pool size, 495-13; paired means 

using simulation, 490-11 
Random numbers, 580-6, 585-5, 590-5, 630-1 
Randomized block ANOVA, 560-1 
Range on axis, 27 
Rating data: ROC curve, 260-3 
Ratio: cross-over, 505-1; equivalence, 110-5, 165-6; 

Farrington - Manning test, 215-11; Gart - Nam test, 
215-12; inequality, 445-1; means, 445-1; Miettinen 
- Nurminen test, 215-10; non-inferiority, 160-6, 
210-5, 455-2, 515-1, 535-1; proportion, 100-6, 105-
5; proportions, 52, 200-3, 205-4, 215-5 

Ratios: equivalence, 470-1 
Regression: Cox, 850-1; linear, 855-1; logistic, 860-1; 

multiple, 865-1; Poisson, 870-1 
Rejection region, 44 
Repeated measures, 570-1 
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Reports tab, 22 
Risk ratio: Blackwelder, 205-29; equivalence, 165-6 
ROC curve, 260-1 
ROC curves, 265-1 
Rotation of tickmarks, 26 
R-squared, 865-1; added, 865-5; logistic regression, 

860-8 
RTF, 35 
RTF files, 33 
Ruler, 37 
Run menu, 18 
Sample size: introduction, 41 
Save template, 18, 32 
Score test: equivalence, 215-9, 215-10, 215-11, 215-

12; Farrington - Manning test, 210-11, 215-11; Gart 
- Nam test, 210-13, 215-12; Miettinen - Nurminen 
test, 210-9, 215-9, 215-10; non-inferiority, 210-9, 
210-11, 210-13; proportions, 205-9 

Sensitivity: correlated proportions, 160-2, 165-2; ROC 
curve, 260-1 

Serial numbers, 19, 39 
Show Beta as Power, 23 
Show tick marks, 28 
Sign test: simulation, 410-4, 490-5, 495-5 
Significance level, 44; adjusting, 60; multiple 

comparisons, 580-2, 585-2, 590-1 
Simon: two-stage, 125-1 
Simulation, 57, 630-1; equivalence, 465-1, 495-1; 

means, 440-1; multiple comparisons, 580-1, 580-5, 
585-1, 585-5; multiple contrasts, 590-1, 590-5; one 
mean, 410-1; one-way, 555-1; paired means, 490-1, 
495-1; random number generation, 580-6, 585-5, 
590-5; size, 58; syntax, 630-16 

Single-stage design, 120-1 
Skewed data: one-way, 555-22; simulation, 410-14, 

410-17, 440-20 
Skewed distribution: simulating a, 630-13 
Slope: linear regression, 855-1 
Specificity: correlated proportions, 160-2, 165-2; 

ROC curve, 260-1 
Spending functions: means, 475-2; proportions, 220-2 
Standard deviation, 56; estimator, 905-1; 

interpretation, 905-1; means, 550-13; one, 650-1; 
two, 655-1 

Standard deviation, 400:4 
Starting PASS, 3, 7 
Stratified designs, 225-1 
Student's T: simulating a, 630-12 
Style: grid line, 27 
Summary Statements, 22 
Superiority: hypotheses, 450-2; proportion, 105-4; 

proportions, 210-1, 210-4 
Superiority hypothesis, 50 
Superiority tests, 510-3, 530-3, 535-3 
Support, 5, 6 
Surface Chart options, 24 
Survival: log-rank, 700-1, 705-1 
Symbols, 30 
Symbols tab, 30 
System requirements, 1 
T: simulating a, 630-12 

Tab: abbreviations, 31 
Tabs, 21; axes, 27; data, 21; options, 22; plot setup, 

23; reports, 22; symbols, 30; template, 32 
Tech support, 5, 6 
Template, 15; load, 32; save, 32 
Template Files, 32 
Template Id, 32 
Template tab, 32 
Templates, 17; automatic, 16; default, 16; loading, 17; 

new, 17; save, 18; saving, 17 
Test statistics, 47 
Text output, 22 
Thin Walls, 29 
Three-stage design, 130-1 
Tick marks, 27; show, 28 
Tickmark rotation, 26 
Titles of plots, 26 
Toolbar, 13, 20, 37, 40 
Treatment versus control: multiple comparisons, 575-

2 
Trimmed t-test: equivalence, 465-5, 465-6; simulation, 

440-3 
T-test: assumptions, 400:3; cluster randomization, 

480-1; cross-over, 500-4, 510-4, 520-4, 540-4; 
equivalence, 215-8, 460-2, 465-3; equivalence, 
520-4; equivalence, 540-4; non-inferiority, 210-8, 
415-1, 415-5, 450-2, 450-5, 510-4; proportions, 
200-8, 215-8; simulation, 410-1, 490-4, 495-4; 
simulation, 440-1; simulation, 440-2 

T-tests: assumptions, 430-4; one mean, 400:1; paired, 
400:1; two means, 430-1 

Tukey-Kramer: simulation, 580-1 
Tukey-Kramer test, 580-3; multiple comparisons, 575-

8 
Tukey's lambda: simulating a, 630-13 
: , 235-8, 235-11, 235-13, 235-15 
Two-sample t-test, 430-1; simulation, 440-2 
Two-Stage design, 125-1 
Type-I error, 42 
Type-II error, 42 
Uniform: simulating a, 630-14 
: , 235-12; repeated measures, 570-53; ROC Curves, 

265-12; t-test, 400:17; two-sample t-test, 430-20 
Variance: one, 650-1 
Variances: two, 655-1 
Vertical viewing angle, 28 
View menu, 37 
Viewing angle: horizontal, 28; vertical, 28 
Wall color, 29 
Weibull: simulating a, 630-15 
Welch test: power, 590-4 
Welch's test: equivalence, 465-1; simulation, 440-3 
Welch's t-test: non-inferiority, 450-5 
Wilcoxon test, 400:7, 400:15, 415-8, 450-11; 

assumptions, 400:3; non-inferiority, 415-5; paired, 
415-1; simulation, 410-3, 410-21, 490-1, 490-4, 
495-5 

Wilcoxon test, 400:1 
Wilks’ Lambda, 570-6, 605-1; MANOVA, 605-3 
Wilks’ Lambda, 570-1 
Window menu, 38 
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Winsorized test: equivalence, 465-5 
Within standard deviation, 570-15 
Within-subjects design: repeated measures, 570-2 
Word processor: built in, 33 

Z test: equivalence, 215-7; non-inferiority, 210-7; 
proportions, 205-7, 215-7 

Z test - proportion -equivalence, 110-8 
Z tests, 100-4 
Zeros: two proportions, 205-19 
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